WorldWideScience

Sample records for carbide cobalt nanoparticles

  1. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    International Nuclear Information System (INIS)

    Zamanpour, Mehdi; Bennett, Steven P.; Majidi, Leily; Chen, Yajie; Harris, Vincent G.

    2015-01-01

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co 2 C and Co 3 C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co x C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties

  2. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Zamanpour, Mehdi; Bennett, Steven P. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Majidi, Leily [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-03-15

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  3. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  5. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    International Nuclear Information System (INIS)

    Diaz Barriga-Arceo, L; Orozco, E; Garibay-Febles, V; Bucio-Galindo, L; Mendoza Leon, H; Castillo-Ocampo, P; Montoya, A

    2004-01-01

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 μm in length and 20-200 nm in diameter and 0.6-1.2 μm in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process

  6. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  7. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  8. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    Science.gov (United States)

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Armstead, Andrea L. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Arena, Christopher B. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Li, Bingyun, E-mail: bili@hsc.wvu.edu [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, Morgantown, WV 26506 (United States)

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  10. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Armstead, Andrea L.; Arena, Christopher B.; Li, Bingyun

    2014-01-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics

  11. Toughness behaviour of tungsten-carbide-cobalt alloys

    International Nuclear Information System (INIS)

    Sigl, L.S.

    1985-05-01

    In the present work the mechanisms of crack propagation in technically important WC-Co alloys are investigated and a model describing the influence of microstructural parameters and of the mechanical properties of the constituents is developed. An energy concept is used for modelling fracture toughness. The energies dissipated in the four crack-paths (trans- and intergranular carbide fracture, fracture across the binder-ligaments, fracture in the binder close to the carbide/binder interface) are summed up using the experimentally determined area-fractions of the crack-paths, the specific energy of brittle fracture in the carbide and of ductile fracture is calculated by integrating the energy to deform a volume element over the plastically deformed region. In contrast to all earlier models, this concept describes fracture toughness of WC-Co alloys only with physically meaningful parameters. The excellent agreement with experimental toughness values and with qualitative observations of crack propagation show that the new model includes all effects which influence toughness. As demonstrated with WC-based hardmetals with a cobalt-nickel binder, the results open new possibilities for optimizing the toughness of composites in which a small amount of a tough phase is embedded in a brittle matrix. (Author, shortened by G.Q.)

  12. Control of carbon nanotube growth using cobalt nanoparticles as catalyst

    International Nuclear Information System (INIS)

    Huh, Yoon; Green, Malcolm L.H.; Kim, Young Heon; Lee, Jeong Yong; Lee, Cheol Jin

    2005-01-01

    We have controllably grown carbon nanotubes using uniformly distributed cobalt nanoparticles as catalyst. Cobalt nanoparticles with a uniform size were synthesized by chemical reaction and colloidal solutions including the cobalt nanoparticles were prepared. The cobalt nanoparticles were uniformly distributed on silicon substrates by a spin-coating method. Carbon nanotubes with a uniform diameter were synthesized on the cobalt nanoparticles by thermal chemical vapor deposition of acetylene gas. The density and vertical alignment of carbon nanotubes could be controlled by adjusting the density of cobalt (Co) nanoparticles

  13. Synthesis and Characterization of Cobalt Ferrite Nanoparticles ...

    African Journals Online (AJOL)

    prepared material. It was observed that surface modification such as with silica coating on the cobalt ferrite will have significant effect on the structural and magnetic properties. It is also observed that, silica coated nanoparticles could be used in biomedical applications (Hong et al., 2013). In this work we have chosen sol-gel ...

  14. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  15. Analysis of cobalt, tantalum, titanium, vanadium and chromium in tungsten carbide by inductively coupled plasma-optical emission spectrometry

    CSIR Research Space (South Africa)

    Archer, M

    2003-12-01

    Full Text Available Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to measure the concentrations of cobalt, tantalum, titanium, vanadium and chromium in solutions of tungsten carbide. The main advantage of the method described here lies...

  16. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  17. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...

  18. Enhancement of electrical conductivity in gamma irradiated cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Nawpute, Asha A.; Raut, A.V.; Babrekar, M.K.; Kale, C.M.; Jadhav, K.M.; Shinde, A.B.

    2014-01-01

    The cobalt ferrite nanoparticles were synthesized by sol-gel auto- combustion method, in which L-ascorbic acid was used as a fuel. The effect of gamma irradiation on the electrical resistivity of cobalt ferrite nanoparticles has been studied. The ferrite powder annealed at 550℃ was irradiated by gamma source 137 Cs. The synthesized nanoparticles were characterized by X-ray diffraction and DC resistivity. (author)

  19. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  20. Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems

    NARCIS (Netherlands)

    Tomou, A; Gournis, D; Panagiotopoulos, [No Value; Huang, Y; Hadjipanayis, GC; Kooi, BJ; Panagiotopoulos, I.

    2006-01-01

    Cobalt oxide nanoparticle systems have been prepared by wet chemical processing involving the encapsulation of the nanoparticles by an organic ligand shell (oleic acid and oleylamine). CoO nanoparticles were easily prepared by this method, while the synthesis of the CoPt/CoO nanocomposites was

  1. The role of cobalt ferrite magnetic nanoparticles in medical science

    International Nuclear Information System (INIS)

    Amiri, S.; Shokrollahi, H.

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: ► Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. ► They have high coercivity and moderate saturation magnetization. ► Cobalt ferrite nanoparticles are synthesized easily. ► They are a good candidate for hyperthermia and magnetic resonance imaging.

  2. Magnetic and resonance properties of ferrihydrite nanoparticles doped with cobalt

    Science.gov (United States)

    Stolyar, S. V.; Yaroslavtsev, R. N.; Iskhakov, R. S.; Bayukov, O. A.; Balaev, D. A.; Dubrovskii, A. A.; Krasikov, A. A.; Ladygina, V. P.; Vorotynov, A. M.; Volochaev, M. N.

    2017-03-01

    Powders of undoped ferrihydrite nanoparticles and ferrihydrite nanoparticles doped with cobalt in the ratio of 5: 1 have been prepared by hydrolysis of 3 d-metal salts. It has been shown using Mössbauer spectroscopy that cobalt is uniformly distributed over characteristic crystal-chemical positions of iron ions. The blocking temperatures of ferrihydrite nanoparticles have been determined. The nanoparticle sizes, magnetizations, surface anisotropy constants, and bulk anisotropy constants have been estimated. The doping of ferrihydrite nanoparticles with cobalt leads to a significant increase in the anisotropy constant of a nanoparticle and to the formation of surface rotational anisotropy with the surface anisotropy constant K u = 1.6 × 10-3 erg/cm2.

  3. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    International Nuclear Information System (INIS)

    Qi, B.; Andrew, J. S.; Arnold, D. P.

    2017-01-01

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe_6_6Co_3_4) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe_2O_4) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  4. Calcium-assisted reduction of cobalt ferrite nanoparticles for nanostructured iron cobalt with enhanced magnetic performance

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B. [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States); Andrew, J. S. [University of Florida, Department of Materials Science and Engineering (United States); Arnold, D. P., E-mail: darnold@ufl.edu [University of Florida, Interdisciplinary Microsystems Group, Department of Electrical and Computer Engineering (United States)

    2017-03-15

    This paper demonstrates the potential of a calcium-assisted reduction process for synthesizing fine-grain (~100 nm) metal alloys from metal oxide nanoparticles. To demonstrate the process, an iron cobalt alloy (Fe{sub 66}Co{sub 34}) is obtained by hydrogen annealing 7-nm cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles in the presence of calcium granules. The calcium serves as a strong reducing agent, promoting the phase transition from cobalt ferrite to a metallic iron cobalt alloy, while maintaining high crystallinity. Magnetic measurements demonstrate the annealing temperature is the dominant factor of tuning the grain size and magnetic properties. Annealing at 700 °C for 1 h maximizes the magnetic saturation, up to 2.4 T (235 emu/g), which matches that of bulk iron cobalt.

  5. Synthesis and characterization of cobalt/gold bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Cheng, Guangjun; Hight Walker, Angela R.

    2007-01-01

    Cobalt/gold (Co/Au) bimetallic nanoparticles are prepared by chemically reducing gold (III) chloride to gold in the presence of pre-synthesized Co nanoparticles. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectrometry, and a superconducting quantum interference device (SQUID) magnetometer have been used to characterize as-prepared bimetallic nanoparticles. Our findings demonstrate Au not only grows onto Co nanoparticles, forming a surface coating, but also diffuses into Co nanoparticles. The introduction of Au alters the crystalline structure of Co nanoparticles and changes their magnetic properties. Dodecanethiols induce a reorganization of as-prepared Co/Au bimetallic nanoparticles

  6. Synthesis of cobalt boride nanoparticles using radio frequency thermal plasma

    International Nuclear Information System (INIS)

    Lapitan, Jr. Lorico DS.; Ying Ying Chen; Seesoek Choe; Watanabe, Takayuki

    2012-01-01

    Nano size cobalt boride particles were synthesized from vapor phase using a 30 kw-4 MHz radio frequency (RF) thermal plasma. Cobalt and boron powder mixtures used as precursors in different composition and feed rate were evaporated immediately in the high temperature plasma and cobalt boride nanoparticles were produced through the quenching process. The x-ray diffractometry (XRD) patterns of cobalt boride nanoparticles prepared from the feed powder ratio of 1:2 and 1:3 for Co: B showed peaks that are associated with the Co 2 B and CoB crystal phases of cobalt boride. The XRD analysis revealed that increasing the powder feed rate results in a higher mass fraction and a larger crystalline diameter of cobalt boride nanoparticles. The images obtained by field emission scanning electron microscopy (FE-SEM) revealed that cobalt boride nanoparticles have a spherical morphology. The crystallite size of the particles estimated with XRD was found to be 18-22 nm. (author)

  7. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sarr, Mouhamadou, E-mail: sarrtapha44@yahoo.fr [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Bahlawane, Naoufal; Arl, Didier [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Dossot, Manuel [Laboratory of Physical Chemistry and Microbiology for the Environment, UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France); McRae, Edward [Institut Jean Lamour, UMR 7198CNRS-Université de Lorraine, FST, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Lenoble, Damien, E-mail: damien.lenoble@list.lu [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2016-08-30

    Highlights: • Conformal carbon-Co-carbide thin films. • Chemically growth carbone-Co-carbide composite. • Tuneable magnetic properties. - Abstract: The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  8. Structural and magnetic study of dysprosium substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Hemaunt, E-mail: hvatsal@gmail.com [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Srivastava, R.C. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Pal Singh, Jitendra [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Negi, P. [Department of Physics, Govind Ballabh Pant University of Agr. & Technology, Pantnagar, Uttarakhand 263145 (India); Agrawal, H.M. [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of); Das, D. [UGC-DAE CSR Kolkata Centre, Kolkata 700098 (India); Hwa Chae, Keun [Advanced Analysis Centre, Korea Institute of Science and Technology, Seoul 02792 (Korea, Republic of)

    2016-03-01

    The present work investigates the magnetic behavior of Dy{sup 3+} substituted cobalt ferrite nanoparticles. X-ray diffraction studies reveal presence of cubic spinel phases in these nanoparticles. Raman spectra of these nanoparticles show change in intensity of Raman bands, which reflects cation redistribution in cubic spinel lattice. Saturation magnetization and coercivity decrease with increase of Dy{sup 3+}concentration in these nanoparticles. Room temperature Mössbauer measurements show the cation redistribution in these nanoparticles and corroborates the results obtained from Raman Spectroscopic measurements. Decrease in magnetization of Dy{sup 3+} substituted cobalt ferrite is attributed to the reduction in the magnetic interaction and cation redistribution. - Highlights: • Slight decrease in crystallite size after Dy{sup 3+} doping. • Saturation magnetization and coercivity decrease after Dy{sup 3+} doping. • Mössbauer measurements show the cation redistribution in the samples.

  9. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation

    International Nuclear Information System (INIS)

    Mrotchek, I.

    2007-01-01

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and ∼5.10 17 ions/cm 2 fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co 3 W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load

  10. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer-Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson-Schulz-Flory distribution, which is characterized by a maximum C2-C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2-C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  11. Characterization and performances of cobalt-tungsten and molybdenum-tungsten carbides as anode catalyst for PEFC

    International Nuclear Information System (INIS)

    Izhar, Shamsul; Yoshida, Michiko; Nagai, Masatoshi

    2009-01-01

    The preparation of carbon-supported cobalt-tungsten and molybdenum-tungsten carbides and their activity as an anode catalyst for a polymer electrolyte fuel cell were investigated. The electrocatalytic activity for the hydrogen oxidation reaction over the catalysts was evaluated using a single-stack fuel cell and a rotating disk electrode. The characterization of the catalysts was performed by XRD, temperature-programmed carburization, temperature-programmed reduction and X-ray photoelectron spectroscopy. The maximum power densities of the 30 wt% 873 K-carburized cobalt-tungsten and molybdenum-tungsten mixed with Ketjen carbon (cobalt-tungsten carbide (CoWC)/Ketjen black (KB) and molybdenum-tungsten carbide (MoWC)/KB) were 15.7 and 12.0 mW cm -2 , respectively, which were 14 and 11%, compared to the in-house membrane electrode assembly (MEA) prepared from a 20 wt% Pt/C catalyst. The CoWC/KB catalyst exhibited the highest maximum power density compared to the MoWC/KB and WC/KB catalysts. The 873 K-carburized CoW/KB catalyst formed the oxycarbided and/or carbided CoW that are responsible for the excellent hydrogen oxygen reaction

  12. The role of cobalt ferrite magnetic nanoparticles in medical science

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, S.; Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir

    2013-01-01

    The nanotechnology industry is rapidly growing and promises that the substantial changes that will have significant economic and scientific impacts be applicable to a wide range of areas, such as aerospace engineering, nano-electronics, environmental remediation and medical healthcare. In this area, cobalt ferrite nanoparticles have been regarded as one of the competitive candidates because of their suitable physical, chemical and magnetic properties like the high anisotropy constant, high coercivity and high Curie temperature, moderate saturation magnetization and ease of synthesis. This paper introduces the magnetic properties, synthesis methods and some medical applications, including the hyperthermia, magnetic resonance imaging (MRI), magnetic separation and drug delivery of cobalt ferrite nanoparticles. Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are one of the most important materials for nanomedicine. Black-Right-Pointing-Pointer They have high coercivity and moderate saturation magnetization. Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles are synthesized easily. Black-Right-Pointing-Pointer They are a good candidate for hyperthermia and magnetic resonance imaging.

  13. Cobalt nanoparticles as reusable catalysts for reduction of 4 ...

    Indian Academy of Sciences (India)

    33

    active and ordered structures of cobalt nanoparticles. The air stable ... same surfactant was found to reduce p-nitrophenol but lose their catalytic efficiency after recovery. Based on chemical and ... industrial sources.11-13 The US Environmental Protection Agency has reported nitrophenols as one of the most hazardous and ...

  14. Hydrothermal synthesis, characterization, and magneticproperties of cobalt chromite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zákutná, Dominika; Repko, A.; Matulková, I.; Nižňanský, Daniel; Ardu, A.; Cannas, C.; Mantlíková, Alice; Vejpravová, Jana

    2014-01-01

    Roč. 16, č. 2 (2014), 1-14 ISSN 1388-0764 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : cobalt chromite * hydrothermal method * nanoparticles * size effect * multiferroic materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  15. Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix

    Directory of Open Access Journals (Sweden)

    O. I. Medvedeva

    2017-01-01

    Full Text Available A series of cobalt (Co and its oxides based nanoparticles were synthesized by using hyperbranched polyester polyol Boltorn H20 as a platform and sodium borohydride as a reducing agent. UV, FT-IR, XRD, NTA, and TEM methods were employed to obtain physicochemical characteristics of the products. The average diameter of Co nanoparticles was approximately 8.2±3.4 nm. Their magnetic properties, including hysteresis loop, field-cooled, and zero field-cooled curves were investigated. The nanoparticles exhibit superparamagnetism at room temperature, accompanied by magnetic hysteresis below the blocking temperature.

  16. Cobalt exposure and lung disease in tungsten carbide production. A cross-sectional study of current workers

    International Nuclear Information System (INIS)

    Sprince, N.L.; Oliver, L.C.; Eisen, E.A.; Greene, R.E.; Chamberlin, R.I.

    1988-01-01

    A cross-sectional study of 1,039 tungsten carbide (TC) production workers was carried out. The purposes were (1) to evaluate the prevalence of interstitial lung disease (ILD) and work-related wheezing, (2) to assess correlations between cobalt exposure and pulmonary disease, (3) to compare lung disease in grinders of hard carbide versus nongrinders, and (4) to evaluate the effects of new and previous threshold limit values for cobalt of 50 and 100 micrograms/m3. We obtained medical and occupational histories, flow-volume loops, single breath carbon monoxide diffusing capacity (DLCO), and chest radiographs. Time-weighted average cobalt levels were determined at every step in the production process. Work-related wheeze occurred in 113 participants (10.9%). Profusion greater than or equal to 1/0 occurred in 26 (2.6%) and interstitial lung disease (defined as profusion greater than or equal to 1M, FVC or DLCO less than or equal to 70%, and FEV1/FVC% greater than or equal to 75) in 7 (0.7%). The relative odds of work-related wheeze was 2.1 times for present cobalt exposures exceeding 50 micrograms/m3 compared with exposures less than or equal to 50 micrograms/m3. The relative odds of profusion greater than or equal to 1/0 was 5.1 times for average lifetime cobalt exposures exceeding 100 micrograms/m3 compared with exposures less than or equal to 100 micrograms/m3 in those with latency exceeding 10 yr. ILD was found in three workers with very low average lifetime exposures (less than 8 micrograms/m3) and shorter latencies. Grinders of hard carbide had lower mean DLCO than nongrinders, even though their cobalt exposures were lower

  17. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  18. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  19. Synthesis and properties of nickel cobalt boron nanoparticles

    Science.gov (United States)

    Patel, J.; Pankhurst, Q. A.; Parkin, I. P.

    2005-01-01

    Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.

  20. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  1. Characterization of a Porous Carbon Material Functionalized with Cobalt-Oxide/Cobalt Core-Shell Nanoparticles for Lithium Ion Battery Electrodes

    KAUST Repository

    Anjum, Dalaver H.; Rasul, Shahid; Roldan-Gutierrez, Manuel A.; Da Costa, Pedro M. F. J.

    2016-01-01

    A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response

  2. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method

    Science.gov (United States)

    Muradov, Mustafa B.; Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Maharramov, Abel M.; Qahramanli, Lala R.; Eyvazova, Goncha M.; Aghamaliyev, Zohrab A.

    2018-03-01

    Convenient and environmentally friendly synthesis of Co9S8/PVA, CoxSy/EG and CoxSy/3-MPA nanocomposites were carried out in the presence of ultrasonic irradiation by the liquid phase synthesis of the sonochemical method. For the synthesis, cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] and sodium sulfide (Na2S·9H2O) were used as a cobalt and sulfur precursor, respectively. Polyvinyl alcohol (PVA), ethylene glycol (EG) and 3-mercaptopropionic acid (3-MPA) were used as a capping agent and surfactant. The structural, optical properties and morphology of nanocomposites were characterized using X-ray diffractometer (XRD), Ultraviolet/Visible Spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optical band gap of Co9S8/PVA is 1.81 eV and for CoxSy/EG is 2.42 eV, where the direct band gap of bulk cobalt sulfide is (0.78-0.9 eV). The wide band gap indicates that synthesised nanocomposites can be used in the fabrication of optical and photonic devices. The growth mechanisms of the Co9S8, CoS2 and Co3S4 nanoparticles were discussed by the reactions. The effects of sonication time and annealing temperature on the properties of the nanoparticles have been studied in detail.

  3. Improvement of the oxidation stability of cobalt nanoparticles

    Directory of Open Access Journals (Sweden)

    Celin Dobbrow

    2012-01-01

    Full Text Available In order to enhance the resistance of cobalt nanoparticles to oxidation in air, the impact of different stabilization strategies on the isothermal oxidation of particle dispersions and powders was kinetically investigated and compared to as-prepared particle preparations. A post-synthesis treatment with different alcohols was employed, and we also investigate the influence of two different polymer shells on the oxidation process. We found a parabolic decrease of the magnetization for all particle charges, indicating that the process is dominated by a diffusion of oxygen to the cobalt core and a radial growth of the oxide layer from the particle surface to the core. A significant deceleration of the oxidation process was observed for all alcohol-passivated particle preparations, and this resulted finally in a stagnation effect. The stabilizing effect increases in the sequence Co@OA/MeOH < Co@OA/EtOH < Co@OA/iPrOH. For polymer-coated particle preparations Co@PCL and Co@PS, the deceleration was even more pronounced. The results demonstrate that cobalt nanoparticles can effectively be protected against oxidation in order to improve their mid- to longterm stability.

  4. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  5. Optimization of the behavior of CTAB coated cobalt ferrite nanoparticles

    Science.gov (United States)

    Kumari, Mukesh; Bhatnagar, Mukesh Chander

    2018-05-01

    In this work, we have synthesized cetyltrimethyl ammonium bromide (CTAB) mixed cobalt ferrite (CoFe2O4) nanoparticles (NPs) using sol-gel auto-combustion method taking a different weight percent ratio of CTAB i.e., 0%, 1%, 2%, 3% and 4% with respect to metal nitrates. The morphological, structural and magnetic properties of these NPs are characterized by high resolution transmitted electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectrometer and physical property measurement system (PPMS). It has been found that saturation magnetization of cobalt ferrite increases with increase in crystalline size of the NPs. Saturation magnetization and crystallite size both were found to be lowest in the case of sample containing 2% CTAB.

  6. Rovibronically selected and resolved two-color laser photoionization and photoelectron study of cobalt carbide cation.

    Science.gov (United States)

    Huang, Huang; Chang, Yih Chung; Luo, Zhihong; Shi, Xiaoyu; Lam, Chow-Shing; Lau, Kai-Chung; Ng, C Y

    2013-03-07

    We have conducted a two-color visible-ultraviolet (VIS-UV) resonance-enhanced laser photoionization efficiency and pulsed field ionization-photoelectron (PFI-PE) study of gaseous cobalt carbide (CoC) near its ionization onset in the total energy range of 61,200-64,510 cm(-1). The cold gaseous CoC sample was prepared by a laser ablation supersonically cooled beam source. By exciting CoC molecules thus generated to single N' rotational levels of the intermediate CoC∗((2)Σ(+); v') state using a VIS dye laser prior to UV laser photoionization, we have obtained N(+) rotationally resolved PFI-PE spectra for the CoC(+)(X(1)Σ(+); v(+) = 0 and 1) ion vibrational bands free from interference by impurity species except Co atoms produced in the ablation source. The rotationally selected and resolved PFI-PE spectra have made possible unambiguous rotational assignments, yielding accurate values for the adiabatic ionization energy of CoC(X(2)Σ(+)), IE(CoC) = 62,384.3 ± 0.6 cm(-1) (7.73467 ± 0.00007 eV), the vibrational frequency ωe (+) = 985.6 ± 0.6 cm(-1), the anharmonicity constant ωe (+)χe (+) = 6.3 ± 0.6 cm(-1), the rotational constants (Be (+) = 0.7196 ± 0.0005 cm(-1), αe (+) = 0.0056 ± 0.0008 cm(-1)), and the equilibrium bond length re (+) = 1.534 Å for CoC(+)(X(1)Σ(+)). The observation of the N(+) = 0 level in the PFI-PE measurement indicates that the CoC(+) ground state is of (1)Σ(+) symmetry. Large ΔN(+) = N(+) - N' changes up to 6 are observed for the photoionization transitions CoC(+)(X(1)Σ(+); v(+) = 0-2; N(+)) ← CoC∗((2)Σ(+); v'; N' = 6, 7, 8, and 9). The highly precise energetic and spectroscopic data obtained in the present study have served as a benchmark for testing theoretical predictions based on state-of-the-art ab initio quantum calculations at the CCSDTQ∕CBS level of theory as presented in the companion article.

  7. Chitosan doped with nanoparticles of copper, nickel and cobalt.

    Science.gov (United States)

    Cárdenas-Triviño, Galo; Elgueta, Carolina; Vergara, Luis; Ojeda, Javier; Valenzuela, Ariel; Cruzat, Christian

    2017-11-01

    Metal colloids in 2 propanol using nanoparticles (NPs) of copper, nickel and cobalt were prepared by Chemical Liquid Deposition (CLD) method. The resulting colloidal dispersions were characterized by Transmission Electron Microscopy (TEM). The colloids were supported in chitosan. Then, microbiological assays were performed using E. coli and S. aureus in order to determine the bactericide/bacteriostatic activity of nanoparticles (NPs) trapped or chelated with chitosan. Finally, the toxicity of the metal colloids Cu, Ni and Co was tested. Bio-assays were conducted in three different animal species. First of all on earth warms (Eisenia foetida) to evaluate the toxicity and the biocompatibility of chitosan in lactic acid (1% and 0.5%). Secondly bio-assay done in fishes (rainbow trout), the liver toxicity of NPs in vivo was evaluated. Finally, a bio-assay was conducted in Sprange-Dawley rats of 100g weight, which were injected intraperitoneally with different solutions of chitosan metal colloids. Then, the minimum and maximum concentration were determined for copper, nickel and cobalt. The purpose of the use of chitosan was acting as a carrier for some magnetic NPs, which toxicity would allow to obtain new polymeric materials with potential applications as magnet future drugs carrier. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young-Min; Xia Zhidao; Glyn-Jones, Sion; Beard, David; Gill, Harinderjit S; Murray, David W, E-mail: young-min.kwon@ndos.ox.ac.u [Nuffield Department of Orthopaedic Surgery, University of Oxford, Oxford OX3 7LD (United Kingdom)

    2009-04-15

    Despite the satisfactory short-term implant survivorship of metal-on-metal hip resurfacing arthroplasty, periprosthetic soft-tissue masses such as pseudotumours are being increasingly reported. Cytotoxic effects of cobalt or chromium have been suggested to play a role in its aetiology. The aim of this study was to investigate the effects of clinically relevant metal nanoparticles and ions on the viability of macrophages in vitro. A RAW 264.7 murine macrophage cell line was cultured in the presence of either: (1) cobalt, chromium and titanium nanoparticles sized 30-35 nm; or (2) cobalt sulphate and chromium chloride. Two methods were used to quantify cell viability: Alamar Blue assay and Live/Dead assay. The cytotoxicity was observed only with cobalt. Cobalt nanoparticles and ions demonstrated dose-dependent cytotoxic effects on macrophages in vitro: the cytotoxic concentrations of nanoparticles and ions were 1 x 10{sup 12} particles ml{sup -1} and 1000 {mu}M, respectively. The high concentration of cobalt nanoparticles required for cytotoxicity of macrophages in vitro suggests that increased production of cobalt nanoparticles in vivo, due to excessive MoM implant wear, may lead to local adverse biological effects. Therefore, cytotoxicity of high concentrations of metal nanoparticles phagocytosed by macrophages located in the periprosthetic tissues may be an important factor in pathogenesis of pseudotumours.

  9. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    Energy Technology Data Exchange (ETDEWEB)

    Krolow, Matheus Z., E-mail: matheuskrolow@ifsul.edu.br [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil); Monte, Leonardo G.; Remiao, Mariana H.; Hartleben, Claudia P.; Moreira, Angela N.; Dellagostin, Odir A. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Piva, Evandro [Universidade Federal de Pelotas, Faculdade de Odontologia (Brazil); Conceicao, Fabricio R. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Carreno, Neftali L. V. [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil)

    2012-09-15

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15-40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  10. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    International Nuclear Information System (INIS)

    Krolow, Matheus Z.; Monte, Leonardo G.; Remião, Mariana H.; Hartleben, Cláudia P.; Moreira, Ângela N.; Dellagostin, Odir A.; Piva, Evandro; Conceição, Fabricio R.; Carreño, Neftalí L. V.

    2012-01-01

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15–40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  11. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  12. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  13. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  14. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  15. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  16. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Dana, E-mail: dana.kuehnel@ufz.de [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Scheffler, Katja [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Wellner, Peggy [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Meissner, Tobias; Potthoff, Annegret [Fraunhofer-Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden (Germany); Busch, Wibke [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Springer, Armin [Centre for Translational Bone, Cartilage and Soft Tissue Research, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); ETH Zuerich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zuerich (Switzerland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Assessment of toxic potential of tungsten carbide-based nanoparticles. Black-Right-Pointing-Pointer Evaluation of ROS and micronuclei induction of three hard metal nanomaterials. Black-Right-Pointing-Pointer Dependency of observed toxic effects on the materials physical-chemical properties. Black-Right-Pointing-Pointer Differences in several particle properties seem to modulate the biological response. - Abstract: Tungsten carbide (WC) and cobalt (Co) are constituents of hard metals and are used for the production of extremely hard tools. Previous studies have identified greater cytotoxic potential of WC-based nanoparticles if particles contained Co. The aim of this study was to investigate whether the formation of reactive oxygen species (ROS) and micronuclei would help explain the impact on cultured mammalian cells by three different tungsten-based nanoparticles (WC{sub S}, WC{sub L}, WC{sub L}-Co (S: small; L: large)). The selection of particles allowed us to study the influence of particle properties, e.g. surface area, and the presence of Co on the toxicological results. WC{sub S} and WC{sub L}/WC{sub L}-Co differed in their crystalline structure and surface area, whereas WC{sub S}/WC{sub L} and WC{sub L}-Co differed in their cobalt content. WC{sub L} and WC{sub L}-Co showed neither a genotoxic potential nor ROS induction. Contrary to that, WC{sub S} nanoparticles induced the formation of both ROS and micronuclei. CoCl{sub 2} was tested in relevant concentrations and induced no ROS formation, but increased the rate of micronuclei at concentrations exceeding those present in WC{sub L}-Co. In conclusion, ROS and micronuclei formation could not be associated with the presence of Co in the WC-based particles. The contrasting responses elicited by WC{sub S} vs. WC{sub L} appear to be due to large differences in crystalline structure.

  17. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    International Nuclear Information System (INIS)

    Xiong Yuhong; Hofmeister, William H.; Cheng Zhao; Smugeresky, John E.; Lavernia, Enrique J.; Schoenung, Julie M.

    2009-01-01

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  18. Fabrication and analysis of ordered magnetic cobalt nanoparticles; Herstellung und Untersuchung geordneter magnetischer Kobaltnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, Klaus P.

    2009-12-17

    In the dissertation on hand monodisperse, wellordered magnetic cobalt and cobalt hydride nanoparticles have been produced and investigated magnetically. The preparation was achieved by diblock-copolymer-micelles filled with cobalt salt, from which nanoparticles of elementary cobalt respectively cobalt hydride were generated in different steps of the procedure. It was evident that the cobalthydride generated by the hydrogen plasma was surprisingly stable. It could even be taken into consideration as a hydrogen storage device for fuel cell. The magnetic properties of the particles has been investigated by x-ray magnetic circular dichroism (XMCD). In addition it was evident, that it was principally impossible to investigate a film layered on a substrate with a SQUID-magnetometer, if this film produces only a small signal as well absolutely as relatively to the magnetically measured total moment of the sample. (orig.)

  19. Cobalt

    Science.gov (United States)

    Slack, John F.; Kimball, Bryn E.; Shedd, Kim B.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Cobalt is a silvery gray metal that has diverse uses based on certain key properties, including ferromagnetism, hardness and wear-resistance when alloyed with other metals, low thermal and electrical conductivity, high melting point, multiple valences, and production of intense blue colors when combined with silica. Cobalt is used mostly in cathodes in rechargeable batteries and in superalloys for turbine engines in jet aircraft. Annual global cobalt consumption was approximately 75,000 metric tons in 2011; China, Japan, and the United States (in order of consumption amount) were the top three cobalt-consuming countries. In 2011, approximately 109,000 metric tons of recoverable cobalt was produced in ores, concentrates, and intermediate products from cobalt, copper, nickel, platinum-group-element (PGE), and zinc operations. The Democratic Republic of the Congo (Congo [Kinshasa]) was the principal source of mined cobalt globally (55 percent). The United States produced a negligible amount of byproduct cobalt as an intermediate product from a PGE mining and refining operation in southeastern Montana; no U.S. production was from mines in which cobalt was the principal commodity. China was the leading refiner of cobalt, and much of its production came from cobalt ores, concentrates, and partially refined materials imported from Congo (Kinshasa).The mineralogy of cobalt deposits is diverse and includes both primary (hypogene) and secondary (supergene) phases. Principal terrestrial (land-based) deposit types, which represent most of world’s cobalt mine production, include primary magmatic Ni-Cu(-Co-PGE) sulfides, primary and secondary stratiform sediment-hosted Cu-Co sulfides and oxides, and secondary Ni-Co laterites. Seven additional terrestrial deposit types are described in this chapter. The total terrestrial cobalt resource (reserves plus other resources) plus past production, where available, is calculated to be 25.5 million metric tons. Additional resources of

  20. Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres

    CSIR Research Space (South Africa)

    Bhattacharjee, K

    2016-01-01

    Full Text Available The decoration of carbon spheres (CS) by highly dispersed tantalum carbide nanoparticles (TaC NPs) was achieved, for the first time by a unique carbothermal reduction method at 1350 °C for 30 min under reduced oxygen partial pressure. TaC NPs...

  1. Effect of fabrication process on physical and mechanical properties of tungsten carbide - cobalt composite: A review

    Science.gov (United States)

    Mahaidin, Ahmad Aswad; Jaafar, Talib Ria; Selamat, Mohd Asri; Budin, Salina; Sulaiman, Zaim Syazwan; Hamid, Mohamad Hasnan Abdul

    2017-12-01

    WC-Co, which is also known as cemented carbide, is widely used in metal cutting industry and wear related application due to their excellent mechanical properties. Manufacturing industries are focusing on improving productivity and reducing operational cost with machining operation is considered as one of the factors. Thus, machining conditions are becoming more severe and required better cutting tool bit with improved mechanical properties to withstand high temperature operation. Numerous studies have been made over the generation for further improvement of cemented carbide properties to meet the constant increase in demand. However, the results of these studies vary due to different process parameters and manufacturing technology. This paper summarizes the studies to improve the properties of WC-Co composite using different consolidation (powder size, mixing method, formulation, etc) and sintering parameters (temperature, time, atmosphere, etc).

  2. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  3. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  4. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba

    2016-01-01

    Amine functionalized cobalt ferrite (AF-CoFe 2 O 4 ) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe 2 O 4 were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe 2 O 4 remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe 2 O 4 . The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe 2 O 4 surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe 2 O 4 MNPs can be considered as promising candidate for enzyme immobilization.

  5. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  6. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    Science.gov (United States)

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  7. Contribution to the study of atmospheric projection and under partial vacuum of tungsten carbide particles with cobalt or nickel binder. Application to fretting coatings on steel

    International Nuclear Information System (INIS)

    Vinayo, Maria-Elena

    1985-01-01

    This research thesis addresses the plasma spraying (atmospheric, under controlled atmosphere, and under reduced pressure) of tungsten carbides with a metallic binder (WC/Co, WC/Ni; W 2 C/Co). This work comprised an optimisation of the spraying process under reduced pressure, the study of the influence of the powder production process on the physicochemical and micro-structural characteristics as well as on coating fretting properties, and a correlation between spraying parameters in a controlled atmosphere (power and pressure) and coating physico-chemical and micro-structural properties. Results show a high decarburization-oxidation of tungsten carbides during atmospheric spraying, as well as an important evaporation of cobalt. Under reduced pressure, high losses of carbides are noticed. These both phenomena strongly depend on the powder production process. Fretting results highlight remarkable performance of coatings obtained by atmospheric spraying [fr

  8. Effects of lower cobalt binder concentrations in sintering of tungsten carbide

    International Nuclear Information System (INIS)

    Li Tao; Li Qingfa; Fuh, J.Y.H.; Yu, P.C.; Wu, C.C.

    2006-01-01

    Cemented tungsten carbides have received much attention because of their superior characteristics. Traditional cemented tungsten carbides usually contain 3-30 wt% binder phase. In this paper, WC with low Co concentration less than 3 wt% is studied using traditional powder metallurgy. The binder phase has tremendous effect on sinterability of WC. High sinterability and high hardness can be achieved for the WC (0.7 μm) with 0.5 wt% Co. Abnormal grain growth (AGG) is often observed in sintering WC with small amount of Co. It seems that AGG is affected by the concentration of Co and a range of Co concentrations may exist for the large amount of AGG. To control the grain size, VC is added to inhibit the grain growth of WC. It is observed that the hardness is affected by the amount of addition of VC. Controlling the ratio of C/W less than unity at low Co concentrations will result in the production of W 2 C phase. The hardness of WC-Co is affected by the amount of W 2 C phase in the sample and W 2 C is stable during the normal cooling process

  9. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  10. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  11. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  12. Cobalt

    International Nuclear Information System (INIS)

    Stolyarova, I.A.; Bunakova, N.Yu.

    1983-01-01

    The neutron-activation method for determining cobalt in rocks, polymetallic and iron ores and rockforming minerals at 2x10 -6 -5x10 -3 % content is developed. Cobalt determination is based on the formation under the effect of thermal neutrons of nuclear reactor of the 60 Co radioactive isotope by the 59 Co (n, γ) 60 Co reaction with radiation energy of the most intensive line of 1333 keV. Cobalt can be determined by the scheme of the multicomponent analysis from the sample with other elements. Co is determined in the solution after separation of all determinable by the scheme elements. The 60 Co intensity is measured by the mUltichannel gamma-spectrometer with Ge(Li)-detector

  13. Characterization and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Swatsitang, Ekaphan [Integrated Nanotechnology Research Center and Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002 (Thailand); Phokha, Sumalin, E-mail: sumalinphokha@gmail.com [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Hunpratub, Sitchai; Usher, Brian [Department of Physics, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000 Thailand (Thailand); Bootchanont, Atipong [Division of Physics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Pathumthani 12110 (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand (Thailand); Chindaprasirt, Prinya [Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002 (Thailand)

    2016-04-15

    Inverse spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were synthesized by a polymer pyrolysis method and calcined at various temperatures from 800 to 1000 °C. The structure, morphology, valence states and magnetic properties of the calcined samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray absorption near edge structure (XANES) and vibrating sample magnetometer (VSM). All calcined samples had the cubic spinel type structure with average crystallite sizes increasing from 80 ± 2 to 100 ± 3 nm with increasing calcination temperature. The XANES spectra allowed the valence states of the Fe{sup 3+} and Co{sup 2+} ions in the samples to be established and simulation of the XANES spectra suggested that the site occupancy of Fe{sup 3+} and Co{sup 2+} ions was mixed, with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. All samples exhibited ferromagnetic behavior at room temperature with a maximum saturation magnetization (M{sub S}) of 3.42 μ{sub B} and a coercivity (H{sub C}) of 1100 Oe for crystallite sizes of 100 nm. The origin of the ferromagnetism is discussed in relation to the distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes. - Graphical abstract: In Figure shows ferromagnetism (FM) at room temperature (RT), simulation of the XANES spectra of (a) Fe and (b) Co edges (inset in the right) and TEM image (inset in the left) of CoFe{sub 2}O{sub 4} nanoparticles prepared by polymer pyrolysis method. The bright field TEM image showed the aggregated particles. The simulation showed a cation combination with the majority of Co{sup 2+} ions occupying octahedral sites and the majority of Fe{sup 3+} ions occupying tetrahedral sites within the spinel structure. The distribution of Fe{sup 3+} and Co{sup 2+} ions within the lattice and the crystallite sizes is discussed on

  14. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    Science.gov (United States)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  15. Structural variation study of cobalt nanoparticles synthesized by co-precipitation method using 59Co NMR

    Science.gov (United States)

    Manjunatha, M.; Kumar, Rajeev; B. M., Siddesh; Sahoo, Balaram; Damle, R.; Ramesh, K. P.

    2018-04-01

    We have synthesized cobalt nanoparticles using co-precipitation method. Further, the two phases of the cobalt is monitored by varying the synthesis parameters. 59Co NMR and XRD are used as characterization tools to study the phase variation in the cobalt samples. XRD and NMR results show a remarkable correlation in the two samples (Co-1 and Co-2). Co-2 has predominant fcc and hcp phases, whereas, Co-1 has fcc phase with lower amount of hcp. Both the samples show same saturation magnetization (Ms) but there is a remarkable difference in the phase composition. Thus, 59Co NMR appears to be a good tool to identify the phase purity of the ferromagnetic cobalt samples.

  16. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  19. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  20. Dispersible cobalt chromite nanoparticles: facile synthesis and size driven collapse of magnetism

    Czech Academy of Sciences Publication Activity Database

    Zákutná, D.; Matulková, I.; Kentzinger, E.; Medlín, R.; Su, Y.; Nemkovski, K.; Disch, S.; Vejpravová, Jana; Nižňanský, D.

    2016-01-01

    Roč. 6, č. 109 (2016), s. 107659-107668 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA15-01953S Institutional support: RVO:68378271 Keywords : cobalt chromite * nanoparticle * multiferoic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.108, year: 2016

  1. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Arijit; Mukherjee, Debkumar, E-mail: debkumarmukherjee@rediffmail.com [Ramsaday College, Department of Chemistry (India); Adhikary, Bibhutosh, E-mail: adhikarybibhu@yahoo.com [Indian Institute of Engineering, Sciences and Technology, Shibpur, Department of Chemistry (India); Ahmed, Md Azharuddin [University of Calcutta, Department of Physics (India)

    2016-05-15

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4–6 nm) can also be prepared from PdCl{sub 2} and K{sub 2}PtCl{sub 4}, respectively, using the same surfactant but require high temperature (~120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90–95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.Graphical Abstract.

  2. Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gupta Hari Om

    2009-01-01

    Full Text Available Abstract Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M particle size, d XRDis ~3.5 nm, while for high cobalt concentration (>0.05 M particle size decreases abruptly (~2 nm as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.

  3. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed; Shinagawa, Tatsuya; Stegenburga, Liga; Takanabe, Kazuhiro

    2016-01-01

    of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a

  4. Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route

    Directory of Open Access Journals (Sweden)

    Chunli Guo

    2011-01-01

    Full Text Available Carbides (TiC, WC, and NbC nanoparticles fully encapsulated in the caves of carbon nanotubes (CNTs were synthesized via an in situ reduction-carbonization route at 600∘C in an autoclave. The structural features and morphologies of as-obtained products were investigated using by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM. HRTEM studies showed that the average diameter of CNTs encapsulated with carbide nanoparticles are in the range of 15–40 nm. The reaction temperature, the reaction time, and the metal catalyst are found to play crucial roles to the product morphology. The growth mechanism of carbide nanoparticles encapsulated in CNTs was discussed in detail.

  5. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles

    Science.gov (United States)

    Moise, Sandhya; Céspedes, Eva; Soukup, Dalibor; Byrne, James M.; El Haj, Alicia J.; Telling, Neil D.

    2017-01-01

    The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.

  6. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  7. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  8. Cobalt oxide nanoparticle-modified carbon nanotubes as an ...

    Indian Academy of Sciences (India)

    of 60 mV were observed at. 100 mV s. −1 for CoOx−MWNT/GCE. An anodic peak at. 100 mV attributed to Co(II)/Co(III) redox transition associated with the electrode surface. The cathodic peak at 20 mV corre- spond to the reduction of various cobalt oxide species formed during the anodic sweep. The stability of the modified ...

  9. ON THE SYNTHESIS OF MOLYBDENUM CARBIDE WITH COBALT ADDITION VIA GAS-SOLID REACTIONS IN A CH4/H2 ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    C. P. B. Araujo

    Full Text Available Abstract Due to ever more severe environmental regulations regarding SOx, NOx and other pollutants' emissions, there has been an interest in developing new and improved catalysts for hydroprocessing reactions. Mo2C has been reported to display good selectivity and activity for those reactions, especially for HDS. Addition of another metal to the carbide structure may improve catalytic properties. Mo2C with low cobalt addition (2.5 and 5% was obtained via gas-solid reaction in a fixed bed reactor with CH4 (5%/H2 atmosphere. XRD and TG/DTA analysis of the precursors were carried out in order to understand its mass loss profile, doping metal presence and phase distributions. CoMoO4 as well as MoO3 were identified after calcining doped precursors at 600 °C/180min. SEM, XRD, XRF, TOC, BET and laser granulometric analysis of the reaction products were also performed. Compositions verified by XRF and theoretical values were compatible. At 700 °C both carbide (Mo2C and oxide (MoO2 phases are present, as identified in XRD analysis and observed by SEM. At 750 °C only single phase Mo2C was verified by XRD, indicating Co dispersion on the carbide matrix. Morphology at this temperature is compatible with pure Mo2C, though XRF indicates Co presence on the material.

  10. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    Science.gov (United States)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  11. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Science.gov (United States)

    Karray, Fekri; Kassiba, Abdelhadi

    2012-06-01

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  12. Nanoparticles and nanorods of silicon carbide from the residues of corn

    Science.gov (United States)

    Qadri, S. B.; Gorzkowski, E.; Rath, B. B.; Feng, J.; Qadri, S. N.; Kim, H.; Caldwell, J. D.; Imam, M. A.

    2015-01-01

    We have investigated the thermally induced transformation of various residues of the corn plant into nanoparticles and nanorods of different silicon carbide (SiC) polytypes. This has been accomplished by both microwave-induced and conventional furnace pyrolysis in excess of 1450 °C in an inert atmosphere. This simple process of producing nanoparticles of different polytypes of SiC from the corn plant opens a new method of utilizing agricultural waste to produce viable industrial products that are technologically important for nanoelectronics, molecular sensors, nanophotonics, biotechnology, and other mechanical applications. Using x-ray and Raman scattering characterization, we have demonstrated that the processed samples of corn husk, leaves, stalks, and cob consist of SiC nanostructures of the 2H, 3C, 4H, and 6H polytypes.

  13. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  14. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    International Nuclear Information System (INIS)

    Liu, Xingchen; Salahub, Dennis R.

    2015-01-01

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo 2 C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis

  15. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingchen; Salahub, Dennis R. [Department of Chemistry, Institute for Quantum Science and Technology, and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 (Canada)

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  16. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed.

  17. Viscometric characterization of cobalt nanoparticle-based magnetorheological fluids using genetic algorithms

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Wereley, Norman M.; Kotha, Sanjay; Radhakrishnan, Ramachandran; Sudarshan, Tirumalai S.

    2005-01-01

    The rheological flow curves (shear stress vs. shear rate) of a nanoparticle cobalt-based magnetorheological fluid can be modeled using Bingham-plastic and Herschel-Bulkley constitutive models. Steady-state rheological flow curves were measured using a parallel disk rheometer for constant shear rates as a function of applied magnetic field. Genetic algorithms were used to identify constitutive model parameters from the flow curve data

  18. Nitrogen-Doped Carbon Encapsulated Nickel/Cobalt Nanoparticle Catalysts for Olefin Migration of Allylarenes

    DEFF Research Database (Denmark)

    Kramer, Søren; Mielby, Jerrik Jørgen; Buss, Kasper Spanggård

    2017-01-01

    Olefin migration of allylarenes is typically performed with precious metal-based homogeneous catalysts. In contrast, very limited progress has been made using cheap, earth-abundant base metals as heterogeneous catalysts for these transformations - in spite of the obvious economic and environmental...... advantages. Herein, we report on the use of an easily prepared heterogeneous catalyst material for the migration of olefins, in particular allylarenes. The catalyst material consists of nickel/cobalt alloy nanoparticles encapsulated in nitrogen-doped carbon shells. The encapsulated nanoparticles are stable...

  19. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung; Moreau, Liane M.; Bealing, Clive R.; Zhang, Haitao; Hennig, Richard G.; Robinson, Richard D.

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS

  20. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  1. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  2. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  3. Reaction pathway towards formation of cobalt single chain magnets and nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Balaji, G.; Desilva, Rohini M.; Palshin, V. [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Desilva, N. [Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803 (United States); Palmer, G. [Department of Biochemistry and Cell Biology, Rice University, MS 140, 6100 Main street, Houston, TX 77251 (United States); Kumar, Challa S.S.R., E-mail: ckumar1@lsu.ed [Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States)

    2010-03-15

    With the advent of molecular magnets the quest for suitable high density magnetic storage materials has fuelled further research in this area. Here in this report, we present a detailed mechanistic investigation of thermal decomposition of cyclopentadienyl cobalt [CoCp(CO){sub 2}] precursor where Cp is the cyclopentadienyl moiety. The reaction revealed the formation of cobalt nanoparticles (Co-NPs) through an isolable reaction intermediate characterized as a Single Chain Magnet (SCM), [Co(Cp){sub 2}]{sub 2}CoCl{sub 4} (1). The SQUID magnetic measurements showed the presence of very strong antiferromagnetic interactions between Co{sup 2+} ions. The zero-field cooled (ZFC) and field cooled (FC) magnetization curves branch out below 5 K and there is evidence for frequency dependent complex susceptibility along with a maximum observed around 2.5 K. The optical studies indicated that the Co{sup 2+} d-d transition is influenced by the polarity of the solvents. The cobalt nanoparticles (Co-NPs) were obtained, either directly from 1 or from its precursor. They are spherical in shape with a mean size 15 nm, have fcc crystal structure and were found to be ferromagnetic at room temperature.

  4. Effect of sintering temperature on magnetization and Mössbauer parameters of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Grish, E-mail: grishphysics@gmail.com [Department of Physics, DSB Campus Kumaun University, Nainital 263002, Uttarakhand (India); Srivastava, R.C. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India); Reddy, V.R. [UGC-DAE CSR, Khandwa Road, DAVV Campus, Indore 452017, Madhya Pradesh (India); Agrawal, H.M. [Department of Physics, GB Pant University of Agriculture and Technology, Pantnagar, Uttarakhand (India)

    2017-04-01

    Nanoparticles of cobalt ferrite of different particle size were prepared using sol-gel method. Powder X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mössbauer spectroscopy techniques were employed for characterization of nanoparticles for structural and magnetic properties. The particle size and saturation magnetization increase with the increase of sintering temperature. The saturation magnetization increases from 53 to 85 emu/g as the sintering temperature increases from 300 to 900 °C. The remanence increases while the coercivity decreases slightly with the increase of sintering temperature. Mössbauer spectra show the ferrimagnetic nature of all the samples and the cation distribution strictly depends on the sintering temperature. The stoichiometry of the cobalt ferrite formed was estimated to be (Co{sup 2+}{sub x}Fe{sup 3+}{sub 1−x})[Co{sup 2+}{sub 1−x}Fe{sup 3+}{sub 1+x}]O{sub 4}, based on our Mössbauer analysis. The inverse spinel structure gradually transforms towards the normal spinel structure as the sintering temperature increases. - Highlights: • After 500 °C sintering the cobalt ferrite shows complete crystallization. • An inversion sintering temperature between 900 °C and 1200 °C is proposed where the Fe{sup +3} again starts migration from B site to A site. • Sintering temperature is one of the prime factors which effect the magnetization and cation distribution between two sites A and B.

  5. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  6. Investigations of cations distributions and morphology of cobalt ferrite magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chandekar, Kamlesh V., E-mail: chandekar.kamlex@gmail.com; Kant, K. Mohan [Dept. of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, - 440010 (India)

    2016-05-06

    Cobalt ferrite nanoparticles were synthesized by co-precipitation method and structural properties was investigated by X-ray diffraction (XRD) at room temperature. X-ray diffraction data was used to determine lattice parameter, X-ray density, distributions of cations among tetrahedral and octahedral sites, site radii, ionic radii and bond length of inverse spinel cobalt ferrite. XRD analysis revealed crystallinity and high intense peak correspond to cubic inverse spinel structure with average crystalline size measured by X-ray line profile fitting was found to be 13nm for most intense peak (311). The surface morphology and microstructural feature was investigated by TEM analysis which revealed that particle size varying from 12-22 nm with selected electron diffraction pattern (SAED).

  7. Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Amirabadizadeh, Ahmad; Salighe, Zohre; Sarhaddi, Reza, E-mail: reza.sarhaddi@birjand.ac.ir; Lotfollahi, Zahra

    2017-07-15

    Highlights: • Ferrofluids based on cobalt ferrite nanoparticles were synthesized by co-precipitation method. • The crystallite and particle size of cobalt ferrite can be controlled effectively by reaction time. • The ferrofluids have lower values of saturation magnetization and coercivity as compared to nanoparticles. • By increasing the size of nanoparticles, the narrower and sharper spikes of ferrofluids are formed. - Abstract: In this work, for first time the ferrofluids based on the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles were prepared by the co-precipitation method at different reaction times (0.5–6.5 h). Crystal structure, morphology and magnetic properties of the cobalt ferrite nanoparticles and the ferrofluids based on the nanoparticles were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and vibrating sample magnetometer (VSM). The XRD patterns of CoFe{sub 2}O{sub 4} nanoparticles synthesized at different reaction times indicated that all samples are single phase in accordance with inverse cubic spinel structure with space group Fd-3m, and no impurity phase was observed. By increasing the reaction time to 3.5 h, the lattice parameter and the average crystallites size increased and then afterwards decreased by increasing the reaction time. The microscopic studies indicated the formation of nanosized particles with nearly spherical in shape, whereas the average particle size for all samples is found to be less than 50 nm. The results of VSM also showed that the saturation magnetization and coercivity field of the cobalt ferrite nanoparticles and the ferrofluids were influenced by reaction time, whereas the ferrofluids have lower values of magnetic parameters than that of nanoparticles.

  8. In situ TEM observation of the Boudouard reaction: Multi-layered graphene formation from CO on cobalt nanoparticles at atmospheric pressure

    NARCIS (Netherlands)

    Bremmer, G.M.; Zacharaki, E.; Sjåstad, A.O.; Navarro, V.; Frenken, J.W.M.; Kooyman, P.J.

    2017-01-01

    Using a MEMS nanoreactor in combination with a specially designed in situ Transmission Electron Microscope (TEM) holder and gas supply system, we imaged the formation of multiple layers of graphene encapsulating a cobalt nanoparticle, at 1 bar CO:N2 (1:1) and 500 °C. The cobalt nanoparticle was

  9. Investigation of Structural, Morphological, Magnetic Properties and Biomedical applications of Cu2+ Substituted Uncoated Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Margabandhu

    Full Text Available ABSTRACT In the present work, Cu2+ substituted cobalt ferrite (Co1-xCuxFe2O4, x = 0, 0.3, 0.5, 0.7 and 1 magnetic nanopowders were synthesized via chemical co-precipitation method. The prepared powders were investigated by various characterization methods such as X-ray diffraction analysis (XRD, scanning electron microscope analysis (SEM, vibrating sample magnetometer analysis (VSM and fourier transform infrared spectroscopy analysis (FTIR. The XRD analysis reveals that the synthesized nanopowders possess single phase centred cubic spinel structure. The average crystallite size of the particles ranging from 27-49 nm was calculated by using Debye-scherrer formula. Magnetic properties of the synthesized magnetic nanoparticles are studied by using VSM. The VSM results shows the magnetic properties such as coercivity, magnetic retentivity decreases with increase in copper substitution whereas the saturation magnetization shows increment and decrement in accordance with Cu2+ substitution in cobalt ferrite nanoparticles. SEM analysis reveals the morphology of synthesized magnetic nanoparticles. FTIR spectra of Cu2+ substituted cobalt ferrite magnetic nanoparticles were recorded in the frequency range 4000-400cm-1. The spectrum shows the presence of water adsorption and metal oxygen bonds. The adhesion nature of Cu2+ substituted cobalt ferrite magnetic nanoparticles with bacteria in reviewed results indicates that the synthesized nanoparticles could be used in biotechnology and biomedical applications.

  10. Synthesis of surfactant-coated cobalt ferrite nanoparticles for adsorptive removal of acid blue 45 dye

    Science.gov (United States)

    Waheed Mushtaq, Muhammad; Kanwal, Farah; Imran, Muhammad; Ameen, Naila; Batool, Madeeha; Batool, Aisha; Bashir, Shahid; Mustansar Abbas, Syed; Rehman, Ata ur; Riaz, Saira; Naseem, Shahzad; Ullah, Zaka

    2018-03-01

    Cobalt ferrite (CoFe2O4) nanoparticles (NPs) are synthesized by wet chemical coprecipitation method using metal chlorides as precursors and potassium hydroxide (KOH) as a precipitant. The tergitol-1x (T-1x) and didecyldimethyl ammonium bromide (DDAB) are used as capping agents and their effect is investigated on particle size, size distribution and morphology of cobalt ferrite nanoparticles (CFNPs). The Fourier transform infrared spectroscopy confirms the synthesis of CFNPs and formation of metal-oxygen (M-O) bond. The spinel phase structure, morphology, polydispersity and magnetic properties of ferrite nanoparticles are investigated by x-ray diffraction, scanning electron microscopy, dynamic light scattering and vibrating sample magnetometry analyses, respectively. The addition of capping agents effects the secondary growth of CFNPs and reduces their particle size, as is investigated by dynamic light scattering and atomic force microscopy. The results evidence that the DDAB is more promising surfactant to control the particle size (∼13 nm), polydispersity and aggregation of CFNPs. The synthesized CFNPs, CFNPs/T-1x and CFNPs/DDAB are used to study their adsorption potential for removal of acid blue 45 dye, and a maximum adsorptive removal of 92.25% is recorded by 0.1 g of CFNPs/DDAB at pH 2.5 and temperature 20 ± 1 °C. The results show that the dye is physically adsorbed by magnetic NPs and follows the Langmuir isotherm model.

  11. Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Gyergyek, Saso; Makovec, Darko; Kodre, Alojz; Arcon, Iztok; Jagodic, Marko; Drofenik, Miha

    2010-01-01

    The Co-ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 o C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 o C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (∼CoFe 2 O 4 ) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (∼Co 0.6 Fe 2.4 O 4 ). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe 2 O 4 , the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles' composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic

  12. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kašparová, M.; Bellin, J.; Le Guen, E.; Zahálka, F.

    2009-01-01

    Roč. 2009, - (2009), s. 1-11 ISSN 1687-8434 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tungsten karbide – cobalt, cermet * wear resistance * abrasion * plasma spraying Subject RIV: JG - Metallurgy http://www.hindawi.com/journals/amse/2009/254848.html

  13. Opto-electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles.

    Science.gov (United States)

    Brasiliense, Vitor; Clausmeyer, Jan; Dauphin, Alice L; Noël, Jean-Marc; Berto, Pascal; Tessier, Gilles; Schuhmann, Wolfgang; Kanoufi, Fréderic

    2017-08-21

    Single-particle electrochemistry at a nanoelectrode is explored by dark-field optical microscopy. The analysis of the scattered light allows in situ dynamic monitoring of the electrodeposition of single cobalt nanoparticles down to a radius of 65 nm. Larger sub-micrometer particles are directly sized optically by super-localization of the edges and the scattered light contains complementary information concerning the particle redox chemistry. This opto-electrochemical approach is used to derive mechanistic insights about electrocatalysis that are not accessible from single-particle electrochemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cobalt nanoparticles deposited and embedded in AlN: Magnetic, magneto-optical, and morphological properties

    International Nuclear Information System (INIS)

    Huttel, Y.; Gomez, H.; Clavero, C.; Cebollada, A.; Armelles, G.; Navarro, E.; Ciria, M.; Benito, L.; Arnaudas, J.I.; Kellock, A.J.

    2004-01-01

    We present a structural, morphological, magnetic, and magneto-optical study of cobalt nanoparticles deposited on 50 A ring AlN/c-sapphire substrates and embedded in an AlN matrix. The dependence of the properties of Co nanoclusters deposited on AlN with growth temperature and amount of deposited Co are studied and discussed. Also we directly compare the properties of as grown and AlN embedded Co nanoclusters and show that the AlN matrix has a strong impact on their magnetic and magneto-optical properties

  15. Correlation of electronic and magnetic properties of thin polymer layers with cobalt nanoparticles

    DEFF Research Database (Denmark)

    Kharchenko, A.; Lukashevich, M.; Popok, Vladimir

    2013-01-01

    Nanoparticles (NPs) of cobalt are synthesized in shallow layers of polyimide using 40 keV implantation of Co+ ions with a few different fluences at various ion current densities. Nucleation of individual NPs at low fluencies and their percolation at high fluencies are crucial processes governing...... of the magnetoresistance on the applied magnetic field allows to suggest spin-dependent domain wall scattering affecting the electron transport. The samples implanted with low fluencies demonstrate superparamagnetic behavior down to very low blocking temperatures. While for high fluence (1.25x1017 cm-2) the transition...

  16. Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction.

    Science.gov (United States)

    Xiao, Jian; Zhang, Yan; Zhang, Zheye; Lv, Qiying; Jing, Feng; Chi, Kai; Wang, Shuai

    2017-07-12

    Devising and facilely synthesizing an efficient noble metal-free electrocatalyst for the acceleration of the sluggish kinetics in the hydrogen-evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we present a simple one-step approach for constructing self-supported biocarbon-fiber cloth decorated with molybdenum carbide nanoparticles (BCF/Mo 2 C) electrodes by a direct annealing treatment of the Mo oxyanions loaded cotton T-shirt. The Mo 2 C nanoparticles not only serve as the catalytic active sites toward the HER but also enhance the hydrophilicity and conductivity of resultant electrodes. As an integrated three-dimensional HER cathode catalyst, the BCF/Mo 2 C exhibits outstanding electrocatalytic performance with extremely low overpotentials of 88 and 115 mV to drive a current density of 20 mA cm -2 in alkaline and acidic media, respectively. In addition, it can continuously work for 50 h with little decrease in the cathodic current density in both alkaline and acidic solutions. Even better, self-supported tungsten carbide and vanadium carbide based electrodes also can be prepared by a similar synthesis process. This work will illuminate an entirely new avenue for the preparation of various self-supported three-dimensional electrodes made of transition-metal carbides for various applications.

  17. Magnetic properties of nickel nanowires decorated with cobalt nanoparticles fabricated by two step electrochemical deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Maaz, K., E-mail: maaz@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Duan, J.L. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Karim, S. [Nanomaterials Research Group, Physics Division, PINSTECH, Nilore, 45650, Islamabad (Pakistan); Chen, Y.H.; Yao, H.J.; Mo, D.; Sun, Y.M. [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Liu, J., E-mail: j.liu@impcas.ac.cn [Materials Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-10-01

    We demonstrate fabrication and magnetic characterization of novel nanostructures composed of Ni nanowires decorated with Co nanoparticles by two step etching and electrochemical deposition in polycarbonate template. Structural analysis confirmed the formation of nickel nanowires with diameter of 62 nm which are surrounded by cobalt nanoparticles of about 15 nm in diameter. By electron microscopy analyses it is evident that the nanoparticles are distributed on the surface of the nanowires. Analysis of magnetization data indicates that ferromagnetic Ni nanowires exhibit an easy axis of magnetization parallel to the wire long-axis while the angular dependence of coercivity indicates that magnetization reversal occurs through the curling process in these nanowires. An exchange bias accompanied by vertical shift in magnetization was observed below ∼20 K, measured under a cooling field of 1 kOe, which is attributed to the spin interactions between the spin-glass like surface layer and ferromagnetic core of the nanowires and nanoparticles. - Highlights: • Co-decorated Ni nanowires were fabricated by two-step electrodeposition technique. • The nanoparticles are distributed on the surface of nanowires. • Magnetization reversal occurs through the curling process in the nanowires. • Temperature dependent coercivity follows thermal activation model.

  18. Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Salunkhe, Ashwini B. [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Khot, Vishwajeet M. [Department of Physics and Astronomy, University College London (United Kingdom); Ruso, Juan M. [Soft matter and molecular biophysics group, Department of Applied Physics, University of Santiago de Compostela, Santiago de Compostela (Spain); Patil, S.I., E-mail: patil@physics.unipune.ac.in [Centre for advanced materials research, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-12-01

    Superparamagnetic nanoparticles of Cobalt iron oxide (CoFe{sub 2}O{sub 4}) are synthesized chemically, and dispersed in an aqueous suspension for hyperthermia therapy application. Different parameters such as magnetic field intensity, particle concentration which regulates the competence of CoFe{sub 2}O{sub 4} nanoparticle as a heating agents in hyperthermia are investigated. Specific absorption rate (SAR) decreases with increase in the particle concentration and increases with increase in applied magnetic field intensity. Highest value of SAR is found to be 91.84 W g{sup −1} for 5 mg. mL{sup −1} concentration. Oleic acid conjugated polyethylene glycol (OA-PEG) coated CoFe{sub 2}O{sub 4} nanoparticles have shown superior cyto-compatibility over uncoated nanoparticles to L929 mice fibroblast cell lines for concentrations below 2 mg. mL{sup −1}. Present work provides the underpinning for the use of CoFe{sub 2}O{sub 4} nanoparticles as a potential heating mediator for magnetic fluid hyperthermia. - Highlights: • Superparamagnetic, water dispersible CoFe{sub 2}O{sub 4} NPs were synthesized by simple and cost effective Co precipitation route. • Effect of coating on various physical and chemical properties of CoFe{sub 2}O{sub 4} NPs were studied. • The effect of coating on induction heating as well as biocompatibility of NPs were studied.

  19. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  20. Study the effect of calcination temperature on physical and magnetic properties of bare Cobalt nanoparticles and that coated with silica shell

    International Nuclear Information System (INIS)

    Arabi, H.; Pourarian, F.; Chahkandinejad, R.

    2012-01-01

    In this paper, in order to investigate the effect of calcination temperature on the structural and magnetic properties of cobalt nanoparticles, samples have been prepared by Co-precipitation method at different calcination temperature. Cobalt nanoparticles have been prepared by Co-precipitation method at room temperature using hydrazine as reducing in ethanol hydrazine alkaline environment. This agent reduces cobalt salts to Cobalt nanoparticles in FCC and HCP phases. Phase analysis and investigation of Structural properties of the samples using X-ray diffraction patterns (XRD) confirm the formation of hexagonal phases of Co nanoparticles. Transmission electron microscopy was used for determining the size and shape morphology of nanoparticles. Magnetic properties of these nanoparticles have been investigated using a Vibrating sample magnetometer. The results indicate that these nanoparticles are ferromagnetic at room temperature. In addition, in this paper Co nanoparticles coated with silica shell have been prepared by the wet chemical method. Transmission electron microscopy images showed the cobalt core with average diameter of 17-20 nm coated by a silica shell with thickness of 5-7 nm. Hysteresis Loop of these Co nanoparticles coated by silica shell illustrates 16.9 emu/gr for saturation magnetization at 10000 (Oe), which is much less than that of Cobalt nanoparticles

  1. Structural, optical, Induced ferromagnetism and anti-ferromagnetism in SnO2 nanoparticles by varying cobalt concentration

    International Nuclear Information System (INIS)

    Ali, Atif; Sarfraz, A.K.; Ali, Kashif; Mumtaz, A.

    2015-01-01

    The SnO 2 nanoparticles were prepared with different cobalt concentrations (0.0%, 0.5%, 1%, 3% and 4%) by chemical co-precipitation method. The NH 4 OH was used as precipitating agent; the pH value, reaction time and reaction temperature were optimized during synthesis. The x-ray diffraction (XRD) pattern reveals the formation of single phase tetragonal structure of undoped and cobalt doped SnO 2 nanoparticles which lies in the range of 19–22 nm calculated by De-Bye Scherrer's formula. The optical properties were studied by measuring the reflectance spectroscopy which shows that band gap energy decreases with increase in cobalt concentration. The magnetic characterization was performed by Quantum Design Physical property measurement system (PPMS). Interestingly magnetic measurements show that ferromagnetism in a Co doped SnO 2 becomes visible for x=0.5% and diminishes with further increasing of cobalt concentration. - Highlights: • SnO 2 nanoparticles were prepared with different cobalt concentrations (0.0 % 0.5%, 1%, 3% and 4%) by the chemical co-precipitation method. • Structure was confirmed through x-ray diffraction (XRD) analysis. • The optical properties were studied by measuring the reflectance spectroscopy. • The magnetic characterization was performed

  2. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells

    International Nuclear Information System (INIS)

    Ding, M.; Kisin, E.R.; Zhao, J.; Bowman, L.; Lu, Y.; Jiang, B.; Leonard, S.; Vallyathan, V.; Castranova, V.; Murray, A.R.; Fadeel, B.; Shvedova, A.A.

    2009-01-01

    Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-κB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P + ). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P + cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-κB more efficiently in JB6 +/+ cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6 +/+ cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.

  3. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  4. Pulsed electrodeposition of cobalt nanoparticles on copper: influence of the operating parameters on size distribution and morphology

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Altimari, Pietro; Bellagamba, Marco; Granata, Giuseppe; Moscardini, Emanuela; Schiavi, Pier Giorgio; Toro, Luigi

    2015-01-01

    Cobalt nanoparticles were synthesized by pulsed electrodeposition on copper substrate. Scanning electron microscopy and image analysis were used to determine morphology and particle size distribution of nanoparticle populations obtained in different operating conditions. After preliminary tests, t on and t off were set at 50 and 300 ms respectively to obtain distinct nanoparticles and avoid dendritic structures. Experimental tests were performed according to two partially superimposed factorial designs with two factors at two levels. First factorial design investigated the effect of current density (I = 10 and 50 mA/cm 2 ) and discharged cobalt (Q = 2.5 × 10 −3 and 1.0 × 10 −2 C); second factorial design investigated the effect of cobalt concentration (C 0 = 0.01 and 0.1 M) for the same two levels of Q. For optimized value of t on /t off , square and hexagonal shaped nanoparticles were obtained. Statistical analysis evidenced that, for C 0 = 0.1 mol/L, current density is the most influencing factor on mean size: increasing I from 10 to 50 mA/cm 2 determined a diminution of mean size of 240 nm. For the same cobalt concentration, increasing the deposition time (Q) determined an increase of mean size of 60 nm. Diminishing the initial cobalt concentration from 0.1 to 0.01 mol/L determined an increase of mean size from 10 nm to 36 nm. For C 0 = 0.01 mol/L nanoparticles grow reaching an optimal size (36 nm) and then, increasing the time of deposition, optimal sized subunits tend to aggregate. As for polydispersity of nanoparticles, statistical tests denoted that increasing I determined significant reduction of variance, while increasing the time of deposition determined a significant increase of variance

  5. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Mamba, Bhekie B.; Msagati, Titus A.M.

    2017-07-05

    Highlights: • Presence of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} in AMD resulted in formation of crystalline ferrite. • Increasing settling time improved removal of Mg, Ca, Mn and Na from AMD. • Mixtures of ferrite nanoparticles were produced from AMD. • Formations of crystalline ferrite were more favored in the presence of heat. - Abstract: In this study, magnetite and cobalt ferrite nanoparticles were used as seeds for acid mine drainage (AMD) treatment at pH of 7.05 ± 0.35. Duplicate samples of AMD, one without heating and another with heating at 60 °C was treated under continuous stirring for 1 h. The filtrate analysis results from ICP-OES have shown complete removal of Al, Mg, and Mn, while for Fe, Ni and Zn over 90% removals were recorded. Particularly, settling time has significant effect on the removal of Mg, Ca and Na. The results from SQUID have shown superparamagnetic properties of the synthesised magnetic nanoparticles and ferrite sludge. The recovered nanoparticles from AMD are economically important and reduce the cost of waste disposal.

  6. Characterization of a Porous Carbon Material Functionalized with Cobalt-Oxide/Cobalt Core-Shell Nanoparticles for Lithium Ion Battery Electrodes

    KAUST Repository

    Anjum, Dalaver H.

    2016-04-18

    A nanoporous carbon (C) material, functionalized with Cobalt-Oxide/Cobalt (CoO/Co) core-shell nanoparticles (NPs), was structurally and chemically characterized with transmission electron microcopy (TEM) while its electrochemical response for Lithium ion battery (LIB) applications was evaluated as well. The results herein show that the nanoporous C material was uniformly functionalized with the CoO/Co core-shell NPs. Further the NPs were crystalline with fcc-Type lattice on the Co2+ oxide shell and hcp-Type core of metallic Co0. The electrochemical study was carried out by using galvanostatic charge/discharge cycling at a current density of 1000 mA g-1. The potential of this hybrid material for LIB applications was confirmed and it is attributed to the successful dispersion of the Co2+/ Co0 NPs in the C support.

  7. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  8. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles.

    Science.gov (United States)

    Kamal, Tahseen; Khan, Sher Bahadar; Haider, Sajjad; Alghamdi, Yousef Gamaan; Asiri, Abdullah M

    2017-11-01

    A facile approach utilizing synthesis of cobalt nanoparticles in green polymers of chitosan (CS) coating layer on high surface area cellulose microfibers of filter paper (CFP) is described for the catalytic reduction of nitrophenol and an organic dye using NaBH 4 . Simple steps of CFP coating with 1wt% CS aqueous solution followed by Co 2+ ions adsorption from 0.2M CoCl 2 aqueous solution were carried out to prepare pre-catalytic strips. The Co 2+ loaded pre-catalytic strips of CS-CFP were treated with 0.19M NaBH 4 aqueous solution to convert the ions into nanoparticles. Successful Co nanoparticles formation was assessed by various characterization techniques of FESEM, EDX and XRD analyzes. TGA analyses were carried out on CFP, CS-CFP, and Co-CS-CFP for the determination of the amount of Co particles formed on the CS-FP, and to track their thermal properties. Furthermore, we demonstrated that the Co-CS-CFP showed an excellent catalytic activity and reusability in the reduction reactions a nitroaromatic compound of 2,6-dintirophenol (2,6-DNP) and brilliant cresyl blue (BCB) dye by NaBH 4 . The Co-CS-CFP catalyzed the reduction reactions of 2,6-DNP and BCB by NaBH 4 with psuedo-first order rate constants of 0.0451 and 0.1987min -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Formation of DNA-network embedding ferromagnetic Cobalt nano-particles

    Science.gov (United States)

    Kanki, Teruo; Tanaka, Hidekazu; Shirakawa, Hideaki; Sacho, Yu; Taniguchi, Masateru; Lee, Hea-Yeon; Kawai, Tomoji; Kang, Nam-Jung; Chen, Jinwoo

    2002-03-01

    Formation of DNA-network embedding ferromagnetic Cobalt nano-particles T. Kanki, Hidekazu. Tanaka, H. Shirakawa, Y. Sacho, M. Taniguchi, H. Lee, T. Kawai The Institute of Scientific and Industrial Research, Osaka University, Japan and Nam-Jung Kang, Jinwoo Chen Korea Advanced Institute of Science and Technology (KAIST), Korea DNA can be regarded as a naturally occurring and highly specific functional biopolymer and as a fine nano-wire. Moreover, it was found that large-scale DNA networks can be fabricated on mica surfaces. By using this network structure, we can expect to construct nano-scale assembly of functional nano particle, for example ferromagnetic Co nano particles, toward nano scale spin-electronics based on DNA circuits. When we formed DNA network by 250mg/ml DNA solution of poly(dG)-poly(dC) including ferromagnetic Co nano particles (diameter of 12nm), we have conformed the DNA network structure embedding Co nano-particles (height of about 12nm) by atomic force microscopy. On the other hand, we used 100mg/ml DNA solution, DNA can not connect each other, and many Co nano-particles exist without being embedded.

  10. Spectra study and size control of cobalt nanoparticles passivated with oleic acid and triphenylphosphine

    International Nuclear Information System (INIS)

    Su Yikun; Ouyang Xing; Tang Jiaoning

    2010-01-01

    This paper compares the performance of two surfactants-triphenylphosphine (TPP) and oleic acid (OA) as a pair of capping agents in the synthesis of magnetic Co nanoparticles (NPs). Magnetic colloids of cobalt NPs are prepared by reducing solute cobalt chloride in the presence of stabilizing agents at a high temperature and characterized by TEM. Infrared spectra reveal that a chemical bond can be formed between O of C=O band and Co atoms while a coordinate bond forms between P and Co atoms around the NPs on the surface. OA binds strongly to the particle surface during synthesis that hinders the particle from growing; the TPP reversibly coordinates neutral metal surface sites that favor rapid growth. We studied the influence of changing the TPP/OA concentration ratio on the particle size distribution and crystallinity of Co NPs. Our results indicate the presence of TPP/OA is able to control particle growth, stabilize the colloidal suspension and prevent the final product from oxidation by air.

  11. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Bartling, Stephan; Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-01-01

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  12. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors

    Science.gov (United States)

    Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong

    2012-11-01

    Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g-1) at a current density of 2 A g-1, high-power density (11.98 kW kg-1) at a discharge current density of 40 A g-1 and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.

  13. Improvement of drug delivery by hyperthermia treatment using magnetic cubic cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Chaitali, E-mail: chaitalidey29@gmail.com [Centre for Research in Nanoscience & Nanotechnology, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Baishya, Kaushik [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Arup [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Goswami, Madhuri Mandal, E-mail: madhuri@bose.res.in [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India); Ghosh, Ajay [Dept. of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata 700106 (India); Mandal, Kalyan [S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106 (India)

    2017-04-01

    In this study, we report a novel synthesis method, characterization and application of a new class of ferromagnetic cubic cobalt ferrite magnetic nanoparticles (MNPs) for hyperthermia therapy and temperature triggered drug release. The MNPs are characterized by XRD, TEM, FESEM, AC magnetic hysteresis and VSM. These MNPs were coated with folic acid and loaded with an anticancer drug. The drug release studies were done at two different temperatures (37 °C and 44 °C) with progress of time. It was found that higher release of drug took place at elevated temperature (44 °C). We have developed a temperature sensitive drug delivery system which releases the heat sensitive drug selectively as the particles are heated up under AC magnetic field and controlled release is possible by changing the external AC magnetic field.

  14. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.

    Science.gov (United States)

    Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong

    2012-12-21

    Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.

  15. Synthesis and characterization of tungsten carbide doped cobalt via gas-solid reaction in rotary bed reactor; Sintese e caracterizacao de carbeto de tungstenio dopado com cobalto via reacao gas-solido em reator de leito rotativo

    Energy Technology Data Exchange (ETDEWEB)

    Tertuliano, R.S.C.; Araujo, C.P.B. de; Frota, A.V.V.M.; Moriyama, A.L.L.; Souza, C.P. de, E-mail: ruasavio@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Engenharia Quimica

    2016-07-01

    The search for materials with high added value, high applicability and sustainability, motivates innovations in all areas of engineering. In this context, so-called doped carbides, ceramic and metal compounds are included. This work proposes the synthesis and characterization of tungsten carbide doped cobalt (WC-Co) through the gas-solid reaction in a rotating bed reactor. The production stages of the material are: precursor synthesis by wetting, drying at 80 deg C, characterization of the precursor by MEV, DRX and FRX, gas-solid reaction at 750 deg C in a reducing atmosphere of CH{sub 4} / H{sub 2} in a rotary reactor at 34 rpm and characterization of the reaction product by the techniques already mentioned. The results showed that tungsten carbide powders were produced with cobalt inserted into the structure, with high surface area, nanometric grains and with potential for applications in the areas of catalysis, reactors and fuel cells, showing the relevance of this type of research.

  16. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  17. Hydrothermal synthesis of mixed zinc–cobalt ferrite nanoparticles: structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, P. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Silva, F. G. da [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Gomide, G.; Paula, F. L. O. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Campos, A. F. C. [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil); Perzynski, R. [Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX (France); Kern, C. [Univ. de Brasília, Complex Fluids Group, Instituto de Química (Brazil); Depeyrot, J. [Univ. de Brasília, Complex Fluids Group, Instituto de Física (Brazil); Aquino, R., E-mail: reaquino@unb.br [Univ. de Brasília, Laboratório de Nanociência Ambiental e Aplicada - LNAA, Faculdade UnB Planaltina (Brazil)

    2016-05-15

    We synthesize Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4}, with 0 ≤ x ≤ 1) magnetic nanoparticles by a hydrothermal co-precipitation method in alkaline medium. The chemical composition is evaluated by atomic absorption spectroscopy and energy-dispersive X-ray spectroscopy techniques. The structure and morphology of the nanopaticles are investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. XRD Rietveld refinements reveal the cation distribution among the tetrahedral (A) and octahedral (B) sites. It shows that up to x ~0.5 zinc ions occupy preferably A-sites, above which Zn ions begin also a gradual occupancy of B-sites. TEM images show nanoparticles with different shapes varying from spheres, cubes, to octahedrons. Hysteresis loop properties are studied at 300 and 5 K. These properties are strongly influenced by the Zn and Co proportion in the nanoparticle composition. At 300 K, only samples with high Co content present hysteresis. At 5 K, the reduced remanent magnetization ratio (M{sub R}/M{sub S}) and the coercivity (H{sub C}) suggest that nanoparticles with x < 0.5 have cubic anisotropy. A kink on the hysteresis loop, close to the remanence, is observed at low temperature. This feature is presumably associated to interplay between hard and soft anisotropy regimes in the powder samples.Graphical Abstract.

  18. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Khezami, L.; Modwi, A. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Taha, Kamal K. [Al Imam Mohammad Ibn Saud Islamic Univ. (IMSIU), Riyadh (Saudi Arabia). Dept. of Chemistry; Univ. of Bahri, Khartoum (Sudan). College of Applied and Industrial Sciences

    2017-08-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g{sup -1} of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  19. Evidence of exchange-coupled behavior in chromium-cobalt ferrite nanoparticles

    Science.gov (United States)

    Tanbir, Kamar; Sharma, Lalit Kumar; Aakash; Singh, Rakesh Kumar; Choubey, Ravi Kant; Mukherjee, Samrat

    2018-06-01

    Cr doped cobalt ferrite nanoparticles were synthesized with the generic formula Co1-xCrxFe2O4 (x = 0, 0.05, 0.15, 0.25) through standard chemical co-precipitation method. XRD studies confirmed the pure spinel cubic structure belonging to Fd 3 bar m space group. From the Williamson-Hall plots, crystallite sizes were found to lie within the range (42 ± 1) nm for the different doped samples. The lattice parameter was found to decrease linearly with increase in the concentration of Cr3+ ion. The magnetic behavior of the samples was determined by M-H studies at 300 K, field cooled (5 T) at 5 K and temperature dependent studies. The M-H at 300 K show soft magnetic behavior whereas the M-H plots at 5 K predict the existence of in-homogeneity of the exchange interactions due to strong exchange coupling between the spins at the core and the surface of the nanoparticles.

  20. Efficient removal of cobalt from aqueous solution by zinc oxide nanoparticles. Kinetic and thermodynamic studies

    International Nuclear Information System (INIS)

    Khezami, L.; Modwi, A.; Taha, Kamal K.; Univ. of Bahri, Khartoum

    2017-01-01

    This article deals with the removal of cobalt ions using zinc oxide nanopowder. The nanomaterial was prepared via the sol-gel method under supercritical drying. The nanomaterial was characterised via XRD, SEM, EDX, FTIR, and BET surface area techniques. The kinetics, equilibrium, and thermodynamic studies of the metal ions adsorption on the nanomaterial were conducted in batch mode experiments by varying some parameters such as pH, contact time, initial ion concentrations, nanoparticles dose, and temperature. The data revealed significant dependence of the adsorption process on concentration, and the temperature was found to enhance the adsorption rate indicating an endothermic nature of the adsorption. The adsorption complied well with the pseudo-second-order kinetics model. The adsorption process was found to match the Langmuir adsorption isotherm. The ZnO nanoparticles could successfully remove up to 125 mg.g -1 of Co(II) ions at elevated temperature. The metal ions adsorption could be described as an endothermic, spontaneous physisorption process. A mechanism for the metal ions adsorption was proposed.

  1. Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage

    International Nuclear Information System (INIS)

    Li, Xiaoyan; Fu, Nianqing; Zou, Jizhao; Zeng, Xierong; Chen, Yuming; Zhou, Limin; Lu, Wei; Huang, Haitao

    2017-01-01

    Graphical abstract: Ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes show exceptional lithium ion storage as anodes. - Abstract: Nanostructured cobalt sulfide based materials with rational design are attractive for high-performance lithium-ion batteries. In this work, we report a multistep method to synthesize ultrafine cobalt sulfide nanoparticles encapsulated in hierarchical N-doped carbon nanotubes (CoS x @HNCNTs). Co-based zeolitic imidazolate framework (ZIF-67) nanotubes are obtained from the reaction between electrospun polyacrylonitrile/cobalt acetate and 2-methylimidazole, followed by the dissolution of template. Next, a combined calcination and sulfidation process is employed to convert the ZIF-67 nanotubes to CoS x @HNCNTs. Benefited from the compositional and structural features, the as-prepared nanostructured hybrid materials deliver superior lithium storage properties with high capacity of 1200 mAh g −1 at 0.25 A g −1 . More importantly, a remarkable capacity of 1086 mAh g −1 can be maintained after 100 cycles at the current density of 0.5 A g −1 . Even at a high rate of 5 A g −1 , a reversible capacity of 592 mAh g −1 after 1600 cycles can still be achieved.

  2. Cobalt oxide polymorph growth on electrostatic self-assembled nanoparticle arrays for dually tunable nano-textures

    International Nuclear Information System (INIS)

    Bulliard, Xavier; Benayad, Anass; Lee, Kwang-Hee; Choi, Yun-Hyuk; Lee, Jae Cheol; Park, Jong-Jin; Kim, Jong-Min

    2011-01-01

    We report on a method for surface nano-texturing on a plastic substrate. Nano-objects with a silica nanoparticle core and a textured cobalt oxide crown are created with selectable density on the plastic substrate. The resulting dual morphology is easily tuned over large areas, either by changing the parameters directing nanoparticle deposition through electrostatic self-arrangement for nano-object density control, or the parameter directing cobalt oxide deposition for shape control. The entire process takes place at room temperature, with no chemicals harmful to the plastic substrate. The ready modulation of the dual morphology is used to control the wettability properties of the plastic film, which is covered by nano-objects.

  3. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  4. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rabia [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan); Hussain Gul, Iftikhar, E-mail: iftikhar.gul@scme.nust.edu.pk [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Zarrar, Muhammad [Thermal Transport Laboratory (TTL), Materials Engineering Department, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology - NUST, H-12 Campus, Islamabad (Pakistan); Anwar, Humaira [Islamabad Model College for Girls G-10/2, Islamabad (Pakistan); Khan Niazi, Muhammad Bilal [Department of Chemicals Engineering, SCME, NUST, H-12 Campus, Islamabad (Pakistan); Khan, Azim [Institute of Chemical Sciences, Gomal University, D. I. Khan (Pakistan)

    2016-05-01

    Cadmium substituted cobalt ferrites with formula Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd{sup 2+}concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd{sup 2+} substituted Co-ferrites increases.

  5. Improved electrical properties of cadmium substituted cobalt ferrites nano-particles for microwave application

    International Nuclear Information System (INIS)

    Ahmad, Rabia; Hussain Gul, Iftikhar; Zarrar, Muhammad; Anwar, Humaira; Khan Niazi, Muhammad Bilal; Khan, Azim

    2016-01-01

    Cadmium substituted cobalt ferrites with formula Cd x Co 1−x Fe 2 O 4 (x=0.0, 0.2, 0.35, 0.5), have been synthesized by wet chemical co-precipitation technique. Electrical, morphological and Structural properties of the samples have been studied using DC electrical resistivity and Impedance analyzer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD), respectively. XRD, SEM and AFM have been used to study the structural parameters such as measured density, lattice constant, X-ray density, crystallite size and morphology of the synthesized nano-particles. Debye–Scherrer formula has been used for the estimation of crystallite sizes. The estimated crystallite sizes were to be 15–19±2 nm. Hopping length of octahedral and tetrahedral sites have been calculated using indexed XRD data. The porosity and lattice constant increased as Cd 2+ concentration increases. DC electrical resistivity was performed using two probe technique. The decrease of resistivity with temperature confirms the semiconducting nature of the samples. The dielectric properties variation has been studied at room temperature as a function of frequency. Variation of dielectric properties from 100 Hz to 5 MHz has been explained on the basis of Maxwell and Wagner’s model and hoping of electrons on octahedral sites. To separates the grains boundary and grains of the system Cd x Co 1−x Fe 2 O 4 the impedance analysis were performed. - Highlights: • Preparation of homogeneous, spherical and single phase well crystallized cobalt ferrites. • A simple and economical PEG assisted wet chemical co-precipitation method has been used. • Increased in DC electrical resistivity and activation energy. • Decease in dielectric constant used for microwave absorber. • AC conductivity of Cd 2+ substituted Co-ferrites increases.

  6. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  7. The Effect of Catalyst Type on The Microstructure and Magnetic Properties of Synthesized Hard Cobalt Ferrite Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shaima'a Jaber Kareem

    2018-02-01

    Full Text Available A sol-gel process prepared the nanoparticles of hard cobalt ferrite (CoFe2O4. Cobalt nitrate hexahydrate (Co (NO32⋅6H2O, iron nitrate nonahydrate (Fe (NO33⋅9H2O with using two catalysis acid (citric acid and alkaline (hydroxide ammonium were used as precursor materials. Crystallization behavior of the CoFe2O4 nanoparticles were studied by X-ray diffraction (XRD. Nanoparticles phases can change from amorphous to spinel ferrite crystalline depending on the calcinated temperature at 600°C, with using citric acid as a catalysis without finding forgone phase, while using hydroxide ammonium was shown second phase (α-Fe2O3 with CoFe2O4. Crystallite size was measured by Scherrer’s formula about (25.327 nm and (27.119 nm respectively. Structural properties were investigated by FTIR, which was appeared main bond of (Fe-O, (Co-O, (C-O, and (H-O. Scanning electron microscopy (FE- SEM was shown the microstructure observation of cobalt ferrite and the particle size at the range about (28.77-42.97 nm. Magnetization measurements were carried out on a vibrating sample magenometer (VSM that exhibited hard spinel ferrite.

  8. Composition tunable cobalt–nickel and cobalt–iron alloy nanoparticles below 10 nm synthesized using acetonated cobalt carbonyl

    International Nuclear Information System (INIS)

    Schooneveld, Matti M. van; Campos-Cuerva, Carlos; Pet, Jeroen; Meeldijk, Johannes D.; Rijssel, Jos van; Meijerink, Andries; Erné, Ben H.; Groot, Frank M. F. de

    2012-01-01

    A general organometallic route has been developed to synthesize Co x Ni 1−x and Co x Fe 1−x alloy nanoparticles with a fully tunable composition and a size of 4–10 nm with high yield. In contrast to previously reported synthesis methods using dicobalt octacarbonyl (Co 2 (CO) 8 ), here the cobalt–cobalt bond in the carbonyl complex is first broken with anhydrous acetone. The acetonated compound, in the presence of iron carbonyl or nickel acetylacetonate, is necessary to obtain small composition tunable alloys. This new route and insights will provide guidelines for the wet-chemical synthesis of yet unmade bimetallic alloy nanoparticles.

  9. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Directory of Open Access Journals (Sweden)

    Marcella Mauro

    2015-07-01

    Full Text Available Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1 and needle-abraded human skin (experiment 2. Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2, while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2 and those with intact skin (1.08 ± 0.20 ng·cm−2. To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI uptake assays. The results indicate that a long exposure time (i.e., seven days was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay. This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  10. Influence of pH on structural morphology and magnetic properties of ordered phase cobalt doped lithium ferrites nanoparticles synthesized by sol-gel method

    International Nuclear Information System (INIS)

    Srivastava, Manish; Ojha, Animesh K.; Chaubey, S.; Sharma, Prashant K.; Pandey, Avinash C.

    2010-01-01

    Cobalt doped lithium ferrite nanoparticles were synthesized at different pH by sol-gel method. The effect of pH on the physical properties of cobalt doped lithium ferrite nanoparticles has been investigated. The nanoparticles synthesized at different pH were characterized through X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Raman spectroscopy (RS), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX) and vibrating sample magnetometer (VSM). The XRD patterns were analyzed to determine the crystal phase of cobalt doped lithium ferrites nanoparticles synthesized at different pH. The XRD results show the formation of impurity free cobalt doped lithium ferrites having ordered phase spinel structure. A similar kind of conclusion was also drawn through the analysis of Raman spectra of the nanoparticles synthesized at different pH. SEM micrographs show that the structural morphology of the nanoparticles is highly sensitive to the pH during the synthesis process. The magnetic properties such as; saturation magnetization (Ms), remnant magnetization (Mr) and coercivety (Hc) have been also investigated and found to be different for the nanoparticles synthesized at different pH, which may be attributed to the different size and surface morphology of the nanoparticles.

  11. In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers.

    Science.gov (United States)

    Liu, Huihui; Li, Yajing; Yuan, Mengwei; Sun, Genban; Li, Huifeng; Ma, Shulan; Liao, Qingliang; Zhang, Yue

    2018-06-11

    The electrospinning and annealing methods is applied to prepare cobalt nanoparticles decorated in N-doped carbon nanofibers (Co/N-C NFs) with solid and macroporous structures. In detail, the nanocomposites are synthesized by carbonization of as-electrospun polyacrylonitrile (PAN)/cobalt acetylacetonate nanofibers in an argon atmosphere. The solid Co/N-C NFs has lengths up to dozens of microns with the average diameter of ca. 500 nm and possess abundant cobalt nanoparticles on both the surface and within the fibers, and the cobalt nanoparticles size is about 20 nm. The macroporous Co/N-C NFs possess a hierarchical pore structure, and there are macropores (500 nm) and mesopores (2-50 nm) existed in this material. The saturation magnetization (Ms) and coercivity (Hc) of the solid Co/N-C NFs are 28.4 emu g-1 and 661 Oe, respectively. And those of the macroporous Co/N-C NFs are 23.3 emu g-1 and 580 Oe, respectively. The solid Co/N-C NFs exhibits excellent electromagnetic wave absorbability, a minimum reflection loss (RL) value of -25.7 dB is achieved with a matching thickness of 2 mm for solid Co/N-C NFs when the filler loading is 5 wt%, and the effective bandwidth (BW) (RL≤-10 dB) is 4.3 GHz. Moreover, the effective microwave absorption can be achieved in the whole range of 1-18 GHz by adjusting the thickness of the sample layer and content of the dopant sample.

  12. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    Directory of Open Access Journals (Sweden)

    Ricardo López Antón

    2017-03-01

    Full Text Available Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h. The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased and soft (unbiased components; however, the precise origin of the soft phase is as yet unresolved.

  13. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility

    Science.gov (United States)

    Ansari, S. M.; Bhor, R. D.; Pai, K. R.; Sen, D.; Mazumder, S.; Ghosh, Kartik; Kolekar, Y. D.; Ramana, C. V.

    2017-08-01

    Cobalt (Co) nanoparticles (NPs) were produced by a simple, one step hydrothermal method with the capping of oleic acid. Intrinsic structural, physiochemical and magnetic properties of Co NPs were investigated and demonstrated their applicability in biomedicine. X-ray diffraction, Raman spectroscopy and infrared (IR) spectroscopic studies confirm the single phase Co NPs with a high structural quality. The IR data revealed the capping of oleic acid via monodentate interaction. Small angle scattering studies suggest the existence of sticky hard sphere type of interaction among the Co NPs because of magnetic interaction which is further evidenced by electron microscopy imaging analyses. The Co NPs exhibit a ferromagnetic character over a wide range of temperature (20-300 K). The temperature dependence of magnetic parameters namely, saturation magnetization, remanent magnetization, coercivity and reduced remanent magnetization were determined and correlated with structure of Co NPs. The Cytotoxicity studies demonstrate that these Co NPs exhibit the mild anti-proliferative character against the cancer cells (cisplatin resistant ovarian cancer (A2780/CP70)) and safe nature towards the normal cells. Haemolytic behavior of human red blood cells (RBC) revealed (<5%) haemolysis signifying the compatibility of Co NPs with human RBC which is an essential feature in vivo biomedical applications without creating any harmful effects in the human blood stream.

  14. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, S.M. [Department of Physics, Savitribai Phule Pune University, Pune, 411007, Maharashtra (India); Bhor, R.D.; Pai, K.R. [Department of Zoology, Savitribai Phule Pune University, Pune, 411007, Maharashtra (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Ghosh, Kartik [Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO, 65897 (United States); Kolekar, Y.D., E-mail: ydkolekar@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune, 411007, Maharashtra (India); Ramana, C.V., E-mail: rvchintalapalle@utep.edu [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX, 79968 (United States)

    2017-08-31

    Cobalt (Co) nanoparticles (NPs) were produced by a simple, one step hydrothermal method with the capping of oleic acid. Intrinsic structural, physiochemical and magnetic properties of Co NPs were investigated and demonstrated their applicability in biomedicine. X-ray diffraction, Raman spectroscopy and infrared (IR) spectroscopic studies confirm the single phase Co NPs with a high structural quality. The IR data revealed the capping of oleic acid via monodentate interaction. Small angle scattering studies suggest the existence of sticky hard sphere type of interaction among the Co NPs because of magnetic interaction which is further evidenced by electron microscopy imaging analyses. The Co NPs exhibit a ferromagnetic character over a wide range of temperature (20–300 K). The temperature dependence of magnetic parameters namely, saturation magnetization, remanent magnetization, coercivity and reduced remanent magnetization were determined and correlated with structure of Co NPs. The Cytotoxicity studies demonstrate that these Co NPs exhibit the mild anti-proliferative character against the cancer cells (cisplatin resistant ovarian cancer (A2780/CP70)) and safe nature towards the normal cells. Haemolytic behavior of human red blood cells (RBC) revealed (<5%) haemolysis signifying the compatibility of Co NPs with human RBC which is an essential feature in vivo biomedical applications without creating any harmful effects in the human blood stream.

  15. A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen Wei; Wu Jinming; Tu Jiangping

    2012-01-01

    Highlights: ► We examine the electrochemical performance of cobalt oxides fabricated by solution combustion synthesis for rechargeable lithium-ion battery applications. ► The additive of NaF in precursor results in an eruption combustion mode. ► The eruption combustion leads to fluffy networks with smaller grains and more macroporous voids. ► The network contributes to higher discharge capacity, higher initial coulombic efficiency, and better cycling performance for rechargeable lithium-ion batteries. - Abstract: Low cost mass production of cobalt oxide nanoparticles with high electrochemical performance is of practical interest for rechargeable lithium-ion batteries. In this report, cobalt oxide nanoparticles were fabricated by solution combustion synthesis, with the introduction of NaF into the precursor to alter the combustion mode. The novel eruption combustion resulted in fluffy networks with smaller particles and more macroporous voids, which contributed to the higher discharge capacity, higher initial coulombic efficiency, and better cycling performance when compared with that achieved by the conventional combustion mode.

  16. Generation of Transparent Oxygen Evolution Electrode Consisting of Regularly Ordered Nanoparticles from Self-Assembly Cobalt Phthalocyanine as a Template

    KAUST Repository

    Ziani, Ahmed

    2016-11-04

    The decoration of (photo)electrodes for efficient photoresponse requires the use of electrocatalysts with good dispersion and high transparency for efficient light absorption by the photoelectrode. As a result of the ease of thermal evaporation and particulate self-assembly growth, the phthalocyanine molecular species can be uniformly deposited layer-by-layer on the surface of substrates. This structure can be used as a template to achieve a tunable amount of catalysts, high dispersion of the nanoparticles, and transparency of the catalysts. In this study, we present a systematic study of the structural and optical properties, surface morphologies, and electrochemical oxygen evolution reaction (OER) performance of cobalt oxide prepared from a phthalocyanine metal precursor. Cobalt phthalocyanine (CoPc) films with different thicknesses were deposited by thermal evaporation on different substrates. The films were annealed at 400 °C in air to form a material with the cobalt oxide phase. The final Co oxide catalysts exhibit high transparency after thermal treatment. Their OER measurements demonstrate well expected mass activity for OER. Thermally evaporated and treated transition metal oxide nanoparticles are attractive for the functionalization of (photo)anodes for water oxidation.

  17. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  18. Boron-capped tris(glyoximato) cobalt clathrochelate as a precursor for the electrodeposition of nanoparticles catalyzing H2 evolution in water.

    Science.gov (United States)

    Anxolabéhère-Mallart, Elodie; Costentin, Cyrille; Fournier, Maxime; Nowak, Sophie; Robert, Marc; Savéant, Jean-Michel

    2012-04-11

    Electrochemical investigation of a boron-capped tris(glyoximato)cobalt clathrochelate complex in the presence of acid reveals that the catalytic activity toward hydrogen evolution results from an electrodeposition of cobalt-containing nanoparticles on the electrode surface at a modest cathodic potential. The deposited particles act as remarkably active catalysts for H(2) production in water at pH 7. © 2012 American Chemical Society

  19. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    International Nuclear Information System (INIS)

    Carreño-Gallardo, C.; Estrada-Guel, I.; López-Meléndez, C.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Synthesis of 2024-SiC NP nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al 2024 alloy was reinforced with silicon carbide nanoparticles (SiC NP ), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC NP were homogeneously dispersed into the Al 2024 alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC NP content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC NP

  20. Effect of Cr{sup 3+} substitution on electric and magnetic properties of cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Panda, R.K., E-mail: physics.panda@gmail.com [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Muduli, R. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India); Jayarao, G. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, 769 008 (India); Sanyal, D. [Variable Energy Cyclotron Centre, Kolkata, 700064 (India); Behera, D. [Department of Physics, National Institute of Technology, Rourkela, 769 008 (India)

    2016-06-05

    This work describes the effect of incorporation of Cr{sup 3+} into CoFe{sub 2}O{sub 4} nanoparticles on its magnetic and electric properties, prepared by auto combustion method. The samples of CoFe{sub 2-x}Cr{sub x}O4 (x = 0, 0.15, 0.3) series were characterized by x-ray diffraction and field emission scanning electron microscopy to find out the average particle size. The substitution of Cr{sup 3+} caused a significant reduction in particle size of the modified systems. Room temperature Moessbauer spectroscopy and magnetic characterization were performed. Analysis of extracted parameters concluded that Cr{sup 3+} replaced the Fe{sup 3+} at B-site (octahedral). The decrease in magnetization at B-site was found responsible for the observed reduced saturation magnetization and coercivity. Impedance spectroscopic analysis has revealed the suppression of electrode-sample surface conduction effect and enhancement of material resistivity. The latter was confirmed by dc resistivity measurement. All these results were explained on the basis of occupancy of Cr{sup 3+} at B-site, surface anisotropy potential and reduced particle size. - Highlights: • Cr substitution reduced the particle size in nano-cobalt ferrite. • Mossbauer study revealed that the Cr{sup 3+} replaced the Fe{sup 3+} at B-site. • Decrease in saturation magnetization and coercivity with the addition of Cr{sup 3+}. • Reduction of surface conduction and rise in resistance observed in modified systems.

  1. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  2. Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Zafar, Qayyum; Azmer, Mohamad Izzat; Al-Sehemi, Abdullah G.; Al-Assiri, Mohammad S.; Kalam, Abul; Sulaiman, Khaulah

    2016-01-01

    In this study, we report the enhanced sensing parameters of previously reported TMBHPET-based humidity sensor. Significant improved sensing performance has been demonstrated by coupling of TMBHPET moisture sensing thin film with cobalt ferrite nanoparticles (synthesized by eco-benign ultrasonic method). The mean size of CoFe_2O_4 nanoparticles has been estimated to be ~ 6.5 nm. It is assumed that the thin film of organic–ceramic hybrid matrix (TMBHPET:CoFe_2O_4) is a potential candidate for humidity sensing utility by virtue of its high specific surface area and porous surface morphology (as evident from TEM, FESEM, and AFM images). The hybrid suspension has been drop-cast onto the glass substrate with preliminary deposited coplanar aluminum electrodes separated by 40 µm distance. The influence of humidity on the capacitance of the hybrid humidity sensor (Al/TMBHPET:CoFe_2O_4/Al) has been investigated at three different frequencies of the AC applied voltage (V_r_m_s ~ 1 V): 100 Hz, 1 kHz, and 10 kHz. It has been observed that at 100 Hz, under a humidity of 99 % RH, the capacitance of the sensor increased by 2.61 times, with respect to 30 % RH condition. The proposed sensor exhibits significantly improved sensitivity ~560 fF/ % RH at 100 Hz, which is nearly 7.5 times as high as that of pristine TMBHPET-based humidity sensor. Further, the capacitive sensor exhibits improved dynamic range (30–99 % RH), small hysteresis (~2.3 %), and relatively quicker response and recovery times (~12 s, 14 s, respectively). It is assumed that the humidity response of the sensor is associated with the diffusion kinetics of water vapors and doping of the semiconductor nanocomposite by water molecules.

  3. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    International Nuclear Information System (INIS)

    Herrera, Adriana P.; Polo-Corrales, Liliana; Chavez, Ermides; Cabarcas-Bolivar, Jari; Uwakweh, Oswald N.C.; Rinaldi, Carlos

    2013-01-01

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles

  4. Influence of cobalt doping on structural and magnetic properties of BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Chinese Academy of Sciences, Institute of Physics (China); Adeela, N., E-mail: adeela16@gmail.com [Centre for High Energy Physics, University of the Punjab (Pakistan); Javed, K. [Chinese Academy of Sciences, Institute of Physics (China); Riaz, S. [Centre for Solid State Physics, University of the Punjab (Pakistan); Ali, H. [Chinese Academy of Sciences, Institute of Physics (China); Iqbal, M. [Centre for High Energy Physics, University of the Punjab (Pakistan); Han, X. F. [Chinese Academy of Sciences, Institute of Physics (China); Naseem, S., E-mail: shahzad-naseem@yahoo.com [Centre for Solid State Physics, University of the Punjab (Pakistan)

    2015-11-15

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe{sub 1−δ}Co{sub δ}O{sub 3} (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO{sub 3}. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.Graphical Abstract.

  5. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  6. Rhodamine B removal on A-rGO/cobalt oxide nanoparticles composite by adsorption from contaminated water

    Science.gov (United States)

    Alwan, Salam H.; Alshamsi, Hassan A. Habeeb; Jasim, Layth S.

    2018-06-01

    Cobalt oxide nanoparticles@rGO composite is prepared by using graphene oxide (GO) as a supporting substance. GO is first treated with ascorbic acid to form rGO. Finally, cobalt oxide nanoparticles reaction with rGO sheets and using as the adsorbent to removal Rh.B dye from wastewater. The morphology and chemical structure of prepared samples were characterized by FTIR, X-ray spectroscopy, SEM-EDX, TEM, AFM and TGA. The adsorption of Rh.B dye on the A-rGO/Co3O4 composite was accomplished under different conditions that are equilibrium time, pH solution, ionic strength, and temperature. The adsorption isotherms of Rh.B dye on the A-rGO/Co3O4 composite could be illustrated well by the Langmuir, Freundlich and Tempkin model. The thermodynamic factors (ΔHo, ΔSo, and ΔGo) estimated from the temperature-dependent isotherms revealed that the adsorption reaction of Rh.B dye on the A-rGO/Co3O4 composite was an endothermic and spontaneous process.

  7. Green synthesis of cobalt (II, III) oxide nanoparticles using Moringa Oleifera natural extract as high electrochemical electrode for supercapacitors

    Science.gov (United States)

    Matinise, N.; Mayedwa, N.; Fuku, X. G.; Mongwaketsi, N.; Maaza, M.

    2018-05-01

    The research work involved the development of a better, inexpensive, reliable, easily and accurate way for the fabrication of Cobalt (II, III) oxide (Co3O4) nanoparticles through a green synthetic method using Moringa Oleifera extract. The electrochemical activity, crystalline structure, morphology, isothermal behaviour and optical properties of Co3O4 nanoparticles were studied using various characterization techniques. The X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS) analysis confirmed the formation of Co3O4 nanoparticles. The pseudo-capacitor behaviour of spinel Co3O4 nanoparticles on Nickel foam electrode was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 3M KOH solution. The CV curve revealed a pairs of redox peaks, indicating the pseudo-capacitive characteristics of the Ni/Co3O4 electrode. EIS results showed a small semicircle and Warburg impedance, indicating that the electrochemical process on the surface electrode is kinetically and diffusion controlled. The charge-discharge results indicating that the specific capacitance Ni/Co3O4 electrode is approximately 1060 F/g at a discharge current density of at 2 A/g.

  8. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    International Nuclear Information System (INIS)

    Anjum, Safia; Tufail, Rabia; Rashid, Khalid; Zia, Rehana; Riaz, S.

    2017-01-01

    Highlights: • The stability of Co x Fe (2-x) O 3 nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co 2+ ions in magnetite Fe 3 O 4 nano-particles with stoichiometric formula Co x Fe 3-x O 4 where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co 2+ doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co x Fe 3-x O 4 nanoparticles with the major band at 887 cm −1 , which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co 2+ content. The decrease in enthalpy with increase in Co 2+ concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co 2+ content in B-site of Fe 3 O 4 structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co x Fe 3-x O 4 nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  9. Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Gharibshahian, M. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of); Mirzaee, O., E-mail: O_mirzaee@semnan.ac.ir [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Nourbakhsh, M.S. [Faculty of New Sciences and Technologies, Semnan University, Semnan (Iran, Islamic Republic of)

    2017-03-01

    Cobalt ferrite nano particles were synthesized by Pechini sol-gel method and calcined at 700 °C in electrical and microwave furnace. The microwave calcined sample was coated with mesoporous silica by hydrothermal method. Characterization was performed by XRD, FESEM, TEM, VSM, BET and FTIR analysis. The cytotoxicity was evaluated by MTT assay with 3T3 fibroblast cells. The XRD and FTIR results confirmed spinal formation in both cases and verified the formation of silica coating on the nanoparticles. For microwave calcination, The XRD and SEM results demonstrated smaller and flat adhesion forms of nanoparticles with the average size of 15 nm. The VSM results demonstrated nearly superparamagnetic nanoparticles with significant saturation magnetization equal to 64 emu/g. By coating, saturation magnetization was decreased to 36 emu/g. Moreover, the BET results confirmed the formation of mesoporous coating with the average pore diameters of 2.8 nm and average pore volume of 0.82 cm{sup 3} g{sup −1}. Microwave calcined nanoparticles had the best structural and magnetic properties. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were synthesized using the microwave modified Pechini method. • The Effect of calcination route and silica coating on NPs properties was studied. • The nearly superparamagnetic nanoparticles were achieved by microwave calcination. • MFC NPs had the best magnetic properties and MTT assay showed no toxicity for MFC-MSC NPs. • A useful scheme was designed to achieve biological superparamagnetic core/shell NPs.

  10. Estimate of toxically influence of silicon carbide nanoparticles according histopatologycal changes

    Directory of Open Access Journals (Sweden)

    Grozdanov Anita

    2013-07-01

    Full Text Available Taking in consideration a very wide application of nanoparticules in different industrial sectors due to their remarkable properties for implementation in different products, very important part for future development of nanotechology is following a histopatologycal changes provoke of this material.Silicon carbide (SiC as ceramic material with high thermal conductivity, high stability, good wear resistance and small thermal expansion coefficient is very applied in ceramic’s industry, power electronics, biomaterials, pharmaceutics etc. Histopathological changes of SiC particles were investigate on 4 weeks old female Wistar rats divided into four groups (two control and two experimental groups, sacrificed 2, 7 and 14 days after treatment. Histopathological diagnosis was performed on heart, liver, spleen, kidneys, lung, brain, gastrointestinal tract, using standard Hematoxilin-eosin staining methods. The main toxicological influences of SiC were observed on liver, lungs and gastrointestinal tract.

  11. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad; Yoshida, Hiroshi; Anjum, Dalaver H.; Garcia Esparza, Angel T.; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  12. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    Science.gov (United States)

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  14. Synthesis and characterization of iron-cobalt (FeCo) alloy nanoparticles supported on carbon

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Barfod, Rasmus; Eriksen, Kim Michael

    2017-01-01

    of the alloy nanoparticles differed depending on the preparation method. When the wet impregnation technique of acetate precursor salts of Fe and Co were used for the synthesis, the size of FeCo alloy nanoparticles was approximately 13 nm. FeCo alloy nanoparticles were characterized by crystallography (XRD...

  15. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    Science.gov (United States)

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

  16. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  17. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions

    International Nuclear Information System (INIS)

    Shah, Vishal; Collins, Daniel; Shah, Shreya; Walker, Virginia K

    2014-01-01

    Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters. (paper)

  18. Cobalt ferrite nanoparticles with improved aqueous colloidal stability and electrophoretic mobility

    International Nuclear Information System (INIS)

    Munjal, Sandeep; Khare, Neeraj

    2016-01-01

    We have synthesized CoFe 2 O 4 (CFO) nanoparticles of size ∼ 12.2 nm by hydrothermal synthesis method. To control the size of these CFO nanoparticles, oleic acid was used as a surfactant. The inverse spinel phase of the synthesized nanoparticles was confirmed by X-ray diffraction method. As synthesized oleic acid coated CFO (OA@CFO) nanoparticles has very less electrophoretic mobility in the water and are not water dispersible. These OA@CFO nanoparticles were successfully turned into water soluble phase with a better colloidal aqueous stability, through a chemical treatment using citric acid. The modified citric acid coated CFO (CA@CFO) nanoparticles were dispersible in water and form a stable aqueous solution with high electrophoretic mobility.

  19. Coalescence aspects of cobalt nanoparticles during in situ high-temperature annealing

    NARCIS (Netherlands)

    Palasantzas, G; Vystavel, T; Koch, SA; De Hosson, JTM

    2006-01-01

    In this work we investigate the coalescence aspects of Co nanoparticles. It was observed that nanoparticles in contact with the substrate are relatively immobile, whereas those on top of other Co particles can rearrange themselves during high-temperature annealing and further coalesce. Indeed,

  20. Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Semaltianos, N. G., E-mail: nsemaltianos@yahoo.com [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Friedt, J.-M.; Blondeau-Patissier, V.; Combe, G. [Dépt. Temps-Fréquence, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France); Chassagnon, R. [Laboratoire Interdisciplinaire Carnot De Bourgogne, ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté, Dijon 21078 (France); Moutarlier, V. [UTINAM, UMR CNRS 6213, Université de Franche-Comté, Besançon 25030 (France); Assoul, M.; Monteil, G. [Dépt. Mécanique Appliquée, Femto-st, UMR CNRS 6174, Université de Franche-Comté, Besançon 25030 (France)

    2016-05-28

    Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter in the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.

  1. Effect of cobalt doping on crystallinity, stability, magnetic and optical properties of magnetic iron oxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Safia, E-mail: safia_anjum@hotmail.com [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Tufail, Rabia [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Rashid, Khalid [PCSIR Laboratories Lahore (Pakistan); Zia, Rehana [Department of Physics, Lahore College for Women University, Lahore (Pakistan); Riaz, S. [Centre for Solid State Physics, University of the Punjab, Lahore (Pakistan)

    2017-06-15

    Highlights: • The stability of Co{sub x}Fe{sub (2-x)}O{sub 3} nanoparticles enhances. • Energy losses increases. • Anisotropy of NP is high. - Abstract: This paper is dedicated to investigate the effect of Co{sup 2+} ions in magnetite Fe{sub 3}O{sub 4} nano-particles with stoichiometric formula Co{sub x}Fe{sub 3-x}O{sub 4} where (x = 0, 0.05, 0.1 and 0.15) prepared by co-precipitation method. The structural, thermal, morphological, magnetic and optical properties of magnetite and Co{sup 2+} doped magnetite nanoparticles have been carried out using X-ray Diffractometer, Fourier Transform Infrared Spectroscopy, Themogravimetric Analysis, Scanning Electron Microscopy, Vibrating Sample Magnetometer (VSM) and UV–Vis Spectrometer (UV–Vis) respectively. Structural analysis verified the formation of single phase inverse spinel cubic structure with decrease in lattice parameters due to increase in cobalt content. FTIR analysis confirms the single phase of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles with the major band at 887 cm{sup −1}, which might be due to the stretching vibrations of metal-oxide bond. The DSC results corroborate the finding of an increase in the maghemite to hematite phase transition temperature with increase in Co{sup 2+} content. The decrease in enthalpy with increase in Co{sup 2+} concentration attributed to the fact that the degree of conversion from maghemite to hematite decrease which shows that the stability increases with increasing Co{sup 2+} content in B-site of Fe{sub 3}O{sub 4} structure. SEM analysis demonstrated the formation of spherical shaped nanoparticles with least agglomeration. The magnetic measurements enlighten that the coercivity and anisotropy of Co{sub x}Fe{sub 3-x}O{sub 4} nanoparticles are significantly increased. From UV–Vis analysis it is revealed that band gap energy increases with decreasing particle size. This result has a great interest for magnetic fluid hyperthermia application (MPH).

  2. Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media

    Science.gov (United States)

    Guo, Hailing; Youliwasi, Nuerguli; Zhao, Lei; Chai, Yongming; Liu, Chenguang

    2018-03-01

    This paper addresses a new post-treatment strategy for the formation of carbon-encapsulated nickel-cobalt alloys nanoparticles, which is easily controlled the performance of target products via changing precursor composition, calcination conditions (e.g., temperature and atmosphere) and post-treatment condition. Glassy carbon electrode (GCE) modified by the as-obtained carbon-encapsulated mono- and bi-transition metal nanoparticles exhibit excellent electro-catalytic activity for hydrogen production in alkaline water electrolysis. Especially, Ni0.4Co0.6@N-Cs800-b catalyst prepared at 800 °C under an argon flow exhibited the best electrocatalytic performance towards HER. The high HER activity of the Ni0.4Co0.6@N-Cs800-b modified electrode is related to the appropriate nickel-cobalt metal ratio with high crystallinity, complete and homogeneous carbon layers outside of the nickel-cobalt with high conductivity and the synergistic effect of nickel-cobalt alloys that also accelerate electron transfer process.

  3. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wang Yang; Luo Xiaoyu; Tang Jie; Hu Xiaoya; Xu Qin; Yang Chun

    2012-01-01

    Graphical abstract: An approach to performing extraction and preconcentration employing functionalized magnetic particles for the determination of cobalt in the sequential injection lab-on-valve system using detection by electrothermal atomic absorption spectrometry. Highlights: ► New SPE method for cobalt separation/preconcentration was reported. ► Functionalized magnetic nanoparticles were used as adsorbent. ► Extraction, elution, and detection procedures were performed in the LOV system. ► This automatic extraction technique provided a good platform for metal analysis. - Abstract: A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L −1 , and the relative standard deviation was 2.8% at the 0.5 μg L −1 level (n = 11). The limit of detection was 6 ng L −1 with a sampling frequency of 18 h −1 . The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.

  4. Growth of zinc cobaltate nanoparticles and nanorods on reduced graphene oxide porous networks toward high-performance supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaling; Zhao, Changhui; Fu, Wenbin; Zhang, Zemin; Zhang, Mingxiang; Zhou, Jinyuan; Pan, Xiaojun, E-mail: xjpan@lzu.edu.cn; Xie, Erqing

    2016-05-25

    A type of composite network constructed from zinc cobaltate (ZnCo{sub 2}O{sub 4}) nanoparticles and nanorods on reduced graphene oxide (rGO) nanosheets has been prepared by a facile hydrothermal method. Transmission electron microscope results reveal that the rGO nanosheets are covered by ZnCo{sub 2}O{sub 4} nanoparticles evenly due to the abundant surface functional groups on surface of original GO, and supported by some cross-linked ZnCo{sub 2}O{sub 4} nanorods in the entire structures. With a rational combination, the composite networks present a meso-/macroporous architecture with a larger specific surface area than those of pristine ZnCo{sub 2}O{sub 4} nanorods. As expected, the prepared ZnCo{sub 2}O{sub 4}/rGO electrode exhibits improved electrochemical performances, which shows a high specific capacitance (626 F g{sup −1} at 1 A g{sup −1}), excellent rate capability (81% retention of the initial capacitance at 30 A g{sup −1}), and long-term cycling stability (99.7% retention after 3000 cycles at 10 A g{sup −1}). Such remarkable electrochemical performances of ZnCo{sub 2}O{sub 4}/rGO electrode can be due to the effective pathways for both electronic and ionic transport in these porous networks. - Highlights: • Porous ZnCo{sub 2}O{sub 4}/rGO composite networks can be prepared by a hydrothermal method. • These networks are mainly constructed from ZnCo{sub 2}O{sub 4} nanorods and rGO nanosheets. • The rGO nanosheets are uniformly covered by ZnCo{sub 2}O{sub 4} nanoparticles. • The composite networks can promote capacitive performances as electrode materials.

  5. Dilution effects on combined magnetic and electric dipole interactions: A study of ferromagnetic cobalt nanoparticles with tuneable interactions

    Science.gov (United States)

    Hod, M.; Dobroserdova, A.; Samin, S.; Dobbrow, C.; Schmidt, A. M.; Gottlieb, M.; Kantorovich, S.

    2017-08-01

    Improved understanding of complex interactions between nanoparticles will facilitate the control over the ensuing self-assembled structures. In this work, we consider the dynamic changes occurring upon dilution in the self-assembly of a system of ferromagnetic cobalt nanoparticles that combine magnetic, electric, and steric interactions. The systems examined here vary in the strength of the magnetic dipole interactions and the amount of point charges per particle. Scattering techniques are employed for the characterization of the self-assembly aggregates, and zeta-potential measurements are employed for the estimation of surface charges. Our experiments show that for particles with relatively small initial number of surface electric dipoles, an increase in particle concentration results in an increase in diffusion coefficients; whereas for particles with relatively high number of surface dipoles, no effect is observed upon concentration changes. We attribute these changes to a shift in the adsorption/desorption equilibrium of the tri-n-octylphosphine oxide (TOPO) molecules on the particle surface. We put forward an explanation, based on the combination of two theoretical models. One predicts that the growing concentration of electric dipoles, stemming from the addition of tri-n-octylphosphine oxide (TOPO) as co-surfactant during particle synthesis, on the surface of the particles results in the overall repulsive interaction. Secondly, using density functional theory, we explain that the observed behaviour of the diffusion coefficient can be treated as a result of the concentration dependent nanoparticle self-assembly: additional repulsion leads to the reduction in self-assembled aggregate size despite the shorter average interparticle distances, and as such provides the growth of the diffusion coefficient.

  6. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  7. Nitrogen and Sulfur Co-doped Graphene Supported Cobalt Sulfide Nanoparticles as an Efficient Air Cathode for Zinc-air Battery

    International Nuclear Information System (INIS)

    Ganesan, Pandian; Ramakrishnan, Prakash; Prabu, Moni; Shanmugam, Sangaraju

    2015-01-01

    Highlights: • CoS 2 nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide is described. • Improved round trip efficiency was observed for CoS 2 (400)/N,S-GO. • CoS 2 (400)/N,S-GO possess improved durability with low over-potential. • CoS 2 (400)/N,S-GO is a promising air cathode for zinc-air battery. - ABSTRACT: Zinc-air battery is considered as one of the promising energy storage devices due to their low cost, eco-friendly and safe. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide surface. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrid was successfully prepared by solid state thermolysis approach at 400 °C, using cobalt thiourea and graphene oxide. X-ray diffraction study revealed that hybrid electrode prepared at 400 °C results in pure CoS 2 phase. The hybrid CoS 2 (400)/N,S-GO electrode exhibits low over-potential gap about 0.78 V vs. Zn after 70 cycles with remarkable and robust charge and discharge profile. And also the CoS 2 (400)/N,S-GO showing deep discharge behavior with stability up to 7.5 h.

  8. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun [Dongguk University, Seoul (Korea, Republic of)

    2016-05-15

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications.

  9. Enhanced Electrochemical Hydrogen Storage Performance on the Porous Graphene Network Immobilizing Cobalt Metal Nanoparticle

    International Nuclear Information System (INIS)

    Kang, Myunggoo; Lee, Dong Heon; Jung, Hyun

    2016-01-01

    In this study, we attempted to apply Co metal nanoparticles decorated on the surface of the porous graphene (Co-PG) as the electrochemical hydrogen storage system. Co-PG was successfully synthesized by the soft-template method. To determine the synthetic strategy of porous graphene and Co nanoparticles, we compare the obtained Co-PG with two different materials such as Co nanoparticle decorated reduced graphene oxide without soft-template (Co-RGO) and porous graphene without Co nanoparticle (PG). The experimental details regarding the synthesis and characterization of the Co-PG, Co-RGO, and PG samples are provided in Supporting Information. Co-PG with interpenetrating porous networks and immobilized Co metal nanoparticles were successfully synthesized by the soft-template method. The obtained Co-PG exhibited high-surface area with ink-bottle open pores owing to the homogeneous dispersion of P123 micellar rods. The XRD and FE-SEM analyses clearly confirm that Co nanoparticles were immobilized on to the surface of porous graphene without any significant aggregation. The as-obtained Co-PG showed good electrochemical performance such as capacity and cycle stability for hydrogen storage. Based on these results, we believe that the Co-PG with a high-specific surface area could be worthwhile to investigate as not only electrochemical hydrogen storage materials but also other energy storage applications

  10. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J., E-mail: javierlo21@gmail.com [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Gonzalez-Bahamon, L.F. [Analytical Chemistry Laboratory, Universidad del Valle, A.A. 25360, Cali (Colombia); Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Prieto, P. [Center of Excellence for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-02-15

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles. X-ray diffraction patterns of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe{sub 2}O{sub 4}. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5{+-}0.3) nm to (5.4{+-}0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} magnetic

  11. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    International Nuclear Information System (INIS)

    Lopez, J.; Gonzalez-Bahamon, L.F.; Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E.; Esteve, J.; Prieto, P.

    2012-01-01

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co (1-x) Zn x Fe 2 O 4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co (1-x) Zn x Fe 2 O 4 nanoparticles. X-ray diffraction patterns of Co (1-x) Zn x Fe 2 O 4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe 2 O 4 . Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co (1-x) Zn x Fe 2 O 4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM

  12. Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    International Nuclear Information System (INIS)

    Raut, A.V.; Barkule, R.S.; Shengule, D.R.; Jadhav, K.M.

    2014-01-01

    Structural morphology and magnetic properties of the Co 1−x Zn x Fe 2 O 4 (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn 2+ content in cobalt ferrite nanoparticles is followed by decrease in n B , M s and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique

  13. Synthesis, structural investigation and magnetic properties of Zn{sup 2+} substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique

    Energy Technology Data Exchange (ETDEWEB)

    Raut, A.V., E-mail: nano9993@gmail.com [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Barkule, R.S.; Shengule, D.R. [Vivekanand Arts and Sardar Dalipsingh Commerce and Science College, Aurangabad, 431004 Maharastra (India); Jadhav, K.M., E-mail: drjadhavkm@gmail.com [Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 Maharastra (India)

    2014-05-01

    Structural morphology and magnetic properties of the Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0≤x≥1.0) spinel ferrite system synthesized by the sol–gel auto-combustion technique using nitrates of respective metal ions have been studied. The ratio of metal nitrates to citric acid was taken at 1:3. The as prepared powder of cobalt zinc ferrite was sintered at 600 °C for 12 h after TG/DTA thermal studies. Compositional stoichiometry was confirmed by energy dispersive analysis of the X-ray (EDAX) technique. Single phase cubic spinel structure of Co–Zn nanoparticles was confirmed by XRD data. The average crystallite size (t), lattice constant (a) and other structural parameters of zinc substituted cobalt ferrite nanoparticles were calculated from XRD followed by SEM and FTIR. It is observed that the sol–gel auto-combustion technique has many advantages for the synthesis of technologically applicable Co–Zn ferrite nanoparticles. The present investigation clearly shows the effect of the synthesis method and possible relation between magnetic properties and microstructure of the prepared samples. Increase in nonmagnetic Zn{sup 2+} content in cobalt ferrite nanoparticles is followed by decrease in n{sub B}, M{sub s} and other magnetic parameters. Squareness ratio for the Co-ferrite was 1.096 at room temperature. - Highlights: • Co–Zn nanoparticles are prepared by sol–gel auto-combustion method. • Structural properties were characterized by XRD, SEM, and FTIR. • Compositional stoichiometry was confirmed by EDAX analysis. • Magnetic parameters were measured by the pulse field hysteresis loop technique.

  14. Reversal of Flux Closure States in Cobalt Nanoparticle Rings With Coaxial Magnetic Pulses

    DEFF Research Database (Denmark)

    Kasama, T; Dunin-Borkowski, Rafal E.; Scheinfein, MR

    2008-01-01

    Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths.......Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths....

  15. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors

    Science.gov (United States)

    Naderi, Hamid Reza; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Ganjali, Mohammad Reza

    2017-11-01

    A composite of cobalt tungstate nanoparticles coated on nitrogen-doped reduced graphene oxide (CoWO4/NRGO) was prepared through an in situ sonochemical approach. The composite was next evaluated as an electrode material for use supercapacitors electrodes. The characterization of the various CoWO4/NRGO nanocomposite samples was carried out through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method and Raman spectroscopy. Complementary studies were also performed through cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and continues cyclic voltammetry (CCV). The electrochemical evaluations were carried out in a 2 M H2SO4 solution as the electrolyte. The electrochemical evaluations on the nano-composite samples indicated that CoWO4/NRGO-based electrodes reveal enhanced supercapacitive characteristics (i.e. a high specific capacitance (SC) of 597 F g-1 at a scan rate of 5 mV s-1, an energy density (ED) value of 67.9 W h kg-1, and high rate capability). CCV studies indicated that CoWO4/NRGO-based electrodes keep 97.1% of their original capacitance after 4000 cycles. The results led to the conclusion that CoWO4/NRGO effectively merge the merits of CoWO4 and CoWO4/RGO in one new nanocomposite material.

  16. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  17. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    Science.gov (United States)

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica

    Directory of Open Access Journals (Sweden)

    Gabriella Di Carlo

    2015-03-01

    Full Text Available Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water (O/W, and water-in-oil (W/O microemulsions. The influence of the surfactant and the precipitating agent used for synthesis was also investigated. For this purpose, cobalt nanostructures were prepared using different non-ionic surfactants, namely Synperonic® 10/6, Pluronic® P123 and a mixture of SPAN 20–TWEEN 80. Three different precipitating agents were used: sodium borohydride, sodium hydroxide, and oxalic acid. Our findings revealed that by changing the type of reaction media as well as the precipitating agent it is possible to modify the shape and size of the cobalt nanostructures. Moreover, the use of O/W microemulsion generates better results in terms of colloidal stability and uniformity of particle size with respect to W/O microemulsion. The different cobalt nanostructures were supported on commercial and mesoporous silica; transmission electron microscopy (TEM images showed that after deposition the Co nanocrystals remain well dispersed on the silica supports. This behavior suggests their great potential in catalytic applications.

  19. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare these materials lead to bulk or micron size powder which limits their use in reactions in particular in catalytic applications. Attempts toward the production of transition metal carbide and nitride nanoparticles in a sustainable, simple and cheap manner have been rapidly increasing. In this thesis, a new approach was presented to prepare nano-scale transition metal carbides and nitrides of group IV-VI with a size as small as 3 nm through the reaction of transition metal precursor with mesoporous graphitic carbon nitride (mpg-C3N4) that not only provides confined spaces for nanoparticles formation but also acts as a chemical source of nitrogen and carbon. The produced nanoparticles were characterized by powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of the reaction temperature, the ratio of the transition metal precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2, and NH3) on the resultant crystal phases and structures were investigated. The results indicated that different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen by changing the reaction temperatures. Two forms of tantalum nitride, namely TaN and Ta3N5, were selectively formed under N2 and NH3 flow, respectively. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen where high C3N4/Ta precursor ratio generally resulted in high carbide

  20. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Shamsipur, Mojtaba; Shamizadeh, Mohammad; Moradian, Rostam; Astinchap, Bandar

    2014-01-01

    Highlights: • Co 3 O 4 nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co 3 O 4 nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared

  1. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  2. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    International Nuclear Information System (INIS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-01-01

    M-type barium hexaferrite (BaFe_1_2O_1_9) and cobalt doped barium hexaferrite (BaFe_1_1CoO_1_9) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300 K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300 K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300 K to 60 K, magnetization value was increased in both the samples compared to those at 300 K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60 K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  3. Metal/Carbon Hybrid Nanostructures Produced from Plasma-Enhanced Chemical Vapor Deposition over Nafion-Supported Electrochemically Deposited Cobalt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Islam

    2018-04-01

    Full Text Available In this work, we report development of hybrid nanostructures of metal nanoparticles (NP and carbon nanostructures with strong potential for catalysis, sensing, and energy applications. First, the etched silicon wafer substrates were passivated for subsequent electrochemical (EC processing through grafting of nitro phenyl groups using para-nitrobenzene diazonium (PNBT. The X-ray photoelectron spectroscope (XPS and atomic force microscope (AFM studies confirmed presence of few layers. Cobalt-based nanoparticles were produced over dip or spin coated Nafion films under different EC reduction conditions, namely CoSO4 salt concentration (0.1 M, 1 mM, reduction time (5, 20 s, and indirect or direct EC reduction route. Extensive AFM examination revealed NP formation with different attributes (size, distribution depending on electrochemistry conditions. While relatively large NP with >100 nm size and bimodal distribution were obtained after 20 s EC reduction in H3BO3 following Co2+ ion uptake, ultrafine NP (<10 nm could be produced from EC reduction in CoSO4 and H3BO3 mixed solution with some tendency to form oxides. Different carbon nanostructures including few-walled or multiwalled carbon nanotubes (CNT and carbon nanosheets were grown in a C2H2/NH3 plasma using the plasma-enhanced chemical vapor deposition technique. The devised processing routes enable size controlled synthesis of cobalt nanoparticles and metal/carbon hybrid nanostructures with unique microstructural features.

  4. Improved catalytic activity of cobalt core–platinum shell nanoparticles supported on surface functionalized graphene for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Zhang, Mingmei; Li, Yuan; Yan, Zaoxue; Jing, Junjie; Xie, Jimin; Chen, Min

    2015-01-01

    Poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene supported bimetallic catalysts of shell platinum on core cobalt (Co@Pt/PDDA-G) are synthesized using a two-step procedure involving the microwave synthesis method and replacement method. TEM indicate that a uniform dispersion of Co@Pt nanoparticles on PDDA functionalized graphene have the average particle size of 1.9 nm. The composite is applied to electrocatalysis for methanol oxidation. And the electrochemical surface areas of the as-prepared Co@Pt/PDDA-G, Pt supported on PDDA-graphene (Pt/PDDA-G), Co@Pt supported on graphene (Co@Pt/G) are evaluated by cyclic voltammetry, which are calculated to be 105.6 m 2 g −1 Pt , 92.8 m 2 g −1 Pt , and 83.4 m 2 g −1 Pt , with respect to 37.8 m 2 g −1 Pt of commercial Pt/C (TKK) catalyst. The current being examined by chronoamperometry reach a constant at 23 mA mg −1 for Co@Pt/PDDA–G catalyst, which is roughly 3.3-fold higher than that of commercial Pt/C catalyst. The electrochemical tests show that the activity and stability of Co@Pt supported on PDDA-G is highly better than the widely used Pt supported on PDDA-graphene sheets, also better than that of Co@Pt on unfunctional graphene with the same Pt content on the electrode. This improved activity could be attributed to not only the PDDA playing a crucial role in the dispersion and stabilization of Co@Pt on graphene, but also the high use ratio of Pt for its shell structure and the electronic effect of the underlying metal and Pt surface layer

  5. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  6. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway.

    Science.gov (United States)

    Faisal, Mohammad; Saquib, Quaiser; Alatar, Abdulrahman A; Al-Khedhairy, Abdulaziz A; Ahmed, Mukhtar; Ansari, Sabiha M; Alwathnani, Hend A; Dwivedi, Sourabh; Musarrat, Javed; Praveen, Shelly

    2016-03-18

    Despite manifold benefits of nanoparticles (NPs), less information on the risks of NPs to human health and environment has been studied. Cobalt oxide nanoparticles (Co3O4-NPs) have been reported to cause toxicity in several organisms. In this study, we have investigated the role of Co3O4-NPs in inducing phytotoxicity, cellular DNA damage and apoptosis in eggplant (Solanum melongena L. cv. Violetta lunga 2). To the best of our knowledge, this is the first report on Co3O4-NPs showing phytotoxicity in eggplant. The data revealed that eggplant seeds treated with Co3O4-NPs for 2 h at a concentration of 1.0 mg/ml retarded root length by 81.5 % upon 7 days incubation in a moist chamber. Ultrastructural analysis by transmission electron microscopy (TEM) demonstrated the uptake and translocation of Co3O4-NPs into the cytoplasm. Intracellular presence of Co3O4-NPs triggered subcellular changes such as degeneration of mitochondrial cristae, abundance of peroxisomes and excessive vacuolization. Flow cytometric analysis of Co3O4-NPs (1.0 mg/ml) treated root protoplasts revealed 157, 282 and 178 % increase in reactive oxygen species (ROS), membrane potential (ΔΨm) and nitric oxide (NO), respectively. Besides, the esterase activity in treated protoplasts was also found compromised. About 2.4-fold greater level of DNA damage, as compared to untreated control was observed in Comet assay, and 73.2 % of Co3O4-NPs treated cells appeared apoptotic in flow cytometry based cell cycle analysis. This study demonstrate the phytotoxic potential of Co3O4-NPs in terms of reduction in seed germination, root growth, greater level of DNA and mitochondrial damage, oxidative stress and cell death in eggplant. The data generated from this study will provide a strong background to draw attention on Co3O4-NPs environmental hazards to vegetable crops.

  7. Cobalt nanoparticles as sacrificial templates for the electrodeposition of palladium nanomaterials in an ionic liquid, and its application to electrochemical sensing of hydrazine

    International Nuclear Information System (INIS)

    He, Y.; Zheng, J.; Sheng, Q.

    2012-01-01

    We report on the electrodeposition of palladium nanomaterials in choline chloride-based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N 2 H 4 ). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N 2 H 4 . The modified electrode displays a fast response ( -1 ) -1 cm -2 ) and broad linearity in the range from 0.1 to 800 μmol L -1 with a detection limit of 0.03 μmol L -1 (S/N = 3). (author)

  8. Investigation of structure and magnetic properties of cobalt-nickel and manganese ferrites nanoparticles synthesized in direct micelles of sodium dodecyl sulphate system

    International Nuclear Information System (INIS)

    Fedosyuk, V.M.; Mirgorod, Yu.A.

    2016-01-01

    Results of investigation of the crystal structure and magnetic properties of the nanoparticles of transition metals ferrites (cobalt, nickel, manganese) synthesized by unified methods using direct sodium dodecyl sulfate micelles are presented. Crystal structure of the samples was investigated by X-ray diffraction on DRON-3M (in the CuKa-radiation). Particle size was investigated by transmission electron microscopy on microscope JEOL JEM-1011 (accelerating voltage 100 kV). All powders contain nanoparticles of the same size in the range 2-6 nm. Magnetic properties of the samples were estimated from temperature and field dependences of the magnetization. All samples exhibit properties of superparamagnets with different blocking temperatures below 45 K. (authors).

  9. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  10. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    International Nuclear Information System (INIS)

    Kutluay, Aysegul; Aslanoglu, Mehmet

    2014-01-01

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10 −9 –4.5 × 10 −7 M (R 2 = 0.9987) and 5.0 × 10 −8 –3.0 × 10 −6 M (R 2 = 0.9999), respectively. The detection limits of 1.0 × 10 −9 M and 1.5 × 10 −8 M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and high recovery (99.7% with an RSD of 1

  11. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Aysegul; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2014-08-11

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10{sup −9}–4.5 × 10{sup −7} M (R{sup 2} = 0.9987) and 5.0 × 10{sup −8}–3.0 × 10{sup −6} M (R{sup 2} = 0.9999), respectively. The detection limits of 1.0 × 10{sup −9} M and 1.5 × 10{sup −8} M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and

  12. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Science.gov (United States)

    Kalam, Abul; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Du, Gaohui; Ahmad, Tokeer; Ahmad, Irfan; Pannipara, M.

    2018-03-01

    Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4) photocatalysts were synthesized by modified Solvothermal (MST) process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermo gravimetric analysis (TGA), Fourier transform infrared (FT-IR), UV-visible (UV-vis) spectroscopy and N2 adsorption-desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590-619 cm-1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0-76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB) dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst.

  13. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  14. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4 magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light

    Directory of Open Access Journals (Sweden)

    Abul Kalam

    2018-03-01

    Full Text Available Different grads of magnetic nano-scaled cobalt ferrites (CoFe2O4 photocatalysts were synthesized by modified Solvothermal (MST process with and without polysaccharide. The indigenously synthesized photocatalysts were characterized by means of X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, high-resolution transmission electron microscopy (HRTEM, thermo gravimetric analysis (TGA, Fourier transform infrared (FT-IR, UV–visible (UV–vis spectroscopy and N2 adsorption–desorption isotherm method. The Fourier transform infrared spectroscopy study showed the Fe-O stretching vibration 590–619 cm−1, confirming the formation of metal oxide. The crystallite size of the synthesized photocatalysts was found in the range between 20.0 and 30.0 nm. The surface area of obtained magnetic nanoparticles is found to be reasonably high in the range of 63.0–76.0 m2/g. The results shown that only MST-2 is the most active catalyst for photo-Fenton like scheme for fast photodegradation action of methylene blue dye, this is possible due to optical band gap estimated of 2.65 eV. Captivatingly the percentage of degradation efficiency increases up to 80% after 140 min by using MST-2 photocatalyst. Photocatalytic degradation of methylene blue (MB dye under visible light irradiation with cobalt ferrite magnetic nanoparticles followed first order kinetic constant and rate constant of MST-2 is almost 2.0 times greater than MST-1 photocatalyst. Keywords: Cobalt ferrite, Photocatalysis, Kinetics, Optical properties, Surface area studies

  15. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  16. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction.

    Science.gov (United States)

    Liu, Min; Liu, Jingjun; Li, Zhilin; Wang, Feng

    2018-02-28

    Developing atomic-level transition oxides may be one of the most promising ways for providing ultrahigh electrocatalytic performance for oxygen reduction reaction (ORR), compared with their bulk counterparts. In this article, we developed a set of atomically thick Co 3 O 4 layers covered on Co nanoparticles through partial reduction of Co 3 O 4 nanoparticles using melamine as a reductive additive at an elevated temperature. Compared with the original Co 3 O 4 nanoparticles, the synthesized Co 3 O 4 with a thickness of 1.1 nm exhibits remarkably enhanced ORR activity and durability, which are even higher than those obtained by a commercial Pt/C in an alkaline environment. The superior activity can be attributed to the unique physical and chemical structures of the atomic-level oxide featuring the narrowed band gap and decreased work function, caused by the escaped lattice oxygen and the enriched coordination-unsaturated Co 2+ in this atomic layer. Besides, the outstanding durability of the catalyst can result from the chemically epitaxial deposition of the Co 3 O 4 on the cobalt surface. Therefore, the proposed synthetic strategy may offer a smart way to develop other atomic-level transition metals with high electrocatalytic activity and stability for energy conversion and storage devices.

  17. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  18. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.

    Science.gov (United States)

    Gutierrez-Muñiz, O E; García-Rosales, G; Ordoñez-Regil, E; Olguin, M T; Cabral-Prieto, A

    2013-01-15

    This manuscript presents the synthesis of carbon modified with iron nanoparticles (CFe) and iron carbide (CarFe) from the pyrolyzed crown leaves of pineapple (Ananas comosus) treated with iron salts. The materials that were obtained were used for the removal of As(V) from aqueous media. The carbonaceous materials were characterized by Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Mossbauer Spectroscopy. The specific area (BET), number site density and point of zero charge (pH(pzc)) were also determined. The kinetic parameters were obtained by fitting the experimental data to the pseudo-first-order and pseudo-second-order models. Different isotherm models were applied to describe the As(V) adsorption behavior. The kinetics of As(V) sorption by CFe and CarFe was well defined for the pseudo-second-order model (R(2) = 0.9994 and 0.999, respectively). The maximum As(V) uptake was 1.8 mg g(-1) for CFe and 1.4 mg g(-1) for CarFe. The results obtained indicated that both materials are equally useful for As(V) sorption. The As(V) experimental isotherm data were described by the Freundlich model for CFe and CarFe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    Science.gov (United States)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  20. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM −1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  1. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  2. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  3. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  4. Cobalt surface modification during γ-Fe2O3 nanoparticle synthesis by chemical-induced transition

    International Nuclear Information System (INIS)

    Li, Junming; Li, Jian; Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin; Li, Decai

    2015-01-01

    In the chemical-induced transition of FeCl 2 solution, the FeOOH/Mg(OH) 2 precursor was transformed into spinel structured γ-Fe 2 O 3 crystallites, coated with a FeCl 3 ·6H 2 O layer. CoCl 2 surface modified γ-Fe 2 O 3 nanoparticles were prepared by adding Co(NO 3 ) 2 during the synthesis. CoFe 2 O 4 modified γ-Fe 2 O 3 nanoparticles were prepared by adding NaOH during the surface modification with Co(NO 3 ) 2 . The CoFe 2 O 4 layer grew epitaxially on the γ-Fe 2 O 3 crystallite to form a composite crystallite, which was coated by CoCl 2 ·6H 2 O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe 2 O 4 and γ-Fe 2 O 3 possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe 2 O 3 -based nanoparticles were related to the grain size. - Highlights: • γ-Fe 2 O 3 nanoparticles were synthesized by chemical induced transition. • CoCl 2 modified nanoparticles were prepared by additional Co(NO 3 ) 2 during synthesization. • CoFe 2 O 4 modified nanoparticles were prepared by additional Co(NO 3 ) 2 and NaOH. • The magnetism of the nanoparticles is related to the grain size

  5. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare

  6. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  7. A novel electrochemical platform based on carbon nanofibers and tri-metallic nanoparticles of gold, nickel and cobalt for the quantification of ethyl paraben

    International Nuclear Information System (INIS)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2017-01-01

    A composite of carbon nanofibers (CNFs) and tri-metallic nanoparticles of gold, cobalt and nickel were used for the preparation of a novel voltammetric platform. The proposed voltammetric platform was utilized for quantifying ethyl paraben (EPB) in pharmaceutical and cosmetic products. The electrode layers were characterized by utilizing X-ray diffraction method (XRD) and Fourier transform infrared spectroscopy (FTIR). The electrode system, (Au-Ni-Co)NPs-CNFs/GCE, exhibited high catalytic activity and enhanced the electrochemical behaviour of EPB compared with several other electrodes. The proposed composite layer based electrode produced a well-defined oxidation peak at 0.760 V. The determination of EPB was carried out by square wave voltammetry (SWV). The electrode produced a linear plot with a concentration range from 1.0 × 10 −9 to 1.0 × 10 −7 M at (Au-Ni-Co)NPs-CNFs/GCE. The composite material enabled a detection limit of 3.5 × 10 −10 M for EPB. Good reproducibility, high precision and excellent accuracy for EPB were obtained at (Au-Ni-Co)NPs-CNFs/GCE. The composite layer based platform was successfully applied for the quantification of EPB in pharmaceutical and cosmetic products. The sensitive quantification of EPB is of great importance for the public health care. Furthermore, data show that EPB binds to DNA via intercalation with a binding constant of 2.51 (± 0.40) × 10 4 . - Highlights: • CNFs and (Au-Ni-Co) nanoparticles were used to prepare a novel platform. • (Au-Ni-Co)NPs-CNFs/GCE has improved the voltammetric behaviour of EPB. • The voltammetric platform yielded a detection limit of 0.35 nM for EPB. • The platform was successfully applied to cosmetic and pharmaceutical samples. EPB could bind to DNA via intercalation.

  8. A novel electrochemical platform based on carbon nanofibers and tri-metallic nanoparticles of gold, nickel and cobalt for the quantification of ethyl paraben

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay, E-mail: a.kutluay@harran.edu.tr [Department of Medical Laboratory, Vocational School of Health Services, Harran University, Şanlıurfa 63510 (Turkey); Teker, Tugce; Duzmen, Sehriban [Department of Chemistry, Harran University, Şanlıurfa 63510 (Turkey); Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr [Department of Chemistry, Harran University, Şanlıurfa 63510 (Turkey)

    2017-03-01

    A composite of carbon nanofibers (CNFs) and tri-metallic nanoparticles of gold, cobalt and nickel were used for the preparation of a novel voltammetric platform. The proposed voltammetric platform was utilized for quantifying ethyl paraben (EPB) in pharmaceutical and cosmetic products. The electrode layers were characterized by utilizing X-ray diffraction method (XRD) and Fourier transform infrared spectroscopy (FTIR). The electrode system, (Au-Ni-Co)NPs-CNFs/GCE, exhibited high catalytic activity and enhanced the electrochemical behaviour of EPB compared with several other electrodes. The proposed composite layer based electrode produced a well-defined oxidation peak at 0.760 V. The determination of EPB was carried out by square wave voltammetry (SWV). The electrode produced a linear plot with a concentration range from 1.0 × 10{sup −9} to 1.0 × 10{sup −7} M at (Au-Ni-Co)NPs-CNFs/GCE. The composite material enabled a detection limit of 3.5 × 10{sup −10} M for EPB. Good reproducibility, high precision and excellent accuracy for EPB were obtained at (Au-Ni-Co)NPs-CNFs/GCE. The composite layer based platform was successfully applied for the quantification of EPB in pharmaceutical and cosmetic products. The sensitive quantification of EPB is of great importance for the public health care. Furthermore, data show that EPB binds to DNA via intercalation with a binding constant of 2.51 (± 0.40) × 10{sup 4}. - Highlights: • CNFs and (Au-Ni-Co) nanoparticles were used to prepare a novel platform. • (Au-Ni-Co)NPs-CNFs/GCE has improved the voltammetric behaviour of EPB. • The voltammetric platform yielded a detection limit of 0.35 nM for EPB. • The platform was successfully applied to cosmetic and pharmaceutical samples. EPB could bind to DNA via intercalation.

  9. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  10. Production and mechanical properties of sintered carbides (hard steels WC-Co)

    International Nuclear Information System (INIS)

    Batalha, G.F.

    1987-09-01

    Densification and mechanical characteristics or WC-Co Cemented Carbides, were investigated by dilatometry, Hardness and bending tests, as a function of the two principal micro-structural parameters: the cobalt content and the particle size of carbide crystals. Vickers hardness of the studied compositions showed a linear variation with the increase of the cobalt content. By three point bending, the transverse rupture strenght increases with cobalt content, however, for larger grain size reaches a maximum, eventually reduced by brittle phases and incomplete dispersion. The results of brittle facture tests were statistically analised and fitted better to the 'Weakest Link Model' (Weibull distribution) than the 'Chain Model' (Gaussian distribution). (author) [pt

  11. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  12. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. Published by Elsevier B.V.

  13. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  14. Pipe bend wear - is tungsten carbide the answer?

    International Nuclear Information System (INIS)

    Freinkel, D.

    1988-01-01

    The purpose of the investigation was to compare the relative wear resistance of various grades of sintered tungsten carbide liners against a mild steel standard in a full-scale pneumatic conveying testing rig. Speciments ranging in cobalt content from 6 to 30 per cent and in grain size from 0,56 to 2,98 microns, including a mild steel standard, were placed on a specially designed holder which fitted into a tee type 100 mm diameter bend. The specimens were tested under various operating conditions, ie air velocity ranging from 28m/s to 52m/s, impact angles of 30 0 to 70 0 mass flow rates of 35kg/min to 83kg/min and phase densities of 1,2 to 2,9, using a 4 mm nominal size crushed granite rock. The experimental results show that the ultrafine-grained, low cobalt (6 per cent) tungsten carbide displays little sensitivity to varying velocities, impact angles, mass flow rates or phase densities, and consistently gave the best wear resistance under all testing conditions. It consistently showed the least wear resistance under all testing conditions and performed only slightly better than mild steel. The effect of the carbide grain size was found to be small, although the finer grain sizes displayed greater wear resistance than the coarse grains. The effect of cobalt content was such that the lower cobalt specimens (6 per cent range) consistently performed better than the higher cobalt contents (10 per cent, 15 per cent, 30 per cent) under all testing conditions; the wear resistance decreasing with increasing cobalt content. An empirical model for the prediction of wear for each type of material tested has been proposed, given the particular operating conditions. Microstructurally it has been shown that there is a definite relationship between erosion resistance and the inverse of the magnetic coercivity of the tungsten carbide alloys

  15. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu

    2013-01-01

    Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures......-resolution environmental transmission electron microscope at a low CO pressure was recorded. We achieved highly preferential growth of semiconducting SWNTs (~90%) with an exceptionally large population of (6, 5) tubes (53%) in an ambient CO atmosphere. Particularly, we also demonstrated high enrichment in (7, 6) and (9, 4......) at a low growth temperature. These findings open new perspectives both for structural control of SWNTs and for elucidating the growth mechanisms....

  16. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.

    Science.gov (United States)

    Cheng, Kang; Zhang, Lei; Kang, Jincan; Peng, Xiaobo; Zhang, Qinghong; Wang, Ye

    2015-01-26

    Bifunctional Fischer-Tropsch (FT) catalysts that couple uniform-sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline-range (C5-11 ) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1-4 ) hydrocarbons. The selectivity for C5-11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n-paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson-Schulz-Flory distribution. By using n-hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Manganese Promotion on Al-Pillared Montmorillonite Supported Cobalt Nanoparticles for Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    Ahmad, N.; Hussain, S. T.; Abbas, S. M.; Khan, Y.; Muhammad, B.; Ali, N.

    2013-01-01

    The effect of Mn-promotion on high surface area Al-pillared montmorillonite (AlMMT) supported Co nanoparticles prepared by hydrothermal method have been investigated. A series of different weight% Mn-promoted Co nanoparticles were prepared and characterized by XRD, TPR, TGA, BET and SEM techniques. An increase in the surface area of MMT is observed with Al-pillaring. Fischer-Tropsch catalytic activity of the as prepared catalysts was studied in a fixed bed micro reactor at 225 .deg. C, H 2 /CO = 2 and at 1 atm pressure. The data showed that by the addition of Mn the selectivity of C 1 dropped drastically while that of C 2 -C 12 hydrocarbons increased significantly over all the Mn-promoted Co/AlMMT catalysts. The C 13 -C 20 hydrocarbons remained almost same for all the catalysts while the selectivity of C 21+ long chain hydrocarbons decreased considerably with the addition of Mn. The catalyst with 3.5%Mn showed lowest C 21+ and highest C 2 -C 12 hydrocarbons selectivity due to cracking of long chain hydrocarbons over acidic sites of MMT

  18. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultrasound assisted extraction of Maxilon Red GRL dye from water samples using cobalt ferrite nanoparticles loaded on activated carbon as sorbent: Optimization and modeling.

    Science.gov (United States)

    Mehrabi, Fatemeh; Vafaei, Azam; Ghaedi, Mehrorang; Ghaedi, Abdol Mohammad; Alipanahpour Dil, Ebrahim; Asfaram, Arash

    2017-09-01

    In this research, a selective, simple and rapid ultrasound assisted dispersive solid-phase micro-microextraction (UA-DSPME) was developed using cobalt ferrite nanoparticles loaded on activated carbon (CoFe 2 O 4 -NPs-AC) as an efficient sorbent for the preconcentration and determination of Maxilon Red GRL (MR-GRL) dye. The properties of sorbent are characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Vibrating sample magnetometers (VSM), Fourier transform infrared spectroscopy (FTIR), Particle size distribution (PSD) and Scanning Electron Microscope (SEM) techniques. The factors affecting on the determination of MR-GRL dye were investigated and optimized by central composite design (CCD) and artificial neural networks based on genetic algorithm (ANN-GA). CCD and ANN-GA were used for optimization. Using ANN-GA, optimum conditions were set at 6.70, 1.2mg, 5.5min and 174μL for pH, sorbent amount, sonication time and volume of eluent, respectively. Under the optimized conditions obtained from ANN-GA, the method exhibited a linear dynamic range of 30-3000ngmL -1 with a detection limit of 5.70ngmL -1 . The preconcentration factor and enrichment factor were 57.47 and 93.54, respectively with relative standard deviations (RSDs) less than 4.0% (N=6). The interference effect of some ions and dyes was also investigated and the results show a good selectivity for this method. Finally, the method was successfully applied to the preconcentration and determination of Maxilon Red GRL in water and wastewater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    International Nuclear Information System (INIS)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P.

    2004-01-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl 2 , (2) FeCl 3 , (3) 2FeCl 2 :FeCl 3 , (4) 9FeCl 2 :CoCl 2 , and (5) 4FeCl 2 :CoCl 2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57 Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe 2 O 3 , CoFe 2 O 4 , and perhaps a minor Fe 3 O 4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T B ) ranging from 20 K to room temperature

  1. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Naik, R. E-mail: naik@physics.wayne.edu; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl{sub 2}, (2) FeCl{sub 3}, (3) 2FeCl{sub 2}:FeCl{sub 3}, (4) 9FeCl{sub 2}:CoCl{sub 2}, and (5) 4FeCl{sub 2}:CoCl{sub 2} to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), {sup 57}Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: {gamma}-Fe{sub 2}O{sub 3}, CoFe{sub 2}O{sub 4}, and perhaps a minor Fe{sub 3}O{sub 4} phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T{sub B}) ranging from 20 K to room temperature.

  2. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Naik, R.; Kroll, E.; Rodak, D.; Tsoi, G. M.; McCullen, E.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Vaishnava, P. P.; Tao, Qu; Boolchand, P.

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl2, (2) FeCl3, (3) 2FeCl2:FeCl3, (4) 9FeCl2:CoCl2, and (5) 4FeCl2:CoCl2 to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), 57Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: γ-Fe2O3, CoFe2O4, and perhaps a minor Fe3O4 phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (TB) ranging from 20K to room temperature.

  3. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    Science.gov (United States)

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform.

  4. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  5. Magnetic anisotropy of cobalt nanoparticle 2D arrays grown on corrugated MnF{sub 2}(1 1 0) and CaF{sub 2}(1 1 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, D.A., E-mail: dbaranov@mail.ioffe.ru [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Krichevtsov, B.B.; Gastev, S.V.; Banschikov, A.G.; Fedorov, V.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Koshmak, K.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Suturin, S.M.; Sokolov, N.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation)

    2013-02-15

    Cobalt nanoparticle 2D arrays with different effective thicknesses of cobalt layer (2 nm < d{sub eff} < 10 nm) were grown by molecular beam epitaxy on CaF{sub 2}(1 1 0)/Si(0 0 1) and MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) substrates with corrugated morphology of the surface. Surface morphology analysis showed that for effective thickness of cobalt layer d{sub eff} = 5 nm the lateral dimensions of cobalt islands are about 5–10 nm and the distances between the islands differs in a half along and across the grooves. In both types of the heterostructures the shape of hysteresis loops measured by LMOKE depend on orientation of in-plane magnetic field relative to the direction of the grooves. The azimuthal dependence of coercive field H{sub c} in Co/CaF{sub 2}(1 1 0)/Si(0 0 1) structures corresponds to Stoner–Wohlfarth model's predictions, which takes into account the anisotropy of individual particles. In contrast to that, in Co/MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) structures these dependences are analogous to those predicted by the model based on account of magnetic–dipole interaction between particles which are placed in chains (chain-of-spheres-model). Possible explanations of the difference in magnetic anisotropy are suggested.

  6. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy

    NARCIS (Netherlands)

    Thuene, P.C.; Moodley - Gengan, P.; Scheijen, F.J.E.; Fredriksson, H.O.A.; Lancee, R.J.; Kropf, J.; Miller, J.T.; Niemantsverdriet, J.W.

    2012-01-01

    The effect of water on iron-based nanoparticles under hydrogen and syngas was investigated by in situ X-ray absorption spectroscopy. The iron oxide (¿-Fe2O3) nanoparticles, dispersed as a monolayer on flat silica surfaces, were readily converted into metallic iron in dry hydrogen at 350 °C and into

  7. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  8. Synthesis and characterization of iron cobalt (FECO) nanorods ...

    African Journals Online (AJOL)

    Synthesis and characterization of iron cobalt (FECO) nanorods prepared by simple ... shaped by increasing annealing temperature from room temperature to 800 ... Keywords: FeCo nanoparticles, sodium borohydrid, CTAB, chemical synthesis ...

  9. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    Johns, M.W.

    1984-01-01

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  10. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  11. Bifunctional cobalt F-T catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.G.; Coughlin, P.K.; Yang, C.L.; Rabo, J.A.

    1986-03-01

    Results on the catalytic screening of Fischer-Tropsch catalysts containing shape selective components are reported. Catalysts consist of promoted cobalt intimately contacted with Union Carbide molecular sieves and were tested using a Berty type internally recycled reactor. Methods of preparation, promoters and shape selective components were varied and aimed at improving catalyst performance. Catalysts were developed demonstrating high C/sub 5/ + yields with high olefin content and low methane production while maintaining stability under both low and high H/sub 2/:CO ratio conditions.

  12. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    International Nuclear Information System (INIS)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-01-01

    Highlights: • An anticorrosive cobalt ferrite nanopigment dispersed in silica matrix was synthesized. • The nanopigment showed proper inhibition performance in solution study. • The nanopigment significantly improved the corrosion resistance of the epoxy coating. - Abstract: This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe 2 O 4 -SiO 2 ) on the corrosion protection properties of steel substrate. NiFe 2 O 4 and NiFe 2 O 4 -SiO 2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe 2 O 4 -SiO 2 ) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe 2 O 4 -SiO 2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  13. Competitive Adsorption-Assisted Formation of One-Dimensional Cobalt Nanochains with High CO Hydrogenation Activity

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xin [State; Ren, Zhibo [State; Institute; Zhu, Xiaolin [State; Zhang, Qinwei [State; Mei, Donghai [Institute; Chen, Biaohua [State

    2017-10-31

    In the present work, cobalt nanochains have been successfully synthesized by a novel co assisted self-assembling formation strategy. A dramatic morphology transformation from cobalt nanoparticles to nanochains are observed when co molecules were introduced into the synthetic system. DFT calculations further confirm that competitive co-adsorbed co and oleylamine over the cobalt nanoparticles facilitates the formation of cobalt nanochains, which show higher co hydrogenation performance. The present work provides a new strategic and promising method for controllable synthesis of catalyst nanomaterials with the preferred surface structure and morphology.

  14. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  15. Hollow microspheres with a tungsten carbide kernel for PEMFC application.

    Science.gov (United States)

    d'Arbigny, Julien Bernard; Taillades, Gilles; Marrony, Mathieu; Jones, Deborah J; Rozière, Jacques

    2011-07-28

    Tungsten carbide microspheres comprising an outer shell and a compact kernel prepared by a simple hydrothermal method exhibit very high surface area promoting a high dispersion of platinum nanoparticles, and an exceptionally high electrochemically active surface area (EAS) stability compared to the usual Pt/C electrocatalysts used for PEMFC application.

  16. Control of morphology and structure for β-Co nanoparticles from cobalt oxalate and research on its phase-change mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongqing University of Arts and Science, Chongqing 402160 (China); Xiong, Xiang, E-mail: xiangxiong88@qq.com [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, J.P., E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Deng, Ling [Chengdu Chengliang Tool Group Co., Ltd., Chengdu 610056 (China); Tu, M.J. [Chongqing University of Arts and Science, Chongqing 402160 (China)

    2015-01-05

    Highlights: • Nanoscale precursor β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O can be prepared by mechanical solid phase reaction. • Growth mechanism, morphology and crystal structure of β-CoC{sub 2}O{sub 4}⋅2H{sub 2}O have been studied. • Internal energy reserves of precursor making it directly generate β-Co in the thermal decomposition reaction. • Martensitic transformation of Co has been studied. • The Co powder will inherit the morphology of its precursor. - Abstract: The face-centered cubic crystal structure β-Co has excellent performance. As the main material to produce high toughness hard alloys and metal cermet, its morphology and structure will have an important impact on the performance of the alloy. This study, based on solid-phase reaction, starting from the crystal structure studied, discussed the effection of the mechanical solid-phase chemical reactions on the morphology of the cobalt precursor structure, researched the cobalt phase change mechanism, and presented a method to prepare nano β-Co. With H{sub 2}C{sub 2}O{sub 4}⋅2H{sub 2}O and Co(NO{sub 3}){sub 2}·6H{sub 2}O as raw materials, nano-crystalline cobalt oxalate powders with nearly spherical shape have been prepared by using solid-phase chemical reactions in high-speed ball milling, and then by decomposing at 400–450 °C, the target was prepared. The thermodynamical and IR analysis has been studied. The microstructure of the powders was characterized by XRD, SEM, TEM. It has been identified that a spherical, fcc structure, 100 nm β-Co powders was synthesized successfully, which confirmed the theoretical feasibility of this study.

  17. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  18. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil

    2010-01-01

    . Conclusions: This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future......Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items...

  19. Effects of cobalt in nickel-base superalloys

    Science.gov (United States)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  20. Cobalt-phthalocyanine-derived ultrafine Co{sub 3}O{sub 4} nanoparticles as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Heng-guo, E-mail: wanghengguo@cust.edu.cn; Zhu, Yanjie; Yuan, Chenpei; Li, Yanhui; Duan, Qian, E-mail: duanqian88@hotmail.com

    2017-08-31

    Highlights: • Transition-metal oxides nanoparticles are prepared by deriving from metal-phthalocyanine. • Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO nanoparticles can be prepared due to the adjustability of central metals. • This present strategy is simple, general, effective yet mass-production. • The Co{sub 3}O{sub 4} nanoparticles exhibit good lithium storage performances. - Abstract: In this work, we present a simple, general, effective yet mass-production strategy to prepare transition-metal oxides (TMOs) nanoparticles using the metal-phthalocyanine as both the precursor and the starting self-sacrificial template. As the central metals of metal-phthalocyanine are easily tunable, various TMOs nanoparticles including Co{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}, and CuO have been successfully prepared by deriving from the corresponding metal-phthalocyanine. As a proof-of-concept demonstration of the application of such nanostructured TMOs, Co{sub 3}O{sub 4} nanoparticles were evaluated as anode materials for LIBs, which show high initial capacity (1132.9 mAh g{sup −1} at 0.05 A g{sup −1}), improved cycling stability (585.6 mAh g{sup −1} after 200 cycles at 0.05 A g{sup −1}), and good rate capability (238.1 mAh g{sup −1} at 2 A g{sup −1}) due to the unique properties of the ultrafine Co{sub 3}O{sub 4} nanoparticles. This present strategy might open new avenues for the design of a series of transition metal oxides using organometallic compounds for a range of applications.

  1. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  2. Synergistic interaction between pseudocapacitive Fe3O4 nanoparticles and highly porous silicon carbide for high-performance electrodes as electrochemical supercapacitors.

    Science.gov (United States)

    Kim, Myeongjin; Kim, Jooheon

    2017-05-12

    Composites of micro- and mesoporous SiC flakes (SiCF) and ferroferric oxide (Fe 3 O 4 ), SiCF/Fe 3 O 4 , were prepared via the chemical deposition of Fe 3 O 4 on SiCF by the chemical reduction of an Fe precursor. The SiCF/Fe 3 O 4 electrodes were fabricated at different Fe 3 O 4 feeding ratios to determine the optimal Fe 3 O 4 content that can maintain a high total surface area of SiCF/Fe 3 O 4 composites as well as cause a vigorous redox reaction, thereby maximizing the synergistic effect between the electric double-layer capacitive effects of SiCF and the pseudo-capacitive effects of Fe 3 O 4 . The SiCF/Fe 3 O 4 electrode fabricated with a Fe 3 O 4 /SiCF feeding ratio of 1.5:1 (SiCF/Fe 3 O 4 (1.5)) exhibited the highest charge storage capacity, showing a specific capacitance of 423.2 F g -1 at a scan rate of 5 mV s -1 with a rate performance of 81.8% from 5 to 500 mV s -1 in an aqueous 1 M KOH electrolyte. The outstanding capacitive performance of the SiCF/Fe 3 O 4 (1.5) electrode could be attributed to the harmonious synergistic effect between the electric double-layer capacitive contribution of the SiCF and the pseudocapacitive contribution of the Fe 3 O 4 nanoparticles introduced on the SiCF surface. These encouraging results demonstrate that the SiCF/Fe 3 O 4 (1.5) electrode is a promising high-performance electrode material for use in supercapacitors.

  3. Looking for New Polycrystalline MC-Reinforced Cobalt-Based Superalloys Candidate to Applications at 1200°C

    OpenAIRE

    Patrice Berthod

    2017-01-01

    For applications for which temperatures higher than 1150°C can be encountered the currently best superalloys, the γ/γ′ single crystals, cannot be used under stress because of the disappearance of their reinforcing γ′ precipitates at such temperatures which are higher than their solvus. Cobalt-based alloys strengthened by refractory and highly stable carbides may represent an alternative solution. In this work the interest was focused on MC carbides of several types. Alloys were elaborated wit...

  4. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...

  5. Cobalt metabolism and toxicology-A brief update

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Lars Ole, E-mail: LOSimonsen@dadlnet.dk; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    phase lasting several weeks, and with a significant long-term retention in tissues for several years. In serum cobalt (Co{sup 2+}) binds to albumin, and the concentration of free, ionized Co{sup 2+} is estimated at 5-12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co{sup 2+}) uptake appears to be shared with calcium (Ca{sup 2+}), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt-chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the

  6. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  7. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    Schulten, R.; Bongartz, K.; Quadakkers, W.J.; Schuster, H.; Nickel, H.

    1989-11-01

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.) [de

  8. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage

    2016-01-01

    : On the basis of five included studies, the ED10 values of aqueous cobalt chloride ranged between 0.0663 and 1.95 µg cobalt/cm(2), corresponding to 30.8-259 ppm. CONCLUSIONS: Our analysis provides an overview of the doses of cobalt that are required to elicit allergic cobalt contactdermatitis in sensitized...

  9. Cobalt metabolism and toxicology—A brief update

    International Nuclear Information System (INIS)

    Simonsen, Lars Ole; Harbak, Henrik; Bennekou, Poul

    2012-01-01

    with a significant long-term retention in tissues for several years. In serum cobalt (Co 2+ ) binds to albumin, and the concentration of free, ionized Co 2+ is estimated at 5–12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co 2+ ) uptake appears to be shared with calcium (Ca 2+ ), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt–chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the concept of nanotoxicology a crucial, new

  10. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  11. Electrical and Magnetic Properties of Polyvinyl Alcohol-Cobalt ...

    Indian Academy of Sciences (India)

    7

    synthesis methods of shape, size, magnetic properties of cobalt ferrite ... substance was then ground into a fine powder and calcined at 600oC for 10 hours and .... From the particles distribution pattern of CFO nanoparticles in Figure 2(a), it is.

  12. Structural modifications under reactive atmosphere of cobalt catalysts; Modifications structurales sous atmospheres reactionnelles de catalyseurs a base de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Ducreux, O.

    1999-11-23

    The purpose of this work was to develop in situ methods under reactive dynamic conditions (XRD and Fourier transform infrared spectroscopy) to describe the active phase structure in order to understand Fischer-Tropsch catalyst behaviour and improve the natural gas conversion process performance. Experiments were designed to correlate structural modifications with catalytic results. The effect of ruthenium used as a promoter has also been studied. The impregnation process increases cobalt-support interaction. The presence of ruthenium promoter reduces this effect. Interactions between Co{sub 3}O{sub 4} oxide and support play an important role in the reducibility of cobalt and in the resulting metal structure. This in turn strongly influences the catalytic behaviour. Our results show a close correlation between structure modification and reactivity in the systems studied. Cobalt metal and CO can react to form a carbide Co{sub 2}C under conditions close to those of the Fischer-Tropsch synthesis. This carbide formation seems to be related to a deactivation process. The presence of interstitial carbon formed by dissociation of CO is proposed as a key to understanding the mechanism of the Fischer-Tropsch reaction. A specific catalyst activation treatment was developed to increase the catalytic activity. This work permits correlation of materials structure with their chemical properties and demonstrates the contribution of in situ physico-chemical characterisation methods to describe solids under reactive atmosphere. (author)

  13. The effect of surface charge and pH on the physiological behaviour of cobalt, copper, manganese, antimony, zinc and titanium oxide nanoparticles in vitro.

    Science.gov (United States)

    Titma, Tiina

    2018-02-16

    The precise knowledge on various interactions of metal nanoparticles (NP) in a living organism is scarce. It is expected that metals can bind to nucleic acids, peptides and proteins (e.g. enzymes), and modify the functioning of vital cellular compartments after entering the organism. The predictive factors for quantitative nanostructure-activity relationship (QNAR) analysis could enhance efficient and harmless usage of nanoparticles (NPs) in the industry as well in the medicine. The studies value the composition of the NP corona determined by time, temperature and source of protein which has been found to implicate the physiological behaviour of NPs. One has largely been ignored: the NPs specific isoelectric point (IEP) and pH at the state of measurement. Herein, this study investigates the effect of pH and surface charge of six metal oxide (MeOx) NPs on time dependency of cytotoxicity. Several aspects of the characterization of ultrafine particles in the actual test system which is the most relevant for the interpretation of the toxicological data are referred: (i) the difference of pH in the room temperature and in the incubation conditions (ii) the difference of dispersions in MilliQ and complete cell media; (iii) the need to exemplify also the pH and isoelectric point when the hydrodynamic size is measured; (iv) the importance of time due to the time-dependent equilibration and changes of NPs corona. The surface charge determines the formation of corona and could be modified by pH. MeOx NPs without fully charge equilibrated corona might play the main role of MeOx NPs entering into the cell and consequently the time dependent manifestation of the cellular effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II)

    Science.gov (United States)

    Li, Jinge; Li, Qianqian; Lu, Chao; Zhao, Lixia; Lin, Jin-Ming

    2011-02-01

    Nonionic fluorosurfactant (FSN)-capped gold nanoparticles (GNPs) remain excellently stable at a wider pH range and high ionic strength, which is useful to investigate some CL systems involved in high salt and a strict pH range. In this study, we utilized FSN-capped GNPs of different sizes to distinguish the emitting species from H 2O 2-Co 2+-NaOH and H 2O 2-Co 2+-NaHCO 3 systems. When the pH of FSN-capped gold colloidal solution was adjusted to 10.2 by dropwise addition of 0.05 M NaOH, the CL intensity of H 2O 2-Co 2+-NaHCO 3 system was enhanced 6-fold or 60-fold respectively in the presence of FSN-capped 14 nm or 69 nm GNPs with comparison to H 2O 2-Co 2+-NaOH. The variation of CL spectra and UV-vis spectra, as well as the quenching effect of reactive oxygen species scavengers were studied in detail to understand the CL enhancement mechanisms of FSN-capped GNPs on the two systems. For H 2O 2-Co 2+-NaOH system, the gold(I) complexes intermediate and singlet oxygen dimol species were proposed as the emitting species. The excited states of the carbon dioxide dimers and singlet oxygen dimol species were considered responsible for the light emission of H 2O 2-Co 2+-NaHCO 3 system. To our knowledge, this work is the first time to study the two CL systems simultaneously using nanoparticles.

  15. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  16. PIXE characterization of by-products resulting from the zinc recycling of industrial cemented carbides

    International Nuclear Information System (INIS)

    Freemantle, C.S.; Sacks, N.; Topic, M.; Pineda-Vargas, C.A.

    2015-01-01

    By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co–Zn formation occurred above 72 wt.% Zn at the furnace temperature of 930 °C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60 wt.% Co, compared to an original sample composition of ∼10–15 wt.% Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1 wt.% accuracy), as well as the distribution of major elements within WC–Co materials.

  17. PIXE characterization of by-products resulting from the zinc recycling of industrial cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Freemantle, C.S. [School of Chemical & Metallurgical Engineering and DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Pilot Tools (Pty) (Ltd), P.O. Box 27420, Benrose 2011 (South Africa); Sacks, N. [School of Chemical & Metallurgical Engineering and DST-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, P/Bag 3, Wits 2050 (South Africa); Topic, M. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Pineda-Vargas, C.A. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Faculty of Health & Wellness Sciences, CPUT, Bellville (South Africa)

    2015-11-15

    By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co–Zn formation occurred above 72 wt.% Zn at the furnace temperature of 930 °C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60 wt.% Co, compared to an original sample composition of ∼10–15 wt.% Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1 wt.% accuracy), as well as the distribution of major elements within WC–Co materials.

  18. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  19. The effect of electrochemical CO annealing on platinum–cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Ciapina, Eduardo G.; Ticianelli, Edson A.

    2011-01-01

    Highlights: ► Modification of the surface properties of Pt 3 Co/C electrocatalyst. ► Electrochemical CO annealing in acid media generated a Pt-rich surface. ► In situ XAS revealed modifications in the Pt 5d band occupancy after CO annealing. ► The CO-annealed sample exhibited stronger interaction with oxygenated species. ► Increased Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. - Abstract: This paper describes a modification of the surface properties of a carbon-supported Pt 3 Co catalyst resulting from an electrochemical cycling treatment in a 0.1 M HClO 4 and in a CO-saturated 0.1 M HClO 4 solution (electrochemical CO-annealing). The procedure generated a Pt-rich surface with electrochemical properties different from that presented by the as-received (untreated) sample. This was evidenced by a shift in the CO stripping peak to more positive potentials in the CO stripping voltammetry, and by an increased charge of H upd region and a modification of the oxide reduction peak observed in the base cyclic voltammogram. In situ X-ray absorption spectroscopy experiments conducted in the dispersive mode revealed differences in the electronic 5d band occupancy after the CO annealing, whereas the behavior of the intensity of the white-line as function of the potential for this material approached that found for pure Pt/C nanoparticles, in contrast to the small potential dependence profile exhibited by the as-received Pt 3 Co nanoparticles. Mass activities towards the oxygen reduction reaction measured by rotating disk experiments carried out at 1600 rpm in a O 2 -saturated solution at 25 °C increased from 0.10 A/mg of Pt to 0.19 A/mg of Pt, evidencing the higher Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. The origin of the different electrochemical behavior is discussed.

  20. Graphene Nanoplatelet Reinforced Tantalum Carbide

    Science.gov (United States)

    2015-08-27

    properties of nanocomposites at low graphene content, ACS Nano 3 (2009) 3884–3890. [4] S. Yang, G. Cui, S. Pang, Q. Cao, U. Kolb , X. Feng, et al...2010;20:2801–6. [9] Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, et al. Fabrication of cobalt and cobalt oxide/graphene composites: towards high

  1. Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser

    Science.gov (United States)

    Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.

    2017-10-01

    Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.

  2. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  3. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations

    International Nuclear Information System (INIS)

    D'Orleans, C.

    2003-07-01

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co + ions have been implanted at 160 keV at fluences of 2.10 16 , 5.10 16 and 10 17 at/cm 2 , and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10 16 Co + /cm 2 at 77 K, to 9.7 nm at 10 17 Co + /cm 2 at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  4. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts.

    Science.gov (United States)

    Sabbioni, Enrico; Fortaner, Salvador; Farina, Massimo; Del Torchio, Riccardo; Petrarca, Claudia; Bernardini, Giovanni; Mariani-Costantini, Renato; Perconti, Silvia; Di Giampaolo, Luca; Gornati, Rosalba; Di Gioacchino, Mario

    2014-02-01

    The mechanistic understanding of nanotoxicity requires the physico-chemical characterisation of nanoparticles (NP), and their comparative investigation relative to the corresponding ions and microparticles (MP). Following this approach, the authors studied the dissolution, interaction with medium components, bioavailability in culture medium, uptake and intracellular distribution of radiolabelled Co forms (CoNP, CoMP and Co(2+)) in Balb/3T3 mouse fibroblasts. Co(2+) first saturates the binding sites of molecules in the extracellular milieu (e.g., albumin and histidine) and on the cell surface. Only after saturation, Co(2+) is actively uptaken. CoNP, instead, are predicted to be internalised by endocytosis. Dissolution of Co particles allows the formation of Co compounds (CoNP-rel), whose mechanism of cellular internalisation is unknown. Co uptake (ranking CoMP > CoNP > Co(2+)) reached maximum at 4 h. Once inside the cell, CoNP spread into the cytosol and organelles. Consequently, massive amounts of Co ions and CoNP-rel can reach subcellular compartments normally unexposed to Co(2+). This could explain the fact that the nuclear and mitochondrial Co concentrations resulted significantly higher than those obtained with Co(2+).

  5. A new approach for bisphenol A detection employing fluorosurfactant-capped gold nanoparticle-amplified chemiluminescence from cobalt(II) and peroxymonocarbonate.

    Science.gov (United States)

    Pan, Feng; Liu, Lin; Dong, Shichao; Lu, Chao

    2014-07-15

    In this work, we utilized the nonionic fluorosurfactant-capped gold nanoparticles (GNPs) as a novel chemiluminescence (CL) probe for the determination of trace bisphenol A. Bisphenol A can induce a sharp decrease in CL intensity from the GNP-Co(2+)-peroxymonocarbonate (HCO4(-)) system. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the logarithm of concentration of bisphenol A in the range of 0.05-50 μM (R(2) = 0.9936), and the detection limit at a signal-to-noise ratio of 3 for bisphenol A was 10 nM. The applicability of the proposed method has been validated by determining bisphenol A in real polycarbonate samples with satisfactory results. The recoveries for bisphenol A in spiked samples were found to be between 94.4% and 105.0%. The relative standard deviation (RSD) for 12 repeated measurements of 0.5 μM bisphenol A was 2.2%. The proposed method described herein was simple, selective and obviated the need of extensive sample pretreatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. One step deposition of highly adhesive diamond films on cemented carbide substrates via diamond/β-SiC composite interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tao; Zhuang, Hao; Jiang, Xin, E-mail: xin.jiang@uni-siegen.de

    2015-12-30

    Graphical abstract: - Highlights: • Novel diamond/beta-silicon carbide composite gradient interlayers were synthesized. • The interlayer features a cross-sectional gradient with increasing diamond content. • Diamond top layers and the interlayers were deposited in one single process. • The adhesion of the diamond film is drastically improved by employing the interlayer. • The stress was suppressed by manipulating the distribution of diamond and silicon carbide. - Abstract: Deposition of adherent diamond films on cobalt-cemented tungsten carbide substrates has been realized by application of diamond/beta-silicon carbide composite interlayers. Diamond top layers and the interlayers were deposited in one single process by hot filament chemical vapor deposition technique. Two different kinds of interlayers have been employed, namely, gradient interlayer and interlayer with constant composition. The distribution of diamond and beta-silicon carbide phases was precisely controlled by manipulating the gas phase composition. X-ray diffraction and Raman spectroscopy were employed to determine the existence of diamond, beta-silicon carbide and cobalt silicides (Co{sub 2}Si, CoSi) phases, as well as the quality of diamond crystal and the residual stress in the films. Rockwell-C indentation tests were carried out to evaluate the film adhesion. It is revealed that the adhesion of the diamond film is drastically improved by employing the interlayer. This is mainly influenced by the residual stress in the diamond top layer, which is induced by the different thermal expansion coefficient of the film and the substrate. It is even possible to further suppress the stress by manipulating the distribution of diamond and beta-silicon carbide in the interlayer. The most adhesive diamond film on cemented carbide is thus obtained by employing a gradient composite interlayer.

  7. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  8. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  9. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  10. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  11. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  12. Functional Magnetic Nanoparticles

    Science.gov (United States)

    Gass, James

    Nanoparticle system research and characterization is the focal point of this research and dissertation. In the research presented here, magnetite, cobalt, and ferrite nanoparticle systems have been explored in regard to their magnetocaloric effect (MCE) properties, as well as for use in polymer composites. Both areas of study have potential applications across a wide variety of interdisciplinary fields. Magnetite nanoparticles have been successfully dispersed in a polymer. The surface chemistry of the magnetic nanoparticle proves critical to obtaining a homogenous and well separated high density dispersion in PMMA. Theoretical studies found in the literature have indicated that surface interface energy is a critical component in dispersion. Oleic acid is used to alter the surface of magnetite nanoparticles and successfully achieve good dispersion in a PMMA thin film. Polypyrrole is then coated onto the PMMA composite layer. The bilayer is characterized using cross-sectional TEM, cross-sectional SEM, magnetic characterization, and low frequency conductivity. The results show that the superparmagnetic properties of the as synthesized particles are maintained in the composite. With further study of the properties of these nanoparticles for real and functional uses, MCE is studied on a variety of magnetic nanoparticle systems. Magnetite, manganese zinc ferrite, and cobalt ferrite systems show significant broadening of the MCE and the ability to tune the peak temperature of MCE by varying the size of the nanoparticles. Four distinct systems are studied including cobalt, cobalt core silver shell nanoparticles, nickel ferrite, and ball milled zinc ferrite. The results demonstrate the importance of surface characteristics on MCE. Surface spin disorder appears to have a large influence on the low temperature magnetic and magnetocalorie characteristics of these nanoparticle systems.

  13. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  14. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  15. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    Science.gov (United States)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  16. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  17. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  18. Enhanced magnetocrystalline anisotropy in deposited cobalt clusters

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, D.A.; Denby, P.M.; Kirkman, I.W. [Daresbury Laboratory, Daresbury, Warrington (United Kingdom); Harrison, A.; Whittaker, A.G. [Department of Chemistry, University of Edinburgh, Edinburgh (United Kingdom)

    2002-01-28

    The magnetic properties of nanomaterials made by embedding cobalt nanocrystals in a copper matrix have been studied using a SQUID magnetometer. The remanent magnetization at temperatures down to 1.8 K and the RT (room temperature) field-dependent magnetization of 1000- and 8000-atom (average-size) cobalt cluster samples have been measured. In all cases it has been possible to relate the morphology of the material to the magnetic properties. However, it is found that the deposited cluster samples contain a majority of sintered clusters even at cobalt concentrations as low as 5% by volume. The remanent magnetization of the 8000-atom samples was found to be bimodal, consisting of one contribution from spherical particles and one from touching (sintered) clusters. Using a Monte Carlo calculation to simulate the sintering it has been possible to calculate a size distribution which fits the RT superparamagnetic behaviour of the 1000-atom samples. The remanent magnetization for this average size of clusters could then be fitted to a simple model assuming that all the nanoparticles are spherical and have a size distribution which fits the superparamagnetic behaviour. This gives a value for the potential energy barrier height (for reversing the spin direction) of 2.0 {mu}eV/atom which is almost four times the accepted value for face-centred-cubic bulk cobalt. The remanent magnetization for the spherical component of the large-cluster sample could not be fitted with a single barrier height and it is conjectured that this is because the barriers change as a function of cluster size. The average value is 1.5 {mu}eV/atom but presumably this value tends toward the bulk value (0.5 {mu}eV/atom) for the largest clusters in this sample. (author)

  19. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  20. Opportunities from the nanoworld : Gas phase nanoparticles

    NARCIS (Netherlands)

    Palasantzas, G.; Koch, S. A.; Vystavel, T.; De Hosson, J. Th. M.

    2008-01-01

    In this paper we present studies related to coalescence and oxidation of transition metal nanoparticles with sizes ranging between 2 and 10 nm. For cobalt and iron exposure to air leads to thin oxide shell formation (thickness

  1. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  2. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  3. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  4. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  5. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  6. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  7. Analysis of radioactive cobalt

    International Nuclear Information System (INIS)

    1977-01-01

    This is a manual published by Science and Technology Agency, Japan, which prescribes on the analysis method for radioactive cobalt which is a typical indexing nuclide among the radioactive nuclides released from nuclear facilities. Since the released cobalt is mainly discharged to coastal region together with waste water, this manual is written for samples of sea water, sea bottom sediments and marine organisms. Radioactive cobalt includes the nuclides of 57 co, 58 Co, 60 Co, etc., the manual deals with them as a whole as 60 Co of long half life. Though 60 Co analysis has become feasible comparatively simply due to scintillation or semi-conductor spectrometry, trace 60 Co analysis is performed quantitatively by co-precipitation or collection into alumina and scintillation spectrometry. However, specific collecting operation and γ-γ coincidence measurement have been required so far. This manual employs 60 Co collection by means of ion-exchange method and measurement with low background GM counting system, to analyze quantitatively and rapidly low level 60 Co. It is primarily established as the standard analyzing method for the survey by local autonomous bodies. It is divided into 4 chapters including introduction sea water, marine organisms, and sea bottom sediments. List of required reagents is added in appendix. (Wakatsuki, Y.)

  8. Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Liu, I-Ping; Chen, Li-Tung; Hou, Yi-Chen; Li, Chiao-Wei; Lee, Yuh-Lang

    2016-09-21

    Polymer gel electrolytes (PGEs) of cobalt redox system are prepared for dye sensitized solar cell (DSSC) applications. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used as a gelator of an acetonitrile (ACN) liquid electrolyte containing tris(2,2'-bipyridine)cobalt(II/III) redox couple. Titanium dioxide (TiO2) and titanium carbide (TiC) nanoparticles are utilized as nanofillers (NFs) of this PGE, and the effects of the two NFs on the conductivity of the PGEs, charge-transfer resistances at the electrode/PGE interface, and the performance of the gel-state DSSCs are studied and compared. The results show that the presence of TiC NFs significantly increases the conductivity of the PGE and decreases the charge-transfer resistance at the Pt counter-electrode (CE)/PGE interface. Therefore, the gel-state DSSC utilizing TiC NFs can achieve a conversion efficiency (6.29%) comparable to its liquid counterpart (6.30%), and, furthermore, the cell efficiency can retain 94% of its initial value after a 1000 h stability test at 50 °C. On the contrary, introduction of TiO2 NFs in the PGE causes a decrease of cell performances. It shows that the presence of TiO2 NFs increases the charge-transfer resistance at the Pt CE/PGE interface, induces the charge recombination at the photoanode/PGE interface, and, furthermore, causes a dye desorption in a long-term-stability test. These results are different from those reported for the iodide redox system and are ascribed to a specific attractive interaction between TiO2 and cobalt redox ions.

  9. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    International Nuclear Information System (INIS)

    Cabrol, E.; Bellot, C.; Lamesle, P.; Delagnes, D.; Povoden-Karadeniz, E.

    2013-01-01

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system

  10. Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cabrol, E., E-mail: ecabrol@mines-albi.fr [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Bellot, C. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Aubert and Duval, BP1 F-63770 Les Ancizes (France); Lamesle, P.; Delagnes, D. [Institut Clément Ader, Mines Albi, Campus Jarlard, F-81013 Albi Cedex 09 (France); Povoden-Karadeniz, E. [Christian Doppler Laboratory for Early Stages of Precipitation, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2013-04-15

    Highlights: ► Improvement of a carbide selective extraction method. ► Determination of experimental data on the Fe–C–Cr–Mo–V system for carbides above 900 °C: crystallographic structures and compositions of precipitates, matrix composition. ► High molybdenum solubility in FCC carbides. ► Improvement of thermodynamic databases from experimental results. ► Validation of the optimized database with different compositions steels. -- Abstract: A technique for the microstructural study of steels, based on the use of matrix dissolution to collect the very low number density precipitates formed in martensitic steels, has been considerably improved. This technique was applied to two different grades of alloy, characterized by high nickel and cobalt contents and varying chromium, molybdenum and vanadium contents. The technique was implemented at temperatures ranging between 900 °C and 1000 °C, in order to accurately determine experimental data including the crystallographic structure and chemical composition of the carbides, the carbide solvus temperatures, and variations in the chemical composition of the matrix. These experimental investigations reveal that the solubility of molybdenum in FCC carbides can be very high. These results have been compared with the behavior predicted by computational thermodynamics, and used to evaluate and improve the thermodynamic Matcalc steel database. This upgraded database has been validated on three other steels with different chemical compositions, characterized by the same Fe–Cr–Mo–V–C system.

  11. Synthesis and Adsorption Property of SiO2@Co(OH2 Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yongde Meng

    2015-04-01

    Full Text Available Silica nanoparticles were directly coated with cobalt hydroxide by homogeneous precipitation of slowly decomposing urea in cobalt nitrate solution. The cobalt hydroxide was amorphous, and its morphology was nanoflower-like. The BET (Brunauer-Emmett-Teller surface area of the core-shell composite was 221 m2/g. Moreover, the possible formation procedure is proposed: the electropositive cobalt ions were first adsorbed on the electronegative silica nanoparticles surface, which hydrolyzed to form cobalt hydroxide nanoparticles. Then, the cobalt hydroxide nanoparticles were aggregated to form nanoflakes. Finally, the nanoflakes self-assembled, forming cobalt hydroxide nanoflowers. Adsorption measurement showed that the core-shell composite exhibited excellent adsorption capability of Rhodamine B (RB.

  12. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase

    International Nuclear Information System (INIS)

    Polini, Riccardo; Delogu, Michele; Marcheselli, Giancarlo

    2006-01-01

    WC-Co hard metals continue to gain importance for cutting, mining and chipless forming tools. Cobalt metal currently dominates the market as a binder because of its unique properties. However, the use of cobalt as a binder has several drawbacks related to its hexagonal close-packed structure and market price fluctuations. These issues pushed the development of pre-alloyed binder powders which contain less than 40 wt.% cobalt. In this paper we first report the results of extensive investigations of WC-Fe/Ni/Co hard metal sintering, surface pretreating and deposition of adherent diamond films by using an industrial hot filament chemical vapour deposition (HFCVD) reactor. In particular, CVD diamond was deposited onto WC-Fe/Ni/Co grades which exhibited the best mechanical properties. Prior to deposition, the substrates were submitted to surface roughening by Murakami's etching and to surface binder removal by aqua regia. The adhesion was evaluated by Rockwell indentation tests (20, 40, 60 and 100 kg) conducted with a Brale indenter and compared to the adhesion of diamond films grown onto Co-cemented tungsten carbide substrates, which were submitted to similar etching pretreatments and identical deposition conditions. The results showed that diamond films on medium-grained WC-6 wt.% Fe/Ni/Co substrates exhibited good adhesion levels, comparable to those obtained for HFCVD diamond on Co-cemented carbides with similar microstructure

  13. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells.

    Science.gov (United States)

    Akhtar, Mohd Javed; Ahamed, Maqusood; Alhadlaq, Hisham A; Alshamsan, Aws

    2017-04-01

    There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co 2+ . Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  15. Nickel, cobalt, and their alloys

    CERN Document Server

    2000-01-01

    This book is a comprehensive guide to the compositions, properties, processing, performance, and applications of nickel, cobalt, and their alloys. It includes all of the essential information contained in the ASM Handbook series, as well as new or updated coverage in many areas in the nickel, cobalt, and related industries.

  16. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  17. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  18. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    International Nuclear Information System (INIS)

    Diaz Barriga Arceo, L.; Orozco, E.; Mendoza-Leon, H.; Palacios Gonzalez, E.; Leyte Guerrero, F.; Garibay Febles, V.

    2007-01-01

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 o C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 μm in length were obtained after heating at 800 o C, by means of this process

  19. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  20. Cobalt source calibration

    International Nuclear Information System (INIS)

    Rizvi, H.M.

    1999-01-01

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10 5 rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10 5 rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10 5 rad/h to 1.073 x 10 5 rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10 6 to 9.27 x 10 5 . This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10 7 rad/h. During irradiation of the Fricke dosimeter solution the Fe 2+ ions ionize to Fe 3+ . When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate

  1. Unithiol - a cobalt antidote

    International Nuclear Information System (INIS)

    Cherkes, A.I.; Braver-Chernobul'skaya, B.S.

    1977-06-01

    The blockade of the sulfhydryl groups of the proteins leads to a disturbance of the normal activity of many enzymes and thus of the functioning of the organs and tissue. The search for antidotes against these substances which inactivate the enzymes led to the synthesis of a large group of thiols in the Ukrainian Scientific Research Sanitary Chemical Institute. The most active is sodium dithiol-2,3-dimercaptonpropansulphonate CH 2 SH-CHSH-CH 2 SO 3 Na x H 2 O, named unithiol. Its antidote activity is discussed in detail, especially concerning cobalt intoxication. (HK) [de

  2. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  3. Determination of emissivity coefficient of heat-resistant super alloys and cemented carbide

    Directory of Open Access Journals (Sweden)

    Kieruj Piotr

    2016-12-01

    Full Text Available This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.

  4. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  5. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  6. On cobalt effect on structural and phase transformations during tempering carbon-containing steels of Fe-Ni-Mo system

    International Nuclear Information System (INIS)

    Rakhshtadt, A.G.; Khovova, O.M.; Kan, A.V.; Perkas, M.D.; Kudryavtsev, A.N.; Rodionov, Yu.L.

    1990-01-01

    Methods of resistometry, colorimetry, X-ray diffraction chemical and electrochemical phase analyses, Moessbauer spectroscopy and field-ion mass spectrometry are used to study the nature of precipitation hardening of carbon containing Fe-Ni-Mo martensitic steels. Cobalt contribution to formation of phase composition and structural state of steels during tempering is analyzed. Realization conditions of effective combined (carbide-intermetallide) hardening of the investigated system steels are determined

  7. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  8. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  9. Radio cobalt in French rivers

    International Nuclear Information System (INIS)

    Lambrechts, A.; Baudin-Jaulent, Y.

    1996-01-01

    The isotopes 58 and 60 of cobalt present in liquid wastes from nuclear plants or from fuel reprocessing plant of Marcoule are fixed in the different compartments of French rivers. The activity levels of radio-cobalt vary according to the sampled compartments nature (bryophyta > immersed plants > sediment > fish). Elsewhere, laboratory experimentations show that the contamination of fish occurs essentially from the water way rather than from food. Cobalt is mainly fixed by kidneys; muscles is no more than 30 % of the total fish activity. (author)

  10. Cobalt Cardiomyopathy Secondary to Hip Arthroplasty: An Increasingly Prevalent Problem

    Directory of Open Access Journals (Sweden)

    Russel Tilney

    2017-01-01

    Full Text Available A forty-year-old man experienced worsening heart failure four years following bilateral complicated total hip replacement. His condition was extensively worked up but no underlying pathology was immediately evident. Given the cobalt-chromium alloy component present in the hip arthroplasties, the raised cobalt blood levels, and a fitting clinical picture coupled with radiological findings, the patient underwent right hip revision. Evidence of biotribocorrosion was present on direct visualisation intraoperatively. The patient subsequently experienced symptomatic improvement (NYHA class III to class I and echocardiography showed recovery of ejection fraction. Cobalt exists as a bivalent and trivalent molecule in circulation and produces a cytotoxicity profile similar to nanoparticles, causing neurological, thyroid, and cardiological pathology. Blood levels are not entirely useful as there is no identifiable conversion factor for levels in whole blood, serum, and erythrocytes which seem to act independently of each other. Interestingly cobalt cardiomyopathy is frequently compounded by other possible causes of cardiomyopathy such as alcohol and a link has been postulated. Definitive treatment is revision of the arthroplasty as other treatments are unproven.

  11. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  12. FTIR and structural properties of co-precipitated cobalt ferrite nano particles

    International Nuclear Information System (INIS)

    Hutamaningtyas, E.; Utari; Suharyana; Purnama, B.; Wijayanta, A. T.

    2016-01-01

    The FTIR and structural properties in co-precipitated cobalt ferrite (CoFe 2 O 4 ) nanoparticles are discussed in this paper. The synthesis was conducted at temperatures of 75°C and 95°C following post annealing at 1200°C for 5 hours. Other modification samples were synthesis at temperature of 95°C and then annealing at temperature of 1000°C and 1200°C for 5 hours. For both modification of synthesis and annealing temperature, FTIR result showed a metal oxide at a wave number of 590 cm -1 which indicated cobalt ferrite nanoparticles. The crystalline structure was confirmed using x-ray diffraction that the high purity of cobalt ferrite was realized. Calculation of the cation distribution by using comparison I 220 /I 222 and I 422 /I 222 show that the synthesis and annealing temperature succesfully modify cation occupy the site octahedral and tetrahedral. (paper)

  13. Chemical nature of catalysts of oxide nanoparticles in environment ...

    Indian Academy of Sciences (India)

    alloy or cobalt nanoparticles having fcc structure, but the rate of reduction is relatively less in ... dissociation of H2 on the metallic clusters once their size is .... 20 wt.% substitution of cobalt/nickel by copper in the aque- ous saturated solution of ...

  14. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  15. Cobalt: for strength and color

    Science.gov (United States)

    Boland, Maeve A.; Kropschot, S.J.

    2011-01-01

    Cobalt is a shiny, gray, brittle metal that is best known for creating an intense blue color in glass and paints. It is frequently used in the manufacture of rechargeable batteries and to create alloys that maintain their strength at high temperatures. It is also one of the essential trace elements (or "micronutrients") that humans and many other living creatures require for good health. Cobalt is an important component in many aerospace, defense, and medical applications and is a key element in many clean energy technologies. The name cobalt comes from the German word kobold, meaning goblin. It was given this name by medieval miners who believed that troublesome goblins replaced the valuable metals in their ore with a substance that emitted poisonous fumes when smelted. The Swedish chemist Georg Brandt isolated metallic cobalt-the first new metal to be discovered since ancient times-in about 1735 and identified some of its valuable properties.

  16. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola

    2012-01-01

    -containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult......-tested dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt...

  17. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    NARCIS (Netherlands)

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial

  18. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  19. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  20. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-01-01

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W_2CoB_2. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W_2CoB_2 with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  1. Effect of the Polymeric Stabilizer in the Aqueous Phase Fischer-Tropsch Synthesis Catalyzed by Colloidal Cobalt Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jorge A. Delgado

    2017-03-01

    Full Text Available A series of small and well defined cobalt nanoparticles were synthesized by the chemical reduction of cobalt salts in water using NaBH4 as a reducing agent and using various polymeric stabilizers. The obtained nanocatalysts of similar mean diameters (ca. 2.6 nm were fully characterized and tested in the aqueous phase Fischer-Tropsch Synthesis (AFTS. Interestingly, the nature and structure of the stabilizers used during the synthesis of the CoNPs affected the reduction degree of cobalt and the B-doping of these NPs and consequently, influenced the performance of these nanocatalysts in AFTS.

  2. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  3. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  4. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  5. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  6. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  7. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  8. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  9. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  10. Phosphorus introduction mechanism in electrodeposited cobalt films

    International Nuclear Information System (INIS)

    Kravtchenko, Jean-Francois

    1973-01-01

    The cathodic reduction of hypophosphite, phosphite and phosphate ions was studied using chrono-potentiometry and voltammetry. Then cobalt was deposited at constant current from a bath containing one of these three compounds. The current, while giving an electrodeposition of cobalt, also enhances at the same time a chemical deposition of cobalt. It is shown that high coercive forces in cobalt films are much more related to this chemical deposition than to the simple fact that the films contain some phosphorus. (author) [fr

  11. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  12. Transport of cobalt-60 industrial radiation sources

    Science.gov (United States)

    Kunstadt, Peter; Gibson, Wayne

    This paper will deal with safety aspects of the handling of Cobalt-60, the most widely used industrial radio-isotope. Cobalt-60 is a man-made radioisotope of Cobalt-59, a naturally occurring non radioactive element, that is made to order for radiation therapy and a wide range of industrial processing applications including sterilization of medical disposables, food irradiation, etc.

  13. Comparative supercapacitive properties of asymmetry two electrode coin type supercapacitor cells made from MWCNTs/cobalt oxide and MWCNTs/iron oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2015-04-01

    Full Text Available Supercapacitive properties of synthesized metal oxide nanoparticles (MO) vis a vis iron oxides (Fe(sub2)O(sub3)) and cobalt oxide (Co(sub3)O(sub4)) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type...

  14. Accumulation of cobalt by cephalopods

    International Nuclear Information System (INIS)

    Nakahara, Motokazu

    1981-01-01

    Accumulation of cobalt by cephalopod mollusca was investigated by radiotracer experiments and elemental analysis. In the radiotracer experiments, Octopus vulgaris took up cobalt-60 from seawater fairly well and the concentration of the nuclide in whole body attained about 150 times the level of seawater at 25th day at 20 0 C. Among the tissues and organs measured, branchial heart which is the specific organ of cephalopods showed the highest affinity for the nuclide. The organ accumulated about 50% of the radioactivity in whole body in spite of its little mass as 0.2% of total body weight. On the other hand, more than 90% of the radioactivity taken up from food (soft parts of Gomphina melanaegis labelled with cobalt-60 previously in an aquarium) was accumulated in liver at 3rd day after the single administration and then the radioactivity in the liver seemed to be distributed to other organs and tissues. The characteristic elution profiles of cobalt-60 was observed for each of the organs and tissues in Sephadex gel-filtration experiment. It was confirmed by the gel-filtration that most of cobalt-60 in the branchial heart was combined with the constituents of low molecular weights. The average concentration of stable cobalt in muscle of several species of cephalopods was 5.3 +- 3.0 μg/kg wet and it was almost comparable to the fish muscle. On the basis of soft parts, concentration of the nuclide closed association among bivalve, gastropod and cephalopod except squid that gave lower values than the others. (author)

  15. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    Science.gov (United States)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  16. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  17. Cobalt production in RAPS-1

    International Nuclear Information System (INIS)

    Krishnan, P.D.; Purandare, H.D.

    1978-01-01

    At present in RAPS-1 radioisotope Co 60 is produced by irradiating Co 59 in the adjusters which perform the function of regulation of reactivity, power and xenon override. But the manrem expenditure of the crew handling the charge and discharge of the adjusters is going to be prohibitively high. It is therefore proposed to irradiate Co 59 in the fuel channel positions. The physics optimisation study for such irradiation is presented. The burnup penalty and loss of power are estimated to produce the required quantity of Co 60 after optimising the number of cobalt pencils in a bundle and the positions of the cobalt producing channels in the reactor core. (author)

  18. Cobalt(II) and Cobalt(III) Coordination Compounds.

    Science.gov (United States)

    Thomas, Nicholas C.; And Others

    1989-01-01

    Presents a laboratory experiment which illustrates the formation of tris(phenanthroline)cobalt complexes in the 2+ and 3+ oxidation states, the effect of coordination on reactions of the ligand, and the use of a ligand displacement reaction in recovering the transformed ligand. Uses IR, UV-VIS, conductivity, and NMR. (MVL)

  19. Cobalt doped CuMnOx catalysts for the preferential oxidation of carbon monoxide

    Science.gov (United States)

    Dey, Subhashish; Dhal, Ganesh Chandra; Mohan, Devendra; Prasad, Ram; Gupta, Rajeev Nayan

    2018-05-01

    Carbon monoxide (CO) is a poisonous gas, recognized as a silent killer for the 21st century. It is produced from the partial oxidation of carbon containing compounds. The catalytic oxidation of CO receives a huge attention due to its applications in different fields. In the present work, hopcalite (CuMnOx) catalysts were synthesized using a co-precipitation method for CO oxidation purposes. Also, it was doped with the cobalt by varying concentration from 1 to 5wt%. It was observed that the addition of cobalt into the CuMnOx catalyst (by the deposition-precipitation method) improved the catalytic performance for the low-temperature CO oxidation. CuMnOx catalyst doped with 3wt% of cobalt exhibited most active performance and showed the highest activity than other cobalt concentrations. Different analytical tools (i.e. XRD, FTIR, BET, XPS and SEM-EDX) were used to characterize the as-synthesized catalysts. It was expected that the introduction of cobalt will introduce new active sites into the CuMnOx catalyst that are associated with the cobalt nano-particles. The order of calcination strategies based on the activity for cobalt doped CuMnOx catalysts was observed as: Reactive calcinations (RC) > flowing air > stagnant air. Therefore, RC (4.5% CO in air) route can be recommended for the synthesis of highly active catalysts. The catalytic activity of doped CuMnOx catalysts toward CO oxidation shows a correlation among average oxidation number of Mn and the position and the nature of the doped cobalt cation.

  20. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  1. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  2. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  3. The cobalt-60 container scanner

    International Nuclear Information System (INIS)

    Jigang, A.; Liye, Z.; Yisi, L.; Haifeng, W.; Zhifang, W.; Liqiang, W.; Yuanshi, Z.; Xincheng, X.; Furong, L.; Baozeng, G.; Chunfa, S.

    1997-01-01

    The Institute of Nuclear Energy Technology (INET) has successfully designed and constructed a container (cargo) scanner, which uses cobalt-60 of 100-300 Ci as radiation source. The following performances of the Cobalt-60 container scanner have been achieved at INET: a) IQI (Image Quality Indicator) - 2.5% behind 100 mm of steel; b) CI (Contrast Indicator) - 0.7% behind 100 mm of steel; c) SP (Steel Penetration) - 240 mm of steel; d) Maximum Dose per Scanning - 0.02mGy; e) Throughput - twenty 40-foot containers per hour. These performances are equal or similar to those of the accelerator scanners. Besides these nice enough inspection properties, the Cobalt-60 scanner possesses many other special features which are better than accelerator scanners: a) cheap price - it will be only or two tenths of the accelerator scanner's; b) low radiation intensity - the radiation protection problem is much easier to solve and a lot of money can be saved on the radiation shielding building; c) much smaller area for installation and operation; d) simple operation and convenient maintenance; e) high reliability and stability. The Cobalt-60 container (or cargo) scanner is satisfied for boundary customs, seaports, airports and railway stations etc. Because of the nice special features said above, it is more suitable to be applied widely. Its high properties and low price will make it have much better application prospects

  4. Cobalt 60 commercial irradiation facilities

    International Nuclear Information System (INIS)

    West, G.

    1985-01-01

    The advantage of using cobalt 60 for ionizing treatment is that it has excellent penetration. Gamma plants are also very efficient, in as much as there is very little mechanical or electrical equipment in a gamma irradiation facility. The average efficiency of a gamma plant is usually around 95% of all available processing time

  5. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  6. Point defects and transport properties in carbides

    International Nuclear Information System (INIS)

    Matzke, Hj.

    1984-01-01

    Carbides of transition metals and of actinides are interesting and technologically important. The transition-metal carbides (or carbonitrides) are extensively being used as hard materials and some of them are of great interest because of the high transition temperature for superconductivity, e.g. 17 K for Nb(C,N). Actinide carbides and carbonitrides, (U,Pu)C and (U,Pu)(C,N) are being considered as promising advanced fuels for liquid metal cooled fast breeder nuclear reactors. Basic interest exists in all these materials because of their high melting points (e.g. 4250 K for TaC) and the unusually broad range of homogeneity of nonstoichiometric compositions (e.g. from UCsub(0.9) to UCsub(1.9) at 2500 K). Interaction of point defects to clusters and short-range ordering have recently been studied with elastic neutron diffraction and diffuse scattering techniques, and calculations of energies of formation and interaction of point defects became available for selected carbides. Diffusion measurements also exist for a number of carbides, in particular for the actinide carbides. The existing knowledge is discussed and summarized with emphasis on informative examples of particular technological relevance. (Auth.)

  7. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

    International Nuclear Information System (INIS)

    Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.

    2017-01-01

    Here, transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.

  8. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    Science.gov (United States)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  9. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  10. Self-biased cobalt ferrite nanocomposites for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Hannour, Abdelkrim, E-mail: abdelkrim.hannour@hotmail.com [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches [LT2C Laboratory, Jean-Monnet University, 25 rue Dr. Rémy Annino, F-42000, Saint-Etienne (France); Neveu, Sophie; Dupuis, Vincent [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France)

    2014-03-15

    Oriented CoFe{sub 2}O{sub 4} nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe{sub 2}O{sub 4} nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results.

  11. Self-biased cobalt ferrite nanocomposites for microwave applications

    International Nuclear Information System (INIS)

    Hannour, Abdelkrim; Vincent, Didier; Kahlouche, Faouzi; Tchangoulian, Ardaches; Neveu, Sophie; Dupuis, Vincent

    2014-01-01

    Oriented CoFe 2 O 4 nanoparticles, dispersed in polymethyl methacrylate (PMMA) matrix, were fabricated by magnetophoretic deposition of functionalized nanocolloidal cobalt ferrite particles into porous alumina membrane. Their magnetic behavior exhibits an out-of-plane easy axis with a large remanent magnetization and coercitivity. This orientation allows high effective internal magnetic anisotropy that contributes to the permanent bias along the wire axis. The microwave studies reveal a ferromagnetic resonance at 46.5 and 49.5 GHz, depending on the filling ratio of the membrane. Ansoft High Frequency Structure Simulator (Ansoft HFSS) simulations are in good agreement with experimental results. Such nanocomposite is presented as one of the promising candidates for microwave devices (circulators, isolators, noise suppressors etc.). - Highlights: • Oriented magnetic CoFe 2 O 4 nanoparticles were fabricated by magnetophoretic deposition of functionalized cobalt ferrite particles into porous alumina membrane. • The nanocomposite obtained presents an out-of-plane easy axis with a large remanent magnetization and coercitivity. • The high effective internal magnetic anisotropy contributes to the permanent bias along the wire axis. • The frequency ferromagnetic resonance ranges from 46.5 to 49.5 GHz, depending on the filling ratio of the membrane. • We have obtained a good agreement between Ansoft High Frequency Structure Simulator simulations and experimental results

  12. Nanotoxicity of gold and gold-cobalt nanoalloy.

    Science.gov (United States)

    Girgis, E; Khalil, W K B; Emam, A N; Mohamed, M B; Rao, K V

    2012-05-21

    Nanotoxicology test of gold nanoparticles (Au NPs) and gold-cobalt (Au-Co) nanoalloy is an important step in their safety evaluation for biomedical applications. The Au and Au-Co NPs were prepared by reducing the metal ions using sodium borohydride (NaBH(4)) in the presence of polyvinyl pyrrolidone (PVP) as a capping material. The average size and shape of the nanoparticles (NPs) were characterized using high resolution transmission electron microscopy (HRTEM). Cobalt presence in the nanoalloy was confirmed by energy dispersive X-ray spectroscopy (EDX) analysis, and the magnetic properties of these particles were determined using a vibrating sample magnetometer (VSM). The Gold and gold-cobalt NPs of average size 15 ± 1.5 nm were administered orally to mice with a dose of 80, 160, and 320 mg/kg per body weight (bw) using gavages. Samples were collected after 7 and 14 days of the treatment. The results indicated that the Au-Co NPs were able to induce significant alteration in the tumor-initiating genes associated with an increase of micronuclei (MNs) formation and generation of DNA adduct (8-hydroxy-2-deoxyguanosine, 8-OHdG) as well as a reduction in the glutathione peroxidase activity. This action of Au-Co NPs was observed using 160 and 320 mg/kg bw at both time intervals. However, Au NPs had much lower effects than Au-Co NPs on alteration in the tumor-initiating genes, frequency of MNs, and generation of 8-OHdG as well as glutathione peroxidase activity except with the highest dose of Au NPs. This study suggests that the potential to cause in vivo genetic and antioxidant enzyme alterations due to the treatment by Au-Co nanoalloy may be attributed to the increase in oxidative stress in mice.

  13. Manufacture of highly loaded silica-supported cobalt Fischer–Tropsch catalysts from a metal organic framework

    KAUST Repository

    Sun, Xiaohui

    2017-11-16

    The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.

  14. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  15. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    Science.gov (United States)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil; Lidén, Carola; Julander, Anneli; Møller, Per; Johansen, Jeanne Duus

    2010-08-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure. The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. The cobalt spot test was used to assess cobalt release from all items. Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these. This study showed that only a minority of inexpensive jewellery purchased in Denmark released cobalt when analysed with the cobalt spot test. As fashion trends fluctuate and we found cobalt release from dark appearing jewellery, cobalt release from consumer items should be monitored in the future. Industries may not be fully aware of the potential cobalt allergy problem.

  16. Chemical nature of catalysts of oxide nanoparticles in environment

    Indian Academy of Sciences (India)

    Carbon nanostructures (CNS) are often grown using oxide nanoparticles as catalyst in chemical vapour deposition and these oxides are not expected to survive as such during growth. In the present study, the catalysts of cobalt- and nickel oxide-based nanoparticles of sizes varying over a range have been reduced at 575 ...

  17. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  18. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  19. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  20. Synthesis of Novel (Polymer Blend-Titanium Carbide Nanocomposites and Studying their Characterizations for Piezoelectric Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Hashima

    2018-05-01

    Full Text Available Piezoelectric nanocomposites are very important for many applications as a pressure sensors. Fabrication of (polyvinyl alcohol - polyvinyl pyrrolidinone -titanium carbide nanocompos- ites and study their structural, electrical, dielectric and optical properties have been in- vestigated. The effect of adding the TiC nanoparticles on structural, electrical, dielectric and optical properties of polymeric blend has been studied. The results showed that the electrical conductivity of (PVA-PVP-TiC nanocomposites is increasing with the increase of TiC nanoparticles concentrations at room temperature. The FTIR analysis showed there is no interactions between (PVA- PVP polymer blend and TiC nanoparticles. The dielectric studies showed the dielectric constant and dielectric loss of nanocomposites increase with the increase of TiC nanoparticles concentrations and they decrease as frequency increased. The A.C electrical conductivity increases with the increase of TiC nanoparticles concentra- tions and frequency. The results of optical properties showed that the optical absorbance of (PVA- PVP polymer blend increases with the increase of TiC nanoparticles concentrations. The optical constants change with increase in TiC nanoparticles concentrations. The piezo- electric application results of (PVA-PVP-TiC nanocomposites showed that the electrical resistance of (PVA-PVP-TiC nanocomposites decreases with an increase of the pressure which make it is suitable for piezoelectric applications or pressure sensors.

  1. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    Science.gov (United States)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  2. Polytypic transformations during the thermal decomposition of cobalt hydroxide and cobalt hydroxynitrate

    International Nuclear Information System (INIS)

    Ramesh, Thimmasandra Narayan

    2010-01-01

    The isothermal decomposition of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature leads to the formation of Co 3 O 4 . The phase evolution during the decomposition process was monitored using powder X-ray diffraction. The transformation of cobalt hydroxide to cobalt oxide occurs via three phase mixture while cobalt hydroxynitrate to cobalt oxide occurs through a two phase mixture. The nature of the sample and its preparation method controls the decomposition mechanism. The comparison of topotactical relationship between the precursors to the decomposed product has been reported in relation to polytypism. - Graphical abstract: Isothermal thermal decomposition studies of cobalt hydroxide and cobalt hydroxynitrate at different intervals of temperature show the metastable phase formed prior to Co 3 O 4 phase.

  3. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  4. Analysis of crystallite size and microdeformation crystal lattice the tungsten carbide milling in mill high energy

    International Nuclear Information System (INIS)

    Silva, F.T. da; Nunes, M.A.M.; Souza, C.P. de; Gomes, U.U.

    2010-01-01

    The tungsten carbide (WC) has wide application due to its properties like high melting point, high hardness, wear resistance, oxidation resistance and good electrical conductivity. The microstructural characteristics of the starting powders influences the final properties of the carbide. In this context, the use of nanoparticle powders is an efficient way to improve the final properties of the WC. The high energy milling stands out from other processes to obtain nanometric powders due to constant microstructural changes caused by this process. Therefore, the objective is to undertake an analysis of microstructural characteristics on the crystallite size and microdeformations of the crystal lattice using the technique of X-ray diffraction (XRD) using the Rietveld refinement. The results show an efficiency of the milling process to reduce the crystallite size, leading to a significant deformation in the crystal lattice of WC from 5h milling. (author)

  5. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  6. Derivative spectrophotometry of cobalt alloys

    International Nuclear Information System (INIS)

    Spitsyn, P.K.

    1985-01-01

    The method of derivative spectrophotometry is briefly described, and derivative absorption spectra are presented for samarium, cobalt, and commercial Sm-Co alloys. It is shown that the use of derivative spectrophotometry not only improves the accuracy and selectivity of element determinations but also simplifies the analysis of alloys. Results of a statistical evaluation of the metrological characteristics of the analytical procedure described here are presented. 8 references

  7. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  8. EFTF cobalt test assembly results

    International Nuclear Information System (INIS)

    Rawlins, J.A.; Wootan, D.W.; Carter, L.L.; Brager, H.R.; Schenter, R.E.

    1988-01-01

    A cobalt test assembly containing yttrium hydride pins for neutron moderation was irradiated in the Fast Flux Test Facility during Cycle 9A for 137.7 equivalent full power days at a power level fo 291 MW. The 36 test pins consisted of a batch of 32 pins containing cobalt metal to produce Co-60, and a set of 4 pins with europium oxide to produce Gd-153, a radioisotope used in detection of the bone disease Osteoporosis. Post-irradiation examination of the cobalt pins determined the Co-60 produced with an accuracy of about 5 %. The measured Co-60 spatially distributed concentrations were within 20 % of the calculated concentrations. The assembly average Co-60 measured activity was 4 % less than the calculated value. The europium oxide pins were gamma scanned for the europium isotopes Eu-152 and Eu-154 to an absolute accuracy of about 10 %. The measured europium radioisotpe anc Gd-153 concentrations were within 20 % of calculated values. In conclusion, the hydride assembly performed well and is an excellent vehicle for many Fast Flux Test Facility isotope production applications. The results also demonstrate that the calculational methods developed by the Westinghouse Hanford Company are very accurate. (author)

  9. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  10. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  11. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.

    2018-04-19

    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.

  12. Cobalt accumulation and circulation by blackgum trees

    International Nuclear Information System (INIS)

    Thomas, W.A.

    1975-01-01

    Blackgum (Nyssa sylvatica Marsh.) trees accumulate far greater concentrations of cobalt in mature foliage than do other species on the same site (363 ppM in ash of blackgum, compared with about 3 ppM by mockernut hickory and about 1 ppM by red maple, tulip tree, and white oak). Cobalt concentrations in dormant woody tissues of blackgum also significantly exceed those in the other four species. Inoculation of six blackgums with 60 Co revealed that cobalt remains mobile in the trees for at least 3 years. Foliar concentrations of stable cobalt increase uniformly until senescence. In late August, foliage accounts for only 9 percent of total tree weight but 57 percent of total tree cobalt. Losses of cobalt from trees occur almost entirely by leaf abscission, and the loss rates of weight and cobalt from decomposing litter are similar. Retention of cobalt in the biologically active soil layers perpetuates zones of cobalt concentration created by this species in woodlands

  13. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  14. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  15. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    International Nuclear Information System (INIS)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K.

    2003-01-01

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications

  16. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  17. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature

    Czech Academy of Sciences Publication Activity Database

    Sedlacik, M.; Pavlinek, V.; Peer, Petra; Filip, Petr

    2014-01-01

    Roč. 18, č. 43 (2014), s. 6919-6924 ISSN 1477-9226 R&D Projects: GA ČR GA202/09/1626 Grant - others:GA MŠk(CZ) ED2.1.00/03.0111 Institutional support: RVO:67985874 Keywords : spinel nanocrystalline cobalt ferrite * nanoparticles * magnetorheological effect Subject RIV: BK - Fluid Dynamics Impact factor: 4.197, year: 2014

  18. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  19. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  20. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  1. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    Science.gov (United States)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt

  2. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  3. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  4. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  5. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  6. Synthesis and characterization of diethylenetriaminepentaacetic acid-chitosan-coated cobalt ferrite core/shell nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Runhua, Qin [Department of Physics, North University of China, Taiyuan 030051 (China); National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Li Fengsheng, E-mail: qinrunh@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China); Wei, Jiang; Mingyue, Chen [National Special Superfine Powder Engineering Research Center, Nanjing University Science and Technology, Xiaolingwei 200, Nanjing 210094 (China)

    2010-08-01

    Special diethylenetriaminepentaacetic acid (DTPA)-chitosan-coated cobalt ferrite core/shell nanoparticles have been synthesized via a novel zero-length emulsion crosslinking process and characterized via crosslinking degree, simultaneous thermogravimetric analysis and differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectrometer, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometry. The experimental results showed that the CoFe{sub 2}O{sub 4} nanoparticles were really encapsulated with a DTPA-chitosan hybrid layer and the nanocomposites were proved to be nearly superparamagnetic with saturation magnetization of 26.6 emu g{sup -1}.

  7. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  8. Interaction effects in magnetic oxide nanoparticle systems

    Indian Academy of Sciences (India)

    The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by ...

  9. Effects of nickel and cobalt addition on creep strength and microstructure of the precipitation-strengthened 15Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masachika; Toda, Yoshiaki; Sawada, Kota; Kushima, Hideaki; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength of 15Cr ferritic steel with ferrite matrix was increased by precipitation strengthening of intermetallic compounds. It was higher than those of 9-12Cr ferritic steels with a tempered martensitic microstructure strengthened by carbide and carbonitride. Addition of nickel was confirmed to improve Charpy impact toughness of the 15Cr steels, however, creep strength was slightly reduced by the addition of nickel. Microstructure of the 15Cr steel changes from ferrite single phase to dual phases of ferrite and martensite with the addition of nickel which is an austenite stabilizing element. The 15Cr steels investigated in the previous study, contain 3mass% of cobalt which is also an austenite stabilizing element, therefore, the influence of nickel and cobalt combination on mechanical properties and microstructure of the 15Cr-1Mo-6W-V-Nb steel is investigated in this study. Creep strength, Charpy impact toughness and microstructure of the steel were strongly influenced by the composition of nickel and cobalt. Design guideline of the 15Cr steel is discussed with respect to a role of microstructure and combination of nickel and cobalt addition. (orig.)

  10. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  11. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  12. A computational study of interfaces in WC–Co cemented carbides

    International Nuclear Information System (INIS)

    Petisme, Martin V. G.; Johansson, Sven A. E.; Wahnström, Göran

    2015-01-01

    Interfaces in WC–Co cemented carbides have been investigated using the density functional theory (DFT). Six different model WC/WC grain boundaries are considered, together with the corresponding WC surfaces and WC/Co phase boundaries. The contribution to the grain boundary energies arising from misfit is estimated using an analytical bond order potential (ABOP) and the effect of magnetism is investigated using spinpolarized and non-spinpolarized calculations. A systematic study of adsorption of Co to WC surfaces, Co segregation to WC/WC grain boundaries and Co substitution at WC/Co phase boundaries has been carried out. Adsorption of Co to most WC surfaces is predicted, and result in a monolayer coverage of Co and sometimes a mixed Co/W or Co/W monolayer. The WC surfaces will become prewetted with Co as soon as the atoms become mobile at finite temperatures. Co substitutional segregation is predicted to all model WC/WC grain boundaries in 0.5 monolayer proportion. The segregation of Co to grain boundaries stabilizes the continuous skeleton network of hard WC grains in cemented carbides. Using the obtained interfacial energies, the wetting and the driving force for cobalt grain boundary infiltration are discussed. A dependence on the wetting efficiency on the carbon chemical potential is predicted, which could be an explanation for the better wetting observed experimentally under W-rich conditions. (paper)

  13. Cobalt 60 availability for radiation processing

    International Nuclear Information System (INIS)

    Fraser, F.M.

    1986-01-01

    In the last 20 years, the steady and significant growth in the application of radiation processing to industrial sterilization has been seen. The principal application of this technology is the sterilization of disposable medical products, food irradiation, the irradiation of personal care goods and so on. At present, more than 70 million curies of cobalt-60 supplied by Atomic Energy of Canada Ltd. have been used for gamma processing in these applications. This is estimated to be more than 80 % of the total cobalt-60 in service in the world. Commercial food irradiation has an exciting future, and as to the impact of food irradiation on the availability of cobalt-60 over the next ten years, two principal factors must be examined, namely, the anticipated demand for cobalt-60 in all radiation processing applications, and the supply of cobalt-60 to reliably meet the expected demand. As for the cobalt-60 in service today, 90 % is used for the sterilization of disposable medical products, 5 % for food irradiation, and 5 % for other application. The demand for up to 30 million curies of cobalt-60 is expected over the next 10 years. Today, it is estimated that over 150,000 tons of spices, fruit and fish are irradiated. The potential cobalt-60 production could exceed 110 million curies per year. Gamma processing application will demand nearly 50 million curies in 1990. (Kako, I.)

  14. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  15. Chemical Synthesis of alpha-Iron Cobalt and Metastable gamma-Iron Nickel Magnetic Nanoparticles with Tunable Magnetic Properties for Study of RF Heating and Magnetomechanical Responses in Polymeric Systems

    Science.gov (United States)

    McNerny, Katie L.

    The successful development of functionalized magnetic nanoparticles (MNPs) is necessary for a variety of biomedical applications including magnetic tagging of cells, bioseparation, cell sorting, cell tracking, targeted drug delivery, thermablative cancer therapies, diagnostics and sensing applications. For effective performance in many of these applications, the MNPs must be stable at various temperatures and chemical environments while also being easily dispersed in a variety of media. Chemical synthesis techniques have been developed to achieve desirable shapes, sizes and compositions of Fe-Co, Fe-Ni, as well as other Fe-based ternary alloy MNPs. These MNPs have been functionalized with surfactants, polymers, and antibodies for suspension in aqueous fluids that can be delivered intravenously to a desired location in the body and subsequently manipulated by alternating (AC) and direct (DC) magnetic fields. An exciting application for the gamma-FeNi MNPs that will be investigated is self-regulated heating of cancer tissue. Cancerous tissue is known to be more thermally sensitive than healthy tissue due to irregularities in tumor vasculature, and therefore MNPs can be used to heat and kill these cells while leaving healthy tissue unharmed. gamma-FeNi MNPs have tunable Curie temperatures (TC's) and can be further adjusted by the addition of an antiferromagnetic element such as Mn or Cr to reach temperatures required for killing cancer cells (between 40 and 50°C). The TC acts as an upper limit to heating as the material switches from being ferromagnetic to paramagnetic. These MNPs have been synthesized and characterized, and a model for self-regulated heating has been demonstrated. The vision for this project is to eventually functionalize the particles with a tumor-specific tag, for instance Herceptin, and to potentially attach a chemotherapeutic agent to the MNPs for combined heating and drug delivery. Transmission electron microscopy (TEM) has been used to show

  16. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  17. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  18. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  19. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  20. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  1. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  2. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  3. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  4. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  5. Cobalt-60 production in CANDU reactors

    International Nuclear Information System (INIS)

    Ross, Michel; Lemire, Christian

    2002-01-01

    CANDU reactors can produce cobalt-60 very efficiently and with an interesting return on investment. This paper discusses what is needed to convert a CANDU reactor into a cobalt-60 producer: what are the different phases, the safety studies required, the physical modifications needed, and what is the minimum involvement of the utility owning the plant. The past ten years of experience of Hydro-Quebec as a cobalt-60 producer will be reviewed, including the management of the risk of both incident and electricity generation loss, and including the benefits for the utility and its personnel. Originally a simple metal used for centuries as a pigment, cobalt-59 today is transformed into cobalt-60, a radioactive element of unprecedented value. Well known in medicine for cancer treatment, cobalt-60 is also used to sterilize a wide range of disposable medical products used in hospitals and to sanitize pharmaceutical and cosmetic products. Cobalt-60 is proving to be a new and effective solution, in the food sector, for preserving harvests and controlling food-borne diseases, or to advantageously replace certain gases and chemical products which are suspected of being harmful or carcinogenic. There are also other applications, such as: hardening of some plastics, treatment of sewage sludge and elimination of harmful insect populations. With a half-life of 5,3 years, cobalt-60 is a metal not found in nature. It is a radioactive isotope produced by exposing stable nuclei of cobalt-59 to neutrons. One of the best places to find such an important neutron source is a nuclear reactor. High energy gamma rays are then emitted during the process of radioactive decay, where cobalt-60 seeks again its stable state

  6. Establishing efficient cobalt based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst

    KAUST Repository

    Nurlaela, Ela; Ould-Chikh, Samy; Llorens, Isabelle; Hazemann, Jean-louis; Takanabe, Kazuhiro

    2015-01-01

    In a photocatalytic suspension system with a powder semiconductor, the interface between the photocatalyst semiconductor and catalyst should be constructed to minimize resistance for charge transfer of excited carriers. This study demonstrates an in-depth understanding of pretreatment effects on the photocatalytic O2 evolution reaction (OER) activity of visible-light-responsive Ta3N5 decorated with CoOx nanoparticles. The CoOx/Ta3N5 sample was synthesized by impregnation followed by sequential heat treat-ments under NH3 flow and air flow at various temperatures. Various characterization techniques, including X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spec-troscopy (XPS), were used to clarify the state and role of cobalt. No improvement in photocatalytic activity for OER over the bare Ta3N5 was observed for the as-impregnated CoOx/Ta3N5, likely because of insufficient contact between CoOx and Ta3N5. When the sample was treated in NH3 at high temperature, a substantial improvement in the photocatalytic activity was observed. After NH3 treatment at 700 °C, the Co0-CoOx core-shell agglomerated cobalt structure was identified by XAS and STEM. No metallic cobalt species was evident after the photocatalytic OER, indicating that the metallic cobalt itself is not essential for the reaction. Accordingly, mild oxidation (200 °C) of the NH3-treated CoOx/Ta3N5 sample enhanced photocatalytic OER activity. Oxidation at higher temperatures drastically eliminated the photocatalytic activity, most likely because of unfavorable Ta3N5 oxidation. These results suggest that the intimate contact between cobalt species and Ta3N5 facilitated at high temperature is beneficial to enhancing hole transport and that the cobalt oxide provides electrocatalytic sites for OER.

  7. Establishing efficient cobalt based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst

    KAUST Repository

    Nurlaela, Ela

    2015-08-05

    In a photocatalytic suspension system with a powder semiconductor, the interface between the photocatalyst semiconductor and catalyst should be constructed to minimize resistance for charge transfer of excited carriers. This study demonstrates an in-depth understanding of pretreatment effects on the photocatalytic O2 evolution reaction (OER) activity of visible-light-responsive Ta3N5 decorated with CoOx nanoparticles. The CoOx/Ta3N5 sample was synthesized by impregnation followed by sequential heat treat-ments under NH3 flow and air flow at various temperatures. Various characterization techniques, including X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spec-troscopy (XPS), were used to clarify the state and role of cobalt. No improvement in photocatalytic activity for OER over the bare Ta3N5 was observed for the as-impregnated CoOx/Ta3N5, likely because of insufficient contact between CoOx and Ta3N5. When the sample was treated in NH3 at high temperature, a substantial improvement in the photocatalytic activity was observed. After NH3 treatment at 700 °C, the Co0-CoOx core-shell agglomerated cobalt structure was identified by XAS and STEM. No metallic cobalt species was evident after the photocatalytic OER, indicating that the metallic cobalt itself is not essential for the reaction. Accordingly, mild oxidation (200 °C) of the NH3-treated CoOx/Ta3N5 sample enhanced photocatalytic OER activity. Oxidation at higher temperatures drastically eliminated the photocatalytic activity, most likely because of unfavorable Ta3N5 oxidation. These results suggest that the intimate contact between cobalt species and Ta3N5 facilitated at high temperature is beneficial to enhancing hole transport and that the cobalt oxide provides electrocatalytic sites for OER.

  8. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  9. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tank, Kashmira P., E-mail: kashmira_physics@yahoo.co.in [Saurashtra University, Crystal Growth Laboratory, Physics Department (India); Chudasama, Kiran S.; Thaker, Vrinda S. [Saurashtra University, Bioscience Department (India); Joshi, Mihir J., E-mail: mshilp24@rediffmail.com [Saurashtra University, Crystal Growth Laboratory, Physics Department (India)

    2013-05-15

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  10. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    International Nuclear Information System (INIS)

    Tank, Kashmira P.; Chudasama, Kiran S.; Thaker, Vrinda S.; Joshi, Mihir J.

    2013-01-01

    Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson–Hall analysis. The average particle size was found to be 30–60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  11. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Frank M., E-mail: fabel@udel.edu [Physics and Astronomy, University of Delaware (United States); Tzitzios, Vasilis [Institute of Nanoscience and Nanotechnology, NCSR, Demokritos (Greece); Hadjipanayis, George C. [Physics and Astronomy, University of Delaware (United States)

    2016-02-15

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH{sub 4} in tetraglyme at temperatures in the range of 200–270 °C under a nitrogen–hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe. - Highlights: • We synthesized hexagonal cobalt nanoparticles by a new wet chemical method. • We considered the effects of different surfactants on particles magnetic properties. • The as-made Co nanoparticles had magnetic properties of 143 emu/g and 500 Oe. • After annealing magnetic properties of 160 emu/g and 540 Oe were obtained.

  12. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  13. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Slack, J.; Norton, J.L.; Malkoske, G.R.

    2003-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments. The major application is in the health care industry where irradiators are used to sterilize single use medical products. These irradiators are designed and built by MDS Nordion and are used by manufacturers of surgical kits, gloves, gowns, drapes and other medical products. The irradiator is a large shielded room with a storage pool for the cobalt-60 sources. The medical products are circulated through the shielded room and exposed to the cobalt-60 sources. This treatment sterilizes the medical products which can then be shipped to hospitals for immediate use. Other applications for this irradiation technology include sanitisation of cosmetics, microbial reduction of pharmaceutical raw materials and food irradiation. The cobalt-60 sources are manufactured by MDS Nordion in their Cobalt Operations Facility in Kanata. More than 75,000 cobalt-60 sources for use in irradiators have been manufactured by MDS Nordion. The cobalt-60 sources are double encapsulated in stainless steel capsules, seal welded and helium leak tested. Each source may contain up to 14,000 curies. These sources are shipped to over 170 industrial irradiators around the world. This paper will focus on the MDS Nordion proprietary technology used to produce the cobalt-60 isotope in CANDU reactors. Almost 55 years ago MDS Nordion and Atomic Energy of Canada developed the process for manufacturing cobalt-60 at the Chalk River Labs, in Ontario, Canada. A cobalt-59 target was introduced into a research reactor where the cobalt-59 atom absorbed one neutron to become cobalt-60. Once the cobalt-60 material was removed from the research reactor it was encapsulated in stainless steel and seal welded using a Tungsten Inert Gas weld. The first cobalt-60 sources manufactured using material from the Chalk River Labs were used in cancer

  14. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  15. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  16. Cytotoxicity and ion release of alloy nanoparticles

    International Nuclear Information System (INIS)

    Hahn, Anne; Fuhlrott, Jutta; Loos, Anneke; Barcikowski, Stephan

    2012-01-01

    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media.

  17. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    Malkoske, G.R.; Norton, J.L.; Slack, J.

    2002-01-01

    MDS Nordion has been supplying cobalt-60 sources to industry for industrial and medical purposes since 1946. These cobalt-60 sources are used in many market and product segments, but are primarily used to sterilize single-use medical products including; surgical kits, gloves, gowns, drapes, and cotton swabs. Other applications include sanitization of cosmetics, microbial reduction of pharmaceutical raw materials, and food irradiation. The technology for producing the cobalt-60 isotope was developed by MDS Nordion and Atomic Energy of Canada Limited (AECL) almost 55 years ago using research reactors at the AECL Chalk River Laboratories in Ontario, Canada. The first cobalt-60 source produced for medical applications was manufactured by MDS Nordion and used in cancer therapy. The benefits of cobalt-60 as applied to medical product manufacturing, were quickly realized and the demand for this radioisotope quickly grew. The same technology for producing cobalt-60 in research reactors was then designed and packaged such that it could be conveniently transferred to a utility/power reactor. In the early 1970's, in co-operation with Ontario Power Generation (formerly Ontario Hydro), bulk cobalt-60 production for industrial irradiation applications was initiated in the four Pickering A CANDU reactors. As the demand and acceptance of sterilization of medical products grew, MDS Nordion expanded its bulk supply by installing the proprietary Canadian technology for producing cobalt-60 in additional CANDU reactors. CANDU is unique among the power reactors of the world, being heavy water moderated and fuelled with natural uranium. They are also designed and supplied with stainless steel adjusters, the primary function of which is to shape the neutron flux to optimize reactor power and fuel bum-up, and to provide excess reactivity needed to overcome xenon-135 poisoning following a reduction of power. The reactor is designed to develop full power output with all of the adjuster

  18. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Gurpreet; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com [Advanced Functional Material Laboratory, Department of Nanotechnology,, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140 406 Punjab (India); Kumar, Manjeet [Department of Materials Engineering, Defense Institute of Advanced Technology (DU), Pune-411 025 (India); Bala, Rajni [Department of Mathematics Punjabi University Patiala-147 002 Punjab (India)

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used for high temperature applications.

  19. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Mazuera, David; Perales, Oscar; Suarez, Marcelo; Singh, Surinder

    2010-01-01

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  20. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  1. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  2. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  3. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  4. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  5. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  6. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  7. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  8. Preparation of high purity cobalt

    International Nuclear Information System (INIS)

    Isshiki, M.; Fukuda, Y.; Igaki, K.

    1985-01-01

    A combination of anion exchange separation, electrolytic extraction, floating zone refining and dry hydrogen treatment was used to purify cobalt. The effectiveness of each purification process was confirmed by measurements of the residual resistivity ratio (RRR) and activation analyses. Proton activation analysis revealed that all the main metallic impurities except iron were effectively removed by a combination of these processes. The effective removal of oxygen, nitrogen and carbon by dry hydrogen treatment was confirmed by activation analyses using 3 He ion beams, proton beams and γ rays. It was found that the rate-controlling step in the decarburization process was a surface reaction. The maximum RRR obtained for the purified specimen was 334, which is higher than previously reported values. (Auth.)

  9. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  10. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  11. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  12. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  13. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  14. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  15. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  16. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  17. Cobalt-60 control in Ontario Hydro reactors

    International Nuclear Information System (INIS)

    Lacy, C.S.

    1988-01-01

    This paper discusses the impact of specifying reduced Cobalt-59 in the primary heat transport circuit materials of construction on the radiation fields developed around the primary circuit. An eight-fold reduction in steam generator radiation fields due to Cobalt-60 has been observed for two identical sets of reactors, one with and one without Cobalt-59 control. The comparison is between eight reactors at the Pickering Nuclear Generating Station (PNGS). Units 5 to 8 (PNGS-B) are identical to Units 1 to 4 (PNGS-A) except that PNGS-B has reduced impurity Cobalt-59 in the alloys of construction and a reduced use of stellite. The effects of chemistry control are also discussed

  18. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.; Joshi, Meenal M.; Tijare, Saumitra N.; Polshettiwar, Vivek; Labhsetwar, Nitin K.; Rayalu, Sadhana Suresh

    2012-01-01

    of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. An elevator for cobalt-60 source

    International Nuclear Information System (INIS)

    Tang Zaimin; Liang Donghu

    1990-07-01

    The elevator used for cobalt-60 source is a key device in the irradiation industry. It plays an important role in the safety and control of irradiation operation as well as the utilization rate of radiation source. From 1983 to 1986, Beijing Institute of Nuclear Engineering undertook designing of various size irradiation projects for different uses. Since then a kind of cobalt-60 source elevator suited for the irradiator of wet-source-storage has been chosen. It is reliable in the operation and complete in the function. An automatic control circuit brings the systems of cobalt-60 source elevator into an interlock system which ensures the irradiation operation safety. Besides introducing the structural features and performance of this elevator, the conditions of safety interlocking in raising or lowering the cobalt-60 source is also discussed. The discussion is from the safety viewpoint of operating an irradiator and irradiation technology

  20. Transport properties of cobalt at low temperatures

    DEFF Research Database (Denmark)

    Radharkishna, P.; Nielsen, Mourits

    1965-01-01

    Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering.......Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering....

  1. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  2. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  3. COBALT COMPOUNDS AS ANTIDOTES FOR HYDROCYANIC ACID.

    Science.gov (United States)

    EVANS, C L

    1964-12-01

    The antidotal potency of a cobalt salt (acetate), of dicobalt edetate, of hydroxocobalamin and of cobinamide against hydrocyanic acid was examined mainly on mice and rabbits. All the compounds were active antidotes for up to twice the LD50; under some conditions for larger doses. The most successful was cobalt acetate for rabbits (5xLD50), which was effective at a molar cyanide/cobalt (CN/Co) ratio of 5, but had as a side-effect intense purgation. Hydroxocobalamin was irregular in action, but on the whole was most effective for mice (4.5xLD50 at a molar ratio of 1), and had no apparent side effects. Dicobalt edetate, at molar ratios of up to 2, was more effective for rabbits (3xLD50) than for mice (2xLD50), but had fewer side effects than cobalt acetate. The effect of thiosulphate was to augment the efficacy of dicobalt edetate and, in mice, that of hydroxocobalamin; but, apparently, in rabbits, to reduce that of hydroxocobalamin. Cobinamide, at a molar ratio of 1, was slightly more effective than hydroxocobalamin on rabbits and also less irregular in its action. Cobalt acetate by mouth was effective against orally administered hydrocyanic acid. The oxygen uptake of the body, reduced by cyanide, is rapidly reinstated when one of the cobalt antidotes has been successfully administered.

  4. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  5. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  6. Structural and magnetic properties of cobalt nanostructures on SiO{sub 2}/Si(1 1 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bounour-Bouzamouche, W. [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); LEREC, Université d’Annaba, BP12 – 23000 (Algeria); Chérif, S.M., E-mail: cherif@univ-paris13.fr [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Farhat, S.; Roussigné, Y.; Tallaire, A.; Gicquel, A. [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Lungu, C.P. [NILPR, 409, Magurele, JudIlfov, 077125 Bucharest (Romania); Guerioune, M. [LEREC, Université d’Annaba, BP12 – 23000 (Algeria)

    2014-11-30

    Highlights: • Heat and plasma treatments of ultrathin cobalt films deposited on SiO{sub 2}/Si(1 1 1) create highly auto-organized structures. • Direct correlation between the film thickness and the size of the nanoparticles formed after thermal annealing. • Modification of the surface morphology strongly influences the magnetic response of the investigated films. • Formation of Co islands in triangular shapes is found to play a key role in the enhancement of the coercive field. - Abstract: 2D architectures of cobalt onto silicon (1 1 1) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800 °C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750 °C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.

  7. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    Science.gov (United States)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify

  8. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  9. Synthesis of new cobalt aluminophosphate framework by opening a cobalt methylphosphonate layered material

    Czech Academy of Sciences Publication Activity Database

    Zaarour, M.; Pérez, O.; Boullay, P.; Martens, J.; Mihailova, B.; Karaghiosoff, K.; Palatinus, Lukáš; Mintova, S.

    2017-01-01

    Roč. 19, č. 34 (2017), s. 5100-5105 ISSN 1466-8033 Institutional support: RVO:68378271 Keywords : cobalt aluminophosphate * cobalt methylphosphonate * layered materials * crystallic structure * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.474, year: 2016

  10. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...

  11. The effect of cobalt and molybdenum on the creep strength of low C-18Cr-10Ni steel

    International Nuclear Information System (INIS)

    Tomono, Yutaka; Ueda, Jitsuhiko

    1982-01-01

    The improvement of creep strength through the addition of cobalt and molybdenum to low C-18Cr-10Ni steel was studied at a temperature range of between 700 and 800 0 C. Changes in mechanical and physical properties such as lattice parameter and stacking fault energy, related to the additional elements were investigated to estimate the strengthening effect. Dislocation structures corresponding to the various creep stages were observed through a transmission electron microscope to distinguish the solution hardening effect of the added elements from the precipitation hardening effects of carbide. The results obtained are summarized as follows: (1) Addition of cobalt of up to 20% by weight improved the creep strength of austenitic steel. Addition of molybdenum of up to 5% by weight remarkably improved the creep strength of austenitic steel having a cobalt content of 20% by weight. (2) The trend for creep strength to improve with the addition of these elements was closely coincident with increases in lattice parameter and did not necessarily coincide with changes in the stacking fault energy. (author)

  12. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  13. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  14. Reactor irradiation effect on the physical-mechanical properties of zirconium carbides and niobium carbides

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Vlasov, K.P.; Shevchenko, A.S.; Lanin, A.G.; Pritchin, S.A.; Klyushin, V.V.; Kurushin, S.P.; Maskaev, A.S.

    1978-01-01

    A study has been made of the effect of the reactor radiation by a flux of neutrons 1.5x10 20 n/cm 2 (E>=1 meV) at radiation temperatures of 150 and 1100 deg C on the physico-mechanical properties of carbides of zirconium and niobium and their equimolar hard solution. A difference has been discovered in the behaviour of the indicated carbides under the effect of radiation. Under the investigated conditions of radiation the density of zirconium carbide is being decreased, while in the niobium carbide no actual volumetric changes occur. The increase of the lattice period in ZrC is more significant than in NbC. The electric resistance of ZrC is also changed more significantly than in the case of NbC, while for the microhardness a reverse relationship is observed. Strength and elasticity modulus change insignificantly in both cases. Resistance to crack formation shows a higher reduction for ZrC than for NbC, while the thermal strength shows an approximately similar increase. The equimolar hard solution of ZrC and NbC behaves to great extent similar to ZrC, although the change in electric resistance reminds of NbC while thermal strength changes differently. The study of the microstructure of the specimens has shown that radiation causes a large number of etching patterns-dislocations in NbC which are almost absent in ZrC

  15. Cobalt nanoparticles as reusable catalysts for reduction of 4 ...

    Indian Academy of Sciences (India)

    2Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India ..... also identical, which emphasizes the very stable nature of ... ticles when the same metal content per litre aqueous solu-.

  16. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  17. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  18. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  19. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  20. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  1. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  2. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  3. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  4. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  5. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  6. Cobalt: A vital element in the aircraft engine industry

    Science.gov (United States)

    Stephens, J. R.

    1981-01-01

    Recent trends in the United States consumption of cobalt indicate that superalloys for aircraft engine manufacture require increasing amounts of this strategic element. Superalloys consume a lion's share of total U.S. cobalt usage which was about 16 million pounds in 1980. In excess of 90 percent of the cobalt used in this country was imported, principally from the African countries of Zaire and Zambia. Early studies on the roles of cobalt as an alloying element in high temperature alloys concentrated on the simple Ni-Cr and Nimonic alloy series. The role of cobalt in current complex nickel base superalloys is not well defined and indeed, the need for the high concentration of cobalt in widely used nickel base superalloys is not firmly established. The current cobalt situation is reviewed as it applies to superalloys and the opportunities for research to reduce the consumption of cobalt in the aircraft engine industry are described.

  7. Assessment of cobalt levels in wastewater, soil and vegetable ...

    African Journals Online (AJOL)

    User

    Key words: Cobalt level, Kubanni River, soil, vegetable, wastewater. INTRODUCTION. Cobalt is ... metals released into the environment from a variety of anthropogenic activities ..... Heavy Metal Stress in Plants, 2nd Edition,. Springer,. United.

  8. Synthesis and phosphatase activity of a Cobalt(II) phenanthroline ...

    Indian Academy of Sciences (India)

    MAMONI GARAI

    2017-09-19

    Sep 19, 2017 ... Synthesis and phosphatase activity of a Cobalt(II) phenanthroline complex. MAMONI GARAIa ... tion, cobalt complexes have gained importance because of their application as ... 2.3 Physical measurements. Infrared spectrum ...

  9. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  10. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  11. The physiological effect of cobalt on watermelon cultivation

    International Nuclear Information System (INIS)

    Yao Naihua; Jin Yafang; Sun Yaochen; Huang Yiming

    1993-01-01

    Cobalt has essential physiological action on both animals and plants. For the latter it can raise plant's nitrogen-fixing ability and saccharine content. Spray of cobalt mixed with other nutritive elements can improve the germinatit of seeds and the yield of fruit. For specifying the nutritive function of cobalt upon watermelon, isotope 60 Co was mixed into a complex leaf nutritive aqua and the regularity of transferring and absorbing cobalt in the watermelon's body was investigated

  12. Relaxation resistance of heat resisting alloys with cobalt

    International Nuclear Information System (INIS)

    Borzdyka, A.M.

    1977-01-01

    Relaxation resistance of refractory nickel-chromium alloys containing 5 to 14 % cobalt is under study. The tests involve the use of circular samples at 800 deg to 850 deg C. It is shown that an alloy containing 14% cobalt possesses the best relaxation resistance exceeding that of nickel-chromium alloys without any cobalt by a factor of 1.5 to 2. The relaxation resistance of an alloy with 5% cobalt can be increased by hardening at repeated loading

  13. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  14. In-situ reduction of promoted cobalt oxide supported on alumina by environmental transmission electron microscopy

    DEFF Research Database (Denmark)

    Dehghan, Roya; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2011-01-01

    the reactivity of the nanoparticles and the importance of controlling the gas composition and specimen temperature during this type of experiment. Similar behaviour was observed for a non-promoted catalyst. Imaging and analysis of the promoted sample before and after reduction indicated a uniform distribution...... resolution transmission electron microscopy and scanning transmission electron microscopy imaging. The cobalt particles were mainly face centred cubic while some hexagonal close packed particles were also found. Reoxidation of the sample upon cooling to room temperature, still under flowing H2, underlines...

  15. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  16. Carbon potential measurement on some actinide carbides

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Vasudeva Rao, P.R.; Mathews, C.K.; Jacob, K.T.

    1994-01-01

    Uranium-Plutonium mixed carbides with a Pu/(U+Pu) ratio of 0.55 are to be used as the fuel in the Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. Carburization of the stainless steel clad by this fuel is determined by its carbon potential. Because the carbon potential of this fuel composition is not available in the literature, it was measured by the methane-hydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-to-hydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThC 2 as well as Mo-Mo 2 C system, which is an important binary in the actinide-fission product-carbon systems, were also measured by this technique in the temperature range 973 to 1,173 K. The data for the Mo-Mo 2 C system are in agreement with values reported in the literature. The results for the ThC-ThC 2 system are different from estimated values with large uncertainty limits given in the literature. The data on (U, Pu) mixed carbides indicates the possibility of stainless steel clad attack under isothermal equilibrium conditions

  17. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  18. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.

    Science.gov (United States)

    Sun, Jian; Guo, Lisheng; Ma, Qingxiang; Gao, Xinhua; Yamane, Noriyuki; Xu, Hengyong; Tsubaki, Noritatsu

    2017-02-01

    We report a one-pot and eco-friendly synthesis of carbon-supported cobalt nanoparticles, achieved by carbonization of waste biomass (rice bran) with a cobalt source. The functionalized biomass provides carbon microspheres as excellent catalyst support, forming a unique interface between hydrophobic and hydrophilic groups. The latter, involving hydroxyl and amino groups, can catch much more active cobalt nanoparticles on surface for Fischer-Tropsch synthesis than chemical carbon. The loading amount of cobalt on the final catalyst is much higher than that prepared with a chemical carbon source, such as glucose. The proposed concept of using a functionalized natural carbon source shows great potential compared with conventional carbon sources, and will be meaningful for other fields concerning carbon support, such as heterogeneous catalysis or electrochemical fields. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  20. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air......A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... for 300 h at 800 °C. The coating was characterized with Glow Discharge Optical Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The oxidation properties were evaluated by measuring weight change of coated samples of Crofer 22 H and Crofer 22 APU as a function...