WorldWideScience

Sample records for carbide cobalt nanoparticles

  1. High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material

    OpenAIRE

    Harris, V. G.; Chen, Y; Yang, A.; Yoon, S.; Chen, Z.; Geiler, Anton; Chinnasamy, C. N.; Lewis, L. H.; Vittoria, C.; Carpenter, E. E.; Carroll, K. J.; Goswami, R.; Willard, M. A.; Kurihara, L.; Gjoka, M.

    2009-01-01

    Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m3. Consisting of Co3C and Co2C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magne...

  2. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    International Nuclear Information System (INIS)

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co2C and Co3C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the CoxC nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties

  3. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Zamanpour, Mehdi; Bennett, Steven P. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Majidi, Leily [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-03-15

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  4. Atomic structure of high-coercivity cobalt-carbide nanoparticles ensembles

    Science.gov (United States)

    Arena, D. A.; Sterbinsky, G.; Stephens, P. W.; Carroll, K. J.; Yoon, H.; Meng, S.; Huba, Z.; Carpenter, E. E.

    2013-03-01

    Permanent magnets are increasingly important in numerous applications, including the quickly expanding area of green technologies (e . g . high efficiency electric car motors and wind turbine power systems). We present studies of novel permanent magnet materials based on cobalt carbide nanoparticles (NPs), where the energy product (BHmax) exceeds 20 kJ / m3. The NPs are synthesized via a polyol process, which offers a flexible approach to modify the Co-carbide phase (Co2C and Co3C), and NP morphology, size and size dispersion. The Co2C and Co3C phases have unique magnetic properties, and the combination exhibits the high BHmax . We present a detailed assessment of the structure of mixtures of Co2C and Co3 NPs, measured by high-resolution, synchrotron based powder x-ray diffraction (p-XRD). Both the Co2C and Co3 phases exhibit an orthorhombic structure (Pnnm and Pnma space groups, respectively). The high-resolution p-XRD facilitates identification of mixed phase samples, enabling detailed comparisons of the atomic structure with the magnetic properties, measured by both lab-based magnetometry and x-ray spectroscopy (soft x-ray XAS & XMCD).

  5. Genotoxicity of tungsten carbide-cobalt (WC-Co) nanoparticles in vitro: mechanisms-of-action studies.

    Science.gov (United States)

    Moche, Hélène; Chevalier, Dany; Vezin, Hervé; Claude, Nancy; Lorge, Elisabeth; Nesslany, Fabrice

    2015-02-01

    We showed previously that tungsten carbide-cobalt (WC-Co) nanoparticles (NP) can be used as a nanoparticulate positive control in some in vitro mammalian genotoxicity assays. Here, we investigate the mechanisms of action involved in WC-Co NP genotoxicity in L5178Y mouse lymphoma cells and primary human lymphocytes, in vitro. Data from the micronucleus assay coupled with centromere staining and from the chromosome-aberration assay show the involvement of both clastogenic and aneugenic events. Experiments with the formamidopyrimidine DNA glycosylase (FPG)-modified comet assay showed a slight (non-significant) increase in FPG-sensitive sites in the L5178Y mouse lymphoma cells but not in the human lymphocytes. Electron paramagnetic resonance spin-trapping results showed the presence of hydroxyl radicals (•OH) in WC-Co NP suspensions, with or without cells, but with time-dependent production in the presence of cells. However, a significant difference in •OH production was observed between human lymphocytes from two different donors. Using H2O2, we showed that WC-Co NP can participate in Fenton-like reactions. Thus, •OH might be produced either via intrinsic generation by WC-Co NP or through a Fenton-like reaction in the presence of cells. PMID:25813722

  6. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  7. Cobalt exposure in a carbide tip grinding process.

    Science.gov (United States)

    Stebbins, A I; Horstman, S W; Daniell, W E; Atallah, R

    1992-03-01

    Reports relating hard metal disease or nonspecific respiratory symptoms to tungsten or cobalt exposure have been published in the past 20 yr. This report discusses a work site investigation of a small company, employing approximately 50 workers, producing carbide tip saw blades for the woodworking industry. Cobalt exposure was characterized by ambient air monitoring (area and personnel), particle size determination, and biological monitoring. Area sampling for cadmium, cobalt, and tungsten indicated low ambient air levels in all manufacturing areas except the grinding department, which had cobalt air levels approaching the threshold limit value of 0.05 mg/m3. Area airborne cobalt exposure levels measured over six shifts in the grinding department ranged from 0.017 to 0.12 mg/m3 for the total collection method and 0.002 to 0.028 mg/m3 for the method collecting respirable particles. Cobalt content in the total and respirable fractions was similar. Urine monitoring indicated production workers have elevated cobalt levels, and the grinders' levels were higher than other production workers. The grinding coolant was found to have elevated cobalt concentrations. A survey of coolants from nine carbide grinding shops indicated the elevated cobalt concentrations may be common.

  8. Nanofibre growth from cobalt carbide produced by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga-Arceo, L [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Orozco, E [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Garibay-Febles, V [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico); Bucio-Galindo, L [Instituto de Fisica UNAM, Apartado Postal 20-364 CP 01000, DF (Mexico); Mendoza Leon, H [FM-UPALM, IPN, Apartado Postal 75-395 CP 07300, DF (Mexico); Castillo-Ocampo, P [UAM-Iztapalapa, Apartado Postal 55-334 CP 09340, DF (Mexico); Montoya, A [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, Colonia San Bartolo Atepehuacan, Mexico DF, 07730 (Mexico)

    2004-06-09

    Mechanical alloying was used to prepare cobalt carbide. Microstructural characterization of samples was performed by x-ray diffraction, differential scanning calorimetry and transmission electron microscopy methods. In order to produce carbon nanotubes, the cobalt carbide was precipitated after heating at 800 and 1000 deg. C for 10 min. Nanofibres of about 10-50 nm in diameter, 0.04-0.1 {mu}m in length and 20-200 nm in diameter and 0.6-1.2 {mu}m in length were obtained after heating at 800 and 1000 deg. C, respectively, by means of this process.

  9. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    Science.gov (United States)

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. PMID:24746988

  10. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Armstead, Andrea L. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Arena, Christopher B. [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Li, Bingyun, E-mail: bili@hsc.wvu.edu [Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Pharmaceutical and Pharmacological Sciences Graduate Program, School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); E.J. Van Liere Research Program, School of Medicine, West Virginia University, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, Morgantown, WV 26506 (United States)

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause “hard metal lung disease” but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. - Highlights: • Hard metal (WC-Co) particle toxicity was established in lung epithelial cells. • Nano-WC-Co particles caused greater toxicity than micro-WC-Co particles. • Nano- and micro-WC-Co particles were capable of inducing cellular apoptosis. • Nano-WC-Co particles were internalized by lung epithelial cells. • WC-Co particle internalization was mediated by actin dynamics.

  11. Heat-Resistance of the Powder Cobalt Alloys Reinforced by Niobium or Titanium Carbide

    Directory of Open Access Journals (Sweden)

    Cherepova, T.S.

    2016-01-01

    Full Text Available The characteristics of heat-resistance of powder cobalt alloys at 1100 °C were investigated. These alloys were developed for the protection of workers banding shelves GTE blades from wear. The alloys were prepared by hot pressing powders of cobalt, chromium, aluminum, iron and niobium or titanium carbides. The values of heat resistance alloys containing carbides between 30 and 70% (vol. depend on the type made of carbide alloys: alloys with titanium carbide superior in heat-resistant alloy of niobium carbide. The most significant factor affecting on the heat-resistant alloys, is porosity: with its increase the parameters decline regardless of the type and content of carbide. The optimum composition of powder heat resisting alloys of titanium carbide with a melting point above 1300 °C were determined for use in the aircraft engine.

  12. Sonochemical Synthesis of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Partha P. Goswami

    2013-01-01

    Full Text Available Cobalt ferrite being a hard magnetic material with high coercivity and moderate magnetization has found wide-spread applications. In this paper, we have reported the sonochemical synthesis of cobalt ferrite nanoparticles using metal acetate precursors. The ferrite synthesis occurs in three steps (hydrolysis of acetates, oxidation of hydroxides, and in situ microcalcination of metal oxides that are facilitated by physical and chemical effects of cavitation bubbles. The physical and magnetic properties of the ferrite nano-particles thus synthesized have been found to be comparable with those reported in the literature using other synthesis techniques.

  13. Electronic structure of cobalt carbide, CoC.

    Science.gov (United States)

    Tzeli, Demeter; Mavridis, Aristides

    2006-07-20

    The ground and 18 low lying excited states of the diatomic molecule cobalt carbide, CoC, have been examined by multireference variational methods (MRCI) combined with quantitative basis sets. All calculated states are bound and correlate adiabatically to the ground-state atoms, Co(a4F) + C(3P). We report complete potential energy curves, equilibrium bond distances, dissociation energies (De), spectroscopic constants, electric dipole moments and spin-orbit splittings. The bonding character of certain states is also discussed with the help of Mulliken distributions and valence-bond-Lewis diagrams. We are practically certain that the ground state is of 2Sigma+ symmetry with a state of 2Delta symmetry lying less than 3 kcal/mol higher, in agreement with the relevant experimental findings. Our best estimate of the X 2Sigma+ dissociation energy is De(D0) = 83(82) kcal/mol at r(e) = 1.541 A, 0.02 A shorter than the experimental bond length. PMID:16836459

  14. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  15. Pressureless sintering of beta silicon carbide nanoparticles

    International Nuclear Information System (INIS)

    This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 degrees C) and the pressureless sintering studied between 1900 and 2100 degrees C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 degrees C. The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 degrees C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation. TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism. (authors)

  16. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  17. Evaluation of the role of reactive oxygen species in the interactive toxicity of carbide-cobalt mixtures on macrophages in culture.

    Science.gov (United States)

    Lison, D; Lauwerys, R

    1993-01-01

    The lung toxicity of a carbide-cobalt mixture is more important than that of each individual component; the mechanism of this interaction is not understood. The capacity of cobalt metal particles alone and mixed with different carbides to generate hydroxyl radicals was examined with the deoxyribose assay. In a chemical system, cobalt ions and cobalt metal particles (Co) were found to catalyse the degradation of deoxyribose in the presence of hydrogen peroxide. Carbides were able to directly oxidize deoxyribose, but their respective activities did not support such a mechanism to explain the carbide-cobalt interactive toxicity, since there was no direct relationship between deoxyribose degradation ability and cytotoxicity toward macrophages. Tungsten, niobium, titanium and chromium carbides (interactive carbides) were only weak oxidants and conversely molybdenum, vanadium and silicon carbides (non-interactive carbides) were the most potent ones. The ability of cobalt metal to produce hydroxyl radicals in the presence of hydrogen peroxide was not increased by tungsten carbide. The role of reactive radical formation in the toxicity of these particles was further assessed in a macrophage culture model. Catalase (4000 U/ml), superoxide dismutase (300 U/ml), sodium azide (1 mM), sodium benzoate, mannitol, taurine and methionine (all 20 mM) were all unable to protect against the cytotoxic effects of cobalt ions and cobalt metal alone or mixed with tungsten carbide. In conclusion, no evidence was found that production of reactive oxygen species contributes to the elective toxicity of carbide-cobalt mixtures. PMID:8396391

  18. Cobalt-silica magnetic nanoparticles with functional surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Vadala, Michael L. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States); Zalich, Michael A. [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); Fulks, David B. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States); St Pierre, Tim G. [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); Dailey, James P. [Department of Ophthalmology, Case Western Reserve University, Cleveland, OH (United States); Riffle, Judy S. [Department of Chemistry and the Macromolecules and Interfaces Institute, Virginia Polytechnic Institute and State University, Mail Code 0212, Blacksburg, VA 24061-0344 (United States)]. E-mail: judyriffle@aol.com

    2005-05-15

    Cobalt nanoparticles encased in polysiloxane block copolymers have been heated at 600-700 deg C to form protective shells around the particles, which contain crosslinked Si-O structures, and to anneal the cobalt. Methods to functionalize and modify the surfaces of the pyrolyzed/annealed silica-cobalt complexes with amines, isocyanates, poly(ethylene oxide), poly(L-lactide) and polydimethylsiloxane (PDMS) are presented.

  19. Surface oxidation of cobalt nanoparticles studied by Mossbauer spectroscopy

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Charles, S.W.;

    1999-01-01

    The surface oxide formed on cobalt nanoparticles has been studied by Mossbauer emission spectroscopy. Exposure of the cobalt particles to oxygen at room temperature was found to result in the formation of a relatively well-ordered surface oxide with Mossbauer parameters similar to those of CoO....

  20. Functionalization and cellular uptake of boron carbide nanoparticles

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Björkdahl, O.; Sørensen, P. G.;

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant...... melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded...

  1. Fabrication of Tungsten Carbide Nanoparticles from Refluxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    WEN Jiqiu; LI Yongdi; MENG Xiaopeng; YIN Guangfu; YAO Yadong

    2015-01-01

    Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200℃for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20-60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

  2. Microemulsion-mediated synthesis of cobalt (pure fcc and hexagonal phases) and cobalt-nickel alloy nanoparticles.

    Science.gov (United States)

    Ahmed, Jahangeer; Sharma, Shudhanshu; Ramanujachary, Kandalam V; Lofland, Samuel E; Ganguli, Ashok K

    2009-08-15

    By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H(2) at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.

  3. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Science.gov (United States)

    Sarr, Mouhamadou; Bahlawane, Naoufal; Arl, Didier; Dossot, Manuel; McRae, Edward; Lenoble, Damien

    2016-08-01

    The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  4. Cobalt-based Magnetic Nanoparticles: Design, Synthesis and Characterization

    Science.gov (United States)

    Zamanpour, Mehdi

    magnet is also reported. To synthesize MnAlC-FeCo, mechanical alloying and dry mixing of MnAlC and FeCo nanoparticles are accomplished followed by annealing in a furnace. Morphological and magnetic properties of the nanoparticles are obtained by scanning electron microscopy (SEM), x-ray diffractometry (XRD), vibrating sample magnetometry (VSM) and physical property measuring system (PPMS) magnetometry, respectively. Overall, the achieved results in this work enable synthesis of high moment FeCo and high coercivity CoxC with desired structure and magnetic properties obtained through polyol method. In particular, this Dissertation provides the technique to fabricate cobalt carbide nanoparticles without using rare earth elements as a catalyst or as heterogeneous seed nuclei at any stage: pre-processing, synthesis and post-processing. Although the experimental results of this work suggest successful fabrication of desired materials, there are many unanswered questions and unresolved challenges regarding reaction mechanism and optimizing the magnetic properties of these materials. Therefore, some recommendations are provided at the end of this Dissertation for further studies and future work. It should be noted that, implementing first principal calculations on these particles will provide better explanations and enable prediction of structure and magnetic properties of the nanoparticles and facilitate designing more complex heterostructures.

  5. Study of DNA interaction with cobalt ferrite nanoparticles.

    Science.gov (United States)

    Pershina, A G; Sazonov, A E; Novikov, D V; Knyazev, A S; Izaak, T I; Itin, V I; Naiden, E P; Magaeva, A A; Terechova, O G

    2011-03-01

    Interaction of cobalt ferrite nanopowder and nucleic acid was investigated. Superparamagnetic cobalt ferrite nanoparticles (6-12 nm) were prepared by mechanochemical synthesis. Structure of the nanopowder was characterized using X-ray diffraction. It was shown that cobalt ferrite nanoparticles were associated with ssDNA and dsDNA in Tris-buffer resulting in bionanocomposite formation with mass weight relation nanoparticles: DNA 1:(0.083 +/- 0.003) and 1:(0.075 +/- 0.003) respectively. The mechanism of interaction between a DNA and cobalt ferrite nanoparticles was considered basing on the whole set of obtained data: FTIR-spectroscopy, analyzing desorption of DNA from the surface of the particles while changing the chemical content of the medium, and on the modeling interaction of specific biomolecule fragments with surface of a inorganic material. It was supposed that the linkage was based on coordination interaction of the phosphate groups and oxygen atoms heterocyclic bases of DNA with metal ions on the particle surface. These data can be used to design specific magnetic DNA-nanoparticles hybrid structures. PMID:21449452

  6. Finite element analysis of thermal residual stresses at cemented carbide rock drill buttons with cobalt-gradient structure

    Institute of Scientific and Technical Information of China (English)

    HUANG Zi-qian; HE Yue-hui; CAI Hai-tao; XIAO Yi-feng; HUANG Bai-yun

    2008-01-01

    The aim of this study is to apply the concept of functionally graded materials (FGMs) to cemented carbides and to develop high-performance rock drill buttons.Cobalt-gradient structure was introduced to the surface zone of the buttons by carburizing process.Finite element method and XRD measurement were used to decide the distribution of thermal residual stress.Constitutive parameters were determined by constraint factor.Numerical results show that residual stresses of gradient buttons mainly concentrate in cobalt-gradient zone.There is compressive stress in the surface zone and tensile stress in the cobalt-rich zone.The maximum value of surface compressive stress is 180 MPa for WC-6Co cemented carbides.And the numerical results agree with the results of XRD measurement.

  7. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  8. Cobalt carbide nanoprisms for direct production of lower olefins from syngas

    Science.gov (United States)

    Zhong, Liangshu; Yu, Fei; An, Yunlei; Zhao, Yonghui; Sun, Yuhan; Li, Zhengjia; Lin, Tiejun; Lin, Yanjun; Qi, Xingzhen; Dai, Yuanyuan; Gu, Lin; Hu, Jinsong; Jin, Shifeng; Shen, Qun; Wang, Hui

    2016-10-01

    Lower olefins—generally referring to ethylene, propylene and butylene—are basic carbon-based building blocks that are widely used in the chemical industry, and are traditionally produced through thermal or catalytic cracking of a range of hydrocarbon feedstocks, such as naphtha, gas oil, condensates and light alkanes. With the rapid depletion of the limited petroleum reserves that serve as the source of these hydrocarbons, there is an urgent need for processes that can produce lower olefins from alternative feedstocks. The ‘Fischer–Tropsch to olefins’ (FTO) process has long offered a way of producing lower olefins directly from syngas—a mixture of hydrogen and carbon monoxide that is readily derived from coal, biomass and natural gas. But the hydrocarbons obtained with the FTO process typically follow the so-called Anderson–Schulz–Flory distribution, which is characterized by a maximum C2–C4 hydrocarbon fraction of about 56.7 per cent and an undesired methane fraction of about 29.2 per cent (refs 1, 10, 11, 12). Here we show that, under mild reaction conditions, cobalt carbide quadrangular nanoprisms catalyse the FTO conversion of syngas with high selectivity for the production of lower olefins (constituting around 60.8 per cent of the carbon products), while generating little methane (about 5.0 per cent), with the ratio of desired unsaturated hydrocarbons to less valuable saturated hydrocarbons amongst the C2–C4 products being as high as 30. Detailed catalyst characterization during the initial reaction stage and theoretical calculations indicate that preferentially exposed {101} and {020} facets play a pivotal role during syngas conversion, in that they favour olefin production and inhibit methane formation, and thereby render cobalt carbide nanoprisms a promising new catalyst system for directly converting syngas into lower olefins.

  9. Ionic magnetic fluid based on cobalt ferrite nanoparticles: Influence of hydrothermal treatment on the nanoparticle size

    Energy Technology Data Exchange (ETDEWEB)

    Cabuil, Valerie; Dupuis, Vincent; Talbot, Delphine [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France); CNRS, UMR 7195, PECSA, F-75005, Paris (France); Neveu, Sophie, E-mail: sophie.neveu@upmc.f [UPMC Univ Paris 06, UMR 7195, PECSA, F-75005, Paris (France); CNRS, UMR 7195, PECSA, F-75005, Paris (France)

    2011-05-15

    Magnetic fluid based on cobalt ferrite nanoparticles was obtained using a hydrothermal treatment added to the Massart procedure. This treatment increases the average size of the nanoparticles from 11.9 to 18.7 nm and also improves the dispersity and crystallinity of the cobalt ferrite particles. The nanoparticles obtained after the hydrothermal treatment were dispersed in aqueous solvent by the classical procedure for ionic magnetic fluids. The ferrofluid thus obtained is stable at pH 7 and may be useful for hyperthermia applications. - Research Highlights: Hydrothermal synthesis of cobalt ferrite ferrofluid (mean particle size of 12-19 nm). Good control of size, dispersity and crystallinity of the cobalt ferrite particles. Ferrofluid stable at pH 7 and useful for hyperthermia applications.

  10. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

    Science.gov (United States)

    Wolff, Annalena; Hetaba, Walid; Wißbrock, Marco; Löffler, Stefan; Mill, Nadine; Eckstädt, Katrin; Dreyer, Axel; Ennen, Inga; Sewald, Norbert; Schattschneider, Peter; Hütten, Andreas

    2014-01-01

    Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment. PMID:24605288

  11. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

    Directory of Open Access Journals (Sweden)

    Annalena Wolff

    2014-02-01

    Full Text Available Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment.

  12. Evaluation of the apoptogenic potential of hard metal dust (WC-Co), tungsten carbide and metallic cobalt.

    Science.gov (United States)

    Lombaert, Noömi; De Boeck, Marlies; Decordier, Ilse; Cundari, Enrico; Lison, Dominique; Kirsch-Volders, Micheline

    2004-12-01

    The present study aimed at comparing in vitro the apoptogenic properties of metallic cobalt (Co), tungsten carbide (WC) and tungsten carbide-cobalt (WC-Co) in conditions known to cause genotoxicity. Human peripheral blood mononucleated cells were incubated with 2.0-6.0 microg/ml of Co alone or mixed with WC particles and 33.3-100.0 microg/ml WC alone for up to 24 h. Under these culture conditions the majority (60%) of the cobalt metal particles were almost immediately solubilised in the culture medium, while WC remained under the form of particles that were progressively phagocytosed by monocytes. Apoptosis was assessed by Annexin-V staining, flow cytometry and analysis of DNA fragmentation by ELISA. Metallic Co-particles induced apoptosis in vitro. Furthermore, although so far considered as biologically inert, WC particles also induced apoptosis. When compared with its individual components WC-Co displayed an additive apoptotic effect in the DNA fragmentation assay. Apoptosis induced by WC particles was found largely dependent on caspase-9 activation and occurred presumably in monocytes, while that induced by Co involved both caspase-9 and -8 activation. The data suggest that apoptosis induced by the tested WC-Co mixture results from the additive effects of WC apoptosis induced in monocytes and Co-specific apoptosis in both monocytes and lymphocytes. The apoptogenic properties of these metals may be important in the mechanism of lung pathologies induced by the cobalt-containing particles. PMID:15475175

  13. The structural evolution and diffusion during the chemical transformation from cobalt to cobalt phosphide nanoparticles

    KAUST Repository

    Ha, Don-Hyung

    2011-01-01

    We report the structural evolution and the diffusion processes which occur during the phase transformation of nanoparticles (NPs), ε-Co to Co 2P to CoP, from a reaction with tri-n-octylphosphine (TOP). Extended X-ray absorption fine structure (EXAFS) investigations were used to elucidate the changes in the local structure of cobalt atoms which occur as the chemical transformation progresses. The lack of long-range order, spread in interatomic distances, and overall increase in mean-square disorder compared with bulk structure reveal the decrease in the NP\\'s structural order compared with bulk structure, which contributes to their deviation from bulk-like behavior. Results from EXAFS show both the Co2P and CoP phases contain excess Co. Results from EXAFS, transmission electron microscopy, X-ray diffraction, and density functional theory calculations reveal that the inward diffusion of phosphorus is more favorable at the beginning of the transformation from ε-Co to Co2P by forming an amorphous Co-P shell, while retaining a crystalline cobalt core. When the major phase of the sample turns to Co 2P, the diffusion processes reverse and cobalt atom out-diffusion is favored, leaving a hollow void, characteristic of the nanoscale Kirkendall effect. For the transformation from Co2P to CoP theory predicts an outward diffusion of cobalt while the anion lattice remains intact. In real samples, however, the Co-rich nanoparticles continue Kirkendall hollowing. Knowledge about the transformation method and structural properties provides a means to tailor the synthesis and composition of the NPs to facilitate their use in applications. © 2011 The Royal Society of Chemistry.

  14. Enhanced deposition of cubic boron nitride films on roughened silicon and tungsten carbide-cobalt surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Teii, K., E-mail: teii@asem.kyushu-u.ac.j [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Hori, T. [Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Matsumoto, S. [Exploratory Materials Research Laboratory for Energy and Environment, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Ceramic Forum Co. Ltd., 1-6-6 Taitoh, Taitoh-ku, Tokyo 110-0016 (Japan)

    2011-01-03

    We report the influence of substrate surface roughness on cubic boron nitride (cBN) film deposition under low-energy ion bombardment in an inductively coupled plasma. Silicon and cemented tungsten carbide-cobalt (WC-Co) surfaces are roughened by low-energy ion-assisted etching in a hydrogen plasma, followed by deposition in a fluorine-containing plasma. Infrared absorption coefficients are measured to be 22,000 cm{sup -1} and 17,000 cm{sup -1} for sp{sup 2}-bonded BN and cBN phases, respectively, for our films. For the silicon substrates, the film growth rate and the cBN content in the film increase with increasing the surface roughness, while the amount of sp{sup 2}BN phase in the film shows only a small increase. A larger surface roughness of the substrate results in a smaller contact angle of water, indicating that a higher surface free energy of the substrate contributes to enhancing growth of the cBN film. For the WC-Co substrates, the film growth rate and the cBN content in the film increase similarly by roughening the surface.

  15. Direct deposition of cubic boron nitride films on tungsten carbide-cobalt.

    Science.gov (United States)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-10-24

    Thick cubic boron nitride (cBN) films in micrometer-scale are deposited on tungsten carbide-cobalt (WC-Co) substrates without adhesion interlayers by inductively coupled plasma-enhanced chemical vapor deposition (ICP-CVD) using the chemistry of fluorine. The residual film stress is reduced because of very low ion-impact energies (a few eV to ∼25 eV) controlled by the plasma sheath potential. Two types of substrate pretreatment are used successively; the removal of surface Co binder using an acid solution suppresses the catalytic effect of Co and triggers cBN formation, and the surface roughening using mechanical scratching and hydrogen plasma etching increases both the in-depth cBN fraction and deposition rate. The substrate surface condition is evaluated by the wettability of the probe liquids with different polarities and quantified by the apparent surface free energy calculated from the contact angle. The surface roughening enhances the compatibility in energy between the cBN and substrate, which are bridged by the interfacial sp(2)-bonded hexagonal BN buffer layer, and then, the cBN overlayer is nucleated and evolved easier. PMID:22950830

  16. Enhanced deposition of cubic boron nitride films on roughened silicon and tungsten carbide-cobalt surfaces

    International Nuclear Information System (INIS)

    We report the influence of substrate surface roughness on cubic boron nitride (cBN) film deposition under low-energy ion bombardment in an inductively coupled plasma. Silicon and cemented tungsten carbide-cobalt (WC-Co) surfaces are roughened by low-energy ion-assisted etching in a hydrogen plasma, followed by deposition in a fluorine-containing plasma. Infrared absorption coefficients are measured to be 22,000 cm-1 and 17,000 cm-1 for sp2-bonded BN and cBN phases, respectively, for our films. For the silicon substrates, the film growth rate and the cBN content in the film increase with increasing the surface roughness, while the amount of sp2BN phase in the film shows only a small increase. A larger surface roughness of the substrate results in a smaller contact angle of water, indicating that a higher surface free energy of the substrate contributes to enhancing growth of the cBN film. For the WC-Co substrates, the film growth rate and the cBN content in the film increase similarly by roughening the surface.

  17. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  18. COBALT SEGREGATION IN CARBIDE GRAIN BOUNDARIES IN WC-Co COMPOSITES

    OpenAIRE

    Vicens, J.; Dubon, A.; Laval, J; Benjdir, M.; Nouet, G.

    1990-01-01

    The cobalt concentration at WC-WC grain boundaries in WC-Co composites was determined via X-ray energy dispersive analysis in STEM. Cobalt profiles were performed-across coincidence grain boundaries Σ2 and Σ5 with a (10(-1)0) prismatic plane. A small cobalt segregation has been detected when dislocations were imaged in the grain boundaries. The cobalt segregation value is compared to the segregation ratio obtained in low angle and general grain boundaries.

  19. An expeditious synthesis of early transition metal carbide nanoparticles on graphitic carbons.

    Science.gov (United States)

    Ressnig, Debora; Moldovan, Simona; Ersen, Ovidiu; Beaunier, Patricia; Portehault, David; Sanchez, Clément; Carenco, Sophie

    2016-08-01

    An expeditious synthesis of metal carbide nanoparticles onto various carbon supports is demonstrated. The procedure is versatile and readily yields TiC, VC, Mo2C and W2C nanoparticles on different types of carbons. The reaction is initiated at room temperature and proceeds within seconds. This novel synthetic route paves the way for a large variety of metal carbide-carbon nanocomposites that may be implemented in emerging nanotechnology fields.

  20. A thermo dynamical model for the shape and size effect on melting of boron carbide nanoparticles.

    Science.gov (United States)

    Antoniammal, Paneerselvam; Arivuoli, Dakshanamoorthy

    2012-02-01

    The size and shape dependence of the melting temperature of Boron Carbide (B4C) nanoparticles has been investigated with a numerical thermo dynamical approach. The problem considered in this paper is the inward melting of nanoparticles with spherical and cylindrical geometry. The cylindrical Boron Carbide (B4C) nanoparticles, whose melting point has been reported to decrease with decreasing particle radius, become larger than spherical shaped nanoparticle. Comparative investigation of the size dependence of the melting temperature with respect to the two shapes is also been done. The melting temperature obtained in the present study is approximately a dealing function of radius, in a good agreement with prediction of thermo dynamical model.

  1. Cobalt.

    Science.gov (United States)

    Fowler, Joseph F

    2016-01-01

    Cobalt has been a recognized allergen capable of causing contact dermatitis for decades. Why, therefore, has it been named 2016 "Allergen of the Year"? Simply put, new information has come to light in the last few years regarding potential sources of exposure to this metallic substance. In addition to reviewing some background on our previous understanding of cobalt exposures, this article will highlight the recently recognized need to consider leather as a major site of cobalt and the visual cues suggesting the presence of cobalt in jewelry. In addition, a chemical spot test for cobalt now allows us to better identify its presence in suspect materials.

  2. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    International Nuclear Information System (INIS)

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15–40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  3. Homogeneous Precipitation Synthesis and Magnetic Properties of Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    2008-01-01

    Full Text Available Magnetic nanoparticles (NPs of cobalt ferrite have been synthesized via a homogeneous precipitation route using hexamethylenetetramine (HMT as the precipitant. The particle size, crystal structure, and magnetic properties of the synthesized particles were investigated by X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The NPs are of cubic inverse spinel structure and nearly spherical shape. With the increase of oxidation time from 30 to 180 minutes in the reaction solution at 90∘C, the average particle size increases from ~30 nm to ~45 nm. The as-synthesized NPs ~30 nm in size show higher Ms (61.5 emu/g and moderate Hc (945 Oe and Mr/Ms (0.45 value compared with the materials synthesized by coprecipitation method using NaOH as precipitate at high pH value.

  4. Cobalt magnetic nanoparticles embedded in carbon matrix: biofunctional validation

    Energy Technology Data Exchange (ETDEWEB)

    Krolow, Matheus Z., E-mail: matheuskrolow@ifsul.edu.br [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil); Monte, Leonardo G.; Remiao, Mariana H.; Hartleben, Claudia P.; Moreira, Angela N.; Dellagostin, Odir A. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Piva, Evandro [Universidade Federal de Pelotas, Faculdade de Odontologia (Brazil); Conceicao, Fabricio R. [Universidade Federal de Pelotas, Nucleo de Biotecnologia, Centro de Desenvolvimento Tecnologico (Brazil); Carreno, Neftali L. V. [Universidade Federal de Pelotas, Engenharia de Materiais, Centro de Desenvolvimento Tecnologico (Brazil)

    2012-09-15

    Carbon nanostructures and nanocomposites display versatile allotropic morphologies, physico-chemical properties and have a wide range of applications in mechanics, electronics, biotechnology, structural material, chemical processing, and energy management. In this study we report the synthesis, characterization, and biotechnological application of cobalt magnetic nanoparticles, with diameter approximately 15-40 nm, embedded in carbon structure (Co/C-MN). A single-step chemical process was used in the synthesis of the Co/C-MN. The Co/C-MN has presented superparamagnetic behavior at room temperature an essential property for immunoseparation assays carried out here. To stimulate interactions between proteins and Co/C-MN, this nanocomposite was functionalized with acrylic acid (AA). We have showed the bonding of different proteins onto Co/C-AA surface using immunofluorescence assay. A Co/C-AA coated with monoclonal antibody anti-pathogenic Leptospira spp. was able to capture leptospires, suggesting that it could be useful in immunoseparation assays.

  5. Fabrication and analysis of ordered magnetic cobalt nanoparticles; Herstellung und Untersuchung geordneter magnetischer Kobaltnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Zuern, Klaus P.

    2009-12-17

    In the dissertation on hand monodisperse, wellordered magnetic cobalt and cobalt hydride nanoparticles have been produced and investigated magnetically. The preparation was achieved by diblock-copolymer-micelles filled with cobalt salt, from which nanoparticles of elementary cobalt respectively cobalt hydride were generated in different steps of the procedure. It was evident that the cobalthydride generated by the hydrogen plasma was surprisingly stable. It could even be taken into consideration as a hydrogen storage device for fuel cell. The magnetic properties of the particles has been investigated by x-ray magnetic circular dichroism (XMCD). In addition it was evident, that it was principally impossible to investigate a film layered on a substrate with a SQUID-magnetometer, if this film produces only a small signal as well absolutely as relatively to the magnetically measured total moment of the sample. (orig.)

  6. Comparative evaluation of particle properties, formation of reactive oxygen species and genotoxic potential of tungsten carbide based nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kuehnel, Dana, E-mail: dana.kuehnel@ufz.de [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Scheffler, Katja [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Department of Cell Techniques and Applied Stem Cell Biology, University of Leipzig, Deutscher Platz 5, 04103 Leipzig (Germany); Wellner, Peggy [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Meissner, Tobias; Potthoff, Annegret [Fraunhofer-Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden (Germany); Busch, Wibke [Department of Bioanalytical Ecotoxicology, Helmholtz-Centre for Environmental Research Leipzig - UFZ, Permoserstr. 15, 04318 Leipzig (Germany); Springer, Armin [Centre for Translational Bone, Cartilage and Soft Tissue Research, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden (Germany); Schirmer, Kristin [Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Duebendorf (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne (Switzerland); ETH Zuerich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zuerich (Switzerland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Assessment of toxic potential of tungsten carbide-based nanoparticles. Black-Right-Pointing-Pointer Evaluation of ROS and micronuclei induction of three hard metal nanomaterials. Black-Right-Pointing-Pointer Dependency of observed toxic effects on the materials physical-chemical properties. Black-Right-Pointing-Pointer Differences in several particle properties seem to modulate the biological response. - Abstract: Tungsten carbide (WC) and cobalt (Co) are constituents of hard metals and are used for the production of extremely hard tools. Previous studies have identified greater cytotoxic potential of WC-based nanoparticles if particles contained Co. The aim of this study was to investigate whether the formation of reactive oxygen species (ROS) and micronuclei would help explain the impact on cultured mammalian cells by three different tungsten-based nanoparticles (WC{sub S}, WC{sub L}, WC{sub L}-Co (S: small; L: large)). The selection of particles allowed us to study the influence of particle properties, e.g. surface area, and the presence of Co on the toxicological results. WC{sub S} and WC{sub L}/WC{sub L}-Co differed in their crystalline structure and surface area, whereas WC{sub S}/WC{sub L} and WC{sub L}-Co differed in their cobalt content. WC{sub L} and WC{sub L}-Co showed neither a genotoxic potential nor ROS induction. Contrary to that, WC{sub S} nanoparticles induced the formation of both ROS and micronuclei. CoCl{sub 2} was tested in relevant concentrations and induced no ROS formation, but increased the rate of micronuclei at concentrations exceeding those present in WC{sub L}-Co. In conclusion, ROS and micronuclei formation could not be associated with the presence of Co in the WC-based particles. The contrasting responses elicited by WC{sub S} vs. WC{sub L} appear to be due to large differences in crystalline structure.

  7. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles.

    Science.gov (United States)

    Page, Alister J; Yamane, Honami; Ohta, Yasuhito; Irle, Stephan; Morokuma, Keiji

    2010-11-10

    The mechanism and kinetics of single-walled carbon nanotube (SWNT) nucleation from Fe- and Ni-carbide nanoparticle precursors have been investigated using quantum chemical molecular dynamics (QM/MD) methods. The dependence of the nucleation mechanism and its kinetics on environmental factors, including temperature and metal-carbide carbon concentration, has also been elucidated. It was observed that SWNT nucleation occurred via three distinct stages, viz. the precipitation of the carbon from the metal-carbide, the formation of a "surface/subsurface" carbide intermediate species, and finally the formation of a nascent sp(2)-hybidrized carbon structure supported by the metal catalyst. The SWNT cap nucleation mechanism itself was unaffected by carbon concentration and/or temperature. However, the kinetics of SWNT nucleation exhibited distinct dependences on these same factors. In particular, SWNT nucleation from Ni(x)C(y) nanoparticles proceeded more favorably compared to nucleation from Fe(x)C(y) nanoparticles. Although SWNT nucleation from Fe(x)C(y) and Ni(x)C(y) nanoparticle precursors occurred via an identical route, the ultimate outcomes of these processes also differed substantially. Explicitly, the Ni(x)-supported sp(2)-hybridized carbon structures tended to encapsulate the catalyst particle itself, whereas the Fe(x)-supported structures tended to form isolated SWNT cap structures on the catalyst surface. These differences in SWNT nucleation kinetics were attributed directly to the relative strengths of the metal-carbon interaction, which also dictates the precipitation of carbon from the nanoparticle bulk and the longevity of the resultant surface/subsurface carbide species. The stability of the surface/subsurface carbide was also influenced by the phase of the nanoparticle itself. The observations agree well with experimentally available data for SWNT growth on iron and nickel catalyst particles.

  8. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei;

    2014-01-01

    of uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR......). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide‐based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts....

  9. Immobilization of cellulase on functionalized cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bohara, Raghvendra Ashok; Thorat, Nanasaheb Devappa; Pawar, Shivaji Hariba [Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur (India)

    2016-01-15

    Amine functionalized cobalt ferrite (AF-CoFe{sub 2}O{sub 4}) magnetic nanoparticles (MNPs) were used for immobilization of cellulase enzyme via 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDS) and N-hydroxysuccinimide (NHS) coupling reaction. The structural, morphological and magnetic properties of AF-CoFe{sub 2}O{sub 4} were determined. TEM micrograph revealed a mean diameter of -8 nm and showed that the AF-CoFe{sub 2}O{sub 4} remain distinct with no significant change in size after binding with cellulase. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of cellulase to AF-CoFe{sub 2}O{sub 4}. The properties of immobilized cellulase were investigated by optimizing binding efficiency, pH, temperature and reusability. The results showed that the immobilized cellulase has higher thermal stability than free cellulase, which might be due to covalent interaction between cellulase and AF-CoFe{sub 2}O{sub 4} surface. The immobilized cellulase also showed good reusability after recovery. Therefore, AF-CoFe{sub 2}O{sub 4} MNPs can be considered as promising candidate for enzyme immobilization.

  10. Synthesis and characterization of carbon-coated cobalt ferrite nanoparticles

    Science.gov (United States)

    Bakhshi, Hamed; Shokuhfar, Ali; Vahdati, Nima

    2016-09-01

    Cobalt ferrite nanoparticles (CFNPs) were prepared via a reverse micelle method. The CFNPs were subsequently coated with carbon shells by means of thermal chemical vapor deposition (TCVD). In this process, acetylene gas (C2H2) was used as a carbon source and the coating was carried out for 1, 2, or 3 h at 750°C. The Ar/C2H2 ratio was 10:1. Heating during the TCVD process resulted in a NP core size that approached 30 nm; the thickness of the shell was less than 10 nm. The composition, structure, and morphology of the fabricated composites were characterized using X-ray diffraction, simultaneous thermal analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area diffraction. A vibrating sample magnetometer was used to survey the samples' magnetic properties. The deposited carbon shell substantially affected the growth and magnetic properties of the CFNPs. Micro-Raman spectroscopy was used to study the carbon coating and revealed that the deposited carbon comprised graphite, multiwalled carbon nanotubes, and diamond- like carbon. With an increase in coating time, the intensity ratio between the amorphous and ordered peaks in the Raman spectra decreased, which indicated an increase in crystallite size.

  11. Synthesis of vanadium carbide nanoparticles by thermal decomposition of the precursor

    Science.gov (United States)

    Mahajan, Mani; Singh, K.; Pandey, O. P.

    2013-06-01

    Vanadium carbide is a typical class of material used for different industrial applications due to its high melting point, high hardness and toughness. For its improved properties, the particle size has to be reduced to nanosize. In this work, a different synthesis approach adopted to synthesize nano vanadium carbide at high pressure and low temperature is reported. Here vanadium carbide is synthesized via thermal decomposition of the precursor in a specially designed stainless steel autoclave. The process parameters which affect the size and shape of the nanoparticles have been discussed. The size, shape and stability of synthesized particles are analysed by XRD, SEM and TEM. The study shows that carbides can be easily synthesized at low temperatures.

  12. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2015-11-01

    Full Text Available The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  13. An Efficient and Recyclable Nanoparticle-Supported Cobalt Catalyst for Quinoxaline Synthesis.

    Science.gov (United States)

    Rajabi, Fatemeh; Alves, Diego; Luque, Rafael

    2015-11-19

    The syntheses of quinoxalines derived from 1,2-diamine and 1,2-dicarbonyl compounds under mild reaction conditions was carried out using a nanoparticle-supported cobalt catalyst. The supported nanocatalyst exhibited excellent activity and stability and it could be reused for at least ten times without any loss of activity. No cobalt contamination could be detected in the products by AAS measurements, pointing to the excellent activity and stability of the Co nanomaterial.

  14. Synthesis and Magnetic Properties of Cobalt Ferrite (CoFe2O4) Nanoparticles Prepared by Wet Chemical Route

    OpenAIRE

    Maaz, K; Mumtaz, Arif; Hasanain, S. K.; CEYLAN, Abdullah

    2006-01-01

    Magnetic nanoparticles of cobalt ferrite have been synthesized by wet chemical method using stable ferric and cobalt salts with oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) confirmed the formation of single phase cobalt ferrite nanoparticles in the range 15-48nm depending on the annealing temperature and time. The size of the particles increases with annealing temperature and time while the coercivity goes through a maximum, peaking at aroun...

  15. Friction of tungsten carbide-cobalt coatings obtained by means of plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, M. (Hydromecanique et Frottement, Centre de Recherches, 42 - Andreziux-Boutheon (France)); McDonnell, L.; Cashell, E.M. (CRTC, Cork (Ireland))

    1991-11-29

    A study of the frictional properties of WC-Co-type coatings obtained by plasma spraying was carried out, the influence of the majority of the parameters involved in atmospheric spraying being analysed. This study of the correlations between the tribological behaviour and the compositionl of the coatings shows that friction is mainly determined by the method and degree of decomposition of the carbides. These in turn are linked to the effects of heat and/or oxidation, factors which can change considerably, not only as a function of the method used (plasma power, nature and flow rate of the plasma gases etc.) but also as a function of the coating process and the composition of the original powders. It has been possible to correlate the improvement in the frictional properties (resistance to seizure, reduction in the coefficient of friction) with the presence of free carbon in the coatings, associated with the carbide decomposition process. (orig.).

  16. Contribution to the study of atmospheric projection and under partial vacuum of tungsten carbide particles with cobalt or nickel binder. Application to fretting coatings on steel

    International Nuclear Information System (INIS)

    This research thesis addresses the plasma spraying (atmospheric, under controlled atmosphere, and under reduced pressure) of tungsten carbides with a metallic binder (WC/Co, WC/Ni; W2C/Co). This work comprised an optimisation of the spraying process under reduced pressure, the study of the influence of the powder production process on the physicochemical and micro-structural characteristics as well as on coating fretting properties, and a correlation between spraying parameters in a controlled atmosphere (power and pressure) and coating physico-chemical and micro-structural properties. Results show a high decarburization-oxidation of tungsten carbides during atmospheric spraying, as well as an important evaporation of cobalt. Under reduced pressure, high losses of carbides are noticed. These both phenomena strongly depend on the powder production process. Fretting results highlight remarkable performance of coatings obtained by atmospheric spraying

  17. Synthesis of Mo and W carbide and nitride nanoparticles via a simple "urea glass" route.

    Science.gov (United States)

    Giordano, Cristina; Erpen, Christian; Yao, Weitang; Antonietti, Markus

    2008-12-01

    A simple, inexpensive, and versatile route for the synthesis of metal nitrides and carbides (such as Mo2N, Mo2C, W2N and WC) nanoparticles was set up. For the first time, metal carbides were obtained using urea as carbon-source. MoCl5 and WCl4 are in a first step contacted with alcohols and an appropriate amount of urea to form a polymer-like, glassy phase, which acts as the starting product for further conversions. Just by heating this phase it was possible to prepare either molybdenum and tungsten nitrides or carbides simply by changing the metal precursor/urea molar ratio. In this procedure, urea plays a double role as a nitrogen/carbon source and stabilizing agent (necessary for the nanoparticle dispersion). Molybdenum and tungsten nitride and carbides synthesized are almost pure and highly crystalline. Sizes estimated by WAXS range around 20 and 4 nm in diameter for Mo and W nitrides or carbides, respectively. The specific surface area was found between 10 and 80 m2/g, depending on the metal and the initial ratio of metal precursor to urea.

  18. Strengthening zones in the Co matrix of WC-Co cemented carbides

    OpenAIRE

    Konyashin, Igor Yu; Lachmann, Frank Friedrich; Ries, Bernd Heinrich; Mazilkin, Andrei A.; Straumal, Boris B; Kübel, Christian; Llanes Pitarch, Luis Miguel; Baretzky, Brigitte

    2014-01-01

    For conventional structural and tool materials, in particular WC-Co cemented carbides, hardness and wear-resistance can usually be increased only at the expense of toughness and strength. For the first time we have achieved a dramatically increased combination of hardness, wear-resistance, fracture toughness and strength as a result of precipitation of extremely fine nanoparticles in the cobalt binder of cemented carbides. These nanoparticles are similar to 3 nm in size, coherent with the Co ...

  19. Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica

    Directory of Open Access Journals (Sweden)

    Al Samri MT

    2013-03-01

    Full Text Available Mohammed T Al Samri,1,* Rafael Silva,2,* Saeeda Almarzooqi,3 Alia Albawardi,3 Aws Rashad Diab Othman,1 Ruqayya SMS Al Hanjeri,1 Shaikha KM Al Dawaar,1 Saeed Tariq,4 Abdul-Kader Souid,1 Tewodros Asefa2,51Department of Pediatrics, United Arab Emirates University, Abu Dhabi, United Arab Emirates; 2Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; 3Department of Pathology, 4Department of Anatomy, United Arab Emirates University, Abu Dhabi, United Arab Emirates; 5Department of Chemical Engineering and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA*These authors contributed equally to this workAbstract: We present here comparative assessments of murine lung toxicity (biocompatibility after in vitro and in vivo exposures to carbon (C–SiO2-etched, carbon–silica (C–SiO2, carbon–cobalt–silica (C–Co–SiO2, and carbon–cobalt oxide–silica (C–Co3O4–SiO2 nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content. Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C–SiO2-etched or C–SiO2 nanoparticles. C–SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C–SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C–Co–SiO2 and C–Co3O4–SiO2 impaired lung tissue bioenergetics. C–Co–SiO2, however, increased caspase activity and altered lung structure more than C–Co3O4–SiO2. The results indicate that silica shell is essential for

  20. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    OpenAIRE

    Marcella Mauro; Matteo Crosera; Marco Pelin; Chiara Florio; Francesca Bellomo; Gianpiero Adami; Piero Apostoli; Giuseppe Palma; Massimo Bovenzi; Marco Campanini; Francesca Larese Filon

    2015-01-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded huma...

  1. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  2. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  3. Correlation of electronic and magnetic properties of thin polymer layers with cobalt nanoparticles

    DEFF Research Database (Denmark)

    Kharchenko, A.; Lukashevich, M.; Popok, Vladimir;

    2013-01-01

    Nanoparticles (NPs) of cobalt are synthesized in shallow layers of polyimide using 40 keV implantation of Co+ ions with a few different fluences at various ion current densities. Nucleation of individual NPs at low fluencies and their percolation at high fluencies are crucial processes governing...

  4. Calixarene-stabilised cobalt nanoparticle rings: Self-assembly and collective magnetic properties

    DEFF Research Database (Denmark)

    Wei, A; Tripp, SL; Liu, J;

    2009-01-01

    Calixarenes can be used to promote the self-assembly of thermoremanent cobalt nanoparticles into bracelet-like rings below 100nm in diameter. These kinetically stable assemblies are regulated by the equilibrium between enthalpic gain (dipole-dipole and long-range van der Waals interactions...

  5. Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mazario, E. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain); Galindo, R. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Menendez, N. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Temperature affects to percentage of inclusion of Co and diameter of the synthesized nanoparticles. Black-Right-Pointing-Pointer At 80 Degree-Sign C and current densities of 50/25 mA cm{sup -2} applied to Fe and Co, respectively, a stoichiometric CoFe{sub 2}O{sub 4} nanoparticles with 40 nm of diameter were obtained. - Abstract: A new electrochemical method to synthesize cobalt ferrite nanoparticles has been developed. Magnetic measurement, Moessbauer spectroscopy, X-ray diffraction, inductive coupled plasma spectroscopy, and transmission electron microscopy were carried out to characterize the cobalt ferrites synthesized at different temperatures between 25 Degree-Sign C and 80 Degree-Sign C. These techniques confirm the efficiency of the electrochemical method. At room temperature a mixture of different compounds was obtained with a particle diameter around 20 nm, while at 80 Degree-Sign C the synthesis of cobalt ferrite leads to a stoichiometric spinel, with a crystallite size of 40 nm measured by Scherrer equation. The temperature was defined as an important parameter to obtain stoichiometric ferrites and different diameters.

  6. The impact of instilled carbide nanoparticles on rat lungs: an in vivo perspective on acute intratracheal instillation

    Science.gov (United States)

    Lozano, O.; Lison, D.; Escamilla-Rivera, V.; Mejía, J.; Toussaint, O.; Dogné, J. M.; Lucas, S.

    2015-05-01

    In order to study a scenario of acute high concentration exposure via the pulmonary pathway of silicon carbide and titanium carbide nanoparticles, female Wistar rats were administered by intratracheal instillation doses of 0.5 and 5 mg/rat of each nanomaterial. Inflammatory parameters were studied: protein concentration, lactate dehydrogenase activity, total cell count and differentiated cell count (macrophages, neutrophils, oesonophils, lymphocytes). The genotoxicity potential was assessed by the formation of micronuclei from pneumocytes type II. It was found that silicon carbide nanoparticles induce an inflammatory response and a dose dependent genotoxicity, although the genotoxicity levels are comparably lower to the inflammatory response.

  7. In-situ fabrication of cobalt oxide / sulphide mixed phase nanoparticles in Polyphenylenesulphide matrix

    Directory of Open Access Journals (Sweden)

    Narendra Rumale

    2013-03-01

    Full Text Available A novel approach for the in-situ fabrication of combined cobalt oxide / sulphide nanoparticles in sulphur containing polymer polyphenylenesulphide (PPS by polymer inorganic solid-solid reaction technique is reported here. At present, there is considerable interest in polymer-metal chalcogenides / oxides based nano-composites on account of their optical, magnetic, electronic and catalytic properties. We have demonstrated the suitability of solid-solid reaction methodology by reacting commonly available cobalt precursors with engineering thermoplastic PPS. The cobalt precursor was reacted with PPS in 1:1, 1:5, 1:10, and 1:15 molar ratios, respectively, by heating the mixture at the melting temperature of the polymer (285 ºC for six hours. The resultant products were characterized by X-ray diffractometry (XRD, Field-emission scanning electron microscopy (FESEM, Thermogravimetric analysis (TGA, Differential scanning calorimetry (DSC, Diffuse reflectance spectroscopy (DRS techniques and High resolution transmission electron microscope (HRTEM. The shift in melting temperature of PPS was observed. Increase in absorption peak is observed in the range of 320 to 370 nm with the increase in PPS concentration. Resultant nanoparticles of cobalt sulphide and cobalt oxide embedded in the PPS matrix showed spherical and distorted rod like morphology.

  8. Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei;

    2014-01-01

    Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low‐temperature fuel cells. A novel type of catalysts prepared by high‐pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of...... uniform iron carbide (Fe3C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As...... a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide‐based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts....

  9. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Institute of Scientific and Technical Information of China (English)

    K. Nadeemn; M.Shahid; M.Mumtaz

    2014-01-01

    Silica coated (30 wt%) cobalt zinc ferrite (Co1 ? xZnxFe2O4, x ¼ 0, 0.2, 0.3, 0.4, 0.5 and 1) nanoparticles were synthesized by using sol-gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD) reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37-45 nm. Fourier transform infrared (FTIR) spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM) images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1 ? xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  10. Influence of Cobalt Doping on the Physical Properties of Zn0.9Cd0.1S Nanoparticles

    Directory of Open Access Journals (Sweden)

    Gupta Hari Om

    2009-01-01

    Full Text Available Abstract Zn0.9Cd0.1S nanoparticles doped with 0.005–0.24 M cobalt have been prepared by co-precipitation technique in ice bath at 280 K. For the cobalt concentration >0.18 M, XRD pattern shows unidentified phases along with Zn0.9Cd0.1S sphalerite phase. For low cobalt concentration (≤0.05 M particle size, d XRDis ~3.5 nm, while for high cobalt concentration (>0.05 M particle size decreases abruptly (~2 nm as detected by XRD. However, TEM analysis shows the similar particle size (~3.5 nm irrespective of the cobalt concentration. Local strain in the alloyed nanoparticles with cobalt concentration of 0.18 M increases ~46% in comparison to that of 0.05 M. Direct to indirect energy band-gap transition is obtained when cobalt concentration goes beyond 0.05 M. A red shift in energy band gap is also observed for both the cases. Nanoparticles with low cobalt concentrations were found to have paramagnetic nature with no antiferromagnetic coupling. A negative Curie–Weiss temperature of −75 K with antiferromagnetic coupling was obtained for the high cobalt concentration.

  11. The synthesis and arrested oxidation of amorphous cobalt nanoparticles using DMSO as a functional solvent

    International Nuclear Information System (INIS)

    Magnetic nanoparticles exhibit a strong tendency to become overly oxidized and unstable during synthesis, ultimately leading to nanoparticle agglomeration and degradation. Capping agents can be used during nanoparticle synthesis to provide particle surface coverage and to improve nanoparticle dispersibility in solution, while preventing excessive oxidation and agglomeration. This paper presents a technique to synthesize amorphous 3.7 ± 1.5 nm cobalt (Co) nanoparticles using dimethyl sulfoxide (DMSO) to function as both the stabilizing agent and the solvent for Co nanoparticles via a quick, solvent-based reduction of Co2+ with NaBH4 in a DMSO solvent. UV–visible spectroscopy analysis was used to determine the minimum amount of reducing agent needed to produce Co nanoparticles so as to limit the waste of reagents. TEM and SEM imaging were used to study the morphology of the Co nanoparticles from the DMSO dispersion and of the Co nanoparticle powder. FT-IR was used to elucidate the nature of the interaction between the Co nanoparticle surface and DMSO. Furthermore, SEM–EDS elemental mapping was used to determine the composition and surface properties of the Co nanoparticles. This synthesis method demonstrates that Co nanoparticles can be successfully synthesized by simply using DMSO as a functional solvent, thereby avoiding excessive oxidation and agglomeration in solution

  12. Polymer Films with Ion-Synthesized Cobalt and Iron Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    The current paper presents an overview and analysis of data obtained on a few sets of polymer samples implanted by iron and cobalt. The low-energy (40 keV) implantations were carried out into polyimide and polyethyleneterephthalate with fluences between 2.5x10e16-1.5x10e17 cm-2. The samples were...

  13. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia-Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  15. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  16. From nanotechnology to nanogenotoxicology: genotoxic effect of cobalt-chromium nanoparticles

    Directory of Open Access Journals (Sweden)

    Zülal Atlı Şekeroğlu

    2013-03-01

    Full Text Available Nanotechnology is a multi-disciplinary technology that processes the materials that can be measured with nanometer-level and combines many research field or discipline. Nanomaterials (NMs are widely used in the fields of science, technology, communication, electronics, industry, pharmacy, medicine, environment, consumer products and military. Until recently little has been known about whether or not nanomaterials have the toxic or hazardous effects on human health and the environment. However, several studies have indicated that exposure to some nanomaterials, e.g. nanoparticles, can cause some adverse effects in humans and animals. Over the last years the number of publications focusing on nanotoxicology has gained momentum, but, there is still a gap about the genotoxicity of nanomaterials.Metal nanoparticles and their alloys with excellent mechanical properties are the materials which can be easily adapted to the mechanical conditions of the musculoskeletal system. Cobalt-chromium alloys are widely used in orthopedic applications as joint prosthesis and bone regeneration material, fillings and dental implants in jaw surgery, and in cardiovascular surgery, especially stent applications. Studies about cytotoxicity and genotoxicity of metal nanoparticles on human indicate that some metal nanoparticles have cytotoxic and genotoxic effects and they may be hazardous for humans. However, a few studies have been reported concerning the genotoxic effects of cobalt-chromium nanoparticles. The data from these studies indicate that cobalt-chromium nanoparticles have cytotoxic and genotoxic effects. It has been stated that the wear debris from implants cause DNA and chromosome damage in patients with cobalt-chromium replacements. It was also found that the risk of urinary cancers such as bladder, ureter, kidney and prostate in patients after hip replacement than among the wider population.Because there are very little biocompatibility and toxicity tests on

  17. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  18. Electrocatalytic Evolution of Oxygen Gas at Cobalt Oxide Nanoparticles Modified Electrodes

    OpenAIRE

    Sadiek, Ibrahim M.; Mohammad, Ahmad M.; El-Shakre, Mohamed E.; Awad, M. Ismail; Mohamed S. El-Deab; Anadouli, Bahgat E.

    2012-01-01

    The electrocatalysis of oxygen evolution reaction (OER) at cobalt oxide nanoparticles (nano-CoOx) modified GC, Au and Pt electrodes has been examined using cyclic voltammetry. The OER is significantly enhanced upon modification of the electrodes with nano-CoOx, as demonstrated by a negative shift in the polarization curves at the nano-CoOx modified electrodes compared to that obtained at the unmodified ones. Scanning electron microscopy (SEM) revealed the electrodeposition of nanometer-size C...

  19. Structural, optical and magnetic properties of cobalt-doped CdSe nanoparticles

    Indian Academy of Sciences (India)

    Jaspal Singh; N K Verma

    2014-05-01

    Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The synthesized nanoparticles have been characterized using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV–Visible), photoluminescence spectroscopy (PL), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID), at room temperature. From XRD analysis, pure and cobalt-doped CdSe nanoparticles have been found to be polycrystalline in nature and possess zinc blende phase having cubic structure. In addition to this, some peaks related to secondary phase or impurities such as cobalt diselenide (CoSe2) have also been observed. The calculated average crystallite size of the nanoparticles lies in the range, 3–21 nm, which is consistent with the results obtained from TEM analysis. The decrease in average crystallite size and blue shift in the band gap has been observed with Co-doping into the host CdSe nanoparticles. The magnetic analysis shows the ferromagnetic behaviour up to 10% of Co-doping concentration. The increase of Co content beyond 10% doping concentration leads to antiferromagnetic interactions between the Co ions, which suppress the ferromagnetism.

  20. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  1. Hollow silicon carbide nanoparticles from a non-thermal plasma process

    Science.gov (United States)

    Coleman, Devin; Lopez, Thomas; Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo

    2015-05-01

    We demonstrate the synthesis of hollow silicon carbide nanoparticles via a two-step process involving the non-thermal plasma synthesis of silicon nanoparticles, followed by their in-flight carbonization, also initiated by a non-thermal plasma. Simple geometric considerations associated with the expansion of the silicon lattice upon carbonization, in combination of the spherical geometry of the system, explain the formation of hollow nanostructures. This is in contrast with previous reports that justify the formation of hollow particles by means of out-diffusion of the core element, i.e., by the Kirkendall nanoscale effect. A theoretical analysis of the diffusion kinetics indicates that interaction with the ionized gas induces significant nanoparticle heating, allowing for the fast transport of carbon into the silicon particle and for the subsequent nucleation of the beta-silicon carbide phase. This work confirms the potential of non-thermal plasma processes for the synthesis of nanostructures composed of high-melting point materials, and suggests that such processes can be tuned to achieve morphological control.

  2. Formation of tungsten carbide nanoparticles on graphitized carbon to facilitate the oxygen reduction reaction

    Science.gov (United States)

    Yan, Zaoxue; He, Guoqiang; Cai, Mei; Meng, Hui; Shen, Pei Kang

    2013-11-01

    Tungsten carbide nanoparticles with the average size less than 5 nm uniformly dispersed on the graphitized carbon matrix have been successfully synthesized by a one-step ion-exchange method. This route is to locally anchor the interested species based on an ionic level exchange process using ion-exchange resin. The advantage of this method is the size control of targeted nanomaterial as well as the graphitization of resin at low temperatures catalyzed by iron salt. The Pt nanoparticles coupled with tungsten carbide nanoparticles on graphitized carbon nanoarchitecture form a stable electrocatalyst (Pt/WC-GC). The typical Pt/WC-GC electrocatalyst gives a Pt-mass activity of 247.7 mA mgPt-1, which is much higher than that of commercial Pt/C electrocatalyst (107.1 mA mgPt-1) for oxygen reduction reaction due to the synergistic effect between Pt and WC. The presented method is simple and could be readily scaled up for mass production of the nanomaterials.

  3. Carbide Nanoparticles Encapsulated in the Caves of Carbon Nanotubes by an In Situ Reduction-Carbonization Route

    Directory of Open Access Journals (Sweden)

    Chunli Guo

    2011-01-01

    Full Text Available Carbides (TiC, WC, and NbC nanoparticles fully encapsulated in the caves of carbon nanotubes (CNTs were synthesized via an in situ reduction-carbonization route at 600∘C in an autoclave. The structural features and morphologies of as-obtained products were investigated using by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM. HRTEM studies showed that the average diameter of CNTs encapsulated with carbide nanoparticles are in the range of 15–40 nm. The reaction temperature, the reaction time, and the metal catalyst are found to play crucial roles to the product morphology. The growth mechanism of carbide nanoparticles encapsulated in CNTs was discussed in detail.

  4. Tungsten carbide promoted Pd and Pd–Co electrocatalysts for formic acid electrooxidation

    DEFF Research Database (Denmark)

    Yin, Min; Li, Qingfeng; Jensen, Jens Oluf;

    2012-01-01

    Tungsten carbide (WC) promoted palladium (Pd) and palladium–cobalt (Pd–Co) nanocatalysts are prepared and characterized for formic acid electrooxidation. The WC as the dopant to carbon supports is found to enhance the CO tolerance and promote the activity of the Pd-based catalysts for formic acid...... oxidation. Alloying of Pd with Co further improves the electrocatalytic activity and stability of the WC supported catalysts, attributable to a synergistic effect of the carbide support and PdCo alloy nanoparticles....

  5. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel.

    Science.gov (United States)

    van Berkum, Susanne; Dee, Joris T; Philipse, Albert P; Erné, Ben H

    2013-05-14

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid)-based hydrogels (PAA). To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  6. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    Directory of Open Access Journals (Sweden)

    Ben H. Erné

    2013-05-01

    Full Text Available Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking of the gel. Here, acrylic acid monomers are adsorbed onto ferrite nanoparticles, which subsequently participate in polymerization during synthesis of poly(acrylic acid-based hydrogels (PAA. To demonstrate the fixation of the nanoparticles to the polymer, our original approach is to measure low-field AC magnetic susceptibility spectra in the 0.1 Hz to 1 MHz range. In the hydrogel, the magnetization dynamics of small iron oxide nanoparticles are comparable to those of the particles dispersed in a liquid, due to fast Néel relaxation inside the particles; this renders the ferrogel useful for chemical sensing at frequencies of several kHz. However, ferrogels holding thermally blocked iron oxide or cobalt ferrite nanoparticles show significant decrease of the magnetic susceptibility resulting from a frozen magnetic structure. This confirms that the nanoparticles are unable to rotate thermally inside the hydrogel, in agreement with their irreversible fixation to the polymer network.

  7. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  8. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed. PMID:27609195

  9. Fabrication and Properties of Carbon-Encapsulated Cobalt Nanoparticles over NaCl by CVD.

    Science.gov (United States)

    Li, Haipeng; Li, Yue; Zhang, Yongguang; Liang, Chunyong; Wang, Hongshui; Li, Baoe; Adair, Desmond; Bakenov, Zhumabay

    2016-12-01

    Carbon-encapsulated cobalt (Co@C) nanoparticles, with a tunable structure, were synthesized by chemical vapor deposition using Co nanoparticles as the catalyst and supported on a water-soluble substrate (sodium chloride), which was easily removed by washing and centrifugation. The influences of growth temperature and time on the structure and magnetic properties of the Co@C nanoparticles were systematically investigated. For different growth temperatures, the magnetic Co nanoparticles were encapsulated by different types of carbon layers, including amorphous carbon layers, graphitic layers, and carbon nanofibers. This inferred a close relationship between the structure of the carbon-encapsulated metal nanoparticles and the growth temperature. At a fixed growth temperature of 400 °C, prolonged growth time caused an increase in thickness of the carbon layers. The magnetic characterization indicated that the magnetic properties of the obtained Co@C nanoparticles depend not only on the graphitization but also on the thickness of the encapsulated carbon layer, which were easily controlled by the growth temperatures and times. Optimization of the synthesis process allowed achieving relatively high coercivity of the synthesized Co@C nanoparticles and enhancement of its ferromagnetic properties, which make this system promising as a magnetic material, particularly for high-density magnetic recording applications. PMID:27677303

  10. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  11. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  12. Tracking of the organic species during the synthesis of cobalt-based nanoparticles in non-aqueous solution

    Science.gov (United States)

    Staniuk, M.; Niederberger, M.; Koziej, D.

    2014-08-01

    In this work we investigate the organic products of the synthesis of Co-based nanoparticles in benzyl alcohol. Our GC and in situ IR studies provide the experimental proofs for the formation of benzaldehyde, toluene and isopropanol in the reaction solution. These organic products can be correlated with formation of cobalt-based nanoparticles with oxidation state from 0 to 3+. These results shine the light on the complexity of organic and inorganic reactions in solution during crystallization of nanoparticles.

  13. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    International Nuclear Information System (INIS)

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo2C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis

  14. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Science.gov (United States)

    Liu, Xingchen; Salahub, Dennis R.

    2015-12-01

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product - cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo2C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  15. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingchen; Salahub, Dennis R. [Department of Chemistry, Institute for Quantum Science and Technology, and Centre for Molecular Simulation, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 (Canada)

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  16. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles

    International Nuclear Information System (INIS)

    We have studied the role of Dy3+ doping on the XRD, TEM, FTIR, and dielectric and electrical properties of CoFe2O4 at room temperature. Cubic spinel phase of CoFe2-xDyxO4 ( = 0.00, 0.05, 0.10, and 0.15) was synthesized by using different sintering temperatures (300, 500, 700, and 900°C). The two absorption bands ν1 and ν2 are observed in Fourier transform infrared spectroscopy (FTIR) spectra corresponding to the tetrahedral and octahedral sites, which show signature of spinel structure of the sample. For the sample sintered at 300°C, the dielectric constant is almost unchanged with the frequency at the particular concentrations of = 0.00 and 0.05. Similar result is obtained for the sample sintered at 500°C ( = 0.10, 0.15), 700°C ( = 0.05, 0.10, and 0.15), and 900°C ( = 0.05, 0.10). An increase in the dielectric constant was observed for the undoped cobalt ferrite sintered at 500, 700, and 900°C. The values of electrical resistivity of the materials vary from∼105 to 109 Ω-cm.

  17. FTIR and Electrical Study of Dysprosium Doped Cobalt Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hemaunt Kumar

    2014-01-01

    Full Text Available We have studied the role of Dy3+ doping on the XRD, TEM, FTIR, and dielectric and electrical properties of CoFe2O4 at room temperature. Cubic spinel phase of CoFe2−xDyxO4 (x = 0.00, 0.05, 0.10, and 0.15 was synthesized by using different sintering temperatures (300, 500, 700, and 900°C. The two absorption bands ν1 and ν2 are observed in Fourier transform infrared spectroscopy (FTIR spectra corresponding to the tetrahedral and octahedral sites, which show signature of spinel structure of the sample. For the sample sintered at 300°C, the dielectric constant is almost unchanged with the frequency at the particular concentrations of x = 0.00 and 0.05. Similar result is obtained for the sample sintered at 500°C (x = 0.10, 0.15, 700°C (x = 0.05, 0.10, and 0.15, and 900°C (x = 0.05, 0.10. An increase in the dielectric constant was observed for the undoped cobalt ferrite sintered at 500, 700, and 900°C. The values of electrical resistivity of the materials vary from ~105 to 109 Ω-cm.

  18. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  19. Composition- and Structure-Tunable Gold-Cobalt Nanoparticles and Electrocatalytic Synergy for Oxygen Evolution Reaction.

    Science.gov (United States)

    Lu, Aolin; Peng, Dong-Liang; Chang, Fangfang; Skeete, Zakiya; Shan, Shiyao; Sharma, Anju; Luo, Jin; Zhong, Chuan-Jian

    2016-08-10

    The increasing energy crisis constitutes an inspiring drive seeking alternative energies such as hydrogen from water splitting which is clean and abundant, but a key challenge for water splitting is the need of highly efficient catalysts for oxygen evolution reaction (OER). This report describes findings of an investigation of the synthesis of gold-cobalt (AuCo) nanoparticles by a facile one-pot and injection method and their use as highly efficient catalysts for OER. While particle size depends on the synthesis method, the composition of the nanoparticles is controlled by feeding ratio of Au and Co precursors in the synthesis. Depending on Co content, the nanoparticles exhibit largely phase-segregated domains with a core (Au)-shell (Co) type of structure at a high level of Co. Upon the thermochemical treatment of carbon-supported AuCo nanoparticles, the redox activity of Co species in the nanoparticles with cycle number is shown to decrease which changes the surface oxidation state of Co species without changing the composition significantly. The electrocatalytic activity for OER in alkaline electrolytes is shown to depend on the bimetallic composition, displaying a maximum activity for an Au:Co ratio of ∼2:3. This dependence is also shown to correlate with the surface oxidation state and redox activities, providing an insight into the electrocatalytic activity. Mechanistic aspects of the electrocataltytic properties are discussed in terms of the bifunctional synergy of Co and Au in the nanoparticle catalysts. PMID:27479685

  20. Competing crystallite size and zinc concentration in silica coated cobalt ferrite nanoparticles

    Directory of Open Access Journals (Sweden)

    K. Nadeem

    2014-06-01

    Full Text Available Silica coated (30 wt% cobalt zinc ferrite (Co1−xZnxFe2O4, x=0, 0.2, 0.3, 0.4, 0.5 and 1 nanoparticles were synthesized by using sol–gel method. Silica acts as a spacer among the nanoparticles to avoid the agglomeration. X-ray diffraction (XRD reveals the cubic spinel ferrite structure of nanoparticles with crystallite size in the range 37–45 nm. Fourier transform infrared (FTIR spectroscopy confirmed the formation of spinel ferrite and SiO2. Scanning electron microscopy (SEM images show that the nanoparticles are nearly spherical and non-agglomerated due to presence of non-magnetic SiO2 surface coating. All these measurements signify that the structural and magnetic properties of Co1−xZnxFe2O4 ferrite nanoparticles strongly depend on Zn concentration and nanoparticle average crystallite size in different Zn concentration regimes.

  1. Surface modification of the hard metal tungsten carbide-cobalt by boron ion implantation; Oberflaechenmodifikation des Hartmetalls Wolframkarbid-Kobalt durch Bor-Ionenimplantation

    Energy Technology Data Exchange (ETDEWEB)

    Mrotchek, I.

    2007-09-07

    In the present thesis ion beam implantation of boron is studied as method for the increasement of the hardness and for the improvement of the operational characteristics of cutting tools on the tungsten carbide-cobalt base. For the boron implantation with 40 keV energy and {approx}5.10{sup 17} ions/cm{sup 2} fluence following topics were shown: The incoerporation of boron leads to a deformation and remaining strain of the WC lattice, which possesses different stregth in the different directions of the elementary cell. The maximum of the deformation is reached at an implantation temperature of 450 C. The segregation of the new phases CoWB and Co{sub 3}W was detected at 900 C implantation temperature. At lower temperatures now new phases were found. The tribological characteristics of WC-Co are improved. Hereby the maxiaml effect was measured for implantation temperatures from 450 C to 700 C: Improvement of the microhardness by the factor 2..2.5, improvement of the wear resistance by the factor 4. The tribological effects extend to larger depths than the penetration depth of the boron implantation profile. The detected property improvements of the hard metal H3 show the possibility of a practical application of boron ion implantation in industry. The effects essential for a wer decreasement are a hardening of the carbide phase by deformation of the lattice, a hardening of the cobalt binding material and the phase boundaries because of the formation of a solid solution of the implanted boron atoms in Co and by this a blocking of the dislocation movement and the rupture spreading under load.

  2. Structural stability study of cobalt ferrite-based nanoparticle using micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Micro Raman scattering was used to study the structural stability of cobalt ferrite-based (CoFe2O4) nanoparticles, under illumination with the 514 nm line, at 7 mW laser power. Different samples were investigated after performing the steps of the magnetic fluid (MF) preparation. Raman spectra of samples peptized at 0.25 mol/l perchloric acid showed features similar to bulk maghemite. However, samples peptized at 0.75 mol/l perchloric acid showed features similar to the Fe3O4 phase

  3. Human Skin Penetration of Cobalt Nanoparticles Through Intact and Damaged Skin

    OpenAIRE

    LARESE FILON Francesca; Crosera, Matteo; TIMEUS Elena; Adami, Gianpiero; Bovenzi, Massimo; Ponti, Jessica; Maina, Giovanni

    2011-01-01

    Cobalt nanoparticles (CoNPs) are produced for many applications but there is a lack of data on human absorption. The aim of our study was to evaluate the CoNPs skin absorption. Experiments were performed using Franz cells with human skin. Physiological solution was used as receiving phase and 1.0 mg cm-2 of CoNPs was applied as donor phase for 24 h. Mean Co content of 8.3 ± 1.5 ng cm-2 and 1.87 ± 0.86 ug cm-2 were found in the receiving solutions of cells where the CoNPs suspension was app...

  4. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    Science.gov (United States)

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential.

  5. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    Science.gov (United States)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  6. Study the effect of calcination temperature on physical and magnetic properties of bare Cobalt nanoparticles and that coated with silica shell

    International Nuclear Information System (INIS)

    In this paper, in order to investigate the effect of calcination temperature on the structural and magnetic properties of cobalt nanoparticles, samples have been prepared by Co-precipitation method at different calcination temperature. Cobalt nanoparticles have been prepared by Co-precipitation method at room temperature using hydrazine as reducing in ethanol hydrazine alkaline environment. This agent reduces cobalt salts to Cobalt nanoparticles in FCC and HCP phases. Phase analysis and investigation of Structural properties of the samples using X-ray diffraction patterns (XRD) confirm the formation of hexagonal phases of Co nanoparticles. Transmission electron microscopy was used for determining the size and shape morphology of nanoparticles. Magnetic properties of these nanoparticles have been investigated using a Vibrating sample magnetometer. The results indicate that these nanoparticles are ferromagnetic at room temperature. In addition, in this paper Co nanoparticles coated with silica shell have been prepared by the wet chemical method. Transmission electron microscopy images showed the cobalt core with average diameter of 17-20 nm coated by a silica shell with thickness of 5-7 nm. Hysteresis Loop of these Co nanoparticles coated by silica shell illustrates 16.9 emu/gr for saturation magnetization at 10000 (Oe), which is much less than that of Cobalt nanoparticles

  7. The Wear Properties of Tungsten Carbide-Cobalt Hardmetals from the Nanoscale up to the Macroscopic Scale

    OpenAIRE

    Ndlovu, Siphilisiwe

    2009-01-01

    A study has been conducted on the tribological properties of WC-Co hardmetals by carrying out a series of wear tests from the nanoscale up to the macroscopic scale. The composition of the hardmetals was varied and the binder content ranged from 6 to 15 wt%. The binder in all the samples was cobalt and one of the samples had small additions of Cr3C2 and VC. The WC grain size in the samples ranged from 250 nm (nano-size) up to 2.65 µm (coarse-grained). A binderless WC sample and a pure cobalt s...

  8. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  9. Highly coercive cobalt ferrite nanoparticles-CuTl-1223 superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Abdul; Qasim, Irfan; Khan, Shahid A.; Nadeem, K.; Waqee-ur-Rehman, M.; Mumtaz, M., E-mail: mmumtaz75@yahoo.com; Zeb, F.

    2015-03-01

    We explored the effects of highly coercive cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles addition on structural, morphological, and superconducting properties of Cu{sub 0.5}Tl{sub 0.5}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10-δ} (CuTl-1223) matrix. Series of (CoFe{sub 2}O{sub 4}){sub x}/CuTl-1223 (x=0 ∼2.0 wt%) composites samples were synthesized and were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) absorption spectroscopy, and dc-resistivity versus temperature measurements. The magnetic behavior of CoFe{sub 2}O{sub 4} nanoparticles was determined by MH-loops with the help of superconducting quantum interference device (SQUID). MH-loops analysis showed that these nanoparticles exhibit high saturation magnetization (86 emu/g) and high coercivity (3350 Oe) at 50 K. The tetragonal structure of host CuTl-1223 superconducting matrix was not altered after the addition of CoFe{sub 2}O{sub 4} nanoparticles, which gave us a clue that these nanoparticles had occupied the inter-granular sites (grain-boundaries) and had filled the pores. The increase of mass density with increasing content of these nanoparticles in composites can also be an evidence of filling up the voids in the matrix. The resistivity versus temperature measurements showed an increase in zero resistivity critical {T_c(0)}, which could be most probably due to improvement of weak-links by the addition of these nanoparticles. But the addition of these nanoparticles beyond an optimum level caused the agglomeration and produced additional stresses in material and suppressed the superconductivity. - Highlights: • T{sub c}(0) increased with increasing CoFe{sub 2}O{sub 4} nanoparticles up to x=1.5. • CoFe{sub 2}O{sub 4} nanoparticles addition has not affected the structure of CuTl-1223. • Addition of CoFe{sub 2}O{sub 4} nanoparticles has improved inter-grains weak links. • Non-monotonic variation of ρ{sub (300} {sub K)} (Ω-cm) is due to

  10. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    International Nuclear Information System (INIS)

    Highlights: • Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC) was applied as a novel adsorption material to remove rhodamine B. • Co/OMC was synthesized by directly introducing cobalt into OMC through a simple infusing method. • High removal capacity of rhodamine B: maximum adsorption capacity reaches 468 mg/g at 200 mg/L initial rhodamine B concentration. • Very quick adsorption property: 96% of rhodamine B can be removed within 25 min. - Abstract: Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption–desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R2 = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution

  11. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  12. Yafet-Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Topkaya, R., E-mail: rtopkaya@gyte.edu.tr [Gebze Institute of Technology, Department of Physics (Turkey); Baykal, A. [Fatih University, Department of Chemistry (Turkey); Demir, A. [Istanbul Medeniyet University, Department of Chemistry (Turkey)

    2013-01-15

    Zn-substituted cobalt ferrite (Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} with 0.0 {<=} x {<=} 1.0) nanoparticles coated with triethylene glycol (TREG) were prepared by the hydrothermal technique. The effect of Zn substitution on temperature-dependent magnetic properties of the TREG-coated Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles has been investigated in the temperature range of 10-400 K and in magnetic fields up to 9 T. The structural, morphological, and magnetic properties of TREG-coated Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} NPs were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The average crystallite size estimated from X-ray line profile fitting was found to be in the range of 7.0-10 nm. The lattice constant determined using the Nelson-Riley extrapolation method continuously increases with the increase in Zn{sup 2+} content, obeying Vegard's law. TEM analysis revealed that the synthesized particles were nearly monodisperse, roughly spherical shaped nanoparticles in the size range of 9.0-15 nm. FT-IR spectra confirm that TREG is successfully coated on the surface of nanoparticles (NPs). The substitution of non-magnetic Zn{sup 2+} ions for magnetic Co{sup 2+} ions substantially changes the magnetic properties of the TREG-coated Zn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} NPs. The saturation magnetization and the experimental magnetic moment are observed to initially increase (up to x = 0.2), which is explained by Neel's collinear two-sublattice model, and then continuously decrease with further increase in Zn content x. This decrease obeys the three-sublattice model suggested by Yafet-Kittel (Y-K). While the Y-K angle is zero for the CoFe{sub 2}O{sub 4} NPs coated with TREG, it increases gradually with increasing Zn concentrations and extrapolates to 82.36 Degree-Sign for ZnFe{sub 2}O{sub 4} NPs coated with TREG. The increase in spin

  13. Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Topkaya, R., E-mail: rtopkaya@gyte.edu.tr [Gebze Institute of Technology, Department of Physics (Turkey); Akman, Oe. [Sakarya University, Department of Physics (Turkey); Kazan, S.; Aktas, B. [Gebze Institute of Technology, Department of Physics (Turkey); Durmus, Z.; Baykal, A. [Fatih University, Department of Chemistry (Turkey)

    2012-10-15

    Manganese-substituted cobalt ferrite nanoparticles coated with triethylene glycol (TREG) have been prepared by the glycothermal reaction. The effect of Mn substitution and coating on temperature-dependent magnetic properties of the TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles (0.0 {<=} x {<=} 0.8) with size of {approx}5-7 nm has been investigated in the temperature range of 10-300 K in a magnetic field up to 9 T. After the irreversible processes of the magnetic hysteresis curves were completed, the high-field regions of these curves were fitted by using a 'law of approach to saturation' to extract the magnetic properties, such as the effective anisotropy constant (K{sub eff}) and the anisotropy field (H{sub A}) etc. High coercive field of 12.6 kOe is observed in pure cobalt ferrite coated with TREG at 10 K. The low temperature unsaturated magnetization behaviour indicates the core-shell structure of the Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} NPs. Zero-field-cooled (ZFC) and field-cooled (FC) measurements revealed superparamagnetic phase of TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles at room temperature. The blocking and irreversibility temperatures obtained from ZFC-FC curves decrease at highest Mn concentration (x = 0.8). The existence of spin-glass-like surface layer with freezing temperature of 215 K was established with the applied field dependence of the blocking temperatures following the de Almeida-Thouless line for the Mn{sub 0.6}Co{sub 0.4}Fe{sub 2}O{sub 4} NPs. The shifted hysteresis loops with exchange bias field of 60 Oe and high-field irreversibility up to 60 kOe in FC M-H curve at 10 K show that spin-glass-like surface spins surrounds around ordered core material of the Mn{sub 0.6}Co{sub 0.4}Fe{sub 2}O{sub 4} NPs. FMR measurement show that all the TREG-coated Mn{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles absorb microwave in broad field range of about ten thousands Oe. The spectra for all the

  14. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Dielectric and electrical insulation properties

    Science.gov (United States)

    Tuncer, Enis; Rondinone, Adam J.; Woodward, Jonathan; Sauers, Isidor; James, D. Randy; Ellis, Alvin R.

    2009-03-01

    In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately 100 nm size cages between particle clusters. The particle clusters are composed of separated spherical particles which comprise unconnected networks in the matrix. The dielectric relaxation and breakdown characteristics of the matrix polymeric material are altered with the addition of nanometer size cobalt iron-oxide particles. The dielectric breakdown measurements performed at 77 K showed that these nanodielectrics are potentially useful as an electrical insulation material for cryogenic high voltage applications. Finally, structural and dielectric properties of nanocomposite dielectrics are discussed to present plausible reasons for the observed low effective dielectric permittivity values in the present and similar nanodielectric systems. It is concluded that polymeric nanoparticle composites would have low dielectric permittivity regardless of the permittivity of nanoparticles are when the particles are coordinated with a low dielectric permittivity surfactant.

  15. Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites

    OpenAIRE

    Xia Zhou; Depeng Su; Chengwei Wu; Liming Liu

    2012-01-01

    AZ91 magnesium alloy hybrid composites reinforced with different hybrid ratios of carbon nanotubes (CNTs) and silicon carbide (SiC) nanoparticulates were fabricated by semisolid stirring assisted ultrasonic cavitation. The results showed that grains of the matrix in the AZ91/(CNT + SiC) composites were obviously refined after adding hybrid CNTs and SiC nanoparticles to the AZ91 alloy, and the room-temperature mechanical properties of AZ91/(CNT + SiC) hybrid composites were improved comparing ...

  16. Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit.

    Science.gov (United States)

    Hanini, Amel; Massoudi, Mohamed El; Gavard, Julie; Kacem, Kamel; Ammar, Souad; Souilem, Ouajdi

    2016-07-01

    The increasing use of engineered nanomaterials in commercial manufacturing and consumer products presents an important toxicological concern. Superparamagnetic zinc-cobalt ferrite nanoparticles (SFN) emerge as a promising tool for early cancer diagnostics and targeted therapy. However, toxicity and biological activities of SFN should be evaluated in vitro and in vivo in animal before any clinical application. In this study we aim to synthesize and characterize such objects using polyol process in order to assess its nanotoxicological profile in vitro as well as in vivo. The produced particles consist of a cobalt-zinc ferrite phase corresponding to the Zn0.8Co0.2Fe2O4 composition. They are isotropic in shape single crystals of 8nm in size. The thermal variation of their dc-magnetization confirms their superparamagnetic behavior. In vitro, acute exposure (4h) to them (100μgmL(-1)) induced an important decrease of healthy Human Umbilical Vein Endothelial Cells (HUVECs) viability. In vivo investigation in New-Zealand rabbits revealed that they lead to tissue toxicities; in lungs, liver and kidneys. Our investigations report, for the first time as far as we know, that SFN exhibit harmful properties in human cells and mammals. PMID:27375215

  17. Human skin penetration of cobalt nanoparticles through intact and damaged skin.

    Science.gov (United States)

    Larese Filon, Francesca; Crosera, Matteo; Timeus, Elisa; Adami, Gianpiero; Bovenzi, Massimo; Ponti, Jessica; Maina, Giovanni

    2013-02-01

    Cobalt nanoparticles (CoNPs) are produced for several industrial and biomedical applications but there is a lack of data on human cutaneous absorption. Cobalt is also a skin sensitizer that can cause allergic contact dermatitis. Co applied as NPs, due to their small size and high surface, can penetrate into the skin in higher amount that bulk material. The aim of this study was to evaluate the absorption of Co applied as NPs in both intact and damaged skin. Experiments were performed using Franz cells and 1.0 mg cm(-2) of CoNPs was applied as donor phase for 24h. Mean Co content of 8.5 ± 1.2 ng cm(-2) and 1.87 ± 0.86 μg cm(-2) were found in the receiving solutions of Franz cells when the CoNPs suspension was applied on intact skin and on damaged skin, respectively. Twenty-four hours Co flux permeation was 76 ± 49 ng cm(-2)h(-1) in damaged skin with a lag time of 2.8 ± 2.1h. This study suggests that Co applied as NPs is able to penetrate the human skin in an in vitro diffusion cell system.

  18. Fabrication of a glucose biosensor based on citric acid assisted cobalt ferrite magnetic nanoparticles.

    Science.gov (United States)

    Krishna, Rahul; Titus, Elby; Chandra, Sudeshna; Bardhan, Neel Kanth; Krishna, Rohit; Bahadur, Dhirendra; Gracio, José

    2012-08-01

    A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA. PMID:22962799

  19. Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Wu, Renbing; Xue, Yanhong; Liu, Bo; Zhou, Kun; Wei, Jun; Chan, Siew Hwa

    2016-10-01

    Highly efficient and cost-effective electrocatalyst for the oxygen reduction reaction (ORR) is crucial for a variety of renewable energy applications. Herein, strongly coupled hybrid composites composed of cobalt diselenide (CoSe2) nanoparticles embedded within graphitic carbon polyhedra (GCP) as high-performance ORR catalyst have been rationally designed and synthesized. The catalyst is fabricated by a convenient method, which involves the simultaneous pyrolysis and selenization of preformed Co-based zeolitic imidazolate framework (ZIF-67). Benefiting from the unique structural features, the resulting CoSe2/GCP hybrid catalyst shows high stability and excellent electrocatalytic activity towards ORR (the onset and half-wave potentials are 0.935 and 0.806 V vs. RHE, respectively), which is superior to the state-of-the-art commercial Pt/C catalyst (0.912 and 0.781 V vs. RHE, respectively).

  20. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bartling, Stephan, E-mail: stephan.bartling@uni-rostock.de; Meiwes-Broer, Karl-Heinz; Barke, Ingo [Department of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany); Pohl, Marga-Martina [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, D-18059 Rostock (Germany)

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  1. Cobalt-Nanocrystal-Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutral-pH Water.

    Science.gov (United States)

    Liu, Bingrui; Zhang, Lin; Xiong, Weilin; Ma, Mingming

    2016-06-01

    Highly active and stable electrocatalysts for hydrogen generation from neutral-pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co-HNP), which serve as an electrocatalyst for hydrogen generation from neutral-pH water. An electrode composed of Co-HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm(-2) at overpotentials of -85 mV and -237 mV, respectively. The Co-HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm(-2) , indicating the superior activity and stability of Co-HNP as electrocatalyst. PMID:27125576

  2. Cathodic stripping voltammetric determination of chromium in coastal waters on cubic Nano-titanium carbide loaded gold nanoparticles modified electrode

    Directory of Open Access Journals (Sweden)

    Haitao eHan

    2015-09-01

    Full Text Available The novel cubical nano-titanium carbide loaded gold nanoparticles modified electrode for selective and sensitive detection of trace chromium (Cr in coastal water was established based on a simple approach. Nano-titanium carbide is used as the typical cubical nanomaterial with wonderful catalytic activity towards the reduction of Cr(VI. Gold nanoparticles with excellent physical and chemical properties can facilitate electron transfer and enhance the catalytic activity of the modified electrode. Taking advantage of the synergistic effects of nano-titanium carbide and gold nanoparticles, the excellent cathodic signal responses for the stripping determination of Cr(VI can be obtained. The detection limit of this method is calculated as 2.08 μg L-1 with the linear calibration curve ranged from 5.2 to 1040 μg L-1. This analytical method can be used to detect Cr(VI effectively without using any complexing agent. The fabricated electrode was successfully applied for the detection of chromium in coastal waters collected from the estuary giving Cr concentrations between 12.48 and 22.88 μg L-1 with the recovery between 96% and 105%.

  3. Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fantechi, Elvira; Innocenti, Claudia; Albino, Martin; Lottini, Elisabetta [INSTM and Department of Chemistry “U. Schiff”, Università di Firenze, via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze (Italy); Sangregorio, Claudio, E-mail: csangregorio@iccom.cnr.it [C.N.R. – I.C.C.O.M., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)

    2015-04-15

    Magnetite nanoparticles (NPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as heat mediators in Magnetic Fluid Hyperthermia. For the latter, one of the goal of the research is to obtain materials with improved hyperthermic properties. A valuable strategy is the increase of the magnetic anisotropy of commonly employed magnetite through the total or partial substitution of Fe{sup 2+} ions with Co{sup 2+} ions. Here we present a study on a family of 8 nm Co-doped magnetite NPs (Co{sub x}Fe{sub 3−x}O{sub 4}), with composition ranging from pure magnetite (x=0) to stoichiometric cobalt ferrite (x=1), aimed to investigate the evolution of the hyperthermic properties with the increase of Co content. We found that the addition of a small amount of Co is enough to sharply increase the Specific Absorption Rate (SAR). The SAR further increases with x but it reaches a maximum for an intermediate value (x=0.6). Such anomalous behavior is ascribed to the intrinsic magnetic properties of the material, and, in particular, to the magnetic anisotropy, which displays the same peculiar trend. The Co-doping thus may represent an effective strategy to improve the poor hyperthermic efficiency of very small magnetite NPs (<10 nm). - Highlights: • A series of 8 nm non-stoichiometric cobalt ferrite nanoparticles was synthesized. • The Co:Fe molar ratio was varied systematically from 0 to 0.5. • The SAR was observed to have a maximum at intermediate Co content. • The hyperthermic results are explained on the basis of the magnetic anisotropy. • Co-doping is an effective strategy to improve the SAR of Fe{sub 3}O{sub 4} NPs less than 10 nm.

  4. Microstructure and magnetic properties of substituted (Cr, Mn) - cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cojocariu, Alina Mihaela [Faculty of Physics and Carpath Center of Excellence, Alexandru Ioan Cuza University, Bd. Carol I nr. 11, 700506 Iasi (Romania); Soroceanu, Marius [Faculty of Physics and Carpath Center of Excellence, Alexandru Ioan Cuza University, Bd. Carol I nr. 11, 700506 Iasi (Romania); Institute for Macromolecular Chemistry P. Poni, Aleea Grigore Ghica Voda, nr. 41A, 700487 Iasi (Romania); Hrib, Luminita; Nica, Valentin [Faculty of Physics and Carpath Center of Excellence, Alexandru Ioan Cuza University, Bd. Carol I nr. 11, 700506 Iasi (Romania); Caltun, Ovidiu Florin, E-mail: caltun@uaic.ro [Faculty of Physics and Carpath Center of Excellence, Alexandru Ioan Cuza University, Bd. Carol I nr. 11, 700506 Iasi (Romania)

    2012-08-15

    Three mixed ferrite systems CoFe{sub 2}O{sub 4}, CoCr{sub 0.2}Fe{sub 1.8}O{sub 4} and CoMn{sub 0.2}Fe{sub 1.8}O{sub 4} were prepared by the co-precipitation method. X-ray diffraction (XRD) of the calcined powders at 900 Degree-Sign C confirms the accomplishment of the cubic spinel phase formation without any secondary phase. The cation distribution was determined from XRD data and suggested a mixed spinel structure. The higher value of the lattice parameter for Mn comparing with Cr substituted cobalt ferrite could be explained by migration of Co{sup 2+} cation from octahedral to tetrahedral sites. Infrared spectroscopy (FTIR) showed two absorption bands attributed to intrinsic vibrations of tetrahedral and octahedral complexes. The bands shifted toward lower frequency for doped samples comparing with corresponding Co-host ferrite frequencies. The microstructure was investigated by scanning electron microscopy (SEM) and suggested that the nanoparticles are agglomerated and have polygonal faced surfaces. The effect of Mn{sup 3+} and Cr{sup 3+} cation distribution among the tetrahedral (A) - and octahedral [B] - sites of Co substituted ferrite on magnetization and coercive field was investigated by vibrating sample magnetometer technique. Higher values of the coercive field of manganese and chromium substituted cobalt ferrite was explained by lower value of the average particle size. The small increase of saturation magnetization for doped ferrites was explained considering the oxidation state of the substituting ions. -- Highlights: Black-Right-Pointing-Pointer The influence of manganese and chromium substitutions on the coprecipitated cobalt ferrite nanoparticles is described. Black-Right-Pointing-Pointer The microstructure of the as synthesized powders is correlated with the substitution. Black-Right-Pointing-Pointer Development of the spinel phase enhanced by thermal treatment is monitored by FTIR and XRD analyses. Black-Right-Pointing-Pointer The magnetic

  5. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    Science.gov (United States)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  6. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  7. Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogen-Evolution Electrocatalyst.

    Science.gov (United States)

    Ma, Ruguang; Zhou, Yao; Chen, Yongfang; Li, Pengxi; Liu, Qian; Wang, Jiacheng

    2015-12-01

    The replacement of platinum with non-precious-metal electrocatalysts with high efficiency and superior stability for the hydrogen-evolution reaction (HER) remains a great challenge. Herein, we report the one-step synthesis of uniform, ultrafine molybdenum carbide (Mo2C) nanoparticles (NPs) within a carbon matrix from inexpensive starting materials (dicyanamide and ammonium molybdate). The optimized catalyst consisting of Mo2C NPs with sizes lower than 3 nm encapsulated by ultrathin graphene shells (ca. 1-3 layers) showed superior HER activity in acidic media, with a very low onset potential of -6 mV, a small Tafel slope of 41 mV dec(-1), and a large exchange current density of 0.179 mA cm(-2), as well as good stability during operation for 12 h. These excellent properties are similar to those of state-of-the-art 20% Pt/C and make the catalyst one of the most active acid-stable electrocatalysts ever reported for HER.

  8. Taking a hard line with biotemplating: cobalt-doped magnetite magnetic nanoparticle arrays.

    Science.gov (United States)

    Bird, Scott M; Galloway, Johanna M; Rawlings, Andrea E; Bramble, Jonathan P; Staniland, Sarah S

    2015-04-28

    Rapid advancements made in technology, and the drive towards miniaturisation, means that we require reliable, sustainable and cost effective methods of manufacturing a wide range of nanomaterials. In this bioinspired study, we take advantage of millions of years of evolution, and adapt a biomineralisation protein for surface patterning of biotemplated magnetic nanoparticles (MNPs). We employ soft-lithographic micro-contact printing to pattern a recombinant version of the biomineralisation protein Mms6 (derived from the magnetotactic bacterium Magnetospirillum magneticum AMB-1). The Mms6 attaches to gold surfaces via a cysteine residue introduced into the N-terminal region. The surface bound protein biotemplates highly uniform MNPs of magnetite onto patterned surfaces during an aqueous mineralisation reaction (with a mean diameter of 90 ± 15 nm). The simple addition of 6% cobalt to the mineralisation reaction maintains the uniformity in grain size (with a mean diameter of 84 ± 14 nm), and results in the production of MNPs with a much higher coercivity (increased from ≈ 156 Oe to ≈ 377 Oe). Biotemplating magnetic nanoparticles on patterned surfaces could form a novel, environmentally friendly route for the production of bit-patterned media, potentially the next generation of ultra-high density magnetic data storage devices. This is a simple method to fine-tune the magnetic hardness of the surface biotemplated MNPs, and could easily be adapted to biotemplate a wide range of different nanomaterials on surfaces to create a range of biologically templated devices. PMID:25825205

  9. 抑制硬质合金中金属Co浸出的复合润滑剂研究%Study on composite lubricant for inhibiting cobalt leaching from cemented carbide

    Institute of Scientific and Technical Information of China (English)

    连建肖; 张秀玲; 杨桥; 贾晓鸣

    2011-01-01

    Some lubricants were made by esterification reaction of several acid lubricant additives that commonly used in industry and triethanolamine (TEA). Some solutions were prepared by mixing the reaction products and water in a certain ratio to carry on immersion tests of pure cobalt and cemented carbide tool at room temperature. The pure cobalt sheet was used as electrode to form galvanic cell with saturated calomel electrode to determine the electromotive force. According to the value of the electromotive force and combining with the amount of cobalt leaching in different solution,which was analyzed by scanning electron microscopy, the lubricant that showed good inhibiting effect on cobalt leaching was chosen. The results show that triethanolnmine oleate and boric acid-oleic acid triethanolamine can significantly inhibit cobalt leaching from cemented carbide.%选用几种工业上常用的酸类润滑添加剂与三乙醇胺进行醴化反应生成不同润滑剂,将反应产物配成一定浓度的溶液对纯钴片和硬质合金刀具在常温下做浸泡实验,用纯钴片做电极与饱和甘汞电极组成原电池测定电动势,根据电动势的大小结合电镜扫描分析判断不同润滑剂溶液使金属Co浸出的情况,优选出抑制金属Co浸出效果好的润滑剂.实验结果表明:油酸三乙醇胺和油酸硼酸三乙醇胺对Co的浸出有抑制作用.

  10. A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cobalt nanoparticles as high performance oxygen reduction electrocatalysts.

    Science.gov (United States)

    Liu, Ruili; Jin, Yeqing; Xu, Peimin; Xing, Xia; Yang, Yuxing; Wu, Dongqing

    2016-02-15

    As a novel electrocatalyst for oxygen reduction reaction (ORR), nitrogen-doped graphene aerogel supported cobalt nanoparticles (Co-NGA) is archived by a hybrid-assembly of graphene oxide (GO), o-phthalonitrile and cobalt acetate and the following thermal treatment. The hybrid-assembly process successfully combines the ionic assembly of GO sheets and Co ions with the coordination between o-phthalonitrile and Co ions, which can be converted to nitrogen doped carbon and Co nanoparticles in the pyrolysis process under nitrogen flow. Remarkable features of Co-NGA including the macroporous graphene scaffolds, high surface area, and N/Co-doping effect can lead to a high catalytic efficiency for ORR. As the results, the composites pyrolyzed at 600°C (Co-NGA600) shows excellent electrocatalytic activities and kinetics for ORR in basic media, which are comparable with those of Pt/C catalyst, together with superior durability.

  11. A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation

    International Nuclear Information System (INIS)

    We have investigated the oxidative electrochemistry of nitrite on glassy carbon electrodes modified with cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) (PEDOT), and graphene. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The results suggest that this new type of electrode combines the advantages of PEDOT-graphene films and cobalt nanoparticles and exhibits excellent electrocatalytic activity towards the oxidation of nitrite. There is a linear relationship between the peak current and the nitrite concentration in the range from 0.5 μM to 240 μM, and the detection limit is 0.15 μM. The modified electrodes also enable the determination of nitrite at low potentials where the noise level and interferences by other electro-oxidizable compounds are weak. (author)

  12. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    OpenAIRE

    Venkatesan K; Rajan Babu D; Kavya Bai MP; Supriya R; Vidya R.; Madeswaran S; Anandan P; Arivanandhan M; Hayakawa Y

    2015-01-01

    Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The struct...

  13. Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

    Directory of Open Access Journals (Sweden)

    Jacek Wojnarowicz

    2015-09-01

    Full Text Available Zinc oxide nanopowders doped with 1–15 mol % cobalt were produced by the microwave solvothermal synthesis (MSS technique. The obtained nanoparticles were annealed at 800 °C in nitrogen (99.999% and in synthetic air. The material nanostructure was investigated by means of the following techniques: X-ray diffraction (XRD, helium pycnometry density, specific surface area (SSA, inductively coupled plasma optical emission spectrometry (ICP-OES, extended X-ray absorption fine structure (EXAFS spectroscopy, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDS and with magnetometry using superconducting quantum interference device (SQUID. Irrespective of the Co content, nanoparticles in their initial state present a similar morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity nitrogen, the precipitation of metallic α-Co was detected for a Co content of 5 mol % or more. For samples annealed in synthetic air, no change of phase structure was detected, except for precipitation of Co3O4 for a Co content of 15 mol %. The results of the magentometry investigation indicated that all as-synthesized samples displayed paramagnetic properties with a contribution of anti-ferromagnetic coupling of Co–Co pairs. After annealing in synthetic air, the samples remained paramagnetic and samples annealed under nitrogen flow showed a magnetic response under the influences of a magnetic field, likely related to the precipitation of metallic Co in nanoparticles.

  14. Structural and magnetic properties correlated with cation distribution of Mo-substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Heiba, Z.K. [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box: 888, Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Abd-Elkader, Omar H. [Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Electron Microscope and Thin Films Department, National Research Center (NRC), El-Behooth Street, Dokki, Cairo 12622 (Egypt)

    2014-11-15

    Mo-substituted cobalt ferrite nanoparticles; CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by a one-step solution combustion synthesis technique. The reactants were metal nitrates and glycine as a fuel. The samples were characterized using an X-ray diffraction (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). XRD analysis revealed a pure single phase of cubic spinel ferrites for all samples with x up to 0.3. The lattice parameter decreases with Mo{sup 6+} substitution linearly up to x=0.15, then nonlinearly for x≥0.2. Rietveld analysis and saturation magnetization (M{sub s}) revealed that Mo{sup 6+} replaced Fe{sup 3+} in the tetrahedral A-sites up to x=0.15, then it replaced Fe{sup 3+} in both A-sites and B-sites for x≥0.2. The saturation magnetization (M{sub s}) increases with increasing Mo{sup 6+} substitution up to x=0.15 then decreases. The crystallite size decreased while the microstrain increased with increasing Mo{sup 6+} substitution. Inserting Mo{sup 6+} produces large residents of defects and cation vacancies. - Highlights: • Nano-sized Mo-substituted cobalt ferrite CoFe{sub 2−2x}Mo{sub x}O{sub 4} (0.0≤x≤0.3) were prepared by solution combustion. • The change in M{sub s} with increasing Mo-substitution was investigated. • The cations distributions of ferrites were obtained from Rietveld analysis. • Inserting Mo{sup 6+} produces large residents of defects and cation vacancies.

  15. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity

    Directory of Open Access Journals (Sweden)

    Marcella Mauro

    2015-07-01

    Full Text Available Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1 and needle-abraded human skin (experiment 2. Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled–Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm−2, while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm−2 and those with intact skin (1.08 ± 0.20 ng·cm−2. To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue® and propidium iodide (PI uptake assays. The results indicate that a long exposure time (i.e., seven days was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10−4 M, 95% CL = 0.8–1.9 × 10−4 M, MTT essay; 3.7 × 10−5 M, 95% CI = 2.2–6.1 × 10−5 M, AlamarBlue® assay that seems to be associated to necrotic events (EC50 value: 1.3 × 10−4 M, 95% CL = 0.9–1.9 × 10−4 M, PI assay. This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  16. Cobalt Oxide Nanoparticles: Behavior towards Intact and Impaired Human Skin and Keratinocytes Toxicity.

    Science.gov (United States)

    Mauro, Marcella; Crosera, Matteo; Pelin, Marco; Florio, Chiara; Bellomo, Francesca; Adami, Gianpiero; Apostoli, Piero; De Palma, Giuseppe; Bovenzi, Massimo; Campanini, Marco; Filon, Francesca Larese

    2015-07-01

    Skin absorption and toxicity on keratinocytes of cobalt oxide nanoparticles (Co3O4NPs) have been investigated. Co3O4NPs are commonly used in industrial products and biomedicine. There is evidence that these nanoparticles can cause membrane damage and genotoxicity in vitro, but no data are available on their skin absorption and cytotoxicity on keratinocytes. Two independent 24 h in vitro experiments were performed using Franz diffusion cells, using intact (experiment 1) and needle-abraded human skin (experiment 2). Co3O4NPs at a concentration of 1000 mg/L in physiological solution were used as donor phase. Cobalt content was evaluated by Inductively Coupled-Mass Spectroscopy. Co permeation through the skin was demonstrated after 24 h only when damaged skin protocol was used (57 ± 38 ng·cm⁻²), while no significant differences were shown between blank cells (0.92 ± 0.03 ng cm⁻²) and those with intact skin (1.08 ± 0.20 ng·cm⁻²). To further investigate Co3O4NPs toxicity, human-derived HaCaT keratinocytes were exposed to Co3O4NPs and cytotoxicity evaluated by MTT, Alamarblue and propidium iodide (PI) uptake assays. The results indicate that a long exposure time (i.e., seven days) was necessary to induce a concentration-dependent cell viability reduction (EC50 values: 1.3 × 10-4 M, 95% CL = 0.8-1.9 × 10⁻⁴ M, MTT essay; 3.7 × 10⁻⁵ M, 95% CI = 2.2-6.1 × 10⁻⁵ M, AlamarBlue assay) that seems to be associated to necrotic events (EC50 value: 1.3 × 10⁻⁴ M, 95% CL = 0.9-1.9 × 10⁻⁴ M, PI assay). This study demonstrated that Co3O4NPs can penetrate only damaged skin and is cytotoxic for HaCat cells after long term exposure.

  17. Influence of Ce-Substitution on Structural, Magnetic and Electrical Properties of Cobalt Ferrite Nanoparticles

    Science.gov (United States)

    Hashhash, A.; Kaiser, M.

    2016-01-01

    Nano-crystalline samples of cerium substituted cobalt ferrites with chemical formula CoCe x Fe2- x O4 (0.0 ≤ x ≤ 0.1) were prepared using the citrate auto-combustion method. The prepared ferrites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), transmission electron microscopy (TEM), and a vibrating sample magnetometer (VSM). The XRD patterns and FTIR spectra confirm that the prepared samples reveal the formation of a single-phase spinel structure. TEM micrographs showed that the particles are made up of spherical and elongated nano-metric shapes. A limitation of the size of nanoparticles is observed as the Ce3+ concentration increases. VSM measurements showed that the coercivity H c and magnetization values M s are strongly dependent on Ce3+ content and particle size. The values of H c lie in the range of (411-1600 G), which suggest that these samples are convenient for different applications. The alternating current electrical conductivity ( σ), dielectric permittivities ( ɛ', ɛ″), and dielectric loss tangent (tan δ) were studied at different ranges of frequency and temperature. The relation of conductivity with temperature revealed a semiconductor to semi-metallic behavior as cerium concentration increases. The variation in (tan δ) with frequency at different temperature shows abnormal behavior with more than one relaxation peak. The conduction mechanism used in the present study has been discussed in the light of cation-anion-cation interactions over the octahedral B-site.

  18. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.

    Science.gov (United States)

    Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak

    2015-10-01

    Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. PMID:26153227

  19. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jamal, Aslam [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Rahman, Mohammed M. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Khan, Sher Bahadar, E-mail: drkhanmarwat@gmail.com [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Faisal, Mohd. [Centre for Advanced Materials and Nano-Engineering (CAMNE) and Department of Chemistry, Faculty of Sciences and Arts, Najran University, P. O. Box 1988, Najran 11001 (Saudi Arabia); Akhtar, Kalsoom [Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O. [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Graphical abstract: A dichloromethane chemical sensor using cobalt antimony oxides has been fabricated. This sensor showed high sensitivity and will be a useful candidate for environmental and health monitoring. Also it showed high photo-catalytic activity and can be a good candidate as a photo-catalyst for organic hazardous materials. Highlights: Black-Right-Pointing-Pointer Reusable chemical sensor. Black-Right-Pointing-Pointer Green environmental and eco-friendly chemi-sensor. Black-Right-Pointing-Pointer High sensitivity. Black-Right-Pointing-Pointer Good candidate for environmental and health monitoring. - Abstract: Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb{sub 2}O{sub 6}) are well crystalline nano-particles with an average particles size of 26 {+-} 10 nm. UV-visible absorption spectra ({approx}286 nm) were used to investigate the optical properties of CoSb{sub 2}O{sub 6}. The chemical sensing of CoSb{sub 2}O{sub 6} NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 {mu}A cm{sup -2} mM{sup -1}) and a large linear dynamic range (1.0 {mu}M-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb{sub 2}O{sub 6} nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb{sub 2}O{sub 6} nano-particles can play an excellent research impact in the environmental field.

  20. Synthesis and characterization of palladium and palladium-cobalt nanoparticles on Vulcan XC-72R for the oxygen reduction reaction.

    Science.gov (United States)

    Arroyo-Ramírez, Lisandra; Montano-Serrano, Rubenier; Luna-Pineda, Tatiana; Román, Félix R; Raptis, Raphael G; Cabrera, Carlos R

    2013-11-27

    A single-source approach was used to synthesize bimetallic nanoparticles on a high-surface-area carbon-support surface. The synthesis of palladium and palladium-cobalt nanoparticles on carbon black (Vulcan XC-72R) by chemical and thermal reduction using organometallic complexes as precursors is described. The electrocatalysts studied were Pd/C, Pd2Co/C, and PdCo2/C. The nanoparticles composition and morphology were characterized using inductively coupled plasma mass spectrophotometer (ICP-MS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray fluorescence spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Electrocatalytic activity towards the oxygen reduction reaction (ORR) and methanol tolerance in oxygen-saturated acid solution were determined. The bimetallic catalyst on carbon support synthetized by thermal reduction of the Pd2Co precursor has ORR electrocatalytic activity and a higher methanol tolerance than a Pt/C catalyst.

  1. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  2. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Indian Academy of Sciences (India)

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  3. Influence of aging time of oleate precursor on the magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Adriana P.; Polo-Corrales, Liliana [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Chavez, Ermides; Cabarcas-Bolivar, Jari [Department of Physics, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Uwakweh, Oswald N.C. [Department of General Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States); Rinaldi, Carlos, E-mail: crinaldi@uprm.edu [Department of Chemical Engineering, University of Puerto Rico, Mayagueez, Puerto Rico, PR 00681-9000 (United States)

    2013-02-15

    Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron-cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron-cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron-cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron-cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron-cobalt oleate precursor resulted in crossing of the in-phase {chi} Prime and out-of-phase {chi} Double-Prime components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for

  4. Influence of cobalt doping on structural and magnetic properties of BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U. [Chinese Academy of Sciences, Institute of Physics (China); Adeela, N., E-mail: adeela16@gmail.com [Centre for High Energy Physics, University of the Punjab (Pakistan); Javed, K. [Chinese Academy of Sciences, Institute of Physics (China); Riaz, S. [Centre for Solid State Physics, University of the Punjab (Pakistan); Ali, H. [Chinese Academy of Sciences, Institute of Physics (China); Iqbal, M. [Centre for High Energy Physics, University of the Punjab (Pakistan); Han, X. F. [Chinese Academy of Sciences, Institute of Physics (China); Naseem, S., E-mail: shahzad-naseem@yahoo.com [Centre for Solid State Physics, University of the Punjab (Pakistan)

    2015-11-15

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe{sub 1−δ}Co{sub δ}O{sub 3} (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO{sub 3}. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller’s law, while modified Bloch’s model was employed for saturation magnetization in temperature range of 5–300 K.Graphical Abstract.

  5. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H2O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  6. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel

    NARCIS (Netherlands)

    van Berkum, S.; Dee, J.T.; Philipse, A.P.; Erné, B.H.

    2013-01-01

    Chemically responsive hydrogels with embedded magnetic nanoparticles are of interest for biosensors that magnetically detect chemical changes. A crucial point is the irreversible linkage of nanoparticles to the hydrogel network, preventing loss of nanoparticles upon repeated swelling and shrinking o

  7. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Carreño-Gallardo, C.; Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico); López-Meléndez, C. [Universidad La Salle Chihuahua, Prol. Lomas de Majalca No. 11201, CP 31020, Chihuahua, México (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico)

    2014-02-15

    Highlights: • Synthesis of 2024-SiC{sub NP} nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al{sub 2024} alloy was reinforced with silicon carbide nanoparticles (SiC{sub NP}), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC{sub NP} were homogeneously dispersed into the Al{sub 2024} alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC{sub NP} content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC{sub NP}.

  8. Effect of Particle Size and Lattice Strain on the Debye-Waller Factors of Silicon Carbide Nanoparticles.

    Science.gov (United States)

    Purushotham, E

    2016-03-01

    Nano Silicon Carbide (SiC) particles have been produced by ball milling process. The sample was taken 0, 10, 20, 30, 40 and 50 hours of milling. The resulting nanoparticle powders were characterized by X-ray diffraction measurements. The high-energy ball milling of SiC after 50 hours resulted in particle size of about 24 nm. The Debye temperature, mean-square amplitudes of vibration, Debye-Waller factor, particle size, and lattice strain and vacancy formation of energies of SiC nanoparticles prepared by ball mill have been obtained from X-ray integrated intensities. The integrated intensities have been measured with a Philips CWU 3710 X-ray powder diffractometer fitted with a scintillation counter using filtered CuKα radiation at room temperature and have been corrected for thermal diffuse scattering. The X-ray Debye temperatures obtained in the present investigation has been used to estimate the vacancy formation energies for SiC nanoparticles. PMID:27455685

  9. Tensile Mechanical Properties and Strengthening Mechanism of Hybrid Carbon Nanotube and Silicon Carbide Nanoparticle-Reinforced Magnesium Alloy Composites

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2012-01-01

    Full Text Available AZ91 magnesium alloy hybrid composites reinforced with different hybrid ratios of carbon nanotubes (CNTs and silicon carbide (SiC nanoparticulates were fabricated by semisolid stirring assisted ultrasonic cavitation. The results showed that grains of the matrix in the AZ91/(CNT + SiC composites were obviously refined after adding hybrid CNTs and SiC nanoparticles to the AZ91 alloy, and the room-temperature mechanical properties of AZ91/(CNT + SiC hybrid composites were improved comparing with the unreinforced AZ91 matrix. In addition, the tensile mechanical properties of the AZ91 alloy-based hybrid composites were considerably improved at the mass hybrid ratio of 7 : 3 for CNTs and SiC nanoparticles; in particular, the tensile and yield strength were increased, respectively, by about 45 and 55% after gravity permanent mould casting. The reason for an increase in the room-temperature strength of the hybrid composites should be mainly attributable to the larger hybrid ratio of CNTs and SiC nanoparticles, the coefficient of thermal expansion (CTE mismatch between matrix and hybrid reinforcements, the dispersive strengthening effects (Orowan strengthening, and the grain refining (Hall-Petch effect.

  10. Effect of Particle Size and Lattice Strain on the Debye-Waller Factors of Silicon Carbide Nanoparticles.

    Science.gov (United States)

    Purushotham, E

    2016-03-01

    Nano Silicon Carbide (SiC) particles have been produced by ball milling process. The sample was taken 0, 10, 20, 30, 40 and 50 hours of milling. The resulting nanoparticle powders were characterized by X-ray diffraction measurements. The high-energy ball milling of SiC after 50 hours resulted in particle size of about 24 nm. The Debye temperature, mean-square amplitudes of vibration, Debye-Waller factor, particle size, and lattice strain and vacancy formation of energies of SiC nanoparticles prepared by ball mill have been obtained from X-ray integrated intensities. The integrated intensities have been measured with a Philips CWU 3710 X-ray powder diffractometer fitted with a scintillation counter using filtered CuKα radiation at room temperature and have been corrected for thermal diffuse scattering. The X-ray Debye temperatures obtained in the present investigation has been used to estimate the vacancy formation energies for SiC nanoparticles.

  11. Synthesis and magnetic properties of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles prepared by wet chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Maaz, K. [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Mumtaz, Arif [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)]. E-mail: arif@qau.edu.pk; Hasanain, S.K. [Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan); Ceylan, Abdullah [Department of Physics and Astronomy, University of Delaware, Newark (United States)

    2007-01-15

    Magnetic nanoparticles of cobalt ferrite have been synthesized by wet chemical method using stable ferric and cobalt salts with oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) confirmed the formation of single-phase cobalt ferrite nanoparticles in the range 15-48 nm depending on the annealing temperature and time. The size of the particles increases with annealing temperature and time while the coercivity goes through a maximum, peaking at around 28 nm. A very large coercivity (10.5 kOe) is observed on cooling down to 77 K while typical blocking effects are observed below about 260 K. The high field moment is observed to be small for smaller particles and approaches the bulk value for large particles.

  12. Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaur, Poonam, E-mail: poonam.gaur612@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Malik, B.P. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Gaur, Arun [Department of Physics, Hindu College, Sonipat 131001, Haryana (India)

    2015-01-15

    The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ{sup (3)} are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm{sup 2}. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.

  13. Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites

    Directory of Open Access Journals (Sweden)

    Kornaus Kamil

    2016-06-01

    Full Text Available Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12 addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12 particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.

  14. Eco-friendly microbial route to synthesize cobalt nanoparticles using Bacillus thuringiensis against malaria and dengue vectors.

    Science.gov (United States)

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Kirthi, Arivarasan Vishnu; Santhoshkumar, Thirunavukkarasu; Jayaseelan, Chidambaram; Rajakumar, Govindasamy

    2013-12-01

    The developments of resistance and persistence to chemical insecticides and concerns about the non-target effects have prompted the development of eco-friendly mosquito control agents. The aim of this study was to investigate the larvicidal activities of synthesized cobalt nanoparticles (Co NPs) using bio control agent, Bacillus thuringiensis against malaria vector, Anopheles subpictus and dengue vector, Aedes aegypti (Diptera: Culicidae). The synthesized Co NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy, and Transmission electron microscopy (TEM). XRD analysis showed three distinct diffraction peaks at 27.03°, 31.00°, and 45.58° indexed to the planes 102, 122, and 024, respectively on the face-centered cubic cobalt acetate with an average size of 85.3 nm. FTIR spectra implicated role of the peak at 3,436 cm(-1) for O-H hydroxyl group, 2924 cm(-1) for methylene C-H stretch in the formation of Co NPs. FESEM analysis showed the topological and morphological appearance of NPs which were found to be spherical and oval in shape. TEM analysis showed polydispersed and clustered NPs with an average size of 84.81 nm. The maximum larvicidal mortality was observed in the cobalt acetate solution, B. thuringiensis formulation, and synthesized Co NPs against fourth instar larvae of A. subpictus and A. aegypti with LC50 values of 29.16, 8.12, 3.59 mg/L; 34.61, 6.94, and 2.87 mg/L; r (2) values of 0.986, 0.933, 0.942; 0.962, 0.957, and 0.922, respectively.

  15. Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier Transform Infrared Transmission Spectrometry and Thermogravimetry

    International Nuclear Information System (INIS)

    Cobalt ferrite (CoFe2O4) nanoparticles of average size 4 nm with narrow size distribution are synthesized by reverse micelle approach. The nanoparticles are characterized using powder X-ray diffraction (XRD), Dynamic Light Scattering (DLS), Theromogravimetric analysis (TGA) and Fourier Transform Infrared Transmission Spectrometry (FTIR). Three successive transformations are observed in the thermogram that correspond to the loss of solvent and surfactant; onset of the amorphous to crystallize conversion; and isochemical transformation, i.e. migration of cations between octahedral and tetrahedral sites in the inverse spinel structure. The isochemical transformation is further confirmed by FTIR. The IR absorption bands observed at 460 and 615 cm-1 in the as-prepared CoFe2O4 nanoparticles correspond to the ferrite skeleton of octahedral and tetrahedral sites, respectively. The peak intensity at 615 and 460 cm-1 is shifted to 601 and 440 cm-1, respectively upon annealing at 320 and 400 deg. C. These results confirm migration of cations from the octahedral to the tetrahedral sites.

  16. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique

    Science.gov (United States)

    Mugundan, S.; Rajamannan, B.; Viruthagiri, G.; Shanmugam, N.; Gobi, R.; Praveen, P.

    2015-04-01

    TiO2 nanoparticles doped with different concentrations of cobalt (4, 8, 12 and 16 %) were synthesized by sol-gel method at room temperature with appropriate reactants. In general, TiO2 can exist in anatase, rutile, and brookite phases. In this present study, we used titanium tetra iso propoxide and 2-propanol as a common starting materials and the obtained products were calcined at 500 °C and 800 °C to get anatase and rutile phases, respectively. The crystalline sizes of the doped and undoped TiO2 nanoparticles were observed with X-ray diffraction (XRD) analysis. The functional groups of the samples were identified by Fourier transform infrared spectroscopy (FTIR). From UV-VIS diffuse reflectance spectra (DRS), the band gap energy and excitation wavelength of doped and undoped TiO2 nanoparticles were identified. The defect oriented emissions were seen from photoluminescence (PL) study. The spherical uniform size distribution of particles and elements present in the samples was determined using two different techniques viz., scanning electron microscopy (SEM) with energy-dispersive spectrometer (EDX) and transmission electron microscope (TEM) with selected area electron diffraction (SAED) pattern. The second harmonic generation (SHG) efficiency was also found and the obtained result was compared with potassium di hydrogen phosphate (KDP).

  17. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  18. The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions

    International Nuclear Information System (INIS)

    Our understanding of how engineered nanoparticles (NPs) migrate through soil and affect microbial communities is scarce. In the current study we examined how metal NPs, including those from the iron triad (iron, cobalt and nickel), moved through pots of soil maintained under winter field conditions for 50 days, when mesophilic bacteria may not be dividing. Based on total metal analysis, cobalt and nickel were localized in the top layer of soil, even after exposure to high precipitation and freeze–thaw cycles. In contrast, a bimodal distribution of silver was observed. Due to high endogenous levels of iron, the migration pattern of these NPs could not be determined. Pyrosequence analysis of the bacterial communities revealed that there was no significant engineered NP-mediated decline in microbial richness. However, analysis of individual genera showed that Sphingomonas and Lysobacter were represented by fewer sequences in horizons containing elevated metal levels whereas there was an increase in the numbers of Flavobacterium and Niastella. Collectively, the results indicate that along with the differential migration behavior of NPs in the soil matrix, their impact on soil bacterial diversity appears to be dependent on environmental parameters. (paper)

  19. Silicon Carbide Nanoparticles Produced by CO2 Laser Pyrolysis of SiH4/C2H2 Gas Mixtures in a Flow Reactor

    International Nuclear Information System (INIS)

    Pulsed CO2-laser-induced decomposition of different mixtures of SiH4 and C2H2 in a flow reactor has been employed to produce silicon carbide clusters and nanoparticles with varying content of carbon. The as-synthesized species were extracted from the reaction zone by a conical nozzle and expanded into the source chamber of a cluster beam apparatus where, after having traversed a differential chamber, they were analyzed with a time-of-flight mass spectrometer. Thin films of silicon carbide nanoclusters were produced by depositing the clusters at low energy on potassium bromide and sapphire windows mounted into the differential chamber. At the same time, Si and SiC nanoparticles were collected in a filter placed into the exhaust line of the flow reactor. Both beam and powder samples were characterized by FTIR spectroscopy. The close resemblance of the spectra suggests that the composition of the beam and powder particles obtained during the same run is nearly identical. XRD spectroscopy could only be employed for the investigation of the powders. It was found that CO2 laser pyrolysis is ideally suited to produce silicon carbide nanoparticles with a high degree of crystallinity. Nanopowders produced from the pyrolysis of a stoichiometric (2:1) mixture of SiH4/C2H2 were found to contain particles or domains of pure silicon. The characteristic silicon features in the FTIR and XRD spectra, however, disappeared when C2H2 was applied in excess

  20. Cobalt-assisted in situ synthesis of crystalline bismuth nanoparticle arrays

    Science.gov (United States)

    Lee, Ho Seok; Noh, Jin-Seo; Suh, Kwang S.

    2014-12-01

    Almost monodisperse, crystalline Bi nanoparticle arrays were synthesized using a newly developed method, magnetically assisted growth of Bi nanoparticles (MAGBINs). The MAGBIN utilizes co-sputtering from Bi and Co targets at an elevated temperature. Crystalline Bi nanoparticles with hexagonal morphology were formed in situ on a Si substrate with a thin surface oxide during this process. The size and density of Bi nanoparticles could be controlled by adjusting the relative powers applied to Bi and Co targets, and they showed opposite trends against the relative powers. Several physical processes such as Co agglomeration, element-selective growth, and Ostwald ripening were proposed to be involved in this Bi nanoparticle growth. The MAGBIN is a facile method to synthesize crystalline Bi nanoparticle arrays, which does not need any chemical agents, complex process, or lithography.

  1. Size-controlled bismuth nanoparticles physically grown by the support of cobalt atomic flux

    Science.gov (United States)

    Lee, Ho Seok; Noh, Jin-Seo

    2016-04-01

    Bi nanoparticle arrays with the almost monodispersity were synthesized using a magnetically assisted physical method. The average size and the overall morphology of Bi nanoparticles could be controlled by the adjustment of several parameters such as relative powers applied to Bi and Co targets, substrate temperature, and growth time. It was disclosed that Bi nanoparticles grow larger at a higher relative power to Bi, higher substrate temperature, and longer growth time, accompanying the deterioration of well-developed faceted structures. This physical method may provide a facile and fast route to achieving quality Bi nanoparticle arrays with a certain extent of size and morphology controllability.

  2. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  3. Thermal evolution of cobalt deposits on Co3O4(111): atomically dispersed cobalt, two-dimensional CoO islands, and metallic Co nanoparticles.

    Science.gov (United States)

    Mehl, S; Ferstl, P; Schuler, M; Toghan, A; Brummel, O; Hammer, L; Schneider, M A; Libuda, J

    2015-09-28

    Cobalt oxide nanomaterials show high activity in several catalytic reactions thereby offering the potential to replace noble metals in some applications. We have developed a well-defined model system for partially reduced cobalt oxide materials aiming at a molecular level understanding of cobalt-oxide-based catalysis. Starting from a well-ordered Co3O4(111) film on Ir(100), we modified the surface by deposition of metallic cobalt. Growth, structure, and adsorption properties of the cobalt-modified surface were investigated by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and infrared reflection absorption spectroscopy (IRAS) using CO as a probe molecule. The deposition of a submonolayer of cobalt at 300 K leads to the formation of atomically dispersed cobalt ions distorting the surface layer of the Co3O4 film. Upon annealing to 500 K the Co ions are incorporated into the surface layer forming ordered two-dimensional CoO islands on the Co3O4 grains. At 700 K, Co ions diffuse from the CoO islands into the bulk and the ordered Co3O4(111) surface is restored. Deposition of larger amounts of Co at 300 K leads to formation of metallic Co aggregates on the dispersed cobalt phase. The metallic particles sinter at 500 K and diffuse into the bulk at 700 K. Depending on the degree of bulk reduction, extended Co3O4 grains switch to the CoO(111) structure. All above structures show characteristic CO adsorption behavior and can therefore be identified by IR spectroscopy of adsorbed CO. PMID:26299410

  4. Optical and magnetic properties of Yb ion-doped cobalt-based ZnO nanoparticles for DMS applications

    Indian Academy of Sciences (India)

    T Thangeeswari; M Priya; J Velmurugan; N Padmanathan

    2015-09-01

    Well-crystalline structured ZnO nanoparticles with cobalt (Co) and ytterbium (Yb) multiple ions doping were successfully synthesized by the chemical precipitation technique. The structures, optical and magnetic properties of the samples were analysed with X-ray diffraction (XRD), UV–visible spectroscopy and magnetic measurements, respectively. In the XRD pattern of the pure ZnO and Yb co-doped samples, the formation of highly crystalline phase of pure ZnO was observed even at high Yb concentration. UV–vis spectra show a strong UV absorbance for all the samples with different absorbance maxima. Magnetic characterizations have shown that the sample with 1% Yb co-doped ZnO: Co nanoparticles exhibited a clear ferromagnetic (FM) behaviour at room temperature. The X-ray photoelectron spectral peaks for Yb 4f ions reveal Yb occupation of both Yb3+ as well as Yb2+ states. Hence, it can be confirmed that a clear FM behaviour at room temperature was exhibited by an imbalanced valence state of Yb that strongly interacted with the Co2+. When compared to the Co-doped ZnO, Yb co-doped ZnO exhibits a clear ferromagnetism at room temperature with high coercivity due to the contribution of both 3d and 4f exchange interaction with the host matrix.

  5. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    Science.gov (United States)

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). PMID:27101476

  6. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    Energy Technology Data Exchange (ETDEWEB)

    Kiesler, D., E-mail: dennis.kiesler@uni-due.de; Bastuck, T.; Theissmann, R.; Kruis, F. E. [University of Duisburg-Essen, Institute of Technology for Nanostructures (NST) and Center for Nanointegration Duisburg-Essen (CENIDE) (Germany)

    2015-03-15

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC{sub X}N{sub 1 − X} synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC{sub X}N{sub 1 − X}) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm.

  7. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    Science.gov (United States)

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode).

  8. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Graphical abstract: An approach to performing extraction and preconcentration employing functionalized magnetic particles for the determination of cobalt in the sequential injection lab-on-valve system using detection by electrothermal atomic absorption spectrometry. Highlights: ► New SPE method for cobalt separation/preconcentration was reported. ► Functionalized magnetic nanoparticles were used as adsorbent. ► Extraction, elution, and detection procedures were performed in the LOV system. ► This automatic extraction technique provided a good platform for metal analysis. - Abstract: A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L−1, and the relative standard deviation was 2.8% at the 0.5 μg L−1 level (n = 11). The limit of detection was 6 ng L−1 with a sampling frequency of 18 h−1. The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.

  9. Femtosecond pulsed laser ablation of molybdenum carbide: Nanoparticles and thin film characteristics

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A. [Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza (Italy); Istituto Metodologie Inorganiche e Plasmi IMIP – CNR, Sez. Potenza, Via S. Loja, 85050, Tito Scalo (PZ) (Italy); Santagata, A. [Istituto Metodologie Inorganiche e Plasmi IMIP – CNR, Sez. Potenza, Via S. Loja, 85050, Tito Scalo (PZ) (Italy); Sansone, M. [Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza (Italy); Rau, J.V. [Istituto di Struttura della Materia ISM – CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Mori, T. [National Institute for Materials Science (NIMS) WPI Materials Nanoarchitectonics Center (MANA), Namiki 1-1, Tsukuba 305-0044 (Japan); Teghil, R., E-mail: roberto.teghil@unibas.it [Dipartimento di Scienze, Università della Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza (Italy)

    2013-08-01

    In this paper we have used pulsed laser deposition (PLD) technique to ablate a Mo{sub 2}C target in vacuum by using an ultra-short pulse laser, with a 250 fs pulse duration, carrying out the study of both plasma and film characteristics. The aim of the work is to connect the film structure and morphology to the characteristics of the nanoparticles found in the plasma produced by the target ablation. To analyze the plasma we have used ICCD fast imaging and optical emission spectroscopy while the films have been characterized by X-ray diffraction, scanning electron microscopy and atomic force spectroscopy. The obtained results have been interpreted considering an ablation model which justifies the emission of molten nanoparticles directly from the target.

  10. Femtosecond pulsed laser ablation of molybdenum carbide: Nanoparticles and thin film characteristics

    Science.gov (United States)

    De Bonis, A.; Santagata, A.; Sansone, M.; Rau, J. V.; Mori, T.; Teghil, R.

    2013-08-01

    In this paper we have used pulsed laser deposition (PLD) technique to ablate a Mo2C target in vacuum by using an ultra-short pulse laser, with a 250 fs pulse duration, carrying out the study of both plasma and film characteristics. The aim of the work is to connect the film structure and morphology to the characteristics of the nanoparticles found in the plasma produced by the target ablation. To analyze the plasma we have used ICCD fast imaging and optical emission spectroscopy while the films have been characterized by X-ray diffraction, scanning electron microscopy and atomic force spectroscopy. The obtained results have been interpreted considering an ablation model which justifies the emission of molten nanoparticles directly from the target.

  11. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    International Nuclear Information System (INIS)

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co(1-x)ZnxFe2O4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co(1-x)ZnxFe2O4 nanoparticles. X-ray diffraction patterns of Co(1-x)ZnxFe2O4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe2O4. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co(1-x)ZnxFe2O4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM, respectively, decrease with the

  12. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J., E-mail: javierlo21@gmail.com [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Gonzalez-Bahamon, L.F. [Analytical Chemistry Laboratory, Universidad del Valle, A.A. 25360, Cali (Colombia); Prado, J.; Caicedo, J.C.; Zambrano, G.; Gomez, M.E. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Esteve, J. [Department de Fisica Aplicada i Optica, Universitat de Barcelona, Catalunya (Spain); Prieto, P. [Center of Excellence for Novel Materials, Universidad del Valle, Cali (Colombia)

    2012-02-15

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles. X-ray diffraction patterns of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe{sub 2}O{sub 4}. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5{+-}0.3) nm to (5.4{+-}0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} magnetic

  13. Oxide or carbide nanoparticles synthesized by laser ablation of a bulk Hf target in liquids and their structural, optical, and dielectric properties

    Science.gov (United States)

    Semaltianos, N. G.; Friedt, J.-M.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Combe, G.; Assoul, M.; Monteil, G.

    2016-05-01

    Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO2) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter in the range of 4.3-5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74-8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.

  14. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural

    Science.gov (United States)

    Wang, Guang-Hui; Hilgert, Jakob; Richter, Felix Herrmann; Wang, Feng; Bongard, Hans-Josef; Spliethoff, Bernd; Weidenthaler, Claudia; Schüth, Ferdi

    2014-03-01

    The synthesis of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) is a highly attractive route to a renewable fuel. However, achieving high yields in this reaction is a substantial challenge. Here it is described how PtCo bimetallic nanoparticles with diameters of 3.6 ± 0.7 nm can solve this problem. Over PtCo catalysts the conversion of HMF was 100% within 10 min and the yield to DMF reached 98% after 2 h, which substantially exceeds the best results reported in the literature. Moreover, the synthetic method can be generalized to other bimetallic nanoparticles encapsulated in hollow carbon spheres.

  15. Comparison of the Structural Configuration of Cobalt Nanoparticles on Titania and Titania Nanotube Supports

    Directory of Open Access Journals (Sweden)

    E. Muzenda

    2012-03-01

    Full Text Available In this study, two cobalt based catalyst samples were prepared on titania and titania nanotubes supports using the deposition precipitation method. Their structural configurations were characterized and compared using BET, and TRP analyses. The BET analysis showed that the surface area of TiO2 is much higher than that of TNT which was due to their structural differences. Analyses of the results obtained revealed that the surface area of the 10 % Co/TNT catalyst sample is higher than that of the 10 % Co/TiO2. The TPR analysis showed that it is much easier to reduce 10 % Co/TiO2, than 10 % Co/TNT. This is attributed to be due to the fact that the cobalt particles were adsorbed on the surface of the TiO2, and formed covalent bonds with TNT. Therefore reduction temperature was higher with TNT than TiO2. The investigation of structural changes of these catalysts when they were coated with carbon, using chemical vapour deposition method was also conducted. The catalyst prepared on TNT support showed better properties in terms of average pore diameter, pore volume and surface area than the catalyst sample prepared on TiO2 support when the two samples were exposed to carbon environment for the same period of time. In this study, two cobalt based catalyst samples were prepared on titania and titania nanotubes supports using the deposition precipitation method. Their structural configurations were characterized and compared using BET, and TRP analyses. The BET analysis showed that the surface area of TiO2 is much higher than that of TNT which was due to their structural differences. Analyses of the results obtained revealed that the surface area of the 10 % Co/TNT catalyst sample is higher than that of the 10 % Co/TiO2. The TPR analysis showed that it is much easier to reduce 10 % Co/TiO2, than 10 % Co/TNT. This is attributed to be due to the fact that the cobalt particles were adsorbed on the surface of the TiO2, and formed covalent bonds

  16. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    Science.gov (United States)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as

  17. Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica

    Directory of Open Access Journals (Sweden)

    Gabriella Di Carlo

    2015-03-01

    Full Text Available Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water (O/W, and water-in-oil (W/O microemulsions. The influence of the surfactant and the precipitating agent used for synthesis was also investigated. For this purpose, cobalt nanostructures were prepared using different non-ionic surfactants, namely Synperonic® 10/6, Pluronic® P123 and a mixture of SPAN 20–TWEEN 80. Three different precipitating agents were used: sodium borohydride, sodium hydroxide, and oxalic acid. Our findings revealed that by changing the type of reaction media as well as the precipitating agent it is possible to modify the shape and size of the cobalt nanostructures. Moreover, the use of O/W microemulsion generates better results in terms of colloidal stability and uniformity of particle size with respect to W/O microemulsion. The different cobalt nanostructures were supported on commercial and mesoporous silica; transmission electron microscopy (TEM images showed that after deposition the Co nanocrystals remain well dispersed on the silica supports. This behavior suggests their great potential in catalytic applications.

  18. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  19. Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Tuncer, Enis [ORNL; Rondinone, Adam Justin [ORNL; Woodward, Jonathan [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL

    2009-01-01

    In this paper, we report the dielectric properties of composite systems (nanodielectrics) made of small amounts of mono dispersed magnetic nanoparticles embedded in a polymer matrix. It is observed from the transmission electron microscope images that the matrix polymeric material is confined in approximately $100\\ \

  20. Reversal of Flux Closure States in Cobalt Nanoparticle Rings With Coaxial Magnetic Pulses

    DEFF Research Database (Denmark)

    Kasama, T; Dunin-Borkowski, Rafal E.; Scheinfein, MR;

    2008-01-01

    Bistable flux closure (FC) states in Co nanoparticle rings can be switched reversibly by applying a coaxial magnetic field (H-z). The FC switching phenomena can be reproduced by micromagnetics simulations, which also reveal novel magnetic states at intermediate applied field strengths....

  1. Self-heating characteristics of cobalt ferrite nanoparticles for hyperthermia application

    International Nuclear Information System (INIS)

    The self-heating temperature rising characteristics of CoFe2O4 hard spinel ferrite nanoparticles were investigated and were compared to those of soft spinel ferrite in order to explore the effects of magnetic anisotropy and magnetic susceptibility on the behavior of self-heating temperature rising characteristics for hyperthermia application. The maximum self-heating temperature, elevated by using our specially designed RF-MRI modified LC circuit in a solid state, was 4.6 deg. C. The corresponding frequency and magnetic field strength product for the 4.6 deg. C temperature rising, H 0 f, was 13.4x108 Am-1 s-1. The extremely low elevated temperature and the small specific absorption rate (SAR) relevant to the gentle slope from the time vs. temperature rising curve were found to be primarily due to a stronger anisotropy (or a smaller magnetic susceptibility) of CoFe2O4 hard spinel ferrite nanoparticles compared to the soft spinel ferrite nanoparticles

  2. Enhanced electrical properties in Nd doped cobalt ferrite nano-particles

    Science.gov (United States)

    Abbas, S.; Munir, A.; Zahra, F.; Rehman, M. A.

    2016-08-01

    Spinel ferrites are important class of compounds which has variety of electrical, magnetic and catalytic applications. A small amount of rare earth element causes modification in structural, electrical and magnetic properties of ferrite materials for practical applications. Neodymium doped cobalt ferrites with composition CoNdxFe2-xO4 where x is 0.1 has been synthesized by sol-gel method. Sol-gel method was preferred because it has good control over stoichiometry, crystallite size and particle size distribution. Characterization was done by using X-Ray Diffraction (XRD) technique for structural analysis and crystal structure was found to be spinel. Particles like morphology was observed in micrographs obtained by Scanning Electron Microscopy (SEM). Thermal analysis of sample has been done which includes Thermogravimetric analysis (TGA) and Differential Scanning calorimetry (DSC). Fourier transform infra-red spectroscopy (FT-IR) of samples was also performed. DC resistivity as a function of temperature has been studied and its shows direct dependence on temperature and inverse dependence on the concentration of Nd dopant. The studied material is a potential candidate for resistive random access memory application.

  3. Fabrication and Characterization of Cobalt Iron Oxide Nanoparticles by a Reverse Micelle Process

    International Nuclear Information System (INIS)

    The preparation of CoFe2O4 nanoparticles in Igepal CO-520-cyclohexane-water reverse micelle solutions has been studied. Transmission electron microscopy and X-ray diffraction pattern analyses revealed the resultant particles to be CoFe2O4. The average size and distribution of synthesized particles calcined at 6000C for 2 hrs were in the range of 30 to 70 nm and broaden, respectively. The phase of synthesized particles was crystalline. The magnetic behavior of the synthesized particles was ferromagnetism. The effects of synthesis parameters, such as the molar ratio of water to surfactant and calcination temperature, are discussed

  4. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  5. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  6. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  7. Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles-chitosan film

    Energy Technology Data Exchange (ETDEWEB)

    Yang Weiying; Zhou Xia; Zheng Na [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China); Li Xiangjun, E-mail: lixiangj@gucas.ac.cn [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China); Yuan Zhuobin [College of Chemistry and Chemical Engineering, Graduate University, Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049 (China)

    2011-07-30

    Cobalt ferrite nanoparticles (Co{sub x}Fe{sub 3-x}O{sub 4}) and chitosan (CS) film were used to immobilize/adsorb hemoglobin (Hb) to create a protein electrode to study the direct electron transfer between the redox centers of the proteins and the electrode. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the Co{sub x}Fe{sub 3-x}O{sub 4} particles were nanoscale in size and formed an ordered layered structure. The native structure of the immobilized Hb was preserved as indicated by Fourier-transform infrared (FTIR) and UV-visible (UV-vis) spectroscopy. The Hb-Co{sub x}Fe{sub 3-x}O{sub 4}-CS modified electrode showed a pair of well-defined and quasi-reversible cyclic voltammetric peaks at -0.373 V (vs. SCE) and exhibited appreciable electrocatalytic activity for the reduction of H{sub 2}O{sub 2}. The catalysis currents increased linearly with H{sub 2}O{sub 2} concentration in a wide range of 5.0 x 10{sup -8} to 1.0 x 10{sup -3} mol L{sup -1} with a detection limit of 1.0 x 10{sup -8} mol L{sup -1} (S/N = 3) and had long-term stability. Finally, the proposed method was applied to investigate the coexistence of hydrogen peroxide with the interfering substances. Experimental results showed that the ascorbic acid, glucose, L-cysteine, uric acid, and dopamine at corresponding concentrations did not influence the detection of H{sub 2}O{sub 2}.

  8. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g-1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  9. Improved catalytic activity of cobalt core–platinum shell nanoparticles supported on surface functionalized graphene for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Poly (diallyldimethylammonium chloride) (PDDA) functionalized graphene supported bimetallic catalysts of shell platinum on core cobalt (Co@Pt/PDDA-G) are synthesized using a two-step procedure involving the microwave synthesis method and replacement method. TEM indicate that a uniform dispersion of Co@Pt nanoparticles on PDDA functionalized graphene have the average particle size of 1.9 nm. The composite is applied to electrocatalysis for methanol oxidation. And the electrochemical surface areas of the as-prepared Co@Pt/PDDA-G, Pt supported on PDDA-graphene (Pt/PDDA-G), Co@Pt supported on graphene (Co@Pt/G) are evaluated by cyclic voltammetry, which are calculated to be 105.6 m2 g−1Pt, 92.8 m2 g−1Pt, and 83.4 m2 g−1Pt, with respect to 37.8 m2 g−1Pt of commercial Pt/C (TKK) catalyst. The current being examined by chronoamperometry reach a constant at 23 mA mg−1 for Co@Pt/PDDA–G catalyst, which is roughly 3.3-fold higher than that of commercial Pt/C catalyst. The electrochemical tests show that the activity and stability of Co@Pt supported on PDDA-G is highly better than the widely used Pt supported on PDDA-graphene sheets, also better than that of Co@Pt on unfunctional graphene with the same Pt content on the electrode. This improved activity could be attributed to not only the PDDA playing a crucial role in the dispersion and stabilization of Co@Pt on graphene, but also the high use ratio of Pt for its shell structure and the electronic effect of the underlying metal and Pt surface layer

  10. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    Science.gov (United States)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g‑1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  11. Synthesis and characterizations of Ni{sup 2+} substituted cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Mohd., E-mail: md.hashim09@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh 202002 (India); Kumar, Shalendra [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Shirsath, Sagar E. [Spin Device Technology Center, Faculty of Engineering, Shinshu University, Nagano 380-8553 (Japan); Kotnala, R.K.; Shah, Jyoti [National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Kumar, Ravi [Centre for Material Science Engineering, National Institute of Technology, Hamirpur 177005, HP (India)

    2013-05-15

    Nanocrystalline Co–Ni ferrites bearing chemical formula Co{sub 0.5}Fe{sub 2−x}Ni{sub 0.5+1.0x}O{sub 4} for x ranging from 0.0 to 0.4 with the step increment of 0.1 were successfully synthesized by sol gel auto-combustion method. The energy dispersive X-ray analysis (EDAX) results give relevant information for the homogenous mixing of the Co, Fe, and Ni atoms as expected from the synthesis. The phase identification of the materials by XRD reveals single phase with cubic symmetry. The presence of functional group was identified by Fourier transform infrared spectroscopic studies. The dielectric parameters such as dielectric constant ((ε′), dielectric loss (ε″) and dielectric loss tangent (tan δ) have been studied at room temperature in the frequency range 42 Hz−5MHz and is explained in the light of interfacial polarization, arising from the heterogeneous nature of ferrite structure. The decrease in DC resistivity with increasing Ni concentration is attributed to the Verwey mechanism between Fe{sup 2+} ↔ Fe{sup 3+}, Co{sup 2+} ↔ Co{sup 3+} and Ni{sup 2+} ↔ Ni{sup 3+}. Ni-doped nanocrystalline cobalt ferrite samples exhibit a very large value for dielectric constant of the order of 10{sup 13}. Complex impedance analysis has been used to separate grain and grain boundary in the studied samples. It is observed that saturation magnetization (Ms) decreases with increase in nickel contents which is attributed to the substitution of magnetic Fe{sup 3+} ions of 5 μ{sub B} by less magnetic Ni{sup 2+} ions of 2 μ{sub B}. The analysis of the Mössbauer spectra shows the hyperfine field, relative % area and isomer shift decreases whereas quadruple splitting and line width increases at A- and B-sites on increasing the substitution of Ni{sup 2+} ions. - Highlights: ► Crystallite size decreases with increasing Ni{sup 2+} substitution. ► IR spectra reveal the bands corresponding to spinel structure. ► Resistivity increases initially followed by decreasing

  12. Synthesis and characterization of cobalt and nickel ferrites containing nanoparticles dispersed in silicon; Sintese e carcacterizacao de ferritas de cobalto e niquel contendo nanoparticulas dispersas em oxido de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.P.; Sales, B.M.C.; Pinheiro, A.N.; Sousa, A.F. de; Valentini, A., E-mail: tiagoufc2003@yahoo.com.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica. Lab. de Adsorcao e Catalise; Herrera, W.T.; Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas em Fisica (CBPF), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Experimental

    2010-07-01

    Cobalt and nickel ferrites containing nanoparticles dispersed in silicon oxides were prepared via polymeric precursor method. The samples were characterized by X-ray diffraction (XDR), Fourier-transform infrared spectroscopy (FTIR), Moessbauer spectroscopy (MS) and N{sub 2} adsorption/desorption isotherms (BET). The analysis results of FTIR, XRD and MS revealed the presence of nickel and cobalt ferrite besides the existence of {gamma}-Fe{sub 2}O{sub 3}. Additionally, Moessbauer spectroscopy measurements at 300 K show that nanoparticles are in the superparamagnetic regime being blocked at 4.2 K. Furthermore, all the solids showed by nitrogen adsorption/desorption isotherms profiles characteristic of mesoporous materials. (author)

  13. Development of Nile red-functionalized magnetic silica nanoparticles for cobalt ion sensing and entrapping

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tao; Lv, Yanlin; Liu, Heng; Lv, Yi; Tian, Zhiyuan, E-mail: zytian@ucas.ac.cn [University of Chinese Academy of Sciences (UCAS), School of Chemistry and Chemical Engineering (China)

    2013-09-15

    A new type of hybrid nanoparticles (NPs) with combined magnetic and fluorescent properties in single particle was developed by incorporating magnetic silica NPs with highly fluorescent Nile red dyes. These NPs clearly exhibit Co{sup 2+} ion entrapping ability in aqueous milieu and Co{sup 2+}-induced fluorescence enhancement features with high selectivity owing to the Co{sup 2+}-triggered inhibition on the photoinduced electron transfer progress in the efficient fluorophore (Nile red derivative). Moreover, these dual-functional NPs display superparamagnetic features and the motion of these fluorescent NPs can be induced by the application of an external magnetic field, enabling a facile separation/removal of toxic Co{sup 2+} ion from the aqueous milieu and real-time monitoring via fluorescence measurements.

  14. Direct Fabrication of Cobalt Oxide Nanoparticles Employing Sucrose as a Combustion Fuel

    Directory of Open Access Journals (Sweden)

    M. Th. Makhlouf

    2013-01-01

    Full Text Available Combustion method has been used as a fast and facile method to prepare nanocrystalline Co3O4 spinel employing sucrose as a combustion fuel. The products were characterized by thermal analyses (TGA and DTA, X-ray diffraction technique (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and transmission electron microscopy (TEM techniques. Experimental results revealed that the molar ratio of fuel/oxidizer (F/O plays an important role in controlling the crystallite size of Co3O4 nanoparticles. Transmission electron microscopy indicated that the crystallite size of Co3O4 nanocrystals was in the range of 13–32 nm. X-ray diffraction confirmed the formation of CoO phase with spinel Co3O4. The effect of calcination temperature on crystallite size and morphology has been, also, discussed.

  15. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare these materials lead to bulk or micron size powder which limits their use in reactions in particular in catalytic applications. Attempts toward the production of transition metal carbide and nitride nanoparticles in a sustainable, simple and cheap manner have been rapidly increasing. In this thesis, a new approach was presented to prepare nano-scale transition metal carbides and nitrides of group IV-VI with a size as small as 3 nm through the reaction of transition metal precursor with mesoporous graphitic carbon nitride (mpg-C3N4) that not only provides confined spaces for nanoparticles formation but also acts as a chemical source of nitrogen and carbon. The produced nanoparticles were characterized by powder X-ray diffraction (XRD), temperature-programmed reaction with mass spectroscopy (MS), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The effects of the reaction temperature, the ratio of the transition metal precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2, and NH3) on the resultant crystal phases and structures were investigated. The results indicated that different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen by changing the reaction temperatures. Two forms of tantalum nitride, namely TaN and Ta3N5, were selectively formed under N2 and NH3 flow, respectively. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen where high C3N4/Ta precursor ratio generally resulted in high carbide

  16. Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Science.gov (United States)

    Lu, Le T.; Dung, Ngo T.; Tung, Le D.; Thanh, Cao T.; Quy, Ong K.; Chuc, Nguyen V.; Maenosono, Shinya; Thanh, Nguyen T. K.

    2015-11-01

    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications.In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(iii) and Co(ii) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4-30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications. Electronic

  17. Cobalt nanoparticles as sacrificial templates for the electrodeposition of palladium nanomaterials in an ionic liquid, and its application to electrochemical sensing of hydrazine

    International Nuclear Information System (INIS)

    We report on the electrodeposition of palladium nanomaterials in choline chloride-based ionic liquid ethaline. A glassy carbon electrode (GCE) was modified with cobalt nanoparticles (acting as sacrificial templates) and a GCE modified with palladium nanoparticles (PdNPs) were fabricated and used to study the electrocatalytic oxidation of hydrazine (N2H4). Scanning electron microscopy revealed that the PdNP modified GCE has a uniform morphology. Zero current potentiometry was used for in-situ probing the changes in interfacial potential of the oxidation of hydrazine. An amperometric study showed that the PdNP modified GCE possesses excellent electrocatalytic activity towards N2H4. The modified electrode displays a fast response (-1)-1 cm-2) and broad linearity in the range from 0.1 to 800 μmol L-1 with a detection limit of 0.03 μmol L-1 (S/N = 3). (author)

  18. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization

    Science.gov (United States)

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-08-01

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of HE was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (TN) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ~4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (HE), an enhanced coercivity field (HC), and a pronounced vertical shift, thus

  19. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Kutluay, Aysegul; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2014-08-11

    Highlights: • A GCE was modified with carbon nanotubes and cobalt nanoparticles. • The composite material was obtained using an ultrasonic chemical deposition method. • The CoNPs/MWCNT/GCE was applied for the simultaneous determination of PAR and DA. • The presence of AA and UA did not affect the responses of PAR and DA. • Lower detection limits were obtained using the CoNPs/MWCNT/GCE. - Abstract: Multi-walled carbon nanotubes (MWCNTs) functionalized by cobalt nanoparticles were obtained using a single step chemical deposition method in an ultrasonic bath. The composite material was characterized using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The electroactivity of the cobalt-functionalized MWCNTs was assessed in respect to the electrooxidation of paracetamol (PAR) and dopamine (DA). It was found that the carbon nanotube supported cobalt nanoparticles have significantly higher catalytic properties. The proposed electrode has been applied for the simultaneous determination of PAR and DA. The modified electrode could resolve the overlapped voltammetric waves of PAR and DA into two well-defined voltammetric peaks with peak to peak separation of about 203 mV. On the other hand, the presence of potential drug interfering compounds AA and UA did not affect the voltammetric responses of PAR and DA. The current of oxidation peaks showed a linear dependent on the concentrations of PAR and DA in the range of 5.2 × 10{sup −9}–4.5 × 10{sup −7} M (R{sup 2} = 0.9987) and 5.0 × 10{sup −8}–3.0 × 10{sup −6} M (R{sup 2} = 0.9999), respectively. The detection limits of 1.0 × 10{sup −9} M and 1.5 × 10{sup −8} M were obtained for PAR and DA, respectively. The proposed electrode showed good stability (peak current change: 4.9% with and RSD of 2.6% for PAR; 5.5% with and RSD of 3.0% for DA over 3 weeks), reproducibility (RSD 2.3% for PAR and RSD 1.5% for DA), repeatability (RSD 2.25% for PAR and RSD 2.50% for DA) and

  20. Cobalt oxide nanoparticles as a novel high-efficiency fiber coating for solid phase microextraction of benzene, toluene, ethylbenzene and xylene from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: MB.Gholivand@yahoo.com [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba; Shamizadeh, Mohammad [Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Moradian, Rostam; Astinchap, Bandar [Physics Department, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Nano Technology Research Laboratory, Razi University, Kermanshah (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Co{sub 3}O{sub 4} nanoparticles were introduced as a novel SPME fiber coating. • The fiber was evaluated for the extraction of BTEX in combination with GC–MS. • The fiber showed extraction efficiencies better than a PDMS fiber toward BTEX. • The fiber was successfully applied to the determination of BTEX in real samples. - Abstract: In this work cobalt oxide nanoparticles were introduced for preparation of a novel solid phase microextraction (SPME) fiber coating. Chemical bath deposition (CBD) technique was used in order for synthesis and immobilization of the Co{sub 3}O{sub 4} nanomaterials on a Pt wire for fabrication of SPME fiber. The prepared cobalt oxide coating was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The fiber was evaluated for the extraction of benzene, toluene, ethylbenzene and xylene (BTEX) in combination with GC–MS. A simplex optimization method was used to optimize the factors affecting the extraction efficiency. Under optimized conditions, the proposed fiber showed extraction efficiencies comparable to those of a commercial polydimethylsiloxane (PDMS) fiber toward the BTEX compounds. The repeatability of the fiber and its reproducibility, expressed as relative standard deviation (RSD), were lower than about 11%. No significant change was observed in the extraction efficiency of the new SPME fiber after over 50 extractions. The fiber was successfully applied to the determination of BTEX compounds in real samples. The proposed nanostructure cobalt oxide fiber is a promising alternative to the commercial fibers as it is robust, inexpensive and easily prepared.

  1. Oxidative Dehydrogenation of Cyclohexane on Cobalt Oxide (Co3O4) Nanoparticles: The Effect of Particle Size on Activity and Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Tyo, Eric C.; Yin, Chunrong; Di Vece, Marcel; Qian, Qiang; Kwon, Gihan; Lee, Sungsik; Lee, Byeongdu; DeBartolo, Janae E.; Seifert, Sönke; Winans, Randall E.; Si, Rui; Ricks, Brian; Goergen, Simone; Rutter, Matthew; Zugic, Branko; Flytzani-Stephanopoulos, Maria; Wang, Zhi Wei; Palmer, Richard E.; Neurock, Matthew; Vajda, Stefan

    2012-10-02

    The oxidative dehydrogenation of cyclohexane by cobalt oxide nanoparticles was studied via temperature programmed reaction combined with in situ grazing incidence X-ray absorption spectroscopy and grazing incidence small-angle X-ray scattering and theoretical calculations on model Co3O4 substrates. Both 6 and 12 nm Co3O4 nanoparticles were made through a surfactant-free preparation and dispersed on an Al2O3 surface formed by atomic layer deposition. Under reaction conditions the nanoparticles retained their oxidation state and did not sinter. They instead underwent an assembly/disassembly process and could reorganize within their assemblies. The selectivity of the catalyst was found to be size- and temperature-dependent, with larger particles preferentially producing cyclohexene at lower temperatures and smaller particles predominantly resulting in benzene at higher temperatures. The mechanistic features thought to control the oxidative dehydrogenation of cyclohexane and other light alkanes on cobalt oxide were established by carrying out density functional theory calculations on the activation of propane, a surrogate model alkane, over model Co3O4 surfaces. The initial activation of the alkane (propane) proceeds via hydrogen abstraction over surface oxygen sites. The subsequent activation of the resulting alkoxide intermediate occurs at a second surface oxygen site to form the alkene (propene) which then desorbs from the surface. Hydroxyl recombination results in the formation of water which desorbs from the surface. Finally, oxygen is necessary to regenerate the surface oxygen sites, catalyze C–H activation steps, and minimize catalyst degradation.

  2. Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method

    OpenAIRE

    Rockstuhl, Carsten; Salt, Martin Guy; Herzig, Hans-Peter

    2008-01-01

    We investigate the small-particle phonon-polariton response of several microstructures that are made of silicon carbide (SiC). Phonon polaritons can be excited in a wavelength region between 10 and 12 µm. Simple structures such as elliptical cylinders support phonon polaritons at two wavelengths, which depend on the axis ratio of the particle. In particles with a more irregular shape such as rectangular or triangular cylinders, up to five phonon polaritons can be excited. Through comparison o...

  3. In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

    Energy Technology Data Exchange (ETDEWEB)

    Pourchez, Jeremie, E-mail: pourchez@emse.fr; Forest, Valerie [LINA EA 4624, Ecole Nationale Superieure des Mines, CIS-EMSE (France); Boumahdi, Najih; Boudard, Delphine [SFR IFRESIS (France); Tomatis, Maura; Fubini, Bice [Universita di Torino, Dipartimento di Chimica and ' G. Scansetti' Interdepartmental Center for Studies on Asbestos and other Toxic Particulates (Italy); Herlin-Boime, Nathalie; Leconte, Yann [Service des Photons, Atomes et Molecules, CEA-CNRS URA2453, IRAMIS, CEA SACLAY, Laboratoire Francis Perrin (France); Guilhot, Bernard; Cottier, Michele; Grosseau, Philippe [SFR IFRESIS (France)

    2012-10-15

    Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-{alpha} production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases ({alpha}-SiC vs. {beta}-SiC) on the TNF-{alpha} production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H{sub 2}O{sub 2} production.

  4. Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3

    Science.gov (United States)

    Farahi, Nader; Prabhudev, Sagar; Bugnet, Matthieu; Botton, Gianluigi A.; Salvador, James R.; Kleinke, Holger

    2016-09-01

    The effect of silicon carbide (SiC) nanoparticles on the thermoelectric properties of Mg2Si0.676Ge0.3Bi0.024 was investigated. Increasing the concentration of SiC nanoparticles systematically reduces the electrical conductivity from 431 Ω-1 cm-1 for the pristine sample to 370 Ω-1 cm-1 for the sample with 1.5 wt.% SiC at 773 K, while enhancing the Seebeck coefficient from -202 μV K-1 to -215 μV K-1 at 773 K. In spite of the high thermal conductivity of SiC, its additions could successfully decrease the lattice thermal conductivity from 3.2 W m-1 K-1 to 2.7 W m-1 K-1 at 323 K, presumably by adding more interfaces. The Z contrast transmission electron microscopy imaging (Z = atomic number) and energy dispersive x-ray spectroscopy revealed bismuth segregation at the grain boundary. In summary, the figure of merit reached its maximum value of 0.75 at 773 K for the sample containing 0.5 wt.% SiC.

  5. Incorporation of cobalt and nickel metal nano-particles in nano-grain zirconia film matrix by solution route

    Indian Academy of Sciences (India)

    S Jana; P K Biswas

    2000-08-01

    Precursor solutions of cobalt/nickel incorporated nano-grain zirconia films were prepared from aquo-organic solutions of zirconium oxychloride octahydrate and corresponding transition metal nitrate. The films were deposited onto silica glass substrate by the dipping technique. Annealing was made at different temperatures from 450°C to 1200°C ± 5°C in air atmosphere. The range of thickness of the films baked at 450°C was 1800–1870 Å. For cobalt system Co3O4 was formed initially at 450°C which gradually transformed to alpha cobalt and next to cubic cobalt along with a non-stoichiometric compound (Zr0.71Co0.23O0.06) with increasing annealing temperature. On the other hand, for nickel system nickel metal of nano-size was observed in the nano-grain zirconia film matrix at 450°C. By increasing annealing temperature to 1200°C, a compound, ZrNi4O, was formed which was found to be stable for ∼ 30 days.

  6. Non-catalytic facile synthesis of superhard phase of boron carbide (B13C2) nanoflakes and nanoparticles.

    Science.gov (United States)

    Xie, Sky Shumao; Su, Liap Tat; Guo, Jun; Vasylkiv, Oleg; Borodianska, Hanna; Xi, Zhu; Krishnan, Gireesh M; Su, Haibin; Tokl, Alfred I Y

    2012-01-01

    Boron Carbide is one the hardest and lightest material that is also relatively easier to synthesis as compared to other superhard ceramics like cubic boron nitride and diamond. However, the brittle nature of monolithic advanced ceramics material hinders its use in various engineering applications. Thus, strategies that can toughen the material are of fundamental and technological importance. One approach is to use nanostructure materials as building blocks, and organize them into a complex hierarchical structure, which could potentially enhance its mechanical properties to exceed that of the monolithic form. In this paper, we demonstrated a simple approach to synthesize one- and two-dimension nanostructure boron carbide by simply changing the mixing ratio of the initial compound to influence the saturation condition of the process at a relatively low temperature of 1500 degrees C with no catalyst involved in the growing process. Characterization of the resulting nano-structures shows B13C2, which is a superhard phase of boron carbide as its hardness is almost twice as hard as the commonly known B4C. Using ab-initio density functional theory study on the elastic properties of both B12C3 and B13C2, the high hardness of B13C2 is consistent to our calculation results, where bulk modulus of B13C2 is higher than that of B4C. High resolution transmission electron microscopy of the nanoflakes also reveals high density of twinning defects which could potentially inhibit the crack propagation, leading to toughening of the materials.

  7. Cobalt and possible oxidant-mediated toxicity.

    Science.gov (United States)

    Nemery, B; Lewis, C P; Demedts, M

    1994-06-30

    The occurrence of interstitial lung disease similar to hard metal lung disease in diamond polishers who had been exposed to cobalt (in the absence of tungsten carbide) through the use of polishing disks containing microdiamonds sintered with cobalt, led us to experimentally test the hypothesis that cobalt has pro-oxidant activity in lung tissue. Several experiments were carried out in which we measured indices of oxidant stress, mainly changes in the oxidation state of glutathione and in the activity of the pentose phosphate pathway, upon exposure of hamster pulmonary tissue to CoCl2 in vivo by intratracheal instillation, or in vitro by incubating lung slices. These experiments indicated that cobalt ions are capable of causing thiol oxidation in lung tissue as an early manifestation of oxidant stress, but more studies are needed to establish the relevance of this mechanism in the causation of lung disease in subjects exposed to cobalt-containing dusts. PMID:7939609

  8. Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties

    International Nuclear Information System (INIS)

    In this work the cobalt ferrite (CoFe2O4) nanoparticles are synthesized using three different methods; combustion, coprecipitation, and precipitation. Size, structural, and magnetic properties were determined and compared using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). XRD data analysis showed an average size of 69.5 nm for combustion, 49.5 nm for coprecipitation, and 34.7 nm for precipitation samples which concorded with SEM images. XRD data further revealed a reverse cubic spinel structure with the space group Fd-3m in all three samples. VSM data of samples showed a saturation point in the magnetic field of less than 15 kOe. Magnetization saturation (Ms) was 56.7 emu/g for combustion synthestized samples, 55.8 emu/g for coprecipitation samples, and 47.2 emu/g for precipitation samples. Coercivity (Hc) was 2002 Oe for combustion synthestized samples, 850 Oe for coprecipitation samples, and 233 Oe for precipitation samples. These results show that various methods of nanoparticle synthesis can lead to different particle sizes and magnetic properties. Hc and Ms are greatest in the combustion method and least in precipitation method. - Highlights: • CoFe2O4 nanoparticles were made by combustion, coprecipitation, and precipitation. • Size, structural, and magnetic properties were determined and compared. • XRD, SEM, and VSM measurements were carried out. • Nanoparticle synthesis method affects particle sizes and magnetic properties. • Hc and Ms are greatest in the combustion method and least in precipitation method

  9. Sensitive Detection of Aromatic Hydrophobic Compounds in Water and Perfluorooctane Sulfonate in Human Serum by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (SALDI-MS) with Amine Functionalized Graphene-Coated Cobalt Nanoparticles.

    Science.gov (United States)

    Nakai, Keisuke; Kawasaki, Hideya; Yamamoto, Atsushi; Arakawa, Ryuichi; Grass, Robert N; Stark, Wendelin J

    2014-01-01

    In this article, we describe the application of surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) with the use of amine functionalized graphene-coated cobalt nanoparticles (CoC-NH2 nanoparticles) to analyse aromatic hydrophobic compounds that are known environmental contaminants, including polycyclic aromatic hydrocarbons (PAHs) and pentachlorophenol (PCP). Our results demonstrated that SALDI-MS can detect PCP, anthracene, and pyrene in water. In particular, the CoC-NH2 nanoparticles proved to be an efficient means of capturing PCP in water because of the high adsorption capacity of the nanoparticles for PCP, which resulted in a detectability of 100 ppt. Furthermore, the CoC-NH2 nanoparticles also functioned as an adsorbent for solid-phase extraction of perfluorooctane sulfonate (PFOS) from human serum, displaying good performance with a detectability of 10 ppb by SALDI-MS.

  10. Cobalt poisoning

    Science.gov (United States)

    ... against the metal cup when you walk. These metal particles (ions) can get released into the hip socket and ... Cobalt may also be found in: Alloys Batteries Chemistry/crystal ... Magnets Some metal-on-metal hip implants Tires Cobalt was once ...

  11. Synthesis, characterization, and photocatalytic activities of Cobalt(II)-Titanium dioxide nanorods, and electrophoretic deposition of Titanium dioxide nanoparticle/nanorod composite films for self-cleaning applications

    Science.gov (United States)

    Kang, Wonjun

    This dissertation consists of two projects. The first project is synthesis, characterization, and photocatalytic activities of Co(II)-TiO2 nanorods. We modified brookite TiO2 nanorods with cobalt(II) ions to design new photocatalysts with visible light absorption. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) data indicated that the local structure of Co(II)-TiO2 nanorods was shown as tetrahedral and octahedral Co(II) sites at TiO2 nanorod surface. Dimethylglyoxime (DMG) has been used to remove surface Co(II) from Co(II)-TiO2 nanorods to determine single-site Co(II) ions selectively attached to the TiO 2 nanorod surface. We proposed a mechanism that the Co-Co bond of the precursor Co2(CO)8 undergoes heterolysis followed by disproportionation of Co(I) to produce Co(II) and Co(0) precipitate. Finally, the Co(II)-TiO2 nanorods showed greater activity than TiO 2 nanorods in the degradation of 5,8-dihydroxy-1,4-naphthoquinone (DHNQ) dye under visible light irradiation. The second project is electrophoretic deposition (EPD) of TiO2 nanoparticle/nanorod composite films for self-cleaning applications. We developed novel electrolyte system for EPD of TiO2 nanoparticle/nanorod composites for self-cleaning coatings. A mixture of TiO2 powder and TiO2 nanorods was used as EPD suspension in a mixture of THF and acetone. TiO2 nanoparticle/nanorod composite films were fabricated on aluminium substrates via the EPD method, and were characterized by scanning electron microscope (SEM). SEM images showed that TiO2 nanoparticle/nanorod composite films had a uniform pore structure. The hydrophobic properties of surfaces in TiO2 nanoparticle/nanorod composite films were evaluated by water contact angle measurements. It was found that the surfaces of TiO2 nanoparticle/nanorod composite films were hydrophobic with contact angle of 103°. These hydrophobic surfaces are expected to have potential applications for self-cleaning.

  12. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.

    Science.gov (United States)

    Gutierrez-Muñiz, O E; García-Rosales, G; Ordoñez-Regil, E; Olguin, M T; Cabral-Prieto, A

    2013-01-15

    This manuscript presents the synthesis of carbon modified with iron nanoparticles (CFe) and iron carbide (CarFe) from the pyrolyzed crown leaves of pineapple (Ananas comosus) treated with iron salts. The materials that were obtained were used for the removal of As(V) from aqueous media. The carbonaceous materials were characterized by Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Mossbauer Spectroscopy. The specific area (BET), number site density and point of zero charge (pH(pzc)) were also determined. The kinetic parameters were obtained by fitting the experimental data to the pseudo-first-order and pseudo-second-order models. Different isotherm models were applied to describe the As(V) adsorption behavior. The kinetics of As(V) sorption by CFe and CarFe was well defined for the pseudo-second-order model (R(2) = 0.9994 and 0.999, respectively). The maximum As(V) uptake was 1.8 mg g(-1) for CFe and 1.4 mg g(-1) for CarFe. The results obtained indicated that both materials are equally useful for As(V) sorption. The As(V) experimental isotherm data were described by the Freundlich model for CFe and CarFe.

  13. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu;

    2013-01-01

    on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an atomic......Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures...

  14. A co-condensation model for in-flight synthesis of metal-carbide nanoparticles in thermal plasma jet

    OpenAIRE

    Vorobev, A.; Zikanov, O.; Mohanty, P.

    2008-01-01

    We present a theoretical analysis of the formation, growth, and transport of two-component nanoparticles in thermal plasma jet. The approach of the aerosol science and the idea of multicomponent co-condensation are employed for the analysis. The processes of homogeneous nucleation, heterogeneous growth, and coagulations due to Brownian collisions are considered in combination with the convective and diffusive transport of particles and the reacting gases within an axisymmetric domain. As a pa...

  15. Stable iron carbide nanoparticle dispersions in [Emim][SCN] and [Emim][N(CN)2] ionic liquids.

    Science.gov (United States)

    Khare, Varsha; Kraupner, Alexander; Mantion, Alexandre; Jelicić, Aleksandra; Thünemann, Andreas F; Giordano, Cristina; Taubert, Andreas

    2010-07-01

    Dispersions of Fe(3)C nanoparticles in several ionic liquids (ILs) have been investigated. The ILs are based on 1-ethyl-3-methylimidazolium [Emim] and 1-butyl-3-methylimidazolium [Bmim] cations. Anions are ethylsulfate [ES], methanesulfonate [MS], trifluoromethylsulfonate (triflate) [TfO], tetrafluoroborate [BF(4)], dicyanamide [N(CN)(2)], and thiocyanate [SCN]. Among the ILs studied, [Emim][SCN] and [Emim][N(CN)(2)] stand out because only in these ILs have stable and transparent nanoparticle dispersions been obtained. All other ILs lead to blackish, slightly turbid dispersions or to completely nontransparent suspensions, which often contain undispersed sediment. UV/vis spectroscopy, transmission electron microscopy, and X-ray scattering suggest that the reason for the stabilization of the Fe(3)C nanoparticles in [Emim][SCN] is the leaching of traces of iron from the particles (without affecting the crystal structure of the Fe(3)C particles). The resulting particle surface is thus carbon-rich, which presumably favors the stabilization of the particles. A similar explanation can be postulated for [Emim][N(CN)(2)], with the dicyanamide anion also being a good ligand for iron. PMID:20426431

  16. Cobalt surface modification during γ-Fe{sub 2}O{sub 3} nanoparticle synthesis by chemical-induced transition

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junming [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Jian, E-mail: aizhong@swu.edu.cn [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Chen, Longlong; Lin, Yueqiang; Liu, Xiaodong; Gong, Xiaomin [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Li, Decai [School of Mechanical and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-02-01

    In the chemical-induced transition of FeCl{sub 2} solution, the FeOOH/Mg(OH){sub 2} precursor was transformed into spinel structured γ-Fe{sub 2}O{sub 3} crystallites, coated with a FeCl{sub 3}·6H{sub 2}O layer. CoCl{sub 2} surface modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding Co(NO{sub 3}){sub 2} during the synthesis. CoFe{sub 2}O{sub 4} modified γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by adding NaOH during the surface modification with Co(NO{sub 3}){sub 2}. The CoFe{sub 2}O{sub 4} layer grew epitaxially on the γ-Fe{sub 2}O{sub 3} crystallite to form a composite crystallite, which was coated by CoCl{sub 2}·6H{sub 2}O. The composite could not be distinguished using X-ray diffraction or transmission electron microscopy, since CoFe{sub 2}O{sub 4} and γ-Fe{sub 2}O{sub 3} possess similar spinel structures and lattice constants. X-ray photoelectron spectroscopy was used to distinguish them. The saturation magnetization and coercivity of the spinel structured γ-Fe{sub 2}O{sub 3}-based nanoparticles were related to the grain size. - Highlights: • γ-Fe{sub 2}O{sub 3} nanoparticles were synthesized by chemical induced transition. • CoCl{sub 2} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} during synthesization. • CoFe{sub 2}O{sub 4} modified nanoparticles were prepared by additional Co(NO{sub 3}){sub 2} and NaOH. • The magnetism of the nanoparticles is related to the grain size.

  17. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  18. 复合电刷镀镍-钨-钴-纳米碳化硅及其性能%Electro-brush plating of nickel-tungsten-cobalt-nano silicon carbide composite coating and its properties

    Institute of Scientific and Technical Information of China (English)

    陈大川; 谢光荣; 曾鹏; 李程飞; 许小东

    2016-01-01

    A Ni-W-Co-n-SiC (nano silicon carbide) composite coating was prepared on the surface of 45 steel by electro-brush plating. The bath composition and process conditions are as follows: NiSO4·7H2O 393 g/L, Na2WO4·2H2O 23 g/L, H3BO331 g/L, citric acid 42 g/L, Na2SO46.5 g/L, CoSO4·7H2O 3 g/L, NaF 5 g/L,n-SiC 0-30 g/L, temperature 25-45 °C, pH 1.4-2.4, voltage 5-7 V, moving rate of plating pen 0.8 m/s and time 25 min. The suitable voltage for composite electro-brush plating was determined as 6 V based on the evaluation of appearance using a Ni-W-Co alloy coating as the standard. The effect ofn-SiC content in bath on the structure, microhardness and friction-wear performance of the nanocomposite coating was studied. The results showed that a crack-free Ni-W-Co-n-SiC composite coating with uniformly distributed particles can be obtained from the bath containing 15-25 g/L SiC nanoparticles. With increasingn-SiC content in bath, the crystallization degree, solid solubility of Ni, as well as microhardness and wear resistance of composite coating are increased, while the friction coefficient of the composite coating surface is changed little.%采用电刷镀工艺在45钢表面制备了Ni-W-Co-n-SiC(纳米碳化硅)复合镀层,镀液组成和工艺条件为:NiSO4·7H2O 393 g/L,Na2WO4·2H2O 23 g/L,H3BO331 g/L,柠檬酸42 g/L,Na2SO46.5 g/L,CoSO4·7H2O 3 g/L,NaF 5 g/L,n-SiC 0~30 g/L,温度25~45°C,pH 1.4~2.4,电压5~7 V,镀笔速率0.8 m/s,时间25 min.以Ni-W-Co合金镀层的外观为指标,筛选得到较适合的复合电刷镀电压为6 V.研究了镀液n-SiC含量对镀层的组织结构、显微硬度和摩擦磨损性能的影响.结果表明,镀液中n-SiC含量为15~25 g/L时,可以获得颗粒均匀分布、无微裂纹的Ni-W-Co-n-SiC复合镀层.随镀液中n-SiC含量增大,复合镀层的晶化程度、Ni固溶度和显微硬度均提高,耐磨性改善,但摩擦因数的变化不大.

  19. Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber.

    Science.gov (United States)

    Romih, Tea; Drašler, Barbara; Jemec, Anita; Drobne, Damjana; Novak, Sara; Golobič, Miha; Makovec, Darko; Susič, Robert; Kogej, Ksenija

    2015-03-01

    The aim of this study was to determine whether citric acid adsorbed onto cobalt ferrite (CoFe2O4) nanoparticles (NPs) influences the bioavailability of their constituents Co and Fe. Dissolution of Co and Fe was assessed by two measures: (i) in aqueous suspension using chemical analysis, prior to application onto the food of test organisms; and (ii) in vivo, measuring the bioavailability in the model terrestrial invertebrate (Porcellio scaber, Isopoda, Crustacea). The isopods were exposed to citric-acid-adsorbed CoFe2O4 NPs for 2 weeks, and tissue accumulation of Co and Fe was assessed. This was compared to pristine CoFe2O4 NPs, and CoCl2 and Fe(III) salts as positive controls. The combined data shows that citric acid enhances free metal ion concentration from CoFe2O4 NPs in aqueous suspension, although in vivo, very similar amounts of assimilated Co were found in isopods exposed to both types of NPs. Therefore, evaluation of the dissolution in suspension by chemical means is not a good predictor of metal assimilation of this model organism; body assimilation of Co and Fe is rather governed by the physiological capacity of P. scaber for the uptake of these metals. Moreover, we propose that citric acid, due to its chelating properties, may hinder the uptake of Co that dissolves from citric-acid-adsorbed CoFe2O4 NPs, if citric acid is present in sufficient quantity.

  20. Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies.

    Science.gov (United States)

    Sattarahmady, N; Zare, T; Mehdizadeh, A R; Azarpira, N; Heidari, M; Lotfi, M; Heli, H

    2015-05-01

    Application of superparamagnetic iron oxide nanoparticles (NPs) as a negative contrast agent in magnetic resonance imaging (MRI) has been of widespread interest. These particles can enhance contrast of images by altering the relaxation times of the water protons. In this study, dextrin-coated zinc substituted cobalt-ferrite (Zn0.5Co0.5Fe2O4) NPs were synthesized by a co-precipitation method, and the morphology, size, structure and magnetic properties of the NPs were investigated. These NPs had superparamagnetic behavior with an average size of 3.9 (±0.9, n=200)nm measured by transmission electron microscopy. Measurements on the relaxivities (r2 and r2(*)) of the NPs were performed in vitro by agarose phantom. In addition, after subcutaneous injection of the NPs into C540 cell line in C-57 inbred mice, the relaxivities were measured in vivo by a 1.5T MRI system. These NPs could effectively increase the image contrast in both T2-and T2(*)-weighted samples.

  1. [The cobalt lung in diamond cutters: a new disease].

    Science.gov (United States)

    Demedts, M; Gyselen, A

    1989-01-01

    Although for forty years already broncho-pulmonary pathology has been described in workers exposed to hard-metal (i.e. alloys of tungsten carbide and cobalt) and although cobalt is considered the offending agent of this hazard, these abnormalities have almost not been found after exposure to cobalt alone except in animal experiments. Recently we detected clearcut broncho-pulmonary pathology in 48 diamond polishers (i.e. nearly 1% of those exposed) attributable to the ultrafine cobalt dust from the cutting surface of polishing disks, in which it was used as a cementing matrix for microdiamonds without any tungsten carbide. Nineteen of these patients presented with a fibrosing alveolitis documented in 6 by lung biopsy and in 12 by broncho-alveolar lavage, both of which revealed characteristic multinucleated giant cells. Thirteen suffered from asthma of occupational origin, in 9 proven by cobalt-inhalation tests, and in 5 by peak flow measurements at the workplace. Sixteen had mixed bronchial and alveolar pathology or were incompletely documented. A cross-sectional study in about 200 diamond polishers showed a significant correlation between exposure to cobalt and decrease in lung function. The strikingly harmful effects of cobalt can be explained by the chronic exposure to very small particles with markedly increased solubility. The pathogenesis of the broncho-pulmonary pathology may be attributed to the cytotoxic as well as to the sensitising (i.e. allergic and/or idiosyncratic) actions of cobalt. PMID:2561412

  2. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs.

  3. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants).

    Science.gov (United States)

    López-Moreno, Martha L; Avilés, Leany Lugo; Pérez, Nitza Guzmán; Irizarry, Bianca Álamo; Perales, Oscar; Cedeno-Mattei, Yarilyn; Román, Félix

    2016-04-15

    Nanoparticles (NPs) have been synthetized and studied to be incorporated in many industrial and medical applications in recent decades. Due to their different physical and chemical properties compared with bulk materials, researchers are focused to understand their interactions with the surroundings. Living organisms such as plants are exposed to these materials and they are able to tolerate different concentrations and types of NPs. Cobalt ferrite (CoFe2O4) NPs are being studied for their application in medical sciences because of their high coercivity, anisotropy, and large magnetostriction. These properties are desirable in magnetic resonance imaging, drug delivery, and cell labeling. This study is aimed to explore the tolerance of Solanum lycopersicum L. (tomato) plants to CoFe2O4 NPs. Tomato plants were grown in hydroponic media amended with CoFe2O4 nanoparticles in a range from 0 to 1000mgL(-1). Exposure to CoFe2O4 NPs did not affect germination and growth of plants. Uptake of Fe and Co inside plant tissues increased as CoFe2O4 nanoparticle concentration was increased in the media. Mg uptake in plant leaves reached its maximum level of 4.9mgg(-1) DW (dry weight) at 125mgL(-1) of CoFe2O4 NPs exposure and decreased at high CoFe2O4 NPs concentrations. Similar pattern was observed for Ca uptake in leaves where the maximum concentration found was 10mgg(-1) DW at 125mgL(-1) of CoFe2O4 NPs exposure. Mn uptake in plant leaves was higher at 62.5mgL(-1) of CoFe2O4 NPs compared with 125 and 250mgL(-1) treatments. Catalase activity in tomato roots and leaves decreased in plants exposed to CoFe2O4 NPs. Tomato plants were able to tolerate CoFe2O4 NPs concentrations up to 1000mgL(-1) without visible toxicity symptoms. Macronutrient uptake in plants was affected when plants were exposed to 250, 500 and 1000mgL(-1) of CoFe2O4 NPs. PMID:26803683

  4. Effect of microwave power on the thermal genesis of Co{sub 3}O{sub 4} nanoparticles from cobalt oxalate micro-rods

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zied, Bahaa M., E-mail: babuzaid@kau.edu.sa [Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Bawaked, Salem M.; Kosa, Samia A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Schwieger, Wilhelm [Institut Für Chemische Reaktionstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, Erlangen 91058 (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Preparation of CoC{sub 2}O{sub 4}·2H{sub 2}O using a microwave (280 and 700 W) assisted synthesis. • Effect of MWP on the morphology and crystallite size of Co{sub 3}O{sub 4} NPs. • Irrespective of the MWP utilized single phase of the prepared Co{sub 3}O{sub 4} NPs has been confirmed by XRD. • The developed procedure allows for the control of the morphology and size of Co{sub 3}O{sub 4} NPs. - Abstract: This study focuses on investigating the influence of microwave power (MWP) change on the morphology and size of Co{sub 3}O{sub 4} nanoparticles (NPs), which was obtained from the thermal decomposition of cobalt oxalate precursor. The oxalate precursor was prepared via the microwave-assisted route in the presence of cetyltrimethylammonium bromide (CTAB) employing an MWP of 280 and 700 W. Physicochemical properties of the prepared solids were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetry-differential thermal analyses (TGA-DTA). The results obtained indicated that the applied MWP has a crucial effect in controlling the morphology and the size of CoC{sub 2}O{sub 4}·2H{sub 2}O as well as Co{sub 3}O{sub 4} NPs. Acicular- and rod-like morphologies of both phases were obtained employing an MWP of 280 and 700 W during the preparation, respectively. Further, both the prepared Co{sub 3}O{sub 4} nanoneedles and nanorods are composed of net-like structure of interconnected nanocapsules. Moreover, although all the routes led to the same phase, additional difference existed in terms of surface Co{sup 2+} and hydroxyl-carbonate concentrations. Lower MWP favors high Co{sup 2+} and low cobalt hydroxyl-carbonate surface concentrations.

  5. Cobalt salophen complex supported on imidazole functionalized magnetic nanoparticles as a recoverable catalyst for oxidation of alkenes

    Energy Technology Data Exchange (ETDEWEB)

    Afshari, Mozhgan, E-mail: m.afshari@iau-shoushtar.ac.ir [Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar (Iran, Islamic Republic of); Gorjizadeh, Maryam [Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar (Iran, Islamic Republic of); Nazari, Simin [Department of Chemistry, Sousangerd Branch, Islamic Azad University, Sousangerd (Iran, Islamic Republic of); Naseh, Mohammad [Department of Chemistry, Dezful Branch, Islamic Azad University, Dezful (Iran, Islamic Republic of)

    2014-08-01

    A new magnetically separable catalyst consisting of Co(II) salophen complex covalently supported on imidazole functionalized silica coated cobalt ferrite was prepared. The synthesized catalyst was characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Fourier transform infrared (FT-IR). The immobilized catalyst was shown to be an efficient heterogeneous catalyst for the oxidation of some alkenes using hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant. The catalyst could be easily and efficiently isolated from the final product solution by magnetic decantation and be reused for 5 consecutive reactions without showing any significant activity degradation. - Highlights: • A new magnetic catalyst consisting of Co(II) salophen complex was prepared. • The catalyst was shown to be an efficient catalyst for the oxidation of alkenes. • The catalyst could be easily isolated from the product by magnetic decantation. • The catalyst is reused 5 times without a significant loss of activity.

  6. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    Science.gov (United States)

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results. PMID:26706531

  7. Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2.

    Science.gov (United States)

    Ensafi, Ali A; Alinajafi, Hossein A; Jafari-Asl, M; Rezaei, B; Ghazaei, F

    2016-03-01

    Here, cobalt ferrite nanohybrid decorated on exfoliated graphene oxide (CoFe2O4/EGO) was synthesized. The nanohybrid was characterized by different methods such as X-ray diffraction spectroscopy, scanning electron microscopy, energy dispersive X-ray diffraction microanalysis, transmission electron microscopy, FT-IR, Raman spectroscopy and electrochemical methods. The CoFe2O4/EGO nanohybrid was used to modify glassy carbon electrode (GCE). The voltammetric investigations showed that CoFe2O4/EGO nanohybrid has synergetic effect towards the electro-reduction of H2O2 and electro-oxidation of nicotinamide adenine dinucleotide (NADH). Rotating disk chronoamperometry was used for their quantitative analysis. The calibration curves were observed in the range of 0.50 to 100.0 μmol L(-1) NADH and 0.9 to 900.0 μmol L(-1) H2O2 with detections limit of 0.38 and 0.54 μmol L(-1), respectively. The repeatability, reproducibility and selectivity of the electrochemical sensor for analysis of the analytes were studied. The new electrochemical sensor was successfully applied for the determination of NADH and H2O2 in real samples with satisfactory results.

  8. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts.

    Science.gov (United States)

    Jiang, Hongliang; Yao, Yifan; Zhu, Yihua; Liu, Yanyan; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2015-09-30

    It is highly crucial and challenging to develop bifunctional oxygen electrocatalysts for oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) in rechargeable metal-air batteries and unitized regenerative fuel cells (URFCs). Herein, a facile and cost-effective strategy is developed to prepare mesoporous Fe-N-doped graphene-like carbon architectures with uniform Fe3C nanoparticles encapsulated in graphitic layers (Fe3C@NG) via a one-step solid-state thermal reaction. The optimized Fe3C@NG800-0.2 catalyst shows comparable ORR activity with the state-of-the-art Pt/C catalyst and OER activity with the benchmarking RuO2 catalyst. The oxygen electrode activity parameter ΔE (the criteria for judging the overall catalytic activity of bifunctional electrocatalysts) value for Fe3C@NG800-0.2 is 0.780 V, which surpasses those of Pt/C and RuO2 catalysts as well as those of most nonprecious metal catalysts. Significantly, excellent long-term catalytic durability holds great promise in fields of rechargeable metal-air batteries and URFCs. PMID:26371772

  9. Production and mechanical properties of sintered carbides (hard steels WC-Co)

    International Nuclear Information System (INIS)

    Densification and mechanical characteristics or WC-Co Cemented Carbides, were investigated by dilatometry, Hardness and bending tests, as a function of the two principal micro-structural parameters: the cobalt content and the particle size of carbide crystals. Vickers hardness of the studied compositions showed a linear variation with the increase of the cobalt content. By three point bending, the transverse rupture strenght increases with cobalt content, however, for larger grain size reaches a maximum, eventually reduced by brittle phases and incomplete dispersion. The results of brittle facture tests were statistically analised and fitted better to the 'Weakest Link Model' (Weibull distribution) than the 'Chain Model' (Gaussian distribution). (author)

  10. Effect of cobalt powder morphology on the properties of WC-Co hard alloys

    OpenAIRE

    Kurlov, A. S.; Rempel, A. A.

    2013-01-01

    The effect of cobalt powder morphology on the microstructure of WC-Co hard alloys produced by sintering cobalt + tungsten carbide powder mixtures has been studied using X-ray diffraction, laser diffraction, scanning electron microscopy, density measurements, and Vickers microhardness tests. The results indicate that, under identical sintering conditions, the densest and most homogeneous microstructure is formed in hard alloys sintered using cobalt powders consisting of rounded particles. The ...

  11. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.

    Science.gov (United States)

    Cheng, Kang; Zhang, Lei; Kang, Jincan; Peng, Xiaobo; Zhang, Qinghong; Wang, Ye

    2015-01-26

    Bifunctional Fischer-Tropsch (FT) catalysts that couple uniform-sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline-range (C5-11 ) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1-4 ) hydrocarbons. The selectivity for C5-11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n-paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson-Schulz-Flory distribution. By using n-hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis. PMID:25424473

  12. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density.

    Science.gov (United States)

    Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-Man; Doo, Seok-Gwang; Chang, Hyuk

    2015-06-25

    Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge-discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l(-1) at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology.

  13. The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Novotna, Bozena; Turnovcova, Karolina; Veverka, Pavel; Rössner, Pavel; Bagryantseva, Yana; Herynek, Vit; Zvatora, Pavel; Vosmanska, Magda; Klementova, Mariana; Sykova, Eva; Jendelova, Pavla

    2016-08-01

    Nanomaterials are currently the subject of intense research due to their wide variety of potential applications in the biomedical, optical and electronic fields. We prepared and tested cobalt zinc ferrite nanoparticles (Co0.5Zn0.5Fe2O4+γ [CZF-NPs]) encapsulated by amorphous silica in order to find a safe contrast agent and magnetic label for tracking transplanted cells within an organism using magnetic resonance imaging (MRI). Rat mesenchymal stem cells (rMSCs) were labeled for 48 h with a low, medium or high dose of CZF-NPs (0.05; 0.11 or 0.55 mM); silica NPs (Si-NPs; 0.11 mM) served as a positive control. The internalization of NPs into cells was verified by transmission electron microscopy. Biological effects were analyzed at the end of exposure and after an additional 72 h of cell growth without NPs. Compared to untreated cells, Annexin V/Propidium Iodide labeling revealed no significant cytotoxicity for any group of treated cells and only a high dose of CZF-NPs slowed down cell proliferation and induced DNA damage, manifested as a significant increase of DNA-strand breaks and oxidized DNA bases. This was accompanied by high concentrations of 15-F2t-isoprostane and carbonyl groups, demonstrating oxidative injury to lipids and proteins, respectively. No harmful effects were detected in cells exposed to the low dose of CZF-NPs. Nevertheless, the labeled cells still exhibited an adequate relaxation rate for MRI in repeated experiments and ICP-MS confirmed sufficient magnetic label concentrations inside the cells. The results suggest that the silica-coated CZF-NPs, when applied at a non-toxic dose, represent a promising contrast agent for cell labeling. PMID:26581309

  14. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Naik, R. E-mail: naik@physics.wayne.edu; Kroll, E.; Rodak, D.; Tsoi, G.M.; McCullen, E.; Wenger, L.E.; Suryanarayanan, R.; Naik, V.M.; Vaishnava, P.P.; Tao, Qu; Boolchand, P

    2004-05-01

    A sulfonated polystyrene resin matrix was ion exchanged with aqueous solutions of (1) FeCl{sub 2}, (2) FeCl{sub 3}, (3) 2FeCl{sub 2}:FeCl{sub 3}, (4) 9FeCl{sub 2}:CoCl{sub 2}, and (5) 4FeCl{sub 2}:CoCl{sub 2} to prepare magnetic nanoparticles of varying size. The samples were characterized by X-ray diffraction (XRD), {sup 57}Fe Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), and identify two major phases: {gamma}-Fe{sub 2}O{sub 3}, CoFe{sub 2}O{sub 4}, and perhaps a minor Fe{sub 3}O{sub 4} phase. SQUID magnetometry measurements indicate superparamagnetic particles with blocking temperatures (T{sub B}) ranging from 20 K to room temperature.

  15. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.

    Science.gov (United States)

    Fantechi, Elvira; Innocenti, Claudia; Zanardelli, Matteo; Fittipaldi, Maria; Falvo, Elisabetta; Carbo, Miriam; Shullani, Valbona; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Ferretti, Anna Maria; Ponti, Alessandro; Sangregorio, Claudio; Ceci, Pierpaolo

    2014-05-27

    Magnetic nanoparticles, MNPs, mineralized within a human ferritin protein cage, HFt, can represent an appealing platform to realize smart therapeutic agents for cancer treatment by drug delivery and magnetic fluid hyperthermia, MFH. However, the constraint imposed by the inner diameter of the protein shell (ca. 8 nm) prevents its use as heat mediator in MFH when the MNPs comprise pure iron oxide. In this contribution, we demonstrate how this limitation can be overcome through the controlled doping of the core with small amount of Co(II). Highly monodisperse doped iron oxide NPs with average size of 7 nm are mineralized inside a genetically modified variant of HFt, carrying several copies of α-melanocyte-stimulating hormone peptide, which has already been demonstrated to have excellent targeting properties toward melanoma cells. HFt is also conjugated to poly(ethylene glycol) molecules to increase its in vivo stability. The investigation of hyperthermic properties of HFt-NPs shows that a Co doping of 5% is enough to strongly enhance the magnetic anisotropy and thus the hyperthermic efficiency with respect to the undoped sample. In vitro tests performed on B16 melanoma cell line demonstrate a strong reduction of the cell viability after treatment with Co doped HFt-NPs and exposure to the alternating magnetic field. Clear indications of an advanced stage of apoptotic process is also observed from immunocytochemistry analysis. The obtained data suggest this system represents a promising candidate for the development of a protein-based theranostic nanoplatform. PMID:24689973

  16. Magnetic anisotropy of cobalt nanoparticle 2D arrays grown on corrugated MnF{sub 2}(1 1 0) and CaF{sub 2}(1 1 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, D.A., E-mail: dbaranov@mail.ioffe.ru [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Krichevtsov, B.B.; Gastev, S.V.; Banschikov, A.G.; Fedorov, V.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Koshmak, K.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Suturin, S.M.; Sokolov, N.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation)

    2013-02-15

    Cobalt nanoparticle 2D arrays with different effective thicknesses of cobalt layer (2 nm < d{sub eff} < 10 nm) were grown by molecular beam epitaxy on CaF{sub 2}(1 1 0)/Si(0 0 1) and MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) substrates with corrugated morphology of the surface. Surface morphology analysis showed that for effective thickness of cobalt layer d{sub eff} = 5 nm the lateral dimensions of cobalt islands are about 5–10 nm and the distances between the islands differs in a half along and across the grooves. In both types of the heterostructures the shape of hysteresis loops measured by LMOKE depend on orientation of in-plane magnetic field relative to the direction of the grooves. The azimuthal dependence of coercive field H{sub c} in Co/CaF{sub 2}(1 1 0)/Si(0 0 1) structures corresponds to Stoner–Wohlfarth model's predictions, which takes into account the anisotropy of individual particles. In contrast to that, in Co/MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) structures these dependences are analogous to those predicted by the model based on account of magnetic–dipole interaction between particles which are placed in chains (chain-of-spheres-model). Possible explanations of the difference in magnetic anisotropy are suggested.

  17. Study of cobalt and ruthenium supported on WC catalysts for FT reaction.

    OpenAIRE

    Griboval-Constant, Anne; Giraudon, Jean-Marc; Twagirashema, Ivan; Leclercq, Ginette; Rivas, Maria Elena; Alvarez, Juan; Perez-Zurita, Josefina; Goldwasser, Mireya

    2006-01-01

    An investigation of bulk and cobalt or ruthenium supported tungsten carbide was carried out for their use in the Fischer-Tropsch reaction. Two types of WC were studied : tungsten carbide protected by free carbon and clean tungsten carbide, respectively noticed WC(A) and WC(B). XPS analysis shows that after air exposure, the WC(A) carbide surface is protected from the excess carbon whereas a surface W6+ phase is induced during the passivation step for WC(B). However WC(A) is inert towards aque...

  18. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  19. An electrochemical process for the recycling of tungsten carbide scrap

    International Nuclear Information System (INIS)

    An account is given of the development of a number of designs for electrochemical cells, and the subsequent construction and operation of a vibrating-plate cell capable of oxidizing 15 kilograms of tungsten carbide a day to a crude tungstic acid precipitate, with similtaneous recovery of cobalt metal on the cathode. The effects on the process of the reagent concentration, temperature, current density, and cathode material are discussed

  20. Synthesis of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Houshiar, Mahboubeh, E-mail: m-houshiar@sbu.ac.ir [Department of Physics, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Zebhi, Fatemeh [Department of Physics, Semnan University, Semnan (Iran, Islamic Republic of); Razi, Zahra Jafari; Alidoust, Ali; Askari, Zohreh [Department of Physics, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2014-12-15

    In this work the cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles are synthesized using three different methods; combustion, coprecipitation, and precipitation. Size, structural, and magnetic properties were determined and compared using X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). XRD data analysis showed an average size of 69.5 nm for combustion, 49.5 nm for coprecipitation, and 34.7 nm for precipitation samples which concorded with SEM images. XRD data further revealed a reverse cubic spinel structure with the space group Fd-3m in all three samples. VSM data of samples showed a saturation point in the magnetic field of less than 15 kOe. Magnetization saturation (M{sub s}) was 56.7 emu/g for combustion synthestized samples, 55.8 emu/g for coprecipitation samples, and 47.2 emu/g for precipitation samples. Coercivity (H{sub c}) was 2002 Oe for combustion synthestized samples, 850 Oe for coprecipitation samples, and 233 Oe for precipitation samples. These results show that various methods of nanoparticle synthesis can lead to different particle sizes and magnetic properties. H{sub c} and M{sub s} are greatest in the combustion method and least in precipitation method. - Highlights: • CoFe{sub 2}O{sub 4} nanoparticles were made by combustion, coprecipitation, and precipitation. • Size, structural, and magnetic properties were determined and compared. • XRD, SEM, and VSM measurements were carried out. • Nanoparticle synthesis method affects particle sizes and magnetic properties. • H{sub c} and M{sub s} are greatest in the combustion method and least in precipitation method.

  1. Dynamic SEM wear studies of tungsten carbide cermets

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined. Etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the WC and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation. The wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  2. Development of a stable cobalt-ruthenium Fisher-Tropsch catalyst. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frame, R.R.; Gala, H.B.

    1995-02-01

    The reverse micelle catalyst preparation method has been used to prepare catalysts on four supports: magnesium oxide, carbon, alumina- titania and steamed Y zeolite. These catalysts were not as active as a reference catalyst prepared during previous contracts to Union Carbide Corp. This catalyst was supported on steamed Y zerolite support and was impregnated by a pore-filling method using a nonaqueous solvent. Additional catalysts were prepared via pore- filling impregnation of steamed Y zeolites. These catalysts had levels of cobalt two to three and a half times as high as the original Union Carbide catalyst. On a catalyst volume basis they were much more active than the previous catalyst; on an atom by atom basis the cobalt was about of the same activity, i.e., the high cobalt catalysts` cobalt atoms were not extensively covered over and deactivated by other cobalt atoms. The new, high activity, Y zerolite catalysts were not as stable as the earlier Union Carbide catalyst. However, stability enhancement of these catalysts should be possible, for instance, through adjustment of the quantity and/or type of trace metals present. A primary objective of this work was determination whether small amounts of ruthenium could enhance the activity of the cobalt F-T catalyst. The reverse micelle catalysts were not activated by ruthenium, indeed scanning transmission electronic microscopy (STEM) analysis provided some evidence that ruthenium was not present in the cobalt crystallites. Ruthenium did not seem to activate the high cobalt Y zeolite catalyst either, but additional experiments with Y zeolite-supported catalysts are required. Should ruthenium prove not to be an effective promoter under the simple catalyst activation procedure used in this work, more complex activation procedures have been reported which are claimed to enhance the cobalt/ruthenium interaction and result in activity promotion by ruthenium.

  3. ORIGIN OF COBALT ANISOTROPY IN RARE EARTH-COBALT INTERMETALLICS

    OpenAIRE

    Ballou, Rafik; Lemaire, R.

    1988-01-01

    The strong cobalt anisotropies in rare earth-cobalt intermetallics are shown to arise from orbitally selective 3d band energy dispersion due to either chain like or layered like cobalt staking rather than from usual crystal field effect.

  4. Dysprosium Modification of Cobalt Ferrite Ionic Magnetic Fluids

    Institute of Scientific and Technical Information of China (English)

    JIANG Rong-li; LIU Yong-chao; GENG Quan-rong; ZHAO Wen-tao

    2005-01-01

    Dysprosium composite cobalt ferrite ionic magnetic fluids were prepared by precipitation in the presence of Tri-sodium citrate. Influence of dysprosium modification on magnetic property is studied. The result shows that magnetic response toward exterior magnetic field can be improved by adding Dy3+. Studies also show that the increase of reaction temperature may improve the modification effect of dysprosium. By adding dysprosium ions, the average diameter of the magnetic nanoparticles will be decreased evidently. It is clear that the particles appear as balls, Cobalt ferrite with sizes of 12-15 nm, rare earth composite cobalt ferrite with sizes of 6-8 nm.

  5. Cobalt sensitization and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P

    2012-01-01

    : This clinical review article presents clinical and scientific data on cobalt sensitization and dermatitis. It is concluded that cobalt despite being a strong sensitizer and a prevalent contact allergen to come up on patch testing should be regarded as a very complex metal to test with. Exposure...... data together with clinical data from metal workers heavily exposed to cobalt suggest that patch-test reactions are sometimes false positive and that patch testers should carefully evaluate their clinical relevance....

  6. Dynamic SEM wear studies of tungsten carbide cermets. [friction and wear experiments

    Science.gov (United States)

    Brainard, W. A.; Buckley, D. H.

    1975-01-01

    Dynamic friction and wear experiments were conducted in a scanning electron microscope. The wear behavior of pure tungsten carbide and composite with 6 and 15 weight percent cobalt binder was examined, and etching of the binder was done to selectively determine the role of the binder in the wear process. Dynamic experiments were conducted as the tungsten carbide (WC) and bonded WC cermet surfaces were transversed by a 50 micron radiused diamond stylus. These studies show that the predominant wear process in WC is fracture initiated by plastic deformation, and the wear of the etched cermets is similar to pure WC. The presence of the cobalt binder reduces both friction and wear. The cementing action of the cobalt reduces granular separation, and promotes a dense polished layer because of its low shear strength film-forming properties. The wear debris generated from unetched surface is approximately the same composition as the bulk.

  7. Synthesis and Thermal Behavior of Metallic Cobalt Micro and Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Marlene Gonzalez Montiel; P Santiago-Jacinto; J A I Daz Gongora; E Reguera; Geonel Rodrguez-Gattorno

    2011-01-01

    In this contribution, a comparative study of metallic cobalt micro and nanoparticles obtained in solution by four different chemical routes is reported. Classic routes such as borohydride reduction in aqueous media and the so-called polyol methodology were used to obtain the cobalt nanostructures to be studied. Using CTAB as surfactant, cobalt hollow nanostructures were obtained. The use of strong reducing agents, like sodium borohydride, favors the formation of quasi-monodispersed nanoparticles of about 2 nm size but accompanied with impurities; for hydrazine (a mild reducer), nanoparticles of larger size are obtained which organize in spherical microagglomerates. Valuable information on the particles thermal stability and on nature of the species anchored at their surface was obtained from thermogravimetric curves. The samples to be studied were characterized from UV-vis, IR, X-ray diffraction, and electron microscopy images (scanning and transmission).

  8. Rheology of silicon carbide/vinyl ester nanocomposites

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2006-01-01

    Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer-size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface-active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC-nanoparticle-filled vinyl ester resin systems with the Bingham, power-law, Hersche...

  9. Abrasive wear behaviour of conventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type

    OpenAIRE

    Kamdi, Z.; Shipway, P.H.; Voisey, K.T.; Sturgeon, A.J.

    2011-01-01

    Abrasive wear behaviour of materials can be assessed using a wide variety of testing methods, and the relative performance of materials will tend to depend upon the testing procedure employed. In this work, two cermet type coatings have been examined, namely (i) a conventional tungsten carbide-cobalt thermally sprayed coating with a carbide size of between ∼0.3 – 5 μm and (ii) a tungsten carbide-nickel alloy weld overlay with large spherical carbides of the order of ∼50 – 140 μm in diameter (...

  10. Iron and Cobalt-based magnetic fluids produced by inert gas condensation

    International Nuclear Information System (INIS)

    Iron and cobalt nanoparticle fluids have been prepared by inert-gas condensation into an oil/surfactant mixture. Superparamagnetic iron fluids (mean particle size=11.6±0.4 nm) and ferromagnetic cobalt fluids (mean particle size=51.6±3.4 nm) produced by this technique are promising candidates for magnetic targeting and hyperthermia applications

  11. Cobalt metabolism and toxicology-A brief update

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, Lars Ole, E-mail: LOSimonsen@dadlnet.dk; Harbak, Henrik; Bennekou, Poul

    2012-08-15

    phase lasting several weeks, and with a significant long-term retention in tissues for several years. In serum cobalt (Co{sup 2+}) binds to albumin, and the concentration of free, ionized Co{sup 2+} is estimated at 5-12% of the total cobalt concentration. In human red cells the membrane transport pathway for cobalt (Co{sup 2+}) uptake appears to be shared with calcium (Ca{sup 2+}), but with the uptake being essentially irreversible as cobalt is effectively bound in the cytosol and is not itself extruded by the Ca-pump. It is tempting to speculate that this could perhaps also be the case in other animal cells. If this were actually the case, the tissue partitioning and biokinetics of cobalt in cells and tissues would be closely related to the uptake of calcium, with cobalt partitioning primarily into tissues with a high calcium turn-over, and with cobalt accumulation and retention in tissues with a slow turn-over of the cells. The occupational cobalt exposure, e.g. in cobalt processing plants and hard-metal industry is well known and has probably been somewhat reduced in more recent years due to improved work place hygiene. Of note, however, adverse reactions to heart and lung have recently been demonstrated following cobalt exposure near or slightly under the current occupational exposure limit. Over the last decades the use of cobalt-chromium hard-metal alloys in orthopedic joint replacements, in particular in metal-on-metal bearings in hip joint arthroplasty, has created an entirely new source of internal cobalt exposure. Corrosion and wear produce soluble metal ions and metal debris in the form of huge numbers of wear particles in nanometric size, with systemic dissemination through lymph and systemic vascular system. This may cause adverse local reactions in peri-prosthetic soft-tissues, and in addition systemic toxicity. Of note, the metal nanoparticles have been demonstrated to be clearly more toxic than larger, micrometer-sized particles, and this has made the

  12. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  13. 14. EXPOSURE AND EFFECT MONITORING OF WORKERS IN THE COBALT/HARD METAL INDUSTRIES: ABSENCE OF SIGNIFICANT GENOTOXIC EFFECTS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@An increased lung cancer risk is associated with occupational exposure to mixtures of cobalt metal and metallic carbide particles, but when exposure is to cobalt metal alone. The current TLV-TWA was established without consideration of carcinogenicity data. The present study was designed to assess whether an increased cancer risk can be detected in workers currently exposed on average to the TLV-TWA (20 μg/m3).

  14. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE WC/Co CEMENTED CARBIDES WITH CUBIC BORON NITRIDE AND Cr₃C₂ ADDITIONS

    OpenAIRE

    Genrong Zhang; Haiyan Chen; Dong Lihua; Yin,; Li Kun

    2016-01-01

    This study investigates the microstructure and mechanical properties of ultrafine tungsten carbide and cobalt (WC/Co) cemented carbides with cubic boron nitride (CBN) and chromium carbide (Cr₃C₂) fabricated by a hot pressing sintering process. This study uses samples with 8 wt% Co content and 7.5 vol% CBN content, and with different Cr₃C₂ content ranging from 0 to 0.30 wt%. Based on the experimental results, Cr₃C₂ content has a significant influence on inhibiting abnormal grain growth and dec...

  15. Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis.

    Science.gov (United States)

    Dou, Shuo; Li, Xingyue; Tao, Li; Huo, Jia; Wang, Shuangyin

    2016-08-11

    We successfully obtained a novel bi-functional electrocatalyst towards the ORR and OER: Co nanoparticle-embedded N-doped carbon nanotube (CNT)/porous carbon (PC) by pyrolyzing metal organic framework (MOF) encapsulated Co3O4. The as-obtained hybrid exhibited highly efficient electrocatalytic activity for the ORR and OER. Furthermore, the assembled Zn-air batteries also revealed promising performance and long-term stability. PMID:27411845

  16. Silicon carbide thyristor

    Science.gov (United States)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  17. Cobalt hexacyanoferrate-poly(methyl methacrylate) composite: Synthesis and characterization

    International Nuclear Information System (INIS)

    Graphical abstract: The preparation of cobalt hexacyanoferrate nanoparticles-poly(methyl methacrylate) (CoHCF-PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles - investigated by dynamic light scattering - were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV-vis and FT-IR spectroscopy. - Abstract: The preparation of cobalt hexacyanoferrate nanoparticles-poly(methyl methacrylate) (CoHCF-PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles - investigated by dynamic light scattering - were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV-vis and FT-IR spectroscopy.

  18. Electrodeposition of Cobalt Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sungbok; Hong, Kimin [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-03-15

    We developed an electroplating process of cobalt nanowires of which line-widths were between 70 and 200 nm. The plating electrolyte was made of CoSO{sub 4} and an organic additive, dimethyldithiocarbamic acid ester sodium salt (DAESA). DAESA in plating electrolytes had an accelerating effect and reduced the surface roughness of plated cobalt thin films. We obtained void-free cobalt nanowires when the plating current density was 6.25 mA/cm{sup 2} and DAESA concentration was 1 mL/L.

  19. Effect of Cobalt Particle Size on Acetone Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Zhang, He; Yu, Ning; Davidson, Stephen D.; Wang, Yong

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation, and the oxidation state of the cobalt nanoparticles.

  20. Magneto-optical studies of SrGa 0.7 Co 0.3 O 3 - δ perovskite thin films with embedded cobalt nanoparticles

    Science.gov (United States)

    Veis, M.; Zahradnik, M.; Ohnoutek, L.; Beran, L.; Kucera, M.; Sun, Xue Yin; Zhang, Chen; Aimon, Nicolas M.; Goto, Taichi; Onbasli, Mehmet C.; Kim, Dong Hun; Choi, Hong Kyoon; Ross, C. A.

    2015-05-01

    Sr( Ga 0.7 Co 0.3 ) O 3 - δ /Co perovskite/metal thin films have been systematically studied by means of Faraday and Kerr magneto-optical spectroscopies. The samples were prepared by pulsed laser deposition on (001) (LaAlO3) 0.3 (Sr2AlTaO6) 0.7 (LSAT) and Si substrates, and grew as a perovskite matrix containing approximately 6% by volume of embedded metallic Co nanoparticles with diameter less than 20 nm, which were distributed throughout the film and at the film-substrate interface. The film thickness ranged from 130 to 310 nm. The perovskite matrix was single crystal on LSAT and polycrystalline on Si. The magneto-optical spectroscopy was carried out in both Faraday and Kerr configurations in the photon energy range from 0.5 to 5 eV in magnetic fields sufficient for sample saturation, showing a strong thickness dependence of the magneto-optical effect. This dependence was attributed to the different metallic Co content, nanoparticle size, and accumulation at the film-substrate interface.

  1. Research on Diamond Enhanced Tungsten Carbide Composite Button

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    At the present, the cutters used in button bits and rock bits are mainly cobalt tungsten carbide in our country. Because of its low abrasive resistance, the bit service life and drilling efficiency was very low when the hard and extremely hard formations were being drilled. Owing to its high abrasive resistance, the diamond composite material is widely used in drilling operations. However, its toughness against impact is too low to be used in percussion drilling, only can it be used in rotary drilling. In ...

  2. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  3. Elicitation threshold of cobalt chloride

    DEFF Research Database (Denmark)

    Fischer, Louise A; Johansen, Jeanne D; Voelund, Aage;

    2016-01-01

    BACKGROUND: Cobalt is a strong skin sensitizer (grade 5 of 5 in the guinea-pig maximization test) that is used in various industrial and consumer applications. To prevent sensitization to cobalt and elicitation of allergic cobalt dermatitis, information about the elicitation threshold level of co...... individuals, and thereby the basis for future prevention of cobalt allergy.......BACKGROUND: Cobalt is a strong skin sensitizer (grade 5 of 5 in the guinea-pig maximization test) that is used in various industrial and consumer applications. To prevent sensitization to cobalt and elicitation of allergic cobalt dermatitis, information about the elicitation threshold level...... of cobalt is important. OBJECTIVE: To identify the dermatitis elicitation threshold levels in cobalt-allergic individuals. MATERIALS AND METHODS: Published patch test dose-response studies were reviewed to determine the elicitation dose (ED) levels in dermatitis patients with a previous positive patch test...

  4. Structural modifications under reactive atmosphere of cobalt catalysts; Modifications structurales sous atmospheres reactionnelles de catalyseurs a base de cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Ducreux, O.

    1999-11-23

    The purpose of this work was to develop in situ methods under reactive dynamic conditions (XRD and Fourier transform infrared spectroscopy) to describe the active phase structure in order to understand Fischer-Tropsch catalyst behaviour and improve the natural gas conversion process performance. Experiments were designed to correlate structural modifications with catalytic results. The effect of ruthenium used as a promoter has also been studied. The impregnation process increases cobalt-support interaction. The presence of ruthenium promoter reduces this effect. Interactions between Co{sub 3}O{sub 4} oxide and support play an important role in the reducibility of cobalt and in the resulting metal structure. This in turn strongly influences the catalytic behaviour. Our results show a close correlation between structure modification and reactivity in the systems studied. Cobalt metal and CO can react to form a carbide Co{sub 2}C under conditions close to those of the Fischer-Tropsch synthesis. This carbide formation seems to be related to a deactivation process. The presence of interstitial carbon formed by dissociation of CO is proposed as a key to understanding the mechanism of the Fischer-Tropsch reaction. A specific catalyst activation treatment was developed to increase the catalytic activity. This work permits correlation of materials structure with their chemical properties and demonstrates the contribution of in situ physico-chemical characterisation methods to describe solids under reactive atmosphere. (author)

  5. Selective oxidation of sulfurs and oxidation desulfurization of model oil by 12-tungstophosphoric acid on cobalt-ferrite nanoparticles as magnetically recoverable catalyst

    Institute of Scientific and Technical Information of China (English)

    Ezzat Rafiee; Nasibeh Rahpeyma

    2015-01-01

    Silica-coated CoFe2O4 nanoparticles were prepared and used as a support for the immobilization of 12-tungstophosphoric acid, to produce a new magnetically separable catalyst. This catalyst was characterized using X-ray diffraction, wavelength-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, laser par-ticle size analysis, and vibrating sample magnetometry. The catalyst showed high activity in the selective oxidation of thioethers and thiophenes to the corresponding sulfones under mild condi-tions. The catalytic activity of the nanocatalyst in the oxidative desulfurization of model oil was investigated. The effect of nitrogen-containing compounds on sulfur removal from the model oil was also evaluated. The catalyst showed high activity in the oxidative desulfurization of diesel. The cata-lyst can be readily isolated from the oxidation system using an external magnet and no obvious loss of activity was observed when the catalyst was reused in four consecutive runs.

  6. Cobalt release from inexpensive jewellery

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten Stendahl; Menné, Torkil;

    2010-01-01

    Objectives: The aim was to study 354 consumer items using the cobalt spot test. Cobalt release was assessed to obtain a risk estimate of cobalt allergy and dermatitis in consumers who would wear the jewellery. Methods: The cobalt spot test was used to assess cobalt release from all items....... Industries may not be fully aware of the potential cobalt allergy problem........ Microstructural characterization was made using scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS). Results: Cobalt release was found in 4 (1.1%) of 354 items. All these had a dark appearance. SEM/EDS was performed on the four dark appearing items which showed tin-cobalt plating on these...

  7. Sintered silicon carbide

    International Nuclear Information System (INIS)

    A sintered silicon carbide body having a predominantly equiaxed microstructure consists of 91 to 99.85% by weight of silicon carbide at least 95% of which is the alpha phase, up to 5.0% by weight carbonized organic material, 0.15 to 3.0% of boron, and up to 1.0% by weight additional carbon. A mixture of 91 to 99.85 parts by weight silicon carbide having a surface area of 1 to 100 m2/g, 0.67 to 20 parts of a carbonizable organic binder with a carbon content of at least 33% by weight, 0.15 to 5 parts of a boron source containing 0.15 to 3.0 parts by weight boron and up to 15 parts by weight of a temporary binder is mixed with a solvent, the mixture is then dried, shaped to give a body with a density of at least 1.60 g/cc and fired at 1900 to 22500C to obtain an equiaxed microstructure. (author)

  8. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology; Sintese e caracterizacao de nanoparticulas magneticas de ferrita de cobalto recobertas por 3-aminopropiltrietoxissilano para uso como material hibrido em nanotecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth Luqueze

    2006-07-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H{sub 2}O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  9. An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio).

    Science.gov (United States)

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou

    2015-09-01

    The broad spectrum applications of CoFe2O4 NPs have attracted much interest in medicine, environment and industry, resulting in exceedingly higher exposures to humans and environmental systems in succeeding days. Their health effects and potential biological impacts need to be determined for risk assessment. Zebrafish (Danio rerio) embryos were exposed to environmentally relevant doses of nano-CoFe2O4 (mean diameter of 40nm) with a concentration range of 10-500μM for 96h. Acute toxic end points were evaluated by survival rate, malformation, hatching delay, heart dysfunction and tail flexure of larvae. Dose and time dependent developmental toxicity with severe cardiac edema, down regulation of metabolism, hatching delay and tail/spinal cord flexure and apoptosis was observed. The biochemical changes were evaluated by ROS, Catalase (CAT), Lipid peroxidation (LPO), Acid phophatase (AP) and Glutatione s- transferase (GST). An Agglomeration of NPs and dissolution of ions induces severe mechanical damage to membranes and oxidative stress. Severe apoptosis of cells in the head, heart and tail region with inhibition of catalase confirms ROS induced acute toxicity with increasing concentration. Increased activity of GST and AP at lower concentrations of CoFe2O4 NPs demonstrates the severe oxidative stress. Circular dichroism (CD) spectra indicated the weak interactions of NPs with BSA and slight changes in α-helix structure. In addition, CoFe2O4 NPs at lower concentrations do not show any considerable interference with assay components and analytical instruments. The results are possible elucidation of pathways of toxicity induced by these particles, as well as contributing in defining the protocols for risk assessment of these nanoparticles. PMID:26197244

  10. Directed magnetic field induced assembly of high magnetic moment cobalt nanowires

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A directed magnetic field induced assembly technique was employed to align two phase (h.c.p. + f.c.c.) cobalt nanoparticles in a mechanically robust long wire morphology. Co nanoparticles with an average size of 4.3 nm and saturation magnetization comparable to bulk cobalt were synthesized...... by borohydride reduction followed by size selection and magnetic field induced assembly. The coercivity of these nanowires was higher than their nanoparticle counterpart due to shape anisotropy. The experimental coercivity values of the nanowires were lower than the predictions of the coherent rotation, fanning...

  11. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  12. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  13. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  14. Cobalt Nanoparticles Promoted Highly Efficient One Pot Four-Component Synthesis of 1,4-Dihydropyridines under Solvent-Free Conditions%Cobalt Nanoparticles Promoted Highly Efficient One Pot Four-Component Synthesis of1,4-Dihydropyridines under Solvent-Free Conditions

    Institute of Scientific and Technical Information of China (English)

    Javad SAFARI; Sayed Hossein BANITABA; Shiva DEHGHAN KHALILI

    2011-01-01

    A straightforward and general method has been developed for the synthesis of Cs-unsubstitiuted 1,4-dihydropyridines by a reaction using dimedone,acetophenone,aromatic aldehydes,and ammonium acetate in the presence of a catalytic amount of Co nanoparticles as a heterogeneous and eco-friendly catalyst with high catalytic activity at room temperature under solvent-free conditions.This catalyst is easily separated by magnetic devices and can be reused without any apparent loss of activity for the reaction.In addition,it is very interesting that when using Co nanoparticles as a catalyst,spatially-hindered aldehydes such as 2-methoxy-,2-fluoro-,and 2-chloro-aldehydes are suitable for this reaction.

  15. Effects of carbon on the stability and chemical performance of transition metal carbides: A density functional study

    Science.gov (United States)

    Liu, Ping; Rodriguez, José A.

    2004-03-01

    Density functional theory was employed to study the stabilities and chemical activities of transition metal carbides. Here we take the well-known Mo carbides and Ti carbides as an example. Different kinds of structures including the bulk surfaces [Mo2C(001), MoC(001), and TiC(001)] and metcars [Mo8C12 and Ti8C12] are taken into consideration. Systematic studies show that by raising the C coordination number of the metal atoms in the carbides, in general the stability of the carbides increases (metcars are an exception since they include both high-coordinated and low-coordinated metal atoms.); at the same time, the chemical activities of the carbides decrease due to a downshift of the metal d-band center (ligand effect). Considering the better catalysts those that combine high stability and moderate chemical activity, our results suggest that the catalytic potential of Mo carbide systems should decrease in the following sequence: Mo8C12>Mo2C(001) or MoC(001)>pure Mo(110). In spite of having the largest C/Mo ratio, the metcar appears as the most attractive system. Our studies also indicate that the "magic" behavior of metcars is not unique for Mo carbides. Similar behavior is also observed for Ti carbides. This implies that nanoparticles like metcar species could exhibit better performances than the corresponding bulk metal carbides as catalysts.

  16. Virus templated metallic nanoparticles

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  17. Cobalt/fullerene spinterfaces

    NARCIS (Netherlands)

    Wang, Kai

    2015-01-01

    Spintronics is a multidisciplinary research field and it explores phenomena that interlink the spin and charge degrees of freedom. The thesis focuses on spin-polarized electronic transports in cobalt (Co) and fullerene (C60) based vertical spintronic devices. It starts with a review about spin-trans

  18. Oxidation Behavior of Carbon Nanoparticles/Silicon Carbide Composite Ceramics%纳米碳颗粒/碳化硅陶瓷基复合材料的氧化行为

    Institute of Scientific and Technical Information of China (English)

    陆有军; 王燕民; 吴澜尔; 黄振坤

    2013-01-01

    以微米硅(Si)和纳米碳黑(Cp)粉体为主要原料,采用经机械化学法合成的碳化硅(SiC)和15%和25%的纳米碳颗粒与碳化硅(Cp-SiC)的复合粉体,并经无压烧结得到了Cp/SiC陶瓷基复合材料,分析了在不同温度条件下Cp/SiC烧结体的氧化行为。结果表明:当温度小于700℃时,Cp/SiC复合陶瓷在空气中的氧化受C-O2反应控制,致使其为均匀氧化;700℃时,氧化后的复合材料显气孔率最大,弯曲强度达极小值;大于700℃,氧化过程受O2的气相扩散控制,呈非均匀氧化;700~900℃之间,O2通过微裂纹的扩散控制着Cp/SiC的氧化过程;900~1100℃之间,O2通过SiC缺陷的扩散控制着Cp/SiC的氧化过程,并在1000℃时的最初的2 h内,复合材料弯曲强度增大,且达到了极大值。同时表明,纳米碳含量是影响复合材料强度及氧化行为的关键因素,添加纳米碳质量分数为15%的Cp/SiC复合陶瓷可以作为一种抗氧化性能优良的玻璃夹具材料。%The oxidation behavior of three pressureless-sintered silicon carbide (SiC), 15%Cp/SiC and 25%Cp/SiC composites,which were prepared with carbon nanoparticles (Cp) and silicon micron-sized particles by a mechanochemical method, at various tempera-tures was investigated. The results show that the oxidation of Cp/SiC ceramics in air is controlled via C+O2 reaction at<700℃, the bending strength of samples decreases to a minimum value at 700℃; the oxidation is controlled by O2 diffusion through mi-cro-cracks unequally in the range of 700-900℃;the oxidation of Cp/SiC is controlled by O2 diffusion through the structural defects of matrix in the range of 900-1 100℃. The bending strength of composites reaches to a maximum value during initial 2 h at 1 000℃due to the formation of SiO2 layer and the healing defects of matrix. It is also indicated that the addition of Cp in the composite has an effect on the bending strength and the

  19. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  20. Synthesis of Samarium Cobalt Nanoblades

    Energy Technology Data Exchange (ETDEWEB)

    Darren M. Steele

    2010-08-25

    As new portable particle acceleration technologies become feasible the need for small high performance permanent magnets becomes critical. With particle accelerating cavities of a few microns, the photonic crystal fiber (PCF) candidate demands magnets of comparable size. To address this need, samarium cobalt (SmCo) nanoblades were attempted to be synthesized using the polyol process. Since it is preferable to have blades of 1-2 {micro}m in length, key parameters affecting size and morphology including method of stirring, reaction temperature, reaction time and addition of hydroxide were examined. Nanoparticles consisting of 70-200 nm spherical clusters with a 3-5 nm polyvinylpyrrolidone (PVP) coating were synthesized at 285 C and found to be ferromagnetic. Nanoblades of 25nm in length were observed at the surface of the nanoclusters and appeared to suggest agglomeration was occurring even with PVP employed. Morphology and size were characterized using a transmission electron microscope (TEM). Powder X-Ray Diffraction (XRD) analysis was conducted to determine composition but no supportive evidence for any particular SmCo phase has yet been observed.

  1. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  2. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  3. Graphene/cobalt nanocarrier for hyperthermia therapy and MRI diagnosis.

    Science.gov (United States)

    Hatamie, Shadie; Ahadian, Mohammad Mahdi; Ghiass, Mohammad Adel; Iraji Zad, Azam; Saber, Reza; Parseh, Benyamin; Oghabian, Mohammad Ali; Shanehsazzadeh, Saeed

    2016-10-01

    Graphene/cobalt nanocomposites are promising materials for theranostic nanomedicine applications, which are defined as the ability to diagnose, provide targeted therapy and monitor the response to the therapy. In this study, the composites were synthesized via chemical method, using graphene oxide as the source material and assembling cobalt nanoparticles of 15nm over the surface of graphene sheets. Various characterization techniques were then employed to reveal the morphology, size and structure of the nanocomposites, such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy and ultraviolet visible spectroscopy. Using ion-coupled plasma optical emission spectroscopy, cobalt concentration in the nanocomposites was found to be 80%. In addition, cytotoxicity of graphene/cobalt nanocomposites were evaluated using 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide or MTT assay. MTT viability assay exhibited biocompatibility to L929 mouse fibroblasts cells, under a high dose of 100μg/mL over 24h. Hyperthermia results showed the superior conversion of electromagnetic energy into heat at 350kHz frequency for 0.01 and 0.005g/L of the nanocomposites solution. The measured heat generation and energy transfer results were anticipated by the finite element analysis, conducted for the 3D structure. Magnetic resonance imaging characteristics also showed that negatively charge graphene/cobalt nanocomposites are suitable for T1-weighted imaging. PMID:27351138

  4. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  5. Synthesis and Adsorption Property of SiO2@Co(OH2 Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yongde Meng

    2015-04-01

    Full Text Available Silica nanoparticles were directly coated with cobalt hydroxide by homogeneous precipitation of slowly decomposing urea in cobalt nitrate solution. The cobalt hydroxide was amorphous, and its morphology was nanoflower-like. The BET (Brunauer-Emmett-Teller surface area of the core-shell composite was 221 m2/g. Moreover, the possible formation procedure is proposed: the electropositive cobalt ions were first adsorbed on the electronegative silica nanoparticles surface, which hydrolyzed to form cobalt hydroxide nanoparticles. Then, the cobalt hydroxide nanoparticles were aggregated to form nanoflakes. Finally, the nanoflakes self-assembled, forming cobalt hydroxide nanoflowers. Adsorption measurement showed that the core-shell composite exhibited excellent adsorption capability of Rhodamine B (RB.

  6. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  7. Cobalt sorption in silica-pillared clays.

    Science.gov (United States)

    Sampieri, A; Fetter, G; Bosch, P; Bulbulian, S

    2006-01-01

    Silicon pillared samples were prepared following conventional and microwave irradiation methods. The samples were characterized and tested in cobalt sorption. Ethylenediammine was added before cobalt addition to improve the amount of cobalt retained. The amount of cobalt introduced in the original clay in the presence of ethylenediammine was the highest. In calcined pillared clays the cobalt retention with ethylenediammine was lower (ca. 40%). In all cases the presence of ethylenediammine increased twice the amount of cobalt sorption measured for aqueous solutions.

  8. Effects of TiO2 and TiC Nanofillers on the Performance of Dye Sensitized Solar Cells Based on the Polymer Gel Electrolyte of a Cobalt Redox System.

    Science.gov (United States)

    Venkatesan, Shanmuganathan; Liu, I-Ping; Chen, Li-Tung; Hou, Yi-Chen; Li, Chiao-Wei; Lee, Yuh-Lang

    2016-09-21

    Polymer gel electrolytes (PGEs) of cobalt redox system are prepared for dye sensitized solar cell (DSSC) applications. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is used as a gelator of an acetonitrile (ACN) liquid electrolyte containing tris(2,2'-bipyridine)cobalt(II/III) redox couple. Titanium dioxide (TiO2) and titanium carbide (TiC) nanoparticles are utilized as nanofillers (NFs) of this PGE, and the effects of the two NFs on the conductivity of the PGEs, charge-transfer resistances at the electrode/PGE interface, and the performance of the gel-state DSSCs are studied and compared. The results show that the presence of TiC NFs significantly increases the conductivity of the PGE and decreases the charge-transfer resistance at the Pt counter-electrode (CE)/PGE interface. Therefore, the gel-state DSSC utilizing TiC NFs can achieve a conversion efficiency (6.29%) comparable to its liquid counterpart (6.30%), and, furthermore, the cell efficiency can retain 94% of its initial value after a 1000 h stability test at 50 °C. On the contrary, introduction of TiO2 NFs in the PGE causes a decrease of cell performances. It shows that the presence of TiO2 NFs increases the charge-transfer resistance at the Pt CE/PGE interface, induces the charge recombination at the photoanode/PGE interface, and, furthermore, causes a dye desorption in a long-term-stability test. These results are different from those reported for the iodide redox system and are ascribed to a specific attractive interaction between TiO2 and cobalt redox ions.

  9. Blood doping by cobalt. Should we measure cobalt in athletes?

    Directory of Open Access Journals (Sweden)

    Guidi Gian

    2006-07-01

    Full Text Available Abstract Background Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Presentation of the hypothesis Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Testing the hypothesis Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Implications of the hypothesis Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice

  10. Functionalization of atomic cobalt clusters obtained by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cobo, Eldara [Laboratorio de Magnetismo y Tecnologia, Instituto Tecnoloxico, Pabillon de Servicios, Campus Sur, 15782 Santiago de Compostela (Spain); Departamento de Quimica Organica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rivas Rey, Jose; Blanco Varela, M. Carmen; Lopez Quintela, M. Arturo [Laboratorio de Magnetismo y Tecnologia, Instituto Tecnoloxico, Pabillon de Servicios, Campus Sur, 15782 Santiago de Compostela (Spain); Mourino Mosquera, Antonio; Torneiro Abuin, Mercedes [Departamento de Quimica Organica y Unidad Asociada al CSIC, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2006-05-15

    Functionalization of magnetic nanoparticles with appropriate organic molecules is very important for many applications. In the present study, cobalt nanoparticles, with an average diameter of 2 nm corresponding to Co{sub 309} clusters were synthesised by an electrochemical method, and then coated with ADCB (4-(9-deceniloxi)benzoic acid), in order to protect the clusters against oxidation and to obtain a final nanostructure, which can be attached later on to many different materials, like drugs, proteins or some other biological molecules. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Rheology of a ferrofluid based on nanodisc cobalt particles

    Energy Technology Data Exchange (ETDEWEB)

    Shahnazian, H; Borin, D Yu; Odenbach, S [Institute of Fluid Mechanics, Technische Universitaet Dresden, 01062, Dresden (Germany); Graef, D, E-mail: dmitry.borin@tu-dresden.d [Department of Engineering Physics, Saarland University, 66041, Saarbruecken (Germany)

    2009-10-21

    Rheological investigations as well as theoretical studies on ferrofluids have shown strong field and shear dependent changes in viscosity, which are correlated with the formation of chain-like clusters of magnetic nanoparticles. Moreover, the formation of these clusters leads to the appearance of viscoelastic effects or other non-Newtonian features in ferrofluids in the presence of a magnetic field. Previous investigations were carried out with differently composed ferrofluids, all of them containing particles of nearly spherical shape, but differing in the size of the nanoparticles, the volume concentration and the magnetic material. In the work presented here a ferrofluid with non-spherical cobalt nanoparticles is used, to get more information about the influence of the shape of the nanoparticles on their interparticle interaction and the resulting rheological behaviour of the suspension. For the experiments an especially designed stress controlled rheometer has been used. Experiments on yield stress as well as measurements of the magnetoviscous effect have been performed for this ferrofluid with nanodisc particles for different magnetic field strengths. The results from the yield stress experiments have been compared with those achieved for a cobalt-based ferrofluid containing spherical nanoparticles.

  12. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  13. Molybdenum carbide stabilized on graphene with high electrocatalytic activity for hydrogen evolution reaction.

    Science.gov (United States)

    Pan, Lin Feng; Li, Yu Hang; Yang, Shuang; Liu, Peng Fei; Yu, Ming Quan; Yang, Hua Gui

    2014-11-01

    In this work, we developed a general two-step method to prepare molybdenum carbide (Mo2C) nanoparticles stabilized by a carbon layer on reduced graphene oxide (RGO) sheets. The Mo2C-RGO hybrid showed excellent performance, which is attributed to the intimate interactions between Mo2C and graphene as well as the outer protection of the carbon layer.

  14. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  15. Pressureless sintered silicon carbide tailored with aluminium nitride sintering agent

    International Nuclear Information System (INIS)

    This study reports the influence of aluminium nitride on the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Pressureless sintering was achieved at 2000 degrees C for 5 min with the additions of boron carbide together with carbon of 1 wt% and 6 wt%, respectively, and a content of aluminium nitride between 0 and 10 wt%. Sintered samples present relative densities higher than 92%. The sintered microstructure was found to be greatly modified by the introduction of aluminium nitride, which reflects the influence of nitrogen on the β-SiC to α-SiC transformation. The toughness of sintered sample was not modified by AlN incorporation and is relatively low (around 2.5 MPa m1/2). Materials exhibited transgranular fracture mode, indicating a strong bonding between SiC grains. (authors)

  16. Palladium interaction with silicon carbide

    International Nuclear Information System (INIS)

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation

  17. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  18. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  19. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  20. Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase

    International Nuclear Information System (INIS)

    WC-Co hard metals continue to gain importance for cutting, mining and chipless forming tools. Cobalt metal currently dominates the market as a binder because of its unique properties. However, the use of cobalt as a binder has several drawbacks related to its hexagonal close-packed structure and market price fluctuations. These issues pushed the development of pre-alloyed binder powders which contain less than 40 wt.% cobalt. In this paper we first report the results of extensive investigations of WC-Fe/Ni/Co hard metal sintering, surface pretreating and deposition of adherent diamond films by using an industrial hot filament chemical vapour deposition (HFCVD) reactor. In particular, CVD diamond was deposited onto WC-Fe/Ni/Co grades which exhibited the best mechanical properties. Prior to deposition, the substrates were submitted to surface roughening by Murakami's etching and to surface binder removal by aqua regia. The adhesion was evaluated by Rockwell indentation tests (20, 40, 60 and 100 kg) conducted with a Brale indenter and compared to the adhesion of diamond films grown onto Co-cemented tungsten carbide substrates, which were submitted to similar etching pretreatments and identical deposition conditions. The results showed that diamond films on medium-grained WC-6 wt.% Fe/Ni/Co substrates exhibited good adhesion levels, comparable to those obtained for HFCVD diamond on Co-cemented carbides with similar microstructure

  1. A comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route

    Directory of Open Access Journals (Sweden)

    Sedigheh Rashidi

    2015-12-01

    Full Text Available In this research, the effect of different biopolymers such as polyethylene glycol (PEG and polyvinylalcohol (PVA on synthesis and characterization of polymer/cobalt ferrite (CF nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD,Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM, fieldemission scanning electron microscopy (FESEM, and vibrating sample magnetometer techniques(VSM, respectively. The polymeric cobalt ferrite nano-composites were obtained by employing atwo-step procedure: the cobalt ferrite of 20 nm mean particle size was first synthesized by mechanicalalloying route and then was embedded in PEG or PVA biopolymer matrix by milling process. Theresults revealed that PEG melted due to the local temperature raise during milling. Despite thisphenomenon, cobalt ferrite nano-particles were entirely embedded in PEG matrix. It seems, PAV is anappropriate candidate for producing nano-composite samples due to its high melting point. InPVA/CF nano-composites, the mean crystallite size and milling induced strain decreased to 13 nm and0.48, respectively. Moreover, milling process resulted in well distribution of CF in PVA matrix eventhough the mean particle size of cobalt ferrite has not been significantly affecetd. FTIR resultconfirmed the attachment of PVA to the surface of nano-particles. Magnetic properties evaluationshowed that saturation magnetization and coercivity values decreased in nano-composite samplecomparing the pure cobalt ferrite.

  2. Recycling cobalt from spent lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    Zhi-dong XIA; Xiao-qian XIE; Yao-wu SHI; Yong-ping LEI; Fu GUO

    2008-01-01

    Spent lithium ion battery is a useful resource of cobalt. In this paper, cobalt was recovered by a chemical process based upon the analysis of the structure and com-position of the lithium ion battery. X-ray diffraction results show that cobalt oxalate and cobaltous sulfate have been obtained in two different processes. Compared with the cobaltous oxalate process, the cobaltous sulfate process was characterized by less chemical substance input and a cobalt recovery rate of as much as 88%. A combination of these two processes in the recycling industry may win in the aspects of compact process and high recovery rate.

  3. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  4. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Science.gov (United States)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  5. Cobalt release from implants and consumer items and characteristics of cobalt sensitized patients with dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menne, Torkil; Liden, Carola;

    2012-01-01

    Background. Cobalt allergy is prevalent in dermatitis patients. Very little documentation exists about current sources of cobalt exposure.Objectives. To investigate and discuss putative sources of cobalt exposure and to present selected epidemiological data on cobalt allergy from patch-tested...... dermatitis patients in an attempt to better understand cobalt allergy.Materials and methods. 19 780 dermatitis patients aged 4-99 years were patch tested with nickel, chromium or cobalt between 1985 and 2010. The cobalt spot test was used to test for cobalt ion release from mobile phones as well as cobalt......-containing dental alloys and revised hip implant components.Results. Six of eight dental alloys and 10 of 98 revised hip implant components released cobalt in the cobalt spot test, whereas none of 50 mobile phones gave positive reactions. The clinical relevance of positive cobalt test reactions was difficult...

  6. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu;

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  7. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  8. Palladium interaction with silicon carbide

    OpenAIRE

    M. Gentile, P. Xiao, T. Abram

    2015-01-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide...

  9. Magnetic properties of cobalt ferrite-silica nanocomposites prepared by a sol-gel autocombustion technique

    DEFF Research Database (Denmark)

    Cannas, C.; Musinu, A.; Piccaluga, G.;

    2006-01-01

    The magnetic properties of cobalt ferrite-silica nanocomposites with different concentrations (15, 30, and 50 wt %) and sizes (7, 16, and 28 nm) of ferrite particles have been studied by static magnetization measurements and Mossbauer spectroscopy. The results indicate a superparamagnetic behavior...... of the nanoparticles, with weak interactions slightly increasing with the cobalt ferrite content and with the particle size. From high-field Mossbauer spectra at low temperatures, the cationic distribution and the degree of spin canting have been estimated and both parameters are only slightly dependent...... on the particle size. The magnetic anisotropy constant increases with decreasing particle size, but in contrast to many other systems, the cobalt ferrite nanoparticles are found to have an anisotropy constant that is smaller than the bulk value. This can be explained by the distribution of the cations. The weak...

  10. Discovery of the Cobalt Isotopes

    OpenAIRE

    Szymanski, T; Thoennessen, M

    2009-01-01

    Twenty-six cobalt isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  11. Tribological behaviour of mechanically synthesized titanium-boron carbide nanostructured coating.

    Science.gov (United States)

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2012-08-01

    In this paper, titanium-boron carbide (Ti/B4C) nanocomposite coatings with different B4C nanoparticles contents were fabricated by surface mechanical attrition treatment (SMAT) method by using B4C nanoparticles with average nanoparticle size of 40 nm. The characteristics of the nanopowder and coatings were evaluated by microhardness test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Friction and wear performances of nanocomposite coatings and pure titanium substrate were comparatively investigated, with the effect of the boron carbide content on the friction and wear behaviours to be emphasized. The results show the microhardness, friction and wear behaviours of nanocomposite coatings are closely related with boron carbide nanoparticle content. Nanocomposite coating with low B4C content shows somewhat (slight) increased microhardness and wear resistance than pure titanium substrate, while nanocomposite coating with high B4C content has much better (sharp increase) wear resistance than pure titanium substrate. The effect of B4C nanoparticles on microhardness and wear resistance was discussed.

  12. The heating effect of iron-cobalt magnetic nanofluids in an alternating magnetic field: application in magnetic hyperthermia treatment

    OpenAIRE

    Shokuhfar, Ali; Seyyed Afghahi, Seyyed Salman

    2013-01-01

    In this research, FeCo alloy magnetic nanofluids were prepared by reducing iron(III) chloride hexahydrate and cobalt(II) sulfate heptahydrate with sodium borohydride in a water/CTAB/hexanol reverse micelle system for application in magnetic hyperthermia treatment. X-ray diffraction, electron microscopy, selected area electron diffraction, and energy-dispersive analysis indicate the formation of bcc-structured iron-cobalt alloy. Magnetic property assessment of nanoparticles reveals that some s...

  13. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    Science.gov (United States)

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. PMID:26686185

  14. Development of tungsten carbide hardmetals using iron-based binder alloys

    International Nuclear Information System (INIS)

    The main work was carried out on hardmetals with 20 wt.% of iron rich binder alloys; the cobalt and nickel content of the alloys was varied upto 50 wt.%. The properties of the WC-Fe, WC-Co and WC-Ni hardmetals were measured for comparison. The influence of the carbon content, heat treatment and alloying with chromium andor molybdenum carbide was also evaluated. In addition to this, the effect of changes in the binder content and the carbide grain size on the properties of the hardmetals was determined. The structure of the WC-hardmetals with Fe-Co-Ni binders is similar to that of WC-Co, but the carbide grain size is somewhat smaller. The carbon content of the hardmetals has to be above the stoichiometric value of the tungsten carbide in order to obtain optimal hardmetal properties. The mechanical properties of the WC-Fe/Co/Ni hardmetals are strongly dependent on the binder composition and can be varied in a wide range. The optimal WC-Fe/Co/Ni hardmetals have at comparable transverse rupture strengths higher room temperature and hot hardness values, better fracture toughness and abrasive strength than the WC-Co hardmetals. Hardmetals whose binder is mainly martensitic have the best combination of all measured mechanical properties. (orig./IHOE)

  15. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires

    Institute of Scientific and Technical Information of China (English)

    FU Xin; JIANG Jun; LIU Chao; YU Zhi-Yang; Steffan LEA; YUAN Jun

    2009-01-01

    We report a preferential growth of boron carbide nanowires with a Eve-fold twinned internal structure.The nanowires are found to grow catalytically via iron boron nanoparticles,but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines.We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes,followed by rapid spreading of atomic steps.This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.

  16. Nanostructures obtained from a mechanically alloyed and heat treated molybdenum carbide

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Barriga Arceo, L. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico) and ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Orozco, E. [Instituto de Fisica UNAM, Apdo Postal 20-364, C.P. 01000 D.F. Mexico (Mexico)]. E-mail: eorozco@fisica.unam.mx; Mendoza-Leon, H. [ESIQIE-UPALM, IPN Apdo Postal 118-395, C.P. 07051 D.F. Mexico (Mexico)]. E-mail: luchell@yahoo.com; Palacios Gonzalez, E. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: epalacio@imp.mx; Leyte Guerrero, F. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: fleyte@imp.mx; Garibay Febles, V. [Programa de Ingenieria Molecular, I.M.P. Lazaro Cardenas 152, C.P. 07730 D.F. Mexico (Mexico)]. E-mail: vgaribay@imp.mx

    2007-05-31

    Mechanical alloying was used to prepare molybdenum carbide. Microstructural characterization of samples was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Molybdenum carbide was heated at 800 {sup o}C for 15 min in order to produce carbon nanotubes. Nanoparticles of about 50-140 nm in diameter and nanotubes with diameters of about 70-260 nm and 0.18-0.3 {mu}m in length were obtained after heating at 800 {sup o}C, by means of this process.

  17. Thermal residual stress analysis of diamond coating on graded cemented carbides

    Institute of Scientific and Technical Information of China (English)

    HUANG Zi-qian; HE Yue-hui; CAI Hai-tao; WU Cong-hai; XIAO Yi-feng; HUANG Bai-yun

    2008-01-01

    Finite element model was developed to analyze thermal residual stress distribution of diamond coating on graded and homogeneous substrates. Graded cemented carbides were formed by carburizing pretreatment to reduce the cobalt content in the surface layer and improve adhesion of diamond coating. The numerical calculation results show that the surface compressive stress of diamond coating is 950 MPa for graded substrate and 1 250 MPa for homogenous substrate, the thermal residual stress decreases by around 24% due to diamond coating. Carburizing pretreatment is good for diamond nucleation rate, and can increase the interface strength between diamond coating and substrate.

  18. COBALT SALTS PRODUCTION BY USING SOLVENT EXTRACTION

    Directory of Open Access Journals (Sweden)

    Liudmila V. Dyakova

    2010-06-01

    Full Text Available The paper deals with the extracting cobalt salts by using mixtures on the basis of tertiary amine from multicomponent solutions from the process of hydrochloride leaching of cobalt concentrate. The optimal composition for the extraction mixture, the relationship between the cobalt distribution coefficients and modifier’s nature and concentration, and the saltingout agent type have been determined. A hydrochloride extraction technology of cobalt concentrate yielding a purified concentrated cobalt solution for the production of pure cobalt salts has been developed and introduced at Severonikel combine.

  19. Asymmetric supercapacitor based on flexible TiC/CNF felt supported interwoven nickel-cobalt binary hydroxide nanosheets

    Science.gov (United States)

    Zhou, Gangyong; Xiong, Tianrou; He, Shuijian; Li, Yonghong; Zhu, Yongmei; Hou, Haoqing

    2016-06-01

    Nanostructured nickel-cobalt binary hydroxide (NiCosbnd BH) is widely investigated as supercapacitor electrode material. However, the aggregation and poor electrical conductivity of NiCosbnd BH limit its practical application as a supercapacitor. In this work, a flexible free-standing hierarchical porous composite composed of NiCosbnd BH nanosheets and titanium carbide-carbon nanofiber (NiCosbnd BH@TiC/CNF) is fabricated through electrospinning and microwave assisted method. The as-prepared composites exhibit desirable electrochemical performances, including high specific capacitance, cycling stability, and rate capability. In particular, the NiCosbnd BH41@TiC/CNF composite electrode exhibits a maximum specific capacitance of 2224 F g-1 at the current density of 0.5 A g-1 and excellent cyclic stability of 91% capacity retention after 3000 cycles at 5.0 A g-1. To expand its practical application, an asymmetric supercapacitor (ASC) is fabricated using the NiCosbnd BH41@TiC/CNF composite as the positive electrode and active carbon as the negative electrode. The ASC exhibits a prominent energy density of 55.93 Wh kg-1 and a high power density of 18,300 W kg-1 at 5.0 A g-1. The superior electrochemical property is attributed to the uniform dispersion of NiCosbnd BH nanosheets on the TiC/CNF felt matrix. The TiC/CNF felt with uniformed TiC nanoparticles makes the fiber surface more suitable for growing NiCosbnd BH nanosheets and simultaneously enhances the conductivity of electrode.

  20. Synthesis and characterization of iron, iron oxide and iron carbide nanostructures

    International Nuclear Information System (INIS)

    Magnetic iron oxide (Fe3O4 and γ-Fe2O3) and iron carbide (Fe3C) nanoparticles of different geometrical shapes: cubes, spheres, rods and plates, have been prepared by thermal decomposition of a mixture containing the metal precursor Fe(CO)5 and the stabilizer polyvinylpyrrolidone (PVP) at 300 °C in a sealed cell under inert atmosphere. The thermal decomposition process was performed for 4 or 24 h at ([PVP]/[Fe(CO)5]) (w/v) ratio of 1:1 or 1:5. Elemental iron nanospheres embedded within a mixture of amorphous and graphitic carbon coating were obtained by hydrogen reduction of the prepared iron oxide and iron carbide nanoparticles at 450 °C. The formation of the graphitic carbon phase at such a low temperature is unique and probably obtained by catalysis of the elemental iron nanoparticles. Changing the annealing time period and the ([PVP]/[Fe(CO)5]) ratio allowed control of the composition, size, size distribution, crystallinity, geometrical shape and magnetic properties of the different magnetic nanoparticles. - Highlights: • Thermal decomposition at 300 °C of a mixture of PVP and Fe(CO)5 leads to the formation of magnetic nanoparticles of different phases and shapes. • Changing the annealing time period and the ([PVP]/[Fe(CO)5]) (w/v) ratio allowed control of the nanoparticles different properties. • H2 reduction of the former magnetic nanoparticles leads to the formation of almost pure Fe nanospheres phase

  1. High capacity magnetic mesoporous carbon-cobalt composite adsorbents for removal of methylene green from aqueous solutions.

    Science.gov (United States)

    Dai, Mingzhi; Vogt, Bryan D

    2012-12-01

    Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N(2) atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.

  2. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  3. AN ELECTROPLATING METHOD OF FORMING PLATINGS OF NICKEL, COBALT, NICKEL ALLOYS OR COBALT ALLOYS

    DEFF Research Database (Denmark)

    1997-01-01

    An electroplating method of forming platings of nickel, cobalt, nickel alloys or cobalt alloys with reduced stresses in an electrodepositing bath of the type: Watt's bath, chloride bath or a combination thereof, by employing pulse plating with periodic reverse pulse and a sulfonated naphthalene...... additive. This method makes it possible to deposit nickel, cobalt, nickel or cobalt platings without internal stresses....

  4. Microstructure and Fractural Morphology of Cobalt-based Alloy Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    CHEN Hao; PAN Chun-xu

    2003-01-01

    The solidification features,micro-segregation,and fracture characteristics of cobalt-based alloy on the substrate of 20CrMo steel by laser cladding were studied by using electron microscopy.Experimental results show that the fine columnar grains and cellular dendrite grains are obtained which are perpendicular to the coating/substrate interface;the primary arms are straight while the side branches are degenerated;the microstructure consists of primary face-centered cubic (fcc) Co dendrites and a network of Cr-enriched eutectic M23C6 (M=Cr,W,Fe) carbides;the micro-segregation is severe for the rapid heating and cooling of laser cladding;the typical brittle intergranular fracture occurs in cobalt-based laser cladding layer.

  5. The effect of cobalt substitution on magnetic hardening of magnetite

    Science.gov (United States)

    Mozaffari, M.; Hadadian, Y.; Aftabi, A.; Oveisy Moakhar, M.

    2014-03-01

    In this work cobalt-substituted magnetite (CoxFe1-xFe2O4, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50-55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ-T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ-T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating.

  6. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  7. A general strategy for one-step fabrication of one-dimensional magnetic nanoparticle chains based on laser ablation in liquid

    International Nuclear Information System (INIS)

    Assembly of one-dimensional (1D) magnetic nanoparticle (NP) chains is attractive due to considerable technical demand in new materials and devices. Conventional assemblies are usually divided into two steps: one is the synthesis of NPs and the other is the fabrication of 1D NP chains. Here, we demonstrate a general strategy for fabricating 1D magnetic NP chains within one step, i.e. the magnetic field assisted laser ablation in liquid (MF-LAL), which combines NPs’ synthesis and 1D chains’ fabrication within one step. This is a green and facile LAL-based approach. Using this technique, we assemble 1D chains of submicron cobalt carbide spheres, which are ferromagnetic with anomalous giant magnetizations of 232 emu g−1 at room temperature, the highest reported so far for cobalt-based magnetic nanomaterials. The blocking temperature of the chains is more than 300 K, which is ascribed to the anisotropy of the configuration. We establish a theoretical model to pursue the fabrication of 1D magnetic NP chains, in which the basic physics and chemistry involved in the MF-LAL fabrication are discussed. These findings can guide researchers choosing interesting target and liquid for the assembly of 1D magnetic NP chains for the purpose of fundamental research and potential applications

  8. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  9. Thermally Sprayed Silicon Carbide Coating

    OpenAIRE

    Mubarok, Fahmi

    2014-01-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during elevated temperature atmospheric spraying process. The addition of metal or ceramic binders as a matrix phase is necessary to facilitate the bonding of SiC particles, allowing SiC coatings to be deposited. In the conventional procedure, the matrix phase is added through mechanical mixing or mechanical alloying of the powder constituents, making it difficult to achieve homogeneous distr...

  10. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    International Nuclear Information System (INIS)

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied

  11. High coercivity induced by mechanical milling in cobalt ferrite powders

    OpenAIRE

    Ponce, A. S.; E. F. Chagas; Prado, R. J.; Fernandes, C. H. M.; Terezo, A. J.; Baggio-Saitovitch, E.

    2013-01-01

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500oC. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4...

  12. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    Science.gov (United States)

    Radhika, B.; Sahoo, Rasmita; Srinath, S.

    2015-06-01

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ˜30nm and ˜48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  13. Size dependence of magnetorheological properties of cobalt ferrite ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Radhika, B.; Sahoo, Rasmita; Srinath, S., E-mail: srinath@uohyd.ac.in [School of Physics, University of Hyderabad, Hyderabad-500040 (India)

    2015-06-24

    Cobalt Ferrite nanoparticles were synthesized using co-precipitation method at reaction temperatures of 40°C and 80°C. X-Ray diffraction studies confirm cubic phase formation. The average crystallite sizes were found to be ∼30nm and ∼48nm for 40°C sample and 80°C sample respectively. Magnetic properties measured using vibrating sample magnetometer show higher coercivety and magnetization for sample prepared at 80°C. Magnetorheological properties of CoFe2O4 ferrofluids were measured and studied.

  14. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  15. Method to manufacture tungsten carbide

    International Nuclear Information System (INIS)

    The patent deals with an improved method of manufacturing tungsten carbide. An oxide is preferably used as initial product whose particle size and effective surface approximately corresponds to that of the endproduct. The known methods for preparing the oxide are briefly given. Carbon monoxide is passed over the thus obtained oxide particles whereby the reaction mixture is heated to a temperature at which tungsten oxide and carbon monoxide react and tungsten carbide is formed, however, below that temperature at which the tungsten-containing materials are caked or sintered together. According to the method the reaction temperature is about below 9000C. The tungsten carbide produced has a particle size of under approximately 100 A and an active surface of about 20 m2/g. It has sofar not been possible with the usual methods to obtain such finely divided material with such a large surface. These particles may be converted back to the oxide by heating in air at low temperature without changing particle size and effective surface. One thus obtains a tungsten oxide with smaller particle size and larger effective surface than the initial product. (IHOE)

  16. Room Temperature Ferromagnetism in InTe Layered Semiconductor Crystals Intercalated by Cobalt

    Directory of Open Access Journals (Sweden)

    V.B. Boledzyuk

    2015-03-01

    Full Text Available The magnetic properties of CoxInTe layered crystals electrochemically intercalated with cobalt in constant gradient magnetic field and the morphology of the van der Waals surfaces of layers of these crystals were studied. It was established that impurity clusters consisting of cobalt nanoparticles are formed in the intercalates under investigation on the van der Waals planes in the interlayer space. It was revealed that at room temperature the investigated CoxInTe intercalates exhibit magnetic properties characteristic for magnetically hard ferromagnetic materials.

  17. Cytotoxicity and ion release of alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Anne [Laser Zentrum Hannover e.V (Germany); Fuhlrott, Jutta; Loos, Anneke [Hannover Medical School, Biovertraeglichkeitslabor BioMedimplant (Germany); Barcikowski, Stephan, E-mail: stephan.barcikowski@uni-due.de [Laser Zentrum Hannover e.V (Germany)

    2012-01-15

    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel-Titanium or Cobalt-Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5-250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel-Iron, and Nickel-Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 {mu}M. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media.

  18. Structural prediction for scandium carbide monolayer sheet

    Science.gov (United States)

    Ma, Hong-Man; Wang, Jing; Zhao, Hui-Yan; Zhang, Dong-Bo; Liu, Ying

    2016-09-01

    A two-dimensional tetragonal scandium carbide monolayer sheet has been constructed and studied using density functional theory. The results show that the scandium carbide sheet is stable and exhibits a novel tetracoordinated quasiplanar structure, as favored by the hybridization between Sc-3d orbitals and C-2p orbitals. Calculations of the phonon dispersion as well as molecular dynamics simulations also demonstrate the structural stability of this scandium carbide monolayer sheet. Electronic properties show that the scandium carbide monolayer sheet is metallic and non-magnetic.

  19. Methods for producing silicon carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  20. Silicon carbide fibers and articles including same

    Science.gov (United States)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  1. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  2. Cobalt 60 commercial irradiation facilities

    International Nuclear Information System (INIS)

    The advantage of using cobalt 60 for ionizing treatment is that it has excellent penetration. Gamma plants are also very efficient, in as much as there is very little mechanical or electrical equipment in a gamma irradiation facility. The average efficiency of a gamma plant is usually around 95% of all available processing time

  3. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  4. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  5. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  6. Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers

    Institute of Scientific and Technical Information of China (English)

    Olga Yu. Podyacheva; Andrei I. Stadnichenko; Svetlana A. Yashnik; Olga A. Stonkus; Elena M. Slavinskaya; Andrei I. Boronin; Andrei V. Puzynin; Zinfer R. Ismagilov

    2014-01-01

    The nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers (N-CNFs) with cobalt oxide contents of 10-90 wt%were examined as catalysts in the CO oxidation and superca-pacity electrodes. Depending on Со3О4 content, such nanocomposites have different morphologies of cobalt oxide nanoparticles, distributions over the bulk, and ratios of Со3+/Co2+ cations. The 90%Со3О4-N-CNFs nanocomposite showed the best activity because of the increased concentration of defects in N-CNFs. The capacitance of electrodes containing 10%Со3О4-N-CNFs was 95 F/g, which is 1.7 times higher than electrodes made from N-CNFs.

  7. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.;

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  8. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide-silicon carbide composites

    Science.gov (United States)

    Buyuk, Bulent; Beril Tugrul, A.

    2014-04-01

    In this study, titanium diboride (TiB2) reinforced boron carbide-silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide-silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide-silicon carbide composites.

  9. Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction

    Directory of Open Access Journals (Sweden)

    Guobao Chen

    2016-07-01

    Full Text Available Cobalt is a very important metal which is widely applied in various critical areas, however, it is difficult to recover cobalt from minerals since there is a lack of independent cobalt deposits in nature. This work is to provide a complete process to recover cobalt from cobalt tailings using the moderately thermophilic bioleaching technology and selective sequential extraction. It is found that 96.51% Co and 26.32% Cu were extracted after bioleaching for four days at 10% pulp density. The mean compositions of the leach solutions contain 0.98 g·L−1 of Co, 6.52 g·L−1 of Cu, and 24.57 g·L−1 of Fe (III. The copper ion was then recovered by a solvent extraction process and the ferric ions were selectively removed by applying a goethite deironization process. The technological conditions of the above purification procedures were deliberately discussed. Over 98.6% of copper and 99.9% of ferric ions were eliminated from the leaching liquor. Cobalt was finally produced as cobalt oxalate and its overall recovery during the whole process was greater than 95%. The present bioleaching process of cobalt is worth using for reference to deal with low-grade cobalt ores.

  10. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Science.gov (United States)

    Abel, Frank M.; Tzitzios, Vasilis; Hadjipanayis, George C.

    2016-02-01

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH4 in tetraglyme at temperatures in the range of 200-270 °C under a nitrogen-hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe.

  11. Magneto-optical studies of SrGa{sub 0.7} Co{sub 0.3} O{sub 3−δ} perovskite thin films with embedded cobalt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Veis, M., E-mail: veis@karlov.mff.cuni.cz; Zahradnik, M.; Ohnoutek, L.; Beran, L.; Kucera, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 12116 Prague (Czech Republic); Sun, Xue Yin; Zhang, Chen; Aimon, Nicolas M.; Goto, Taichi; Onbasli, Mehmet C.; Kim, Dong Hun; Choi, Hong Kyoon; Ross, C. A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    Sr(Ga{sub 0.7} Co{sub 0.3})O{sub 3−δ}/Co perovskite/metal thin films have been systematically studied by means of Faraday and Kerr magneto-optical spectroscopies. The samples were prepared by pulsed laser deposition on (001) (LaAlO{sub 3}) {sub 0.3}(Sr{sub 2}AlTaO{sub 6}) {sub 0.7} (LSAT) and Si substrates, and grew as a perovskite matrix containing approximately 6% by volume of embedded metallic Co nanoparticles with diameter less than 20 nm, which were distributed throughout the film and at the film-substrate interface. The film thickness ranged from 130 to 310 nm. The perovskite matrix was single crystal on LSAT and polycrystalline on Si. The magneto-optical spectroscopy was carried out in both Faraday and Kerr configurations in the photon energy range from 0.5 to 5 eV in magnetic fields sufficient for sample saturation, showing a strong thickness dependence of the magneto-optical effect. This dependence was attributed to the different metallic Co content, nanoparticle size, and accumulation at the film-substrate interface.

  12. Synthesize and characterization of a novel anticorrosive cobalt ferrite nanoparticles dispersed in silica matrix (CoFe2O4-SiO2) to improve the corrosion protection performance of epoxy coating

    Science.gov (United States)

    Gharagozlou, M.; Ramezanzadeh, B.; Baradaran, Z.

    2016-07-01

    This study aimed at studying the effect of an anticorrosive nickel ferrite nanoparticle dispersed in silica matrix (NiFe2O4-SiO2) on the corrosion protection properties of steel substrate. NiFe2O4 and NiFe2O4-SiO2 nanopigments were synthesized and then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscope (TEM). Then, 1 wt.% of nanopigments was dispersed in an epoxy coating and the resultant nanocomposites were applied on the steel substrates. The corrosion inhibition effects of nanopigments were tested by an electrochemical impedance spectroscopy (EIS) and salt spray test. Results revealed that dispersing nickel ferrite nanoparticles in a silica matrix (NiFe2O4-SiO2) resulted in the enhancement of the nanopigment dispersion in the epoxy coating matrix. Inclusion of 1 wt.% of NiFe2O4-SiO2 nanopigment into the epoxy coating enhanced its corrosion protection properties before and after scratching.

  13. Elementary steps in Fischer-Tropsch synthesis: CO bond scission, CO oxidation and surface carbiding on Co(0001)

    Science.gov (United States)

    Weststrate, C. J.; van Helden, P.; van de Loosdrecht, J.; Niemantsverdriet, J. W.

    2016-06-01

    Dissociation of CO on a Co(0001) surface is explored in the context of Fischer-Tropsch synthesis on cobalt catalysts. Experiments show that CO dissociation can occur on defect sites around 330 K, with an estimated barrier between 90 and 104 kJ mol- 1. Despite the ease of CO dissociation on defect sites, extensive carbon deposition onto the cobalt surface up to 0.33 ML requires a combination of high surface temperature and a relatively high CO pressure. Experimental data on the CO oxidation reaction indicate a high reaction barrier for the CO + O reaction, and it is argued that, due to the rather strong Co-O bond, (i) oxygen removal is the rate-limiting step during surface carbidization and (ii) in the context of Fischer-Tropsch synthesis, removal of surface oxygen rather than CO bond scission might be limiting the overall reaction rate.

  14. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRAFINE WC/Co CEMENTED CARBIDES WITH CUBIC BORON NITRIDE AND Cr₃C₂ ADDITIONS

    Directory of Open Access Journals (Sweden)

    Genrong Zhang

    2016-03-01

    Full Text Available This study investigates the microstructure and mechanical properties of ultrafine tungsten carbide and cobalt (WC/Co cemented carbides with cubic boron nitride (CBN and chromium carbide (Cr₃C₂ fabricated by a hot pressing sintering process. This study uses samples with 8 wt% Co content and 7.5 vol% CBN content, and with different Cr₃C₂ content ranging from 0 to 0.30 wt%. Based on the experimental results, Cr₃C₂ content has a significant influence on inhibiting abnormal grain growth and decreasing grain size in cemented carbides. Near-full densification is possible when CBN-WC/Co with 0.25 wt% Cr₃C₂ is sintered at 1350°C and 20 MPa; the resulting material possesses optimal mechanical properties and density, with an acceptable Vickers hardness of 19.20 GPa, fracture toughness of 8.47 MPa.m1/2 and flexural strength of 564 MPa.u̇ Å k⃗

  15. Micro electrical discharge drilling of tungsten carbide using deionized water

    International Nuclear Information System (INIS)

    Micro electrical discharge machining (micro EDM) is an effective machining method for cobalt-bonded tungsten carbide (WC-Co); however, this material is susceptible to electrolytic corrosion when deionized water is used as the working fluid with a dc power source for the RC circuit. In this study, a bipolar pulse power source and a triangular electrode were used in order to reduce the electrolytic corrosion phenomenon during micro EDM using an RC discharge circuit. A bipolar pulse power source reduces the positive polarity period of the workpiece by periodically alternating the polarity of the workpiece and electrode and decreases the average gap voltage at the machining gap. Therefore, electrolytic corrosion, which is a type of electrochemical reaction on the positively charged workpiece, is reduced by these electrical conditions. The triangular electrode has a smaller side area as compared with the cylindrical electrode. Since the electrolytic corrosion is an electrochemical reaction between the side of the electrode and the surface of the workpiece, the small side area of the triangular electrode could reduce these reactions. With the aid of the bipolar pulse power source and the triangular electrode, an electrolytic-corrosion-free hole could be machined on the WC-Co workpiece using deionized water

  16. Micro electrical discharge drilling of tungsten carbide using deionized water

    Science.gov (United States)

    Song, Ki Young; Chung, Do Kwan; Park, Min Soo; Chu, Chong Nam

    2009-04-01

    Micro electrical discharge machining (micro EDM) is an effective machining method for cobalt-bonded tungsten carbide (WC-Co); however, this material is susceptible to electrolytic corrosion when deionized water is used as the working fluid with a dc power source for the RC circuit. In this study, a bipolar pulse power source and a triangular electrode were used in order to reduce the electrolytic corrosion phenomenon during micro EDM using an RC discharge circuit. A bipolar pulse power source reduces the positive polarity period of the workpiece by periodically alternating the polarity of the workpiece and electrode and decreases the average gap voltage at the machining gap. Therefore, electrolytic corrosion, which is a type of electrochemical reaction on the positively charged workpiece, is reduced by these electrical conditions. The triangular electrode has a smaller side area as compared with the cylindrical electrode. Since the electrolytic corrosion is an electrochemical reaction between the side of the electrode and the surface of the workpiece, the small side area of the triangular electrode could reduce these reactions. With the aid of the bipolar pulse power source and the triangular electrode, an electrolytic-corrosion-free hole could be machined on the WC-Co workpiece using deionized water.

  17. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  18. Cobalt and marine redox evolution

    OpenAIRE

    Swanner, Elizabeth D.; Planavsky, Noah J.; Lalonde, Stefan; Robbins, Leslie J.; Bekker, Andrey; Rouxel, Olivier; Saito, Mak A.; Kappler, Andreas; Mojzsis, Stephen J.; Konhauser, Kurt O.

    2014-01-01

    Cobalt (Co) is a bio-essential trace element and limiting nutrient in some regions of the modern oceans. It has been proposed that Co was more abundant in poorly ventilated Precambrian oceans based on the greater utilization of Co by anaerobic microbes relative to plants and animals. However, there are few empirical or theoretical constraints on the history of seawater Co concentrations. Herein, we present a survey of authigenic Co in marine sediments (iron formations, authigenic pyrite and b...

  19. Relative transition probabilities of cobalt

    Science.gov (United States)

    Roig, R. A.; Miller, M. H.

    1974-01-01

    Results of determinations of neutral-cobalt transition probabilities measured relative to Co I 4150.43 A and Co II 4145.15 A, using a gas-driven shock tube as the spectroscopic light source. Results are presented for 139 Co I lines in the range from 3940 to 6640 A and 11 Co II lines in the range from 3840 to 4730 A, which are estimated to have reliabilities ranging from 8 to 50%.

  20. The wear resistance of cobalt free hard surfaced alloys in nuclear power plant conditions. Test results; Kobolttivapaiden pinnoitteiden kulumiskestaevyys ydinvoimalaitosolosuhteissa. Koetulokset

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, A.M. [VTT Manufacturing Technology, Espoo (Finland)

    1996-09-01

    Use of cobalt containing materials is restricted in primary circuits of nuclear power plants since the cobalt is activated in the reactor core. The resulting isotope leads to increase of activity in the primary circuit. This report presents the results of the wear resistance tests of four hard facing alloys. The test method was a pin on plate test. The pins were coated with hard-facing alloys and the plates were manufactured from stainless steel. The tested materials were nickel based Stellite 6, wolfram carbide (WC), METCO 442 and cobalt based Stellite 6. Tests were carried out in simulated BWR-environment. According to the results of these tests it is not possible to get any differences between any hard facing alloys if the hardness of the plate material is much lower than that of the hard facing alloys examined. (orig.) (4 refs.).

  1. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  2. Influence of pH on the structural and magnetic behavior of cobalt ferrite synthesized by sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Cobalt ferrite (CoFe2O4) shown to be promising candidate for applications such as high-density magnetic recording, enhanced memory storage, magnetic fluids and catalysts. Utility of ferrite nanoparticles depends on its size, dispersibility in solutions, and magnetic properties. We have investigated the structural properties of synthesized cobalt ferrite nanoparticles synthesized by sol gel auto combustion for uncontrolled, acidic, neutral and basic pH values. X-ray diffraction (XRD) study confirms the cubic spinel phase formation with lattice constant 8.38 Å. In this study, we have optimized the pH value to synthesize homogenous cobalt ferrite nanoparticles with enhanced magnetic behavior. The surface morphology has been investigated by employing SEM images and the confirmation of spinel ferrite was also supported by using IR spectroscopy. Magnetic measurements for CoFe2O4 compositions (with pH <1, pH = 3, 7, 10) were investigated using VSM measurements

  3. Elaboration by ion implantation of cobalt nano-particles in silica layers and modifications of their properties by electron and swift heavy ion irradiations; Elaboration par implantation ionique de nanoparticules de cobalt dans la silice et modifications de leurs proprietes sous irradiation d'electrons et d'ions de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    D' Orleans, C

    2003-07-15

    This work aims to investigate the capability of ion irradiations to elaborate magnetic nano-particles in silica layers, and to modify their properties. Co{sup +} ions have been implanted at 160 keV at fluences of 2.10{sup 16}, 5.10{sup 16} and 10{sup 17} at/cm{sup 2}, and at temperatures of 77, 295 and 873 K. The dependence of the particle size on the implantation fluence, and more significantly on the implantation temperature has been shown. TEM (transmission electronic microscopy) observations have shown a mean diameter varying from 1 nm for implantations at 2.10{sup 16} Co{sup +}/cm{sup 2} at 77 K, to 9.7 nm at 10{sup 17} Co{sup +}/cm{sup 2} at 873 K. For high temperature implantations, two regions of particles appear. Simulations based on a kinetic 3-dimensional lattice Monte Carlo method reproduce quantitatively the features observed for implantations. Thermal treatments induce the ripening of the particles. Electron irradiations at 873 K induce an important increase in mean particle sizes. Swift heavy ion irradiations also induce the ripening of the particles for low fluences, and an elongation of the particles in the incident beam direction for high fluences, resulting in a magnetic anisotropy. Mechanisms invoked in thermal spike model could also explain this anisotropic growth. (author)

  4. On the Deactivation of Cobalt-based Fischer-Tropsch Catalysts

    OpenAIRE

    Cats, K.H.

    2016-01-01

    The Fischer-Tropsch Synthesis (FTS) process is an attractive way to obtain synthetic liquid fuel from alternative energy sources such as natural gas, coal or biomass. However, the deactivation of the catalyst, consisting of cobalt nanoparticles supported on TiO2, currently hampers the industrial application of the process. Despite many years of research, we still lack the fundamental insights into the mechanism of catalyst deactivation necessary to develop the next generation of FTS catalysts...

  5. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  6. Structural diversity in lithium carbides

    Science.gov (United States)

    Lin, Yangzheng; Strobel, Timothy A.; Cohen, R. E.

    2015-12-01

    The lithium-carbon binary system possesses a broad range of chemical compounds, which exhibit fascinating chemical bonding characteristics, which give rise to diverse and technologically important properties. While lithium carbides with various compositions have been studied or suggested previously, the crystal structures of these compounds are far from well understood. In this work, we present the first comprehensive survey of all ground state (GS) structures of lithium carbides over a broad range of thermodynamic conditions, using ab initio density functional theory (DFT) crystal structure searching methods. Thorough searches were performed for 29 stoichiometries ranging from Li12C to LiC12 at 0 and 40 GPa. Based on formation enthalpies from optimized van der Waals density functional calculations, three thermodynamically stable phases (Li4C3 , Li2C2 , and LiC12) were identified at 0 GPa, and seven thermodynamically stable phases (Li8C , Li6C , Li4C , Li8C3 , Li2C , Li3C4 , and Li2C3 ) were predicted at 40 GPa. A rich diversity of carbon bonding, including monomers, dimers, trimers, nanoribbons, sheets, and frameworks, was found within these structures, and the dimensionality of carbon connectivity existing within each phase increases with increasing carbon concentration. We find that the well-known composition LiC6 is actually a metastable one. We also find a unique coexistence of carbon monomers and dimers within the predicted thermodynamically stable phase Li8C3 , and different widths of carbon nanoribbons coexist in a metastable phase of Li2C2 (Imm2). Interesting mixed sp2-sp3 carbon frameworks are predicted in metastable phases with composition LiC6.

  7. Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst

    Science.gov (United States)

    Zhu, Yun-Pei; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2014-09-01

    Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and chemical states of the hybrid materials were investigated by FT-IR, XPS and thermogravimetric analysis, revealing the homogeneous integrity of inorganic and organic units inside the network. As a heterogeneous catalyst, hollow cobalt phosphonate material exhibited considerable catalytic oxidizing decomposition of methylene blue with sulfate radicals as compared to cobalt phosphonate nanoparticles synthesized in single water system, which could be attributed to enhanced mass transfer and high surface area for the hollow material. Some operational parameters, including pH and reaction temperature, were found to influence the oxidation process. The present results suggest that cobalt phosphonate material can perform as an efficient heterogeneous catalyst for the degradation of organic contaminants, providing insights into the rational design and development of alternative catalysts for wastewater treatment.Organic-inorganic hybrid of cobalt phosphonate hollow nanostructured spheres were prepared in a water-ethanol system through a mild hydrothermal process in the absence of any templates using diethylenetriamine penta(methylene phosphonic acid) as bridging molecule. SEM, TEM and N2 sorption characterization confirmed a hollow spherical micromorphology with well-defined porosity. The structure and chemical states of the hybrid materials were investigated by FT-IR, XPS and thermogravimetric analysis, revealing the homogeneous integrity of inorganic and organic units inside the network. As a heterogeneous catalyst, hollow cobalt phosphonate material exhibited considerable

  8. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  9. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  10. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  11. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  12. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  13. Ultrarapid microwave synthesis of superconducting refractory carbides

    International Nuclear Information System (INIS)

    Nb1-xTaxC Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; Tc correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  15. Influence of Cobalt Precursor on Efficient Production of Commercial Fuels over FTS Co/SiC Catalyst

    Directory of Open Access Journals (Sweden)

    Ana Raquel de la Osa

    2016-07-01

    Full Text Available β-SiC-supported cobalt catalysts have been prepared from nitrate, acetate, chloride and citrate salts to study the dependence of Fischer–Tropsch synthesis (FTS on the type of precursor. Com/SiC catalysts were synthetized by vacuum-assisted impregnation while N2 adsorption/desorption, XRD, TEM, TPR, O2 pulses and acid/base titrations were used as characterization techniques. FTS catalytic performance was carried out at 220 °C and 250 °C while keeping constant the pressure (20 bar, space velocity (6000 Ncm3/g·h and syngas composition (H2/CO:2. The nature of cobalt precursor was found to influence basic behavior, extent of reduction and metallic particle size. For β-SiC-supported catalysts, the use of cobalt nitrate resulted in big Co crystallites, an enhanced degree of reduction and higher basicity compared to acetate, chloride and citrate-based catalysts. Consequently, cobalt nitrate provided a better activity and selectivity to C5+ (less than 10% methane was formed, which was centered in kerosene-diesel fraction (α = 0.90. On the contrary, catalyst from cobalt citrate, characterized by the highest viscosity and acidity values, presented a highly dispersed distribution of Co nanoparticles leading to a lower reducibility. Therefore, a lower FTS activity was obtained and chain growth probability was shortened as observed from methane and gasoline-kerosene (α = 0.76 production when using cobalt citrate.

  16. Effects of nickel and cobalt addition on creep strength and microstructure of the precipitation-strengthened 15Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Shibuya, Masachika; Toda, Yoshiaki; Sawada, Kota; Kushima, Hideaki; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength of 15Cr ferritic steel with ferrite matrix was increased by precipitation strengthening of intermetallic compounds. It was higher than those of 9-12Cr ferritic steels with a tempered martensitic microstructure strengthened by carbide and carbonitride. Addition of nickel was confirmed to improve Charpy impact toughness of the 15Cr steels, however, creep strength was slightly reduced by the addition of nickel. Microstructure of the 15Cr steel changes from ferrite single phase to dual phases of ferrite and martensite with the addition of nickel which is an austenite stabilizing element. The 15Cr steels investigated in the previous study, contain 3mass% of cobalt which is also an austenite stabilizing element, therefore, the influence of nickel and cobalt combination on mechanical properties and microstructure of the 15Cr-1Mo-6W-V-Nb steel is investigated in this study. Creep strength, Charpy impact toughness and microstructure of the steel were strongly influenced by the composition of nickel and cobalt. Design guideline of the 15Cr steel is discussed with respect to a role of microstructure and combination of nickel and cobalt addition. (orig.)

  17. Inhalation cancer risk assessment of cobalt metal.

    Science.gov (United States)

    Suh, Mina; Thompson, Chad M; Brorby, Gregory P; Mittal, Liz; Proctor, Deborah M

    2016-08-01

    Cobalt compounds (metal, salts, hard metals, oxides, and alloys) are used widely in various industrial, medical and military applications. Chronic inhalation exposure to cobalt metal and cobalt sulfate has caused lung cancer in rats and mice, as well as systemic tumors in rats. Cobalt compounds are listed as probable or possible human carcinogens by some agencies, and there is a need for quantitative cancer toxicity criteria. The U.S. Environmental Protection Agency has derived a provisional inhalation unit risk (IUR) of 0.009 per μg/m(3) based on a chronic inhalation study of soluble cobalt sulfate heptahydrate; however, a recent 2-year cancer bioassay affords the opportunity to derive IURs specifically for cobalt metal. The mechanistic data support that the carcinogenic mode of action (MOA) is likely to involve oxidative stress, and thus, non-linear/threshold mechanisms. However, the lack of a detailed MOA and use of high, toxic exposure concentrations in the bioassay (≥1.25 mg/m(3)) preclude derivation of a reference concentration (RfC) protective of cancer. Several analyses resulted in an IUR of 0.003 per μg/m(3) for cobalt metal, which is ∼3-fold less potent than the provisional IUR. Future research should focus on establishing the exposure-response for key precursor events to improve cobalt metal risk assessment. PMID:27177823

  18. Synthesis of Nanosize Silicon Carbide Powder by Carbothermal Reduction of SiO2

    Science.gov (United States)

    Dehghanzadeh, M.; Ataie, A.; Heshmati-Manesh, S.

    A mixture of silicon carbide nano-particles and nano-whiskers has been synthesized through solid state reduction of silica by graphite employing high energy planetary ball milling for 25 h and subsequent heat treatment at 1300-1700°C in dynamic argon atmosphere. Effects of process conditions on the thermal behavior, phase composition and morphology of the samples were investigated using DTA/TGA, XRD and SEM, technique, respectively. DTA/TGA analysis shows that silicon carbide starts to form at 1250°C. Analysis of the XRD patterns indicates that the phase composition of the sample heat treated at 1300°C for 2 h mainly consists of SiO2 together with small amount of β-SiC. Nano-crystalline silicon carbide phase with a mean crystallite size of 38 nm was found to be dominate phase on heat treatment temperature at 1500°C. Substantial SiO2 was still remained in the above sample. SEM studies reveal that the sample heat treated at 1500°C for 2 h contains nano-particles and nano-whisker of β-SiC with a mean diameter of almost 85 nm. The results obtained were also showed that the characteristics of the synthesized SiC particles strongly depend on the mechanical activation and heat treatment conditions.

  19. Cobalt speciation and mobility in glacial sand

    International Nuclear Information System (INIS)

    The migration behaviour of cobalt in a sand-groundwater system has been studied. Batch sorption, column and diffusion experiments all showed that more than one cobalt species were present and that interconversion occurred between them. In a column experiment cobalt complexed with natural (probably fulvic) material contained in the groundwater dissociated with a first order rate constant of 1.8 x 10-4 sec-1. This suggested that in a field tracer test in the Drigg borehole array very little cobalt would reach the first sampling point. Experiments with the Co-EDTA, however, showed that although some dissociation occurred the Co-EDTA complexes were sufficiently stable for field use. Sectioning a column through which a pulse of Co-EDTA had passed produced a complicated distribution of sorbed cobalt which was tentatively interpreted as being due to the movement of two retarded (possibly colloidal) species

  20. Heterogeneous Photolytic Synthesis of Nanoparticles

    OpenAIRE

    Alm, Oscar

    2007-01-01

    Nanoparticles of iron, cobalt and tungsten oxide were synthesised by photolytic laser assisted chemical vapour deposition (LCVD). An excimer laser (operating at 193 nm) was used as an excitation source. The LCVD process, was monitored in situ by optical emission spectroscopy (OES). The synthesised particles were further analysed using transmission electron spectroscopy (TEM), X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), X-ray fluorescence spectroscopy (XRF), ...

  1. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  2. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications

    Science.gov (United States)

    Wen, Tianlong; Krishnan, Kannan M.

    2011-10-01

    Recently, magnetic nanocomposites (MNC) have aroused significant scientific and technological interests because their properties strongly rely on the interplay between those of the constituent components. Here, using three types of cobalt-based MNCs, we demonstrate how their physical behaviour, including thermal, electrical and magnetic, can be strongly affected by such interplays. First, using Aucore-Coshell nanoparticles (NPs), we demonstrate that their thermal stabilities are critically dependent on various boundaries and they structurally transform from the core-shells to the peanut structures via several intermediate states by a series of energy minimizations including the grain boundaries, Co/Au interface and strain. Second, the microstructures of the MNC are co-determined by the properties of the individual components, which in turn will strongly affect their overall properties. We illustrate this by a careful study of the electron transport in cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films, and show that they satisfy a fluctuation-induced tunnelling model that is strongly depended on their microstructures; moreover, a magnetoresistance in these thin films was also observed. Finally, the magnetic properties and phase stability of MNCs can also be strongly altered as a result of this interplay. Three phase transformations are observed in cobalt ferrofluids for T ~ 10-300 K, namely second order magnetic phase transformations (blocked-unblocked transition) at the blocking temperature of the magnetic NP, first order magnetic and structural phase transformations at the solvent melting temperature, TM, and second order premelting transformation at TPM < T < TM. These transformations show specific magnetic signatures in field-cool and zero-field-cool magnetization measurements and are qualitatively in agreement with predictions using M-spectrum theory.

  3. Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wen Tianlong; Krishnan, Kannan M, E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120 (United States)

    2011-10-05

    Recently, magnetic nanocomposites (MNC) have aroused significant scientific and technological interests because their properties strongly rely on the interplay between those of the constituent components. Here, using three types of cobalt-based MNCs, we demonstrate how their physical behaviour, including thermal, electrical and magnetic, can be strongly affected by such interplays. First, using Au{sub core}-Co{sub shell} nanoparticles (NPs), we demonstrate that their thermal stabilities are critically dependent on various boundaries and they structurally transform from the core-shells to the peanut structures via several intermediate states by a series of energy minimizations including the grain boundaries, Co/Au interface and strain. Second, the microstructures of the MNC are co-determined by the properties of the individual components, which in turn will strongly affect their overall properties. We illustrate this by a careful study of the electron transport in cobalt/poly (3-hexylthiophene, 2, 5-diyl) (P3HT) hybrid thin films, and show that they satisfy a fluctuation-induced tunnelling model that is strongly depended on their microstructures; moreover, a magnetoresistance in these thin films was also observed. Finally, the magnetic properties and phase stability of MNCs can also be strongly altered as a result of this interplay. Three phase transformations are observed in cobalt ferrofluids for T {approx} 10-300 K, namely second order magnetic phase transformations (blocked-unblocked transition) at the blocking temperature of the magnetic NP, first order magnetic and structural phase transformations at the solvent melting temperature, T{sub M}, and second order premelting transformation at T{sub PM} < T < T{sub M}. These transformations show specific magnetic signatures in field-cool and zero-field-cool magnetization measurements and are qualitatively in agreement with predictions using M-spectrum theory. (topical review)

  4. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  5. Establishing efficient cobalt based catalytic sites for oxygen evolution on a Ta3N5 photocatalyst

    KAUST Repository

    Nurlaela, Ela

    2015-08-05

    In a photocatalytic suspension system with a powder semiconductor, the interface between the photocatalyst semiconductor and catalyst should be constructed to minimize resistance for charge transfer of excited carriers. This study demonstrates an in-depth understanding of pretreatment effects on the photocatalytic O2 evolution reaction (OER) activity of visible-light-responsive Ta3N5 decorated with CoOx nanoparticles. The CoOx/Ta3N5 sample was synthesized by impregnation followed by sequential heat treat-ments under NH3 flow and air flow at various temperatures. Various characterization techniques, including X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), scanning transmission electron microscopy (STEM), and X-ray photoelectron spec-troscopy (XPS), were used to clarify the state and role of cobalt. No improvement in photocatalytic activity for OER over the bare Ta3N5 was observed for the as-impregnated CoOx/Ta3N5, likely because of insufficient contact between CoOx and Ta3N5. When the sample was treated in NH3 at high temperature, a substantial improvement in the photocatalytic activity was observed. After NH3 treatment at 700 °C, the Co0-CoOx core-shell agglomerated cobalt structure was identified by XAS and STEM. No metallic cobalt species was evident after the photocatalytic OER, indicating that the metallic cobalt itself is not essential for the reaction. Accordingly, mild oxidation (200 °C) of the NH3-treated CoOx/Ta3N5 sample enhanced photocatalytic OER activity. Oxidation at higher temperatures drastically eliminated the photocatalytic activity, most likely because of unfavorable Ta3N5 oxidation. These results suggest that the intimate contact between cobalt species and Ta3N5 facilitated at high temperature is beneficial to enhancing hole transport and that the cobalt oxide provides electrocatalytic sites for OER.

  6. Analysis of crystallite size and microdeformation crystal lattice the tungsten carbide milling in mill high energy

    International Nuclear Information System (INIS)

    The tungsten carbide (WC) has wide application due to its properties like high melting point, high hardness, wear resistance, oxidation resistance and good electrical conductivity. The microstructural characteristics of the starting powders influences the final properties of the carbide. In this context, the use of nanoparticle powders is an efficient way to improve the final properties of the WC. The high energy milling stands out from other processes to obtain nanometric powders due to constant microstructural changes caused by this process. Therefore, the objective is to undertake an analysis of microstructural characteristics on the crystallite size and microdeformations of the crystal lattice using the technique of X-ray diffraction (XRD) using the Rietveld refinement. The results show an efficiency of the milling process to reduce the crystallite size, leading to a significant deformation in the crystal lattice of WC from 5h milling. (author)

  7. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Lou, D.; Hellman, J.; Luhulima, D.; Liimatainen, J.; Lindroos, V.K

    2003-01-15

    A variety of experimental techniques have been used to investigate the interactions between tungsten carbide (WC-Co 88/12) particulates and the matrix in some new wear resistant cobalt-based superalloy and steel matrix composites produced by hot isostatic pressing. The results show that the chemical composition of the matrix has a strong influence on the interface reaction between WC and matrix and the structural stability of the WC particulates in the composite. Some characteristics of the interaction between matrix and reinforcement are explained by the calculation of diffusion kinetics. The three-body abrasion wear resistance of the composites has been examined based on the ASTM G65-91 standard procedure. The wear behavior of the best composites of this study shows great potential for wear protection applications.

  8. Cobalt-doped nanohydroxyapatite: synthesis, characterization, antimicrobial and hemolytic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tank, Kashmira P., E-mail: kashmira_physics@yahoo.co.in [Saurashtra University, Crystal Growth Laboratory, Physics Department (India); Chudasama, Kiran S.; Thaker, Vrinda S. [Saurashtra University, Bioscience Department (India); Joshi, Mihir J., E-mail: mshilp24@rediffmail.com [Saurashtra University, Crystal Growth Laboratory, Physics Department (India)

    2013-05-15

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}; HAP) is a major mineral component of the calcified tissues, and it has various applications in medicine and dentistry. In the present investigation, cobalt-doped hydroxyapatite (Co-HAP) nanoparticles were synthesized by surfactant-mediated approach and characterized by different techniques. The EDAX was carried out to estimate the amount of doping in Co-HAP. The transmission electron microscopy result suggested the transformation of morphology from needle shaped to spherical type on increasing the doping concentration. The powder XRD study indicated the formation of a new phase of brushite for higher concentration of cobalt. The average particle size and strain were calculated using Williamson-Hall analysis. The average particle size was found to be 30-60 nm. The FTIR study confirmed the presence of various functional groups in the samples. The antimicrobial activity was evaluated against four organisms Pseudomonas aeruginosa and Shigella flexneri as Gram negative as well as Micrococcus luteus and Staphylococcus aureus as Gram positive. The hemolytic test result suggested that all samples were non-hemolytic. The photoluminescence study was carried out to identify its possible applicability as a fluorescent probe.

  9. Catalytically active cobalt and copper complexes in polyelectrolyte multilayer films

    International Nuclear Information System (INIS)

    In this work an approach to obtain effective and easy reusable heterogeneous catalyst, LbL deposition of polyelectrolytes followed by covalently binding with cobalt (II) and copper (II) ions were described. Immobilization of metal complexes via covalent attachment to insoluble template is an attractive method to facilitate catalyst recovery, recycling. The reaction in the heterogeneous catalysis goes in the interface of catalyst and reaction solution and it is important to create a catalyst with large surface area. We have used polycations as polyethyleneimine (BPEI), quaternized poly(4- vynilpyridine) (QPVP) and polyanions as poly(acrylic acid) (PAA), poly(styrene sulphonate) sodium salt (PSS) and the electrostatic layer-by-layer assembly technique to make uniform thin film coating on SiO2 nanoparticles and glass slides with controllable thickness, roughness and mechanically durability. The stability of metals within multilayers in reaction condition were tested. We compared the amount of metal in PEMs of different polyelectrolytes. The stability constants of complex forming processes of the polymer-metal complexes in water and in alcohol were calculated by modified method of Bjerrum. Catalytic activity of immobilized catalysts was investigated for oxidation of toluene by molecular oxygen. Catalysts were separated from reaction mixture easily and had been used for this reaction five times without significant loss of activity. Key words: catalysis, layer-by-layer (LbL), polymer-metal complexes, oxidation, cobalt and copper immobilization

  10. Magnetic and Structural Investigations of Nanocrystalline Cobalt-Ferrite

    Directory of Open Access Journals (Sweden)

    I. Sharifi

    2012-10-01

    Full Text Available Cobalt ferrite is an important magnetic material due to their large magneto-crystalline anisotropy, high cohercivity, moderate saturation magnetization and chemical stability.In this study, cobalt ferrites Nanoparticles have been synthesized by the co-precipitation method and a new microemulsion route. We examined the cation occupancy in the spinel structure based on the “Rietveld with energies” method. The Xray measurements revealed the production of a broad single ferrite cubic phase with the average particle sizes of about 12 nm and 7nm, for co-precipitation and micro-emulsion methods, respectively. The FTIR measurements between 400 and 4000 cm-1 confirmed the intrinsic cation vibrations of the spinelstructure for the two methods. Furthermore, the Vibrating Sample Magnetometer (VSM was carried out at room temperature to study the structural and magnetic properties. The results revealed that by changing the method from co-precipitation to the reverse micelle the material exhibits a softer magnetic behavior in such a way that both saturation magnetization and coercivity decrease from 58 to 29 emu/g and from 286 to 25 Oe, respectively.

  11. Nickel acts as an adjuvant during cobalt sensitization

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte Menne; Nielsen, Morten Milek; Vennegaard, Marie T.;

    2015-01-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We...... investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found...... that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses...

  12. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  13. Antitumor Activities of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria Pilar Vinardell

    2015-06-01

    Full Text Available Nanoparticles have received much attention recently due to their use in cancer therapy. Studies have shown that different metal oxide nanoparticles induce cytotoxicity in cancer cells, but not in normal cells. In some cases, such anticancer activity has been demonstrated to hold for the nanoparticle alone or in combination with different therapies, such as photocatalytic therapy or some anticancer drugs. Zinc oxide nanoparticles have been shown to have this activity alone or when loaded with an anticancer drug, such as doxorubicin. Other nanoparticles that show cytotoxic effects on cancer cells include cobalt oxide, iron oxide and copper oxide. The antitumor mechanism could work through the generation of reactive oxygen species or apoptosis and necrosis, among other possibilities. Here, we review the most significant antitumor results obtained with different metal oxide nanoparticles.

  14. Cobalt-60 production in CANDU power reactors

    International Nuclear Information System (INIS)

    The technology for cobalt-60 production in CANDU reactors, designed and developed by MDS Nordion and AECL, has been safely,economically and successfully employed in CANDU reactors with over 195 reactor years of production. Today over forty percent of the world's disposable medical supplies are made safer through sterilization using cobalt-60 sources from MDS Nordion. Over the past 40 years, MDS Nordion with its CANDU reactor owner partners, has safely and reliably shipped more than 500 million curies of cobalt-60 sources to customers around the world

  15. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  16. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  17. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Setala V. Naidu

    2003-01-01

    We have produced Co, Cu, and Fe nano-particles by Laser-induced solution deposition (LISD) as evidenced by TEM investigations. Sizes of the nano-particles created are in the order of 5 nm. The LISD system could generate nano-particles in quantities only in the order of a milligram. This may be mainly due to the limited photo induced reactions taking place on the surface of the solutions. We have designed experiments to use drop flow technique with LISD for nano-particle deposition on microreactors. Preliminary work has been done on Co and Fe thin film deposited microreactors. We are also investigating the catalytic properties of nano-particles of FeO and CoO prepared by ball milling and dispersed into sol-gel prepared alumina granules. We have continued our investigation of catalytic reactions of Cu, Co, Fe, Cu/Co, Cu/Fe and Co/Fe on alumina support. The metal oxides were first reduced with hydrogen and used for the conversion of CO/H{sub 2}. The surface area of the catalysts has been determined by nitrogen disorption. They are in the range of 200-300 m{sup 2}/g. Cu, Co, Fe, Co/Fe, Cu/Co and Cu/Fe showed increasing order of catalytic activity for CO/H{sub 2} conversion. We are also studying catalytic conversion rates for CO{sub 2}/H{sub 2} and CO/CO{sub 2}/H{sub 2} mixtures using these catalysts. Our investigations of Co and Fe thin film deposited microreactors showed higher CO/H{sub 2} conversion for Fe compared to Co. We have used vibrating sample magnetometer (VSM) to study the magnetic characteristics of as prepared, reduced, post-reaction catalysts. Comparative study of the ferromagnetic component of these samples gives the reduction efficiency and the changes in metal centers during catalytic reactions. Magnetic studies of post-reaction Co and Fe micro-reactors show that more carbide formation occurs for iron compared to cobalt.

  18. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  19. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    Science.gov (United States)

    Luc, Wesley; Jiao, Feng

    2016-07-19

    metal oxides with bimodal pore size distributions can be obtained. Combining nanocasting with chemical etching, a cobalt oxide with a hierarchical porous structure was synthesized, which possessed a surface area up to 250 m(2) g(-1), representing the highest surface area reported to date for nanoporous cobalt oxides. Lastly, this Account also covers the syntheses of nanoporous metal carbides and sulfides. The combination of in situ carburization and nanocasting enabled the syntheses of two ordered nanoporous metal carbides, Mo2C and W2C. For nanoporous metal sulfides, an "oxide-to-sulfide" synthetic strategy was proposed to address the large volume change issue of converting metal nitrate precursors to metal sulfide products in nanocasting. The successful syntheses of ordered nanoporous FeS2, CoS2, and NiS2 demonstrated the feasibility of the "oxide-to-sulfide" method. Concluding remarks include a summary of recent advances in the syntheses of nanoporous metal-based solids and a brief discussion of future opportunities in the hope of stimulating new interests and ideas. PMID:27294847

  20. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    Science.gov (United States)

    Luc, Wesley; Jiao, Feng

    2016-07-19

    metal oxides with bimodal pore size distributions can be obtained. Combining nanocasting with chemical etching, a cobalt oxide with a hierarchical porous structure was synthesized, which possessed a surface area up to 250 m(2) g(-1), representing the highest surface area reported to date for nanoporous cobalt oxides. Lastly, this Account also covers the syntheses of nanoporous metal carbides and sulfides. The combination of in situ carburization and nanocasting enabled the syntheses of two ordered nanoporous metal carbides, Mo2C and W2C. For nanoporous metal sulfides, an "oxide-to-sulfide" synthetic strategy was proposed to address the large volume change issue of converting metal nitrate precursors to metal sulfide products in nanocasting. The successful syntheses of ordered nanoporous FeS2, CoS2, and NiS2 demonstrated the feasibility of the "oxide-to-sulfide" method. Concluding remarks include a summary of recent advances in the syntheses of nanoporous metal-based solids and a brief discussion of future opportunities in the hope of stimulating new interests and ideas.

  1. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  2. Structural stability and mutual transformations of molybdenum carbide, nitride and phosphide

    International Nuclear Information System (INIS)

    Graphical abstract: Both Mo2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable, which is used to develop a promising and practical pathway for preparing MoP nanoparticles. Highlights: → Mo carbide, nitride and phosphide are prepared. → The structural stability increases in the order of Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse changes are inviable. → This study develops a promising and practical pathway for preparing MoP nanoparticles. -- Abstract: The structural stability and transformations of Mo carbide, nitride and phosphide were investigated under various atmosphere conditions by X-ray diffraction (XRD). The results indicated that the order of structural stability of these Mo-based compounds was as follows: Mo2N 2C 2C and Mo2N can be transformed to MoP, whereas the reverse transformations did not occur. Noticeably, compared with those Mo sources containing oxygen, the use of Mo2C/Mo2N as Mo-source can produce finely dispersed MoP nanoparticles by the temperature-programmed reaction (TPR) method. The result was probably due to the fact that lower-levels H2O generated during synthesis process can avoid strong hydrothermal sintering. The influence of formation energy had been considered and was found to relate to the structural stability and transformations of these Mo-based compounds.

  3. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  4. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  5. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  6. Development of high toughness, high strength aluminide-bonded carbide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  7. A computational study of interfaces in WC-Co cemented carbides

    Science.gov (United States)

    Petisme, Martin V. G.; Johansson, Sven A. E.; Wahnström, Göran

    2015-06-01

    Interfaces in WC-Co cemented carbides have been investigated using the density functional theory (DFT). Six different model WC/WC grain boundaries are considered, together with the corresponding WC surfaces and WC/Co phase boundaries. The contribution to the grain boundary energies arising from misfit is estimated using an analytical bond order potential (ABOP) and the effect of magnetism is investigated using spinpolarized and non-spinpolarized calculations. A systematic study of adsorption of Co to WC surfaces, Co segregation to WC/WC grain boundaries and Co substitution at WC/Co phase boundaries has been carried out. Adsorption of Co to most WC surfaces is predicted, and result in a monolayer coverage of Co and sometimes a mixed Co/W or Co/W monolayer. The WC surfaces will become prewetted with Co as soon as the atoms become mobile at finite temperatures. Co substitutional segregation is predicted to all model WC/WC grain boundaries in 0.5 monolayer proportion. The segregation of Co to grain boundaries stabilizes the continuous skeleton network of hard WC grains in cemented carbides. Using the obtained interfacial energies, the wetting and the driving force for cobalt grain boundary infiltration are discussed. A dependence on the wetting efficiency on the carbon chemical potential is predicted, which could be an explanation for the better wetting observed experimentally under W-rich conditions.

  8. Effects of Implant Copper Layer on Diamond Film Deposition on Cemented Carbides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The deposition of high-quality diamond films and their adhesion on cemented carbides are strongly influenced by the catalytic effect of cobalt under typical deposition conditions.Decreasing Co content on the surface of the cemented carbide is often used for the diamond filmdeposition. But the leaching of Co from the WC-Co substrate leading to a mechanical weak surface often causes a poor adhesion. In this paper we adopted an implant copper layer preparedby vaporization to improve the mechanical properties of the Co-leached substrate. The diamondfilms were grown by microwave plasma chemical vapor deposition from CH4 :H2 gas mixture. Thecross section and the morphology of the diamond film were characterized by scanning electronmicroscopy (SEM). The non-diamond content in the film was analyzed by Raman spectroscopy.The effects of pretreatment on the concentrations of Co and Cu near the interfacial region wereexamined by energy dispersive spectrum (EDS) equipped with SEM. The adhesion of the diamondon the substrate was evaluated with a Rockwell-type hardness tester. The results indicate that thediamond films prepared with implant copper layer have a good adhesion to the cemented carbidesubstrate due to the recovery of the mechanical properties of the Co-depleted substrate after thecopper implantation and the formation of less amorphous carbon between the substrate and thediamond film.

  9. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors.

    Science.gov (United States)

    Lang, Xing-You; Fu, Hong-Ying; Hou, Chao; Han, Gao-Feng; Yang, Ping; Liu, Yong-Bing; Jiang, Qing

    2013-01-01

    Tremendous demands for electrochemical biosensors with high sensitivity and reliability, fast response and excellent selectivity have stimulated intensive research on developing versatile materials with ultrahigh electrocatalytic activity. Here we report flexible and self-supported microelectrodes with a seamless solid/nanoporous gold/cobalt oxide hybrid structure for electrochemical nonenzymatic glucose biosensors. As a result of synergistic electrocatalytic activity of the gold skeleton and cobalt oxide nanoparticles towards glucose oxidation, amperometric glucose biosensors based on the hybrid microelectrodes exhibit multi-linear detection ranges with ultrahigh sensitivities at a low potential of 0.26 V (versus Ag/AgCl). The sensitivity up to 12.5 mA mM⁻¹ cm⁻² with a short response time of less than 1 s gives rise to ultralow detection limit of 5 nM. The outstanding performance originates from a novel nanoarchitecture in which the cobalt oxide nanoparticles are incorporated into pore channels of the seamless solid/nanoporous Au microwires, providing excellent electronic/ionic conductivity and mass transport for the enhanced electrocatalysis. PMID:23851924

  10. A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Suiping; Lu Limin; Yang Minghui; Lei Yong [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Shen Guoli, E-mail: glshen@hnu.cn [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yu Ruqin [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2009-10-05

    In this paper, for the first time, we introduced the seed-mediated method to the growth of cobalt hexacyanoferrate nanoparticles (CoNPs), using 3.5 nm gold nanoparticles as seeds and multiwalled carbon nanotubes (MWCNTs) as growth scaffold which would both show synergistic action toward the reduction of H{sub 2}O{sub 2}. Via gold seeds, the one-step fabrication of CoNPs on the glassy carbon electrode is simple without any linking reagents, which will ingeniously exert the electrochemical properties of cobalt hexacyanoferrate. Combined with glucose oxidase, the sensing surface is applied as a biosensor for glucose. The growth of CoNPs is a chemical deposition process around the small Au nanoseed particles. The nanoseeds bridge the CoNPs and CNTs to form a smart nanocomposite. Spherical CoNPs have a relatively moderate dispersion on the three-dimensional network of CNTs with relatively even diameter ca. 100 nm. Whereas, in the control experiments without gold seeds cobalt hexacyanoferrate can only form continuous films, of which the size is far from nanolevel and the catalytic ability is poor. The synthesis and fabrication/modification of CoNPs are simple and fast without prior preparation of CoNPs and lengthy process of cross-linking. The amount of the seeds and CNTs, growth time and concentration of growth solution were investigated. Scanning electron microscopy (SEM) and electrochemical method were used.

  11. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  12. An elevator for cobalt-60 source

    International Nuclear Information System (INIS)

    The elevator used for cobalt-60 source is a key device in the irradiation industry. It plays an important role in the safety and control of irradiation operation as well as the utilization rate of radiation source. From 1983 to 1986, Beijing Institute of Nuclear Engineering undertook designing of various size irradiation projects for different uses. Since then a kind of cobalt-60 source elevator suited for the irradiator of wet-source-storage has been chosen. It is reliable in the operation and complete in the function. An automatic control circuit brings the systems of cobalt-60 source elevator into an interlock system which ensures the irradiation operation safety. Besides introducing the structural features and performance of this elevator, the conditions of safety interlocking in raising or lowering the cobalt-60 source is also discussed. The discussion is from the safety viewpoint of operating an irradiator and irradiation technology

  13. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  15. Electrospray deposition of isolated chemically synthesized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Pierre; Meffre, Anca; Lacroix, Lise-Marie; Ugnati, Damien [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France); Ondarçuhu, Thierry [Centre d’Elaboration de Matériaux et d’Etudes Structurales (CEMES-CNRS) (France); Respaud, Marc; Lassagne, Benjamin, E-mail: lassagne@insa-toulouse.fr [Université de Toulouse (France); INSA, UPS, CNRS, Laboratoire de Physique et Chimie des Nano-objets (LPCNO) (France)

    2016-01-15

    The deposition of isolated magnetic nanoparticles onto a substrate was performed using electrohydrodynamic spraying. Two kinds of nanoparticles were sprayed, 11 nm CoFe carbide nanospheres and 10.5 nm Fe nanocubes. By studying carefully the evolution of the sprayed charged droplets and the mechanism of nanoparticle dispersion in them, we could optimize the nanoparticle concentration within the initial nanoparticle solution (i) to reduce the magnetic interaction and therefore prevent agglomeration and (ii) to obtain in a relatively short period (1 h) a deposit of isolated magnetic nanoparticles with a density of up to 400 nanoparticles per µm{sup 2}. These results open great perspectives for magnetic measurements on single objects using advanced magnetometry techniques as long as spintronics applications based on single chemically synthesized magnetic nanoparticles.

  16. Transport properties of cobalt at low temperatures

    DEFF Research Database (Denmark)

    Radharkishna, P.; Nielsen, Mourits

    1965-01-01

    Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering.......Measurements are made of electrical resistivity, absolute thermoelectric power, and thermal conductivity of polycrystalline cobalt between 1.2 and 6 K; results are discussed on basis of inter-electronic scattering....

  17. [Are the cobalt hip prosthesis dangerous?].

    Science.gov (United States)

    Mistretta, Virginie; Kurth, William; Charlier, Corinne

    The placement of a hip prosthesis is one of the most common orthopedic surgical procedures. Some implants contain metal and are therefore capable of releasing metal particles like cobalt in patients who wear metal prostheses. Cobalt can be responsible of local toxicity (including metallosis, hypersensitivity reaction, and benign tumor) or systemic toxicity (including cardiomyopathy, polycythemia, hypothyroidism, and neurological disorders). To monitor potential toxicity of metal hip prostheses, an annual monitoring of patients implanted is recommended and includes clinical examination, radiological examination and blood cobalt determination. The cobalt concentration in blood allows to estimate the risk of toxicity and to evaluate the performance of the implant. The currently recommended threshold value is equal to 7 µg of cobalt per liter of blood. Our study, conducted on 251 patients over a period of 4 years, has shown that the cobalt concentration average was 2.51 µg/l in blood, with 51 patients having a cobaltemia higher than the threshold of 7 µg/l. PMID:27615181

  18. Size-selective chemical synthesis of tartrate stabilized cobalt ferrite ionic magnetic fluid.

    Science.gov (United States)

    Neveu, S; Bee, A; Robineau, M; Talbot, D

    2002-11-15

    Ionic magnetic fluid (ferrofluid) is a stable suspension of magnetic nanoparticles in water. Cobalt ferrite nanoparticles are interesting in view of high-density recording storage. The size of the magnetic particles strongly influences the physical properties of the ferrofluids. In this study, we describe the synthesis of ionic magnetic fluid in the presence of tartrate ions. By varying the amount of organic ligands, nanoparticles in a large range of size are obtained: the mean diameter varies from 3 to 10 nm. The effect of tartrate ions on the stability of the ionic magnetic fluid is also studied in relation with the size of the magnetic particles and the amount of adsorbed ligand. PMID:12505076

  19. Structural and magnetic properties of cobalt nanostructures on SiO{sub 2}/Si(1 1 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bounour-Bouzamouche, W. [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); LEREC, Université d’Annaba, BP12 – 23000 (Algeria); Chérif, S.M., E-mail: cherif@univ-paris13.fr [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Farhat, S.; Roussigné, Y.; Tallaire, A.; Gicquel, A. [LSPM (CNRS-UPR 3407), Université Paris 13, PRES Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse (France); Lungu, C.P. [NILPR, 409, Magurele, JudIlfov, 077125 Bucharest (Romania); Guerioune, M. [LEREC, Université d’Annaba, BP12 – 23000 (Algeria)

    2014-11-30

    Highlights: • Heat and plasma treatments of ultrathin cobalt films deposited on SiO{sub 2}/Si(1 1 1) create highly auto-organized structures. • Direct correlation between the film thickness and the size of the nanoparticles formed after thermal annealing. • Modification of the surface morphology strongly influences the magnetic response of the investigated films. • Formation of Co islands in triangular shapes is found to play a key role in the enhancement of the coercive field. - Abstract: 2D architectures of cobalt onto silicon (1 1 1) surfaces were elaborated by patterning of magnetic cobalt in the nanometer scale. A continuous cobalt layer of 1, 3 and 10 nm thickness, respectively, was first deposited by means of thermoionic vacuum arc technique and then, thermally annealed in vacuum at temperatures ranging from 450 to 800 °C. Surface structure was analyzed by atomic force and field emission-scanning electron microscopies. Above 750 °C, regular triangular shape cobalt nanostructures are formed with pattern dimensions varying between 10 and 200 nm. Good control of shape and packing density could be achieved by adjusting the initial thickness and the thermal and hydrogen plasma treatments. Magnetic properties were investigated using vibrating sample magnetometer technique. The evolution of the coercive field versus packing density and dimensions of the nanostructures was studied and compared to micromagnetic calculations. The observed nanostructures have been modeled by a series of shapes tending to a fractal curve.

  20. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  1. Effect of potassium promoter on cobalt nano-catalysts for fischer-tropsch reaction

    Science.gov (United States)

    Ali, Sardar; Mohd Zabidi, Noor Asmawati; Subbarao, Duvvuri

    2012-09-01

    In the present work effect of potassium on cobalt nano-catalysts for Fischer-Tropsch reaction has been presented. The catalysts were prepared using a wet impregnation method and promoted with potassium. Samples were characterized by nitrogen adsorption, H2-TPR, and TEM. The Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor 220 δC, 1 atm, H2/CO = 2 and a velocity (SV) =12 L/g.h. for 5 h. Addition of potassium into Co/CNTs decreased the average size of cobalt nanoparticles and the catalyst reducibility. Potassium-promoted Co catalyst resulted in appreciable increase in the selectivity of C5+ hydrocarbons and suppressed methane formation. The 0.06%KCo/CNTs catalyst enhanced the C5+ hydrocarbons selectivity by a factor of 23.5% and reduced the methane selectivity by a factor of 39.6%

  2. A facile route to prepare hierarchical magnetic cobalt-silica hollow nanospheres with tunable shell thickness

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jun, E-mail: wjnaf@ustc.edu; Xu Chuanhui; Yao Min; Chen Jie [NingBo University, Faculty of Science (China); Xu Gaojie [Ningbo Institute of Material Technology and Engineering (China)

    2010-05-15

    Magnetic nanoshells composed of close-packed cobalt-silica nanoparticles have been successfully fabricated on silica spheres. The synthesis is facile and no high pressure, high temperature, or other severe reaction conditions were required. TEM images showed that two batches of the hollow-structured products have a good spherical morphology with an average diameter of 380 and 550 nm, respectively. The surface area and magnetic properties of cobalt-silica nanoshells are measured. By varying the times of the precipitation procedure, the shell thickness is successfully controlled within the 5-30 nm range and each time of procedure might increase the thickness about 5 nm. It is expected that the in situ reaction method can be extended to the synthesis of other hollow metal spheres. The prepared microcapsule with controllable shell thickness and interspaces has the potential to be used for controlled release applications.

  3. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  4. Cobalt release from inexpensive jewellery: has the use of cobalt replaced nickel following regulatory intervention?

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Jellesen, Morten S; Menné, Torkil;

    2010-01-01

    Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure.......Before the introduction of the EU Nickel Directive, concern was raised that manufacturers of jewellery might turn from the use of nickel to cobalt following the regulatory intervention on nickel exposure....

  5. A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A novel method suitable for the synthesis of the cobalt oxide (Co3O4) nanowires at targeted regions is presented in this report. Cobalt (Co) nanobowls synthesized by colloidal crystal directed assembly were transformed into Co3O4 nanowires by a simple heat treatment process. Co nanobowls exhibited...

  6. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  7. Ceramic Fabric Coated With Silicon Carbide

    Science.gov (United States)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  8. Direct plasmadynamic synthesis of ultradisperse silicon carbide

    Science.gov (United States)

    Sivkov, A. A.; Nikitin, D. S.; Pak, A. Ya.; Rakhmatullin, I. A.

    2013-01-01

    Ultradisperse cubic silicon carbide (β-SiC) has been obtained by direct plasmadynamic synthesis in pulsed supersonic carbon-silicon plasma jet incident on a copper obstacle in argon atmosphere. The powdered product has a high content of β-SiC in the form of single crystals with average size of about 100 nm and nearly perfect crystallographic habit.

  9. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  10. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  11. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  12. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  13. Effect of tempering after cryogenic treatment of tungsten carbide–cobalt bounded inserts

    Indian Academy of Sciences (India)

    Nirmal S Kalsi; Rakesh Sehgal; Vishal S Sharma

    2014-04-01

    Cryogenic treatment is a recent advancement in the field of machining to improve the properties of cutting tool materials. Tungsten carbide is the most commonly used cutting tool material in the industry and the technique can also be extended to it. Although the importance of tempering after cryogenic treatment has been discussed by many researchers, very little information is available in published literature about the effect of multi-tempering after cryogenic treatment. In this study, an attempt has been made to understand effect of the number of post-tempering cycles during cryogenic treatment on tungsten carbide–cobalt inserts. Metallurgical investigations have been performed to observe the effect of such post-tempering on the inserts by analysing microhardness and microstructural changes. The crystal structure and morphology were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction analysis. Metallurgical investigations revealed a significant improvement in tungsten carbide inserts having three tempering cycles, after cryogenic treatment, with marginal differences for two cycles of tempered inserts, established by the study of wear behaviour in turning.

  14. 金/钴氢氧化物膜修饰玻碳电极同时测定邻苯二酚和对苯二酚%Simultaneous Determination of Catechol and Hydroquinone at Cobalt Hydroxide Film/Gold Nanoparticles Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    侯宏卫; 张小涛; 陈欢; 刘彤; 唐纲岭; 胡清源

    2013-01-01

    文章将纳米金与钴氢氧化物膜的催化作用有效结合,制备了GNPs/CoOOH复合修饰电极,该修饰电极在碱性条件下对邻苯二酚和对苯二酚具有较强的电催化活性.考察了支持电解质酸度及纳米金沉积时间对邻苯二酚和对苯二酚电化学响应的影响,选取0.1 mol/L PBS (pH 10.0)作为支持电解质,纳米金的最佳沉积时间为4min.在优化的实验条件下,利用差示脉冲伏安法(DPV)对邻苯二酚和对苯二酚进行选择性检测:当两者浓度同时改变时,对苯二酚和邻苯二酚的氧化峰电流与其浓度分别在7~100 μmol/L和6~100 μmol/L范围内呈良好的线性关系,对应的检出限分别为0.9、0.8 μmol/L(S/N=3).该复合修饰电极具有较好的重现性、稳定性及较强的抗干扰能力.%Combing the advantageous features of gold nanoparticles (GNPs) and cobalt hydroxide film (CoOOH),GNPs/CoOOH composite film was prepared on the surface of glassy carbon electrode.Under alkaline solutions,the modified electrode exhibited excellent electrocatalytic activities towards catechol (CA) and hydroquinone (HQ).Effects of pH value and electrodeposition time of GNPs on the oxidation peak current of catechol and hydroquinone were studied by differential pulse voltammetry (DPV).The optimized pH value and electrodeposition time were separately 10.0 (0.1 mol/L PBS) and 4 min.Under the optimized conditions,the oxidation peak current of HQ and CA were separately linearly with concentration of CA in the range of 7~100 μmol/L and 6~100 μmol/L with the detection limit of 0.9 μmol/L (S/N--3) for HQ and 0.8μmol/L (S/N=3) for CA.The modified electrode exhibited good producibility,stability and selectivity.

  15. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  16. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    Energy Technology Data Exchange (ETDEWEB)

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  17. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    International Nuclear Information System (INIS)

    The average longevity of hip replacement devices is approximately 10–15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25–30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics

  18. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  19. Palladium-cobalt particles as oxygen-reduction electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav; Huang, Tao

    2009-12-15

    The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

  20. 21 CFR 73.1015 - Chromium-cobalt-aluminum oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium-cobalt-aluminum oxide. 73.1015 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1015 Chromium-cobalt-aluminum oxide. (a) Identity. The color additive chromium-cobalt-aluminum oxide is a blue-green pigment obtained by calcining...

  1. Nanosized tungsten carbide synthesized by a novel route at low temperature for high performance electrocatalysis

    Science.gov (United States)

    Yan, Zaoxue; Cai, Mei; Shen, Pei Kang

    2013-04-01

    Tungsten carbide (WC) is a widely used engineering material which is usually prepared at high temperature. A new mechanism for synthesizing nanoscaled WC at ultralow temperature has been discovered. This discovery opens a novel route to synthesize valuable WC and other carbides at a cost-efficient way. The novel formation mechanism is based on an ion-exchange resin as carbon source to locally anchor the W and Fe species. As an intermediate, FeWO4 can be formed at lower temperature, which can be directly converted into WC along with the carbonization of resin. The size of WC can be less than 2 nm. The catalyst made with Pt nanoparticles supported on nanosized WC-GC (WC-graphitized carbon) shows enhanced electrocatalytic activity for oxygen reduction reaction. The result also indicates that the Pt nanoparticles deposited on WC-GC are dominated by Pt (111) plane and shows a mass activity of 257.7 mA mg-1Pt@0.9 V.

  2. Perfluorinated cobalt phthalocyanine effectively catalyzes water electrooxidation

    KAUST Repository

    Morlanes, Natalia Sanchez

    2014-12-08

    Efficient electrocatalysis of water oxidation under mild conditions at neutral pH was achieved by a fluorinated cobalt phthalocyanine immobilized on fluorine-doped tin oxide (FTO) surfaces with an onset potential at 1.7 V vs. RHE. Spectroscopic, electrochemical, and inhibition studies indicate that phthalocyanine molecular species are the operational active sites. Neither free cobalt ions nor heterogeneous cobalt oxide particles or films were observed. During long-term controlled-potential electrolysis at 2 V vs. RHE (phosphate buffer, pH 7), electrocatalytic water oxidation was sustained for at least 8 h (TON ≈ 1.0 × 105), producing about 4 μmol O2 h-1 cm-2 with a turnover frequency (TOF) of about 3.6 s-1 and no measurable catalyst degradation.

  3. Rapid phase synthesis of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe2O4) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods

  4. Cobalt and marine redox evolution

    Science.gov (United States)

    Swanner, Elizabeth D.; Planavsky, Noah J.; Lalonde, Stefan V.; Robbins, Leslie J.; Bekker, Andrey; Rouxel, Olivier J.; Saito, Mak A.; Kappler, Andreas; Mojzsis, Stephen J.; Konhauser, Kurt O.

    2014-03-01

    Cobalt (Co) is a bio-essential trace element and limiting nutrient in some regions of the modern oceans. It has been proposed that Co was more abundant in poorly ventilated Precambrian oceans based on the greater utilization of Co by anaerobic microbes relative to plants and animals. However, there are few empirical or theoretical constraints on the history of seawater Co concentrations. Herein, we present a survey of authigenic Co in marine sediments (iron formations, authigenic pyrite and bulk euxinic shales) with the goal of tracking changes in the marine Co reservoir throughout Earth's history. We further provide an overview of the modern marine Co cycle, which we use as a platform to evaluate how changes in the redox state of Earth's surface were likely to have affected marine Co concentrations. Based on sedimentary Co contents and our understanding of marine Co sources and sinks, we propose that from ca. 2.8 to 1.8 Ga the large volume of hydrothermal fluids circulating through abundant submarine ultramafic rocks along with a predominantly anoxic ocean with a low capacity for Co burial resulted in a large dissolved marine Co reservoir. We tentatively propose that there was a decrease in marine Co concentrations after ca. 1.8 Ga resulting from waning hydrothermal Co sources and the expansion of sulfide Co burial flux. Changes in the Co reservoir due to deep-water ventilation in the Neoproterozoic, if they occurred, are not resolvable with the current dataset. Rather, Co enrichments in Phanerozoic euxinic shales deposited during ocean anoxic events (OAE) indicate Co mobilization from expanded anoxic sediments and enhanced hydrothermal sources. A new record of marine Co concentrations provides a platform from which we can reevaluate the role that environmental Co concentrations played in shaping biological Co utilization throughout Earth's history.

  5. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  6. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  7. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author)

  8. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH3)2Si][CH3Si]. The polysilane contains from 0 to 60 mole percent (CH3)2Si units and from 40 to 100 mole percent CH3Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 1500C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  9. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    Science.gov (United States)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  10. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  11. Magnetism of hydrogen-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.

  12. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  13. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  14. Investigation deuteron-induced reactions on cobalt

    Science.gov (United States)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.

    2010-09-01

    The excitation functions of deuteron-induced reactions were measured on metallic cobalt. Beyond the 56,57,58,60Co cobalt isotopes, we also identified 57Ni, 54Mn, 56Mn and 59Fe in the deuteron experiments. For the above radionuclides, the excitation functions in the measured energy range were determined and compared with the data found in the literature and with the results of model calculations (ALICE-IPPE, EMPIRE-D, EAF, and TALYS (TENDL)). The excitation functions agree with previous measurements; furthermore, we calculated the yield and thin layer activation (TLA) curves that are necessary for practical and industrial applications.

  15. Cutting Performance and Mechanism of RE Carbide Tools

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R (K30), YT14R (P20) and YW1R (M10) were made to study on the cutting performance in comparison with non-RE carbides YG8, YT14 and YW1. The cutting experiments were as follows: tool life, cutting force, tool-chip friction coefficient and interrupted machining. The action of RE on the carbide materials and the cutting mechanism of the RE carbide tools in the cutting process were verified with the aid of SEM and energy spectrum analysis. Experimental results show that the RE carbide tools have a good overall performance.

  16. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  17. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  18. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  19. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  20. Microstructural and Mechanical characterization of WC-Co cemented carbides

    OpenAIRE

    Zakia, Rizki

    2013-01-01

    WC-Co cemented carbides are ceramic-metal composite materials made of carbides embedded in a metal phase that acts as a binder. They exhibit an exceptional combination of strength, toughness and wear resistance as a result of the extremely different properties of their two constitutive phases. Consequently, cemented carbides have been positioned as suitable options when selecting materials for tribomechanical applications, and their implementation continues to gain a place in t...

  1. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  2. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  3. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  4. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Shu; WANG Yuan-jie; YU Xian-wang; XIONG Xiang-jun

    2008-01-01

    A fine and platelet tungsten carbide patterned structure with fine yttrium containing dispersed phase was observed in liquid phase sintered WC-20%Co-1%Y2O3 cemented carbide with ultrafine tungsten carbide and nano yttrium oxide as starting materials. By comparing the microstructures of the alloy prepared by hot-press at the temperature below the eutectic melting temperature and by conventional liquid phase sintering, it is shown that hexagonal and truncated trigonal plate-like WC grains are formed through the mechanism of dissolution-precipitation (recrystallization) at the stage of liquid phase sintering. Yttrium in the addition form of oxide exhibits good ability in inhibiting the discontinuous or inhomogeneous WC grain growth in the alloy at the stage of solid phase sintering.

  5. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  6. A new cobalt oxide electrodeposit bath for solar absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique [Departmento de IPH, Area de Ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico); Gonzalez, Ignacio [Departmento de Quimica, Area de Electroquimica, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico); Viveros, Tomas [Departmento de IPH, Area de Ingenieria Quimica, Universidad Autonoma Metropolitana - Iztapalapa, Mexico D.F. (Mexico)

    1997-12-19

    A study was carried out in a Hull cell in order to optimize the deposition conditions of cobalt oxide (black cobalt) in an electrolytic bath, which uses cobalt nitrate for direct obtention of black cobalt. Thermal stability of the material was surveyed on several samples of black cobalt prepared on stainless-steel with a thickness of approximately of 2.5 {mu}m. It was found that the optical properties change, in respect to the initial values, with time of treatment until an equilibrium is reached. This equilibrium depends on the substrate and the temperature of the treatment used

  7. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  8. Thermodynamic and kinetic study of uranium carbide pyrophoricity

    International Nuclear Information System (INIS)

    This research thesis concerns the development of nuclear reactors of fourth generation, and more particularly the use of carbide fuels instead of oxide fuels. An experimental part allows the investigation of mechanisms resulting in the pyrophoric reaction of a powder of uranium carbide, and addresses the determination of kinetic parameters intrinsic to the oxidation of powdered uranium carbide. Experimental results are then used to develop models of oxidation of powders of carbide uranium which are applied to a simplified mono-dispersed powder, and then introduced in a computation code. Simulation results are compared with experimental results

  9. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  10. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  11. Cobalt reduction of NSSS valve hardfacings for ALARA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joo Hak; Lee, Sang Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    This report informs NSSS designer that replacement of materials is one of the major means of ALARA implementation, and describes that NSSS valves with high-cobalt hardfacing are significant contributors to post-shutdown radiation fields caused by activation of cobalt-59 to cobalt-60. Generic procedures for implementing cobalt reduction programs for valves are presented. Discussions are presented of the general and specific design requirements for valve hardfacing in nuclear service. The nuclear safety issues involved with changing valve hardfacing materials are discussed. The common methods used to deposit hardfacing materials are described together with an explanation of the wear measurements. Wear resistance, corrosion resistance, friction coefficient, and mechanical properties of candidate hardfacing alloys are given. World-wide nuclear utility experience with cobalt-free hardfacing alloys is described. The use of low-cobalt or cobalt-free alloys in other nuclear plant components is described. 17 figs., 38 tabs., 18 refs. (Author).

  12. Magnetic force microscopy on cobalt nanocluster films

    NARCIS (Netherlands)

    Koch, SA; Velde, RHT; Palasantzas, G; De Hosson, JTM

    2004-01-01

    Magnetic force microscopy (MFM) has been employed to image the magnetic stray field from cobalt nanocluster films. The uniformly sized clusters with a diameter about 10 nm were deposited at low energy with a gas aggregation source. Both isolated particles supported on silicon, and cluster-assembled

  13. Surface magnetism in iron, cobalt, and nickel

    DEFF Research Database (Denmark)

    Alde´n, M.; Mirbt, S.; Skriver, Hans Lomholt;

    1992-01-01

    We have calculated magnetic moments, work functions, and surface energies for several of the most closely packed surfaces of iron, cobalt, and nickel by means of a spin-polarized Green’s-function technique based on the linear muffin-tin orbitals method within the tight-binding and atomic sphere...

  14. Water adsorption on free cobalt cluster cations

    NARCIS (Netherlands)

    D.M. Kiawi; J.M. Bakker; J. Oomens; W.J. Buma; Z. Jamshidi; L. Visscher; L.B.F.M. Waters

    2015-01-01

    Cationic cobalt clusters complexed with water Con+-​H2O (n = 6-​20) are produced through laser ablation and investigated via IR multiple photon dissocn. (IR-​MPD) spectroscopy in the 200-​1700 cm-​1 spectral range. All spectra exhibit a resonance close to the 1595 cm-​1 frequency of the free water b

  15. Water splitting: Taking cobalt in isolation

    Science.gov (United States)

    Wang, Aiqin; Zhang, Tao

    2016-01-01

    The sustainable production of hydrogen is key to the delivery of clean energy in a hydrogen economy; however, lower-cost alternatives to platinum electrocatalysts are needed. Now, isolated, earth-abundant cobalt atoms dispersed over nitrogen-doped graphene are shown to efficiently electrolyse water to generate hydrogen.

  16. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  17. DNA templated magnetic nanoparticles

    Science.gov (United States)

    Kinsella, Joseph M.

    Recent discoveries in nanoscience are predicted to potentially revolutionize future technologies in an extensive number of fields. These developments are contingent upon discovering new and often unconventional methods to synthesize and control nanoscale components. Nature provides several examples of working nanotechnology such as the use of programmed self assembly to build and deconstruct complex molecular systems. We have adopted a method to control the one dimensional assembly of magnetic nanoparticles using DNA as a scaffold molecule. With this method we have demonstrated the ability to organize 5 nm particles into chains that stretch up to ˜20 mum in length. One advantage of using DNA compared is the ability of the molecule to interact with other biomolecules. After assembling particles onto DNA we have been able to cleave the molecule into smaller fragments using restriction enzymes. Using ligase enzymes we have re-connected these fragments, coated with either gold or iron oxide, to form long one-dimensional arrangements of the two different types of nanoparticles on a single molecular guide. We have also created a sensitive magnetic field sensor by incorporating magnetic nanoparticle coated DNA strands with microfabricated electrodes. The IV characteristics of the aligned nanoparticles are dependant on the magnitude of an externally applied magnetic field. This transport phenomenon known as tunneling magnetoresistance (TMR) shows room temperature resistance of our devices over 80% for cobalt ferrite coated DNA when a field of 20 kOe is applied. In comparison, studies using two dimensional nanoparticle films of irox oxides xii only exhibit a 35% MR effect. Confinement into one dimension using the DNA guide produces a TMR mechanism which produces significant increases in magnetoresistance. This property can be utilized for applications in magnetic field sensing, data storage, and logic elements.

  18. Study of cobalt ferrite nanosuspensions for low-frequency ferromagnetic hyperthermia

    Institute of Scientific and Technical Information of China (English)

    Bronislav E.Kashevsky; Vladimir E.Agabekov; Sergei B.Kashevsky; Katsiaryna A.Kekalo; Elena Yu.Manina; Igor V.Prokhorov; Vladimir S.Ulashchik

    2008-01-01

    High-coercive cobalt ferrite nanoparticles were synthesized and studied for magnetic hyperthermia by direct injection of their suspension into a tumor and application of a strong audio-frequency magnetic field for heating.Physical (dynamic magnetic hysteresis and heat generation in both liquid and solid dispersions),biological (toxicity and penetration of particles in therapeutic quantities into mouse tumor tissue) as well as other properties of the particles were studied.A model was developed to describe the magnetodynamics in suspensions of magnetic nanoclusters with an account for both Brownian and regular rotations,to provide understanding of observed phenomena.The experimental and theoretical techniques developed have formed a basis for controllable synthesis of the magnetic nanoparticles for low-frequency heat generation in medical and other applications.

  19. Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Greene

    2014-04-01

    Full Text Available In this work, CoFe2O4@SiO2@TiO2 core-shell magnetic nanostructures have been prepared by coating of cobalt ferrite nanoparticles with the double SiO2/TiO2 layer using metallorganic precursors. The Transmission Electron Microscopy (TEM, Energy Dispersive X-Ray Analysis (EDX, Vibrational Sample Magnetometer (VSM measurements and Raman spectroscopy results confirm the presence both of the silica and very thin TiO2 layers. The core-shell nanoparticles have been sintered at 600 °C and used as a catalyst in photo-oxidation reactions of methylene blue under UV light. Despite the additional non-magnetic coatings result in a lower value of the magnetic moment, the particles can still easily be retrieved from reaction mixtures by magnetic separation. This retention of magnetism was of particular importance allowing magnetic recovery and re-use of the catalyst.

  20. Cobalt Biogeochemistry in the South Atlantic: A Full-Depth Zonal Ocean Section of Total Dissolved Cobalt, and Development of a High Throughput Cobalt ICP-MS Method

    Science.gov (United States)

    Noble, A. E.; Saito, M. A.; Goepfert, T. J.

    2008-12-01

    This study presents the first high-resolution full-depth zonal section of total dissolved cobalt from a recent cruise transecting the South Atlantic Ocean along approximately 11S. This section demonstrates that current electrochemical analytical techniques are capable of producing the high precision and high resolution datasets for total dissolved cobalt expected to be generated as a part of the international GEOTRACES Program. The micronutritive role of cobalt may affect community structure in different regions of the oceans, a compelling reason to include cobalt in the trace element analyses planned for the GEOTRACES Program. This cobalt section reveals an advective source of cobalt from the African coast near Namibia, which we propose to be due to the Benguela Current interacting with reducing shelf sediments. These high concentrations of cobalt were also observed within the oxygen minimum zone that extends across much of the South Atlantic basin in this section, and are likely indicative of redox cycling of cobalt in the water column. Nutrient-like vertical structure of cobalt was observed in the surface waters across the majority of the basin due to biological utilization, and the expected hybrid-type trend is observed at depth, with scavenging of cobalt below the nutricline. Deepwater concentrations of cobalt were around 50pM across the basin below 3000m. Analysis of the shelf-life of refrigerated filtered samples stored without acidification for electrochemical cobalt analysis demonstrated that those samples which were collected specifically within oxygen minimum zones may underestimate cobalt if not analyzed within a few weeks of collection. These results motivate our on-going development of a method to measure cobalt in acidified samples via inductively coupled plasma mass spectrometry (ICP-MS). The benefit of this technique would be twofold: acidification would extend the shelf-life of the samples significantly, and samples would be preserved identically

  1. Graphene sheets/cobalt nanocomposites as low-cost/high-performance catalysts for hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Hou, Chengyi; Zhang, Qinghong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Wang, Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); Li, Yaogang, E-mail: yaogang_li@dhu.edu.cn [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2012-08-15

    The production of clean and renewable hydrogen through the hydrolysis of sodium borohydride has received much attention owing to increasing global energy demands. Graphene sheets/cobalt (GRs/Co) nanocomposites, which are highly efficient catalysts, have been prepared using a one-step solvothermal method in ethylene glycol. Co{sup 2+} salts were converted to Co nanoparticles, which were simultaneously inserted into the graphene layers with the reduction of graphite oxide sheets to GRs. The as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value reached 80.8 emu g{sup -1}, meaning they are more suitable for magnet-controlled generation of H{sub 2} than noble metal catalysts. The catalytic activity of the composite was investigated by the hydrolysis of sodium borohydride in aqueous solution both with and without a GRs support. It was found that the high electronic conductive GRs support increased the hydrogen generation rate (about two times) compared with pure cobalt. The improved hydrogen generation rate, low cost and uncomplicated recycling makes the GRs/Co nanocomposites promising candidates as catalysts for hydrogen generation. Highlights: Black-Right-Pointing-Pointer Graphene sheets/cobalt nanocomposites were prepared by a one-step solvothermal method. Black-Right-Pointing-Pointer The maximum saturation magnetization value of the composites reached 80.8 emu g{sup -1}. Black-Right-Pointing-Pointer The graphene support greatly increased the catalytic activity of cobalt. Black-Right-Pointing-Pointer An easily removed, recycled and controlled functional filter was obtained.

  2. A spot test for detection of cobalt release – early experience and findings

    DEFF Research Database (Denmark)

    Thyssen, Jacob P.; Menné, Torkil; Johansen, Jeanne D.;

    2010-01-01

    Background: It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware...... that they are exposed to cobalt from handling work items, causing hand dermatitis. Objectives: To present early findings with a newly developed cobalt spot test. Methods and Results: A cobalt spot test based on disodium-1-nitroso-2-naphthol-3,6-disulfonate was able to identify cobalt release at 8.3 ppm. The test may...... also be used as a gel test if combined with an agar preparation. We found no false-positive reactions when testing metals and alloys known not to contain cobalt. However, one cobalt-containing alloy, which elicited cobalt dermatitis in cobalt-allergic patients, was negative upon cobalt gel testing...

  3. A spot test for detection of cobalt release - early experience and findings

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Menné, Torkil; Johansen, Jeanne D;

    2010-01-01

    It is often difficult to establish clinical relevance of metal exposure in cobalt-allergic patients. Dermatologists and patients may incorrectly assume that many metallic items release cobalt at levels that may cause cobalt dermatitis. Cobalt-allergic patients may be unaware that they are exposed...... to cobalt from handling work items, causing hand dermatitis....

  4. Scientific Opinion on safety and efficacy of cobalt compounds (E3 as feed additives for all animal species: Cobaltous acetate tetrahydrate, basic cobaltous carbonate monohydrate and cobaltous sulphate heptahydrate, based on a dossier submitted by TREAC EEIG

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Additives and Products or Substances used in Animal Feed

    2012-07-01

    Full Text Available

    Cobalt(III is a component of cobalamin. Its essentiality as trace element results from the capacity of certain animal species to synthesise cobalamin by the gastrointestinal microbiota. Feeding supplemental cobalt from the additives under application up to the maximum total content in feed set in EU is considered safe for all animal species/categories; margin of safety is around 10. Cobalt is predominantly excreted via faecal route. Absorbed cobalt follows aqueous excretion routes. About 43% of body cobalt is stored in muscle; however, kidney and liver are the edible tissues containing the highest cobalt concentrations and are most susceptible reflecting dietary cobalt concentrations. In animals with capacity to synthesise cobalamin, cobalt is also deposited in tissues as vitamin B12. Cobalt(II cations are genotoxic under in vitro and in vivo conditions, and have carcinogen, mutagen and reproduction toxicant (CMR properties. No data are available on the potential carcinogenicity of cobalt(II following oral exposure. However, oral exposure may potentially entail adverse threshold-related effects in humans. The estimated population intake of cobalt most likely includes the contribution of foodstuffs from animals fed cobalt-supplemented feedingstuffs. An increase in cobalt exposure by the use of cobalt-containing feed additives is therefore not expected. Considering the population exposure to cobalt, about 4–10 times lower than the health-based guidance value, no safety concern for the consumer is expected for threshold effects of oral cobalt. The cobalt(II compounds assessed are considered skin and eye irritants and dermal/inhalatory sensitisers. Their dust is a hazard to persons handling these substances. Exposure by inhalation must be avoided. The use of cobalt from any source at the authorised maximum content in feed does not provide a risk to the environment. The compounds assessed are available for cobalamin

  5. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  6. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  7. Critically coupled surface phonon-polariton excitation in silicon carbide.

    Science.gov (United States)

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  8. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  9. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  10. High coercivity induced by mechanical milling in cobalt ferrite powders

    International Nuclear Information System (INIS)

    In this work we report a study of the magnetic behavior of ferrimagnetic oxide CoFe2O4 treated by mechanical milling with different grinding balls. The cobalt ferrite nanoparticles were prepared using a simple hydrothermal method and annealed at 500 °C. The non-milled sample presented coercivity of about 1.9 kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42. After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To investigate the influence of the microstructure on the magnetic behavior of these samples, we used X-ray powder diffraction (XPD), transmission electron microscopy, and vibrating sample magnetometry. The XPD analysis by the Williamson–Hall plot was used to estimate the average crystallite size and strain induced by mechanical milling in the samples. - Highlights: • Magnetic behavior of milled CoFe2O4 is studied. • The coercivity is increase of about 150%. • The remanence ratio are increase to all milled samples. • The strain and pinning effects are observed in milled samples

  11. In-situ HRTEM study of the reactive carbide phase of Co/MoS{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Manuel, E-mail: manuel.ramos@uacj.mx [Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, UACJ, 32310 Ciudad Juárez, México (Mexico); Materials Research and Technology Institute, UT-El Paso, El Paso, TX 79902 (United States); Ferrer, Domingo [Microelectronics Research Laboratory, UT-Austin, Austin, TX 78758 (United States); Martinez-Soto, Eduan [Departamento de Química, Universidad Metropolitana, San Juan, PR 00926-2602 (United States); Lopez-Lippmann, Hugo; Torres, Brenda [Materials Research and Technology Institute, UT-El Paso, El Paso, TX 79902 (United States); Berhault, Gilles [Institut de Recherches sur la Catalyse et l’Environnement, IRCELYON, CNRS, Université de Lyon, Villeurbanne 69100 (France); Chianelli, Russell R. [Materials Research and Technology Institute, UT-El Paso, El Paso, TX 79902 (United States)

    2013-04-15

    Hydrotreatment catalytic operations are commonly performed industrially by layered molybdenum sulfide promoted by cobalt or nickel in order to remove heteroelements (S, N, O) from fossil fuels and biofuels. Indeed, these heteroelements are responsible of the emission of pollutants when these fuels are used in vehicles. In this respect, previous studies made by our research group have shown that the active phase under steady state conditions is partially carbided while strong bending effects of MoS{sub 2} slabs were also observed. However, up to now, the morphology of the resulting Co/MoS{sub x}C{sub y} carbided catalyst has not been fully characterized. In the present study, for the first time, a chemical reaction between the carbon content of a TEM Cu/C grid and a freshly sulfide Co/MoS{sub 2} catalyst was in situ observed at 300 °C and 450 °C by HRTEM experimental techniques at ∼10 nm of resolution. Results indicate that bending of MoS{sub 2} layers occurred due to carbon addition on MoS{sub 2} edge sites, as observed in stabilized catalysts after HDS reaction. Using a silicon grid, only cracks of MoS{sub 2} slabs were observed without bending effect confirming the role of structural-carbon in this change of morphology.

  12. Research into preparation and properties of graded cemented carbides with face center cubic-rich surface layer

    Science.gov (United States)

    Chen, Jian; Deng, Xin; Gong, Manfeng; Liu, Wei; Wu, Shanghua

    2016-09-01

    This paper systematically investigated a set of functionally graded WC-TiC-Mo-Co cemented carbides with modified surface layer (called fcc-rich surface layer in this study), which is mainly composed of fcc phases (Ti(CN) and TiN) and WC. Nitridation at liquid phase sintering temperature is the key process making this fcc-rich surface layer. The functionally graded WC-TiC-Mo-Co cemented carbides synthesized in this study show 3 layer structure: the outer layer, i.e. the fcc-rich surface layer; the intermediate layer, which is characterized by abnormally large WC and high Co content; and the inner layer. It was found that TiC is the most critical component for the formation of fcc-rich surface layer. The higher content of TiC results in the thicker fcc-rich outer layer, higher (Ti(CN) and TiN) content in the outer layer, and higher hardness of the fcc-rich outer layer. The formation of this fcc-rich surface layer is mainly due to the nitridation process between Ti and N, which leads to the diffusion of Ti outwards (from the inside of the sample to the surface) and the subsequent migration of liquid cobalt inwards (from surface to the inside of the sample). The three-layer structure developed in this study provides the excellent combination of high wear resistance and high toughness, which is favorable for some applications.

  13. Mechanical properties of Silicon Carbide Nanowires

    Science.gov (United States)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, David; Aston, David Eric

    2004-05-01

    Silicon carbide nanowires could be potentially useful for high strength materials which lead to the interest in understanding their mechanical properties. In this report we use the digital pulse force microscopy to analyze the mechanical properties of SiC nanowires .Stiffness and adhesion images of SiC nanowires on silicon grating were obtained and calibrated force-distance curves were plotted along the wire which spans on a 1.5 micron trench. Moreover, spring constant and Young's modules have been calculated from the linear part of the force-distance curves.

  14. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 16000C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH3)2Si units and from 40 to 100 mole percent of CH3Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  15. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  16. Properties of tungsten carbide hard metals with Fe-Co-Ni binder in sintered and thermally treated state

    International Nuclear Information System (INIS)

    Tungsten carbide hard metals with various Fe-Co-Ni binding alloys were prepared and their properties determined in dependence on the binder composition and thermal treatment. The properties of the hard metals depend very largely on the composition of the binding alloy. Hard metals whose binder phases are mainly cubic face centered are inferior to conventional hard metals. By using iron-rich binding alloys, it was possible to achieve hard metal properties which are comparable to or better than the conventional WC-Co hard metals. WC-Fe-Co-Ni hard metals whose binder consists of a mixture of cubic body centered phases, have optimum properties. The properties of hard metals can be optimized with the help of the carbon content, binder alloy composition and thermal treatment. The replacement of the usual cobalt binder by an optimum iron-richer Fe-Co-Ni alloy does not only save as regards the expensive raw material cobalt but also leads to a better quality WC hard metals. (orig.)

  17. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  18. WC-Co composites produced by sintering tungsten, graphite and cobalt powders using high-current electric pulses

    International Nuclear Information System (INIS)

    The paper presents the results of examination of tungsten carbide sinters produced of a mixture of tungsten, carbon and cobalt powders using the PPS method (Pulse Plasma Sintering), developed at the Faculty of Materials Engineering, Warsaw University of Technology. With the use of powder mixture, the WC-Co composites were produced during a single technological process. The structure of the sinters was examined microscopically and their phase compositions, hardness and densities were determined. The WC-Co composite was produced by subjecting the elemental powders to sintering with high-current electric pulses for the time as short as 480 s, whereas with conventional methods the fabrication time of this composite amounts to several hours. The hardness of composites was 1515HV30 and the density - 15.1 g/cm3. (author)

  19. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  20. Cobalt Fischer-Tropsch catalysts: influence of cobalt dispersion and titanium oxides promotion

    Energy Technology Data Exchange (ETDEWEB)

    Azib, H.

    1996-04-10

    The aim of this work is to study the effect of Sol-Gel preparation parameters which occur in silica supported cobalt catalysts synthesis. These catalysts are particularly used for the waxes production in natural gas processing. The solids have been characterized by several techniques: transmission electron microscopy (TEM), X-ray absorption near edge spectroscopy (XANES), programmed temperature reduction (TPR), infrared spectroscopy (IR), ultraviolet spectroscopy (UV), Magnetism, thermodesorption of H{sub 2} (TPD). The results indicate that the control of the cobalt dispersion and oxide phases nature is possible by modifying Sol-Gel parameters. The catalytic tests in Fischer-Tropsch synthesis were conducted on a pilot unit under pressure (20 atm) and suggested that turnover rates were independent of Co crystallite size, Co phases in the solids (Co deg., cobalt silicate) and titanium oxide promotion. On the other methane, the C{sub 3}{sup +} hydrocarbon selectivity is increased with increasing crystallite size. Inversely, the methane production is favoured by very small crystallites, cobalt silicate increase and titanium addition. However, the latter, used as a cobalt promoter, has a benefic effect on the active phase stability during the synthesis. (author). 149 refs., 102 figs., 71 tabs.