WorldWideScience

Sample records for carbenoxolone

  1. Carbenoxolone accelerates maturation of rat intestine

    Czech Academy of Sciences Publication Activity Database

    Pácha, Jiří; Vagnerová, R.; Bryndová, Jana

    2003-01-01

    Roč. 53, č. 5 (2003), s. 808-813. ISSN 0031-3998 R&D Projects: GA ČR GA306/99/0210; GA ČR GA305/01/0281 Institutional research plan: CEZ:AV0Z5011922 Keywords : 11beta-hydroxysteroid dehydrogenase * rat * intestine * carbenoxolone Subject RIV: ED - Physiology Impact factor: 3.064, year: 2003

  2. Effect of carbenoxolone on the synthesis of glycoproteins and DNA in rat gastric epithelial cells.

    OpenAIRE

    van Huis, G A; Kramer, M.F.

    1981-01-01

    The influence of carbenoxolone on the synthesis of glycoproteins in the surface mucous cells and the production of new cells in the rat gastric mucosa was studied by means of a vascular perfusion system. The rate of incorporation of tritiated galactose, glucosamine, serine, and sulphate in surface mucous cells, studied by autoradiography, was not affected by the addition of carbenoxolone to the drinking water. The sugar composition (determined by gas-liquid chromatography) of the gastric glyc...

  3. Interaction between carbenoxolone and valproic acid on pentylenetetrazole kindling model of epilepsy

    OpenAIRE

    Sefil, Fatih; Arık, Aliye E; Acar, Meryem D; Bostancı, Mehmet Ö; Bagirici, Faruk; KOZAN, Ramazan

    2015-01-01

    Gap junctions play an important role in the synchronized neuronal discharges. The main reason of the epileptic seizures is disruption of this synchronization. Therefore, the aim of the present study is to explore the combination valproic acid with carbenoxolone in pentylenetetrazole-kindled rats. In the first set of experiments, pentylenetetrazole (35 mg/kg intraperitoneally was administered to the rats to produce the kindling and then permanent screw electrodes to record electroencephalograp...

  4. Pectin-Based Bioadhesive Delivery of Carbenoxolone Sodium for Aphthous Ulcers in Oral Cavity

    OpenAIRE

    Wattanakorn, Nathaya; Asavapichayont, Panida; Nunthanid, Jurairat; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Chantasart, Doungdaw; Sriamornsak, Pornsak

    2010-01-01

    The objective of this study was to prepare and evaluate the pectin-based dosage form for buccal adhesion. Carbenoxolone sodium, which is used for the treatment of aphthous ulcers in oral cavity, was used as a model drug. The pectin buccal discs were prepared by direct compression. The water uptake and erosion of pectin disc increased progressively with the swelling time. The bioadhesion of dried pectin discs decreased when either the discs were hydrated or the buccal tissue was wet with a sma...

  5. Carbenoxolone does not cross the blood brain barrier: an HPLC study

    Directory of Open Access Journals (Sweden)

    Burnham William M

    2006-01-01

    Full Text Available Abstract Background Carbenoxolone (CBX is a widely used gap junctional blocker. Considering several reports indicating that transient gap junctional blockade could be a favourable intervention following injuries to central nervous tissue, and some current enthusiasm in studies using systemic injections of CBX, it is imperative to consider the penetration of CBX into central nervous tissue after systemic administrations. So far, only very indirect evidence suggests that CBX penetrates into the central nervous system after systemic administrations. We thus determined the amounts of CBX present in the blood and the cerebrospinal fluid of rats after intraperitoneal administration, using high performance liquid chromatography Results CBX was found in the blood of the animals, up to 90 minutes post-injection. However, the cerebrospinal fluid concentration of CBX was negligible. Conclusion Thus, we conclude that, most likely, CBX does not penetrate the blood brain barrier and therefore recommend careful consideration in the manner of administration, when a central effect is desired.

  6. Carbenoxolone induces oxidative stress in liver mitochondria, which is responsible for transition pore opening.

    Science.gov (United States)

    Salvi, Mauro; Fiore, Cristina; Battaglia, Valentina; Palermo, Mario; Armanini, Decio; Toninello, Antonio

    2005-05-01

    Carbenoxolone (Cbx), a derivative of glycyrrhetinic acid, which has been found to affect mineralocorticoid and glucocorticoid receptors, induces swelling and membrane potential collapse when added to Ca(2+)-loaded liver mitochondria at 10 microM concentrations. These effects are strictly correlated with hydrogen peroxide generation, increase in oxygen uptake, and sulfhydryl and pyridine nucleotide oxidation. Cyclosporin A, bongkrekic acid, and N-ethylmaleimide completely abolish all the above-described effects, suggesting that Cbx can be considered an inducer of mitochondrial permeability transition by means of oxidative stress. Cbx can also trigger the apoptotic pathway because the above events are also correlated with the loss of cytochrome c. These effects are probably related to the conjugated carbonyl oxygen in C-11, which produces reactive oxygen species by interacting with the mitochondrial respiratory chain, mainly at the level of complex I but, most likely, also with complex III. The oxidative stress induced by Cbx, which is responsible for pore opening, excludes that this is related to a genomic effect of the compound. PMID:15677764

  7. Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Helen L Hellmich

    Full Text Available Developing new pharmacotherapies for traumatic brain injury (TBI requires elucidation of the neuroprotective mechanisms of many structurally and functionally diverse compounds. To test our hypothesis that diverse neuroprotective drugs similarly affect common gene targets after TBI, we compared the effects of two drugs, metyrapone (MT and carbenoxolone (CB, which, though used clinically for noncognitive conditions, improved learning and memory in rats and humans. Although structurally different, both MT and CB inhibit a common molecular target, 11β hydroxysteroid dehydrogenase type 1, which converts inactive cortisone to cortisol, thereby effectively reducing glucocorticoid levels. We examined injury-induced signaling pathways to determine how the effects of these two compounds correlate with pro-survival effects in surviving neurons of the injured rat hippocampus. We found that treatment of TBI rats with MT or CB acutely induced in hippocampal neurons transcriptional profiles that were remarkably similar (i.e., a coordinated attenuation of gene expression across multiple injury-induced cell signaling networks. We also found, to a lesser extent, a coordinated increase in cell survival signals. Analysis of injury-induced gene expression altered by MT and CB provided additional insight into the protective effects of each. Both drugs attenuated expression of genes in the apoptosis, death receptor and stress signaling pathways, as well as multiple genes in the oxidative phosphorylation pathway such as subunits of NADH dehydrogenase (Complex1, cytochrome c oxidase (Complex IV and ATP synthase (Complex V. This suggests an overall inhibition of mitochondrial function. Complex 1 is the primary source of reactive oxygen species in the mitochondrial oxidative phosphorylation pathway, thus linking the protective effects of these drugs to a reduction in oxidative stress. The net effect of the drug-induced transcriptional changes observed here indicates that

  8. Carbenoxolone induced depression of rhythmogenesis in the pre-Bötzinger Complex

    Directory of Open Access Journals (Sweden)

    VanDam Richard J

    2008-05-01

    Full Text Available Abstract Background Carbenoxolone (CBX, a gap junction uncoupler, alters the functioning of the pre-Bötzinger Complex (preBötC, a central pattern generating neuronal network important for the production of respiratory rhythm in mammals. Even when isolated in a 1/2 mm-thick slice of medulla oblongata from neonatal mouse the preBötC continues producing periodic bursts of action potentials, termed population bursts that are thought to be important in generating various patterns of inspiration, in vivo. Whether gap junction communication contributes to preBötC rhythmogenesis remains unresolved, largely because existing gap junction uncouplers exert numerous non-specific effects (e.g., inhibition of active transport, alteration of membrane conductances. Here, we determined whether CBX alters preBötC rhythmogenesis by altering membrane properties including input resistance (Rin, voltage-gated Na+ current (INa, and/or voltage-gated K+ current (IK, rather than by blocking gap junction communication. To do so we used a medullary slice preparation, network-level recordings, whole-cell voltage clamp, and glycyrrhizic acid (GZA; a substance used as a control for CBX, since it is similar in structure and does not block gap junctions. Results Whereas neither of the control treatments [artificial cerebrospinal fluid (aCSF or GZA (50 μM] noticeably affected preBötC rhythmogenesis, CBX (50 μM decreased the frequency, area and amplitude of population bursts, eventually terminating population burst production after 45–60 min. Both CBX and GZA decreased neuronal Rin and induced an outward holding current. Although neither agent altered the steady state component of IK evoked by depolarizing voltage steps, CBX, but not GZA, increased peak INa. Conclusion The data presented herein are consistent with the notion that gap junction communication is important for preBötC rhythmogenesis. By comparing the effects of CBX and GZA on membrane properties our data a

  9. Carbenoxolone Induces Apoptosis and Inhibits Survivin and Survivin-ΔEx3 Genes Expression in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Z. Sanaat

    2011-12-01

    Full Text Available Background and the purpose of the study: Leukemia is a malignant disorder of the blood progenitor/stem cells which is characterized by abnormal proliferation of white blood cells. Although anti-cancer drugs induce apoptosis in cancerous cells, drug resistance is the significant problem mainly due to over-expression of inhibitors of apoptosis proteins (IAPs such as survivin. In this content, it has been reported that an anti-inflammatory drug, Carbenoxolone (CBX, could induce apoptosis and growth inhibition in several types of cancerous cells. In the present study, effects of CBX on apoptosis and level of the expression of survivin gene and its ΔEx3 splicing variant have were evaluated in K562 cells.Methods: K562 cells were cultured and treated with different concentrations of CBX (50-300 μM at different time intervals (12-48 hrs. Trypan blue exclusion test was used to evaluate cell viability. Fluorescent microscopy (Acridine Orange/Ethidium Bromide double staining and DNA fragmentation assay were used to study apoptosis. The expression level of survivin and its ΔEx3 splice variant were studied by RT- PCR.Results and Major Conclusion: It was found that both growth inhibition and apoptosis occurred in K562 cells. In addition, down-regulation of survivin and survin-ΔEx3 were observed, after 2-4 hrs treatment with 150 μM of CBX. However, the expression level of survivin and its ΔEx3 splice variant increased in subsequent time (6-12 hrs nearly to the level of control cells. From the results of this study, it may be concluded that CBX can be considered as a candidate for further studies in CML treatment, especially in the case of drug- resistant leukemia cells.

  10. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats.

    Directory of Open Access Journals (Sweden)

    Siva Sankara Vara Prasad Sakamuri

    Full Text Available BACKGROUND: 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1 regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS: Subcutaneous injection of CBX (50 mg/kg body weight or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment. Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE: We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.

  11. Activation, Permeability, and Inhibition of Astrocytic and Neuronal Large Pore (Hemi)channels

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Ye, Zu-Cheng; Calloe, Kirstine;

    2014-01-01

    overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the...

  12. Oxaliplatin enhances gap junction-mediated coupling in cell cultures of mouse trigeminal ganglia.

    Science.gov (United States)

    Poulsen, Jeppe Nørgaard; Warwick, Rebekah; Duroux, Meg; Hanani, Menachem; Gazerani, Parisa

    2015-08-01

    Communications between satellite glial cells and neighboring neurons within sensory ganglia may contribute to neuropathic and inflammatory pain. To elucidate the role of satellite glial cells in chemotherapy-induced pain, we examined the effects of oxaliplatin on the gap junction-mediated coupling between these cells. We also examined whether the gap junction blocker, carbenoxolone, can reverse the coupling. Primary cultures of mice trigeminal ganglia, 24-48h after cell isolation, were used. Satellite glial cells were injected with Lucifer yellow in the presence or absence of oxaliplatin (60 μM). In addition, the effect of carbenoxolone (100 μM) on coupling, and the expression of connexin 43 proteins were evaluated. Dye coupling between adjacent satellite glial cells was significantly increased (2.3-fold, P<0.05) following a 2h incubation with oxaliplatin. Adding carbenoxolone to the oxaliplatin-treated cultures reversed oxaliplatin-evoked coupling to baseline (P<0.05). Immunostaining showed no difference between expression of connexin 43 in control and oxaliplatin-treated cultures. Our findings indicated that oxaliplatin-increased gap junction-mediated coupling between satellite glial cells in primary cultures of mouse trigeminal ganglia, and carbenoxolone reversed this effect. Hence, it is proposed that increased gap junction-mediated coupling was seen between satellite glial cells in TG. This observation together with our previous data obtained from a behavioral study suggests that this phenomenon might contribute to chemotherapy-induced nociception following oxaliplatin treatment. PMID:25999145

  13. Pharmacological and Genetic Evidence for Gap Junctions as Potential New Insecticide Targets in the Yellow Fever Mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Travis L Calkins

    Full Text Available The yellow fever mosquito Aedes aegypti is an important vector of viral diseases that impact global health. Insecticides are typically used to manage mosquito populations, but the evolution of insecticide resistance is limiting their effectiveness. Thus, identifying new molecular and physiological targets in mosquitoes is needed to facilitate insecticide discovery and development. Here we test the hypothesis that gap junctions are valid molecular and physiological targets for new insecticides. Gap junctions are intercellular channels that mediate direct communication between neighboring cells and consist of evolutionarily distinct proteins in vertebrate (connexins and invertebrate (innexins animals. We show that the injection of pharmacological inhibitors of gap junctions (i.e., carbenoxolone, meclofenamic acid, or mefloquine into the hemolymph of adult female mosquitoes elicits dose-dependent toxic effects, with mefloquine showing the greatest potency. In contrast, when applied topically to the cuticle, carbenoxolone was the only inhibitor to exhibit full efficacy. In vivo urine excretion assays demonstrate that both carbenoxolone and mefloquine inhibit the diuretic output of adult female mosquitoes, suggesting inhibition of excretory functions as part of their mechanism of action. When added to the rearing water of 1st instar larvae, carbenoxolone and meclofenamic acid both elicit dose-dependent toxic effects, with meclofenamic acid showing the greatest potency. Injecting a double-stranded RNA cocktail against innexins into the hemolymph of adult female mosquitoes knock down whole-animal innexin mRNA expression and decreases survival of the mosquitoes. Taken together these data indicate that gap junctions may provide novel molecular and physiological targets for the development of insecticides.

  14. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    Science.gov (United States)

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization. PMID:26926429

  15. Effect of inhibiting connexin 43 expression on the expression of rat glial cell growth factors in prolactinomas%抑制缝隙连接蛋白43表达对大鼠催乳素腺瘤中胶质细胞生长因子表达的影响

    Institute of Scientific and Technical Information of China (English)

    张亚菊; 王海涛; 张冉; 靳峰

    2016-01-01

    Objective To investigate the effect of inhibiting connexin 43 (Cx43) expression on the expression of rat glial cell growth factor in prolactinomas.Methods Forty-eight female rats were randomly assigned to normal, simple estradiol, estradiol + carbenoxolone, and simple carbenoxolone groups by the completely randomized method (n =12 in each group).A model of rat prolactinoma was induced by estradiol.The normal group did not accept drug treatment;the simple estradiol group was injected estradiol intramuscularly (3 000 mg/kg, once a week, for 13 weeks);10 weeks after injection of estradiol, the estradiol + carbenoxolone group injected carbenoxolone via subarachnoid (once a week, for 3 weeks);and the simple carbenoxolone group only injected carbenoxolone for 3 weeks.The changes of body mass of pituitary and histomorphology were observed.Western blot was used to detect the expression levels of Cx43 and glial growth factor (GGF).Results The pituitary weights of the normal, simple estradiol, estradiol + carbenoxolone and simple carbenoxolone groups were 51.0 ±0.4 mg, 93.3 ± 1.0 mg, 52.7 ±2.1 mg and 68.5 ± 1.3 mg, respectively.There were significant differences (F =786.73, P < 0.01);the relative expression quantities of Cx43 were 8.0 ± 2.2% , 34.7 ± 4.0,.9.3 ± 3.1% , and 15.3 ± 3.8% ,respectively, and the relative expression quantities of GGF were 17.7 ± 5.2%, 46.9 ± 1.4%, 15.8 ± 3.6%, and 20.0 ±2.3%, respectively.There were significant differences (F =1051.51.P <0.01;F =806.58, P < 0.01).The pituitary histopathological morphology of the estradiol + carbenoxolone group was close to the normal group and the simple carbenoxolone group.Conclusions Inhibition of pituitary Cx43 expression may inhibit the GGF expression, thereby inhibiting the growth of pituitary prolactinomas in rats.%目的 探讨在催乳素腺瘤中,抑制缝隙连接蛋白43(Cx43)的表达对大鼠胶质细胞生长因子表达的影响.方法 采用

  16. Point correlation dimension can reveal functional changes caused by gap junction blockers in the 4-aminopyridine in vivo rat epilepsy model

    Energy Technology Data Exchange (ETDEWEB)

    Jardanhazy, Anett [Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725 (Hungary); Molnar, Mark [Department of Psychophysiology, Institute for Psychology of the Hungarian Academy of Sciences, P.O. Box 398, Budapest H-1394 (Hungary)], E-mail: molnar@cogpsyphy.hu; Jardanhazy, Tamas [Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725 (Hungary)], E-mail: jt@nepsy.szote.u-szeged.hu

    2009-04-15

    The contribution of gap junction (GJ) blockers to seizure initiation was reexamined by means of an analysis on nonlinear dynamics with point correlation dimension (PD2i) at as well as around the primary focus, and mirror focus in an already active 4-aminopyridine-induced in vivo epilepsy model. From the data base of the ECoGs of anesthetized adult rats treated with quinine, a selective blocker of Cx36, and in combination with an additional broad-spectrum GJ blocker, carbenoxolone, 14 cases of each condition were reexamined with a stationarity insensitive nonlinear PD2i method. The blockade of the Cx36 channels decreased the usual drop of the point correlation dimension at the beginning of the seizures, and this was enhanced by the additional use of the global blocker carbenoxolone. The so-called characteristic DC shift just prior to seizure onset denotes a low dimensional seizure event and the recognizable seizures display very variable, rapidly changing dynamics, as revealed by the PD2i analysis. This nonlinear PD2i analysis demonstrated that the different GJ blockers in the already active epileptic model helped seizure initiation, but exerted inhibitory effects on the seizure onset itself, acting differently on the local components of the network organization generating seizure discharges, possibly changing the coupling strengths and time delays in the GJ-s.

  17. Point correlation dimension can reveal functional changes caused by gap junction blockers in the 4-aminopyridine in vivo rat epilepsy model

    International Nuclear Information System (INIS)

    The contribution of gap junction (GJ) blockers to seizure initiation was reexamined by means of an analysis on nonlinear dynamics with point correlation dimension (PD2i) at as well as around the primary focus, and mirror focus in an already active 4-aminopyridine-induced in vivo epilepsy model. From the data base of the ECoGs of anesthetized adult rats treated with quinine, a selective blocker of Cx36, and in combination with an additional broad-spectrum GJ blocker, carbenoxolone, 14 cases of each condition were reexamined with a stationarity insensitive nonlinear PD2i method. The blockade of the Cx36 channels decreased the usual drop of the point correlation dimension at the beginning of the seizures, and this was enhanced by the additional use of the global blocker carbenoxolone. The so-called characteristic DC shift just prior to seizure onset denotes a low dimensional seizure event and the recognizable seizures display very variable, rapidly changing dynamics, as revealed by the PD2i analysis. This nonlinear PD2i analysis demonstrated that the different GJ blockers in the already active epileptic model helped seizure initiation, but exerted inhibitory effects on the seizure onset itself, acting differently on the local components of the network organization generating seizure discharges, possibly changing the coupling strengths and time delays in the GJ-s.

  18. Recurrent seizure-like events are associated with coupled astroglial synchronization

    Directory of Open Access Journals (Sweden)

    Laszlo Heja

    2015-06-01

    Full Text Available Increasing evidence suggest that astrocytes significantly modulate neuronal function at the level of the tripartite synapse both in physiological and pathophysiological conditions. The global control of the astrocytic syncytium over neuronal networks, however, is still less recognized. Here we examined astrocytic signalling during epileptiform activity which is generally attributed to large-scale neuronal synchronization. We show that seizure-like events in the low-[Mg2+] in vitro epilepsy model initiate massive, long-range astrocytic synchronization which is spatiotemporally coupled to the synchronized neuronal activity reaching its maximum at the electrographic tonic/clonic transition. Cross-correlation analysis of neuronal and astrocytic Ca2+ signalling demonstrates that high degree of synchronization arises not only among astrocytes, but also between neuronal and astrocyte populations, manifesting in astrocytic seizure-like events. We further show that astrocytic gap junction proteins contribute to astrocytic synchronization since their inhibition by carbenoxolone or Cx43 antibody increased the interictal interval and in 41 % of slices completely prevented recurrent seizure-like activity. In addition, carbenoxolone also induced unsynchronized Ca2+ transients associated with decreasing incidence of epileptiform discharges afterwards. We propose therefore that local, unsynchronized astrocytic Ca2+ transients inhibit, while long-range, synchronized Ca2+ signalling promotes recurrent seizure-like events.

  19. Gap junction protein connexin43 exacerbates lung vascular permeability.

    Directory of Open Access Journals (Sweden)

    James J O'Donnell

    Full Text Available Increased vascular permeability causes pulmonary edema that impairs arterial oxygenation and thus contributes to morbidity and mortality associated with Acute Respiratory Distress Syndrome and sepsis. Although components of intercellular adhesive and tight junctions are critical for maintaining the endothelial barrier, there has been limited study of the roles of gap junctions and their component proteins (connexins. Since connexins can modulate inflammatory signaling in other systems, we hypothesized that connexins may also regulate pulmonary endothelial permeability. The relationships between connexins and the permeability response to inflammatory stimuli were studied in cultured human pulmonary endothelial cells. Prolonged treatment with thrombin, lipopolysaccharide, or pathological cyclic stretch increased levels of mRNA and protein for the major connexin, connexin43 (Cx43. Thrombin and lipopolysaccharide both increased intercellular communication assayed by transfer of microinjected Lucifer yellow. Although thrombin decreased transendothelial resistance in these cells, the response was attenuated by pretreatment with the connexin inhibitor carbenoxolone. Additionally, the decreases of transendothelial resistance produced by either thrombin or lipopolysaccharide were attenuated by reducing Cx43 expression by siRNA knockdown. Both carbenoxolone and Cx43 knockdown also abrogated thrombin-induced phosphorylation of myosin light chain. Taken together, these data suggest that increased lung vascular permeability induced by inflammatory conditions may be amplified via increased expression of Cx43 and intercellular communication among pulmonary endothelial cells.

  20. Ethanol stimulates formation of leukotriene C4 in rat gastric mucosa

    International Nuclear Information System (INIS)

    Ethanol-induced gastric mucosal damage is characterized by microcirculatory changes such as stasis and plasma leakage. Sluggish blood flow and stasis have also been observed after administration of exogenous leukotriene (LT) C4. The effect of ethanol on the release of LTC4 from rat gastric mucosa was therefore investigated. It was found that intragastric instillation of ethanol increases gastric mucosal release of LTC4 in a dose- and time-dependent manner parallel to the production of gastric lesions. The lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA) and the anti-ulcer drug carbenoxolone (CX) inhibited mucosal release of LTC4 and simultaneously protected against gastric damage caused by ethanol. It is concluded that increased formation of LTC4 and/or other 5-lipoxygenase-derived products of arachidonate metabolism may be involved in ethanol-induced gastric damage. Furthermore, inhibition of the 5-lipoxygenase pathway may be an important mechanism of action of gastric protective drugs

  1. The Role of L- and T-Type Calcium Channels in Local and Remote Calcium Responses in Rat Mesenteric Terminal Arterioles

    DEFF Research Database (Denmark)

    Braunstein, Thomas Hartig; Inoue, Ryuji; Cribbs, Leanne;

    2009-01-01

    Background/Aims: The roles of intercellular communication and T-type versus L-type voltage-dependent Ca(2+) channels (VDCCs) in conducted vasoconstriction to local KCl-induced depolarization were investigated in mesenteric arterioles. Methods: Ratiometric Ca(2+) imaging (R) using Fura-PE3 with...... local (DeltaR = 0.54) and remote (DeltaR = 0.17 at 500 mum) increases in intracellular Ca(2+). Remote Ca(2+) responses were inhibited by the gap junction uncouplers carbenoxolone and palmitoleic acid. Ca(V)1.2, Ca(V)3.1 and Ca(V)3.2 channels were immunolocalized in vascular smooth muscle cells and Ca...... arterioles (at 200-300 mum) using micro-application of VDCC blockers. Conclusion: Both L- and T-type channels mediate Ca(2+) entry during conducted vasoconstriction to local KCl in mesenteric arterioles. However, these channels do not participate in the conduction process per se....

  2. Increased expression of gap junction protein connexin 36 in the striatum of rat with levodopa-induced dyskinesia%左旋多巴诱发异动症大鼠纹状体缝隙连接蛋白CX36表达增强

    Institute of Scientific and Technical Information of China (English)

    王海雷; 陈先文; 高冕; 王烈成

    2013-01-01

    Objective: To observe the expression of connexin 36 (CX36) in the brain of levodopa-induced dyskinesia (LID) rat model, and explore the role of gap junction in the pathogenesis of LID. Methods: Hemi-parkinsonism (PD) and LID rat models were made. The experimental animals were divided into three groups; LID group, PD group and normal control group, respectively. Each group was divided into two subgroups (carbenoxolone and saline groups). Then, the apomorphine induced abnormal involuntary movement ( AIM) and rotational behavior in responese to gap junction blocker carbenoxolone given by intraperitoneal injection were assessed . After the behavior testing, the rats were executed and processed for examining CX36 expression in the striatum and cortex by immunohistochemistry. Results: Carbenoxolone injected intraperitoneally showed no significant effects on apomorphine-induced AIM in LID rats and on apomorphine-induced rotational behavior in PD rats (P>0.05). The expression of CX36 in striatum and motor cortex of LID rats was significantly increased compared with PD model or the normal control rats (P < 0. 05 ). Compared with the normal control group, CX36 expression in these brain regions in the PD model group was also elevated (P <0. 05). Conclusion: The expression of connexin 36 in the striatum and cerebral motor cortex were increased in LID rats, gap junction dysfunction may play a role in the pathogenesis of LID.%目的:观察左旋多巴诱发异动症(LID)大鼠模型缝隙连接蛋白36(CX36)表达,初步探讨缝隙连接在LID形成机制中的作用.方法:制备帕金森病(PD)和LID大鼠模型,将实验动物分3组:LID模型组、PD未治疗组、正常对照组.各组大鼠分2亚组(缝隙连接阻断剂处理组和生理盐水对照组),观察系统途径给予缝隙连接阻断剂甘珀酸(carbenoxolone)对各组大鼠不自主运动行为的影响.利用免疫组化法检测各组大鼠脑皮层运动区和纹状体区CX36表达并进行分析比较.

  3. Connexin43 Inhibition Prevents Human Vein Grafts Intimal Hyperplasia.

    Directory of Open Access Journals (Sweden)

    Alban Longchamp

    Full Text Available Venous bypass grafts often fail following arterial implantation due to excessive smooth muscle cells (VSMC proliferation and consequent intimal hyperplasia (IH. Intercellular communication mediated by Connexins (Cx regulates differentiation, growth and proliferation in various cell types. Microarray analysis of vein grafts in a model of bilateral rabbit jugular vein graft revealed Cx43 as an early upregulated gene. Additional experiments conducted using an ex-vivo human saphenous veins perfusion system (EVPS confirmed that Cx43 was rapidly increased in human veins subjected ex-vivo to arterial hemodynamics. Cx43 knock-down by RNA interference, or adenoviral-mediated overexpression, respectively inhibited or stimulated the proliferation of primary human VSMC in vitro. Furthermore, Cx blockade with carbenoxolone or the specific Cx43 inhibitory peptide 43gap26 prevented the burst in myointimal proliferation and IH formation in human saphenous veins. Our data demonstrated that Cx43 controls proliferation and the formation of IH after arterial engraftment.

  4. PHYTOCHEMICAL CONSTITUENT, PHARMACOLOGICAL ACTIVITIES AND MEDICINAL USES THROUGH THE MILLENIA OF GLYCYRRHIZA GLABRA LINN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Asha Roshan

    2012-08-01

    Full Text Available Liquoris, Glycyrrhiza glabra Linn, is a herb belonging to the family Leguminoceae.It is widely used in ayurvedic formulations. This review article is presented to phytochemical constituents and pharmacological activities, which were performed by widely different methods. It contains glycyrrhizin, which is a saponin glycoside, flavanoides, Carbenoxolone etc. Glycyrrhiza glabra Linn possesses different pharmacological activities such as antibacterial, antioxidant, antimalerial, expectorant, anti-tussive, antispasmodic, anti-inflammatory and anti hyper glycemic properties. Various other effects like antiulcer, antiviral, antihapatotoxic, antifungal and herpes simplex have also been studies. These results are very encouraging and indicate this herb should be studies more extensively to confirm these results and reveal other potential therapeutic effects. Medicinal uses of Glycyrrhiza glabra Linn through the millennia as well as drug-botanical interaction, side effect and toxicity also included under this review article.

  5. Pharmaceutical quality control of acid and neutral drugs based on competitive self-assembly in amphiphilic systems.

    Science.gov (United States)

    Pedraza, Ana; Sicilia, María Dolores; Rubio, Soledad; Pérez-Bendito, Dolores

    2006-01-01

    An aggregation parameter-based methodology for determining acid and neutral drugs in pharmaceutical dosage forms is presented. The method is based on competitive self-assembly in ternary dye-surfactant-drug aqueous mixtures. Dyes bearing charge of opposite sign to that of surfactants bind to surfactant to form mixed dye-surfactant aggregates, which are monitored from changes in the spectra features of the dye. The drug competes with the dye to interact with the surfactant to form drug-surfactant aggregates, which results in a decrease in the surfactant to dye binding degree proportional to the drug concentration in the aqueous solution. Coomassie Brilliant Blue G (CBBG) and didodecyldimethylammonium bromide (DDABr) were the dye and surfactant reactant used, respectively. The suitability of the surfactant to dye binding degree (SDBD) method to determine drugs with very different molecular structure: propionic (flurbiprofen, ibuprofen, naproxen and ketoprofen) and acetic (diclofenac, felbinac and zomepirac) acids, indolines (indomethacin and sulindac), glycyrrhetinic acid derivatives (carbenoxolone and enoxolone), salicylates (diflunisal and phenyl salicylate), oxicams (meloxicam, piroxicam and tenoxicam), pyrazolones (phenylbutazone and sulfinpyrazone) and hydrocortisones (dexamethasone and prednisolone) has been proved. The proposed method was successfully applied to the determination of drugs in commercial formulates (effervescent granulates, tablets, suppositories, gels and blisters) with a minimum sample treatment (dilution of liquid samples and dissolution of solid samples). PMID:16365667

  6. Contribution of gap junctional communication between tumor cells and astroglia to the invasion of the brain parenchyma by human glioblastomas

    Directory of Open Access Journals (Sweden)

    Venance Laurent

    2005-02-01

    Full Text Available Abstract Background Gliomas are "intraparenchymally metastatic" tumors, invading the brain in a non-destructive way that suggests cooperation between glioma cells and their environment. Recent studies using an engineered rodent C6 tumor cell line have pointed to mechanisms of invasion that involved gap junctional communication (GJC, with connexin 43 as a substrate. We explored whether this concept may have clinical relevance by analyzing the participation of GJC in human glioblastoma invasion. Results Three complementary in vitro assays were used: (i seeding on collagen IV, to analyze homocellular interactions between tumor cells (ii co-cultures with astrocytes, to study glioblastoma/astrocytes relationships and (iii implantation into organotypic brain slice cultures, that mimic the three-dimensional parenchymal environment. Carbenoxolone, a potent blocker of GJC, inhibited cell migration in the two latter models. It paradoxically increased it in the first one. These results showed that homocellular interaction between tumor cells supports intercellular adhesion, whereas heterocellular glioblastoma/astrocytes interactions through functional GJC conversely support tumor cell migration. As demonstrated for the rodent cell line, connexin 43 may be responsible for this heterocellular functional coupling. Its levels of expression, high in astrocytes, correlated positively with invasiveness in biopsied tumors. Conclusions our results underscore the potential clinical relevance of the concept put forward by other authors based on experiments with a rodent cell line, that glioblastoma cells use astrocytes as a substrate for their migration by subverting communication through connexin 43-dependent gap junctions.

  7. Mechanism of Mitochondrial Connexin43's Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Hou, Shuai; Shen, Ping-Ping; Zhao, Ming-Ming; Liu, Xiu-Ping; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun

    2016-01-01

    We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. PMID:27164087

  8. Cell discharge correlates of posterior hypothalamic theta rhythm. Recipe for success in recording stable field potential.

    Science.gov (United States)

    Bocian, Renata; Kłos-Wojtczak, Paulina; Konopacki, Jan

    2016-09-01

    The theta rhythm discovered in the posterior hypothalamus area (PHa) differs from theta observed in the hippocampal formation. In comparison to hippocampal spontaneous theta, the theta recorded in the PHa is rarely registered, has lower amplitude, often disappears, and sometimes returns after a few minutes. These features indicate that spontaneous theta recorded in the PHa is not an appropriate experimental model to search for the correlation between PHa cell discharges and local field potential. In this paper we present standard experimental conditions necessary to record theta-related cells in the PHa in anesthetized rats. Three pharmacological agents were used in the experiments to induce PHa theta rhythm in urethanized rats: carbachol (CCH), carbenoxolone and kainic acid, which are potent enough to induce well-synchronized PHa theta. However, CCH was found to be the best pharmacological tool to induce PHa theta oscillations, due to its longest duration of action and lack of preliminary epileptogenic effects. It seems that CCH-induced theta can be the most suitable pharmacological model for experiments with the use of protocol of long-lasting recordings of PHa theta-related cell discharges. PMID:27353451

  9. Pseudohyperaldosteronism: pathogenetic mechanisms.

    Science.gov (United States)

    Armanini, Decio; Calò, Lorenzo; Semplicini, Andrea

    2003-06-01

    Pseudohyperaldosteronism is characterized by a clinical picture of hyperaldosteronism with suppression of plasma renin activity and aldosterone. Pseudohyperaldosteronism can be due to a direct mineralocorticoid effect, as with desoxycorticosterone, fluorohydrocortisone, fluoroprednisolone, estrogens, and the ingestion of high amounts of glycyrrhetinic acid. A block of 11-hydroxysteroid-dehydrogenase type 2 (11HSD2), the enzyme that converts cortisol into cortisone, at the level of epithelial target tissues of aldosterone, is involved in other cases. This mechanism is related either to a mutation of the gene, which encodes 11HSD2 (apparent mineralocorticoid excess syndrome and some cases of low renin hypertension) or to an acquired reduction of the activity of the enzyme due to glycyrrhetinic acid, carbenoxolone, and grapefruit juice. In other cases saturation of 11HSD2 may be involved as in severe Cushing's syndrome and chronic therapy with some corticosteroids. Recently, an activating mutation of the mineralocorticoid receptor gene has been described. Another genetic cause of pseudohyperaldosteronism is the syndrome of Liddle, which is due to a mutation of the gene encoding for beta and gamma subunits of the sodium channels. PMID:12892318

  10. External Dentin Stimulation Induces ATP Release in Human Teeth.

    Science.gov (United States)

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain. PMID:26130258

  11. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade.

    Science.gov (United States)

    Jourdain, P; Allaman, I; Rothenfusser, K; Fiumelli, H; Marquet, P; Magistretti, P J

    2016-01-01

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade. PMID:26893204

  12. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.

    Directory of Open Access Journals (Sweden)

    Travis P Barr

    Full Text Available Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil. These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.

  13. Characterisation of connexin expression and electrophysiological properties in stable clones of the HL-1 myocyte cell line.

    Directory of Open Access Journals (Sweden)

    Priyanthi Dias

    Full Text Available The HL-1 atrial line contains cells blocked at various developmental stages. To obtain homogeneous sub-clones and correlate changes in gene expression with functional alterations, individual clones were obtained and characterised for parameters involved in conduction and excitation-contraction coupling. Northern blots for mRNAs coding for connexins 40, 43 and 45 and calcium handling proteins (sodium/calcium exchanger, L- and T-type calcium channels, ryanodine receptor 2 and sarco-endoplasmic reticulum calcium ATPase 2 were performed. Connexin expression was further characterised by western blots and immunofluorescence. Inward currents were characterised by voltage clamp and conduction velocities measured using microelectrode arrays. The HL-1 clones had similar sodium and calcium inward currents with the exception of clone 2 which had a significantly smaller calcium current density. All the clones displayed homogenous propagation of electrical activity across the monolayer correlating with the levels of connexin expression. Conduction velocities were also more sensitive to inhibition of junctional coupling by carbenoxolone (∼ 80% compared to inhibition of the sodium current by lidocaine (∼ 20%. Electrical coupling by gap junctions was the major determinant of conduction velocities in HL-1 cell lines. In summary we have isolated homogenous and stable HL-1 clones that display characteristics distinct from the heterogeneous properties of the original cell line.

  14. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.

    Science.gov (United States)

    Ravera, Silvia; Bartolucci, Martina; Adriano, Enrico; Garbati, Patrizia; Ferrando, Sara; Ramoino, Paola; Calzia, Daniela; Morelli, Alessandro; Balestrino, Maurizio; Panfoli, Isabella

    2016-05-01

    Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath. PMID:26033217

  15. Osteocytes up-regulate the terminal differentiation of pre-osteoblasts via gap junctions.

    Science.gov (United States)

    Nishikawa, Yoichi; Akiyama, Yuko; Yamamoto, Kiyofumi; Kobayashi, Masayuki; Watanabe, Eri; Watanabe, Nobukazu; Shimizu, Noriyoshi; Mikami, Yoshikazu; Komiyama, Kazuo

    2015-01-01

    We examined cell-to-cell interaction between pre-osteoblasts and osteocytes using MC3T3-E1 and MLO-Y4, respectively. First, GFP expressing MC3T3-E1 (E1-GFP) cells were generated to isolate the cells from co-culture with MLO-Y4. No changes were observed in the expression of osteogenic transcription factors Runx2, Osterix, Dlx5 and Msx2, but expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP) in E1-GFP co-cultured with MLO-Y4 was 300-400-fold greater than that in mono-cultured E1-GFP. In addition, mineralized nodule formation was drastically increased in co-cultured E1-GFP cells compared to mono-cultured cells. Patch clamp assay showed the presence of gap junctions between E1-GFP and MLO-Y4. Furthermore, when the gap junction inhibitor carbenoxolone (CBX) was added to the culture, increased expression of ALP and BSP in E1-GFP co-cultured with MLO-Y4 was suppressed. These results suggest that gap junction detected between pre-osteoblasts and osteocytes plays an important role on the terminal differentiation of pre-osteoblasts. PMID:25450679

  16. Gap Junctions: The Claymore for Cancerous Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-07-01

    Full Text Available Introduction: Gap junctions play an important role in the cell proliferation in mammalian cells as well as carcinogenesis. However, there are controversial issues about their role in cancer pathogenesis. This study was designed to evaluate genotoxicity and cytotoxicity of Carbenoxolone (CBX as a prototype of inter-cellular gap junction blocker in MCF7 and BT20 human breast cancer cells. Methods: The MCF7and BT20 human breast cancer cell lines were cultivated, and treated at designated confluency with different doses of CBX. Cellular cytotoxicity was examined using standard colorimetric assay associated with cell viability tests. Gene expression evaluation was carried out using real time polymerase chain reaction (PCR. Results: MCF7 and BT20 cells were significantly affected by CBX in a dose dependent manner in cell viability assays. Despite varying expression of genes, down regulation of pro- and anti-apoptotic genes was observed in these cells. Conclusion: Based upon this investigation, it can be concluded that CBX could affect both low and high proliferative types of breast cancer cell lines and disproportionate down regulation of both pre- and anti-apoptotic genes may be related to interacting biomolecules, perhaps via gap junctions.

  17. High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington's disease model.

    Directory of Open Access Journals (Sweden)

    Joost Schulte

    Full Text Available To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.

  18. L-Lactate protects neurons against excitotoxicity: implication of an ATP-mediated signaling cascade

    KAUST Repository

    Jourdain, P.

    2016-02-19

    Converging experimental data indicate a neuroprotective action of L-Lactate. Using Digital Holographic Microscopy, we observe that transient application of glutamate (100 μM; 2 min) elicits a NMDA-dependent death in 65% of mouse cortical neurons in culture. In the presence of L-Lactate (or Pyruvate), the percentage of neuronal death decreases to 32%. UK5099, a blocker of the Mitochondrial Pyruvate Carrier, fully prevents L-Lactate-mediated neuroprotection. In addition, L-Lactate-induced neuroprotection is not only inhibited by probenicid and carbenoxolone, two blockers of ATP channel pannexins, but also abolished by apyrase, an enzyme degrading ATP, suggesting that ATP produced by the Lactate/Pyruvate pathway is released to act on purinergic receptors in an autocrine/paracrine manner. Finally, pharmacological approaches support the involvement of the P2Y receptors associated to the PI3-kinase pathway, leading to activation of KATP channels. This set of results indicates that L-Lactate acts as a signalling molecule for neuroprotection against excitotoxicity through coordinated cellular pathways involving ATP production, release and activation of a P2Y/KATP cascade.

  19. 11β-hydroxysteroid dehydrogenase inhibition as a new potential therapeutic target for alcohol abuse.

    Science.gov (United States)

    Sanna, P P; Kawamura, T; Chen, J; Koob, G F; Roberts, A J; Vendruscolo, L F; Repunte-Canonigo, V

    2016-01-01

    The identification of new and more effective treatments for alcohol abuse remains a priority. Alcohol intake activates glucocorticoids, which have a key role in alcohol's reinforcing properties. Glucocorticoid effects are modulated in part by the activity of 11β-hydroxysteroid dehydrogenases (11β-HSD) acting as pre-receptors. Here, we tested the effects on alcohol intake of the 11β-HSD inhibitor carbenoxolone (CBX, 18β-glycyrrhetinic acid 3β-O-hemisuccinate), which has been extensively used in the clinic for the treatment of gastritis and peptic ulcer and is active on both 11β-HSD1 and 11β-HSD2 isoforms. We observed that CBX reduces both baseline and excessive drinking in rats and mice. The CBX diastereomer 18α-glycyrrhetinic acid 3β-O-hemisuccinate (αCBX), which we found to be selective for 11β-HSD2, was also effective in reducing alcohol drinking in mice. Thus, 11β-HSD inhibitors may be a promising new class of candidate alcohol abuse medications, and existing 11β-HSD inhibitor drugs may be potentially re-purposed for alcohol abuse treatment. PMID:26978742

  20. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  1. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    International Nuclear Information System (INIS)

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival

  2. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    Science.gov (United States)

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  3. Syndromes that Mimic an Excess of Mineralocorticoids.

    Science.gov (United States)

    Sabbadin, Chiara; Armanini, Decio

    2016-09-01

    Pseudohyperaldosteronism is characterized by a clinical picture of hyperaldosteronism with suppression of renin and aldosterone. It can be due to endogenous or exogenous substances that mimic the effector mechanisms of aldosterone, leading not only to alterations of electrolytes and hypertension, but also to an increased inflammatory reaction in several tissues. Enzymatic defects of adrenal steroidogenesis (deficiency of 17α-hydroxylase and 11β-hydroxylase), mutations of mineralocorticoid receptor (MR) and alterations of expression or saturation of 11-hydroxysteroid dehydrogenase type 2 (apparent mineralocorticoid excess syndrome, Cushing's syndrome, excessive intake of licorice, grapefruits or carbenoxolone) are the main causes of pseudohyperaldosteronism. In these cases treatment with dexamethasone and/or MR-blockers is useful not only to normalize blood pressure and electrolytes, but also to prevent the deleterious effects of prolonged over-activation of MR in epithelial and non-epithelial tissues. Genetic alterations of the sodium channel (Liddle's syndrome) or of the sodium-chloride co-transporter (Gordon's syndrome) cause abnormal sodium and water reabsorption in the distal renal tubules and hypertension. Treatment with amiloride and thiazide diuretics can respectively reverse the clinical picture and the renin aldosterone system. Finally, many other more common situations can lead to an acquired pseudohyperaldosteronism, like the expansion of volume due to exaggerated water and/or sodium intake, and the use of drugs, as contraceptives, corticosteroids, β-adrenergic agonists and FANS. In conclusion, syndromes or situations that mimic aldosterone excess are not rare and an accurate personal and pharmacological history is mandatory for a correct diagnosis and avoiding unnecessary tests and mistreatments. PMID:27251484

  4. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.

    Science.gov (United States)

    Walters, Edgar T

    2014-08-01

    Neuropathic pain after spinal cord injury (SCI) is common, often intractable, and can be severely debilitating. A number of mechanisms have been proposed for this pain, which are discussed briefly, along with methods for revealing SCI pain in animal models, such as the recently applied conditioned place preference test. During the last decade, studies of animal models have shown that both central neuroinflammation and behavioral hypersensitivity (indirect reflex measures of pain) persist chronically after SCI. Interventions that reduce neuroinflammation have been found to ameliorate pain-related behavior, such as treatment with agents that inhibit the activation states of microglia and/or astroglia (including IL-10, minocycline, etanercept, propentofylline, ibudilast, licofelone, SP600125, carbenoxolone). Reversal of pain-related behavior has also been shown with disruption by an inhibitor (CR8) and/or genetic deletion of cell cycle-related proteins, deletion of a truncated receptor (trkB.T1) for brain-derived neurotrophic factor (BDNF), or reduction by antisense knockdown or an inhibitor (AMG9810) of the activity of channels (TRPV1 or Nav1.8) important for electrical activity in primary nociceptors. Nociceptor activity is known to drive central neuroinflammation in peripheral injury models, and nociceptors appear to be an integral component of host defense. Thus, emerging results suggest that spinal and systemic effects of SCI can activate nociceptor-mediated host defense responses that interact via neuroinflammatory signaling with complex central consequences of SCI to drive chronic pain. This broader view of SCI-induced neuroinflammation suggests new targets, and additional complications, for efforts to develop effective treatments for neuropathic SCI pain. PMID:25017887

  5. A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats.

    Science.gov (United States)

    Sun, Liqian; Gao, Junling; Zhao, Manman; Cui, Jianzhong; Li, Youxiang; Yang, Xinjian; Jing, Xiaobin; Wu, Zhongxue

    2015-09-15

    Connexin 43 (Cx43) is one of the major gap junction proteins in astrocytes. Our previous studies reported that astrocytic phosphorylated Cx43 (p-CX43) regulated neuronic autophagy levels in the rat hippocampus after traumatic brain injury (TBI). In this study, we explored the underlying molecular mechanism by which gap junctional intercellular communication influenced neuronic autophagy and therefore initiated cognitive and memory impairments after TBI. The gap junctional blocker carbenoxolone (CBX) or autophagy inhibitor 3-methyladenine (3-MA) reduced latencies, as compared to TBI rats. Similarly, CBX or 3-MA restored long-term potentiation (LTP), relative to TBI hippocampal slices. Immunoblotting analysis showed that the expression of autophagy-related gene Beclin-1 in the hippocampus post-TBI were decreased in response to treatment with CBX, the P2X7 receptor (P2X7R) antagonist Oxidized ATP (OxATP) or ceftriaxone (Cef) which increased the expression and activity of the glutamate transporter (GLT-1) in the central nervous system (CNS). Moreover, CBX or OxATP pretreatment increased GLT-1 level in the rat hippocampus after TBI. However, CBX pretreatment suppressed P2X7R expression whereas maintained P2X7 level post-TBI. Confocal images revealed that p-CX43, P2X7 and GLT-1 strongly colocalized with glial fibrillary acidic protein (GFAP). Taken together, these results implied that Cx43, might induce neuronic autophagy by activation of P2X7R and reduce the expression of GLT-1 in the hippocampus, promoting TBI-induced cognitive deficits repair. Therefore, control of this communication may be serve as therapeutic strategies for intervention against TBI. PMID:26031379

  6. Mixed neurotransmission in the hippocampal mossy fibers

    Directory of Open Access Journals (Sweden)

    Agnieszka eMuenster-Wandowski

    2013-11-01

    Full Text Available The hippocampal mossy fibers (MFs, the axons of the granule cells of the dentate gyrus, innervate mossy cells and interneurons in the hilus on its way to CA3 where they innervate interneurons and pyramidal cells. Synapses on each target cell have distinct anatomical and functional characteristics. In recent years, the paradigmatic view of the MF synapses being only glutamatergic and, thus, excitatory has been questioned. Several laboratories have provided data supporting the hypothesis that the MFs can transiently release GABA during development and, in the adult, after periods of enhanced excitability. This transient glutamate-GABA co-transmission coincides with the transient expression of the machinery for the synthesis and release of GABA in the glutamatergic granule cells. Although some investigators have deemed this evidence controversial, new data has appeared with direct evidence of co-release of glutamate and GABA from single, identified MF boutons. However, this must still be confirmed by other groups and with other methodologies. A second, intriguing observation is that MF activation produced fast spikelets followed by excitatory postsynaptic potentials in a number of pyramidal cells, which, unlike the spikelets, underwent frequency potentiation and were strongly depressed by activation of metabotropic glutamate receptors. The spikelets persisted during blockade of chemical transmission and were suppressed by the gap junction blocker carbenoxolone. These data is consistent with the hypothesis of mixed electrical-chemical synapses between MFs and some pyramidal cells. Dye coupling between these types of principal cells and ultrastructural studies showing the co-existence of AMPA receptors and connexin 36 in this synapse corroborate their presence. A deeper consideration of mixed neurotransmission taking place in this synapse may expand our search and understanding of communication channels between different regions of the mammalian CNS.

  7. Opioid-glutamate interactions in rat locus coeruleus neurons.

    Science.gov (United States)

    Oleskevich, S; Clements, J D; Williams, J T

    1993-09-01

    1. The effect of mu-opioids on the glutamate response was investigated in rat locus coeruleus (LC) neurons by intracellular recording in the brain slice preparation. Glutamate responses were evoked by bath application of selective glutamate agonists, glutamate iontophoresis, and stimulation of excitatory afferents. 2. The mu-opioid agonist D-Ala2-MePhe4-Gly-ol5-enkephalin (DAMGO; 1 microM) potentiated the response to bath application of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid by 91 and 142%, respectively, in slices cut in the horizontal plane. The mechanism of action of this effect was investigated under conditions that limited the DAMGO-induced hyperpolarization and improved the space clamp of the neuron through 1) addition of barium, 2) increase in extracellular potassium concentration, 3) sectioning of the LC in the coronal plane, and 4) addition of carbenoxolone. Each experimental manipulation decreased the DAMGO outward current and reduced the mu-opioid potentiation of the glutamate response. The results suggest that the mu-opioid-mediated potentiation of the glutamate response is dependent on membrane hyperpolarization. 3. Neither forskolin nor the phorbol ester 4b-phorbol 12,13-dibutyrate (PDBu) altered the glutamate-mediated inward currents. The potentiation of the glutamate response by DAMGO was not affected by PDBu. 4. The mu-opioids DAMGO and [met]5enkephalin (10 microM) did not significantly affect the NMDA receptor-mediated depolarization (mean 14%) evoked by local application of glutamate but inhibited the NMDA receptor-mediated synaptic potential (mean 25%).(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7693886

  8. Gold nanoparticle-mediated (GNOME) laser perforation: a new method for a high-throughput analysis of gap junction intercellular coupling.

    Science.gov (United States)

    Begandt, Daniela; Bader, Almke; Antonopoulos, Georgios C; Schomaker, Markus; Kalies, Stefan; Meyer, Heiko; Ripken, Tammo; Ngezahayo, Anaclet

    2015-10-01

    The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 μm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 μm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 μm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling. PMID:26310434

  9. Pannexin 1 channels: new actors in the regulation of catecholamine release from adrenal chromaffin cells

    Science.gov (United States)

    Momboisse, Fanny; Olivares, María José; Báez-Matus, Ximena; Guerra, María José; Flores-Muñoz, Carolina; Sáez, Juan C.; Martínez, Agustín D.; Cárdenas, Ana M.

    2014-01-01

    Chromaffin cells of the adrenal gland medulla synthesize and store hormones and peptides, which are released into the blood circulation in response to stress. Among them, adrenaline is critical for the fight-or-flight response. This neurosecretory process is highly regulated and depends on cytosolic [Ca2+]. By forming channels at the plasma membrane, pannexin-1 (Panx1) is a protein involved in many physiological and pathological processes amplifying ATP release and/or Ca2+ signals. Here, we show that Panx1 is expressed in the adrenal gland where it plays a role by regulating the release of catecholamines. In fact, inhibitors of Panx1 channels, such as carbenoxolone (Cbx) and probenecid, reduced the secretory activity induced with the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium (DMPP, 50 μM) in whole adrenal glands. A similar inhibitory effect was observed in single chromaffin cells using Cbx or 10Panx1 peptide, another Panx1 channel inhibitors. Given that the secretory response depends on cytosolic [Ca2+] and Panx1 channels are permeable to Ca2+, we studied the possible implication of Panx1 channels in the Ca2+ signaling occurring during the secretory process. In support of this possibility, Panx1 channel inhibitors significantly reduced the Ca2+ signals evoked by DMPP in single chromaffin cells. However, the Ca2+ signals induced by caffeine in the absence of extracellular Ca2+ was not affected by Panx1 channel inhibitors, suggesting that this mechanism does not involve Ca2+ release from the endoplasmic reticulum. Conversely, Panx1 inhibitors significantly blocked the DMPP-induce dye uptake, supporting the idea that Panx1 forms functional channels at the plasma membrane. These findings indicate that Panx1 channels participate in the control the Ca2+ signal that triggers the secretory response of adrenal chromaffin cells. This mechanism could have physiological implications during the response to stress. PMID:25237296

  10. The engineered thymidylate kinase (TMPK/AZT enzyme-prodrug axis offers efficient bystander cell killing for suicide gene therapy of cancer.

    Directory of Open Access Journals (Sweden)

    Takeya Sato

    Full Text Available We previously described a novel suicide (or 'cell fate control' gene therapy enzyme/prodrug system based on an engineered variant of human thymidylate kinase (TMPK that potentiates azidothymidine (AZT activation. Delivery of a suicide gene sequence into tumors by lentiviral transduction embodies a cancer gene therapy that could employ bystander cell killing as a mechanism driving significant tumor regression in vivo. Here we present evidence of a significant bystander cell killing in vitro and in vivo mediated by the TMPK/AZT suicide gene axis that is reliant on the formation of functional gap-junctional intercellular communications (GJICs. Potentiation of AZT activation by the engineered TMPK expressed in the human prostate cancer cell line, PC-3, resulted in effective bystander killing of PC-3 cells lacking TMPK expression--an effect that could be blocked by the GJIC inhibitor, carbenoxolone. Although GJICs are mainly formed by connexins, a new family of GJIC molecules designated pannexins has been recently identified. PC-3 cells expressed both connexin43 (Cx43 and Pannexin1 (Panx1, but Panx1 expression predominated at the plasma membrane, whereas Cx43 expression was primarily localized to the cytosol. The contribution of bystander effects to the reduction of solid tumor xenografts established by the PC-3 cell line was evaluated in an animal model. We demonstrate the contribution of bystander cell killing to tumor regression in a xenograft model relying on the delivery of expression of the TMPK suicide gene into tumors via direct intratumoral injection of recombinant therapeutic lentivirus. Taken together, our data underscore that the TMPK/AZT enzyme-prodrug axis can be effectively utilized in suicide gene therapy of solid tumors, wherein significant tumor regression can be achieved via bystander effects mediated by GJICs.

  11. Endoplasmic reticulum stress is increased in adipose tissue of women with gestational diabetes.

    Directory of Open Access Journals (Sweden)

    Stella Liong

    Full Text Available Maternal obesity and gestational diabetes mellitus (GDM are two increasingly common and important obstetric complications that are associated with severe long-term health risks to mothers and babies. IL-1β, which is increased in obese and GDM pregnancies, plays an important role in the pathophysiology of these two pregnancy complications. In non-pregnant tissues, endoplasmic (ER stress is increased in diabetes and can induce IL-1β via inflammasome activation. The aim of this study was to determine whether ER stress is increased in omental adipose tissue of women with GDM, and if ER stress can also upregulate inflammasome-dependent secretion of IL-1β. ER stress markers IRE1α, GRP78 and XBP-1s were significantly increased in adipose tissue of obese compared to lean pregnant women. ER stress was also increased in adipose tissue of women with GDM compared to BMI-matched normal glucose tolerant (NGT women. Thapsigargin, an ER stress activator, induced upregulated secretion of mature IL-1α and IL-1β in human omental adipose tissue explants primed with bacterial endotoxin LPS, the viral dsRNA analogue poly(I:C or the pro-inflammatory cytokine TNF-α. Inhibition of capase-1 with Ac-YVAD-CHO resulted in decreased IL-1α and IL-1β secretion, whereas inhibition of pannexin-1 with carbenoxolone suppressed IL-1β secretion only. Treatment with anti-diabetic drugs metformin and glibenclamide also reduced IL-1α and IL-1β secretion in infection and cytokine-primed adipose tissue. In conclusion, this study has demonstrated ER stress to activate the inflammasome in pregnant adipose tissue. Therefore, increased ER stress may contribute towards the pathophysiology of obesity in pregnancy and GDM.

  12. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    Science.gov (United States)

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway. PMID:24885163

  13. Gastroprotective and ulcer healing effects of essential oil of Hyptis martiusii Benth. (Lamiaceae).

    Science.gov (United States)

    Caldas, Germana Freire Rocha; Oliveira, Alisson Rodrigo da Silva; Araújo, Alice Valença; Quixabeira, Dafne Carolina Alves; Silva-Neto, Jacinto da Costa; Costa-Silva, João Henrique; de Menezes, Irwin Rose Alencar; Ferreira, Fabiano; Leite, Ana Cristina Lima; da Costa, José Galberto Martins; Wanderley, Almir Gonçalves

    2014-01-01

    Hyptis martiusii Benth. is an aromatic plant found in abundance in northeastern Brazil that is used in ethnomedicine to treat gastric disorders. The aim of this study was to elucidate the mechanisms of action involved in the gastroprotection of the essential oil of Hyptis martiusii (EOHM) and to evaluate its healing capacity. Wistar rats were exposed to different protocols and subsequently were treated with 1% Tween-80 aqueous solution (negative control), pantoprazole, carbenoxolone, N-acetylcysteine (depending on the specificity of each model) or EOHM. The antisecretory activity (basal or stimulated) was determined using the pyloric ligature method. The gastroprotective action of nitric oxide and sulphydryl groups (-SH groups), as well as the quantification of adherent mucus and the levels of malondialdehyde and -SH groups in gastric mucosa, were evaluated using ethanol-induced gastric ulcer model. The healing ability was evaluated using the acetic acid-induced gastric ulcer model and histological and immunohistochemical analysis (HE, PAS and PCNA). EOHM (400 mg/kg) reduced the volume and acidity of gastric secretion stimulated by histamine and pentagastrin. The gastroprotective effect of EOHM involves the participation of endogenous sulfhydryl groups. EOHM increased mucus production (54.8%), reduced levels of MDA (72.5%) and prevented the depletion of -SH groups (73.8%) in the gastric mucosa. The treatment with EOHM reduced in 70.3% the gastric lesion area, promoting significant regeneration of the gastric mucosa, as confirmed by histological analysis and analysis of proliferating cell nuclear antigen. The results show that gastroprotective effect of EOHM is mediated by cytoprotective and antioxidant mechanisms and by their antisecretory activity, and suggest that the essential oil of Hyptis martiusii is a promising candidate for the treatment of gastric ulcers. PMID:24454726

  14. Calcium signals in the nucleus accumbens: Activation of astrocytes by ATP and succinate

    Directory of Open Access Journals (Sweden)

    Emri Zsuzsa

    2011-10-01

    Full Text Available Abstract Background Accumulating evidence suggests that glial signalling is activated by different brain functions. However, knowledge regarding molecular mechanisms of activation or their relation to neuronal activity is limited. The purpose of the present study is to identify the characteristics of ATP-evoked glial signalling in the brain reward area, the nucleus accumbens (NAc, and thereby to explore the action of citric acid cycle intermediate succinate (SUC. Results We described the burst-like propagation of Ca2+ transients evoked by ATP in acute NAc slices from rat brain. Co-localization of the ATP-evoked Ca2+ signalling with immunoreactivities of the astroglia-specific gap junction forming channel protein connexin43 (Cx43 and the glial fibrillary acidic protein (GFAP indicated that the responsive cells were a subpopulation of Cx43 and GFAP immunoreactive astrocytes. The ATP-evoked Ca2+ transients were present under the blockade of neuronal activity, but were inhibited by Ca2+ store depletion and antagonism of the G protein coupled purinergic P2Y1 receptor subtype-specific antagonist MRS2179. Similarly, Ca2+ transients evoked by the P2Y1 receptor subtype-specific agonist 2-(Methylthioadenosine 5'-diphosphate were also blocked by MRS2179. These characteristics implied that intercellular Ca2+ signalling originated from the release of Ca2+ from internal stores, triggered by the activation of P2Y1 receptors. Inhibition by the gap junction blockers carbenoxolone and flufenamic acid and by an antibody raised against the gating-associated segment of Cx43 suggested that intercellular Ca2+ signalling proceeded through gap junctions. We demonstrated for the first time that extracellular SUC also evoked Ca2+ transients (EC50 = 50-60 μM in about 15% of the ATP-responsive NAc astrocytes. By contrast to glial cells, electrophysiologically identified NAc neurons surrounded by ATP-responsive astrocytes were not activated simultaneously. Conclusions We

  15. L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation

    Directory of Open Access Journals (Sweden)

    Takaki Junpei

    2012-12-01

    Full Text Available Abstract Background In the central nervous system, astrocytic L-glutamate (L-Glu transporters maintain extracellular L-Glu below neurotoxic levels, but their function is impaired with neuroinflammation. Microglia become activated with inflammation; however, the correlation between activated microglia and the impairment of L-Glu transporters is unknown. Methods We used a mixed culture composed of astrocytes, microglia, and neurons. To quantify L-Glu transporter function, we measured the extracellular L-Glu that remained 30 min after an application of L-Glu to the medium (the starting concentration was 100 μM. We determined the optimal conditions of lipopolysaccharide (LPS treatment to establish an inflammation model without cell death. We examined the predominant subtypes of L-Glu transporters and the changes in the expression levels of these transporters in this inflammation model. We then investigated the role of activated microglia in the changes in L-Glu transporter expression and the underlying mechanisms in this inflammation model. Results Because LPS (10 ng/mL, 72 h caused a significant increase in the levels of L-Glu remaining but did not affect cell viability, we adopted this condition for our inflammation model without cell death. GLAST was the predominant L-Glu transporter subtype, and its expression decreased in this inflammation model. As a result of their release of L-Glu, activated microglia were shown to be essential for the significant decrease in L-Glu uptake. The serial application of L-Glu caused a significant decrease in L-Glu uptake and GLAST expression in the astrocyte culture. The hemichannel inhibitor carbenoxolone (CBX inhibited L-Glu release from activated microglia and ameliorated the decrease in GLAST expression in the inflammation model. In addition, the elevation of the astrocytic intracellular L-Glu itself caused the downregulation of GLAST. Conclusions Our findings suggest that activated microglia trigger the

  16. FSH modulates PKAI and GPR3 activities in mouse oocyte of COC in a gap junctional communication (GJC-dependent manner to initiate meiotic resumption.

    Directory of Open Access Journals (Sweden)

    Junxia Li

    Full Text Available Many studies have shown that cyclic adenosine-5'-monophosphate (cAMP-dependent protein kinase A (PKA and G-protein-coupled receptor 3 (GPR3 are crucial for controlling meiotic arrest in oocytes. However, it is unclear how gonadotropins modulate these factors to regulate oocyte maturation, especially by gap junctional communication (GJC. Using an in vitro meiosis-arrested mouse cumulus-oocyte complex (COC culture model, we showed that there is a close relationship between follicle-stimulating hormone (FSH and the PKA type I (PKAI and GPR3. The effect of FSH on oocyte maturation was biphasic, initially inhibitory and then stimulatory. During FSH-induced maturation, rapid cAMP surges were observed in both cumulus cells and oocyte. Most GJC between cumulus cells and oocyte ceased immediately after FSH stimulation and recommenced after the cAMP surge. FSH-induced maturation was blocked by PKAI activator 8-AHA-cAMP. Levels of PKAI regulatory subunits and GPR3 decreased and increased, respectively, after FSH stimulation. In the presence of the GJC inhibitor carbenoxolone (CBX, FSH failed to induce the meiotic resumption and the changes in PKAI, GPR3 and cAMP surge in oocyte were no longer detected. Furthermore, GPR3 was upregulated by high cAMP levels, but not by PKAI activation. When applied after FSH stimulation, the specific phosphodiesterase 3A (PDE3A inhibitor cilostamide immediately blocked meiotic induction, regardless of when it was administered. PKAI activation inhibited mitogen-activated protein kinase (MAPK phosphorylation in the oocytes of COCs, which participated in the initiation of FSH-induced meiotic maturation in vitro. Just before FSH-induced meiotic maturation, cAMP, PKAI, and GPR3 returned to basal levels, and PDE3A activity and MAPK phosphorylation increased markedly. These experiments show that FSH induces a transient increase in cAMP levels and regulates GJC to control PKAI and GPR3 activities, thereby creating an inhibitory

  17. A novel innexin2 forming membrane hemichannel exhibits immune responses and cell apoptosis in Scylla paramamosain.

    Science.gov (United States)

    Wang, Shu-Ping; Chen, Fang-Yi; Dong, Li-Xia; Zhang, Ya-Qun; Chen, Hui-Yun; Qiao, Kun; Wang, Ke-Jian

    2015-11-01

    Innexins are a class of transmembrane proteins that are important for embryonic development, morphogenesis and electrical synapse formation. In the present study, a novel innexin2 gene from Scylla paramamosain was named Sp-inx2 and characterized. The complete cDNA and genomic DNA sequences of Sp-inx2 were revealed. Sp-inx2 mRNA transcripts were distributed in various tissues of S. paramamosain and were most abundant in the hemocytes. The Sp-inx2 was significantly upregulated in hemocyte, gill and hepatopancreas tissues with the challenge of either Vibrio alginolyticus, Vibrio parahaemolyticus or lipopolysaccharides (LPSs) when analyzed at 3 and 6 h using quantitative real-time PCR, suggesting that it could activate an immune response against the challenge of LPSs or Vibrio species. Using the chemical inhibitors carbenoxolone and probenecid, the absorption of the fluorescent dye Lucifer yellow decreased in the primary cultured hemocytes of crabs, thus confirming that hemichannels composed of Sp-inx2 existed in the crab hemocytes. With LPS stimulation, the level of mRNA transcripts and protein expression of Sp-inx2 in the same cultured hemocytes gradually increased from 6 to 48 h, while the activity of hemichannels was down-regulated at 6 and 12 h, demonstrating that LPSs could modulate the absorption activity of hemichannels in addition to its upregulation of Sp-inx2 gene expression. Furthermore, the dye uptake rate in HeLa cells in which Sp-inx2 was ectopically expressed increased dramatically but the increase was significantly down-regulated with the addition of 50 μg mL(-1) LPS, suggesting that the LPS stimulation could effectively reduce the activity of hemichannels. Interestingly, with the ectopic expression of Sp-inx2 in HeLa and EPC cells, apoptosis spontaneously occurred in both cultured cell lines when detected using TUNEL assay. In summary, a new Sp-inx2 gene was first characterized in a marine animal S. paramamosain and it had a function associated with

  18. Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy.

    Directory of Open Access Journals (Sweden)

    Clint Gray

    Full Text Available Maternal undernutrition results in elevated blood pressure (BP and endothelial dysfunction in adult offspring. However, few studies have investigated interventions during early life to ameliorate the programming of hypertension and vascular disorders. We have utilised a model of maternal undernutrition to examine the effects of pre-weaning growth hormone (GH treatment on BP and vascular function in adulthood. Female Sprague-Dawley rats were fed either a standard control diet (CON or 50% of CON intake throughout pregnancy (UN. From neonatal day 3 until weaning (day 21, CON and UN pups received either saline (CON-S, UN-S or GH (2.5 ug/g/day(CON-GH, UN-GH. All dams were fed ad libitum throughout lactation. Male offspring were fed a standard diet until the end of the study. Systolic blood pressure (SBP was measured at day 150 by tail cuff plethysmography. At day 160, intact mesenteric vessels mounted on a pressure myograph. Responses to pressure, agonist-induced constriction and endothelium-dependent vasodilators were investigated to determine vascular function. SBP was increased in UN-S groups and normalised in UN-GH groups (CON-S 121±2 mmHg, CON-GH 115±3, UN-S 146±3, UN-GH 127±2. Pressure mediated dilation was reduced in UN-S offspring and normalised in UN-GH groups. Vessels from UN-S offspring demonstrated a reduced constrictor response to phenylephrine and reduced vasodilator response to acetylcholine (ACh. Furthermore, UN-S offspring vessels displayed a reduced vasodilator response in the presence of L-NG-Nitroarginine Methyl Ester (L-NAME, carbenoxolone (CBX, L-NAME and CBX, Tram-34 and Apamin. UN-GH vessels showed little difference in responses when compared to CON and significantly increased vasodilator responses when compared to UN-S offspring. Pre-weaning GH treatment reverses the negative effects of maternal UN on SBP and vasomotor function in adult offspring. These data suggest that developmental cardiovascular programming is

  19. Co-culture of neural crest stem cells (NCSC and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death.

    Directory of Open Access Journals (Sweden)

    Anongnad Ngamjariyawat

    Full Text Available PURPOSE: Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. PROCEDURES: Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry, nitrite production (Griess reagent, protein localization (immunofluorescence and protein phosphorylation (flow cytometry. RESULTS: We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii NCSC-derived laminin production; (iii decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv decreased beta-TC6 cell phosphorylation of ERK(T202/Y204, FAK(Y397 and FAK(Y576. Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. CONCLUSION: In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta

  20. Effects of Connexin 43 expression on ischemia-induced ventricular arrhythmias in aged rats%缝隙连接蛋白43在老年大鼠缺血性室性心律失常中的作用

    Institute of Scientific and Technical Information of China (English)

    胡笑容; 周晓亚; 徐昌武; 崔博; 温华知; 鲁志兵; 江洪

    2010-01-01

    tachyarrhythmias during acute myocardial ischemia( MI )in aged rats. Methods Male Sprague-Dawley rats[Adult group ( ≤ 4 months) and Aged group ( ≥24 months)]:MI (n = 15 ):ligated left anterior descending coronary for 30 minutes; MI-vagal nerve stimulation(VNS) ( n = 15 ); MI-VNS-atropine (0. 5 mg/kg, n = 13 ); MI-VNS-carbenoxolone ( 10 mg/kg, n = 11 ); sham operation (SO, n = 10):without coronary ligation. Ventricular arrhythmias were monitored by an electrocardiogram. Cx43 protein expression was analyzed by Western blot. Results During the 30 minutes ligation,incidences of ventricular tachycardia (VT) and ventricular fibrillation(VF) in aged rats increased significantly compared to those of adult rats ( P < 0. 05 ). VNS did not affect the occurrence of VT and VF ( both P > 0.05 ); however, VNS suppressed the occurrence of irreversible VF ( P < 0. 05 ); both atropine and carbenoxolone ( a gap junction inhibitor) could abolish the effect of VNS on ischemia-induced irreversible VF ( both P <0. 05). Ischemia did not result in changes of total Cx43 amount in adult and aged rats compared to that of SO group,respectively. The amount of nonphosphorylated Cx43 was increased markedly in adult and aged rats compared to that of SO group,respectively.Cx43 dephosphorylation induced by ischemia was significantly suppressed by VNS in adult and aged rats( P <0. 05 ). However,the amount of total Cx43 of SO group in aged rats was significantly decreased by 50% compared to that of SO group in adult rats ( P < 0. 05 ). Conclusion The present study suggested that the incidence of ischemia-induced ventricular tachyarrhythmias increased markedly and the anti-arrhythmic effect of VNS was decreased significantly in aged rats, which may be associated with reduction of Cx43 protein of ventricle in aged rats.