WorldWideScience

Sample records for carbene

  1. Carbenes and Nitrenes

    Science.gov (United States)

    Coyle, J. D.

    1974-01-01

    Summarizes the general methods for carbene and nitrene formation and the reactions in which carbenes and nitrenes are involved such as their reactions with transition metal atoms, alkenes of aromatic compounds, and uncharged oxygen or nitrogen nucleophiles. (CC)

  2. Uranium nucleophilic carbene complexes

    International Nuclear Information System (INIS)

    The only stable f-metal carbene complexes (excluding NHC) metals f present R2C2- groups having one or two phosphorus atoms in the central carbon in alpha position. The objective of this work was to develop the chemistry of carbenes for uranium (metal 5f) with the di-anion C{Ph2P(=S)}22- (SCS2-) to extend the organometallic chemistry of this element in its various oxidation states (+3-+6), and to reveal the influence of the 5f orbitals on the nature and reactivity of the double bond C=U. We first isolated the reactants M(SCHS) (M = Li and K) and demonstrated the role of the cation M+ on the evolution of the di-anion M2SCS (M = Li, K, Tl) which is transformed into LiSCHS in THF or into product of intramolecular cyclization K2[C(PhPS)2(C6H4)]. We have developed the necessary conditions mono-, bis- and tris-carbene directly from the di-anion SCS2- and UCl4, as the precursor used in uranium chemistry. The protonolysis reactions of amides compounds (U-NEt2) by the neutral ligand SCH2S were also studied. The compounds [Li(THF)]2[U(SCS)Cl3] and [U(SCS)Cl2(THF)2] were then used to prepare a variety of cyclopentadienyl and mono-cyclo-octa-tetra-enyliques uranium(IV) carbene compounds of the DFT analysis of compounds [M(SCS)Cl2(py)2] and [M(Cp)2(SCS)] (M = U, Zr) reveals the strong polarization of the M=C double bond, provides information on the nature of the σ and π interactions in this binding, and shows the important role of f orbitals. The influence of ancillary ligands on the M=C bond is revealed by examining the effects of replacing Cl- ligands and pyridine by C5H5- groups. Mulliken and NBO analyzes show that U=C bond, unlike the Zr=C bond, is not affected by the change in environment of the metal center. While the oxidation tests of carbene complexes of U(IV) were disappointing, the first carbene complex of uranium (VI), [UO2(SCS)(THF)2], was isolated with the uranyl ion UO22+. The reactions of compounds UO2X2 (X = I, OTf) with anions SCS2- and SCHS- provide the

  3. Computational Chemistry Studies on the Carbene Hydroxymethylene

    Science.gov (United States)

    Marzzacco, Charles J.; Baum, J. Clayton

    2011-01-01

    A density functional theory computational chemistry exercise on the structure and vibrational spectrum of the carbene hydroxymethylene is presented. The potential energy curve for the decomposition reaction of the carbene to formaldehyde and the geometry of the transition state are explored. The results are in good agreement with recent…

  4. Electronic bond tuning with heterocyclic carbenes

    KAUST Repository

    Falivene, Laura

    2013-01-01

    We discuss the impact of the nature of the heterocyclic carbene ring, when used as a complex forming ligand, on the relative stability of key intermediates in three typical Ru, Pd and Au promoted reactions. Results show that P-heterocyclic carbenes have a propensity to increase the bonding of the labile ligand and of the substrate in Ru-promoted olefin metathesis, whereas negligible impact is expected on the stability of the ruthenacycle intermediate. In the case of Pd cross-coupling reactions, dissociation of a P-heterocyclic carbene is easier than dissociation of the N-heterocyclic analogue. In the case of the Au-OH synthon, the Au-OH bond is weakened with the P-heterocyclic carbene ligands. A detailed energy decomposition analysis is performed to rationalize these results. © 2013 The Royal Society of Chemistry.

  5. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    OpenAIRE

    Diver, Steven T.

    2007-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in en...

  6. Direct estimate of the internal π-donation to the carbene centre within N-heterocyclic carbenes and related molecules

    Science.gov (United States)

    Andrada, Diego M; Holzmann, Nicole; Hamadi, Thomas

    2015-01-01

    Summary Fifteen cyclic and acylic carbenes have been calculated with density functional theory at the BP86/def2-TZVPP level. The strength of the internal X→p(π) π-donation of heteroatoms and carbon which are bonded to the C(II) atom is estimated with the help of NBO calculations and with an energy decomposition analysis. The investigated molecules include N-heterocyclic carbenes (NHCs), the cyclic alkyl(amino)carbene (cAAC), mesoionic carbenes and ylide-stabilized carbenes. The bonding analysis suggests that the carbene centre in cAAC and in diamidocarbene have the weakest X→p(π) π-donation while mesoionic carbenes possess the strongest π-donation. PMID:26877795

  7. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  8. A Brief Survey of our Contribution to Stable Carbene Chemistry

    OpenAIRE

    Martin, David; Melaimi, Mohand; Soleilhavoup, Michele; Bertrand, Guy

    2011-01-01

    This personal account summarizes our work, beginning with the discovery of the first stable carbene in 1988 up until the recent isolation of mesoionic carbenes. It explains why we have moved our focus from acyclic to cyclic carbenes, and shows that these stable species are not limited to the role of ligand for transition metals, but that they are also powerful agents for the activation of small molecules, and for the stabilization of highly reactive diamagnetic and paramagnetic species.

  9. Nickel N-heterocyclic carbene complexes in homogeneous catalysis

    NARCIS (Netherlands)

    Berding, Joris

    2009-01-01

    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous ca

  10. Insights Into the Carbene-Initiated Aggregation of [Fe(cot)2

    KAUST Repository

    Lavallo, Vincent

    2010-11-25

    Carbenes attack! Stable carbenes react with [Fe(cot)2] in very different ways. Whereas the classical N-heterocyclic carbenes induce the formation of tetra- and trimetallic iron clusters, abnormal NHCs and carbocyclic carbenes (BACs) form mono- and bimetallic iron complexes. Cyclic (alkyl)(amino)carbenes (CAACs) react with [Fe(cot)2] in a completely different manner, namely through outersphere [4+1] cycloaddition.

  11. 1,2 Migration in Carbenoid and Carbene Reactions

    Institute of Scientific and Technical Information of China (English)

    MA Ming; JIANG Nan; SHI Wei-Feng; WANG Jian-Bo

    2003-01-01

    @@ 1,2-Hydride, 1,2-alkyl and 1,2-aryl migrations are common in free carbene chemistry, and they are also fre quently encountered in the reactions of metal carbenes. In some cases, these migration reactions can compete with the typical reactions of metal carbenes, such as X-H (X = Si, C, O, N, S, etc. ) insertions and cyclopropanations. [1] The 1,2-migration also found synthetic application. An example is the SnCl2-promoted 1,2-hydride migration of α-diazo-β-hydroxy esters, known as Roskamp homologation, which leads to the formation of β-keto esters. [2

  12. Synthesis, spectroscopic characterization and electronic structure of some new Cu(I) carbene complexes

    Indian Academy of Sciences (India)

    Chinnappan Sivasankar; Christina Baskaran; Ashoka G Samuelson

    2006-05-01

    Reaction of oligomeric Cu(I) complexes [Cu{-S-C(=NR)(O-Ar-CH3)}] with Lewis acids gave Cu(I) carbene complexes, which were characterized by 1H and 13C NMR spectroscopy. Cu(I) carbene complexes could be directly generated from RNCS, Cu(I)-OAr and Lewis acids; this method can be used to prepare Cu(I) carbene complexes with different substitutents on the carbene carbon. The complexes were unreactive towards olefins and do not undergo cyclopropanation. Electronic structure calculations (DFT) show that the charge on the carbene carbon plays an important role in controlling the reactivity of the carbene complex.

  13. Enantiocontrol in Macrocycle Formation from Catalytic MetalCarbene Transformations

    Institute of Scientific and Technical Information of China (English)

    DOYLE, Michael P.; DOYLE, Michael P; HU, Wen-Hao(胡文浩); 胡文浩

    2001-01-01

    The development of catalytic metal carbene transformations for the construction of macrocyclic lactones has dramatically increased their synthetic advantages.This is the first review of this developing methodology.

  14. Nickel N-heterocyclic carbene complexes in homogeneous catalysis

    OpenAIRE

    Berding, Joris

    2009-01-01

    Described in this thesis are the investigations into the chemistry of N-heterocyclic carbene (NHC) ligands and transition-metal complexes thereof. Specifically, a variety of N-heterocyclic carbene complexes of nickel were prepared, characterized and used as catalysts in three types of homogeneous catalytic processes. First, nickel(II) complexes of monodentate NHC ligands were successfully used as catalysts in the hydrosilylation of internal alkynes. Second, nickel(II) complexes bearing bident...

  15. Metal carbenes in homogeneous alkene metathesis: computational investigations

    OpenAIRE

    du Toit, J I; Van Sittert, C.G.C.E.; H. C. M. Vosloo

    2013-01-01

    This paper demonstrates the contribution of molecular modeling as a tool to understanding alkene metathesis e by giving an overview of computational studies done of the four main types of metal carbenes tested in homogeneous alkene metathesis as catalysts after the discovery of the Chauvin mechanism. Three areas were discussed, namely: properties of transition metal complexes, the theoretical treatment of the four main types of metal carbenes and the computational studies done on ...

  16. A molecular mechanical model for N-heterocyclic carbenes.

    Science.gov (United States)

    Gehrke, Sascha; Hollóczki, Oldamur

    2016-08-10

    In this work we present a set of force fields for nine synthetically relevant and/or structurally interesting N-heterocyclic carbenes, including imidazol-, thiazol-, triazol-, imidazolidin-, and pyridine-ylidenes. The bonding parameters were calculated by using a series of geometry optimizations by ab initio methods. For fitting the non-bonding interactions, a water molecule was employed as a probe. The interaction energy between the carbene and the probe molecule was sampled along two coordinates for each carbene, representing the interaction through the lone pair, or the π system of the molecule. The corresponding reference interaction energies were obtained by CCSD(T)/CBS calculations. To describe the direction dependence of the intermolecular potential energy, an extra, massless Coulombic interaction site was included for all carbenes, which represents the lone pair of the divalent carbon atom. The resulting fitted carbene force field (CaFF) showed a robust behavior regarding probe molecule, as changing the molecular mechanical water model, or employing, instead, an OPLS methanol molecule did not introduce significant deviations in the potential energies. The obtained CaFF models are easy to merge with standard OPLS or AMBER force fields, therefore the molecular simulations of a large number of N-heterocyclic carbenes becomes available. PMID:27426687

  17. A cyclic (alkyl)(amido)carbene: synthesis, study and utility as a desulfurization reagent.

    Science.gov (United States)

    McCarty, Zachary R; Lastovickova, Dominika N; Bielawski, Christopher W

    2016-04-01

    The synthesis and study of a cyclic (alkyl)(amido)carbene is described. The carbene was found to undergo C-H insertion at low temperatures, formed cyclopropenes upon exposure to alkynes, and facilitated desulfurization reactions. Spectroscopic studies revealed that the carbene is strongly π-accepting but retains a complimentary degree of σ-donating properties. PMID:27010415

  18. Two Equilibria of (N-Methyl-3-pyridinium)chlorocarbene, a Cationic Carbene.

    Science.gov (United States)

    Cang, Hui; Moss, Robert A; Krogh-Jespersen, Karsten

    2016-02-11

    Equilibrium constants and the associated thermodynamic parameters are reported for the equilibria established between the cationic carbene (N-methyl-3-pyridinium)chlorocarbene tetrafluoroborate (MePyr(+)CCl BF4(-), 3) and 1,3,5-trimethoxybenzene (TMB) to form a carbene-TMB complex, as well as between carbene 3 and chloride ion to form the zwitterion, N-methyl-3-pyridinium dichloromethide (10). These equilibrium constants and thermodynamic parameters are contrasted with analogous data for several related carbenes, and the influence of the pyridinium unit in carbene 3 is thereby highlighted. Computational studies augment and elucidate the experimental results. PMID:26830199

  19. The reactions of anthronylidene carbene with some heterocyclic compounds

    International Nuclear Information System (INIS)

    The action of the anthronylidene carbene, generated by photochemical decomposition of 9-diazo 10-anthron, on four heterocyclic compounds (furan, thiophene, 1-methyl-pyrrole and 2,5-dihydrofuran) has been examined. Two classical carbene reactions have been observed: the addition on double bond (furan, thiophene, 1-methylpyrrole) and hydrogen atom abstraction of the heterocyclic compound (2,5-dihydrofuran). In the case of furan and thiophene, the cyclo-propanic compound resulting from the addition is spontaneously transformed into an ethylenic derivative by valence isomerization. The furan derivative undergoes a cis-trans isomerization, while the thiophene one undergoes an extra carbene attack. In the case of 1-methylpyrrole, the corresponding cyclo-propanic compound undergoes a ring cleavage, followed by a hydrogen atom migration leading to the formation of a substituted anthron. Only an allylic hydrogen atom selective abstraction of heterocyclic compound takes place in the reaction of anthronylidene carbene with 2,5-dihydrofuran. The asymmetrical coupling of radicals so obtained yields the corresponding substituted anthron. (author)

  20. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  1. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium‐to‐Gold Transmetalation

    Science.gov (United States)

    Werlé, Christophe; Goddard, Richard

    2015-01-01

    Abstract The dirhodium carbene derived from bis(4‐methoxyphenyl)diazomethane and [Rh(tpa)4]⋅CH2Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X‐ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4‐methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  2. The First Crystal Structure of a Reactive Dirhodium Carbene Complex and a Versatile Method for the Preparation of Gold Carbenes by Rhodium-to-Gold Transmetalation.

    Science.gov (United States)

    Werlé, Christophe; Goddard, Richard; Fürstner, Alois

    2015-12-14

    The dirhodium carbene derived from bis(4-methoxyphenyl)diazomethane and [Rh(tpa)4 ]⋅CH2 Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X-ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4-methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2 ] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect. PMID:26534892

  3. Continuous-Flow N-Heterocyclic Carbene Generation and Organocatalysis.

    Science.gov (United States)

    Di Marco, Lorenzo; Hans, Morgan; Delaude, Lionel; Monbaliu, Jean-Christophe M

    2016-03-18

    Two methods were assessed for the generation of common N-heterocyclic carbenes (NHCs) from stable imidazol(in)ium precursors using convenient and straightforward continuous-flow setups with either a heterogeneous inorganic base (Cs2 CO3 or K3 PO4 ) or a homogeneous organic base (KN(SiMe3 )2 ). In-line quenching with carbon disulfide revealed that the homogeneous strategy was most efficient for the preparation of a small library of NHCs. The generation of free nucleophilic carbenes was next telescoped with two benchmark NHC-catalyzed reactions; namely, the transesterification of vinyl acetate with benzyl alcohol and the amidation of N-Boc-glycine methyl ester with ethanolamine. Both organocatalytic transformations proceeded with total conversion and excellent yields were achieved after extraction, showcasing the first examples of continuous-flow organocatalysis with NHCs. PMID:26880372

  4. Biscarbene palladium(II) complexes. Reactivity of saturated versus unsaturated N-heterocyclic carbenes

    NARCIS (Netherlands)

    C.F. Fu; C.C. Lee; Y.H. Liu; S.M. Peng; S. Warsink; C.J. Elsevier; J.T. Chen; S.T. Liu

    2010-01-01

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by 1H and 13C NMR spectroscopy as well as X-ray diffraction analysis. The r

  5. N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol

    OpenAIRE

    Guang-Fen Du; Hao Guo; Ying Wang; Wen-Juan Li; Wei-Jie Shi; Bin Dai

    2015-01-01

    An organocatalytic protocol for the synthesis of dimethyl carbonate has been developed. Under the catalysis of 5 mol% N-heterocyclic carbenes, ethylene carbonate undergoes transesterification reaction with methanol under very mild reaction conditions, producing dimethyl carbonate with high efficiency. Furthermore, this N-heterocyclic carbene promoted transesterification can be scaled-up easily without lose of the conversion of dimethyl carbonate.

  6. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Science.gov (United States)

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  7. "Decarbonization" of an imino N-heterocyclic carbene via triple benzyl migration from hafnium

    Science.gov (United States)

    An imino N-heterocyclic carbene underwent three sequential benzyl migrations upon reaction with tetrabenzylhafnium, resulting in complete removal of the carbene carbon from the ligand. The resulting eneamido-amidinato hafnium complex showed alkene polymerization activity comparable to that of a prec...

  8. Organometallic rhenium(III) chalcogenide clusters: coordination of N-heterocyclic carbenes.

    Science.gov (United States)

    Durham, Jessica L; Wilson, Wade B; Huh, Daniel N; McDonald, Robert; Szczepura, Lisa F

    2015-07-01

    The preparation of rhenium based octahedral clusters containing N-heterocyclic carbenes is described. These represent the first examples of [M6(μ3-Q)8](n+) or [M6(μ3-X)8](n+) clusters to contain a carbene ligand of any type (NHC, Fischer or Schrock). Surprisingly, the NHC ligands attenuate their luminescent properties. PMID:26041404

  9. The bicyclo[2.2.2]octyl carbene system as a probe for migratory aptitudes of hydrogen to carbenic centers.

    Science.gov (United States)

    Creary, X; Butchko, M A

    2001-02-28

    A series of tosylhydrazone derivatives of exo-6-substituted bicylo[2.2.2]octan-2-ones have been prepared. Thermal decomposition of the sodium salts of these tosylhydrazones gives carbene-derived products from 1,3-migration of either the C6 hydrogen (perturbed) or the C7 hydrogen (unperturbed), along with smaller amounts of alkenes derived from 1,2-hydrogen migration. The exo-6-substituent strongly activates 1,3-hydrogen migration in the case of SiMe(3) and weakly activates it in the case of CH(3) substitution. Thiomethoxy and carbomethoxy are weakly deactivating, while cyano and methoxy groups are strongly deactivating. B3LYP/6-31G* calculations on these substituted carbenes and transition states are in qualitative agreement with the ease of 1,3-hydrogen migration of perturbed vs unperturbed hydrogen. These experimental results and computational studies suggest carbene stabilization due to the exo-6-silyl group. They also suggest a reactant-like transition state for 1,3-hydrogen migration in which the inductive effect influences ease of migration. In the case of the exo-6-methoxy group, the inductive effect overwhelms any potential resonance-stabilizing effects. PMID:11456755

  10. Synthetic and Structural Studies of N-Heterocyclic Carbene Complexes of Nickel

    Institute of Scientific and Technical Information of China (English)

    WANG,Jun-Wen; XU,Fang-Bo; LI,Qiang-Shan; SONG,Hai-Bin; LIU,Yong-Sheng; ZHANG,Zheng-Zhi

    2004-01-01

    @@ Transition metal complexes of stable N-heterocyclic carbenes have recently gained increasing attention as pre-catalysts for a number of important reactions primarily based on the analogy between N-heterocyclic carbenes and strong ó-donating tertiary phosphines,[1] Although a large number of transition-metal carbene complexes have been reported, very few incorporate chelating carbenes were reported.[2,3] Therefore, we have set out to prepare and study transition-metal compounds with chelating di-N-heterocyclic carbenes, and we now report new dicationic tetra(carbine)nickel(Ⅱ) complexes in this class (Scheme 1). Their structures have been determined by single-crystal X-ray diffraction studies (Figure 1).

  11. Highly Active Carbene Ruthenium Catalyst for Metathesis of 1-Hexene

    Institute of Scientific and Technical Information of China (English)

    BAI Chen-Xi; ZHANG Zhi-Qiang; L(U) Xiao-Bing; HE Ren; ZHANG Wen-Zhen; LU Shu-Lai

    2006-01-01

    A new carbene ruthenium complex, 1,3-bis(2,6-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene)(PPh3)Cl2-Ru=CHPh, was synthesized and used as catalyst for the metathesis of 1-hexene. The resulting complex exhibited very high catalytic activity whose TOF is up to 6680 h-1. However, at the same time significant olefin isomerization was observed and could be surpressed by changing reaction conditions, such as temperature, time, alkene/Ru molar ratio and solvent.

  12. Gold-Catalyzed Reactions via Cyclopropyl Gold Carbene-like Intermediates

    OpenAIRE

    Dorel, Ruth; Echavarren, Antonio M.

    2015-01-01

    Cycloisomerizations of 1,n-enynes catalyzed by gold(I) proceed via electrophilic species with a highly distorted cyclopropyl gold(I) carbene-like structure, which can react with different nucleophiles to form a wide variety of products by attack at the cyclopropane or the carbene carbons. Particularly important are reactions in which the gold(I) carbene reacts with alkenes to form cyclopropanes either intra- or intermolecularly. In the absence of nucleophiles, 1,n-enynes lead to a variety of ...

  13. Unexpected rearrangements in the synthesis of an unsymmetrical tridentate dianionic N-heterocyclic carbene

    KAUST Repository

    Despagnet-Ayoub, Emmanuelle

    2013-01-01

    Starting from the same ethylenediamine species, three valuable carbene precursors were synthesized under differing conditions: a tridentate dianionic N-heterocyclic carbene bearing an aniline, a phenol and a central dihydroimidazolium salt, its benzimidazolium isomer by intramolecular rearrangement and a dicationic benzimidazolium-benzoxazolium salt by changing the Brønsted acid from HCl to HBF4. A DFT study was performed to understand the rearrangement pathway. The structure of a bis[(NCO)carbene] zirconium complex was determined. © 2013 The Royal Society of Chemistry.

  14. Frustrated N-heterocyclic carbene-silylium ion Lewis pairs.

    Science.gov (United States)

    Silva Valverde, Miguel F; Theuergarten, Eileen; Bannenberg, Thomas; Freytag, Matthias; Jones, Peter G; Tamm, Matthias

    2015-05-28

    The reaction of the N-heterocyclic carbene 1,3-di-tert-butyl-4,5-dimethylimidazolin-2-ylidene () with trimethylsilyl iodide, triflate and triflimidate [Me3SiX, X = I, CF3SO3 (OTf), (CF3SO2)2N (NTf2)] by mixing the neat, liquid starting materials afforded the corresponding 2-(trimethylsilyl)imidazolium salts [()SiMe3]X as highly reactive, white crystalline solids. Only the triflimidate (X = NTf2) proved to be stable in solution and could be characterized by means of NMR spectroscopy (in C6D5Br) and X-ray diffraction analysis, whereas dissociation into free and Me3SiOTf was observed for the triflate system, in agreement with the trend derived by DFT calculations; the iodide was too insoluble for characterization. The compounds [()SiMe3]X showed the reactivity expected for frustrated carbene-silylium pairs, and treatment with carbon dioxide, tert-butyl isocyanate and diphenylbutadiyne gave the 1,2-addition products [()CO2SiMe3]X (X = I, OTf, NTf2), [()C(NtBu)OSiMe3]OTf and [()C(Ph)C(SiMe3)CCPh]OTf, respectively. Upon reaction with [AuCl(PPh3)], metal-chloride bond activation was observed, with formation of the cationic gold(i) complexes [()Au(PPh3)]X (X = OTf, NTf2). PMID:25912291

  15. Improving Grubbs' II type ruthenium catalysts by appropriately modifying the N-heterocyclic carbene ligand.

    Science.gov (United States)

    Vieille-Petit, Ludovic; Luan, Xinjun; Gatti, Michele; Blumentritt, Sascha; Linden, Anthony; Clavier, Hervé; Nolan, Steven P; Dorta, Reto

    2009-07-01

    The introduction of N-heterocyclic carbene ligands that incorporate correctly substituted naphthyl side chains leads to increased activity and stability in second generation ruthenium metathesis catalysts. PMID:19557281

  16. Carbene-mediated self-assembly of diamondoids on metal surfaces

    Science.gov (United States)

    Adhikari, Bibek; Meng, Sheng; Fyta, Maria

    2016-04-01

    N-heterocyclic carbenes (NHC)s are emerging as an alternative class of molecules to thiol-based self-assembled monolayers (SAMs), making carbene-based SAMs much more stable under harsh environmental conditions. In this work, we have functionalized tiny diamondoids using NHCs in order to prepare highly stable carbene-mediated diamondoid SAMs on metal substrates. Using quantum-mechanical simulations and two different configurations for the carbene-functionalized diamondoids attached on gold, silver, and platinum surfaces we were able to study in detail these materials. Specifically, we focus on the binding characteristics, stability, and adsorption of the NHC-mediated diamondoid SAMs on the metal surfaces. A preferential binding to platinum surfaces was found, while a modulation of the work function in all cases was clear. The surface morphology of all NHC-based diamondoid SAMs was revealed through simulated STM images, which show characteristic features for each surface.

  17. Fischer carbene complexes with two chromium centers as potential molecular wires

    Czech Academy of Sciences Publication Activity Database

    Metelková, R.; Tobrman, T.; Hoskovcová, I.; Ludvík, Jiří

    Lausanne : International Society of Electrochemistry , 2014. ise142050. [Annual Meeting of the International Society of Electrochemistry /65./. 31.08.2014-05.09.2014, Lausanne] Institutional support: RVO:61388955 Keywords : Fiescher carbene complexes * electron transfer * electrochemistry Subject RIV: CG - Electrochemistry

  18. Activation of 7-Silanorbornadienes by N-Heterocyclic Carbenes: A Selective Way to N-Heterocyclic-Carbene-Stabilized Silylenes.

    Science.gov (United States)

    Lutters, Dennis; Severin, Claudia; Schmidtmann, Marc; Müller, Thomas

    2016-05-11

    The synthesis of hydridosilylenes Ter(H)Si: 3a (Ter: 2,6-bis(2,4,6-trimethylphenyl)phenyl) and Ter*(H)Si: 3b (Ter*: 2,6-bis(2,4,6-triiso-propylphenyl)phenyl) stabilized by the N-heterocyclic carbene (NHC) ImMe4 is reported. The synthesis of stabilized hydridosilylenes 3 was accomplished by a previously unknown NHC-induced fragmentation of silanorbornadiene derivatives. Structural studies of the stabilized silylenes 3 and of its Fe(CO)4 complex 12 accompanied by a theoretical analysis of their bonding situation indicate that stabilized silylenes such as 3 can be regarded as neutral silyl anion equivalents. A computational investigation of the reaction course indicate a virtual one-step reaction between the NHC and the silanorbornadiene. A theoretical assessment of the scope and limitations of this reaction suggests that it is general and can be used also for the synthesis of other carbene analogues such as germylenes and phosphinidenes. PMID:27120697

  19. N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol

    Directory of Open Access Journals (Sweden)

    Guang-Fen Du

    2015-01-01

    Full Text Available An organocatalytic protocol for the synthesis of dimethyl carbonate has been developed. Under the catalysis of 5 mol% N-heterocyclic carbenes, ethylene carbonate undergoes transesterification reaction with methanol under very mild reaction conditions, producing dimethyl carbonate with high efficiency. Furthermore, this N-heterocyclic carbene promoted transesterification can be scaled-up easily without lose of the conversion of dimethyl carbonate.

  20. Abnormal carbenes as ligands in transition metal chemistry: curiosities with exciting perspectives

    OpenAIRE

    Albrecht, Martin

    2009-01-01

    This review compiles the advances achieved in our laboratories using abnormal and less heteroatom-stabilized carbenes as ligands for transition metal chemistry. Fundamental studies allowed the evaluation of the impact of this new class of ligands both electronically and sterically. Based on these results, initial catalytic applications have been devised in the area of H-H and C-H bond activation, demonstrating the potential of abnormal carbenes as unique ligands for transition metals.

  1. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    OpenAIRE

    Antonio Monopoli; Pietro Cotugno; Zambonin, Carlo G.; Francesco Ciminale; Angelo Nacci

    2015-01-01

    The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand...

  2. Metal and carbene organocatalytic relay activation of alkynes for stereoselective reactions.

    Science.gov (United States)

    Namitharan, Kayambu; Zhu, Tingshun; Cheng, Jiajia; Zheng, Pengcheng; Li, Xiangyang; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2014-01-01

    Transition metal and organic catalysts have established their own domains of excellence. It has been expected that merging the two unique domains should provide complimentary or unprecedented opportunities in converting simple raw materials to functional products. N-heterocyclic carbenes alone are excellent organocatalysts. When used with transition metals such as copper, N-heterocyclic carbenes are routinely practiced as strong-coordinating ligands. Combination of an N-heterocyclic carbene and copper therefore typically leads to deactivation of either or both of the two catalysts. Here we disclose the direct merge of copper as a metal catalyst and N-heterocyclic carbenes as an organocatalyst for relay activation of alkynes. The reaction involves copper-catalysed activation of alkynes to generate ketenimine intermediates that are subsequently activated by an N-heterocyclic carbene organocatalyst for stereoselective reactions. Each of the two catalysts (copper metal catalyst and N-heterocyclic carbene organocatalyst) accomplishes its own missions in the activation steps without quenching each other. PMID:24865392

  3. Ab initio study of the transition-metal carbene cations

    Institute of Scientific and Technical Information of China (English)

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  4. N,N'-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity.

    Science.gov (United States)

    Moerdyk, Jonathan P; Schilter, David; Bielawski, Christopher W

    2016-08-16

    Since the first reported isolation of a carbene just over a quarter century ago, the study of such compounds-including stable derivatives-has flourished. Indeed, N-heterocyclic carbenes (NHCs), of which imidazolylidenes and their derivatives are the most pervasive subclass, feature prominently in organocatalysis, as ligands for transition metal catalysts, and as stabilizers of reactive species. However, imidazolylidenes (and many other NHCs) typically lack the reactivity characteristic of electrophilic carbenes, including insertion into unactivated C-H bonds, participation in [2 + 1] cycloadditions, and reaction with carbon monoxide. This has led to debates over whether NHCs are truly carbenic in nature or perhaps better regarded as ylides. The fundamental and synthetic utility of transformations that involve electrophilic carbenes has motivated our group and others to expand the reactivity of NHCs and other stable carbenes to encompass electrophilic carbene chemistry. These efforts have led to the development of the diamidocarbenes (DACs), a stable and unique subset of the NHCs that feature carbonyl groups inserted into the N-heterocyclic scaffold. To date, crystalline five-, six-, and seven-membered DACs have been prepared and studied. Unlike imidazolylidenes, which are often designated as prototypical NHCs, the DACs exhibit a reactivity profile similar to that of bona fide carbenes, reactive species that are less "tamed" by heteroatom π conjugation. The DACs engage in [2 + 1] cycloadditions with electron-rich or -poor alkenes, aldehydes, alkynes, and nitriles, and doing so in a reversible manner in some cases. They also react with isonitriles, reversibly couple to CO, and mediate the dehydrogenation of hydrocarbons. Such rich chemistry may be rationalized in terms of their ambiphilicity: DACs are nucleophilic, as required for some of the reactions above, yet also have electrophilic character, as evidenced by their insertions into unactivated N-H and C-H bonds

  5. Synthesis and Properties of Chelating N-Heterocyclic Carbene Rhodium(I) Complexes: Synthetic Experiments in Current Organometallic Chemistry

    Science.gov (United States)

    Mata, Jose A.; Poyatos, Macarena; Mas-Marza, Elena

    2011-01-01

    The preparation and characterization of two air-stable Rh(I) complexes bearing a chelating N-heterocyclic carbene (NHC) ligand is described. The synthesis involves the preparation of a Ag(I)-NHC complex and its use as carbene transfer agent to a Rh(I) precursor. The so obtained complex can be further reacted with carbon monoxide to give the…

  6. Co(III)-Carbene Radical Approach to Substituted 1H-Indenes.

    Science.gov (United States)

    Das, Braja Gopal; Chirila, Andrei; Tromp, Moniek; Reek, Joost N H; Bruin, Bas de

    2016-07-20

    A new strategy for the catalytic synthesis of substituted 1H-indenes via metalloradical activation of o-cinnamyl N-tosyl hydrazones is presented, taking advantage of the intrinsic reactivity of a Co(III) carbene radical intermediate. The reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of functionalized 1H-indene derivatives. The cheap and easy to prepare low spin cobalt(II) complex [Co(II)(MeTAA)] (MeTAA = tetramethyltetraaza[14]annulene) proved to be the most active catalyst among those investigated, which demonstrates catalytic carbene radical reactivity for a nonporphyrin cobalt(II) complex, and for the first time catalytic activity of [Co(II)(MeTAA)] in general. The methodology has been successfully applied to a broad range of substrates, producing 1H-indenes in good to excellent yields. The metallo-radical catalyzed indene synthesis in this paper represents a unique example of a net (formal) intramolecular carbene insertion reaction into a vinylic C(sp(2))-H bond, made possible by a controlled radical ring-closure process of the carbene radical intermediate involved. The mechanism was investigated computationally, and the results were confirmed by a series of supporting experimental reactions. Density functional theory calculations reveal a stepwise process involving activation of the diazo compound leading to formation of a Co(III)-carbene radical, followed by radical ring-closure to produce an indanyl/benzyl radical intermediate. Subsequent indene product elimination involving a 1,2-hydrogen transfer step regenerates the catalyst. Trapping experiments using 2,2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) radical or dibenzoylperoxide (DBPO) confirm the involvement of cobalt(III) carbene radical intermediates. Electron paramagnetic resonance spectroscopic spin-trapping experiments using phenyl N-tert-butylnitrone (PBN) reveal the radical nature of the reaction. PMID

  7. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • The reaction process of graphene functionalization with CCl2 group in atomic scales was studied. • The potential candidate carbenes CR2 (R = H, F, CN, NO20, NO290, CH3, OCH3, CCH, C6H5) were separately combined with graphene. • The functionalization of graphene nanoribbon with dichlorocarbene group was investigated. • The electronic properties of graphene functionalized by carbene groups were discussed. - Abstract: In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl2 group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR2 (R = H, F, CH3, CN, NO2, OCH3, CCH, C6H5) were added to graphene sheet, and CR2 (R = H, NO2, CH3) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl2 molecules were added to graphene, and different concentrations of CCl2 group can tune graphene's band gap. In addition, the addition of CCl2 group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl2 molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups

  8. Chemical functionalization of graphene by carbene cycloaddition: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Wenyan, E-mail: zanwy11@lzu.edu.cn

    2014-08-30

    Graphical abstract: - Highlights: • The reaction process of graphene functionalization with CCl{sub 2} group in atomic scales was studied. • The potential candidate carbenes CR{sub 2} (R = H, F, CN, NO{sub 2}{sup 0}, NO{sub 2}{sup 90}, CH{sub 3}, OCH{sub 3}, CCH, C{sub 6}H{sub 5}) were separately combined with graphene. • The functionalization of graphene nanoribbon with dichlorocarbene group was investigated. • The electronic properties of graphene functionalized by carbene groups were discussed. - Abstract: In this work, we have systematically studied the structural, energetic and electronic properties of graphene functionalized with carbene groups by using density functional theory. Introducing a low concentration of CCl{sub 2} group in graphene was studied in detail by DFT, and closed cyclopropane-like three-membered ring structure was formed, meanwhile, the potential candidate carbene groups CR{sub 2} (R = H, F, CH{sub 3}, CN, NO{sub 2}, OCH{sub 3}, CCH, C{sub 6}H{sub 5}) were added to graphene sheet, and CR{sub 2} (R = H, NO{sub 2}, CH{sub 3}) groups were expected to be good reactive species to covalently modify graphene. The graphene functionalization with carbene groups above can open graphene's band gap. More CCl{sub 2} molecules were added to graphene, and different concentrations of CCl{sub 2} group can tune graphene's band gap. In addition, the addition of CCl{sub 2} group to graphene edges was investigated, and the stronger binding energy was found. Multiple CCl{sub 2} molecules preferred to be bound with the same edge of graphene nanoribbon. This work provides an insight into the detailed molecular mechanism of graphene functionalization with carbene groups.

  9. Fullerene–Carbene Lewis Acid–Base Adducts

    KAUST Repository

    Li, Huaping

    2011-08-17

    The reaction between a bulky N-heterocylic carbene (NHC) and C60 leads to the formation of a thermally stable zwitterionic Lewis acid-base adduct that is connected via a C-C single bond. Low-energy absorption bands with weak oscillator strengths similar to those of n-doped fullerenes were observed for the product, consistent with a net transfer of electron density to the C60 core. Corroborating information was obtained using UV photoelectron spectroscopy, which revealed that the adduct has an ionization potential ∼1.5 eV lower than that of C60. Density functional theory calculations showed that the C-C bond is polarized, with a total charge of +0.84e located on the NHC framework and -0.84e delocalized on the C 60 cage. The combination of reactivity, characterization, and theoretical studies demonstrates that fullerenes can behave as Lewis acids that react with C-based Lewis bases and that the overall process describes n-doping via C-C bond formation. © 2011 American Chemical Society.

  10. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  11. Highly selective palladium–benzothiazole carbene-catalyzed allylation of active methylene compounds under neutral conditions

    Directory of Open Access Journals (Sweden)

    Antonio Monopoli

    2015-06-01

    Full Text Available The Pd–benzothiazol-2-ylidene complex I was found to be a chemoselective catalyst for the Tsuji–Trost allylation of active methylene compounds carried out under neutral conditions and using carbonates as allylating agents. The proposed protocol consists in a simplified procedure adopting an in situ prepared catalyst from Pd2dba3 and 3-methylbenzothiazolium salt V as precursors. A comparison of the performance of benzothiazole carbene with phosphanes and an analogous imidazolium carbene ligand is also proposed.

  12. Rhodium (II) carbene C-H insertion in water and catalyst reuse

    International Nuclear Information System (INIS)

    A five-session laboratory experiment is described for the synthesis of a beta-lactam via Rh(II) catalysed intramolecular C-H insertion of a alpha-diazo-alpha-ethoxycarbonyl acetamide. The metallo-carbene, responsible for the C-H bond activation, was generated from the diazo substrate and the catalyst Rh2(OAc)4. The high stability and solubility of the catalyst and the exclusive C-H insertion of the Rh-carbene allows the synthesis of this important heterocycle in water and the catalyst reutilization. (author)

  13. Solvent mimicry with methylene carbene to probe protein topography.

    Science.gov (United States)

    Gómez, Gabriela Elena; Monti, José Luis E; Mundo, Mariana Rocío; Delfino, José María

    2015-10-01

    The solvent accessible surface area (SASA) of the polypeptide chain plays a key role in protein folding, conformational change, and interaction. This fundamental biophysical parameter is elusive in experimental measurement. Our approach to this problem relies on the reaction of the minimal photochemical reagent diazirine (DZN) with polypeptides. This reagent (i) exerts solvent mimicry because its size is comparable to water and (ii) shows scant chemical selectivity because it generates extremely reactive methylene carbene. Methylation gives rise to the EM (extent of modification) signal, which is useful for scrutinizing the conformational change triggered by Ca(2+) binding to calmodulin (CaM). The increased EM observed for the full protein is dominated by the enhanced exposure of hydrophobic area in Ca(2+)-CaM. Fragmentation allowed us to quantify the methylene incorporation at specific sites. Peptide 91-106 reveals a major reorganization around the calcium 151 binding site, resulting in local ordering and a greater exposure of the hydrophobic surface. Additionally, this technique shows a high sensitivity to probe recognition between CaM and melittin (Mel). The large decrease in EM indicates the occlusion of a significant hydrophobic area upon complexation. Protection from labeling reveals a larger involvement of the N-terminal and central regions of CaM in this interaction. Despite its smaller size, Mel's differential exposure can also be quantified. Moreover, MS/MS fragmentation realizes the goal of extending the resolution of labeled sites at the amino acid level. Overall, DZN labeling emerges as a useful footprinting method capable of shedding light on physiological conformational changes and interactions. PMID:26348271

  14. Carbene insertion into a P-H bond: parent phosphinidene-carbene adducts from PH3 and bis(phosphinidene)mercury complexes.

    Science.gov (United States)

    Bispinghoff, Mark; Tondreau, Aaron M; Grützmacher, Hansjörg; Faradji, Charly A; Pringle, Paul G

    2016-04-14

    PH3 reacts with the in situ generated N-heterocyclic carbene DippNHC* (DippNHC* = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) to give the phosphanyl-imidazolidine [(Dipp)NHC*-H]-[PH2]. Upon treatment with an ortho-quinone, [(Dipp)NHC*-H]-[PH2] is dehydrogenated to give the parent phosphinidene-carbene adduct (Dipp)NHC*[double bond, length as m-dash]PH. Alternative routes to [(Dipp)NHC*-H]-[PH2] and (Dipp)NHC*[double bond, length as m-dash]PH employ NaPH2 and (TMS)3P7 (TMS = trimethylsilyl), respectively, as phosphorus sources. The adduct (Dipp)NHC*[double bond, length as m-dash]PH and the related adduct (Dipp)NHC[double bond, length as m-dash]PH ((Dipp)NHC = bis(2,6-diisopropylphenyl)imidazol-2-ylidene) possessing an unsaturated NHC backbone both react with HgCl2 to give the bis(carbene-phosphinidenyl) complexes [((Dipp)NHC*[double bond, length as m-dash]P)2Hg] and [((Dipp)NHC[double bond, length as m-dash]P)2Hg]. PMID:26122315

  15. N-heterocyclic carbene copper(I) catalysed N-methylation of amines using CO2

    KAUST Repository

    Santoro, Orlando

    2015-09-30

    The N-methylation of amines using CO2 and PhSiH3 as source of CH3 was efficiently performed using a N-heterocyclic carbene copper(I) complex. The methodology was found compatible with aromatic and aliphatic primary and secondary amines. Synthetic and computational studies have been carried out to support the proposed reaction mechanism for this transformation.

  16. Mild and rational synthesis of palladium complexes comprising C(4)-bound N-heterocyclic carbenes

    OpenAIRE

    Kluser, Evelyne; Neels, Antonia; Albrecht, Martin

    2007-01-01

    Oxidative addition of pyridyl-functionalised 4-iodoimidazolium salts to palladium(0) gives catalytically active complexes in which the N-heterocyclic carbene is bound to the palladium(II) centre in a non-classical bonding mode via C(4).

  17. Synthesis, structure and DFT study of cymantrenyl Fischer carbene complexes of group VI and VII transition metals

    Science.gov (United States)

    Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé

    2016-02-01

    Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.

  18. Dynamic Behavior of N-Heterocyclic Carbene Boranes: Boron-Carbene Bonds in B,B-Disubstituted N,N-Dimethylimidazol-2-ylidene Boranes Have Substantial Rotation Barriers.

    Science.gov (United States)

    Damodaran, Krishnan; Li, Xiben; Pan, Xiangcheng; Curran, Dennis P

    2015-05-01

    Dynamic NMR spectroscopy has been used to measure rotation barriers in five B,B-disubstituted 1,3-dimethylimidazol-2-ylidene boranes. The barriers are attributed to the sp(2)-sp(3) bond between C(1) of the N-heterocyclic carbene ring and the boron atom. Bonds to boron atoms bearing a thexyl (1,1,2-trimethylpropyl) group show especially high barriers, ranging from 75-86 kJ mol(-1). 2-Isopropyl-1,3,5-trimethylbenzene is used as a comparable to help understand the nature and magnitude of the barriers. PMID:25843519

  19. Self-Supported N-Heterocyclic Carbenes and Their Use as Organocatalysts.

    Science.gov (United States)

    Ma, Shuang; Toy, Patrick H

    2016-01-01

    The study of N-heterocyclic carbenes (NHCs) as organocatalysts has proliferated in recent years, and they have been found to be useful in a variety of reactions. In an attempt to further expand their utility and to study their recyclability, we designed and synthesized a series of self-supported NHCs in which the catalytic carbene groups form part of a densely functionalized polymer backbone, and studied them as organocatalysts. Of the self-Supported NHCs examined, a benzimidazole derived polymer with flexible linkers connecting the catalytic groups was found to be the most efficient organocatalyst in a model benzoin condensation reaction, and thus it was used in a variety of such reactions, including some involving catalyst recycling. Furthermore, it was also used to catalyze a set of redox esterification reactions involving conjugated unsaturated aldehydes. In all of these reactions the catalyst afforded good yield of the desired product and its polymeric nature facilitated product purification. PMID:27556435

  20. Theoretical Study on the Mechanism of the Cycloaddition Reaction between Alkylidene Carbene and Ethylene

    Institute of Scientific and Technical Information of China (English)

    LU,Xiu-Hui(卢秀慧); ZHAI,Li-Min(翟利民); WU,Wei-Rong(武卫荣)

    2004-01-01

    The mechanism of cycloaddition reaction between singlet alkylidene carbene and ethylene has been investigated with second-order Moller-Plesset perturbation theory (MP2). By using 6-31G* basis , geometry optimization, vibrational analysis and energetics have been calculated for the involved stationary points on the potential energy surface. The results show that the title reaction has two major competition channels. An energy-rich intermediate (INT) is firstly formed between alkylidene carbene and ethylene through a barrier-free exothermic reaction of 63.62 kJ/mol, and the intermediate then isomerizes to a three-membered ring product (P1) and a four-memberd ring product (P2) via transition state TS1 and TS2, in which energy barriers are 47.00 and 51.02 kJ/mol, respectively. P1 is the main product.

  1. Unusual solvation through both p-orbital lobes of a carbene carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hadad, C. Z., E-mail: cacier.hadad@udea.edu.co [Grupo de Química-Física Teórica, Instituto de Química, Universidad de Antioquia, A. A. 1226 Medellín (Colombia); Jenkins, Samantha [College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Flórez, Elizabeth [Departamento de Ciencias Básicas, Universidad de Medellín, Carrera 87 N° 30-65, Medellín (Colombia)

    2015-03-07

    As a result of a configurational space search done to explain the experimental evidence of transient specific solvation of singlet fluorocarbene amide with tetrahydrofuran, we found that the most stable structures consist in a group in which each oxygen of two tetrahydrofuran molecules act as electron donor to its respective empty p-orbital lobe of the carbene carbon atom, located at each side of the carbene molecular plane. This kind of species, which to our knowledge has not been reported before, explains very well the particular experimental characteristics observed for the transient solvation of this system. We postulate that the simultaneous interaction to both p-orbital lobes seems to confer a special stability to the solvation complexes, because this situation moves away the systems from the proximity of the corresponding transition states for the ylide products. Additionally, we present an analysis of other solvation complexes and a study of the nature of the involved interactions.

  2. Covalent Carbene Functionalization of Graphene: Toward Chemical Band-Gap Manipulation.

    Science.gov (United States)

    Sainsbury, Toby; Passarelli, Melissa; Naftaly, Mira; Gnaniah, Sam; Spencer, Steve J; Pollard, Andrew J

    2016-02-01

    In this work, we employ dibromocarbene (DBC) radicals to covalently functionalize solution exfoliated graphene via the formation of dibromocyclopropyl adducts. This is achieved using a basic aqueous/organic biphasic reaction mixture to decompose the DBC precursor, bromoform, in conjunction with a phase-transfer catalyst to facilitate ylide formation and carbene migration to graphene substrates. DBC-functionalized graphene (DBC-graphene) was characterized using a range of spectroscopic and analytical techniques to confirm the covalent nature of functionalization. Modified optical and electronic properties of DBC-graphene were investigated using UV-vis spectroscopy, analysis of electrical I-V transport properties, and noncontact terahertz time-domain spectroscopy. The implications of carbene functionalization of graphene are considered in the context of scalable radical functionalization methodologies for bulk-scale graphene processing and controlled band-gap manipulation of graphene. PMID:26824127

  3. Fe N-Heterocyclic Carbene Complexes as Promising Photosensitizers.

    Science.gov (United States)

    Liu, Yizhu; Persson, Petter; Sundström, Villy; Wärnmark, Kenneth

    2016-08-16

    The photophysics and photochemistry of transition metal complexes (TMCs) has long been a hot field of interdisciplinary research. Rich metal-based redox processes, together with a high variety in electronic configurations and excited-state dynamics, have rendered TMCs excellent candidates for interconversion between light, chemical, and electrical energies in intramolecular, supramolecular, and interfacial arrangements. In specific applications such as photocatalytic organic synthesis, photoelectrochemical cells, and light-driven supramolecular motors, light absorption by a TMC-based photosensitizer and subsequent excited-state energy or electron transfer constitute essential steps. In this context, TMCs based on rare and expensive metals, such as ruthenium and iridium, are frequently employed as photosensitizers, which is obviously not ideal for large-scale implementation. In the search for abundant and environmentally benign solutions, six-coordinate Fe(II) complexes (Fe(II)L6) have been widely considered as highly desirable alternatives. However, not much success has been achieved due to the extremely short-lived triplet metal-to-ligand charge transfer ((3)MLCT) excited state that is deactivated by low-lying metal-centered (MC) states on a 100 fs time scale. A fundamental strategy to design useful Fe-based photosensitizers is thus to destabilize the MC states relative to the (3)MLCT state by increasing the ligand field strength, with special focus on making eg σ* orbitals on the Fe center energetically less accessible. Previous efforts to directly transplant successful strategies from Ru(II)L6 complexes unfortunately met with limited success in this regard, despite their close chemical kinship. In this Account, we summarize recent promising results from our and other groups in utilizing strongly σ-donating N-heterocyclic carbene (NHC) ligands to make strong-field Fe(II)L6 complexes with significantly extended (3)MLCT lifetimes. Already some of the first

  4. Comparison of the Kinetics of 1-Hexene Metathesis by Ruthenium Carbene Catalysts

    Institute of Scientific and Technical Information of China (English)

    Chen Xi BAI; Wen Zhen ZHANG; Ren HE; Yan Hong SUN; Xiao Ping CAI

    2006-01-01

    A kinetic study of two ruthenium carbene catalysts, (PCy3)2Cl2Ru=CHPh 1 (Grubbs catalyst) and a new catalyst [1,3-bis(2,6-dimethylphenyl)4,5-dihydroimidazol-2-ylidene](PPh3)(Cl)2Ru=CHPh 3, were conducted in metathesis of 1-hexene. The kinetic behavior of these catalysts at 40, 50, 60 and 70℃ was compared. Complex 3 has the more active catalytic effect at temperatures 40-70℃.

  5. Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems

    OpenAIRE

    Lesieur, Mathieu

    2015-01-01

    Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic per...

  6. Catalytic applications of magnetic nanoparticles functionalized using iridium N-heterocyclic carbene complexes

    OpenAIRE

    Iglesias Bernardo, Diego; Sabater López, Sara; Azua Barrios, Arturo; Mata Martínez, José Antonio

    2015-01-01

    synthetic modular methodology allows the preparation of catalytic materials based on magnetic nanoparticles with iridium N-heterocyclic carbene (NHC) complexes. Imidazolium salts containing a ketone/aldehyde as a pendant functional group are the key species prepared. The condensation reaction of the Cp*IrNHC–CHO compound with magnetic nanoparticles containing amine groups on the surface yields the covalent anchoring of the iridium complex to the surface of the magnetite. The catalytic propert...

  7. A Dual Lewis Base Activation Strategy for Enantioselective Carbene-Catalyzed Annulations

    OpenAIRE

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A.

    2013-01-01

    A dual activation strategy integrating NHC catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinione methides in an enatioselective formal [4+3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activations modes.

  8. Cyclopentadienyl-functionalised N-heterocyclic carbenes: synthesis, coordination to Mo, Ru, Rh

    OpenAIRE

    Costa, André Pontes da

    2011-01-01

    This thesis deals with the synthesis of cyclopentadienyl-functionalised N-heterocyclic carbenes and its coordination to both middle and late transition metals. One of the goals was to gain chemical knowledge on the reactivity patterns of these complexes, and explore their potential applications in catalysis. The imidazolium salts synthesised in the course of this thesis represent a series containing changes in the electronic and steric parameters. The ligand precursors we...

  9. Masked N-Heterocyclic Carbene-Catalyzed Alkylation of Phenols with Organic Carbonates.

    Science.gov (United States)

    Lui, Matthew Y; Yuen, Alexander K L; Masters, Anthony F; Maschmeyer, Thomas

    2016-09-01

    An easily prepared masked N-heterocyclic carbene, 1,3-dimethylimidazolium-2-carboxylate (DMI-CO2 ), was investigated as a "green" and inexpensive organocatalyst for the alkylation of phenols. The process made use of various low-toxicity and renewable alkylating agents, such as dimethyl- and diethyl carbonate, in a focused microwave reactor. DMI-CO2 was found to be a very active catalyst and excellent yields of a range of aryl alkyl ethers were obtained under relatively benign conditions. The observed difference in the conversion behavior of phenol methylation, in the presence of either the carbene or 1,8-diazabicycloundec-7-ene (DBU) catalyst, was rationalized on the basis of mechanistic investigations. The primary mode of action for the N-heterocyclic carbene is nucleophilic catalysis. Activation of the dialkyl carbonate electrophile results in concomitant evolution of an organo-soluble alkoxide, which deprotonates the phenolic starting material. In contrast, DBU is initially protonated by the phenol and thus consumed. Subsequent regeneration and participation in nucleophilic catalysis only becomes significant after some phenolate alkylation occurs. PMID:27528488

  10. A theoretical study of the mechanism of the addition reaction between carbene and azacyclopropane

    Directory of Open Access Journals (Sweden)

    XIAOJUN TAN

    2010-05-01

    Full Text Available The mechanism of the addition reaction between carbene and azacyclopropane was investigated using the second-order Moller–Plesset perturbation theory (MP2. By using the 6-311+G* basis set, geometry optimization, vibrational analysis and the energy properties of the involved stationary points on the potential energy surface were calculated. From the surface energy profile, it can be predicted that there are two reaction mechanisms. The first one (1 is carbene attack at the N atom of azacyclopropane to form an intermediate, 1a (IM1a, which is a barrier-free exothermic reaction. Then, IM1a can isomerize to IM1b via a transition state 1a (TS1a, in which the potential barrier is 30.0 kJ/mol. Subsequently, IM1b isomerizes to a product (Pro1 via TS1b with a potential barrier of 39.3 kJ/mol. The other one (2 is carbene attack at the C atom of azacyclopropane, firstly to form IM2 via TS2a, the potential barrier is 35.4 kJ/mol. Then IM2 isomerizes to a product (Pro2 via TS2b with a potential barrier of 35.1 kJ/mol. Correspondingly, the reaction energy for the reactions (1 and (2 is –478.3 and –509.9 kJ/mol, respectively. Additionally, the orbital interactions are also discussed for the leading intermediate.

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  12. N-Heterocyclic Carbene-Catalysed Diastereoselective Vinylogous Michael Addition Reaction of gamma-Substituted deconjugated Butenolides

    KAUST Repository

    Guo, Hao

    2015-11-16

    An efficient N-heterocyclic carbene (NHC)-catalysed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol% of the NHC catalyst, both γ-alkyl and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  13. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis

    Directory of Open Access Journals (Sweden)

    Rob De Vreese

    2012-03-01

    Full Text Available The interplay between metals and N-heterocyclic carbenes (NHCs has provided a window of opportunities for the development of novel catalytic strategies within the past few years. The recent successful combination of Brønsted acids with NHCs has added a new dimension to the field of cooperative catalysis, enabling the stereoselective synthesis of functionalized pyrrolidin-2-ones as valuable scaffolds in heterocyclic chemistry. This Commentary will briefly highlight the concept of N-heterocyclic carbene/Brønsted acid cooperative catalysis as a new and powerful methodology in organic chemistry.

  14. Homo- and Heteropolynuclear Complexes Containing Bidentate Bridging 4-Phosphino-N-Heterocyclic Carbene Ligands.

    Science.gov (United States)

    Han, Zeyu; Bates, Joshua I; Strehl, Dominik; Patrick, Brian O; Gates, Derek P

    2016-05-16

    The abnormal reaction of phosphaalkenes with N-heterocyclic carbenes (NHC) offers a convenient method to introduce new functionality at the backbone of an NHC. The 4-phosphino-substituted NHC (1a) derived from 1,3-dimesitylimidazol-2-ylidene (IMes) and MesP═CPh2 is shown to be an effective bifunctional ligand for Au(I) and Pd(II). Several new complexes are reported: 2a: 1a·AuCCl, 3a: 1a·(AuCl)2, 4a: [(1a)2AuC]Cl, 5a: [(1a·AuPCl)2AuC]Cl], and 6a: 1a·(PdC) (AuPCl). The reaction of 4-phosphino-NHC 1b, derived from 1,3-di(cyclohexyl)imidazol-2-ylidene (ICy) and MesP═C(4-C6H4F)2, with (tht)AuCl (2 equiv, tht = tetrahydrothiophene) affords the fascinating tetranuclear 5b [(1b·AuPCl)2AuC][AuCl2]. The molecular structure of 5b features a close Au···Au contact (3.0988(4) Å) between the bis(carbene)gold(I) cation and the dichloroaurate(I) anion. The buried volumes (%Vbur) and Tolman cone angles for representative 4-phosphino-NHCs calculated from structural data are compared to related carbenes and phosphines. The molecular structures are reported for complexes 3a, 4a, 5b, and 6a. PMID:27125258

  15. Backbone tuning in indenylidene–ruthenium complexes bearing an unsaturated N-heterocyclic carbene

    Directory of Open Access Journals (Sweden)

    César A. Urbina-Blanco

    2010-11-01

    Full Text Available The steric and electronic influence of backbone substitution in IMes-based (IMes = 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene N-heterocyclic carbenes (NHC was probed by synthesizing the [RhCl(CO2(NHC] series of complexes to quantify experimentally the Tolman electronic parameter (electronic and the percent buried volume (%Vbur, steric parameters. The corresponding ruthenium–indenylidene complexes were also synthesized and tested in benchmark metathesis transformations to establish possible correlations between reactivity and NHC electronic and steric parameters.

  16. Mechanistic Investigation of the Ruthenium–N-Heterocyclic-Carbene-Catalyzed Amidation of Alcohols and Amines

    DEFF Research Database (Denmark)

    Makarov, Ilya; Fristrup, Peter; Madsen, Robert

    2012-01-01

    The mechanism of the ruthenium–N-heterocyclic-carbene-catalyzed formation of amides from alcohols and amines was investigated by experimental techniques (Hammett studies, kinetic isotope effects) and by a computational study by using dispersion-corrected density functional theory (DFT/ M06). The...... it is one of several slow steps in the catalytic cycle. Rapid scrambling of hydrogen and deuterium at the a position of the alcohol was observed with deuterium-labeled substrates, which implies that the catalytically active species is a ruthenium dihydride. The experimental results were supported by...

  17. Latent ruthenium–indenylidene catalysts bearing a N-heterocyclic carbene and a bidentate picolinate ligand

    Directory of Open Access Journals (Sweden)

    Thibault E. Schmid

    2015-09-01

    Full Text Available A silver-free methodology was developed for the synthesis of unprecedented N-heterocyclic carbene ruthenium indenylidene complexes bearing a bidentate picolinate ligand. The highly stable (SIPr(picolinateRuCl(indenylidene complex 4a (SIPr = 1,3-bis(2-6-diisopropylphenylimidazolidin-2-ylidene demonstrated excellent latent behaviour in ring closing metathesis (RCM reaction and could be activated in the presence of a Brønsted acid. The versatility of the catalyst 4a was subsequently demonstrated in RCM, cross-metathesis (CM and enyne metathesis reactions.

  18. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Directory of Open Access Journals (Sweden)

    Agnieszka Hryniewicka

    2015-12-01

    Full Text Available The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify.

  19. New metathesis catalyst bearing chromanyl moieties at the N-heterocyclic carbene ligand

    Science.gov (United States)

    Suchodolski, Szymon; Wojtkielewicz, Agnieszka; Morzycki, Jacek W

    2015-01-01

    Summary The synthesis of a new type of Hoveyda–Grubbs 2nd generation catalyst bearing a modified N-heterocyclic carbene ligands is reported. The new catalyst contains an NHC ligand symmetrically substituted with chromanyl moieties. The complex was tested in model CM and RCM reactions. It showed very high activity in CM reactions with electron-deficient α,β-unsaturated compounds even at 0 °C. It was also examined in more demanding systems such as conjugated dienes and polyenes. The catalyst is stable, storable and easy to purify. PMID:26877801

  20. Synthesis and Antimicrobial Activity of Novel Ag-N-Hetero-cyclic Carbene Complexes

    Directory of Open Access Journals (Sweden)

    İlknur Özdemir

    2010-04-01

    Full Text Available A series of imidazolidinium ligand precursors are metallated with Ag2O to give silver(I N-heterocyclic carbene complexes. All compounds were fully characterized by elemental analyses, 1H-NMR, 13C-NMR and IR spectroscopy techniques. All compounds studied in this work were screened for their in vitro antimicrobial activities against the standard strains: Enterococcus faecalis (ATCC 29212, Staphylococcus aureus (ATCC 29213, Escherichia coli (ATCC 25922, Pseudomonas aeruginosa (ATCC 27853 and the fungi Candida albicans and Candida tropicalis. The new imidazolidin-2-ylidene silver complexes have been found to display effective antimicrobial activity against a series of bacteria and fungi.

  1. Bis-ligated Ti and Zr complexes of chelating N-heterocyclic carbenes

    KAUST Repository

    El-Batta, Amer

    2011-07-01

    In this communication we report the synthesis of novel titanium and zirconium complexes ligated by bidentate "salicylaldimine-like" N-heterocyclic carbenes (NHC). Double addition of the NHC chelate to either TiCl4(thf)2 or ZrCl4 forms bis-ligated organometallic fragments with a distorted octahedral geometry. These complexes are rare examples of group IV transition-metal NHC adducts. Preliminary catalytic tests demonstrate that in the presence of methylaluminoxane (MAO) these complexes are useful initiators for the polymerization of ethylene and the copolymerization of ethylene with norbornene and 1-octene. © 2011 Elsevier B.V. All rights reserved.

  2. Anionic and zwitterionic carboranyl N-heterocyclic carbene Au(i) complexes.

    Science.gov (United States)

    Fisher, Steven P; El-Hellani, Ahmad; Tham, Fook S; Lavallo, Vincent

    2016-06-14

    The syntheses of the first carboranyl N-heterocyclic carbene complexes with transition metals are reported. Both unsymmetrical mono-anionic and symmetrical dianionic NHCs readily react with ClAuSMe2 to afford unusual zwitterionic and anionic Au(i) dimethyl sulfide adducts. The compounds are characterized by NMR, mass spectrometry, and single crystal X-ray diffraction studies. Percent buried volume (%Vbur) calculations indicate that replacement of an adamantyl group by a hydride substituted icosahedral carborane anion results in a 3.7% increase in %Vbur. PMID:26922968

  3. Atmospheric Hydrogenation of Esters Catalyzed by PNP-Ruthenium Complexes with an N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Ogata, Osamu; Nakayama, Yuji; Nara, Hideki; Fujiwhara, Mitsuhiko; Kayaki, Yoshihito

    2016-08-01

    New pincer ruthenium complexes bearing a monodentate N-heterocyclic carbene ligand were synthesized and demonstrated as powerful hydrogenation catalysts. With an atmospheric pressure of hydrogen gas, aromatic, heteroaromatic, and aliphatic esters as well as lactones were converted into the corresponding alcohols at 50 °C. This reaction protocol offers reliable access to alcohols using an easy operational setup. PMID:27439106

  4. Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(n-heterocyclic carbene) complexes of iron(II)

    KAUST Repository

    Rieb, Julia

    2014-09-15

    The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile. The SC-XRD structures of 2a and 2b show coordination of the bis(carbene) ligand in a bidentate fashion instead of a possible tetradentate coordination. The four other coordination sites of these distorted octahedral complexes are occupied by acetonitrile ligands. Crystallization of 2a in an acetone solution by the slow diffusion of Et2O led to the formation of cisdiacetonitriledi[ bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (3a) with two bis(carbene) ligands coordinated in a bidentate manner and two cis-positioned acetonitrile molecules. Compounds 2a and 2b are the first reported iron(II) carbene complexes with four coordination sites occupied by solvent molecules, and it was demonstrated that those solvent ligands can undergo ligand-exchange reactions.

  5. Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments

    DEFF Research Database (Denmark)

    Käß, Martina; Hohenberger, Johannes; Adelhardt, Mario;

    2014-01-01

    Two novel tripodal ligands, (BIMPNMes,Ad,Me)− and (MIMPNMes,Ad,Me)2–, combining two types of donor atoms, namely, NHC and phenolate donors, were synthesized to complete the series of N-anchored ligands, ranging from chelating species with tris(carbene) to tris(phenolate) chelating arms. The compl...

  6. Heterolytic H2 activation on a carbene-ligated rhodathiaborane promoted by isonido-nido cage opening

    OpenAIRE

    Calvo, Beatriz; Macías, Ramón; Polo, Víctor; Artigas, Maria Jose; Lahoz, Fernando J.; Oro, Luis A.

    2013-01-01

    A new mechanism of H2 activation is reported to occur on a carbene-ligated rhodathiaborane that features metal-thiaborane bifunctional synergistic effects. The key is the creation of vacant coordination sites by an isonido-nido structural transformation leading to the heterolytic H-H bond splitting. © 2013 The Royal Society of Chemistry.

  7. Synthesis of phenanthrene derivatives through the net [5+5]-cycloaddition of prenylated carbene complexes with 2-alkynylbenzaldehyde derivatives

    OpenAIRE

    Menon, Suneetha; Sinha-Mahapatra, Dilip; Herndon, James W.

    2007-01-01

    The reaction of prenylated carbene complexes and 2-alkynylbenzoyl derivatives has been investigated. Phenanthrene derivatives are produced if iodine is added prior to product isolation. Under these conditions alkyl migration reactions occur to form the observed products. The product yields are considerably higher using bis(prenylated) species owing to an increase in the effective molarity of dienophilic entities.

  8. N-Heterocyclic-Carbene-Catalysed Diastereoselective Vinylogous Mukaiyama/Michael Reaction of 2-(Trimethylsilyloxy)furan and Enones

    KAUST Repository

    Wang, Ying

    2015-10-15

    N-heterocyclic carbenes have been utilised as highly efficient nucleophilic organocatalysts to mediate vinylogous Mukaiyama/Michael reactions of 2-(trimethylsilyloxy)furan with enones to afford γ-substituted butenolides in 44-99% yield with 3:1-32:1 diastereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of novel chelating benzimidazole-based carbenes and their nickel(II) complexes: activity in the Kumada coupling reaction

    NARCIS (Netherlands)

    Berding, J.; Lutz, M.; Spek, A.L.; Bouwman, E.

    2009-01-01

    Nickel(II) halide complexes of novel chelating bidentate benzimidazole-based N-heterocyclic carbenes have been prepared from Ni(OAc)2 and bisbenzimidazolium salts. Single-crystal X-ray structure determination on four complexes revealed a cis-geometry on a square-planar nickel center. The complexes a

  10. Stabilities of Immonium Ions Derived from N-Heterocyclic Carbenes Probed by Collision-Induced Dissociation Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Polyakova, Svetlana; Kunetskiy, Roman Alexejevič; Schröder, Detlef

    -, č. 20 (2012), s. 3852-3862. ISSN 1434-193X Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : carbenes * cations * collision-induced dissociation * density functional calculations * electrospray ionization * lipophilic cations * mass spectrometry * phase-transfer catalysis Subject RIV: CC - Organic Chemistry Impact factor: 3.344, year: 2012

  11. Tethered N-heterocyclic carbene-carboranes: unique ligands that exhibit unprecedented and versatile coordination modes at rhodium.

    Science.gov (United States)

    Holmes, Jordan; Pask, Christopher M; Fox, Mark A; Willans, Charlotte E

    2016-05-11

    Four brand new hybrid ligands combining an N-heterocyclic carbene tethered with two isomeric nido-dicarbaundecaborane dianions, a neutral closo-dicarbadodecaborane or a closo-dicarbadodecaborane anion are described. Versatile coordination of the ligands to Rh(I) is demonstrated, in which both NHC and carborane moieties covalently coordinate a metal centre. PMID:27098432

  12. On the mechanism of imine elimination from Fischer tungsten carbene complexes.

    Science.gov (United States)

    Veit, Philipp; Förster, Christoph; Heinze, Katja

    2016-01-01

    (Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (CO)5W=C(NHFc)Fc (W(CO) 5 ( E -2)) is synthesized by nucleophilic substitution of the ethoxy group of (CO)5W=C(OEt)Fc (M(CO) 5 (1 (Et) )) by ferrocenyl amide Fc-NH(-) (Fc = ferrocenyl). W(CO) 5 ( E -2) thermally and photochemically eliminates bulky E-1,2-diferrocenylimine ( E -3) via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E -3 are performed by NMR, IR and UV-vis spectroscopy and liquid injection field desorption ionization (LIFDI) mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO) 5 ( E -2) decays thermally in a first-order rate-law with a Gibbs free energy of activation of ΔG (‡) 298K = 112 kJ mol(-1). Three proposed mechanistic pathways are taken into account and supported by detailed (time-dependent) densitiy functional theory [(TD)-DFT] calculations. The preferred pathway is initiated by an irreversible CO dissociation, followed by an oxidative addition/pseudorotation/reductive elimination pathway with short-lived, elusive seven-coordinate hydrido tungsten(II) intermediates cis (N,H)-W(CO) 4 (H)( Z -15) and cis (C,H)-W(CO) 4 (H)( Z -15). PMID:27559381

  13. Theoretical study on the mechanism of cycloaddition between dimethyl methylene carbene and acetone

    Institute of Scientific and Technical Information of China (English)

    LU Xiuhui; WU Weirong; YU Haibin; XU Yuehua

    2005-01-01

    The mechanism of the cycloaddition reaction of singlet dimethyl methylene carbene and acetone has been studied by using second-order Moller-Plesset perturbation and density functional theory. The geometrical parameters, harmonic vibrational frequencies and energy of stationary points on the potential energy surface are calculated by MP2/6-31G* and B3LYP/6-31G* methods. The results show that path b of the cycloaddition reaction (1) would be the major reactive channel of the cycloaddition reaction between singlet dimethyl methylene carbene and acetone, which proceeds in two steps: i) The two reactants form an energy-rich intermediate (INT1b), which is an exothermic reaction of 23.3 kJ/mol with no energy barrier. ii) The intermediate INT1b isomerizes to a three-membered ring product (P1) via transition state TS1b with energy barrier of 22.2 kJ/mol. The reaction rate of this reaction and its competitive reactions do greatly differ, with excellent selectivity. In view of dynamics and thermodynamics, this reaction is suitable for occurring at 1 atm and temperature range of 300―800 K, in which the reaction will have not only the larger spontaneous tendency and equilibrium constant but also the faster reaction rate.

  14. Impact of Substituents Attached to N-Heterocyclic Carbenes on the Catalytic Activity of Copper Complexes in the Reduction of Carbonyl Compounds with Triethoxysilane

    Institute of Scientific and Technical Information of China (English)

    PENG, Jiajian; CHEN, Lingzhen; XU, Zheng; HU, Yingqian; LI, Jiayun; BAI, Ying; QIU, Huayu; LAI, Guoqiao

    2009-01-01

    By using functionalized imidazolium salts such as 1-allyl-3-alkylimidazolium or 1-alkyi-3-vinylimidazolium salts as carbene ligand precursors, the reduction of aryl ketones with triethoxysilane may be catalyzed by copper salt/imidazolium salt/KO~tBu systems. The functional substituents attached to the N-heterocyclic carbene (NHC) serve to enhance the catalytic activity. Different copper salts also have an effect on the catalytic activity, with copper(Ⅱ) acetate monohydrate being superior to copper(I) chloride.

  15. Effect of CO substitution on the redox properties of Fischer Mo(0) carbene complexes Mo(CO)5=C(Y)(2-Furyl), Y = OEt, NHCy or NH2

    International Nuclear Information System (INIS)

    Highlights: • Oxidation potential (CO)5Mo-carbene > (CO)4(PPh3)Mo-carbene > (CO)3(dppe)Mo-carbene • Different oxidation potential for fac and mer isomers • Different oxidation potential for cis and trans isomers • Lower oxidation potential for amino- than ethoxy carbenes - Abstract: An electrochemical study, complimented by a density functional theory study, on nine Mo(0) Fischer carbene complexes of the formula [(CO)3(L,L′)Mo=C(Y)(2-furyl)] with Y = OEt, NH2 or NHCy; L,L′ = CO,CO; PPh3,CO or dppe (diphenyl phosphinoethane), showed that the Mo-based oxidation process can be systematically tuned by the substitution of the CO groups: (most difficult to oxidize, largest oxidation potential Epa) [(CO)5Mo-carbene complex] > [(CO)4(PPh3)Mo-carbene complex] > [(CO)3(dppe)Mo-carbene complex]. The one-electron reduction of the complexes that is mainly localized on the carbene carbon, followed the same trend

  16. Tuning and Quantifying Steric and Electronic Effects of N-Heterocyclic Carbenes

    KAUST Repository

    Falivene, Laura

    2014-07-12

    This chapter states that the main handles for tuning steric and electronic effects are the substituents on N atoms, the nature of the C4-C5 bridge (either saturated or unsaturated), and the substituents on the C4 and C5 atoms. The initial intuition that steric properties of N-heterocyclic carbenes (NHCs) could be modulated and could impact catalytic behavior stimulated the development of steric descriptors to quantify the steric requirement of different NHCs and, possibly, to compare them with tertiary phosphines. NHCs can be classified as typically strong σ-basic/π-acid ligands, although they have been also shown to exhibit reasonable π-basic properties. This electronic modularity allows NHC ligands to adapt flexibly to different chemical environments represented by a transition metal and the other ligands. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. All rights reserved.

  17. Dimerisation, rhodium complex formation and rearrangements of N-heterocyclic carbenes of indazoles

    Directory of Open Access Journals (Sweden)

    Zong Guan

    2014-04-01

    Full Text Available Deprotonation of indazolium salts at low temperatures gives N-heterocyclic carbenes of indazoles (indazol-3-ylidenes which can be trapped as rhodium complexes (X-ray analysis. In the absence of Rh, the indazol-3-ylidenes spontaneously dimerize under ring cleavage of one of the N,N-bonds and ring closure to an indazole–indole spiro compound which possesses an exocyclic imine group. The E/Z isomers of the imines can be separated by column chromatography when methanol is used as eluent. We present results of a single crystal X-ray analysis of one of the E-isomers, which equilibrate in solution as well as in the solid state. Heating of the indazole–indole spiro compounds results in the formation of quinazolines by a ring-cleavage/ring-closure sequence (X-ray analysis. Results of DFT calculations are presented.

  18. Preparation and reactivity of a Ru(0) phosphino-carbene complex.

    Science.gov (United States)

    Mosaferi, Eliar; Pan, Li; Wang, Tongen; Sun, Yunshan; Pranckevicius, Conor; Stephan, Douglas W

    2016-01-28

    The reaction of the phosphino-carbene MeNC3H2NPtBu2 with RuHCl(CO)(PPh3)3 is shown to give facile access to the Ru(0) species (MeNC3H2NPtBu2)Ru(CO)(PPh3)2 (). This species undergoes oxidative addition of H2 and silanes to give (MeNC3H2NPtBu2)RuH2(CO)(PPh3)2, (MeNC3H2NPtBu2)Ru H(SiRPh2)(CO)(PPh3) (R = Ph 5, H 6) and (MeNC3H2NPtBu2) RuH(PhSi(SCH2CH2)2O)(CO)(PPh3) . PMID:26743813

  19. Superior Oxygen Stability of N-Heterocyclic Carbene-Coated Au Nanocrystals: Comparison with Dodecanethiol.

    Science.gov (United States)

    Ling, Xiang; Schaeffer, Nicolas; Roland, Sylvain; Pileni, Marie-Paule

    2015-12-01

    The stability of Au nanocrystals (NCs) coated with different N-heterocyclic carbenes (NHCs) or dodecanethiol (DDT) to oxygen-based treatments was investigated. A dominant effect of the ligand type was observed with a significantly greater oxygen resistance of NHC-coated Au NCs compared to that of the thiol-based analogues. NHC-coated Au NCs are stable to 10 W oxygen plasma etching for up to 180 s whereas the integrity of DDT-coated Au NCs is strongly affected by the same treatment from 60-80 s. In the latter case, the average size of the NCs (from 2.6 to 6.3 nm) and the method of synthesis have no effect on the stability. NHC-coated Au NCs were found to generate of a smaller quantity of ligand-derived species under molecular oxygen treatment, which could account for the increased stability. PMID:26550843

  20. Tip-induced gating of molecular levels in carbene-based junctions.

    Science.gov (United States)

    Foti, Giuseppe; Vázquez, Héctor

    2016-03-29

    We study the conductance of N-heterocyclic carbene-based (NHC) molecules on gold by means of first-principles calculations based on density-functional theory and non-equilibrium Green's functions. We consider several tip structures and find a strong dependence of the position of the NHC molecular levels with the atomistic structure of the tip. The position of the lowest unoccupied molecular orbital (LUMO) can change by almost 0.8 eV with tip shape. Through an analysis of the net charge transfer, electron redistribution and work function for each tip structure, we rationalize the LUMO shifts in terms of the sum of the work function and the maximum electrostatic potential arising from charge rearrangement. These differences in the LUMO position, effectively gating the molecular levels, result in large conductance variations. These findings open the way to modulating the conductance of NHC-based molecular circuits through the controlled design of the tip atomistic structure. PMID:26891059

  1. Silver-catalyzed silicon-hydrogen bond functionalization by carbene insertion.

    Science.gov (United States)

    Iglesias, M José; Nicasio, M Carmen; Caballero, Ana; Pérez, Pedro J

    2013-01-28

    The catalytic functionalization of silicon-hydrogen bonds by means of the insertion of carbene units :CHCO(2)Et from ethyl diazoacetate (EDA) has been achieved using a silver-based catalyst, constituting the first example of this metal to promote this transformation. Competition experiments have revealed that the relative reactivity of substituted silanes depends on the bond dissociation energy of the Si-H bond (tertiary > secondary > primary for ethyl substituted). In the presence of bulky substituents such order reverts to secondary > primary ≈ tertiary (for phenyl substituted). Screening with other diazo compounds has shown that N(2)C(Ph)CO(2)Et displays similar reactivity to that of EDA, whereas other N(2)C(R)CO(2)Et (R = Me, CO(2)Et) gave lower conversions. PMID:23114570

  2. Abnormal N-heterocyclic carbene main group organometallic chemistry: a debut to the homogeneous catalysis.

    Science.gov (United States)

    Sen, Tamal K; Sau, Samaresh Chandra; Mukherjee, Arup; Hota, Pradip Kumar; Mandal, Swadhin K; Maity, Bholanath; Koley, Debasis

    2013-10-21

    Abnormal N-heterocyclic carbene (aNHC) adducts of zinc(II) (1) and aluminum(III) (2) were synthesized. The compounds were characterized by NMR spectroscopy and elemental analysis. The solid state structures of these complexes (1 and 2) were determined by single crystal X-ray study. Furthermore, these organozinc and organoaluminum adducts (1 and 2) were tested for the ring opening polymerization of cyclic esters. These adducts were found to be quite efficient catalysts for the polymerization of cyclicesters such as rac-lactide (rac-LA), ε-caprolactone (ε-CL), and δ-valerolactone (δ-VL). Furthermore, aNHC zinc adduct has been used as catalyst for the synthesis of a tri-block copolymer. PMID:23945705

  3. The U=C Double Bond: Synthesis and Study of Uranium Nucleophilic Carbene Complexes

    International Nuclear Information System (INIS)

    Treatment of U(BH4)4 with 1 or 3 equiv of Li2(SCS). 1.5Et2O, 1, afforded the actinide carbene complexes U(μ-SCS)3[U(BH4)3]2 (4) and U(μ-SCS)3[Li(Et2O)]2 (6), respectively [SCS = (Ph2P = S)2C]. In THF, complex 4 was transformed into the mononuclear derivative (SCS)U(BH4)2(THF)2 (5). The multiple bond character of the uranium-carbon bond was first revealed by the X-ray crystal structures of the three complexes. The U=C bond in these complexes present a nucleophilic character, as shown by their reaction with a carbonyl derivative. Finally, DFT calculations prove the involvement of both 5f and 6d orbitals in both the σ and the π U-C bonds. (authors)

  4. Nanofiber composites containing N-heterocyclic carbene complexes with antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Elzatahry AA

    2012-06-01

    Full Text Available Ahmed A Elzatahry1,4, Abdullah M Al-Enizi1, Elsayed Ahmed Elsayed2,5, Rachel R Butorac3, Salem S Al-Deyab1, Mohammad AM Wadaan2, Alan H Cowley31Petrochemical Research Chair, Department of Chemistry, 2Chair of Advanced Proteomics & Cytomics Research, Faculty of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, USA; 4Institute of Advanced Technology and New Materials, City for Scientific Research and Technology Applications, New Borg Alrab, Alexandria, Egypt; 5Natural & Microbial Products Department, National Research Centre, Dokki, Cairo, EgyptAbstract: This report concerns nanofiber composites that incorporate N-heterocyclic carbenes and the use of such composites for testing antimicrobial and antifungal activities. The nanofiber composites were produced by electrospinning mixtures of the gold chloride or gold acetate complexes of a bis(iminoacenaphthene (BIAN-supported NHC with aqueous solutions of polyvinyl alcohol (PVA. The products were characterized by scanning-electron microscopy, which revealed that nanofibers in the range of 250–300 nm had been produced. The biological activities of the nanofiber composites were tested against two Gram-positive bacteria, six Gram-negative bacteria, and two fungal strains. No activity was evident against the fungal strains. However, the gold chloride complex was found to be active against all the Gram-positive pathogens and one of the Gram-negative pathogens. It was also found that the activity of the produced nanofibers was localized and that no release of the bioactive compound from the nanofibers was evident. The demonstrated antimicrobial activities of these novel nanofiber composites render them potentially useful as wound dressings.Keywords: nanofiber, electrospinning, N-Heterocyclic carbene, biopolymer, antimicrobial

  5. Multicomponent synthesis of unsymmetrical unsaturated N-heterocyclic carbene precursors and their related transition-metal complexes

    KAUST Repository

    Queval, Pierre

    2013-12-04

    A low-cost, modular, and easily scalable multicomponent procedure affording access in good yields and excellent selectivity (up to 93 %) to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl-imidazolium salts is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron donor ability, high steric discrimination, and modular steric demand. A low-cost, modular, and easily scalable multicomponent procedure, affording access to a wide range of (a)chiral unsymmetrical 1-aryl-3-cycloalkyl- imidazolium salts in good yields and excellent selectivities, is disclosed. Electronic and steric properties of the corresponding unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands were evaluated and evidenced strong electron-donor ability, high steric discrimination, and modular steric demand. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ionic Liquids as Carbene Catalyst Precursors in the One-Pot Four-Component Assembly of Oxo Triphenylhexanoates (OTHOs

    Directory of Open Access Journals (Sweden)

    Anton Axelsson

    2015-11-01

    Full Text Available Ionic liquids (ILs are a convenient and inexpensive source of N-heterocyclic carbenes (NHCs. In this study, dialkyl imidazolium-based ILs are used as carbene precursors in a four-component synthesis of oxo triphenylhexanoates (OTHOs, where it was found that IL outperformed commonly used NHC precatalysts in terms of reaction efficiency. The reaction is highly stereoselective, delivering the anti-diastereomer (20:1 dr, and the OTHOs can be obtained in high-to-excellent yields. By virtue of the four-component reaction-setup, facile construction of the OTHO scaffold with a diverse set of functional groups (21 examples can be achieved. In the context of sustainability, the IL can be recovered and reused several times without affecting selectivity or yield. Moreover, most compounds can be isolated by precipitation and filtration, mitigating the use of solvent-demanding chromatography.

  7. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  8. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    Science.gov (United States)

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  9. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    KAUST Repository

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  10. Alkyne-Azide Cycloaddition Catalyzed by Silver Chloride and “Abnormal” Silver N-Heterocyclic Carbene Complex

    Directory of Open Access Journals (Sweden)

    Aldo I. Ortega-Arizmendi

    2013-01-01

    Full Text Available A library of 1,2,3-triazoles was synthesized from diverse alkynes and azides using catalytic amounts of silver chloride instead of copper compounds. In addition, a novel “abnormal” silver N-heterocyclic carbene complex was tested as catalyst in this process. The results suggest that the reaction requires only 0.5% of silver complex, affording 1,2,3-triazoles in good yields.

  11. Palladium complexes of a new type of N-heterocyclic carbene ligand derived from a tricyclic triazolooxazine framework

    Indian Academy of Sciences (India)

    Manoj Kumar Gangwar; Alok Ch Kalita; Prasenjit Ghosh

    2014-09-01

    A new type of tricyclic triazolooxazine derived N-heterocyclic carbene precursors were developed by the alkylation reaction of a tricyclic triazolooxazine framework. In particular, the reaction of 5a,6,7,8,9,9ahexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazine with methyl iodide and ethyl iodide yielded the tricyclic triazolooxazine derived N-heterocyclic carbene precursors, (1−2)a, in 67−84% yield. The tricyclic triazolooxazinium iodide salts, (1−2)a, underwent metallation in a straight forward manner upon treatment with PdCl2 in the presence of K2CO3 in pyridine to give the trans-{3-(R)-5a,6,7,8,9,9a-hexahydro-4-benzo[][1,2,3]triazolo[1,5-][1,4]oxazin-4-ylidene} PdI2(pyridine) [R = Me (1b), Et (2b)] complexes in 23−25% yield. The new tricyclic triazolooxazine derived N-heterocyclic carbene moiety, as stabilized upon binding to palladium in the (1−2)b complexes, was structurally characterized by the X-ray single crystal diffraction studies.

  12. Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies

    Indian Academy of Sciences (India)

    Sachin Kumar; Anantha Narayanan; Mitta Nageswar Rao; Mobin M Shaikh; Prasenjit Ghosh

    2011-11-01

    Synthesis, structure and density functional theory (DFT) studies of a series of new ruthenium complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]RuCl(-cymene) [R = Me (1c), -Pr (2c), CH2Ph (3c); -cymene = 4--propyltoluene] supported over /-functionalized N-heterocyclic carbene (NHC) ligands are reported. In particular, the ruthenium (1-3)c complexes were synthesized from the respective silver complexes, [1-(R)-3--(benzylacetamido)imidazol-2-ylidene]2Ag+Cl− [R = Me (1b), -Pr (2b), CH2Ph (3b)] by the treatment with [Ru(-cymene)Cl2]2 in 65-76% yields. The molecular structures of (1-3)c revealed the chelation of the N-heterocylic carbene ligand through the carbene center and an amido sidearm of the ligand in all of the three complexes. The density functional theory studies on the ruthenium (1-3)c complexes indicated strong binding of the NHC ligand to the metal center as was observed from the deeply buried NHC-Ru -bonding molecular orbitals.

  13. Silver complexes of 1,2,4-triazole derived N-heterocyclic carbenes: Synthesis, structure and reactivity studies

    Indian Academy of Sciences (India)

    Chandrakanta Dash; Mobin M Shaikh; Prasenjit Ghosh

    2011-03-01

    Two silver(I) complexes {[1-R-4-(-t4-butylacetamido)-1,2,4-triazol-5-ylidene]2Ag}+ Cl− [R = Et (1b), -Pr (2b)] of /-functionalized N-heterocyclic carbenes derived from 1,2,4-triazoles are reported. The silver complexes, 1b and 2b, have been synthesized from the reaction of the /-functionalized triazolium chloride salts namely, 1-R-4-(N-t-butylacetamido)-1,2,4-triazolium chloride [R = Et (1a), -Pr (2a)] by treatment with Ag2O in 53-56% yield. The 1,2,4-triazolium chloride salts 1a and 2a were prepared by the alkylation reaction of 1-R-1,2,4-triazole (R = Et, -Pr) with --butyl-2-chloro acetamide in 47-63% yield. The molecular structures of the silver(I) complexes, 1b and 2b, have been determined by X-ray diffraction studies. The density functional theory studies on the silver 1b and 2b complexes suggest that the 1,2,4-triazole derived N-heterocyclic carbenes to be strong −donating ligands similar to the now much recognized imidazolebased N-heterocyclic carbenes. The reactivity studies with (SMe2)AuCl and (SMe2)CuBr indicated the silver complexes, 1b and 2b, to be good transmetallating agents.

  14. Carbene Reactions

    DEFF Research Database (Denmark)

    Hoffmann, R. W.; Barth, W.; Carlsen, Lars;

    1983-01-01

    The gas-phase thermolysis of the norbornadienespirodithiolane S-oxides (5) and (7) led to benzene, ethylene, and carbon disulphide as the major products, possibly involving carbon disulphide oxides as intermediates. Thermolyses of the related sulphones (9) or (14) led to completely different prod...

  15. Structures of Reactive Donor/Acceptor and Donor/Donor Rhodium Carbenes in the Solid State and Their Implications for Catalysis.

    Science.gov (United States)

    Werlé, Christophe; Goddard, Richard; Philipps, Petra; Farès, Christophe; Fürstner, Alois

    2016-03-23

    Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology. PMID:26910883

  16. Synthesis and reactions of cyclovalence isomers of azo-keto-carbenes

    International Nuclear Information System (INIS)

    Novel types of cycloaddition products with an azomethine imine functionality have been prepared from ω-azo-α'-diazo ketones with a carbon chain of variable length between the azo- and the keto-group; the reaction is induced by catalytical amounts of rhodium(II) acetate and occurs with the concomitant extrusion of dinitrogen. The synthesis of these cyclic azomethine imines succeeded in the course of the intramolecular reaction of the azo nitrogen atoms with a carbene/carbenoid carbon atom, in situ generated from the α-diazoketone functionality; this is a novel cyclization reaction. Some of the resulting cyclization products are stable and have been isolated, others could only be trapped with dipolarophiles as [3+2] cycloadducts. The ring-size of the heterocyclic products depends on the one hand on the length of the carbon-chain (for n = 0, 1, 2) between the carbonyl carbon atom and the quaternary aliphatic or aromatic carbon atom that blocks the tautomerization of the azo-group in the starting material. On the other hand, the ring size depends on which of the two nitrogen atoms of the azo-group undergoes the ring closure with the carbene/carbenoid carbon atom generated from the α-diazoketon functionality in the course of the reaction. By far the most serious problem in the preparation of the cyclic azomethine imines is the synthesis of the required ω-azo-α'-diazo ketones. A so far unknown property of the azo-group is its intramolecularly directed nucleophilicity toward ketenes, which emerge from acid chlorides and anhydrides, or from α-diazo ketones in the course of the Wolff rearrangement. This complicated the approach to the required ω-azo-α'-diazo ketones via these functionalities as precursors and with the desired chain length between the azo- and diazo-keto-groups. Nevertheless, these problems could be overcome by using alternative strategies. Utilizing ω-azo-α'-diazo ketones a largely commonly applicable approach to endocyclic and N

  17. Spherical core-shell magnetic particles constructed by main-chain palladium N-heterocyclic carbenes

    Science.gov (United States)

    Zhao, Huaixia; Li, Liuyi; Wang, Jinyun; Wang, Ruihu

    2015-02-01

    The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in Fe3O4@PNP2, and Pd(0) and Pd(ii) coexist in Fe3O4@PNP1 under the same conditions; moreover, the morphologies of these spherical core-shell particles show no significant variation after six consecutive catalytic runs.The encapsulation of the functional species on magnetic core is a facile approach for the synthesis of core-shell magnetic materials, and surface encapsulating matrices play crucial roles in regulating their properties and applications. In this study, two core-shell palladium N-heterocyclic carbene (NHC) particles (Fe3O4@PNP1 and Fe3O4@PNP2) were prepared by a one-pot reaction of semi-rigid tripodal imidazolium salts and palladium acetate in the presence of magnetite nanoparticles. The magnetite nanoparticles are encapsulated inside the main-chain palladium, which act as cores. The conjugated effects of triphenyltriazine and triphenylbenzene in the imidazolium salts have important influence on their physical properties and catalytic performances. Fe3O4@PNP2 shows better recyclability than Fe3O4@PNP1. Unexpectedly, Pd(ii) is well maintained after six consecutive catalytic runs in

  18. Insertion of O-H Bond of Rh(Ⅱ)-methylene Carbene into Alcohols: A Stepwise Mechanism More Plausible than a Concerted Mechanism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The mechanisms of insertion of O-H bond of Rh( Ⅱ ) -methylene carbene into methanol and ethanol were studied by using B3LYP functional both in gas phase and in CH2Cl2. The formation of free alcoholic oxonium ylides is found to be impossible. Alcoholic oxonium ylide are formed as the intermediates before both the stepwise and the concerted transition states of insertion of O-H bond of Rh( Ⅱ ) -methylene carbene into methanol and ethanol. With regard to the mechanisms of insertion of O-H of Rh( Ⅱ ) -methylene carbene into alcohols, analysis of the energy barriers of the two mechanisms indicate that the stepwise mechanism is more plausible than the concerted mechanism.

  19. Understanding the Mechanism of the Divergent Reactivity of Non-Heteroatom-Stabilized Chromium Carbene Complexes with Furfural Imines: Formation of Benzofurans and Azetines.

    Science.gov (United States)

    Funes-Ardoiz, Ignacio; González, Jairo; Santamaría, Javier; Sampedro, Diego

    2016-02-19

    The mechanisms of the reaction between non-heteroatom-stabilized alkynyl chromium carbene complexes prepared in situ and furfural imines to yield benzofurans and/or azetines have been explored by means of density functional theory method calculations. The reaction proceeds through a complex cascade of steps triggered by a nucleophilic addition of the imine nitrogen atom. The formation of two benzofuran regioisomers has been explained in terms of competitive nucleophilic attacks to different positions of the carbene complex. Each of these regioisomers can be obtained as the major product depending on the starting materials. The overall sequence could be controlled to yield benzofurans or azetines by adjusting the substituents present in the initial carbene complex. This mechanistic information allowed for the preparation of new benzofurans and azetinylcarbenes in good yields. PMID:26799934

  20. Ligand Exchange Reaction of Au(I) R-N-Heterocyclic Carbene Complexes with Cysteine.

    Science.gov (United States)

    Dos Santos, H F; Vieira, M A; Sánchez Delgado, G Y; Paschoal, D

    2016-04-14

    The chemotherapy with gold complexes has been attempted since the 90s after the clinical success of auranofin, a gold(I) coordination complex. Currently, the organometallics compounds have shown promise in cancer therapy, mainly in those complexes containing N-heterocylic carbenes (NHC) as a ligand. The present study shows a kinetic analysis of the reaction of six alkyl-substituted NHC with cysteine (Cys), which is taken as an important bionucleophile representative. The first and second ligand exchange processes were analyzed with the complete description of the mechanism and energy profiles. For the first reaction step, which is the rate-limiting step of the whole substitution reaction, the activation enthalpy follows the order 1/Me2 order is correlated with the r(Au-S) calculated for the transition state structures where S is the sulfur ligand from the Cys entering group. This means that longer r(Au-S) leads to higher activation enthalpy and is consistent with the effectiveness of gold shielding from nucleophile attack by bulkier alkyl-substituted NHC ligand. When electronic effect was addressed we found that higher activation barrier was predicted for strongly electron-donating NHC ligand, represented by the eigenvalue of σ-HOMO orbital of the free ligands. The molecular interpretation of the electronic effects is that strong donating NHC forms strong metal-ligand bond. For the second reaction step, similar structure-reactivity relationships were obtained, however the activation energies are less sensitive to the structure. PMID:27010796

  1. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Energy Technology Data Exchange (ETDEWEB)

    Jiu-Fu, Lu, E-mail: jiufulu@163.com; Hong-Guang, Ge; Juan, Shi [Chemical Engineering College, Shaanxi University of Technology (China)

    2015-12-15

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag(DIM){sub 2}]BF{sub 4}, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å{sup 3}, Z = 4, D{sub x} = 1.771 g/cm{sup 3}, F (000) = 864, µ(MoK{sub α}) = 1.278 mm{sup –1}. The final R{sup 1} = 0.0711 and wR{sup 2} = 0.1903 for reflections with I > 2σ(I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  2. Nitrosyl and carbene iron complexes bearing a κ(3)-SNS thioamide pincer type ligand.

    Science.gov (United States)

    Suzuki, Tatsuya; Matsumoto, Jun; Kajita, Yuji; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2015-01-21

    The previously reported monochelate iron complex with κ(3) SNS thioamide pincer ligand, 2,6-bis(N-2,6-bis(diphenylmethyl)-4-isopropylphenyliminothiolate)pyridine (L(DPM)), [Fe(THF)2(κ(3)-L(DPM))], gave novel complexes, [Fe(NHC)(κ(3)-L(DPM))] and [Fe(NO)2(κ(3)-L(DPM))], by substitution reactions with N-heterocyclic carbene (NHC) and NO molecules, respectively. The X-ray crystal structure of the [Fe(NHC)(κ(3)-L(DPM))] complex revealed a unique square planar iron(ii) complex, which was determined to be in an intermediate spin state (S = 1) in benzene from the Evans method. The [Fe(NO)2(κ(3)-L(DPM))] complex was determined to have a trigonal bipyramidal geometry from X-ray analysis and was indicated to be diamagnetic from the (1)H NMR spectrum. The ν(NO) stretching vibration of this complex showed two peaks at 1840 cm(-1) and 1790 cm(-1), and also the Fe-N-O bond angles were 168.9(2)° and 168.03(19)°. These findings suggest that the two coordinated NO molecules have neutral radical character, and they are antiferromagnetically coupled with the high-spin iron center. PMID:25407757

  3. GEOMETRY AND ELECTRONIC STRUCTURE OF (CO)3N1CH2. A MODEL TRANSITION METAL CARBENE

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Dale; Wendoloski, John J.; Dupuis, Michel; Chen, Maynard M.L.; Schaefer III, Henry F.

    1980-04-01

    The first application of nonempirical molecular electronic structure theory to a realistic transition metal carbene complex is reported. The system chosen was (CO){sub 3}NiCH{sub 2}, methylene (tricarbonyl) nickel(0). All studies were carried out at the self-consistent-field (SCF) level. A large and flexibly contracted basis set was chosen, labeled Ni(15s 11p 6d/11s 8p 3d); C,O(9s 5p/4s 2p); H(5s/3s). In addition, the importance of methylene carbon d functions was investigated. The critical predicted equilibrium geometrical parameters were R [Ni-C (methylene)]=1.83 {Angstrom}, {theta}(HCH)=108°. The sixfold barrier to rotation about the Ni-C (methylene) axis is small, ~o.2 kcal. The electronic structure of (CO){sub 3}NiCH{sub 2} is discussed and compared with those of the "naked" complex NiCH{sub 2} and the stable Ni(CO){sub 4} molecule.

  4. Synthesis, crystal, and biological activity of a novel carbene silver(I) complex with imidazole derivative

    Science.gov (United States)

    Jiu-Fu, Lu; Hong-Guang, Ge; Juan, Shi

    2015-12-01

    Reaction of 2-(1-methyl-1,2-dihydroimidazol-3-yl)acetonitrile tetrafluoroborate with silver oxide in dichloromethane readily yields [Ag( DIM)2]BF4, where DIM is 2-(1-methyl-1, 2-dihydroimidazol-3-yl)acetonitrile, representing a carbene organic ligand. The title compound was characterized by elemental analysis, IR, MS and single crystal X-ray diffraction. The crystal is of monoclinic system, space group C2/ c with a = 14.010(18), b = 8.303(11), c = 14.936(20) Å, β = 93.910(4)°, V = 1639(4) Å3, Z = 4, D x = 1.771 g/cm3, F (000) = 864, µ(Mo K α) = 1.278 mm-1. The final R 1 = 0.0711 and wR 2 = 0.1903 for reflections with I > 2σ( I). In addition, the preliminary biological test showed that the title compound had anti-fungus yeast activity.

  5. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  6. N-Heterocyclic Carbene-Gold(I) Complexes Conjugated to a Leukemia-Specific DNA Aptamer for Targeted Drug Delivery.

    Science.gov (United States)

    Niu, Weijia; Chen, Xigao; Tan, Weihong; Veige, Adam S

    2016-07-25

    This report describes the synthesis and characterization of novel N-heterocyclic carbene (NHC)-gold(I) complexes and their bioconjugation to the CCRF-CEM-leukemia-specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC-Au(I) complex and the aptamer. Cell-viability assays indicated that the NHC-Au(I) -aptamer conjugate was more cytotoxic than the NHC-gold complex alone. A combination of flow cytometry, confocal microscopy, and cell-viability assays provided clear evidence that the NHC-Au(I) -aptamer conjugate was selective for targeted CCRF-CEM leukemia cells. PMID:27311814

  7. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    Science.gov (United States)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  8. Synthesis and characterization of an iron complex bearing a cyclic tetra-N-heterocyclic carbene ligand: An artifical heme analogue?

    KAUST Repository

    Anneser, Markus R.

    2015-04-20

    An iron(II) complex with a cyclic tetradentate ligand containing four N-heterocyclic carbenes was synthesized and characterized by means of NMR and IR spectroscopies, as well as by single-crystal X-ray structure analysis. The iron center exhibits an octahedral coordination geometry with two acetonitrile ligands in axial positions, showing structural analogies with porphyrine-ligated iron complexes. The acetonitrile ligands can readily be substituted by other ligands, for instance, dimethyl sulfoxide, carbon monoxide, and nitric oxide. Cyclic voltammetry was used to examine the electronic properties of the synthesized compounds. © 2015 American Chemical Society.

  9. Efficient Negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes.

    Science.gov (United States)

    Xi, Zhenxing; Zhou, Yongbo; Chen, Wanzhi

    2008-11-01

    We describe the first nickel-N-heterocyclic carbene catalyzed Negishi cross-coupling reaction of a variety of unactivated aryl chlorides, heterocyclic chlorides, aryl dichlorides, and vinyl chloride. The mononuclear and binuclear nickel-NHC complexes supported by heteroarene-functionalized NHC ligands are found to be highly efficient for the coupling of unactivated aryl chlorides and organozinc reagents, leading to biaryls and terphenyls in good to excellent yields under mild conditions. For all aryl chlorides, the binuclear nickel catalysts show activities higher than those of mononuclear nickel complexes because of possible bimetallic cooperative effect. PMID:18841915

  10. Rhenium and technetium tricarbonyl complexes of N-heterocyclic carbene ligands.

    Science.gov (United States)

    Chan, Chung Ying; Pellegrini, Paul A; Greguric, Ivan; Barnard, Peter J

    2014-10-20

    A strategy for the conjugation of N-heterocyclic carbene (NHC) ligands to biomolecules via amide bond formation is described. Both 1-(2-pyridyl)imidazolium or 1-(2-pyridyl)benzimidazolium salts functionalized with a pendant carboxylic acid group were prepared and coupled to glycine benzyl ester using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. A series of 10 rhenium(I) tricarbonyl complexes of the form [ReX(CO)3(ĈN)] (ĈN is a bidentate NHC ligand, and X is a monodentate anionic ligand: Cl(-), RCO2(-)) were synthesized via a Ag2O transmetalation protocol from the Re(I) precursor compound Re(CO)5Cl. The synthesized azolium salts and Re(I) complexes were characterized by elemental analysis and by (1)H and (13)C NMR spectroscopy, and the molecular structures for one imidazolium salt and seven Re(I) complexes were determined by single-crystal X-ray diffraction. (1)H NMR and mass spectrometry studies for an acetonitrile-d3 solution of [ReCl(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)] show that the monodentate chloride ligand is labile and exchanges with this solvent yielding a cationic acetonitrile adduct. For the first time the labeling of an NHC ligand with technetium-99m is reported. Rapid Tc-99m labeling was achieved by heating the imidazolium salt 1-(2-pyridyl)-3-methylimidazolium iodide and Ag2O in methanol, followed by the addition of fac-[(99m)Tc(OH2)3(CO)3](+). To confirm the structure of the (99m)Tc-labeled complex, the equivalent (99)Tc complex was prepared, and mass spectrometric studies showed that the formed Tc complexes are of the form [(99m/99)Tc(CH3CN)(CO)3(1-(2-pyridyl)-3-methylimidazolylidene)](+) with an acetonitrile molecule coordinated to the metal center. PMID:25280253

  11. Copper(I Complexes of Mesoionic Carbene: Structural Characterization and Catalytic Hydrosilylation Reactions

    Directory of Open Access Journals (Sweden)

    Stephan Hohloch

    2015-04-01

    Full Text Available Two series of different Cu(I-complexes of “click” derived mesoionic carbenes are reported. Halide complexes of the type (MICCuI (with MIC = 1,4-(2,6-diisopropyl-phenyl-3-methyl-1,2,3-triazol-5-ylidene (for 1b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene (for 1c and cationic complexes of the general formula [Cu(MIC2]X (with MIC =1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = CuI2− (for 2á, 1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2a, 1,4-(2,6-diisopropylphenyl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2c have been prepared from CuI or [Cu(CH3CN4](BF4 and the corresponding ligands, respectively. All complexes were characterized by elemental analysis and standard spectroscopic methods. Complexes 2á and 1b were studied by single-crystal X-ray diffraction analysis. Structural analysis revealed 2á to adopt a cationic form as [Cu(MIC2](CuI2 and comparison of the NMR spectra of 2á and 2a confirmed this conformation in solution. In contrast, after crystallization complex 1b was found to adopt the desired neutral form. All complexes were tested for the reduction of cyclohexanone under hydrosilylation condition at elevated temperatures. These complexes were found to be efficient catalysts for this reaction. 2c was also found to catalyze this reaction at room temperature. Mechanistic studies have been carried out as well.

  12. Efficient synthetic protocols for the preparation of common N-heterocyclic carbene precursors

    Directory of Open Access Journals (Sweden)

    Morgan Hans

    2015-11-01

    Full Text Available The one-pot condensation of glyoxal, two equivalents of cyclohexylamine, and paraformaldehyde in the presence of aqueous HBF4 provided a straightforward access to 1,3-dicyclohexylimidazolium tetrafluoroborate (ICy·HBF4. 1,3-Dibenzylimidazolium tetrafluoroborate (IBn·HBF4 was obtained along the same lines. To synthesize 1,3-diarylmidazolium salts, it was necessary to isolate the intermediate N,N'-diarylethylenediimines prior to their cyclization. Although this additional step required more time and reagents, it led to a much more efficient overall process. It also proved very convenient to carry out the synthesis of imidazolinium salts in parallel to their imidazolium counterparts via the reduction of the diimines into diammonium salts. The critical assembly of the C2 precarbenic unit was best achieved with paraformaldehyde and chlorotrimethylsilane in the case of imidazolium derivatives, whereas the use of triethyl orthoformate under microwave irradiation was most appropriate for the fast and efficient synthesis of imidazolinium salts. This strategy was applied to the synthesis of six common N-heterocyclic carbene precursors, namely, 1,3-dimesitylimidazolium chloride (IMes·HCl, 1,3-dimesitylimidazolium tetrafluoroborate (IMes·HBF4, 1,3-dimesitylimidazolinium chloride (SIMes·HCl, 1,3-bis(2,6-diisopropylphenylimidazolium chloride (IDip·HCl or IPr·HCl, 1,3-bis(2,6-diisopropylphenylimidazolinium chloride (SIDip·HCl or SIPr·HCl, and 1,3-bis(2,6-bis(diphenylmethyl-4-methylphenylimidazolium chloride (IDip*·HCl or IPr*·HCl.

  13. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes

    KAUST Repository

    Ornelas-Megiatto, Cátia

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. © 2012 American Chemical Society.

  14. Development of palladium-carbene catalysts for telomerization and dimerization of 1,3-dienes: from basic research to industrial applications.

    Science.gov (United States)

    Clement, Nicolas D; Routaboul, Lucie; Grotevendt, Anne; Jackstell, Ralf; Beller, Matthias

    2008-01-01

    The following account summarises recent developments in the area of palladium-catalysed telomerisation and dimerisation reactions of 1,3-dienes. The most active types of catalyst, palladium-carbene complexes, were tested in pilot plant and proved to be industrially viable. PMID:18680130

  15. Pull-push mechanism for the 1,2-hydrogen rearrangement of carbenes. Substituent and deuterium isotope effects for thermal decomposition of 1-phenyl-2-diazopropanes

    International Nuclear Information System (INIS)

    Intramolecular and intermolecular deuterium isotope effects have been measured for the thermal carbene H rearrangements of three substituted 1-phenyl-2-diazopropanes-1-d in hexane at 250C. The isotope effects, k/sub H//k/sub D/, vary from ca. 1.2 to 1.5, increasing with electron-withdrawing substituents, for the formation of both cis- and trans-β-methylstyrenes. Product ratios were determined for these compounds as well as the corresponding undeuterated ones, permitting calculation of intermolecular primary and secondary isotope effects. In addition, the competition among the cis and trans products and the product of H migration from the terminal methyl group permitted determination of Hammett rho values of ca. -1 for the competition between benzylic and terminal migration. The results strongly indicate a ''pull-push'' mechanism, which can be pictured roughly as electrophilic attack on the C--H bond by the phantom p orbital of the carbene along with backside nucleophilic attack by the carbene unshared electron pair to push the H away and form the π bond. The data are believed to be consistent only with a nonzero barrier for the carbene hydrogen rearrangement

  16. Caffeine-based gold(I) N-heterocyclic carbenes as possible anticancer agents: synthesis and biological properties.

    Science.gov (United States)

    Bertrand, Benoît; Stefan, Loic; Pirrotta, Marc; Monchaud, David; Bodio, Ewen; Richard, Philippe; Le Gendre, Pierre; Warmerdam, Elena; de Jager, Marina H; Groothuis, Geny M M; Picquet, Michel; Casini, Angela

    2014-02-17

    A new series of gold(I) N-heterocyclic carbene (NHC) complexes based on xanthine ligands have been synthesized and characterized by mass spectrometry, NMR, and X-ray diffraction. The compounds have been tested for their antiproliferative properties in human cancer cells and nontumorigenic cells in vitro, as well as for their toxicity in healthy tissues ex vivo. The bis-carbene complex [Au(caffein-2-ylidene)2][BF4] (complex 4) appeared to be selective for human ovarian cancer cell lines and poorly toxic in healthy organs. To gain preliminary insights into their actual mechanism of action, two biologically relevant in cellulo targets were studied, namely, DNA (more precisely a higher-order DNA structure termed G-quadruplex DNA that plays key roles in oncogenetic regulation) and a pivotal enzyme of the DNA damage response (DDR) machinery (poly-(adenosine diphosphate (ADP)-ribose) polymerase 1 (PARP-1), strongly involved in the cancer resistance mechanism). Our results indicate that complex 4 acts as an efficient and selective G-quadruplex ligand while being a modest PARP-1 inhibitor (i.e., poor DDR impairing agent) and thus provide preliminary insights into the molecular mechanism that underlies its antiproliferative behavior. PMID:24499428

  17. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    Science.gov (United States)

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  18. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    KAUST Repository

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  19. Titanocene–Gold Complexes Containing N-Heterocyclic Carbene Ligands Inhibit Growth of Prostate, Renal, and Colon Cancers in Vitro

    Science.gov (United States)

    2016-01-01

    We report on the synthesis, characterization, and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = −OC(O)-p-C6H4-S−) bound to gold(I)–N-heterocyclic carbene fragments through the thiolate group: [(η5-C5H5)2TiMe(μ-mba)Au(NHC)]. The cytotoxicities of the heterometallic compounds along with those of novel monometallic gold–N-heterocyclic carbene precursors [(NHC)Au(mbaH)] have been evaluated against renal, prostate, colon, and breast cancer cell lines. The highest activity and selectivity and a synergistic effect of the resulting heterometallic species was found for the prostate and colon cancer cell lines. The colocalization of both titanium and gold metals (1:1 ratio) in PC3 prostate cancer cells was demonstrated for the selected compound 5a, indicating the robustness of the heterometallic compound in vitro. We describe here preliminary mechanistic data involving studies on the interaction of selected mono- and bimetallic compounds with plasmid (pBR322) used as a model nucleic acid and the inhibition of thioredoxin reductase in PC3 prostate cancer cells. The heterometallic compounds, which are highly apoptotic, exhibit strong antimigratory effects on the prostate cancer cell line PC3. PMID:27182101

  20. Palladium/N-heterocyclic carbene catalysed regio and diastereoselective reaction of ketones with allyl reagents via inner-sphere mechanism.

    Science.gov (United States)

    Bai, Da-Chang; Yu, Fei-Le; Wang, Wan-Ying; Chen, Di; Li, Hao; Liu, Qing-Rong; Ding, Chang-Hua; Chen, Bo; Hou, Xue-Long

    2016-01-01

    The palladium-catalysed allylic substitution reaction is one of the most important reactions in transition-metal catalysis and has been well-studied in the past decades. Most of the reactions proceed through an outer-sphere mechanism, affording linear products when monosubstituted allyl reagents are used. Here, we report an efficient Palladium-catalysed protocol for reactions of β-substituted ketones with monosubstituted allyl substrates, simply by using N-heterocyclic carbene as ligand, leading to branched products with up to three contiguous stereocentres in a (syn, anti)-mode with excellent regio and diastereoselectivities. The scope of the protocol in organic synthesis has been examined preliminarily. Mechanistic studies by both experiments and density functional theory (DFT) calculations reveal that the reaction proceeds via an inner-sphere mechanism-nucleophilic attack of enolate oxygen on Palladium followed by C-C bond-forming [3,3']-reductive elimination. PMID:27283477

  1. Sulfur-Functionalized N-Heterocyclic Carbene Complexes of Pd(II: Syntheses, Structures and Catalytic Activities

    Directory of Open Access Journals (Sweden)

    Dan Yuan

    2012-03-01

    Full Text Available N-heterocyclic carbenes (NHCs can be easily modified by introducing functional groups at the nitrogen atoms, which leads to versatile coordination chemistry as well as diverse catalytic applications of the resulting complexes. This article summarizes our contributions to the field of NHCs bearing different types of sulfur functions, i.e., thioether, sulfoxide, thiophene, and thiolato. The experimental evidence for the truly hemilabile coordination behavior of a Pd(II thioether-NHC complex has been reported as well. In addition, complexes bearing rigid CSC-pincer ligands have been synthesized and the reasons for pincer versus pseudo-pincer formation investigated. Incorporation of the electron-rich thiolato function resulted in the isolation of structurally diverse complexes. The catalytic activities of selected complexes have been tested in Suzuki-Miyaura, Mizoroki-Heck and hydroamination reactions.

  2. Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing.

    Science.gov (United States)

    Crudden, Cathleen M; Horton, J Hugh; Narouz, Mina R; Li, Zhijun; Smith, Christene A; Munro, Kim; Baddeley, Christopher J; Larrea, Christian R; Drevniok, Benedict; Thanabalasingam, Bheeshmon; McLean, Alastair B; Zenkina, Olena V; Ebralidze, Iraklii I; She, Zhe; Kraatz, Heinz-Bernhard; Mosey, Nicholas J; Saunders, Lisa N; Yagi, Akiko

    2016-01-01

    The formation of organic films on gold employing N-heterocyclic carbenes (NHCs) has been previously shown to be a useful strategy for generating stable organic films. However, NHCs or NHC precursors typically require inert atmosphere and harsh conditions for their generation and use. Herein we describe the use of benzimidazolium hydrogen carbonates as bench stable solid precursors for the preparation of NHC films in solution or by vapour-phase deposition from the solid state. The ability to prepare these films by vapour-phase deposition permitted the analysis of the films by a variety of surface science techniques, resulting in the first measurement of NHC desorption energy (158±10 kJ mol(-1)) and confirmation that the NHC sits upright on the surface. The use of these films in surface plasmon resonance-type biosensing is described, where they provide specific advantages versus traditional thiol-based films. PMID:27585494

  3. Synthesis and Catalytic Activity of a Two-core Ruthenium Carbene Complex: a Unique Catalyst for Ring Closing Metathesis Reaction

    Institute of Scientific and Technical Information of China (English)

    SHAO Ming-bo; WANG Jian-hui

    2011-01-01

    The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex,{[RuCl(=HPCy3)(PCy3)]2(μ-Cl)3}+[BF4]-,in the form of a yellow-green crystalline solid in a yield of 94%.This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes.More importantly,no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 ℃),indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.

  4. A highly active water-soluble cross-coupling catalyst based on dendritic polyglycerol N-heterocyclic carbene palladium complexes.

    Science.gov (United States)

    Meise, Markus; Haag, Rainer

    2008-01-01

    A new water-soluble polyglycerol derivative functionalized with N-heterocyclic carbene palladium complexes was prepared and applied as catalyst for Suzuki cross-coupling reactions in water. The complex displays a metal loading of around 65 metal centers per dendrimeric molecule, which is estimated to contain 130 chelating groups and thus corresponds approximately to the formation of 2:1 NHC/metal complexes. Monomeric analogues were also synthesized to validate the reactivity of the dendritic catalyst. Both types of catalysts were tested with various aryl bromides and arylboronic acids. Turnover frequencies of up to 2586 h(-1) at 80 degrees C were observed with the dendritic catalyst along with turnover numbers of up to 59 000, which are among the highest turnover numbers reported for polymer-supported catalysts in neat water. The dendritic catalyst could be used (reused) in five consecutive reactions without loss in activity. PMID:18702166

  5. A RhIII-N-heterocyclic carbene complex from metal-metal singly bonded [RhII−RhII] precursor

    Indian Academy of Sciences (India)

    Arup Sinha; Abir Sarbajna; Shrabani dinda; Jitendra K Bera

    2011-11-01

    Metal-metal singly bonded [Rh2(CO)4(acac)2][OTf]2 (1) has been synthesized and characterized by spectroscopic and analytical techniques. A density functional theory (DFT) optimized structure has been computed for the unbridged centro-symmetric structure. Reaction of 1 with PIN.HBr results in the [Rh(PIN)2(H2O)Br][OTf]2 (2) in high yield. The reaction involves metal-oxidation from RhII to RhIII accompanied by the metal-metal bond cleavage. The X-ray structure of 2 has been determined which reveals the incorporation of two N-heterocyclic carbene (NHC) ligands to each rhodium. This work demonstrates the general utility of the metal-metal bonded compounds for the easy synthesis of metal-NHC compounds.

  6. Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghui; Wang, Ketai; Niu, Teng; Li, Shanshan [Lanzhou Univ. of Arts and Science, Lanzhou (Korea, Republic of)

    2014-05-15

    The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.

  7. Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

    International Nuclear Information System (INIS)

    The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity

  8. Electroinduced Carbene Formation in the Cathodic Reduction of 1,2-Dicarbonyl Compounds via Electron-Transfer to the Solvent

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted -- Highlights: •Electron-transfer reaction in solution from the substrate dianion to the solvent. •To our knowledge, it is the first time that a carbene is generated by an electron-transfer in solution process. •1,1-Dichloroethyl radical and methyl-chlorocarbene as involved intermediates. •The stereochemistry of the radical anion intermediate governs the reaction pathway. •Electroinduced effect of reversible electroactive systems is presented. -- Abstract: Electrochemical reduction of 9,10-phenanthrenequinone, benzil and acenaphthenequinone in 1,1,1-trichloroethane (TCE)/TBAP under constant potential conditions provides an interesting entry to new coupling products through an electron-transfer reaction in solution to the chlorinated solvent. This electroinduced reaction points out the differences in the reaction pathway followed by these 1,2-dicarbonyl compounds depending on their geometry. The intermediates nature and their behavior, both in solution and at the electrode surface, are discussed

  9. Well-defined N-heterocyclic carbenes-palladium(II) precatalysts for cross-coupling reactions.

    Science.gov (United States)

    Marion, Nicolas; Nolan, Steven P

    2008-11-18

    Metal-catalyzed cross-coupling reactions, notably those permitting C-C bond formation, have witnessed a meteoritic development and are now routinely employed as a powerful synthetic tool both in academia and in industry. In this context, palladium is arguably the most studied transition metal, and tertiary phosphines occupy a preponderant place as ancillary ligands. Seriously challenging this situation, the use of N-heterocyclic carbenes (NHCs) as alternative ligands in palladium-catalyzed cross-coupling reactions is rapidly gaining in popularity. These two-electron donor ligands combine strong sigma-donating properties with a shielding steric pattern that allows for both stabilization of the metal center and enhancement of its catalytic activity. As a result, the number of well-defined NHC-containing palladium(II) complexes is growing, and their use in coupling reactions is witnessing increasing interest. In this Account, we highlight the advantages of this family of palladium complexes and review their synthesis and applications in cross-coupling chemistry. They generally exhibit high stability, allowing for indefinite storage and easy handling. The use of well-defined complexes permits a strict control of the Pd/ligand ratio (optimally 1/1), avoiding the use of excess costly ligand that usually requires end-game removal. Furthermore, it partly removes the "black box" character often associated with cross-coupling chemistry and catalyst formation. In the present Account, four main classes of NHC-containing palladium(II) complexes will be presented: palladium dimers with bridging halogens, palladacycles, palladium acetates and acetylacetonates, and finally pi-allyl complexes. These additional ligands are best described as a protecting shell that will be discarded going from the palladium(II) precatalyst to the palladium(0) true catalyst. The synthesis of all these precatalysts generally requires simple and short synthetic procedures. Their catalytic activity in

  10. Luminescent Ruthenium(II) Complex Bearing Bipyridine and N-Heterocyclic Carbene-based C∧N∧C Pincer Ligand for Live-Cell Imaging of Endocytosis

    Science.gov (United States)

    Tsui, Wai-Kuen; Chung, Lai-Hon; Wong, Matthew Man-Kin; Tsang, Wai-Him; Lo, Hoi-Shing; Liu, Yaxiang; Leung, Chung-Hang; Ma, Dik-Lung; Chiu, Sung-Kay; Wong, Chun-Yuen

    2015-03-01

    Luminescent ruthenium(II)-cyanide complex with N-heterocyclic carbene pincer ligand C∧N∧C = 2,6-bis(1-butylimidazol-2-ylidene)pyridine and 2,2'-bipyridine (bpy) shows minimal cytotoxicity to both human breast carcinoma cell (MCF-7) and human retinal pigmented epithelium cell (RPE) in a wide range of concentration (0.1-500 μM), and can be used for the luminescent imaging of endocytosis of the complex in these cells.

  11. Investigation on reactivity of non-classical carbenes with sterically hindered Lewis acid, B(C6F5)3 under inert and open conditions

    Indian Academy of Sciences (India)

    Arunabha Thakur; Pavan K Vardhanapu; Gonela Vijaykumar; Sushil Ranjan Bhatta

    2016-04-01

    Reactions of B(C6F5)3 with abnormal N-heterocyclic carbene (NHC), L1 and cyclic (alkyl)(amino) carbene (AAC), L2 in the presence of moisture as well as in its absence, have been investigated in toluene. Reaction of NHC with 1 equivalent of B(C6F5)3 under inert condition produced classical Lewis acid-base adduct, [L1.B(C6F5)3], 1. Further, probing the same reaction with cyclic (alkyl)(amino) carbene (AAC), having different electronic property, led to the isolation of [L2.B(C6F5)3], 2 under inert condition. Interestingly, reaction of NHC or AAC with 1 equivalent of B(C6F5)3 in the presence of moisture resulted in water splitting leading to the formation of [L1-H][(OH)B(C6F5)3], 3 and [L2-H][(OH)B(C6F5)3, 4. All these compounds (1-4) were characterized in solution by 1H, 13C, 19F and 11B NMR spectroscopy. Additionally, the solid-state structures were unambiguously established by crystallographic analysis of compounds 1-4.

  12. Cyclic (Amino)(aryl)carbenes (CAArCs) as Strong σ-Donating and π-Accepting Ligands for Transition Metals.

    Science.gov (United States)

    Rao, Bin; Tang, Huarong; Zeng, Xiaoming; Liu, Liu; Melaimi, Mohand; Bertrand, Guy

    2015-12-01

    Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet-triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2S)AuCl] lead to air-stable rhodium and gold CAArC-supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2-vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three-component preparation of 1,2-dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition-metal catalysis. PMID:26457345

  13. Stoichiometric sensitivity and structural diversity in click-active copper(I) N,S-heterocyclic carbene complexes.

    Science.gov (United States)

    Han, Xiaoyan; Weng, Zhiqiang; Young, David James; Jin, Guo-Xin; Hor, T S Andy

    2014-01-21

    A series of novel Cu(I) N,S-heterocyclic carbene (NSHC) complexes [Cu(μ-Br)(NSHC)]2, [Cu(μ-X)(NSHC)]4 (X = Br or I), [(NSHC)2Cu(μ-Br)2Cu(NSHC)], and [(NSHC)2CuBr] have been isolated from in situ generated CuO(t)Bu and N-substituted benzothiazolium halides and characterized by X-ray crystallography. Five structural motifs were observed, viz. M(x)L(y) where x : y = 2 : 2, 4 : 4, 2 : 3, 1 : 2 and 2 : 4, with Cu···Cu separation traversing over a wide range of 2.5626(7) to 3.4725(7) Å distances. A preliminary investigation of the catalytic activity of these compounds indicated that the unusual mononuclear complex 6 [(NSHC)2CuBr] is an active catalyst for the Huisgen 1,3-dipolar cycloaddition of azide and alkynes while complexes 1-5 and 7 were marginally less active. PMID:24192930

  14. Redox and luminescent properties of robust and air-stable N-heterocyclic carbene group 4 metal complexes.

    Science.gov (United States)

    Romain, Charles; Choua, Sylvie; Collin, Jean-Paul; Heinrich, Martine; Bailly, Corinne; Karmazin-Brelot, Lydia; Bellemin-Laponnaz, Stéphane; Dagorne, Samuel

    2014-07-21

    Robust and air-stable homoleptic group 4 complexes of the type M(L)2 [1-3; M = Ti, Zr, Hf; L = dianionic bis(aryloxide) N-heterocyclic carbene (NHC) ligand] were readily synthesized from the NHC proligand 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)imidazolinium chloride (H3L,Cl) and appropriate group 4 precursors. As deduced from cyclic voltammetry studies, the homoleptic bis-adduct zirconium and hafnium complexes 2 and 3 can also be oxidized, with up to four one-electron-oxidation signals for the zirconium derivative 2 (three reversible signals). Electron paramagnetic resonance data for the one-electron oxidation of complexes 1-3 agree with the formation of ligand-centered species. Compounds 2 and 3 are luminescent upon excitation in the absorption band at 362 nm with emissions at 485 and 534 nm with good quantum yields (ϕ = 0.08 and 0.12) for 2 and 3, respectively. In contrast, the titanium complex 1 does not exhibit luminescent properties upon excitation in the absorption band at 310 and 395 nm. Complexes 2 and 3 constitute the first examples of emissive nonmetallocene group 4 metal complexes. PMID:24957272

  15. Thin films of molecular materials synthesized from fisher's carbene ferrocenyl: Film formation and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Vergara, M.E. [Coordinacion de Ingenieria Mecatronica. Escuela de Ingenieria, Universidad Anahuac del Norte. Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)], E-mail: elena.sanchez@anahuac.mx; Ortiz, A. [Instituto de Investigaciones en Materiales. Universidad Nacional Autonoma de Mexico. A. P. 70-360, 04510, Mexico, DF (Mexico); Alvarez-Toledano, C.; Moreno, A. [Instituto de Quimica, Universidad Nacional Autonoma de Mexico. Circuito Exterior, Ciudad Universitaria, 04510, Mexico, DF (Mexico); Alvarez, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico. Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico, DF (Mexico)

    2008-07-31

    The synthesis of materials from Fisher's carbene ferrocenyl of the elements chromium, molybdenum and tungsten was carried out. The Fisher's compounds that were synthesized included the following combinations of two different metallic atoms: iron with chromium, iron with molybdenum and iron with tungsten. The molecular solids' preparation was done in electro-synthesis cells with platinum electrodes. Thin films were prepared by vacuum thermal evaporation on quartz substrates and crystalline silicon wafers. Pellets and thin films from these compounds were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy and ellipsometry. The powder and thin films synthesized from these materials show the same intra-molecular bonds shown by infrared spectroscopy results, suggesting that thermal evaporation does not alter these bonds in spite of the thin films being amorphous, in contrast with other bimetallic complexes where material decomposition occurs. The differences in the conductivity values of the prepared films are very small, so they may be attributed to the different metallic ions employed in each case. The tungsten complex exhibits a higher conductivity than the molybdenum and chromium complexes at room temperature. Electrical conductivity values found for thin films are higher than for pellets made of the same molecular materials.

  16. N-Heterocyclic Carbenes as Promotors for the Rearrangement of Phosphaketenes to Phosphaheteroallenes: A Case Study for OCP to OPC Constitutional Isomerism.

    Science.gov (United States)

    Li, Zhongshu; Chen, Xiaodan; Benkő, Zoltán; Liu, Liu; Ruiz, David A; Peltier, Jesse L; Bertrand, Guy; Su, Chen-Yong; Grützmacher, Hansjörg

    2016-05-10

    The concept of isomerism is essential to chemistry and allows defining molecules with an identical composition but different connectivity (bonds) between their atoms (constitutional isomers) and/or a different arrangement in space (stereoisomers). The reaction of phosphanyl ketenes, (NHP)-P=C=O (NHP=N-heterocyclic phosphenium) with N-heterocyclic carbenes (NHCs) leads to phosphaheteroallenes (NHP)-O-P=C=NHC in which the PCO unit has been isomerized to OPC. Based on the isolation of several intermediates and DFT calculations, a mechanism for this fundamental isomerisation process is proposed. PMID:27060924

  17. Synthesis, Crystal Structure and Catalytic Behavior of 1-Ethyl-3-benyl-imidazolyl Tetranuclear N-Heterocyclic Carbene Silver Bromide

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Guo; SU Zhi-Xian; BIAN Qing-Quan; LIU Si-Man; LIU Ting

    2012-01-01

    The title complex [Ag(carbene)2]2[Ag2Br4] has been synthesized by the reaction of Ag2O with 1-ethyl-3-benyl-imidazolium bromide in DMSO at room temperature, and characterized by elemental analysis, 1H NMR and single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P with a = 10.1597(10), b =11.0646(11), c = 13.0245(14) , α = 102.230(2), β = 90.606, γ = 113.9250(10)o, V = 1300.3(2) 3, Mr = 748.06, Z = 2, Dc = 1.911 g/cm3, μ(MoKα) = 4.60 mm-1 and F(000) = 728. The structure was refined to R = 0.0316 and wR = 0.0835 for 3744 observed reflections with I 〉 2σ(I). The title compound crystallizes as a centrosymmetric tetranuclear compound. One half of the molecule comprises the asymmetric unit of the structure. The Ag(1) atom is nearly linear or T-shaped when the Ag(1)-Ag(2) interaction is taken into consideration, which is bi-coordinated by two carbene carbon atoms. The Ag(2) atom adopts tetrahedral geometry. The catalytic behavior of the title complex has been investigated, and the results indicate it has a highly catalytic activation for L-lactide polymerization.

  18. Tunable and Efficient White Light Phosphorescent Emission Based on Single Component N-Heterocyclic Carbene Platinum(II) Complexes.

    Science.gov (United States)

    Bachmann, Michael; Suter, Dominik; Blacque, Olivier; Venkatesan, Koushik

    2016-05-16

    A new class of cyclometalated pyridine N-heterocyclic carbene (NHC) Pt(II) complexes with electronically different alkyne derivatives (C≡CR; R = C6H4C(CH3)3 (1), C6H5 (2), C6H4F (3), C6H3(CF3)2 (4)) as ancillary ligands were synthesized, and the consequences of the electronic properties of the different substituted phenylacetylene ligands on the phosphorescent emission efficiencies were studied, where C≡CC6H4C(CH3)3 = 4-tert-butylphenylacetylene, C≡CC6H5 = phenylacetylene, C≡CC6H4F = 4-fluorophenylacetylene, and C≡CC6H3(CF3)2 = 3,5-bis(trifluoromethyl)phenylacetylene. Structural characterization, electrochemistry, and photophysical investigations were performed for all four compounds. Moreover, the emission quantum efficiencies and wavelength emission intensities of the complexes were also recorded in different weight percents in poly(methyl methacrylate) films (PMMA) and evaluated in the CIE-1931 chromaticity diagram. The square planar coordination geometry with the alkynyl ligands was corroborated for complexes 1, 2, and 3 by single crystal X-ray diffraction studies. These complexes show tunable monomeric high energy triplet emission and an additional concentration-dependent low-energy excimer-based phosphorescence. While adopting weight percent concentrations between 15 and 25%, the two emission bands covering the entire visible spectrum were obtained with these particular complexes displaying the properties of an efficient white light triplet emitter with excellent CIE-1931 coordinates (0.31, 0.33). On the basis of the high luminescent quantum efficiency of over 50% for white light emission, these compounds could be potentially useful for white organic light-emitting diodes (WOLEDs) based applications. PMID:27135529

  19. Synthesis of Well-Defined Copper "N"-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment that Emphasizes the Role of Catalysis in Green Chemistry

    Science.gov (United States)

    Ison, Elon A.; Ison, Ana

    2012-01-01

    A multistep experiment for an advanced synthesis lab course that incorporates topics in organic-inorganic synthesis and catalysis and highlights green chemistry principles was developed. Students synthesized two "N"-heterocyclic carbene ligands, used them to prepare two well-defined copper(I) complexes and subsequently utilized the complexes as…

  20. Synthesis and characterization of a cationic phthalimido-functionalized N-heterocyclic carbene complex of palladium(II) and its catalytic activity

    KAUST Repository

    Goh, Li Min Serena

    2014-01-29

    A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been synthesized from [3-methyl-1-(2′- phthalimidoethyl)imidazolium] hexafluorophosphate ([NHCMe,PhtH] PF6) by transmetalation and isolated in 67 % yield. The title complex has been applied as catalyst in the Suzuki-Miyaura cross-coupling reaction under benign aqueous conditions. The catalyst is active without any observable initiation period. High average turnover frequencies (TOFs) of up to 55000 h-1 have been reached with catalyst concentrations as low as 0.01 mol-%. A cationic phthalimido-functionalized N-heterocyclic carbene (NHC) palladium(II) complex has been prepared in high yield. The complex was activated instantly, without an initiation period, in the Suzuki-Miyaura cross-coupling reaction under benign aqueous aerobic conditions. Turnover frequencies (TOFs) up to 55000 h-1, were achieved with 0.01 mol-% of the complex. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. © 2013 The Royal Society of Chemistry.

  2. The effect of substituted moiety on the optoelectronic and photophysical properties of tris (phenylbenzimidazolinato) Ir (III) carbene complexes and the OLED performance: a theoretical study

    Science.gov (United States)

    Srivastava, Ruby

    2015-06-01

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to analyse theoretically the optoelectronic, photophysical properties and organic light-emitting diode performance of a series of fac-mer blue-emitting Iridium (III) carbene complexes. Swain-Lupton constant is used to discuss the substituents effect. 5d-orbital splitting and d-d* transitions are calculated to assess the efficiency of the studied complexes. The reorganisation energies (λ), transfer integrals, mobilities, radiative decay rate (kr), and triplet exciton generation fraction (χT) are also calculated. Due to the higher χT of these complexes, the formation of triplet exciton will be more and it will cause a faster intersystem crossing. Two host materials are proposed and host-guest match (Dexter-Förster energy) is also discussed. We hope that this unified work will surely help to design new blue-emitting phosphorescent materials in future.

  3. Intermolecular insertion of an N,N-heterocyclic carbene into a nonacidic C-H bond: Kinetics, mechanism and catalysis by (K-HMDS)2 (HMDS = Hexamethyldisilazide).

    Science.gov (United States)

    Lloyd-Jones, Guy C; Alder, Roger W; Owen-Smith, Gareth J J

    2006-07-01

    The reaction of 2-[13C]-1-ethyl-3-isopropyl-3,4,5,6-tetrahydropyrimidin-1-ium hexafluorophosphate ([13C1]-1-PF6) with a slight excess (1.03 equiv) of dimeric potassium hexamethyldisilazide ("(K-HMDS)2") in toluene generates 2-[13C]-3-ethyl-1-isopropyl-3,4,5,6-tetrahydropyrimid-2-ylidene ([13C1]-2). The hindered meta-stable N,N-heterocyclic carbene [13C1]-2 thus generated undergoes a slow but quantitative reaction with toluene (the solvent) to generate the aminal 2-[13C]-2-benzyl-3-ethyl-1-isopropylhexahydropyrimidine ([13C1]-14) through formal C-H insertion of C2 (the "carbene carbon") at the toluene methyl group. Despite a significant pKa mismatch (Delta pKa 1+ and toluene estimated to be ca. 16 in DMSO) the reaction shows all the characteristics of a deprotonation mechanism, the reaction rate being strongly dependent on the toluene para substituent (rho = 4.8(+/-0.3)), and displaying substantial and rate-limiting primary (k(H)/k(D) = 4.2(+/-0.6)) and secondary (k(H)/k(D) = 1.18(+/-0.08)) kinetic isotope effects on the deuteration of the toluene methyl group. The reaction is catalysed by K-HMDS, but proceeds without cross over between toluene methyl protons and does not involve an HMDS anion acting as base to generate a benzyl anion. Detailed analysis of the reaction kinetics/kinetic isotope effects demonstrates that a pseudo-first-order decay in 2 arises from a first-order dependence on 2, a first-order dependence on toluene (in large excess) and, in the catalytic manifold, a complex noninteger dependence on the K-HMDS dimer. The rate is not satisfactorily predicted by equations based on the Brønsted salt-effect catalysis law. However, the rate can be satisfactorily predicted by a mole-fraction-weighted net rate constant: -d[2]/dt = ({x2 k(uncat)} + {(1-x2) k(cat)})[2]1[toluene]1, in which x2 is determined by a standard bimolecular complexation equilibrium term. The association constant (Ka) for rapid equilibrium-complexation of 2 with (K-HMDS)2 to form [2(K

  4. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.

    Science.gov (United States)

    Hudzik, Jason M; Castillo, Álvaro; Bozzelli, Joseph W

    2015-09-24

    Exo-tricyclo[5.2.1.0(2,6)]decane (TCD) or exo-tetrahydrodicyclopentadiene is an interesting strained ring compound and the single-component high-energy density hydrocarbon fuel known as JP-10. Important initial reactions of TCD at high temperatures could cleave a strained carbon-carbon (C-C) bond in the ring system creating diradicals also constrained by the remaining ring system. This study determines the thermochemical properties of these diradicals (TCD-H2 mJ-nJ where m and n correspond to the cleaved carbons sites) including the carbon-carbon bond dissociation energy (C-C BDE) corresponding to the cleaved TCD site. Thermochemical properties including enthalpies (ΔH°f298), entropies (S(T)), heat capacities (Cp(T)), and C-H and C-C BDEs for the parent (TCD-H2 m-n), radical (TCD-H2 mJ-n and m-nJ), diradical (TCD-H2 mJ-nJ), and carbene (TCD-H2 mJJ-n and m-nJJ) species are determined. Structures, vibrational frequencies, moments of inertia, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) level of theory. Standard enthalpies of formation in the gas phase for the TCD-H2 m-n parent and radical species are determined using the B3LYP density functional theory and the higher level G3MP2B3 and CBS-QB3 composite methods. For singlet and triplet TCD diradicals and carbenes, M06-2X, ωB97X-D, and CCSD(T) methods are included in the analysis to determine ΔH°f298 values. The C-C BDEs are further calculated using CASMP2(2,2)/aug-cc-pvtz//CASSCF(2,2)/cc-pvtz and with the CASMP2 energies extrapolated to the complete basis set limit. The bond energies calculated with these methods are shown to be comparable to the other calculation methods. Isodesmic work reactions are used for enthalpy analysis of these compounds for effective cancelation of systematic errors arising from ring strain. C-C BDEs range from 77.4 to 84.6 kcal mol(-1) for TCD diradical singlet species. C-H BDEs for the parent TCD-H2 m-n carbon sites range from 93 to 101 kcal mol(-1) with a

  5. Influence of Electronic Effects on the Reactivity of Triazolylidene-Boryl Radicals: Consequences for the use of N-Heterocyclic Carbene Boranes in Organic and Polymer Synthesis.

    Science.gov (United States)

    Telitel, Sofia; Vallet, Anne-Laure; Flanigan, Darrin M; Graff, Bernadette; Morlet-Savary, Fabrice; Rovis, Tomislav; Lalevée, Jacques; Lacôte, Emmanuel

    2015-09-21

    A small library of triazolylidene-boranes that differ only in the nature of the aryl group on the external nitrogen atom was prepared. Their reactivity as hydrogen-atom donors, as well as that of the corresponding N-heterocyclic carbene (NHC)-boryl radicals toward methyl acrylate and oxygen, was investigated by laser flash photolysis, molecular orbital calculations, and ESR spin-trapping experiments, and benchmarked relative to the already known dimethyltriazolylidene-borane. The new NHC-boranes were also used as co-initiators for the Type I photopolymerization of acrylates. This allowed a structure-reactivity relationship with regard to the substitution pattern of the NHC to be established and the role of electronic effects in the reactivity of NHC-boryl radicals to be probed. Although their rate of addition to methyl acrylate depends on their electronegativity, the radicals are all nucleophilic and good initiators for photopolymerization reactions. PMID:26239157

  6. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    Energy Technology Data Exchange (ETDEWEB)

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  7. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters

    KAUST Repository

    Hong, Miao

    2016-01-18

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition–proton transfer–NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability Four MeO– and Cl–substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, RxTPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), OMe2TPT and OMe3TPT, have been synthesized, while OMe2TPT(MeO/H) and OMe2TPT have also been structurally characterized. The structure/reactivity relationship study revealed that OMe2TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl–substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species.

  8. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters.

    Science.gov (United States)

    Hong, Miao; Tang, Xiaoyan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-02-17

    This contribution presents a full account of experimental and theoretical/computational investigations into the N-heterocyclic carbene (NHC)-catalyzed proton-transfer polymerization (HTP) that converts common dimethacrylates (DMAs) containing no protic groups into unsaturated polyesters. This new HTP proceeds through the step-growth propagation cycles via enamine intermediates, consisting of the proposed conjugate addition-proton transfer-NHC release fundamental steps. This study examines the monomer and catalyst scopes as well as the fundamental steps involved in the overall HTP mechanism. DMAs having six different types of linkages connecting the two methacrylates have been polymerized into the corresponding unsaturated polyesters. The most intriguing unsaturated polyester of the series is that based on the biomass-derived furfuryl dimethacrylate, which showed a unique self-curing ability. Four MeO- and Cl-substituted TPT (1,3,4-triphenyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene) derivatives as methanol insertion products, (Rx)TPT(MeO/H) (R = MeO, Cl; x = 2, 3), and two free carbenes (catalysts), (OMe2)TPT and (OMe3)TPT, have been synthesized, while (OMe2)TPT(MeO/H) and (OMe2)TPT have also been structurally characterized. The structure/reactivity relationship study revealed that (OMe2)TPT, being both a strong nucleophile and a good leaving group, exhibits the highest HTP activity and also produced the polyester with the highest Mn, while the Cl-substituted TPT derivatives are least active and efficient. Computational studies have provided mechanistic insights into the tail-to-tail dimerization coupling step as a suitable model for the propagation cycle of the HTP. The extensive energy profile was mapped out, and the experimentally observed unicity of the TPT-based catalysts was satisfactorily explained with the thermodynamic formation of key spirocyclic species. PMID:26779897

  9. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes′CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes′CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  10. Neue Heterokumulene und Carbene

    OpenAIRE

    Ruppel, Raimund

    1999-01-01

    Die vorliegende Arbeit befaßt sich mit Matrixisolationsstudien kumulierter Kohlenstoff-Systeme, bei denen die Heteroatome Sauerstoff, Schwefel oder Stickstoff als Kettenabschluß fungieren. In den beiden ersten Teilen standen Synthese und matrixspektroskopische Charakterisierung zweier Vertreter der C2-Chalkogen-Kumulene im Mittelpunkt. Zur Darstellung von Thioxoethenon, C2OS, konnte ein der C2S2-Synthese analoges Verfahren herangezogen werden: Die photochemisch induzierte Addition ...

  11. Regioselective Alkylative Carboxylation of Allenamides with Carbon Dioxide and Dialkylzinc Reagents Catalyzed by an N-Heterocyclic Carbene-Copper Complex.

    Science.gov (United States)

    Gholap, Sandeep Suryabhan; Takimoto, Masanori; Hou, Zhaomin

    2016-06-13

    The alkylative carboxylation of allenamide catalyzed by an N-heterocyclic carbene (NHC)-copper(I) complex [(IPr)CuCl] with CO2 and dialkylzinc reagents was investigated. The reaction of allenamides with dialkylzinc reagents (1.5 equiv) and CO2 (1 atm.) proceeded smoothly in the presence of a catalytic quantity of [(IPr)CuCl] to afford (Z)-α,β-dehydro-β-amino acid esters in good yields. The reaction is regioselective, with the alkyl group introduced onto the less hindered γ-carbon, and the carboxyl group introduced onto the β-carbon atom of the allenamides. The first step of the reaction was alkylative zincation of the allenamides to give an alkenylzinc intermediate followed by nucleophilic addition to CO2 . A variety of cyclic and acyclic allenamides were found to be applicable to this transformation. Dialkylzinc reagents bearing β-hydrogen atoms, such as Et2 Zn or Bu2 Zn, also gave the corresponding alkylative carboxylation products without β-hydride elimination. The present methodology provides an easy route to alkyl-substituted α,β-dehydro-β-amino acid ester derivatives under mild reaction conditions with high regio- and stereoselectivtiy. PMID:27167688

  12. Toward new organometallic architectures: synthesis of carbene-centered rhodium and palladium bisphosphine complexes. stability and reactivity of [PC(BIm)PRh(L)][PF6] pincers.

    Science.gov (United States)

    Plikhta, Andriy; Pöthig, Alexander; Herdtweck, Eberhardt; Rieger, Bernhard

    2015-10-01

    In this article, we report the synthesis of a tridentate carbene-centered bisphosphine ligand precursor and its complexes. The developed four-step synthetic strategy of a new PC(BIm)P pincer ligand represents the derivatization of benzimidazole in the first and third positions by (diphenylphosphoryl)methylene synthone, followed by phosphine deprotection and subsequent insertion of a noncoordinating anion. The obtained ligand precursor undergoes complexation, with PdCl2 and [μ-OCH3Rh(COD)]2 smoothly forming the target organometallics [PC(BIm)PPdCl][PF6] and [PC(BIm)PRh(L)][PF6] under mild hydrogenation conditions. A more detailed study of the rhodium complexes [PC(BIm)PRh(L)][PF6] reveals significant thermal stability of the PC(BIm)PRh moiety in the solid state as well as in solution. The chemical behavior of 1,3-bis(diphenylphosphinomethylene)benzimidazol-2-ylrhodium acetonitrile hexafluorophosphate has been screened under decarbonylation, hydrogenation, and hydroboration reaction conditions. Thus, the PC(BIm)PRh(I) complex is a sufficiently stable compound, with the potential to be applied in catalysis. PMID:26390389

  13. Macrophage and colon tumor cells as targets for a binuclear silver(I) N-heterocyclic carbene complex, an anti-inflammatory and apoptosis mediator.

    Science.gov (United States)

    Iqbal, Muhammad Adnan; Umar, Muhammad Ihtisham; Haque, Rosenani A; Khadeer Ahamed, Mohamed B; Asmawi, Mohd Zaini Bin; Majid, Amin Malik Shah Abdul

    2015-05-01

    Chronic inflammation intensifies the risk for malignant neoplasm, indicating that curbing inflammation could be a valid strategy to prevent or cure cancer. Cancer and inflammation are inter-related diseases and many anti-inflammatory agents are also used in chemotherapy. Earlier, we have reported a series of novel ligands and respective binuclear Ag(I)-NHC complexes (NHC=N-heterocyclic carbene) with potential anticancer activity. In the present study, a newly synthesized salt (II) and respective Ag(I)-NHC complex (III) of comparable molecular framework were prepared for a further detailed study. Preliminarily, II and III were screened against HCT-116 and PC-3 cells, wherein III showed better results than II. Both the compounds showed negligible toxicity against normal CCD-18Co cells. In FAM-FLICA caspase assay, III remarkably induced caspase-3/7 in HCT-116 cells most probably by tumor necrosis factor-alpha (TNF-α) independent intrinsic pathway and significantly inhibited in vitro synthesis of cytokines, interleukin-1 (IL-1) and TNF-α in human macrophages (U937 cells). In a cell-free system, both the compounds inhibited cyclooxygenase (COX) activities, with III being more selective towards COX-2. The results revealed that III has strong antiproliferative property selectively against colorectal tumor cells which could be attributed to its pro-apoptotic and anti-inflammatory abilities. PMID:25699476

  14. Experimental and computational studies on the mechanism of zwitterionic ring-opening polymerization of δ-valerolactone with N-heterocyclic carbenes.

    Science.gov (United States)

    Acharya, Ashwin K; Chang, Young A; Jones, Gavin O; Rice, Julia E; Hedrick, James L; Horn, Hans W; Waymouth, Robert M

    2014-06-19

    Experimental and computational investigations of the zwitterionic ring-opening polymerization (ZROP) of δ-valerolactone (VL) catalyzed by the N-heterocyclic carbenes (NHC) 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (1) and 1,3,4,5-tetramethyl-imidazol-2-ylidene (2) were carried out. The ZROP of δ-valerolactone generates cyclic poly(valerolactone)s whose molecular weights are higher than predicted from [VL]0/[NHC]0. Kinetic studies reveal the rate of polymerization is first order in [VL] and first order in [NHC]. Density functional theory (DFT) calculations were carried out to elucidate the key steps involved in the ring-opening of δ-valerolactone and its subsequent oligomerization. These studies have established that the initial steps of the mechanism involve nucleophilic attack of the NHC on δ-valerolactone to form a zwitterionic tetrahedral intermediate. DFT calculations indicate that the highest activation barrier of the entire mechanism is associated with the ring-opening of the tetrahedral intermediate formed from the NHC and δ-valerolactone, a result consistent with inefficient initiation to generate reactive zwitterions. The large barrier in this step is due to the fact that ring-opening requires a partial positive charge to develop next to the directly attached NHC moiety which already bears a delocalized positive charge. PMID:24702523

  15. N-Heterocyclic Carbene-Catalyzed Ring Opening Polymerization of ε-Caprolactone with and without Alcohol Initiators: Insights from Theory and Experiment.

    Science.gov (United States)

    Jones, Gavin O; Chang, Young A; Horn, Hans W; Acharya, Ashwin K; Rice, Julia E; Hedrick, James L; Waymouth, Robert M

    2015-04-30

    Computational investigations with density functional theory (DFT) have been performed on the N-heterocyclic carbene (NHC) catalyzed ring-opening polymerization of ε-caprolactone in the presence and in the absence of a methanol initiator. Much like the zwitterionic ring opening (ZROP) of δ-valerolactone which was previously reported, calculations predict that the mechanism of the ZROP of caprolactone that occurs without an alcohol present involves a high-barrier step involving ring opening of the zwitterionic tetrahedral intermediate formed after the initial nucleophilic attack of NHC on caprolactone. However, the operative mechanism by which caprolactone is polymerized in the presence of an alcohol initiator does not involve the analogous mechanism involving initial nucleophilic attack by the organocatalytic NHC. Instead, the NHC activates the alcohol through hydrogen bonding and promotes nucleophilic attack and the subsequent ring-opening steps that occur during polymerization. The largest free energy barrier for the hydrogen-bonding mechanism in alcohol involves nucleophilic attack, while that for both ZROP processes involves ring opening of the initially formed zwitterionic tetrahedral intermediate. The DFT calculations predict that the rate of polymerization in the presence of alcohol is faster than the reaction performed without an alcohol initiator; this prediction has been validated by experimental kinetic studies. PMID:25848823

  16. Structure, bonding and energetics of N-heterocyclic carbene (NHC) stabilized low oxidation state group 2 (Be, Mg, Ca, Sr and Ba) metal complexes: A theoretical study

    Indian Academy of Sciences (India)

    Ashim Baishya; V Rao Mundlapati; Sharanappa Nembenna; Himansu S Biswal

    2014-11-01

    A series of N-heterocyclic carbene stabilized low oxidation state group 2 metal halide and hydrides with metal-metal bonds ([L(X) M-M(X) L]; L = NHC ((CHNH)2C:), M = Be, Mg, Ca, Sr and Ba, and X = Cl or H) has been studied by computational methods. The main objective of this study is to predict whether it is possible to stabilize neutral ligated low oxidation state alkaline-earth metal complexes with metal-metal bonds. The homolytic metal-metal Bond Dissociation Energy (BDE) calculation, Natural Bond Orbital (NBO) and Energy Decomposition Analyses (EDA) on density functional theory (DFT) optimized [L(X)M-M(X)L] complexes revealed that they are as stable as their -diketiminate, guanidinate and -diimine counterparts. The optimized structures of the complexes are in trans-linear geometries. The bond order analyses such as Wiberg Bond Indices (WBI) and Fuzzi Bond Order (FBO) confirm the existence of single bond between two metal atoms, and it is covalent in nature.

  17. Steric and electronic parameters of a bulky yet flexible N-heterocyclic carbene: 1,3-bis(2,6-bis(1-ethylpropyl)phenyl)imidazol-2-ylidene (IPent)

    KAUST Repository

    Collado, Alba

    2013-06-10

    The free N-heterocyclic carbene IPent (1; IPent = 1,3-bis(2,6-bis(1- ethylpropyl)phenyl)imidazol-2-ylidene) was prepared from the corresponding imidazolium chloride salt (2). The steric and electronic parameters of 1 were determined by synthesis of the gold(I) chloride complex [Au(IPent)Cl] (3) and the nickel-carbonyl complex [Ni(IPent)(CO)3] (4), respectively. 3 and 4 were fully characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction studies on single crystals. © 2013 American Chemical Society.

  18. π-face donation from the aromatic N-substituent of N-heterocyclic carbene ligands to metal and its role in catalysis

    KAUST Repository

    Credendino, Raffaele

    2012-05-16

    In this work, we calculate the redox potential in a series of Ir and Ru complexes bearing a N-heterocyclic carbene (NHC) ligand presenting different Y groups in the para position of the aromatic N-substituent. The calculated redox potentials excellently correlate with the experimental ΔE 1/2 potentials, offering a handle to rationalize the experimental findings. Analysis of the HOMO of the complexes before oxidation suggests that electron-donating Y groups destabilize the metal centered HOMO. Energy decomposition of the metal-NHC interaction indicates that electron-donating Y groups reinforce this interaction in the oxidized complexes. Analysis of the electron density in the reduced and oxidized states of representative complexes indicates a clear donation from the C ipso of the N-substituents to an empty d orbital on the metal. In case of the Ru complexes, this mechanism involves the Ru-alkylidene moiety. All of these results suggest that electron-donating Y groups render the aromatic N-substituent able to donate more density to electron-deficient metals through the C ipso atom. This conclusion suggests that electron-donating Y groups could stabilize higher oxidation states during catalysis. To test this hypothesis, we investigated the effect of differently donating Y groups in model reactions of Ru-catalyzed olefin metathesis and Pd-catalyzed C-C cross-coupling. Consistent with the experimental results, calculations indicate an easier reaction pathway if the N-substituent of the NHC ligand presents an electron-donating Y group. © 2012 American Chemical Society.

  19. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  20. Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.

    Science.gov (United States)

    Arz, Marius I; Straßmann, Martin; Geiß, Daniel; Schnakenburg, Gregor; Filippou, Alexander C

    2016-04-01

    Protonation and alkylation of (Idipp)Si═Si(Idipp) (1) afforded the mixed-valent disilicon(I)-borates [(Idipp)(R)Si(II)═Si(0)(Idipp)][B(Ar(F))4] (1R[B(Ar(F))4]; R = H, Me, Et; Ar(F) = C6H3-3,5-(CF3)2; Idipp = C[N(C6H3-2,6-iPr2)CH]2) as red to orange colored, highly air-sensitive solids, which were characterized by single-crystal X-ray diffraction, IR spectroscopy and multinuclear NMR spectroscopy. Dynamic NMR studies in solution revealed a degenerate isomerization (topomerization) of the "σ-bonded" tautomers of 1H[B(Ar(F))4], which proceeds according to quantum chemical calculations via a NHC-stabilized (NHC = N-heterocyclic carbene) disilahydronium ion ("π-bonded" isomer) and is reminiscent of the degenerate rearrangement of carbenium ions formed upon protonation of olefins. The topomerization of 1H[B(Ar(F))4] provides the first example of a reversible 1,2-H migration along a Si═Si bond observed in a molecular system. In contrast, 1Me[B(Ar(F))4] adopts a "rigid" structure in solution due to the higher energy required for the interconversion of the "σ-bonded" isomer into a putative NHC-stabilized disilamethonium ion. Addition of alkali metal borates to 1 afforded the alkali metal disilicon(0) borates 1M[BAr4] (M = Li, Ar = C6F5; M = Na, Ar = Ar(F)) as brown, air-sensitive solids. Single-crystal X-ray diffraction analyses and NMR spectroscopic studies of 1M[BAr4] suggest in concert with quantum chemical calculations that encapsulation of the alkali metal cations in the cavity of 1 predominantly occurs via electrostatic cation-π interactions with the Si═Si π-bond and the peripheral NHC aryl rings. Displacement of the [Si(NHC)] fragments by the isolobal fragments [PR] and [SiR](-) interrelates the cations [(NHC)(R)Si═Si(NHC)](+) to a series of familiar, multiply bonded Si and P compounds as verified by analyses of their electronic structures. PMID:26978031

  1. H-D exchange in metal carbene complexes: Structure of cluster (μ-H)(μ-OCD3)Os3(CO)9{:C(CD3)NC2H8O}

    Science.gov (United States)

    Savkov, Boris; Maksakov, Vladimir; Kuratieva, Natalia

    2015-10-01

    X-ray and spectroscopic data for the new complex (μ-H)(μ-OCH3)Os3(CO)9{:C(CD3)NC2H8O} (2) obtained in the reaction of the (μ-H)(μ-Cl)Os3(CO)9{:C(CH3)NC2H8O} (1) with NaOCD3 in CD3OD solution are reported. It is shown that cluster 1 has the property of CH-acidity inherent of Fisher type carbenes. This had demonstrated using hydrogen deuterium exchange reaction in the presence of a strong base. Bridging chlorine to metoxide ligand substitution takes place during the reaction. The molecular structure of 2 is compared with known analogues.

  2. N, N′-Olefin functionalized Bis-Imidazolium Pd(II) chloride N-Heterocyclic carbene complex builds a supramolecular framework and shows catalytic efficacy for `C–C' coupling reactions

    Indian Academy of Sciences (India)

    Gourisankar Roymahapatra; Tapastaru Samanta; Saikat Kumar Seth; Ambikesh Mahapatra; Shyamal Kumar Chattopadhyay; Joydev Dinda

    2015-06-01

    The ligand 3,3′-(-phenylenedimethylene)bis{1-(2-methylallyl)} imidazolium bromide (1) and its Palladium(II) N-heterocyclic carbene (NHC) complex (3) has been synthesized and characterized by several spectroscopic techniques and the solid-state structure of 3 has been determined by single crystal X-ray diffraction studies. The Pd(II) complex possesses ring head to tail – stacking interactions (3.767 A°) through imidazole rings. Complex 3 catalyzes Suzuki-Miyaura `C–C' coupling reaction. DFT calculations have been used to understand the HOMO/LUMO energy and hence the stability and reactivity of Pd(II) complex in syn and anti-configuration.

  3. Air-stable, convenient to handle Pd based PEPPSI (pyridine enhanced precatalyst preparation, stabilization and initiation) themed precatalysts of N/O-functionalized N-heterocyclic carbenes and its utility in Suzuki-Miyaura cross-coupling reaction.

    Science.gov (United States)

    Ray, Lipika; Shaikh, Mobin M; Ghosh, Prasenjit

    2007-10-28

    Several new air-stable, convenient to handle and easily synthesized Pd based PEPPSI (Pyridine Enhanced Precatalyst Preparation, Stabilization and Initiation) type precatalysts supported over N/O-functionalized N-heterocyclic carbenes (NHC) namely, trans-[1-(benzyl)-3-(N-t-butylacetamido)imidazol-2-ylidene]Pd(pyridine)Cl2 (), trans-[1-(2-hydroxy-cyclohexyl)-3-(benzyl)imidazol-2-ylidene]Pd(pyridine)Cl2 () and trans-[1-(o-methoxybenzyl)-3-(t-butyl)imidazol-2-ylidene]Pd(pyridine)Br2 (), have been designed. Specifically, the Pd-NHC complexes, , and , were conveniently synthesized from their respective imidazolium halide salts by the reaction with PdCl2 in pyridine in presence of K2CO3 as a base. A new imidazolium chloride salt, 1-(benzyl)-3-(N-t-butylacetamido)imidazolium chloride () was synthesized by the alkylation reaction of benzyl imidazole with N-t-butyl-2-chloroacetamide. The molecular structures of the imidazolium chloride salt, , and the Pd-NHC complexes, , and , have been determined by X-ray diffraction studies. The density functional theory studies of the , and complexes were carried out to in order to gain insight about their structure, bonding and the electronic properties. The nature of the NHC-metal bond in these complexes was examined using Charge Decomposition Analysis (CDA), which revealed that the N-heterocyclic carbene ligands are effective sigma-donors. In addition, the catalysis studies revealed that the Pd-NHC complexes, , and , are effective catalysts for the Suzuki-Miyaura type C-C cross-coupling reactions. PMID:17928912

  4. Uranium-Carbene-Imido Metalla-Allenes: Ancillary-Ligand-Controlled cis-/trans-Isomerisation and Assessment of trans Influence in the R2 C=U(IV) =NR' Unit (R=Ph2 PNSiMe3 ; R'=CPh3 ).

    Science.gov (United States)

    Lu, Erli; Cooper, Oliver J; Tuna, Floriana; Wooles, Ashley J; Kaltsoyannis, Nikolas; Liddle, Stephen T

    2016-08-01

    Uranium(IV)-carbene-imido complexes [U(BIPM(TMS) )(NCPh3 )(κ(2) -N,N'-BIPY)] (2; BIPM(TMS) =C(PPh2 NSiMe3 )2 ; BIPY=2,2-bipyridine) and [U(BIPM(TMS) )(NCPh3 )(DMAP)2 ] (3; DMAP=4-dimethylamino-pyridine) that contain unprecedented, discrete R2 C=U=NR' units are reported. These complexes complete the family of E=U=E (E=CR2 , NR, O) metalla-allenes with feasible first-row hetero-element combinations. Intriguingly, 2 and 3 contain cis- and trans-C=U=N units, respectively, representing rare examples of controllable cis/trans isomerisation in f-block chemistry. This work reveals a clear-cut example of the trans influence in a mid-valent uranium system, and thus a strong preference for the cis isomer, which is computed in a co-ligand-free truncated model-to isolate the electronic trans influence from steric contributions-to be more stable than the trans isomer by approximately 12 kJ mol(-1) with an isomerisation barrier of approximately 14 kJ mol(-1) . PMID:27405793

  5. 表面活性剂对水溶性氮杂环卡宾钯催化Suzuki反应的影响%Influence of surfactant for the water-soluble N-heterocyclic carbene palladium catalyzed Suzuki reaction in water

    Institute of Scientific and Technical Information of China (English)

    柳云玲; 于宏伟; 贾莉; 施继成

    2012-01-01

    The influence of surfactant for the N-heterocyclic carbene palladium catalyst(5) with 15 of glycol units has been evaluated.It was found that those routine surfactants can recover the activity of the catalyst 5 for Suzuki reaction carried out in water to the level in 1,4-dioxane,affording another way to improve the activity of 5 in water.%开展了添加表面活性剂对带15个左右的乙二醇单元的氮杂环卡宾钯催化剂(5)在水介质中催化Suzuki偶联反应性能的影响研究;发现常见的阳离子或阴离子表面活性剂均可将催化剂5在水介质中的催化性能恢复到在二氧六环中的水平;故发现了一条提高催化剂5在水介质的性能途径.

  6. Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds

    Directory of Open Access Journals (Sweden)

    Manie H. C. Vosloo

    2008-04-01

    Full Text Available The complexes RuCl2(PCy32(=CHPh, 1, and RuCl2(PCy3(H2IMes(=CHPh, 2, proved to be active catalysts for the self-metathesis of oleate-type fatty compounds containing the ester, hydroxyl, epoxy and carboxylic acid functional groups. At elevated reaction temperatures 2 showed a higher activity, stability and lower selectivity for primary metathesis products compared to 1. A profound influence of organic functional groups on catalyst activity and selectivity was found and from relative activities and selectivities 2 has proved to be more resistant to deactivation by polar functional groups and more inclined to promote double bond isomerisation than 1. The observed catalyst deactivation by oxygen-containing functional groups could be attributed to a phosphine displacement side reaction.

  7. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles.

    Science.gov (United States)

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-02-01

    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  8. Deconstructing selectivity in the gold-promoted cyclization of alkynyl benzothioamides to six-membered mesoionic carbene or acyclic carbene complexes

    KAUST Repository

    Vummaleti, Sai V. C.

    2014-05-02

    We demonstrate that the experimentally observed switch in selectivity from 5-exo-dig to 6-endo-dig cyclization of an alkynyl substrate, promoted by Au I and AuIII complexes, is connected to a switch from thermodynamic to kinetic reaction control. The AuIII center pushes alkyne coordination toward a single Au-C(alkyne) σ-bond, conferring carbocationic character (and reactivity) to the distal alkyne C atom. © 2014 American Chemical Society.

  9. Nitrene-carbene-carbene rearrangement. Photolysis and thermolysis of tetrazolo[5,1- a ]phthalazine with formation of 1-phthalazinylnitrene, o-cyanophenylcarbene, and phenylcyanocarbene

    DEFF Research Database (Denmark)

    Høj, Martin; Kvaskoff, David; Wentrup, Curt

    2014-01-01

    1-Azidophthalazine 9A is generated in trace amount by mild FVT of tetrazolo[5,1-a]phthalazine 9T and is observable by its absorption at 2121 cm-1 in the Ar matrix IR spectrum. Ar matrix photolysis of 9T/9A at 254 nm causes ring opening to generate two conformers of (o-cyanophenyl) diazomethane 11...... contraction, viz., fulvenallenes and ethynylcyclopentadienes 16-18. Thus the overall rearrangement 10 → 11 → 12 â., 13 â., 14 can be formulated. © 2013 American Chemical Society....

  10. Palladium N-Heterocyclic Carbene Precatalyst Site Isolated in the Core of a Star Polymer

    KAUST Repository

    Bukhryakov, Konstantin V.

    2015-10-02

    An approach for supporting a Pd-NHC complex on a soluble star polymer with nanoscale dimensions is described. The resulting star polymer catalyst exhibits excellent activity in cross-coupling reactions, is stable in air and moisture, and is easily recoverable and recyclable. These properties are distinct and unattainable with the small-molecule version of the same catalyst. © 2015 American Chemical Society.

  11. Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences.

    Science.gov (United States)

    Peris, Eduardo

    2016-04-30

    In the course of our most recent research, we demonstrated how homogeneous catalysts with polyaromatic functionalities possess properties that clearly differ from those shown by analogues lacking these polyaromatic systems. The differences arise from the ability of the polyaromatic groups to afford non-covalent interactions with aromatic molecules, which can either be substrates in a homogeneous catalysed reaction, or the same catalysts to afford self-assembled systems. This article summarizes all our efforts toward understanding the fundamental effects of π-stacking interactions in homogenous catalysis, particularly in those cases where catalysts bearing polyaromatic functionalities are used. The study reveals several important implications regarding the influence of ligand-ligand interactions, ligand-additive interactions, and ligand-substrate interactions, in the performance of the catalysts used. In particular, the electronic properties of ligands with fused polyconjugated systems, are modified if molecules with π-stacking abilities are added, via a ligand-additive interaction. Also, the kinetics of the reactions in which aromatic substrates and catalysts with polyaromatic ligands are used, are strongly influenced by the self-association of the catalysts and by the non-covalent interaction between the catalyst and the aromatic substrates. The nature and the magnitude of these supramolecular interactions were unveiled by using host-guest chemistry methods applied to organometallic catalysis. Finally, non-covalent interactions afford a very convenient approach for the immobilization of catalysts decorated with polyaromatic systems onto the surfaces of graphene derivatives, hence affording an easy yet extremely effective way to support catalysts and facilitate recycling. The results given have fundamental implications in the design of future catalysts containing rigid polyaromatic systems, and may inspire future researchers in the design of improved homogeneous catalysts, by taking into account that the activities of the metal complexes are strongly modified by supramolecular interactions. PMID:27063298

  12. Amide Synthesis from Alcohols and Amines Catalyzed by Ruthenium N-Heterocyclic Carbene Complexes

    DEFF Research Database (Denmark)

    Dam, Johan Hygum; Osztrovszky, Gyorgyi; Nordstrøm, Lars Ulrik Rubæk;

    2010-01-01

    not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction...... mixture. Addition of the amine forms the hemiaminal that undergoes dehydrogenation to the amide. A catalytic cycle is proposed with the {(IiPr)Ru-II} species as the catalytically active components....

  13. A chiral 6-membered N-heterocyclic carbene copper(I) complex that induces high stereoselectivity.

    Science.gov (United States)

    Park, Jin Kyoon; Lackey, Hershel H; Rexford, Matthew D; Kovnir, Kirill; Shatruk, Michael; McQuade, D Tyler

    2010-11-01

    A chiral 6-membered annulated N-heterocyclic (6-NHC) copper complex that catalyzes β-borylations with high yield and enantioselectivity was developed. The chiral 6-NHC copper complex is easy to prepare on the gram scale and is very active, showing 10,000 turnovers at 0.01 mol % of catalyst without significant decrease of enantioselectivity and with useful reaction rates. PMID:20919706

  14. Imidazol and barbituric acid derivatives - heterocyclic carbene fragments with pi-donor and acceptor properties

    OpenAIRE

    Sweidan, Kamal

    2006-01-01

    New derivatives of 1,3-dimethylbarbituric acid and imidazol-2-ylidene were prepared and characterized by different spectroscopic techniques. The resulting derivatives are classified into zwitterionic, salts and neutral derivatives of 1,3-dimethylbarbituric acid and salts derivatives of 2,3-dihydroimidazole-2-ylidenes. The crystal structures of most of these compounds reveal the presence of N-H-O and C-H-O hydrogen bonds.

  15. Cobalt azide complexes with a tris(carbene)borate ligand scaffold.

    Science.gov (United States)

    Scepaniak, Jeremiah J; Margarit, Charles G; Bontchev, Ranko P; Smith, Jeremy M

    2013-09-01

    The four-coordinate Co(II) complex, (azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(II), [Co(C27H38BN6)(N3)], (1), denoted PhB(t-BuIm)3CoN3, was prepared by the reaction of the corresponding chloride complex with NaN3. One-electron oxidation results in the isolation of the five-coordinate Co(III) complex, bis(azido-κN)[1,1,',1''-(phenylboranetriyl)tris(3-tert-butyl-1H-imidazol-2-ylidene)]cobalt(III), [Co(C27H38BN6)(N3)2], (2), denoted PhB(t-BuIm)3Co(N3)2. Attempts to prepare cobalt nitrides by thermolysis or photolysis of these complexes were unsuccessful. PMID:24005501

  16. Iron(0) Aminocarbene Complexes Bearing Heterocyclic Substituent on Carbene Carbon Atom: Electrochemistry and Reactivity

    Czech Academy of Sciences Publication Activity Database

    Hoskovcová, I.; Zvěřinová, R.; Dvořák, D.; Záliš, Stanislav; Ludvík, Jiří

    Lausanne: International Society of Electrochemistry, 2008, 080898-080898. [Annual Meeting of the International Society of Electrochemistry /59./. Seville (ES), 07.09.2008-12.09.2008] R&D Projects: GA AV ČR IAA400400813 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * reactivity * iron aminocarbene complexes Subject RIV: CG - Electrochemistry http://www.uco.es/electroquimica-rseq/Circular_Seville08.pdf

  17. Investigation of the properties of 4,5-dialkylated N-heterocyclic carbenes

    DEFF Research Database (Denmark)

    Urban, S.; Tursky, Matyas; Frohlich, R.; Glorius, F.

    The investigation of the electronic and steric properties of 4,5-disubstituted imidazolylidenes is reported, as well as their successful application as organocatalysts in the formation of gamma-butyrolactones by conjugate Umpolung....

  18. Chiral linker-bridged bis-N-heterocyclic carbenes: design, synthesis, palladium complexes, and catalytic properties.

    Science.gov (United States)

    Zhang, Dao; He, Yu; Tang, Junkai

    2016-08-01

    A series of chiral bis(benzimidazolium) salts 10-19 with (1R,2R)-cyclohexene, (1R,2R)-diphenylethylene and (aR)-binaphthylene linkers have been designed and synthesized in 30-94% yield. Ten chiral bis(NHC) palladium complexes 20-28 have been synthesized and characterized by NMR, HRMS, elemental analysis and further confirmed by X-ray single crystal analysis. These bis(NHC)-Pd complexes showed obviously different catalytic properties in the asymmetric Suzuki-Miyaura coupling reactions. The (1R,2R)-cyclohexene-bridged bis(NHC)-Pd complex, (R,R)-23, achieved the highest yield of 90%, while complex (aR)-28, with a binaphthylene linker, showed the best enantioselectivity of 60 ee%. The structural analysis of these complexes suggested that such difference of catalytic performance has a close relationship with their coordination surroundings around metal centres. PMID:27230553

  19. Chemistry of Iron N -heterocyclic carbene complexes: Syntheses, structures, reactivities, and catalytic applications

    KAUST Repository

    Riener, Korbinian

    2014-05-28

    Iron is the most abundant transition metal in Earth\\'s crust. It is relatively inexpensive, not very toxic, and environmentally benign. Undoubtedly, due to the involvement in a multitude of biological processes, which heavily rely on the rich functionalities of iron-containing enzymes, iron is one of the most important elements in nature. Additionally, three-coordinate iron complexes have been reported during the past several years. In this review, the mentioned iron NHC complexes are categorized by their main structure and reactivity attributes. Thus, monocarbene and bis-monocarbene complexes are presented first. This class is subdivided into carbonyl, nitrosyl, and halide compounds followed by a brief section on other, more unconventional iron NHC motifs. Subsequently, donor-substituted complexes bearing bi-, tri-, tetra-, or even pentadentate ligands and further pincer as well as scorpionato motifs are described.

  20. Organic-Inorganic Hybrid Silica Material Derived from a Monosilylated Grubbs-Hoveyda Ruthenium Carbene as a Recyclable Metathesis Catalyst

    Directory of Open Access Journals (Sweden)

    Michel Wong Chi Man

    2010-08-01

    Full Text Available The synthesis of a monosilylated Grubbs-Hoveyda ruthenium alkylidene complex is described, as well as the preparation and characterization of the corresponding material by sol-gel cogelification with tetraethoxysilane (TEOS and the assay of this recyclable supported catalyst in ring-closing diene and enyne metathesis reactions under thermal and microwave conditions.

  1. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  2. Double hydrophosphination of alkynes promoted by rhodium: the key role of an N-heterocyclic carbene ligand.

    Science.gov (United States)

    Di Giuseppe, Andrea; De Luca, Roberto; Castarlenas, Ricardo; Pérez-Torrente, Jesús J; Crucianelli, Marcello; Oro, Luis A

    2016-04-12

    The regioselective double hydrophosphination of alkynes mediated by rhodium catalysts is presented. The distinctive stereoelectronic properties of the NHC ligand prevent the catalyst deactivation by diphosphine coordination thereby allowing for the closing of a productive catalytic cycle. PMID:27022648

  3. Dehydrogenative Coupling of Primary Alcohols To Form Esters Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte; Madsen, Robert

    2011-01-01

    The ruthenium complex [RuCl2(IiPr)(p-cymene)] catalyzes the direct condensation of primary alcohols into esters and lactones with the release of hydrogen gas. The reaction is most effective with linear aliphatic alcohols and 1,4-diols and is believed to proceed with a ruthenium dihydride as the c...

  4. Dehydrogenative Synthesis of Imines from Alcohols and Amines Catalyzed by a Ruthenium N-Heterocyclic Carbene Complex

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    applied to a variety of primary alcohols and amines and can be combined with a subsequent addition reaction. A deuterium labeling experiment indicates that the catalytically active species is a ruthenium dihydride. The reaction is believed to proceed by initial dehydrogenation of the alcohol to the...

  5. Oxidation and β-Alkylation of Alcohols Catalysed by Iridium(I) Complexes with Functionalised N-Heterocyclic Carbene Ligands.

    Science.gov (United States)

    Jiménez, M Victoria; Fernández-Tornos, Javier; Modrego, F Javier; Pérez-Torrente, Jesús J; Oro, Luis A

    2015-12-01

    The borrowing hydrogen methodology allows for the use of alcohols as alkylating agents for CC bond forming processes offering significant environmental benefits over traditional approaches. Iridium(I)-cyclooctadiene complexes having a NHC ligand with a O- or N-functionalised wingtip efficiently catalysed the oxidation and β-alkylation of secondary alcohols with primary alcohols in the presence of a base. The cationic complex [Ir(NCCH3 )(cod)(MeIm(2- methoxybenzyl))][BF4 ] (cod=1,5-cyclooctadiene, MeIm=1-methylimidazolyl) having a rigid O-functionalised wingtip, shows the best catalyst performance in the dehydrogenation of benzyl alcohol in acetone, with an initial turnover frequency (TOF0 ) of 1283 h(-1) , and also in the β-alkylation of 2-propanol with butan-1-ol, which gives a conversion of 94 % in 10 h with a selectivity of 99 % for heptan-2-ol. We have investigated the full reaction mechanism including the dehydrogenation, the cross-aldol condensation and the hydrogenation step by DFT calculations. Interestingly, these studies revealed the participation of the iridium catalyst in the key step leading to the formation of the new CC bond that involves the reaction of an O-bound enolate generated in the basic medium with the electrophilic aldehyde. PMID:26493780

  6. Synthesis, structures, and selective toxicity to cancer cells of gold(I) complexes involving N-heterocyclic carbene ligands

    OpenAIRE

    L. Boselli; Ader, I.; Carraz, Maëlle; Hemmert, C.; Cuvillier, O.; Gornitzka, H.

    2014-01-01

    New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active...

  7. Synthesis, structures, and selective toxicity to cancer cells of gold(I) complexes involving N-heterocyclic carbene ligands.

    Science.gov (United States)

    Boselli, Luca; Ader, Isabelle; Carraz, Maëlle; Hemmert, Catherine; Cuvillier, Olivier; Gornitzka, Heinz

    2014-10-01

    New gold(I) complexes containing two 1-[2-(diethylamino)ethyl]imidazolydene ligands have been synthesized and characterized. The X-ray structures of two key compounds are presented. All complexes have been tested for their antiproliferative activities in prostate cancer cell line PC-3. Lipophilicity (Log P) has been determined for these complexes. The most active complex has been tested for the cytotoxic activities in five human cancer cell lines and primary endothelial cells. The most active complex demonstrated a potent selectivity for cancer cells. PMID:25078312

  8. Palladium-Catalyzed Heck Coupling Reaction of Aryl Bromides in Aqueous Media Using Tetrahydropyrimidinium Salts as Carbene Ligands

    Directory of Open Access Journals (Sweden)

    İsmail Özdemir

    2010-01-01

    Full Text Available An efficient and stereoselective catalytic system for the Heck cross coupling reaction using novel 1,3-dialkyl-3,4,5,6-tetrahydropyrimidinium salts (1, LHX and Pd(OAc2 loading has been reported. The palladium complexes derived from the salts 1a-f prepared in situ exhibit good catalytic activity in the Heck coupling reaction of aryl bromides under mild conditions.

  9. Synthesis and behavior of novel sulfonated water-soluble N-heterocyclic carbene (η(4)-diene) platinum(0) complexes.

    Science.gov (United States)

    Ruiz-Varilla, Andrea M; Baquero, Edwin A; Silbestri, Gustavo F; Gonzalez-Arellano, Camino; de Jesús, Ernesto; Flores, Juan C

    2015-11-14

    A series of water-soluble (NHC)Pt(0)(dvtms) and (NHC)Pt(0)(AE) complexes containing different sulfonated NHC ligands (dvtms = divinyltetramethyldisiloxane and AE = diallyl ether) are reported. The dvtms compounds have been found to be quite robust and to display some conformational rigidity, whereas their AE counterparts are less stable and more flexible. The catalytic evaluation of these complexes in the hydrosilylation of alkynes in water revealed no benefits in favor of the complexes containing the more labile spectator diene (AE), and a fairly regular catalytic behavior for all complexes that restricts the location of the sulfonate group to the proximity of the metal site. PMID:26346995

  10. Crystalline 1H-1,2,3-triazol-5-ylidenes

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy; Gulsado-Barrios, Gregorio; Bouffard, Jean; Donnadieu, Bruno

    2016-08-02

    The present invention provides novel and stable crystalline 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of making 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes. The present invention also provides methods of using 1H-1,2,3 triazolium carbenes and metal complexes of 1H-1,2,3 triazolium carbenes in catalytic reactions.

  11. On the mechanism of homogeneous alkene metathesis : a computational study / Jean Isabelle du Toit

    OpenAIRE

    Du Toit, Jean Isabelle

    2012-01-01

    A mechanism for alkene metathesis has been proposed by Chauvin, wherein metal carbenes act as catalysts for the reaction. The use and discovery of Fischer-, Tebbe-, Grubbs- and Schrock-type metal carbenes have to a certain extent proven the general mechanism. These metal carbenes showed different activity for alkene metathesis. Only Grubbs- and Schrock-type carbenes proved to be highly active for metathesis. A lot of studies have been done on the reasons for the activity, but s...

  12. The isolation of [Pd{OC(O)H}(H)(NHC)(PR3)] (NHC = N-heterocyclic carbene) and its role in alkene and alkyne reductions using formic acid

    KAUST Repository

    Broggi, Julie

    2013-03-27

    The [Pd(SIPr)(PCy3)] complex efficiently promotes a tandem process involving dehydrogenation of formic acid and hydrogenation of C-C multiple bonds using H2 formed in situ. The isolation of a key catalytic hydridoformatopalladium species, [Pd{OC(O)H}(H)(IPr)(PCy 3)], is reported. The complex plays a key role in the Pd(0)-mediated formation of hydrogen from formic acid. Mechanistic and computational studies delineate the operational role of the palladium complex in this efficient tandem sequence. © 2013 American Chemical Society.

  13. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group

    Czech Academy of Sciences Publication Activity Database

    Muenzner, J.K.; Rehm, T.; Biersack, B.; Casini, A.; de Graaf, I.; Worawutputtapong, P.; Noor, A.; Kempe, R.; Brabec, Viktor; Kašpárková, Jana; Schobert, R.

    2015-01-01

    Roč. 58, č. 15 (2015), s. 6283-6292. ISSN 0022-2623 R&D Projects: GA ČR(CZ) GA14-21053S Institutional support: RVO:68081707 Keywords : PLATINUM COMPLEXES * CANCER-CELLS * CISPLATIN Subject RIV: BO - Biophysics Impact factor: 5.447, year: 2014

  14. Unusual carbon monoxide activation, reduction, and homologation reactions of 5f-element organometallics: the chemistry of carbene-like dihaptoacyls

    International Nuclear Information System (INIS)

    This article reviews recent results on the chemical, spectral and structural properties of bis(pentamethylcyclopentadienyl) thorium and uranium dihaptoacyl complexes produced by migratory insertion of carbon monoxide into actinide-carbon sigma bonds. The high coordinative unsaturation and oxygen affinity of the ligation environment produces a marked perturbation of the bonding and reactivity toward that of a coordinated oxycarbene: M(eta2-OCR). Reactivity patterns observed include hydrogen atom and trimethylsilyl migration to the acyl carbon, as well as coupling with additional carbon monoxide to produce a dimeric complex of the enedionediolate ligand, OC(R)(anti O)C=C(anti O)(R)CO. The dihaptoacyls insert into the Th-H bond of ]Th[(CH3)5C5]2H2]2. For Th[(CH3)5C5]2[eta2-COCH2C(CH3)3]Cl, this results, via β-hydride elimination, in catalytic isomerization to Th[(CH3)5C5]2-[trans-OC(H)=C(H)C(CH3)3]. In the presence of hydrogen gas, the hydride catalytically hydrogenates the dihaptoacyls to alkoxides (M(eta2-COR)→M-OCH2R). Mechanistic studies include kinetic measurements as well as isotopic labelling and stereochemical analysis. 102 references

  15. Amino Group Functionalized N-Heterocyclic 1,2,4-Triazole-Derived Carbenes: Structural Diversity of Rhodium(I) Complexes

    Czech Academy of Sciences Publication Activity Database

    Turek, J.; Panov, I.; Horáček, Michal; Černošek, Z.; Padělková, Z.; Růžička, A.

    2013-01-01

    Roč. 32, č. 23 (2013), s. 7234-7240. ISSN 0276-7333 Institutional support: RVO:61388955 Keywords : TRANSITION-METAL COMPLEXES * BIFUNCTIONAL MECHANISM * TRANSFER HYDROGENATION Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.253, year: 2013

  16. What can NMR spectroscopy of selenoureas and phosphinidenes teach us about the π-accepting abilities of N-heterocyclic carbenes?

    KAUST Repository

    Vummaleti, Sai V. C.

    2015-01-02

    The electronic nature of the interaction of NHCs with metal centres is of interest when exploring their properties, how these properties influence those of metal complexes, and how these properties might depend on ligand structure. Selenourea and phosphinidene complexes have been proposed to allow the measurement of the π-accepting ability of NHCs, independent of their σ-donating ability, via the collection of 77Se or 31P NMR spectra, respectively. Herein, the synthesis and characterisation of selenoureas derived from a range of imidazol-2-ylidenes, 4,5-dihydroimidazol-2-ylidenes and triazol-2-ylidenes are documented. Computational studies are used to explore the link between the shielding of the selenium centre and the electronic properties of the NHCs. Results show that δSe is correlated to the energy gap between a filled lone pair orbital on Se and the empty π* orbital corresponding to the Se–NHC bond. Bond energy decomposition analysis indicated no correlation between the orbital σ-contribution to bonding and the chemical shielding, while a good correlation was found between the π-contribution to bonding and the chemical shielding, confirming that this technique is indeed able to quantify the ability of NHCs to accept π-electron density. Calculations conducted on phosphinidene adducts yielded similar results. With the link between δSe and δP and π-back bonding ability clearly established, these compounds represent useful ways in which to fully understand and quantify this aspect of the electronic properties of NHCs.

  17. Des germylenes aux germynes : Synthèse et réactivité de ces analogues lourds des carbenes et des alcynes

    OpenAIRE

    Bonnefille, E.

    2007-01-01

    Les métalla-alcynes du groupe 14-M=C-(M=Si, Ge, Sn) constituent une nouvelle fonction de la chimie organométallique ; cette fonction apparaît extrêment prometteuse tant du point de vue fondamental qu'appliqué. En effet si l'étude d'une nouvelle liaison du carbone présente un évident intérêt fondamental, ces dérivés apparaissent surtout prometteurs par leurs nombreuses applications potentielles : précurseurs de polymères organométalliques, nouveaux ligands en chimie des métaux de transition, c...

  18. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group.

    Science.gov (United States)

    Muenzner, Julienne K; Rehm, Tobias; Biersack, Bernhard; Casini, Angela; de Graaf, Inge A M; Worawutputtapong, Pawida; Noor, Awal; Kempe, Rhett; Brabec, Viktor; Kasparkova, Jana; Schobert, Rainer

    2015-08-13

    Five platinum(II) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotoxicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shielding of their leaving chloride ligand, and complex 3c, featuring two triphenylphosphanes, was the most efficacious, with submicromolar IC50 concentrations. Complexes 3a-c interacted with DNA in electrophoretic mobility shift and ethidium bromide binding assays. The cationic complex 3c did not bind coordinatively to DNA but led to its aggregation, damage that is not amenable to the usual repair mechanisms. Accordingly, it arrested the cell cycle of melanoma cells in G1 phase, whereas cis-dichlorido[(1,3-dibenzyl)imidazol-2-ylidene](dimethyl sulfoxide) platinum(II) 3a induced G2/M phase arrest. Complex 3c also disrupted the blood vessels in the chorioallantoic membrane of fertilized chicken eggs. Ex vivo studies using precision-cut tissue slices suggested the nephrotoxicities of 3a-c to be clinically manageable. PMID:26182125

  19. Adjusting the DNA Interaction and Anticancer Activity of Pt(II) N-Heterocyclic Carbene Complexes by Steric Shielding of the Trans Leaving Group

    NARCIS (Netherlands)

    Muenzner, Julienne K.; Rehm, Tobias; Biersack, Bernhard; Casini, Angela; de Graaf, Inge A. M.; Worawutputtapong, Pawida; Noor, Awal; Kempe, Rhett; Brabec, Viktor; Kasparkova, Jana; Schobert, Rainer

    2015-01-01

    Five platinum(LI) complexes bearing a (1,3-dibenzyl)imidazol-2-ylidene ligand but different leaving groups trans to it were examined for cytotomicity, DNA and cell cycle interference, vascular disrupting properties, and nephrotoxicity. The cytotoxicity of complexes 3a-c increased with the steric shi

  20. Synthesis of selected cage alkenes and their attempted ring-opening metathesis polymerisation with well-defined ruthenium carbene catalysts / Justus Röscher

    OpenAIRE

    Röscher, Justus

    2011-01-01

    In this study a number of cage alkenes were synthesised and tested for activity towards ringopening metathesis polymerisation (ROMP) with the commercially available catalysts 55 (Grubbs-I) and 56 (Grubbs-II). The first group of monomers are derivatives of tetracyclo[6.3.0.04,1105,9]undec-2-en-6-one (1). The synthesis of these cage alkenes are summarised in Scheme 7.1. The cage alkene 126b was synthesised by a Diels-Alder reaction between 1 and hexachlorocyclopentadiene (9, Scheme ...

  1. Room-temperature Kumada cross-coupling of unactivated aryl chlorides catalyzed by N-heterocylic carbene-based nickel(II) complexes.

    Science.gov (United States)

    Xi, Zhenxing; Liu, Bin; Chen, Wanzhi

    2008-05-16

    The Kumada cross-coupling reaction of a variety of unactivated aryl chlorides, vinyl chlorides, and heteroaryl chlorides catalyzed by nickel(II) complexes containing pyridine-functionalized NHC ligands is described. The catalysts are so active that the reactions proceed at room temperature in excellent yields. PMID:18412386

  2. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    Directory of Open Access Journals (Sweden)

    Shawna L. Balof

    2015-10-01

    Full Text Available Three new ruthenium alkylidene complexes (PCy3Cl2(H2ITapRu=CHSPh (9, (DMAP2Cl2(H2ITapRu=CHPh (11 and (DMAP2Cl2(H2ITapRu=CHSPh (12 have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl-4,5-dihydroimidazol-2-ylidene. Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP and ring closing metathesis (RCM reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA, however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD and mixtures of DCPD with cyclooctene (COE in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  3. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    Science.gov (United States)

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  4. Macropolyhedral borane reaction chemistry: Reductive oligomerisation of (BuNC)-Bu-ter by anti-B18H22 to give the boron-coordinated {((BuNHCH)-Bu-ter) {(BuNHC)-Bu-ter)CN)}CH2:} carbene residue

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Tomáš; Kilner, C. A.; Barrett, S. A.; Štíbr, Bohumil; Thornton-Pett, M.; Kennedy, J.D.

    2005-01-01

    Roč. 8, č. 5 (2005), s. 491-494. ISSN 1387-7003 R&D Projects: GA ČR GA203/05/2646; GA ČR GA203/00/1042; GA MŠk LC523; GA AV ČR IAA4032701 Grant ostatní: EPSRC(GB) J/56929; EPSRC(GB) K/05818; EPSRC(GB) M/83360 Institutional research plan: CEZ:AV0Z40320502 Keywords : borane cluster * X-ray structure * NMR spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 1.826, year: 2005

  5. Characterizing nitrilimines with nuclear magnetic resonance spectroscopy. A theoretical study.

    Science.gov (United States)

    Mawhinney, Robert C; Peslherbe, Gilles H; Muchall, Heidi M

    2008-01-17

    The 13C chemical shifts in selected nitrilimines, nitriles, acetylenes, allenes, and singlet carbenes have been calculated using density-functional theory [PBE0/6-311++G(2df,pd)] and the gauge including atomic orbital (GIAO) method. The effects of substitution on the 13C chemical shifts in nitrilimines, R1-CNN-R2, have been examined. The carbon nucleus is generally found to be deshielded by substituents in the order CH3 effect is related to the presence of the cumulated functionality, C=N=N. Terminal N-substitution is found to have a larger effect than C-substitution due to a large increase in chemical shielding anisotropy. The electronic structure of nitrilimines has recently been shown to possess a carbene component whose resonance contribution varies widely with substitution, and, as previously reported, insight into the electronic structure can be gained by an analysis of the shielding tensor, especially for carbenes. Accordingly, the components of the diagonalized 13C shielding tensor for nitrilimines and stable singlet carbenes have been examined. This analysis suggests that diaminonitrilimine, H2N-CNN-NH2, may be a stable carbene, and, to the best of our knowledge, it would be the first acyclic, unsaturated stable carbene ever reported. Finally, a detailed analysis of the 13C chemical shifts shows that an increase in the dipolar character of nitrilimines induces a shielding at the carbon nucleus, while an increase in allenic or carbenic character tends to cause a deshielding. PMID:18062684

  6. Regioselectivities in alkyne activation: synthesis of 2-(bicyclo[3.1.0]hexan-1-yl)furan derivatives by Au-catalyzed cyclization and cyclopropanation.

    Science.gov (United States)

    Oh, Chang Ho; Lee, Su Jin; Lee, Ji Ho; Na, Yoon Jung

    2008-11-30

    2-Alkynyl-1-cycloalkenecarbaldehydes, in the presence of gold catalysts, undergo aurative cyclization via the 5-exo-dig mode to form Au-carbene intermediates which react with a double bond to form the corresponding cyclopropanes. PMID:19009084

  7. Synthesis and study of novel silicon-based unsaturated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  8. Palladium/Imidazolium Salts: A General and Highly Efficient Catalytic System for Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    YANG Chu-Luo; Steven P. Nolan

    2003-01-01

    @@ Nucleophilic N-heterocyclic carbenes have attracted considerable attention. These ligands are strong σ-donor with negligible π-accepting ability, and in this regard, they resemble electron-donor phosphines and can be addressed as "phosphine mimics". [ 1

  9. Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit.

    OpenAIRE

    Resek, J F; Farrens, D; Khorana, H G

    1994-01-01

    We prepared rhodopsin mutants that contained a single reactive cysteine residue per rhodopsin molecule at position 65, 140, 240, or 316 on the cytoplasmic face. A carbene-generating photoactivatable group was linked by a disulfide bond to the cysteine sulfhydryl group of each of the rhodopsin mutants. The resulting derivative was then light-activated at lambda > 495 nm to form the metarhodopsin II intermediate, which bound transducin. Subsequent photoactivation (355 nm) of the carbene-generat...

  10. NHC Catalytic Esterification of Aldehydes Research%N-杂环卡宾催化醛的酯化反应研究

    Institute of Scientific and Technical Information of China (English)

    王蕊

    2012-01-01

    The history of N-heterocyclic carbenes as organocatalysts was summarized,and the recent studies of N-heterocyclic carbenes in field of aldehyde esterification.%介绍了氮杂环卡宾作为有机催化剂的发展历史和催化机理,综述了近年来氮杂环卡宾催化醛的酯化反应的研究成果。

  11. Method for Preparation of Amides from Alcohols and Amines by Extrusion of Hydrogen

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a method for preparation of carboxamides using alcohols and amines as starting materials in a dehydrogenative coupling reaction catalyzed by a ruthenium N-heterocyciic carbene (NHC) complex, which may be prepared in situ.......The present invention relates to a method for preparation of carboxamides using alcohols and amines as starting materials in a dehydrogenative coupling reaction catalyzed by a ruthenium N-heterocyciic carbene (NHC) complex, which may be prepared in situ....

  12. Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond

    OpenAIRE

    Donnelly, Kate F.; Petronilho, Ana; Albrecht, Martin

    2013-01-01

    Triazolylidenes have rapidly emerged as a powerful subclass of N-heterocyclic carbene ligands for transition metals. They are readily available through regioselective [2 + 3] cycloaddition of alkynes and azides and subsequent metallation according to procedures established for related carbenes. Due to their mesoionic character, triazolylidenes are stronger donors than Arduengo-type imidazol-2-ylidenes. Spurred by these attractive attributes and despite their only recent emergence, triazolylid...

  13. Expanding the coordination chemistry of donor-stabilized group-14 metalenes

    OpenAIRE

    Cabeza de Marco, Javier Ángel; García Álvarez, Pablo; Polo Coca, Diego

    2013-01-01

    The transformation of an amidinate germylene, equipped with just one accessible lone pair of electrons on the Ge atom, into a bidentate 4-electron donor κ(2)Ge,N-ligand, has been achieved for the first time, opening new doors to the non-carbene-like coordination chemistry of heavier carbene analogues. [Available from: http://www.researchgate.net/publication/233537999_Expanding_the_coordination_chemistry_of_donor-stabilized_group-14_metalenes [accessed Jul 13, 2015].

  14. Imidazole-2-ylidenes as Ligands for Palladium Catalyzed Heck Cross Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-Bo; LIU Jing-Ping; SHAO Zhi-Hui; LI Jie; ZHANG Hong-Bin

    2003-01-01

    @@ N-Heterocyclic carbenes have become universal ligands in coordination chemistry. [1] The design, synthesis, and application of imidazolium salts as precursors of imidazole-2-ylidenes are therefore of substantial interest. [2] The free carbenes with imidazole-2-ylidene structure of A (Scheme 1 ), so called "phosphine mimics", can form metal complexes with high thermal and hydrolytic durability, while N-substituted by different functional groups could produce, in principle, water-soluble; unsymmetrical; and immobilized catalysts. [3

  15. Palladium-catalyzed insertion of N-tosylhydrazones and trapping with carbon nucleophiles.

    Science.gov (United States)

    Zhou, Ping-Xin; Ye, Yu-Ying; Liang, Yong-Min

    2013-10-01

    A Pd-catalyzed three-component cross-coupling reaction of vinyl iodide, N-tosylhydrazone, and carbon nucleophiles is reported, and a one-pot procedure is also developed. The cross-coupling is proposed to proceed through a palladium-carbene migratory insertion, carbopalladation other than classic palladium-carbene migratory insertion, and β-H elimination. Moreover, the reaction proceeds under mild conditions and with high stereoselectivity. PMID:24070001

  16. Carbomethoxychlorocarbene: spectroscopy, theory, chemistry and kinetics.

    Science.gov (United States)

    Likhotvorik, I; Zhu, Z; Tae, E L; Tippmann, E; Hill, B T; Platz, M S

    2001-06-27

    Photolysis (254 nm) of methyl 8-chloro-3a,7a-methanoindan-8-carboxylate (5) in argon at 14 K produces carbomethoxychlorocarbene (6) as a persistent species. The IR and UV-vis spectra of the carbene were recorded and analyzed with the aid of density functional calculations (B3-LYP/6-31G). The IR spectrum of 6 is consistent with the carbene having a nonplanar singlet ground state, in agreement with the G3(MP2)//B3-LYP calculations of Scott and Radom (accompanying paper). Irradiation (300 nm) of 5 in solution produces indane in 97% yield. In cyclohexane, carbene 6 is trapped by insertion into a CH bond, whereas in 2,3-dimethylbutene it adds to the double bond to form a cyclopropane. Laser flash photolysis of 5 (308 nm, 17 ns, XeCl excimer) produces carbene 6 which reacts with pyridine to form an ylide (lambda(max) = 440 nm). It was possible to resolve the growth of the ylide in Freon-113 (CF(2)ClCFCl(2)) to measure the lifetime (tau = 114 ns, ambient temperature) of the carbene and the absolute rate constant of its reaction with pyridine (k(pyr) = 2 x 10(9) M(-)(1) s(-)(1)). A plot of log(1/tau) versus 1/T in CF(2)ClCFCl(2) is linear with Arrhenius parameters E(a) = 10.9 +/- 0.8 kJ/mol and A = 10(9.1)(+/-)(0.2) s(-)(1). In perfluorohexane, a less reactive solvent than Freon-113, E(a) = 23.4 +/- 1.7 kJ/mol, A = 10(10.6)(+/-)(0.) s(-)(1), and tau = 354 ns at 293 K. It is argued that the activation barrier to carbene disappearance in perfluorohexane represents the lower limit to the barrier to Wolff rearrangement of the carbene. PMID:11414839

  17. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  18. Ligand-Controlled Synthesis of Azoles via Ir-Catalyzed Reactions of Sulfoxonium Ylides with 2-Amino Heterocycles.

    Science.gov (United States)

    Phelps, Alicia M; Chan, Vincent S; Napolitano, José G; Krabbe, Scott W; Schomaker, Jennifer M; Shekhar, Shashank

    2016-05-20

    An iridium-catalyzed method was developed for the synthesis of imidazo-fused pyrrolopyrazines. The presence or absence of a nitrogenated ligand controlled the outcome of the reaction, leading to simple β-keto amine products in the absence of added ligand and the cyclized 7- and 8-substituted-imidazo[1,2-a]pyrrolo[2,3-e]pyrazine products in the presence of ligand. This catalyst control was conserved across a variety of ylide and amine coupling partners. The substrate was shown to act as a ligand for the iridium catalyst in the absence of other ligands via NMR spectroscopy. Kinetic studies indicated that formation of the Ir-carbene was reversible and the slow step of the reaction. These mechanistic investigations suggest that the β-keto amine products form via an intramolecular carbene N-H insertion, and the imidazopyrrolopyrazines form via an intermolecular carbene N-H insertion. PMID:27104299

  19. Unusual NHC-Iridium(I) Complexes and Their Use in the Intramolecular Hydroamination of Unactivated Aminoalkenes.

    Science.gov (United States)

    Sipos, Gellért; Ou, Arnold; Skelton, Brian W; Falivene, Laura; Cavallo, Luigi; Dorta, Reto

    2016-05-10

    N-heterocyclic carbene (NHC) ligands with naphthyl side chains were employed for the synthesis of unsaturated, yet isolable [(NHC)Ir(cod)](+) (cod=1,5-cyclooctadiene) complexes. These compounds are stabilised by an interaction of the aromatic wingtip that leads to a sideways tilt of the NHC-Ir bond. Detailed studies show how the tilting of such N-heterocyclic carbenes affects the electronic shielding properties of the carbene carbon atom and how this is reflected by significant upfield shifts in the (13) C NMR signals. When employed in the intramolecular hydroamination, these [(NHC)Ir(cod)](+) species show very high catalytic activity under mild reaction conditions. An enantiopure version of the catalyst system produces pyrrolidines with excellent enantioselectivities. PMID:27059164

  20. Gold-catalyzed naphthalene functionalization

    Directory of Open Access Journals (Sweden)

    Iván Rivilla

    2011-05-01

    Full Text Available The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenylimidazol-2-ylidene, M = Cu, 1a; M = Au, 1b, in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethylphenyl, catalyze the transfer of carbene groups: C(RCO2Et (R = H, Me from N2C(RCO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  1. Pyrolysis of furan in a microreactor

    Science.gov (United States)

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  2. Flash preparation of carbenoids: A different performance of cyanogen bromide

    Directory of Open Access Journals (Sweden)

    Mohammad Jalilzadeh Hedayati

    2014-12-01

    Full Text Available Cyanogen halides are known substances for the cyanating reaction. There are a few evidences for bromination reaction too. On the other hand carbenes are known as very important substances due to their remarkable reactions. Unfortunately carbenes at room temperature are very unstable and there is not a simple method for preparation of them. In most cases the isolation is not possible. We have reported a new reliable and fast preparation method of almost stable carbenoids. The mechanism of the formation has been discussed.

  3. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  4. 3,3′-Di-n-butyl-1,1′-(p-phenylenedimethylenediimidazolium bis(hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Rosenani A. Haque

    2010-04-01

    Full Text Available The asymmetric unit of the title N-heterocyclic carbene compound, C22H32N42+·2PF6−, consists of one half of the N-heterocyclic carbene dication and one hexafluorophosphate anion. The dication lies across a crystallographic inversion center. The imidazole ring is twisted away from the central benzene ring, making a dihedral angle of 76.23 (6°. The hexafluorophosphate anions link the cations into a three-dimensional network via intermolecular C—H...F hydrogen bonds. A weak C—H...π interaction further stabilizes the crystal structure.

  5. Bromido[1-(η6-4-tert-butyl­benz­yl)-3-(2,4,6-trimethyl­benz­yl)benzimidazol-2-yl­idene]chloridoruthenium(II)

    OpenAIRE

    Hakan Arslan; Don VanDerveer; smail Özdemir; Serpil Demir; Bekir Çetinkaya

    2008-01-01

    A new ruthenium complex, [RuBrCl(C28H32N2)], has been synthesized and characterized by elemental analysis, 1H NMR, 13C NMR, IR-spectroscopy and a single-crystal X-ray diffraction study. The Ru atom in this complex is best described as having a considerably distorted octahedral coordination environment with the arene occupying three coordination sites. Two further coordination sites are occupied by chloride and bromide ligands, while the sixth site is occupied by the carbene. The carbene porti...

  6. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  7. Synthesis of a Benzodiazepine-derived Rhodium NHC Complex by C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, Roberg G.; Gribble, Jr., Michael W.; Ellman, Jonathan A.

    2008-01-30

    The synthesis and characterization of a Rh(I)-NHC complex generated by C-H activation of 1,4-benzodiazepine heterocycle are reported. This complex constitutes a rare example of a carbene tautomer of a 1,4-benzodiazepine aldimine stabilized by transition metal coordination and demonstrates the ability of the catalytically relevant RhCl(PCy{sub 3}){sub 2} fragment to induce NHC-forming tautomerization of heterocycles possessing a single carbene-stabilizing heteroatom. Implications for the synthesis of benzodiazepines and related pharmacophores via C-H functionalization are discussed.

  8. An ab initio study of the mechanism of the cycloaddition reaction forming bicyclic compounds between vinylidene (H2C=C:) and ethylene

    OpenAIRE

    YONGQING LI; ZHENXIA LIAN; XIUHUI LU

    2011-01-01

    The mechanism of the cycloaddition reaction forming a bicyclic compounds between singlet vinylidene (H2C=C:) and ethylene was investigated using the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that this reaction has one dominant channel. The presented rule of this reaction, a [2+2] cycloaddition reaction between the two reactants occurred forming a four-membered ring carbene (INT1), in which the sp lone electron of the C atom from carbene in INT1 and the...

  9. On the reasons of deactivation of photoreduced molybdenum silicate catalysts for metathesis of olefins treated by cyclopropane

    International Nuclear Information System (INIS)

    It is ascertained that gradual reduction of catalytic activity of propylene photoreduced by carbon oxide and activated by Mo/SiO2 cyclopropane treatment in reaction of metathesis is caused by isomerization of Mo-cyclobutane complexes, formed as a result of Mo = CH2 carbene interaction with olefine, into inactive π-complexes of olefins

  10. Group 4 Transition-Metal Complexes of an Aniline–Carbene–Phenol Ligand

    KAUST Repository

    Despagnet-Ayoub, Emmanuelle

    2013-05-24

    Attempts to install a tridentate aniline-NHC-phenol (NCO) ligand on titanium and zirconium led instead to complexes resulting from unexpected rearrangement pathways that illustrate common behavior in carbene-early- transition-metal chemistry. © 2013 American Chemical Society.

  11. A Heteroleptic Ferrous Complex with Mesoionic Bis(1,2,3-triazol-5-ylidene) Ligands: Taming the MLCT Excited State of Iron(II)

    DEFF Research Database (Denmark)

    Liu, Yizhu; Kjær, Kasper Skov; Fredin, Lisa A.;

    2015-01-01

    Strongly sigma-donating N-heterocyclic carbenes (NHCs) have revived research interest in the catalytic chemistry of iron, and are now also starting to bring the photochemistry and photophysics of this abundant element into a new era. In this work, a heteroleptic Fe-II complex (1) was synthesized...

  12. Theoretical Predictions of Redox Potentials of Fischer-Type Chromium Anninocarbene Complexes

    Czech Academy of Sciences Publication Activity Database

    Kvapilová, Hana; Hoskovcová, Irena; Ludvík, Jiří; Záliš, Stanislav

    2014-01-01

    Roč. 33, č. 18 (2014), s. 4964-4972. ISSN 0276-7333 R&D Projects: GA MŠk LD14129; GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : standard hydrogen electrode * density functional theory * metal carbene complexes Subject RIV: CG - Electrochemistry Impact factor: 4.126, year: 2014

  13. Synthesis of 2,6-disubstituted tetrahydroazulene derivatives

    OpenAIRE

    Zakir Hussain; Henning Hopf; Khurshid Ayub; S. Holger Eichhorn

    2012-01-01

    Synthesis of hydroazulene derivatives has been carried out through a ring-enlargement route by using carbene adduct intermediates. The protocol can be applied for the construction of functionalized hydroazulene skeletons as key components of many natural products as well as the core system of novel liquid-crystalline materials.

  14. Allylpalladium(II) Histidylidene Complexes and Their Application in Z-Selective Transfer Semihydrogenation of Alkynes

    NARCIS (Netherlands)

    Drost, Ruben M.; Broere, Daniël L J; Hoogenboom, Jorin; de Baan, Simone N.; Lutz, Martin; de Bruin, B.; Elsevier, C. J.

    2015-01-01

    We have studied the use of amino acid histidine as a precursor for N-heterocyclic carbene (NHC) ligands. This natural amino acid possesses an imidazole substituent, which makes it an interesting NHC precursor that contains both an acid and an amino functionality. These functionalities may be used fo

  15. Synthesis of Heavy Fluorous Ruthenium Metathesis Catalysts Using the Stereoselective Addition of Polyfluoroalkyllithium to Sterically Hindered Diimines

    Czech Academy of Sciences Publication Activity Database

    Hošek, J.; Rybáčková, M.; Čejka, J.; Cvačka, Josef; Kvíčala, J.

    2015-01-01

    Roč. 34, č. 13 (2015), s. 3327-3334. ISSN 0276-7333 Institutional support: RVO:61388963 Keywords : ring-closing metathesis * form tetrasubstituted olefins * N-heterocyclic carbene Subject RIV: CC - Organic Chemistry Impact factor: 4.126, year: 2014

  16. Silver(I) NHC mediated C-C bond activation of alkyl nitriles and catalytic efficiency in oxazoline synthesis.

    Science.gov (United States)

    Heath, Rachael; Müller-Bunz, Helge; Albrecht, Martin

    2015-05-21

    Preparation of silver triazolylidene (trz) species from triazolium salts and Ag2O in refluxing MeCN leads to a selective C-C bond cleavage and the formation of complexes of general formula [(trz)Ag(CN)] from Calkyl-CN bond activation. Moreover, these silver carbene complexes are precursors of highly active catalysts for oxazoline formation via aldol condensation. PMID:25913007

  17. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics

    DEFF Research Database (Denmark)

    Pápai, Mátyás Imre; Vankó, György; Rozgonyi, Tamas;

    2016-01-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands de...

  18. Electronic Excitations in Fischer-Type Cr and W Aminocarbene Complexes: A Combined ab Initio and Experimental Study

    Czech Academy of Sciences Publication Activity Database

    Kvapilová, Hana; Hoskovcová, Irena; Kayanuma, M.; Daniel, CH.; Záliš, Stanislav

    2013-01-01

    Roč. 117, č. 45 (2013), s. 11456-11463. ISSN 1089-5639 R&D Projects: GA MŠk LD11086 Institutional support: RVO:61388955 Keywords : METAL CARBENE COMPLEXES * FLASH-PHOTOLYSIS * BASIS-SETS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.775, year: 2013

  19. Theory of the formation and decomposition of N-heterocyclic aminooxycarbenes through metal-assisted [2+3]-dipolar cycloaddition/retro-cycloaddition.

    Science.gov (United States)

    Novikov, Alexander S; Kuznetsov, Maxim L; Pombeiro, Armando J L

    2013-02-18

    The theoretical background of the formation of N-heterocyclic oxadiazoline carbenes through a metal-assisted [2+3]-dipolar cycloaddition (CA) reaction of nitrones R(1)CH=N(R(2))O to isocyanides C≡NR and the decomposition of these carbenes to imines R(1)CH=NR(2) and isocyanates O=C=NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be "carbenophilic" metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π-back donation, namely, Au(I), Au(III), Pt(II), Pt(IV), Re(V), and Pd(II) metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMO(CNR) and the charge on the N atom of the C≡N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl-substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl-substituted species, and the N,N,C-alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives. PMID:23296691

  20. Interaction of 1,5-Substituted Pyrrolin-2-ones with Dichlorocarbene under Phase Transfer Catalysis Conditions

    Directory of Open Access Journals (Sweden)

    Zlata Yu. Timofeyeva

    2000-10-01

    Full Text Available Treatment of 5-alkyl(aryl-3H-pyrrolin-2-ones with dichlorocarbene under phase transfer catalysis conditions at 20-30ºC results in a cycloaddition of the carbene to the C=C bond followed by skeletal rearrangement.

  1. Exceptionally Stable and Efficient Solid Supported Hoveyda-Type Catalyst

    Czech Academy of Sciences Publication Activity Database

    Skowerski, K.; Pastva, J.; Czarnocki, S. J.; Janošcová, Jana

    2015-01-01

    Roč. 19, č. 7 (2015), s. 872-877. ISSN 1083-6160 Institutional support: RVO:61388955 Keywords : OLEFIN-METATHESIS CATALYSTS * RING-CLOSING METATHESIS * N-HETEROCYCLIC CARBENES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.528, year: 2014

  2. Synthesis of cis - and trans-diisothiocyanato-bis(NHC) complexes of nickel(II) and applications in the Kumada-Corriu reaction

    KAUST Repository

    Jothibasu, Ramasamy

    2010-09-13

    Metathetical reaction of AgSCN with a series of trans-dihalido-bis(carbene) nickel(II) complexes in CH3CN readily afforded the novel diisothiocyanato-bis(carbene) complexes [Ni(NCS)2(NHC)2] (trans-2a, NHC = 1,3-diisopropylbenzimidazolin-2-ylidene; trans-2b, NHC = 1,3-diisobutylbenzimidazolin-2-ylidene; trans-2c, NHC = 1,3- dibenzylbenzimidazolin-2-ylidene; cis-2d, NHC = 1,3-di(2-propenyl) benzimidazolin-2-ylidene; cis-2e, NHC = 1-propyl-3-methylbenzimidazolin-2- ylidene) as greenish-yellow powders in moderate to good yields. While dihalido-bis(carbene) Ni(II) complexes exclusively form trans-complexes, a trans-cis isomerization occurs upon halido-isothiocyanato exchange with complexes bearing less bulky carbene ligands, i.e., cis-2d/e. DFT calculations indicated that this isomerization can be attributed to a reduced energy difference between trans- and cis-isomers of diisothiocyanato complexes. All complexes have been characterized by multinuclear NMR spectroscopy, ESI mass spectrometry, and X-ray diffraction analysis. A catalytic study revealed that cis-complexes generally exhibit greater activities in the Kumada-Corriu coupling reaction. © 2010 American Chemical Society.

  3. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  4. Synthetic Strategies for Converting Carbohydrates into Carbocycles by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Madsen, Robert

    2007-01-01

    , protecting groups and substituents. Subsequent ring-closing metathesis with a ruthenium carbene complex affords highly functionalized carbocycles with ring-sizes ranging from five- to eight-membered rings. The application of these methods for the synthesis of carbocyclic natural products from carbohydrates...

  5. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  6. Photoswitchable NHC-promoted ring-opening polymerizations.

    Science.gov (United States)

    Neilson, Bethany M; Bielawski, Christopher W

    2013-06-18

    The UV-induced photocyclization of a dithienylethene-annulated N-heterocyclic carbene precatalyst enabled photoswitchable ring-opening polymerizations of ε-caprolactone and δ-valerolactone. The polymerizations proceeded efficiently in ambient light, however UV irradiation attenuated the reaction rate (k(amb)/k(UV) = 59). Subsequent visible light exposure reversed the photocyclization and restored catalytic activity. PMID:23665923

  7. Electronic communication in binuclear Cr(0)-aminocarbenes: an electrochemical study

    Czech Academy of Sciences Publication Activity Database

    Metelková, R.; Hoskovcová, I.; Tobrman, T.; Ludvík, Jiří

    Smolenice : Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry, 2013, s. 124-134. ISBN 978-80-227-3918-4. [International Conference on Coordination and Bioinorganic Chemistry /24./. Smolenice (SK), 02.06.2013-07.06.2013] Institutional support: RVO:61388955 Keywords : electrochemistry * Cr(0)-aminocarbene complexes * Fischer type carbene complexes Subject RIV: CG - Electrochemistry

  8. Catalytic α-arylation of imines leading to N-unprotected indoles and azaindoles

    KAUST Repository

    Marelli, Enrico

    2016-03-30

    A Palladium-N-heterocyclic carbene-catalyzed methodology for the synthesis of substituted, N-unprotected indoles and azaindoles is reported. The protocol permits access to various, highly substituted members of these classes of compounds. Although two possible reactions pathways (deprotonative and Heck-like) can be proposed, control experiments, supported by computational studies, point towards a deprotonative mechanism being operative.

  9. Synthesis of unsymmetrical N-carboranyl NHCs: directing effect of the carborane anion.

    Science.gov (United States)

    Asay, Matthew J; Fisher, Steven P; Lee, Sarah E; Tham, Fook S; Borchardt, Dan; Lavallo, Vincent

    2015-03-28

    The syntheses of unsymmetrical N-heterocyclic carbenes (NHCs) that contain a single N-bound icosahedral carborane anion substituent are reported. Both anionic C-2 and doubly deprotonated dianionic C-2/C-5 NHC lithium complexes are isolated. The latter species is formed selectively, which reveals a surprising directing effect conveyed by icosahedral carborane anion substituents. PMID:25387660

  10. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S2 to S1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S2 state to the vibrationally hot S1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  11. Asymmeric Formal [3+3]-Cycloaddition Reactions of Nitrones with Electrophilic Vinylcarbene Intermediates

    OpenAIRE

    Wang, Xiaochen; Xu, Xinfang; Zavalij, Peter Y.; Doyle, Michael P.

    2011-01-01

    With metal carbene access to dipolar intermediates, 3,6-dihydro-1,2-oxazines are produced in high yields by dirhodium(II) carboxylate catalyzed reactions between nitrones and a β-TBSO-substituted vinyldiazoacetate. High enantiocontrol occurs with catalysis by N-phthaloyl-(S)-(amino acid)-ligated dirhodium carboxylates for [3+3]-cycloaddition reactions with both acyclic and cyclic nitrones.

  12. Palladium-catalyzed cross-coupling reaction of diazo compounds and vinyl boronic acids: an approach to 1,3-diene compounds.

    Science.gov (United States)

    Xia, Yamu; Xia, Ying; Liu, Zhen; Zhang, Yan; Wang, Jianbo

    2014-08-15

    A palladium-catalyzed oxidative cross-coupling of vinyl boronic acids and cyclic α-diazocarbonyl compounds has been reported. The reaction constitutes an efficient method for the synthesis of 1,3-diene compounds bearing a ring structure. Mechanistically, the reaction involves migratory insertion of palladium carbene as the key step. PMID:25019414

  13. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  14. Pyridylidene ligand facilitates gold-catalyzed oxidative C–H arylation of heterocycles

    Science.gov (United States)

    Hata, Kazuhiro; Ito, Hideto

    2015-01-01

    Summary Triaryl-2-pyridylidene effectively facilitates the gold-catalyzed oxidative C–H arylation of heteroarenes with arylsilanes as a unique electron-donating ligand on gold. The employment of the 2-pyridylidene ligand, which is one of the strongest electron-donating N-heterocyclic carbenes, resulted in the rate acceleration of the C–H arylation reaction of heterocycles over conventional ligands such as triphenylphosphine and a classical N-heterocyclic carbene. In situ observation and isolation of the 2-pyridylidene-gold(III) species, as well as a DFT study, indicated unusual stability of gold(III) species stabilized by strong electron donation from the 2-pyridylidene ligand. Thus, the gold(I)-to-gold(III) oxidation process is thought to be facilitated by the highly electron-donating 2-pyridylidene ligand. PMID:26877796

  15. Theoretical insights into the cycloaddition reaction mechanism between ketenimine and methyleneimine: An alternative approach to the formation of pyrazole and imidazole

    Indian Academy of Sciences (India)

    Nana Wang; Xiaojun Tan; Weihua Wang; Fangfang Wang; Ping Li

    2016-02-01

    The cycloaddition reaction mechanism between interstellar molecules, ketenimine and methyleneimine, has been systematically investigated employing the second-order Møller-Plesset perturbation theory (MP2) method in order to better understand the reactivity of nitrogenous cumulene ketenimine with the C=N double bond compound methyleneimine. Geometry optimizations and vibrational analyses have been performed for the stationary points on the potential energy surfaces of the system. Calculations show that five-membered cyclic carbene intermediates could be produced through pericyclic reaction processes between ketenimine and methyleneimine. Through the subsequent hydrogen transfer processes, carbene intermediates can be isomerized to the pyrazole and imidazole compounds, respectively. The present study is helpful to understand the formation of prebiotic species in interstellar space.

  16. {μ-5-[1,3-Bis(2,4,6-trimethylphenyl-3H-imidazolium-2-yl]-2-(2-oxoethenyl-1κC1furan-3-yl-2κC3}-μ-hydrido-bis(tetracarbonylrhenium tetrahydrofuran 0.67-solvate

    Directory of Open Access Journals (Sweden)

    David C. Liles

    2012-03-01

    Full Text Available The title complex, [Re2(C27H25N2O2H(CO8]·0.67C4H8O, was formed as a product in the reaction of a rhenium(I–Fischer carbene complex with a free NHC carbene. The coordination environment about the two Re atoms is slightly distorted octahedral, including a bridging H atom. The imidazolium and furan groups are almost coplanar, whereas the mesityl substituents show an almost perpendicular arrangement with respect to both heterocyclic units. Molecules of the complex pack in such a way as to form channels parallel with the bc unit-cell face diagonal running through the unit face diagonal. These channels are partially occupied by tetrahydrofuran solvent molecules.

  17. trans-Bis{1-[2-(2,6-diisopropylanilinophenyl]-3-isopropylimidazolin-2-ylidenyl-κC2}diiodidopalladium(II benzene disolvate

    Directory of Open Access Journals (Sweden)

    Christopher G. Daly

    2011-06-01

    Full Text Available In the title complex, [PdI2(C24H31N32]·2C6H6, the Pd2+ ion is located on an inversion centre in a slightly distorted square-planar geometry. The angle between the I2C2 square plane and the mean plane of the N-heterocyclic carbene ring is 79.8 (2°, with I—Pd—C—N torsion angles of −81.1 (6 and −78.2 (5°. The Pd—carbene and Pd—I distances are 2.016 (6 and 2.5971 (10 Å, respectively.

  18. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study

    Directory of Open Access Journals (Sweden)

    Yulia I. Denisova

    2015-10-01

    Full Text Available The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1st generation Grubbs’ catalyst Cl2(PCy32Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ 1H and ex situ 13C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities.

  19. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study.

    Science.gov (United States)

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh; Kudryavtsev, Yaroslav V

    2015-01-01

    The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities. PMID:26664599

  20. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    OpenAIRE

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methyl...

  1. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H.

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  2. Entwicklung neuer chiraler Ruthenium-Metathese(prä)katalysatoren

    OpenAIRE

    Kannenberg, Axel

    2012-01-01

    Im Rahmen der vorliegenden Arbeit wurde ein effizienter Zugang zu Imidazoliniumsalzen als Vorläufer für neuartige enantiomerenreine N heterocyclische Carben Liganden (NHC) auf Tetrahydrochinolinbasis entwickelt. Das Verfahren wurde erfolgreich zur Synthese von vier NHC Vorläufern angewendet. Des Weiteren wurden zwei Imidazoliniumsalze mit einem Indolingerüst unter optimierten Bedingungen dargestellt. Alle Ligandenvorläufer zeichnen sich durch ein neuartiges Konzept zur Installation der chiral...

  3. Improved Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Keitz, Benjamin K.; Endo, Koji; Patel, Paresma R.; Herbert, Myles B.; Grubbs, Robert H.

    2011-01-01

    Several new C-H activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts were evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g...

  4. Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts

    OpenAIRE

    Singstad, Åsmund

    2010-01-01

    The present Master thesis seeks to develop new unsymmetrical ruthenium-based olefin metathesis catalysts and therein a better understanding of olefin metathesis catalysis with unsymmetrical active complexes. Such catalysts have a potential for chemoselectivity and in best case, stereoselectivity. Two different classes of catalysts, coordinated by a hemilabile amine ligand and by a novel N-heterocyclic carbene (NHC) ligand respectively, have been investigated. Two new amine-based olefin metath...

  5. Phosphine-Based Z‑Selective Ruthenium Olefin Metathesis Catalysts

    OpenAIRE

    Smit, Wietse; Koudriavtsev, Vitali; Occhipinti, Giovanni; Törnroos, Karl Wilhelm; Jensen, Vidar Remi

    2016-01-01

    Whereas a number of highly Z-selective ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands have been reported in recent years, Zselectivity has so far been difficult to achieve for phosphinebased catalysts. Guided by predictive density functional theory (DFT) calculations, we have developed phosphine-based ruthenium olefin metathesis catalysts giving 70−95% of the Zisomer product in homocoupling of terminal alkenes such as allylbenzene, 1...

  6. Catalyst-Free Halogenation of α-Diazocarbonyl Compounds with N-Halosuccinimides: Synthesis of 3-Halooxindoles or Vinyl Halides.

    Science.gov (United States)

    Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-07-01

    A novel catalyst-free halogenative cyclization of N-aryl diazoamides with N-halosuccinimides (NXS) is reported for the synthesis of 3-halooxindoles through a carbene-free mechanism. N-Aryl diazoamides reacted with NXS under mild and catalyst-free conditions to afford the corresponding 3-halooxindoles in good yields. This transformation is proposed to proceed through diazonium ion formation followed by intramolecular Friedel-Crafts alkylation. PMID:27309726

  7. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  8. Chiral NHC Ligands Bearing a Pyridine Moiety in Copper-Catalyzed 1,2-Addition of Dialkylzinc Reagents to β-Aryl-α,β-unsaturated N-Tosylaldimines.

    Science.gov (United States)

    Soeta, Takahiro; Ishizaka, Tomohiro; Ukaji, Yutaka

    2016-04-01

    Asymmetric 1,2-addition of dialkylzinc reagents to α,β-unsaturated N-tosylaldimines was catalyzed by copper salt in the presence of chiral imidazolium salts having a pyridine ring, which were derived from amino acid, to afford the corresponding chiral allylic amines with up to 91% ee in reasonably high yields. The chiral N-heterocyclic carbene (NHC) ligand played an important role in controlling chemoselectivity. PMID:26967950

  9. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    Science.gov (United States)

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  10. Recent Progress on Enyne Metathesis: Its Application to Syntheses of Natural Products and Related Compounds

    OpenAIRE

    Miwako Mori

    2010-01-01

    Olefin metathesis using ruthenium carbene complexes is a useful method in synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and various carbo- and heterocycles could be synthesized from the corresponding enynes. Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been further developed. Various complicated compounds, such as the natural products and the related biologically active substances, could be synthesized using these metat...

  11. Rhodium-Catalyzed Acyloxy Migration of Propargylic Esters in Cycloadditions, Inspiration from Recent “Gold Rush”

    OpenAIRE

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M.; TANG, WEIPING

    2012-01-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative a...

  12. Ring Contraction in Arylcarbenes and Arylnitrenes; Rearrangements of 1- and 3-Isoquinolylcarbenes and 2-Naphthylnitrene to Cyanoindenes.

    Science.gov (United States)

    Wentrup, Curt; Thétaz, Célestin; Lüerssen, Holger; Aylward, Nigel; Kvaskoff, David

    2016-06-01

    Flash vacuum pyrolysis (FVP) of 1-(5-(13)C-5-tetrazolyl)isoquinoline 18 generates 1-((13)C-diazomethyl)isoquinoline 19 and 1-isoquinolyl-((13)C-carbene) 22, which undergoes carbene-nitrene rearrangement to 2-naphthylnitrene 23. The thermally generated nitrene 23 is observed directly by matrix-isolation ESR spectroscopy, but undergoes ring contraction to a mixture of 3- and 2-cyanoindenes 26 and 27 under the FVP conditions. The (13)C label distribution in the cyanoindenes was determined by (13)C NMR spectroscopy and indicates the occurrence of two parallel paths of ring contraction starting from 1-isoquinolylcarbene; path a via ring expansion to 3-aza-benzo[c]cyclohepta-1,2,4,6-tetraene 32 bifurcating to 2-naphthylnitrene 23 and 2-aza-benzobicyclo[3.2.0]heptatriene 39 (paths a1 and a2); and path b via ring closure of the carbene onto the ring nitrogen, yielding 1-aza-benzo[d]bicyclo[4.1.0]hepta-2,4,6-triene 34 and 3-aza-benzo[d]cyclohepta-2,3,5,7-tetraene 35. Product studies demand that the major path is route a1 via 2-naphthylnitrene 23, which then undergoes direct ring contraction to 1-cyanoindene; but the (13)C label distribution requires that the non-nitrene route b contributes significantly. The two reaction paths are modeled at the B3LYP/6-31G* level. The initially formed carbene 22 is estimated to carry chemical activation of some 40 kcal/mol. This allows both reaction channels to proceed simultaneously under low-pressure FVP conditions. FVP of 3-(5-tetrazolyl)isoquinoline 28 similarly generates 3-diazomethylisoquinoline 29 and 3-isoquinolylcarbene 30, which rearranges to 3- and 2-cyanoindenes 26 and 27. PMID:27152672

  13. Romp as a versatile method for the obtention of differentiated polymeric materials

    OpenAIRE

    Valdemiro P. Carvalho Jr.; Camila P. Ferraz; José Luiz S. Sá; Benedito S. Lima-Neto

    2012-01-01

    Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several ...

  14. Imidazolinium salts as catalysts for the ring-opening alkylation of meso epoxides by alkylaluminum complexes.

    Science.gov (United States)

    Zhou, H; Campbell, E J; Nguyen, S T

    2001-07-12

    [reaction: see text] Imidazolinium salts and their N-heterocyclic carbene (NHC) derivatives catalyze the alkylation of a variety of meso epoxides in the presence of triethylaluminum (yield = 70-90%), under mild conditions. Imidazolinium salts are better catalysts than their NHC derivatives but can lead to dimerization side reactions under extended reaction time. Preformed NHC.AlEt(3) complexes and Wanzlick-type olefins, which are dimers of free NHCs, are also catalysts for this reaction. PMID:11440586

  15. Mechanism of Ziegler-Natta polymerization of acetylene: a nutation NRMR study. Technical report, 22 Jun 82-9 Dec 83

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, T.C.; Yannoni, C.S.; Katz, T.J.

    1983-12-09

    Using nutation NMR spectroscopy the distance between adjacent /sup 13/C labels was measured in samples of polyacetylene prepared by polymerizing a dilute solution of double /sup 13/C-labelled acetylene in /sup 12/C-acetylene using titanium tetra-n-butoxide plus triethylaluminum as a catalyst. The experiments accord with expectation if the polymerization proceeds by a four-center insertion mechanism rather than by a metallacycle mechanism involving metal-carbenes.

  16. Towards electrically conductive, self-healing materials

    OpenAIRE

    Williams, Kyle A.; Boydston, Andrew J.; Bielawski, Christopher W.

    2007-01-01

    A novel class of organometallic polymers comprising N-heterocyclic carbenes and transition metals was shown to have potential as an electrically conductive, self-healing material. These polymers were found to exhibit conductivities of the order of 10−3 S cm−1 and showed structurally dynamic characteristics in the solid-state. Thin films of these materials were cast onto silicon wafers, then scored and imaged using a scanning electron microscopy (SEM). The scored films were subsequently healed...

  17. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  19. Formation and Properties of a Bicyclic Silylated Digermene

    OpenAIRE

    Hlina, Johann; Baumgartner, Judith; Marschner, Christoph; Albers, Lena; Müller, Thomas; Jouikov, Viatcheslav V

    2014-01-01

    In the presence of PMe3 or N-heterocyclic carbenes, the reaction of oligosilanylene dianions with GeCl2⋅dioxane gives germylene–base adducts. After base abstraction, the free germylenes can dimerize by formation of a digermene. An electrochemical and theoretical study of a bicyclic tetrasilylated digermene revealed formation of a comparably stable radical anion and a more reactive radical cation, which were characterized further by UV/Vis and ESR spectroscopy.

  20. Facile synthesis of substituted 3-aminofurans through a tandem reaction of N-sulfonyl-1,2,3-triazoles with propargyl alcohols.

    Science.gov (United States)

    Cheng, Xing; Yu, Yinghua; Mao, Zhifeng; Chen, Jianxin; Huang, Xueliang

    2016-04-28

    A relay catalysis strategy for substituted 3-aminofurans synthesis has been developed. This transformation involves a tandem reaction sequence through aza-vinyl-rhodium(ii) carbene O-H bond insertion, thermal propargyl-Claisen rearrangement and gold(i)-catalyzed intramolecular cyclization. More importantly, the current strategy employs simple feedstocks as starting materials, providing substituted 3-aminofurans in a highly efficient manner. PMID:26952826

  1. Synergistic Rhodium/Copper Catalysis: Synthesis of 1,3-Enynes and N-Aryl Enaminones.

    Science.gov (United States)

    Wang, Nan-Nan; Huang, Lei-Rong; Hao, Wen-Juan; Zhang, Tian-Shu; Li, Guigen; Tu, Shu-Jiang; Jiang, Bo

    2016-03-18

    Synergistic rhodium/copper catalysis enables new three-component coupling reactions of terminal alkynes and α-diazoketones and/or arylamines, allowing dediazotized carbene C-H insertion for the synthesis of functionalized 1,3-enynes and N-aryl enaminones with high stereoselectivity. The synthetic utility of these transformations results in subsequent C-C or/and C-N bond-forming reactions to effectively build up functional molecules with potential significance. PMID:26987884

  2. N-(2,4,6-Trimethylphenylformamide

    Directory of Open Access Journals (Sweden)

    David C. Liles

    2011-01-01

    Full Text Available The title compound, C10H13NO, was obtained as the unexpected, almost exclusive, product in the attempted synthesis of a manganese(I–N-heterocyclic carbene (NHC complex. The dihedral angle between the planes of the formamide moiety and the aryl ring is 68.06 (10°. In the crystal, molecules are linked by N—H...O hydrogen bonds, forming infinite chains along the c axis.

  3. Selective hydrogenation of levulinic acid to γ-valerolactone using in situ generated ruthenium nanoparticles derived from Ru-NHC complexes.

    Science.gov (United States)

    Tay, Boon Ying; Wang, Cun; Phua, Pim Huat; Stubbs, Ludger Paul; Huynh, Han Vinh

    2016-02-28

    Hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied by using mono- and bidentate p-cymene ruthenium(ii) N-heterocyclic carbene (NHC) complexes as catalyst precursors. In water, all complexes were found to be reduced in situ to form ruthenium nanoparticles (RuNPs) with a high hydrogenation activity. In organic solvents, complexes with monodentate NHC ligands also formed nanoparticles, while complexes with bidentate ligands gave rise to stable homogeneous catalysts with moderate hydrogenation activities. PMID:26806644

  4. Electronic structure tautomerism, and mechanism of H-D exchange in imidazole aqueous solutions

    International Nuclear Information System (INIS)

    The imidazole electronic structure in a gaseous phase is studied taking into account the influence of solvation effects in aqueous solutions. Possible mechanisms of tautomeric transformations and H-D exchange reactions with water molecules are discussed. Using the quantum chemistry methods, it is shown that the intramolecular mechanism of imidazole isomerization in the gaseous phase and the aqueous solution is unprofitable, and the intermolecular mechanism can proceed through the stage of protonated and carbene form formation

  5. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  6. Metal-Mediated Couplings of Primary Alcohols with Amines and Carbohydrates

    OpenAIRE

    Maggi, Agnese; Madsen, Robert

    2012-01-01

    The work presented in this thesis was performed at the Department of Chemistry of the Technical University of Denmark during a three year Ph.D. program. The thesis involves two distinct Projects related to organometallic and carbohydrate chemistry. Project 1: Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. The successful method development and application of a convenient and direct (one step) synthesis of imines from alcoho...

  7. Chiral PEPPSI Complexes: Synthesis, Characterization, and Application in Asymmetric Suzuki–Miyaura Coupling Reactions

    KAUST Repository

    Benhamou, Laure

    2014-01-13

    PEPPSI complexes incorporating chiral N-heterocyclic carbene (NHC) ligands based on 2,2-dimethyl-1-(o-substituted aryl)propan-1-amines were synthesized. Two complexes, with one saturated and one unsaturated NHC ligand, were structurally characterized. The chiral PEPPSI complexes were used in asymmetric Suzuki-Miyaura reactions, giving atropisomeric biaryl products in modest to good enantiomeric ratios. © 2013 American Chemical Society.

  8. Synthesis of enantiomerically pure N-(2,3-dihydroxypropylarylamides via oxidative esterification

    Directory of Open Access Journals (Sweden)

    Akula Raghunadh

    2013-10-01

    Full Text Available A highly efficient synthesis of enantiomerically pure (S and (R-isomers of N-(2,3-dihydroxypropylarylamides has been developed with good overall yields in a two step process. The key step involves the ring opening of the chiral epoxide with a nitrogen heterocyclic carbene (NHC and further rearrangement to chiral N-(2,3-dihydroxypropylarylamides in high yields and enantioselectivity. During the reaction, no erosion in chiral purity was observed.

  9. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    Science.gov (United States)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  10. Palladium-catalyzed coupling of N-tosylhydrazones and β-bromostyrene derivatives: new approach to 2H-chromenes.

    Science.gov (United States)

    Xia, Yamu; Xia, Ying; Zhang, Yan; Wang, Jianbo

    2014-12-14

    2H-Chromene is an important structural motif that exists in natural products and non-natural compounds possessing interesting biological activities. In this investigation, a highly efficient approach toward 2H-chromenes has been developed based on palladium-catalyzed coupling of N-tosylhydrazones and β-bromostyrenes. The mechanism of this reaction is proposed that involves the formation of vinyl palladium by carbene migratory insertion and the intramolecular nucleophilic substitution. PMID:25327448

  11. Building Carbon Bridges on and between Fullerenes in Helium Nanodroplets.

    Science.gov (United States)

    Krasnokutski, Serge A; Kuhn, Martin; Kaiser, Alexander; Mauracher, Andreas; Renzler, Michael; Bohme, Diethard K; Scheier, Paul

    2016-04-21

    We report the observation of sequential encounters of fullerenes with C atoms in an extremely cold environment. Experiments were performed with helium droplets at 0.37 K doped with C60 molecules and C atoms derived from a novel, pure source of C atoms. Very high-resolution mass spectra revealed the formation of carbenes of the type C60(C:)n with n up to 6. Bridge-type bonding of the C adatoms to form the known dumbbell C60═C═C60 also was observed. Density functional theory calculations were performed that elucidated the carbene character of the C60(C:)n species and their structures. Mass spectra taken in the presence of water impurities and in separate experiments with added H2 also revealed the formation of the adducts C60Cn(H2O)n and C60Cn(H2)n probably by H-OH and H-H bond insertion, respectively, and nonreactivity for the dumbell. So C adatoms that form carbenes C60(C:)n can endow pristine C60 with a higher chemical reactivity. PMID:27043313

  12. Design and synthesis of ruthenium(II) OCO pincer type NHC complexes and their catalytic role towards the synthesis of amides

    Indian Academy of Sciences (India)

    Muthukumaran Nirmala; Periasamy Viswanathamurthi

    2016-01-01

    The present contribution describes the synthesis and characterization of a family of robust ruthenium complexes, supported by a tridentate pincer ligand of the type bis-phenolate--heterocyclic carbene [Bu(OCO)2−] (NHC). Ruthenium(II) complexes (1-3) bearing bis-phenolate--heterocyclic carbene ligand were synthesized in good yields by the reaction of imidazolinium proligand (HL) with metal precursors [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) by transmetalation from the corresponding silver carbene complex. All the Ru(II)-NHC complexes have been characterized by elemental analyses, spectroscopic methods as well as ESI mass spectrometry. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The tridentate nature of the Bu(OCO)2− ligand as well as some level of steric protection provided by the Bu groups may rationalize the excellent stability of the Ru-Ccarbene bond in the present systems. Moreover, for the explorations of catalytic potential of the synthesized compounds, all the three [Ru-NHC] complexes (1-3) were tested as catalysts for amidation of alcohols with amines. Notably, the complex 1 was found to be very efficient and versatile catalyst towards amidation of a wide range of alcohols with amines.

  13. Building Carbon Bridges on and between Fullerenes in Helium Nanodroplets

    Science.gov (United States)

    2016-01-01

    We report the observation of sequential encounters of fullerenes with C atoms in an extremely cold environment. Experiments were performed with helium droplets at 0.37 K doped with C60 molecules and C atoms derived from a novel, pure source of C atoms. Very high-resolution mass spectra revealed the formation of carbenes of the type C60(C:)n with n up to 6. Bridge-type bonding of the C adatoms to form the known dumbbell C60=C=C60 also was observed. Density functional theory calculations were performed that elucidated the carbene character of the C60(C:)n species and their structures. Mass spectra taken in the presence of water impurities and in separate experiments with added H2 also revealed the formation of the adducts C60Cn(H2O)n and C60Cn(H2)n probably by H–OH and H–H bond insertion, respectively, and nonreactivity for the dumbell. So C adatoms that form carbenes C60(C:)n can endow pristine C60 with a higher chemical reactivity. PMID:27043313

  14. Substituent effects and chemoselectivity of the intramolecular Buchner reaction of diazoacetamide derivatives catalyzed by the di-Rh(ii)-complex.

    Science.gov (United States)

    Li, Hui; Ma, Xuelu; Lei, Ming

    2016-05-28

    A density functional theory (DFT) study was performed to reveal that the substituent effects in the α-site have an effect on the chemoselectivity of the intramolecular Buchner reaction of diazoacetamide catalyzed by Rh2(OAc)4. The substituent effect is investigated considering five different groups (Z = -Me, -OMe, -H, -CN and -C(O)Me) in the substrates. The substituent group in the α-site changes the electronegativity of the C-atom in carbene and affects the chemoselectivity. The basis of chemoselectivity is the distribution of products that was analyzed by DFT calculations. The barrier energy of the favorable pathway is clearly lower than that of the other pathways. Nucleophilic substituent groups, such as -H, -OMe and -Me, are regarded as electron-donating groups, which increase the electropositivity of the C-atom in carbene compounds and improve the reactivity of the aromatic addition reaction. Electrophilic substituent groups, such as -CN and -C(O)Me, are regarded as electron-withdrawing groups, which decrease the electropositivity of the C-atom in carbene compounds and favor the C-H activation step. The computational results showed that the main product is cycloheptatriene when Z = -H/-OMe. The main product is β-lactam when the substituent group is -CN/-C(O)Me. When the substituent group is -Me, the products are a mixture of γ-lactams, β-lactams and cycloheptatriene. PMID:27116043

  15. On the absolute photoionization cross section and dissociative photoionization of cyclopropenylidene.

    Science.gov (United States)

    Holzmeier, Fabian; Fischer, Ingo; Kiendl, Benjamin; Krueger, Anke; Bodi, Andras; Hemberger, Patrick

    2016-04-01

    We report the determination of the absolute photoionization cross section of cyclopropenylidene, c-C3H2, and the heat of formation of the C3H radical and ion derived by the dissociative ionization of the carbene. Vacuum ultraviolet (VUV) synchrotron radiation as provided by the Swiss Light Source and imaging photoelectron photoion coincidence (iPEPICO) were employed. Cyclopropenylidene was generated by pyrolysis of a quadricyclane precursor in a 1 : 1 ratio with benzene, which enabled us to derive the carbene's near threshold absolute photoionization cross section from the photoionization yield of the two pyrolysis products and the known cross section of benzene. The cross section at 9.5 eV, for example, was determined to be 4.5 ± 1.4 Mb. Upon dissociative ionization the carbene decomposes by hydrogen atom loss to the linear isomer of C3H(+). The appearance energy for this process was determined to be AE(0K)(c-C3H2; l-C3H(+)) = 13.67 ± 0.10 eV. The heat of formation of neutral and cationic C3H was derived from this value via a thermochemical cycle as Δ(f)H(0K)(C3H) = 725 ± 25 kJ mol(-1) and Δ(f)H(0K)(C3H(+)) = 1604 ± 19 kJ mol(-1), using a previously reported ionization energy of C3H. PMID:26975696

  16. Possible interstellar formation of glycine through a concerted mechanism: a computational study on the reaction of CH2[double bond, length as m-dash]NH, CO2 and H2.

    Science.gov (United States)

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-07-27

    Glycine being the simplest amino acid and also having significant astrobiological implications, has meant that intensive investigations have been carried out in the past, starting from its detection in the interstellar medium (ISM) to analysis of meteorites and cometary samples and laboratory synthesis, as well as computational studies on the possible reaction paths. In this present work quantum chemical calculations have been performed to investigate the possible interstellar formation of glycine via two different paths; (1) in a two-step process via a dihydroxy carbene intermediate and (2) through a one-step concerted mechanism, starting from reactants like CH2[double bond, length as m-dash]NH, CO, CO2, H2O and H2. For the two reactions representing the carbene route, it was observed that the formation of dihydroxy carbene from either CO + H2O or CO2 + H2 is highly endothermic with large barrier heights, whereas the subsequent step of interaction of this carbene with CH2[double bond, length as m-dash]NH to give glycine is exothermic and the barrier is below the reactants. Based on this observation it is suggested that the formation of glycine via the carbene route is a least favourable or even unfavourable path. On the other hand, the two reactions CH2[double bond, length as m-dash]NH + CO + H2O and CH2[double bond, length as m-dash]NH + CO2 + H2 representing the concerted paths were found to be favourable in leading to the formation of glycine. After an extensive study on the first concerted reaction in our previous work (Phys. Chem. Chem. Phys., 2016, 18, 375-381), in this work a detailed investigation has been carried out for the second concerted reaction, CH2[double bond, length as m-dash]NH + CO2 + H2, which can possibly lead to the interstellar formation of glycine. It was observed that this reaction proceeds through a large barrier and at the same time the transition state shows prominent hydrogen dynamics, indicating a tunnelling possibility for this

  17. Towards a global model of spin-orbit coupling in the halocarbenes

    Energy Technology Data Exchange (ETDEWEB)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 (United States); Lolur, Phalgun; Dawes, Richard, E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2015-06-07

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written in terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.

  18. Efficient Covalent Bond Formation in Gas-Phase Peptide-Peptide Ion Complexes with the Photoleucine Stapler

    Science.gov (United States)

    Shaffer, Christopher J.; Andrikopoulos, Prokopis C.; Řezáč, Jan; Rulíšek, Lubomír; Tureček, František

    2016-04-01

    Noncovalent complexes of hydrophobic peptides GLLLG and GLLLK with photoleucine (L*) tagged peptides G(L* n L m )K (n = 1,3, m = 2,0) were generated as singly charged ions in the gas phase and probed by photodissociation at 355 nm. Carbene intermediates produced by photodissociative loss of N2 from the L* diazirine rings underwent insertion into X-H bonds of the target peptide moiety, forming covalent adducts with yields reaching 30%. Gas-phase sequencing of the covalent adducts revealed preferred bond formation at the C-terminal residue of the target peptide. Site-selective carbene insertion was achieved by placing the L* residue in different positions along the photopeptide chain, and the residues in the target peptide undergoing carbene insertion were identified by gas-phase ion sequencing that was aided by specific 13C labeling. Density functional theory calculations indicated that noncovalent binding to GL*L*L*K resulted in substantial changes of the (GLLLK + H)+ ground state conformation. The peptide moieties in [GL*L*LK + GLLLK + H]+ ion complexes were held together by hydrogen bonds, whereas dispersion interactions of the nonpolar groups were only secondary in ground-state 0 K structures. Born-Oppenheimer molecular dynamics for 100 ps trajectories of several different conformers at the 310 K laboratory temperature showed that noncovalent complexes developed multiple, residue-specific contacts between the diazirine carbons and GLLLK residues. The calculations pointed to the substantial fluidity of the nonpolar side chains in the complexes. Diazirine photochemistry in combination with Born-Oppenheimer molecular dynamics is a promising tool for investigations of peptide-peptide ion interactions in the gas phase.

  19. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  20. Gold( i )-catalysed dehydrative formation of ethers from benzylic alcohols and phenols

    KAUST Repository

    Veenboer, Richard M. P.

    2015-01-01

    © The Royal Society of Chemistry 2015. We report the cross-dehydrative reaction of two alcohols to form unsymmetrical ethers using NHC-gold(i) complexes (NHC = N-heterocyclic carbene). Our progress in developing this reaction into a straightforward procedure is discussed in detail. The optimised methodology proceeds under mild reaction conditions and produces water as the sole by-product. The synthetic utility of this environmentally benign methodology is exemplified by the formation of a range of new ethers from readily available phenols bearing electron withdrawing substituents and secondary benzylic alcohols with various substituents. Finally, we present experimental results to account for the chemoselectivity obtained in these reactions.

  1. Transition Metal Catalyzed Reactions for Forming Carbon–Oxygen and Carbon–Carbon Bonds

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte

    Dehydrogenative ester formation with a ruthenium NHC complex A new atom-economical methodology for synthesizing esters by the dehydrogenative coupling of primary alcohols was developed. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex RuCl2(IiPr)(p-cymene). By screening the...... alcohols could be used as substrates, but the yields were generally poor due to decarbonylation of the substrate as a considerable side reaction. Some preliminary mechanistic investigations were performed. The results of these confirmed that the reaction is indeed dehydrogenative with the liberation of two...

  2. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  3. Water-Soluble Iridium-NHC-Phosphine Complexes as Catalysts for Chemical Hydrogen Batteries Based on Formate.

    Science.gov (United States)

    Horváth, Henrietta; Papp, Gábor; Szabolcsi, Roland; Kathó, Ágnes; Joó, Ferenc

    2015-09-21

    Molecular hydrogen, obtained by water electrolysis or photocatalytic water splitting, can be used to store energy obtained from intermittent sources such as wind and solar power. The storage and safe transportation of H2 , however, is an open and central question in such a hydrogen economy. Easy-to-synthesize, water-soluble iridium-N-heterocyclic carbene-phosphine (Ir(I) -NHC-phosphine) catalysts show unprecedented high catalytic activity in dehydrogenation of aqueous sodium formate. Fast reversible generation and storage of hydrogen can be achieved with these catalysts by a simple decrease or increase in the hydrogen pressure, respectively. PMID:26289830

  4. Tandem isomerization/telomerization of long chain dienes

    Directory of Open Access Journals (Sweden)

    Laura eTorrente Murciano

    2014-06-01

    Full Text Available The first example of a tandem reaction involving double-bond migration in combination with telomerization is reported. Homogeneous and heterogeneous Ru catalysts were employed as isomerisation catalysts, and telomerization was realized using a homogeneous Pd(0 precursor complex with a N-heterocyclic carbene (IMes ligand. Overall conversions approaching 60 % were achieved with the best selectivity to telomerization products of 91% attained at 11 % conversion. Conversion was markedly higher in the presence of longer-chain alcohol (1-butanol as the nucleophile (telogen.

  5. Entwicklung neuer chiraler Metathesekatalysatoren

    OpenAIRE

    Schlesiger, David Alexander

    2012-01-01

    Diese Arbeit befasst sich im ersten Teil mit der Synthese chiraler Rutenium-Metathesekatalysatoren. Diese zeichnen sich durch eine Monosubstitution im Rückgrat des N-heterocyclischen Carben-Liganden (NHC-Liganden) aus. Der Katalysator wurde hierbei ausgehend von L-Valin hergestellt. Der Weg verlief über eine Sulfamidat-Zwischenstufe und war bezüglich Ausbeute und Flexibilität dem ursprünglichen Syntheseweg überlegen. Die hoch flexible Route über das Sulfamidat ermöglichte die Herstellung des ...

  6. Facile Gold-Catalyzed Heterocyclization of Terminal Alkynes and Cyanamides Leading to Substituted 2-Amino-1,3-Oxazoles.

    Science.gov (United States)

    Rassadin, Valentin A; Boyarskiy, Vadim P; Kukushkin, Vadim Yu

    2015-07-17

    Facile gold-catalyzed heterocyclization based upon intermolecular trapping of the generated α-oxo gold carbenes with various cyanamides R(2)R(3)NCN (R(2)/R(3) = Alk/Alk, -(CH2)2O(CH2)2-, Ar/Ar, Ar/H) has been developed. In most cases, 2-amino-1,3-oxazoles functionalized at the nitrogen atom as well as at the fifth position of the heterocyclic ring (12 examples) were isolated in good to moderate yields. PMID:26135038

  7. Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions.

    Science.gov (United States)

    Wang, Lei; Li, Sun; Chauhan, Pankaj; Hack, Daniel; Philipps, Arne R; Puttreddy, Rakesh; Rissanen, Kari; Raabe, Gerhard; Enders, Dieter

    2016-04-01

    A novel one-pot, three-component diastereo- and enantioselective synthesis of spiropyrazolones has been developed involving the aldol condensation of an enal to generate α,β-unsaturated pyrazolones, which react with a second equivalent of enal through an N-heterocyclic carbene (NHC)-catalyzed [3+2] annulation. The desired spirocyclopentane pyrazolones are obtained in moderate to good yields and good to excellent stereoselectivities. Alternatively, starting from cyclic 1,3-diketones, 2,5-chromenediones are available through [2+4] annulation. PMID:26864437

  8. The Selective Electrochemical Conversion of Preactivated CO_2 to Methane

    OpenAIRE

    Luca, Oana R.; McCrory, Charles C. L.; Dalleska, Nathan F.; Koval, Carl A.

    2015-01-01

    This work reports the selective electrochemical conversion of CO_2 to methane, the reverse reaction of fossil fuel combustion. This reaction is facilitated by preactivation of the CO_2 molecule with an N-heterocyclic carbene (NHC) to form a zwitterionic species in the first step. In the presence of Ni(cyclam)^(2+) and CF_3CH_2OH, this species is shown to undergo further electrochemical reduction of the bound-CO_2 fragment at glassy carbon cathodes in dichloromethane electrolyte solution. Labe...

  9. Rapid Construction of a Benzo-Fused Indoxamycin Core Enabled by Site-Selective C-H Functionalizations.

    Science.gov (United States)

    Bedell, T Aaron; Hone, Graham A B; Valette, Damien; Yu, Jin-Quan; Davies, Huw M L; Sorensen, Erik J

    2016-07-11

    Methods for functionalizing carbon-hydrogen bonds are featured in a new synthesis of the tricyclic core architecture that characterizes the indoxamycin family of secondary metabolites. A unique collaboration between three laboratories has engendered a design for synthesis featuring two sequential C-H functionalization reactions, namely a diastereoselective dirhodium carbene insertion followed by an ester-directed oxidative Heck cyclization, to rapidly assemble the congested tricyclic core of the indoxamycins. This project exemplifies how multi-laboratory collaborations can foster conceptually novel approaches to challenging problems in chemical synthesis. PMID:27206223

  10. Structure and bonding of [(SIPr)AgX] (X = Cl, Br, I and OTf).

    Science.gov (United States)

    Wong, Valerie H L; White, Andrew J P; Hor, T S Andy; Hii, King Kuok Mimi

    2015-12-28

    A series of iso-structural complexes [(SIPr)AgX] (X = Cl, Br, I, OTf; SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolidene) were synthesised, including the first example of a N-heterocyclic carbene silver(I) complex containing an O-bound triflate. Bond Energy Dissociation and Natural Orbitals for Chemical Valence bond analyses (BEDA & ETS-NOCV) revealing a significant NHC → M σ-back-donation, which influences the stability and sigma-donicity of these complexes. PMID:26489888

  11. 5-Azido-4-dimethylamino-1-methyl-1,2,4-triazolium Hexafluoridophosphate and Derivatives

    Directory of Open Access Journals (Sweden)

    Gerhard Laus

    2016-02-01

    Full Text Available 5-Azido-4-(dimethylamino-1-methyl-1,2,4-triazolium hexafluoridophosphate was synthesized from the corresponding 5-bromo compound with NaN3. Reaction with bicyclo[2.2.1]hept-2-ene yielded a tricyclic aziridine, addition of an N-heterocyclic carbene resulted in a triazatrimethine cyanine, and reduction with triphenylphosphane gave the 5-amino derivative. The crystal structures of three nitrogen-rich salts were determined. Thermoanalysis of the cationic azide and triazene showed exothermal decomposition. The triazene exhibited negative solvatochromism in polar solvents involving the dipolarity π* and hydrogen-bond donor acidity α of the solvent.

  12. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  13. Photochemical transformations of diazocarbonyl compounds: expected and novel reactions

    Science.gov (United States)

    Galkina, O. S.; Rodina, L. L.

    2016-05-01

    Photochemical reactions of diazocarbonyl compounds are well positioned in synthetic practice as an efficient method for ring contraction and homologation of carboxylic acids and as a carbene generation method. However, interpretation of the observed transformations of diazo compounds in electronically excited states is incomplete and requires a careful study of the fine mechanisms of these processes specific to different excited states of diazo compounds resorting to modern methods of investigation, including laser technology. The review is devoted to analysis of new data in the chemistry of excited states of diazocarbonyl compounds. The bibliography includes 155 references.

  14. [PdA (IPr*) (cinnamyl)Cl]: An efficient pre-catalyst for the preparation of tetra-ortho-substituted biaryls by Suzuki-Miyaura cross-coupling

    KAUST Repository

    Chartoire, Anthony

    2012-03-13

    The bigger the better: The new well-defined [Pd(IPr*)(cin)Cl] pre-catalyst is described (see scheme). This complex proves to be highly active in the Suzuki-Miyaura cross-coupling for the synthesis of tetra-ortho- substituted biaryls under mild conditions. IPr* is reported as the largest N-heterocyclic carbene (NHC) to date for [Pd(NHC)(cin)Cl] complexes, explaining the high reactivity observed for this complex in this challenging transformation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Gold-catalyzed naphthalene functionalization

    OpenAIRE

    Iván Rivilla; M. Mar Díaz-Requejo; Pedro J. Pérez

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either f...

  16. Highvalent and organometallic technetium and rhenium compounds

    International Nuclear Information System (INIS)

    Diagnostic methods in nuclear medicine allow a detailed description of morphological organ structures and their function. The beta emitting isotope Tc-99 has optimal physical properties (140 keV gamma rays, half-life 6 h) and is therefore used for radiopharmaceuticals. The thesis is concerned with the search for new technetium complexes and their reproducible production. The (TcO3) core is of main interest. The second part of the thesis deals with organometallic technetium and rhenium complexes with carbonyl ligands and N-heterocyclic carbenes that show stability in aerobic aqueous solutions.

  17. Synthesis of 1,3–bis(2,4,6–trimethylphenyl)–imidazolinium salts : SIMes.HCl, SIMes.HBr, SIMes.HBF4 and SIMes.HPF6.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Arnaud Gautier, Federico Cisnetti, Silvia Díez-González & Clémentine Gibard ### Abstract N,N’–bis–(2,4,6–trimethylphenylamino)ethane dihydrobromide is obtained in a single step through the dialkylation of dibromoethane. It serves as a versatile starting material for the synthesis of imidazolium salts: SIMes.HBr, SIMes.HCl, SIMes.HPF6 and SIMes.HBF4. ### Introduction Azolium salts have become indispensable starting materials in N–heterocyclic carbene (NHC) chem...

  18. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  19. Artificial Diels-Alderase based on the transmembrane protein FhuA.

    Science.gov (United States)

    Osseili, Hassan; Sauer, Daniel F; Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi; Okuda, Jun

    2016-01-01

    Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVF(tev)). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels-Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  20. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study.

    Science.gov (United States)

    Rosebrugh, L E; Ahmed, T S; Marx, V M; Hartung, J; Liu, P; López, J G; Houk, K N; Grubbs, R H

    2016-02-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond. PMID:26726835

  1. A Broadly Applicable NHC–Cu-Catalyzed Approach for Efficient, Site-, and Enantioselective Coupling of Readily Accessible (Pinacolato)alkenylboron Compounds to Allylic Phosphates and Applications to Natural Product Synthesis

    OpenAIRE

    Gao, Fang; Carr, James L.; Hoveyda, Amir H.

    2014-01-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0–5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety o...

  2. Iron-catalyzed coupling of aryl sulfamates and aryl/vinyl tosylates with aryl Grignards.

    Science.gov (United States)

    Agrawal, Toolika; Cook, Silas P

    2014-10-01

    The iron-catalyzed coupling of aryl sulfamates and tosylates with aryl Grignard reagents is reported for the first time. The methodology employs air-stable, low-cost FeF3·3H2O and the N-heterocyclic carbene ligand IPr·HCl as the preligand to form a long-lived catalyst upon treatment with aryl Grignards. The reaction provides a range of cross-coupled products in good-to-excellent yields. In contrast to previous reports with aryl chlorides, these reactions proceed with low levels of Grignard homocoupling regardless of the iron source. PMID:25230097

  3. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.

    Science.gov (United States)

    Cao, Zhi; Kim, Dohyung; Hong, Dachao; Yu, Yi; Xu, Jun; Lin, Song; Wen, Xiaodong; Nichols, Eva M; Jeong, Keunhong; Reimer, Jeffrey A; Yang, Peidong; Chang, Christopher J

    2016-07-01

    Conversion of the greenhouse gas carbon dioxide (CO2) to value-added products is an important challenge for sustainable energy research, and nanomaterials offer a broad class of heterogeneous catalysts for such transformations. Here we report a molecular surface functionalization approach to tuning gold nanoparticle (Au NP) electrocatalysts for reduction of CO2 to CO. The N-heterocyclic (NHC) carbene-functionalized Au NP catalyst exhibits improved faradaic efficiency (FE = 83%) for reduction of CO2 to CO in water at neutral pH at an overpotential of 0.46 V with a 7.6-fold increase in current density compared to that of the parent Au NP (FE = 53%). Tafel plots of the NHC carbene-functionalized Au NP (72 mV/decade) vs parent Au NP (138 mV/decade) systems further show that the molecular ligand influences mechanistic pathways for CO2 reduction. The results establish molecular surface functionalization as a complementary approach to size, shape, composition, and defect control for nanoparticle catalyst design. PMID:27322487

  4. cis-Dichlorido(1,3-dimesitylimidazolidin-2-ylidene(2-formylbenzylidene-κ2C,Oruthenium diethyl ether solvate

    Directory of Open Access Journals (Sweden)

    Christian Slugovc

    2010-02-01

    Full Text Available The title compound, [RuCl2(C8H6O(C21H26N2]·C4H10O, contains a catalytically active ruthenium carbene complex of the `second-generation Grubbs/Hoveyda' type with Ru in a square-pyramidal coordination, the apex of which is formed by the benzylidene carbene atom with Ru=C 1.827 (2 Å. The complex shows the uncommon cis, rather than the usual trans, arrangement of the two chloride ligands, with Ru—Cl bond lengths of 2.3548 (6 and 2.3600 (6 Å, and a Cl—Ru—Cl angle of 89.76 (2°. This cis configuration is desirable for certain applications of ring-opening metathesis polymerization (ROMP of strained cyclic olefins. The crystalline solid is a diethyl ether solvate, which is built up from a porous framework of Ru complexes held together by π–π stacking and C—H...Cl and C—H...O interactions. The disordered diethyl ether solvent molecules are contained in two independent infinite channels, which extend parallel to the c axis at x,y = 0,0 and x,y = {1over 2},{1over 2} and have solvent-accessible void volumes of 695 and 464 Å3 per unit cell.

  5. Deprotonation and oligomerization in photo-, radiolytically and electrochemically induced redox reactions in hydrophobic alkylalkylimidazolium ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I . A.; Chemical Sciences and Engineering Division

    2010-01-14

    Radical chemistry initiated by one-electron reduction of 1-methyl-3-alkylimidazolium cations in the corresponding ionic liquids (ILs) is examined. The reaction scheme is examined in light of the recent experimental data on photo-, radiation-, and electrochemically induced degradation of the practically important hydrophobic alkylimidazolium ILs. It is suggested that the primary species leading to the formation of the oligomers and acidification of the IL is a {sigma}{sigma}* dimer radical cation that loses a proton, yielding a neutral radical whose subsequent reactions produce C(2)-C(2) linked oligomers, both neutral and charged. The neutral oligomers (up to the tetramer) account for the features observed in the NMR spectra of cathodic liquid generated in electrolytic breakdown of the IL solvent. In photolysis and radiolysis, these neutral species and/or their radical precursors are oxidized by radical (ions) derived from the counteranions, and only charged dimers are observed. The dication dimers account for the features observed in the mass spectra of irradiated ILs. The products of these ion radical and radical reactions closely resemble those generated via carbene chemistry, without the formation of the carbene via the deprotonation of the parent cation. As the loss of 2-protons increases the proticity of the irradiated IL, it interferes with the extraction of metal ions by ionophore solutes, while the formation of the oligomers modifies solvent properties. Thus, the peculiarities of radical chemistry in the alkylimidazolium ILs have significant import for their practical applications.

  6. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Science.gov (United States)

    Mejuto, Carmen; Royo, Beatriz

    2015-01-01

    Summary The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD)] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene) complex with three [IrCl(CO)2] fragments, allowed the estimation of the Tolman electronic parameter (TEP) for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones. PMID:26734104

  7. Physical Properties and CO2 Reaction Pathway of 1-Ethyl-3-Methylimidazolium Ionic Liquids with Aprotic Heterocyclic Anions

    Energy Technology Data Exchange (ETDEWEB)

    Seo, S; DeSilva, MA; Brennecke, JF

    2014-12-25

    Ionic liquids (ILs) with aprotic heterocyclic anions (AHA) are attractive candidates for CO2 capture technologies. In this study, a series of AHA ILs with 1-ethyl-3-methylimidazolium ([emim](+)) cations were synthesized, and their physical properties (density, viscosity, and ionic conductivity) were measured. In addition, CO2 solubility in each IL was determined at room temperature using a volumetric method at pressures between 0 and 1 bar. The AHAs are basic anions that are capable of reacting stoichiometrically with CO2 to form carbamate species. An interesting CO2 uptake isotherm behavior was observed, and this may be attributed to a parallel, equilibrium proton exchange process between the imidazolium cation and the basic AHA in the presence of CO2, followed by the formation of "transient" carbene species that react rapidly with CO2. The presence of the imidazolium-carboxylate species and carbamate anion species was verified using H-1 and C-13 NMR spectroscopy. While the reaction between CO2 and the proposed transient carbene resulted in cation-CO2 binding that is stronger than the anion-CO2 reaction, the reactions of the imidazolium AHA ILs were fully reversible upon regeneration at 80 degrees C with nitrogen purging. The presence of water decreased the CO2 uptake due to the inhibiting effect of the neutral species (protonated form of AHA) that is formed.

  8. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  9. Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

    Directory of Open Access Journals (Sweden)

    Carmen Mejuto

    2015-12-01

    Full Text Available The coordination versatility of a 1,3,5-triphenylbenzene-tris-mesoionic carbene ligand is illustrated by the preparation of complexes with three different metals: rhodium, iridium and nickel. The rhodium and iridium complexes contained the [MCl(COD] fragments, while the nickel compound contained [NiCpCl]. The preparation of the tris-MIC (MIC = mesoionic carbene complex with three [IrCl(CO2] fragments, allowed the estimation of the Tolman electronic parameter (TEP for the ligand, which was compared with the TEP value for a related 1,3,5-triphenylbenzene-tris-NHC ligand. The electronic properties of the tris-MIC ligand were studied by cyclic voltammetry measurements. In all cases, the tris-MIC ligand showed a stronger electron-donating character than the corresponding NHC-based ligands. The catalytic activity of the tri-rhodium complex was tested in the addition reaction of arylboronic acids to α,β-unsaturated ketones.

  10. ßS-Haplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gonçalves M.S.

    2003-01-01

    Full Text Available ßS-Globin haplotypes were studied in 80 (160 ßS chromosomes sickle cell disease patients from Salvador, Brazil, a city with a large population of African origin resulting from the slave trade from Western Africa, mainly from the Bay of Benin. Hematological and hemoglobin analyses were carried out by standard methods. The ßS-haplotypes were determined by PCR and dot-blot techniques. A total of 77 (48.1% chromosomes were characterized as Central African Republic (CAR haplotype, 73 (45.6% as Benin (BEN, 1 (0.63% as Senegal (SEN, and 9 (5.63% as atypical (Atp. Genotype was CAR/CAR in 17 (21.3% patients, BEN/BEN in 17 (21.3%, CAR/BEN in 37 (46.3%, BEN/SEN in 1 (1.25%, BEN/Atp in 1 (1.25%, CAR/Atp in 6 (7.5%, and Atp/Atp in 1 (1.25%. Hemoglobin concentrations and hematocrit values did not differ among genotype groups but were significantly higher in 25 patients presenting percent fetal hemoglobin (%HbF > or = 10% (P = 0.002 and 0.003, respectively. The median HbF concentration was 7.54 ± 4.342% for the CAR/CAR genotype, 9.88 ± 3.558% for the BEN/BEN genotype, 8.146 ± 4.631% for the CAR/BEN genotype, and 4.180 ± 2.250% for the CAR/Atp genotype (P = 0.02, although 1 CAR/CAR individual presented an HbF concentration as high as 15%. In view of the ethnic and geographical origin of this population, we did not expect a Hardy-Weinberg equilibrium for CAR/CAR and BEN/BEN homozygous haplotypes and a high proportion of heterozygous CAR/BEN haplotypes since the State of Bahia historically received more slaves from Western Africa than from Central Africa.

  11. From Resting State to the Steady State: Mechanistic Studies of Ene-Yne Metathesis Promoted by the Hoveyda Complex.

    Science.gov (United States)

    Griffiths, Justin R; Keister, Jerome B; Diver, Steven T

    2016-04-27

    The kinetics of intermolecular ene-yne metathesis (EYM) with the Hoveyda precatalyst (Ru1) has been studied. For 1-hexene metathesis with 2-benzoyloxy-3-butyne, the experimental rate law was determined to be first-order in 1-hexene (0.3-4 M), first-order in initial catalyst concentration, and zero-order for the terminal alkyne. At low catalyst concentrations (0.1 mM), the rate of precatalyst initiation was observed by UV-vis and the alkyne disappearance was observed by in situ FT-IR. Comparison of the rate of precatalyst initiation and the rate of EYM shows that a low, steady-state concentration of active catalyst is rapidly produced. Application of steady-state conditions to the carbene intermediates provided a rate treatment that fit the experimental rate law. Starting from a ruthenium alkylidene complex, competition between 2-isopropoxystyrene and 1-hexene gave a mixture of 2-isopropoxyarylidene and pentylidene species, which were trappable by the Buchner reaction. By varying the relative concentration of these alkenes, 2-isopropoxystyrene was found to be 80 times more effective than 1-hexene in production of their respective Ru complexes. Buchner-trapping of the initiation of Ru1 with excess 1-hexene after 50% loss of Ru1 gave 99% of the Buchner-trapping product derived from precatalyst Ru1. For the initiation process, this shows that there is an alkene-dependent loss of precatalyst Ru1, but this does not directly produce the active catalyst. A faster initiating precatalyst for alkene metathesis gave similar rates of EYM. Buchner-trapping of ene-yne metathesis failed to deliver any products derived from Buchner insertion, consistent with rapid decomposition of carbene intermediates under ene-yne conditions. An internal alkyne, 1,4-diacetoxy-2-butyne, was found to obey a different rate law. Finally, the second-order rate constant for ene-yne metathesis was compared to that previously determined by the Grubbs second-generation carbene complex: Ru1 was found to

  12. Crystal structure of {3-[3,5-bis­(2,6-di­methyl­phen­yl)-1,2-phenyl­ene]-1-(2,6,2′′,6′′-tetra­methyl-1,1′:3′,1′′-ter­phen­yl-5′-yl)imidazol-2-yl­idene}chlorido­(η6-p-cymene)ruthenium(II) benzene disolvate

    Science.gov (United States)

    Sase, Shohei; Ikehara, Yuriko; Goto, Kei

    2014-01-01

    The title compound, [Ru(C47H43N2)Cl(C10H14)]·2C6H6, crystallized with two independent mol­ecules of benzene. One of the N-aryl moieties of the N-heterocyclic carbene (NHC) ligand underwent cyclo­metallation to form a five-membered ruthenacycle. The complex has a three-legged piano-stool structure with two C atoms incorporated in the five-membered ruthenacycle and a Cl atom as legs. The ruthenacycle is essentially coplanar with the imidazole ring of the NHC ligand, making a dihedral angle of 0.85 (8)°. PMID:25553006

  13. Gas-Phase Thermolysis of a Thioketen-S-Oxide

    DEFF Research Database (Denmark)

    Carlsen, Lars; Egsgaard, Helge; Schaumann, Ernst

    The unimolecular gas-phase thermolytic decomposition of 1,1,3,3-tetramethyl-2-thiocarbonylcyclohexane S-oxide (3) has been studied as a function of temperature by a flash vacuum thermolysis (f.v.t.) technique. The products detected are the carbenes (4) and (5), the ketone (6), the keten (7), the...... thioketone (8), and the thioketen (9). The product ratio is highly dependent on the thermolysis temperature. The thermolysis of (3) is mechanistically rationalized by assuming the existence of only two concurrent primary processes, which are (a) extrusion of atomic oxygen, leading to the thioketen (9), and...... (b) electrocyclic ring closure into the corresponding three-membered oxathiiran (10). The latter is dominant at lower temperatures, whereas higher thermolysis temperatures favour atomic oxygen extrusion. At further elevated temperatures additional concurrent primary reactions, i.e. extrusions of SO...

  14. Determination of β haplotypes in patients with sickle-cell anemia in the state of Rio Grande do Norte, Brazil.

    Science.gov (United States)

    Cabral, Cynthia Hatsue Kitayama; Serafim, Edvis Santos Soares; de Medeiros, Waleska Rayane Dantas Bezerra; de Medeiros Fernandes, Thales Allyrio Araújo; Kimura, Elza Miyuki; Costa, Fernando Ferreira; de Fátima Sonati, Maria; Rebecchi, Ivanise Marina Moretti; de Medeiros, Tereza Maria Dantas

    2011-07-01

    β(S) haplotypes were studied in 47 non-related patients with sickle-cell anemia from the state of Rio Grande do Norte, Brazil. Molecular analysis was conducted by PCR/RFLP using restriction endonucleases XmnI, HindIII, HincII and HinfI to analyze six polymorphic sites from the beta cluster. Twenty-seven patients (57.5%) were identified with genotype CAR/CAR, 9 (19.1%) CAR/BEN, 6 (12.8%) CAR/CAM, 1 (2.1%) BEN/BEN, 2 (4.3%) CAR/Atp, 1 (2.1%) BEN/Atp and 1 (2.1%) with genotype Atp/Atp. The greater frequency of Cameroon haplotypes compared to other Brazilian states suggests the existence of a peculiarity of African origin in the state of Rio Grande do Norte. PMID:21931513

  15. Metal — metal multiple bonded intermediates in catalysis

    Indian Academy of Sciences (India)

    John F Berry

    2015-02-01

    Metal–metal bonded Rh2 and Ru2 complexes having a paddlewheel-type structure are exceptional catalysts for a broad range of organic transformations. I review here the recent efforts towards the observation and characterization of intermediates in these reactions that have previously eluded detection. Specifically, mechanistic investigations of carbenoid and nitrenoid reactions of Rh2(II,II)-tetracarboxylate compounds have led to the observation of a metastable Rh2(II,II) carbene complex as well as a mixed-valent Rh2(II,III)-amido intermediate. Related Ru2 nitrido compounds have been studied and found to undergo intramolecular C–H amination reactions as well as intermolecular reaction with triphenylphosphine

  16. Phosphorescent Platinum(II) Complexes with Mesoionic 1H-1,2,3-Triazolylidene Ligands.

    Science.gov (United States)

    Soellner, Johannes; Tenne, Mario; Wagenblast, Gerhard; Strassner, Thomas

    2016-07-11

    The synthesis and characterization of eight unprecedented phosphorescent C^C* cyclometalated mesoionic aryl-1,2,3-triazolylidene platinum(II) complexes with different β-diketonate ligands are reported. All compounds proved to be strongly emissive at room temperature in poly(methyl methacrylate) films with an emitter concentration of 2 wt %. The observed photoluminescence properties were strongly dependent on the substitution on the aryl system and the β-diketonate ligand. Compared to acetylacetonate, the β-diketonates with aromatic substituents (mesityl and duryl) were found to significantly enhance the quantum yield while simultaneously reducing the emission lifetimes. Characterization was carried out by standard techniques, as well as solid-state structure determination, which confirmed the binding mode of the carbene ligand. DFT calculations, carried out to predict the emission wavelength with maximum intensity, were in excellent agreement with the (later) obtained experimental data. PMID:27294887

  17. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  18. Divergent reactivity of homologue ortho-allenylbenzaldehydes controlled by the tether length: chromone versus chromene formation.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Martínez del Campo, Teresa; Naranjo, Teresa

    2015-01-19

    The divergent behavior of two homologue allenals, namely, 2-(buta-2,3-dienyloxy)- and 2-(propa-1,2-dienyloxy)benzaldehydes, as cyclization substrates is described. 2-(Buta-2,3-dienyloxy)benzaldehydes suffers a formal allenic carbocyclization reaction to afford chromenes, whereas 2-(propa-1,2-dienyloxy)benzaldehydes react to yield chromones. The formation of chromenes is strictly a formal hydroarylation process divided into two parts, namely, allenic Claisen-type rearrangement and oxycyclization. An unknown N-heterocyclic carbene (NHC)-catalyzed allenic hydroacylation reaction must be invoked to account for the preparation of chromones. ortho-Allenylbenzaldehydes bearing either electron-donating substituents or electron-withdrawing substituents worked well to afford both the hydroarylation and hydroacylation products. This unexpected difference in reactivity can be rationalized by means of density functional theory calculations. PMID:25418081

  19. Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(=CH2)Me2]/[(≡SiO)2Ta(=CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)TaVMe4

    KAUST Repository

    Chen, Yin

    2015-01-21

    By grafting TaMe5 on Aerosil700, a stable, well-defined, silica-supported tetramethyl tantalum(V) complex, [(≡SiO)TaMe4], is obtained on the silica surface. After thermal treatment at 150 °C, the complex is transformed into two surface tantalum methylidenes, [(≡SiO)2Ta(=CH2)Me] and [(≡SiO)Ta(=CH2)Me2], which are active in alkane metathesis and comparable to the previously reported [(≡SiO)2TaHx]. Here we present the first experimental study to isolate and identify a surface tantalum carbene as the intermediate in alkane metathesis. A systematic experimental study reveals a new reasonable pathway for this reaction.

  20. Synthetic and Thermodynamic Investigations of Ancillary Ligand Influence on Catalytic Organometallic Systems. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nolan, Steven

    2003-03-20

    During the grant period we have been involved in synthesizing and experimentally determining solution enthalpy values associated with partially fluorinated ligands. This has lead to the publication of manuscripts dealing with synthetic, calorimetric and catalytic behavior of partially fluorinated ligands. The collaboration with Los Alamos researchers has lead to the publication of catalytic results in sc CO{sub 2} which have proven very interesting. Furthermore, we have also examined ligands that behave as phosphine mimics. The N-heterocyclic carbenes have been explored as alternatives for tertiary phosphines and have resulted in the design and construction of efficient palladium and nickel system capable of performing C-C and C-N cross coupling reactions. The initial studies in this areas were made possible by exploratory work conducted under the DOE/EPSCoR grant.

  1. Contrasting electronic requirements for C-H binding and C-H activation in d(6) half-sandwich complexes of rhenium and tungsten.

    Science.gov (United States)

    Thenraj, Murugesan; Samuelson, Ashoka G

    2015-09-15

    A computational study of the interaction half-sandwich metal fragments (metal = Re/W, electron count = d(6)), containing linear nitrosyl (NO(+) ), carbon monoxide (CO), trifluorophosphine (PF3 ), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO(+). Electron-withdrawing ligands like NO(+) lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. PMID:26174521

  2. Synthesis and crystal structure of the rhodium(I) cyclooctadiene complex with bis(3-tert-butylimidazol-2-ylidene)borate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F.; Shao, K.-J.; Xiao, Y.-C.; Pu, X.-J.; Zhu, B., E-mail: zhubao-999@126.com [Affiliated Wuxi Peoples Hospital, Department of Nuclear Medicine, Nanjing Medical University (China); Jiang, M.-J., E-mail: jmj16888@126.com [Affiliated Wuxi Peoples Hospital, Department of Clinical Laboratory Science, Nanjing Medical University (China)

    2015-12-15

    The rhodium(I) cyclooctadiene complex with the bis(3-tert-butylimidazol-2-ylidene)borate ligand [H{sub 2}B(Im{sup t}Bu){sup 2}]Rh(COD) C{sup 22}H{sup 36}BN{sup 4}Rh, has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal center, which is coordinated by the bidentate H{sup 2}B(Im{sup t}Bu){sub 2} and one cyclooctadiene group. The Rh–C{sub carbene} bond lengths are 2.043(4) and 2.074(4) Å, and the bond angle C–Rh1–C is 82.59°. The dihedral angle between two imidazol-2-ylidene rings is 67.30°.

  3. Radiation Laboratory, University of Notre Dame quarterly report, October 1--December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-23

    This report, on research preformed at the Radiation Laboratory, University of Notre Dame, contain contributions on such topics as: formation of carbenium ions or yields from carbenes, photochemical oxidations and reductions, photoreactivity of molybdates, radiolysis of water, spin trapping kinetics, pulse radiolysis, photogenerated radical anions, photochemistry of Fe and Re complexes, hyperfine coupling calculations, electron energy loss in hydrocarbons, radiolysis of halophenols, conductivity in lipid monolayers, solitonsin polyacetylene, triplet-triplet annhilation, random walk problems, proton and electron impact on water luminescence quenching, raman spectrum of ozonide ion, time-resolved spectra of supercritical fluids, sequential biphotonic photochemistry, reduction of CO{sub 2} with Cu(I) macrocycles,and studies on photosensitizing dyes and on air-water interface problems. (CBS)

  4. Research conducted at the Radiation Lab, Notre Dame Univ.

    Science.gov (United States)

    1991-01-01

    This report, on research preformed at the Radiation Laboratory, University of Notre Dame, contain contributions on such topics as: formation of carbenium ions or yields from carbenes, photochemical oxidations and reductions, photoreactivity of molybdates, radiolysis of water, spin trapping kinetics, pulse radiolysis, photogenerated radical anions, photochemistry of Fe and Re complexes, hyperfine coupling calculations, electron energy loss in hydrocarbons, radiolysis of halophenols, conductivity in lipid monolayers, solitonsin polyacetylene, triplet-triplet annhilation, random walk problems, proton and electron impact on water luminescence quenching, raman spectrum of ozonide ion, time-resolved spectra of supercritical fluids, sequential biphotonic photochemistry, reduction of CO2 with Cu(I) macrocycles,and studies on photosensitizing dyes and on air-water interface problems.

  5. Total Synthesis of the Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A.

    Science.gov (United States)

    Wada, Hiroki; Williams, Huw E L; Moody, Christopher J

    2015-12-01

    The power of rhodium-carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil-bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax-causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). PMID:26473502

  6. Exploring Coordination Modes: Late Transition Metal Complexes with a Methylene-bridged Macrocyclic Tetra-NHC Ligand.

    Science.gov (United States)

    Altmann, Philipp J; Weiss, Daniel T; Jandl, Christian; Kühn, Fritz E

    2016-05-20

    A tetranuclear silver(I) N-heterocyclic carbene (NHC) complex bearing a macrocyclic, exclusively methylene-bridged, tetracarbene ligand was synthesized and employed as transmetalation agent for the synthesis of nickel(II), palladium(II), platinum(II), and gold(I) derivatives. The transition metal complexes exhibit different coordination geometries, the coinage metals being bound in a linear fashion forming molecular box-type complexes, whereas the group 10 metals adapt an almost ideal square planar coordination geometry within the ligand's cavity, resulting in saddle-shaped complexes. Both the Ag(I) and the Au(I) complexes show ligand-induced metal-metal contacts, causing photoluminescence in the blue region for the gold complex. Distinct metal-dependent differences of the coordination behavior between the group 10 transition metals were elucidated by low-temperature NMR spectroscopy and DFT calculations. PMID:27017146

  7. Characterization and evaluation studies on different preparation of poly norborene synthesized via ring-opening metathesis polymerization

    International Nuclear Information System (INIS)

    Syntheses of poly norbornene (polyNBE) via ring-opening metathesis polymerization (ROMP) with [RuCl2(PPh3)2(3,5- dimethylpiperidine)] as pre catalyst were evaluated under different reaction conditions ([EDA]/[Ru], [NBE]/[Ru], temperature and reaction time; EDA is ethyl diazoacetate). The main aim is to obtain the best monomer conversion with the best Mw/Mn) EDA was used as starting carbene source. Quantitative reactions were obtained at 50 deg C for 5 min with [NBE]/[Ru] = 5000 in presence of 5 μL of EDA. The stereoregularities of the norbornene ring sequences in the polymers were estimated from 13C{1H} NMR spectra, obtaining 62% trans-polyNBE. The thermal properties of transpolyNBE were evaluated by TGA, DSC and DMTA. (author)

  8. Latent and delayed action polymerization systems.

    Science.gov (United States)

    Naumann, Stefan; Buchmeiser, Michael R

    2014-04-01

    Various approaches to latent polymerization processes are described. In order to highlight recent advances in this field, the discussion is subdivided into chapters dedicated to diverse classes of polymers, namely polyurethanes, polyamides, polyesters, polyacrylates, epoxy resins, and metathesis-derived polymers. The described latent initiating systems encompass metal-containing as well as purely organic compounds that are activated by external triggers such as light, heat, or mechanical force. Special emphasis is put on the different chemical venues that can be taken to achieve true latency, which include masked N-heterocyclic carbenes, latent metathesis catalysts, and photolatent radical initiators, among others. Scientific challenges and the advantageous application of latent polymerization processes are discussed. PMID:24519912

  9. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan

    2014-11-03

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  10. High-Efficiency Iron Photosensitizer Explained with Quantum Wavepacket Dynamics.

    Science.gov (United States)

    Pápai, Mátyás; Vankó, György; Rozgonyi, Tamás; Penfold, Thomas J

    2016-06-01

    Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from (1)MLCT-(3)MLCT proceeded by slower kinetics associated with the conversion into the (3)MC states. The slowest component of the (3)MLCT decay, important in the context of photosensitizers, is much longer than related Fe(II) complexes because the population transfer to the (3)MC states occurs in a region of the potential where the energy gap between the (3)MLCT and (3)MC states is large, making the population transfer inefficient. PMID:27187868

  11. Romp as a versatile method for the obtention of differentiated polymeric materials

    Directory of Open Access Journals (Sweden)

    Valdemiro P. Carvalho Jr.

    2012-01-01

    Full Text Available Ring Opening Metathesis Polymerization (ROMP of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.

  12. Computational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes.

    Science.gov (United States)

    Dixon, Isabelle M; Boissard, Gauthier; Whyte, Hannah; Alary, Fabienne; Heully, Jean-Louis

    2016-06-01

    In this study, we examine a large range of organometallic iron(II) complexes with the aim of computationally identifying the most promising ones in terms of photophysical properties. These complexes combine polypyridine, bis(phosphine), and carbon-bound ligands. Density functional theory has allowed us to establish a comparative Jablonski diagram displaying the lowest singlet, triplet, and quintet states. All of the proposed FeN5C or FeN3P2C complexes unfavorably possess a lowest triplet state of metal-centered (MC) nature. Among the FeN4C2 and FeN2P2C2 series, the carbene complexes display the least favorable excited-state distribution, also having a low-lying (3)MC state. Validating our design strategy, we are now able to propose seven iron(II) complexes displaying a lowest excited state of triplet metal-to-ligand charge-transfer nature. PMID:27228301

  13. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina

    2015-08-20

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  14. Divergent Gold(I)-Catalyzed Skeletal Rearrangements of 1,7-Enynes.

    Science.gov (United States)

    Meiß, Rebecca; Kumar, Kamal; Waldmann, Herbert

    2015-09-21

    The gold(I) complex catalyzed cycloisomerization and skeletal rearrangement of 1,n-enynes (n=5-7) is a powerful methodology for the efficient synthesis of complex molecular architectures. In contrast to 1,6-enynes, readily accessible homologous 1,7-enynes are largely unexplored in such transformations. Here, the divergent skeletal rearrangement of all-carbon 1,7-enynes by catalysis with a cationic gold(I) complex is reported. Depending on electronic and steric factors, differently substituted 1,7-enynes react via different carbocations formed from a common gold carbene intermediate to yield on the one hand novel exocyclic allenes and on the other hand tricyclic hexahydro-anthracenes through a novel dehydrogenative Diels-Alder reaction. PMID:26356499

  15. Palladium coupling catalysts for pharmaceutical applications.

    Science.gov (United States)

    Doucet, Henri; Hierso, Jean-Cyrille

    2007-11-01

    This review discusses recent advances made in the area of palladium-catalyzed coupling reactions and describes a selection of the catalytic systems that are useful in the preparation of valuable compounds for the pharmaceutical industry. Most of these types of syntheses have used either simple palladium salts or palladium precursors associated with electron-rich mono- or bidentate phosphine ligands as catalysts. For some reactions, ligands such as triphenyl phosphine, 1,1'-bis(diphenylphosphino)ferrocene, a carbene or a bipyridine have also been employed. Several new procedures for the Suzuki cross-coupling reaction, the activation of aryl chlorides, the functionalization of aromatics and the synthesis of heteroaromatics are discussed. The C-H activation/ functionalization reactions of aryl and heteroaryl derivatives have emerged as powerful tools for the preparation of biaryl compounds, and the recent procedures and catalysts employed in this promising field are also highlighted herein. PMID:17987520

  16. C15H10 and C15H12 Thermal Chemistry: Phenanthrylcarbene Isomers and Phenylindenes by Falling Solid Flash Vacuum Pyrolysis of Tetrazoles.

    Science.gov (United States)

    Wentrup, Curt; Becker, Jürgen; Diehl, Manfred

    2015-07-17

    2-Phenyl-5-(phenylethynyl)tetrazole 44 provides a new entry to the C15H10 energy surface. Flash vacuum pyrolysis of 44 using the falling solid flash vacuum pyrolysis (FS-FVP) method afforded cyclopenta[def]phenanthrene 31 and cyclopenta[jk]fluorene 52 as the principal products. The products are explained in terms of the formation of N-phenyl-C-phenylethynylnitrile imine/(phenylazo)(phenylethynyl)carbene 45 and its cyclization to 3-(phenylethynyl)-3H-indazole 46b. Pyrolytic loss of N2 from 46b generates C15H10 intermediate 48. Cyclization of 48 to a dibenzocycloheptatetraene derivative and further rearrangements with analogies in the chemistry of phenylcarbene and the naphthylcarbenes leads to the final products. Similar pyrolysis of 2-phenyl-5-styryltetrazole 43 afforded 3-styrylindazole 58, which on further pyrolysis eliminated N2 to generate 3- and 2-phenylindenes 61 and 62 via C15H12 intermediates. PMID:26086716

  17. N-Methylphthalimide-substituted benzimidazolium salts and PEPPSI Pd–NHC complexes: synthesis, characterization and catalytic activity in carbon–carbon bond-forming reactions

    Science.gov (United States)

    Gök, Yetkin; İlhan, İlhan Özer

    2016-01-01

    Summary A series of novel benzimidazolium salts (1–4) and their pyridine enhanced precatalyst preparation stabilization and initiation (PEPPSI) themed palladium N-heterocyclic carbene complexes [PdCl2(NHC)(Py)] (5–8), where NHC = 1-(N-methylphthalimide)-3-alkylbenzimidazolin-2-ylidene and Py = 3-chloropyridine, were synthesized and characterized by means of 1H and 13C{1H} NMR, UV–vis (for 5–8), ESI-FTICR-MS (for 2, 4, 6–8) and FTIR spectroscopic methods and elemental analysis. The synthesized compounds were tested in Suzuki–Miyaura cross-coupling (for 1–8) and arylation (for 5–8) reactions. As catalysts, they demonstrated a highly efficient route for the formation of asymmetric biaryl compounds even though they were used in very low loading. For example, all compounds displayed good catalytic activity for the C–C bond formation of 4-tert-butylphenylboronic acid with 4-chlorotoluene. PMID:26877810

  18. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    Science.gov (United States)

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  19. Double stabilization of nanocrystalline silicon: a bonus from solvent

    Energy Technology Data Exchange (ETDEWEB)

    Kolyagin, Y. G.; Zakharov, V. N.; Yatsenko, A. V.; Paseshnichenko, K. A.; Savilov, S. V.; Aslanov, L. A., E-mail: aslanov.38@mail.ru [Lomonosov Moscow State University (Russian Federation)

    2016-01-15

    Double stabilization of the silicon nanocrystals was observed for the first time by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. The role of solvent, 1,2-dimethoxyethane (glyme), in formation and stabilization of silicon nanocrystals as well as mechanism of modification of the surface of silicon nanocrystals by nitrogen-heterocyclic carbene (NHC) was studied in this research. It was shown that silicon nanocrystals were stabilized by the products of cleavage of the C–O bonds in ethers and similar compounds. The fact of stabilization of silicon nanoparticles with NHC ligands in glyme was experimentally detected. It was demonstrated that MAS NMR spectroscopy is rather informative for study of the surface of silicon nanoparticles but it needs very pure samples.

  20. Determination of βS haplotypes in patients with sickle-cell anemia in the state of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Cynthia Hatsue Kitayama Cabral

    2011-01-01

    Full Text Available βS haplotypes were studied in 47 non-related patients with sickle-cell anemia from the state of Rio Grande do Norte, Brazil. Molecular analysis was conducted by PCR/RFLP using restriction endonucleases XmnI, HindIII, HincII and HinfI to analyze six polymorphic sites from the beta cluster. Twenty-seven patients (57.5% were identified with genotype CAR/CAR, 9 (19.1% CAR/BEN, 6 (12.8% CAR/CAM, 1 (2.1% BEN/BEN, 2 (4.3% CAR/Atp, 1 (2.1% BEN/Atp and 1 (2.1% with genotype Atp/Atp. The greater frequency of Cameroon haplotypes compared to other Brazilian states suggests the existence of a peculiarity of African origin in the state of Rio Grande do Norte.

  1. Convenient preparation of high molecular weight poly(dimethylsiloxane using thermally latent NHC-catalysis: a structure-activity correlation

    Directory of Open Access Journals (Sweden)

    Stefan Naumann

    2015-11-01

    Full Text Available The polymerization of octamethylcyclotetrasiloxane (D4 is investigated using several five-, six- and seven-membered N-heterocyclic carbenes (NHCs. The catalysts are delivered in situ from thermally susceptible CO2 adducts. It is demonstrated that the polymerization can be triggered from a latent state by mild heating, using the highly nucleophilic 1,3,4,5-tetramethylimidazol-2-ylidene as organocatalyst. This way, high molecular weight PDMS is prepared (up to >400 000 g/mol, 1.6 ÐM 95%, using low catalyst loadings (0.2–0.1 mol %. Furthermore, the results suggest that a nucleophilic, zwitterionic mechanism is in operation, in preference to purely anionic polymerization.

  2. Theoretical study of the reactivity trends in the Cl-abstraction reactions of CHCl3 + CHX·−/CX$_{2}^{·−}$ (X = Cl, Br and I)

    Indian Academy of Sciences (India)

    Jun Xi Liang; Zhi Yuan Geng; Yong Cheng Wang

    2011-09-01

    To better understand how and to what extent the halosubstituted carbene radical anions effect the chlorine abstraction of CHCl3, a detailed theoretical investigation has been performed at the UMP2/6-311++G (d, p)/RECP level of theory. The model system CHCl3+CHX·−/CX$^{·−}_{2}$ (X = Cl, Br, and I) has been chosen for the present study. According to the detailed discussions of geometries and energetics of the optimized stationary points, our theoretical findings suggest that the Cl-abstraction reactions by CHX·− are energetically favourable, indicating the less massive substitution X in CHX·− the easier abstraction reaction, as compared to those by CX$^{·−}_{2}$, which are energetically unfavourable and would be endothermic.

  3. Half-sandwich nickel complexes with ring-expanded NHC ligands - synthesis, structure and catalytic activity in Kumada-Tamao-Corriu coupling.

    Science.gov (United States)

    Banach, Ł; Guńka, P A; Buchowicz, W

    2016-06-01

    The general synthesis of [Ni(Cp)(X)(NHC)] complexes from a nickel halide, CpLi, and a carbene solution is reported. This procedure yields unprecedented complexes with ring-expanded NHC ligands (RE-NHC) of six- (1a, 1b), seven- (1c), and eight-membered (1d) heterocycles. The NMR spectra of 1a-1d are consistent with the hindered rotation of Ni-Ccarbene and N-CMes bonds, while X-ray analyses of 1b, 1c, and 1d reveal a pronounced trans influence of the RE-NHC ligands. Complexes 1a-1e are efficient pre-catalysts in Kumada-Tamao-Corriu coupling with the maximum efficiency observed for complexes bearing the six-membered NHC. PMID:26853761

  4. Tetanus toxin is labeled with photoactivatable phospholipids at low pH

    International Nuclear Information System (INIS)

    The mechanism of cell penetration by tetanus toxin is unknown; it has been suggested that the toxin may penetrate into the lipid bilayer from a low-pH vesicular compartment. In this work, the interaction of tetanus toxin with liposomal model membranes has been studied by following its photoinduced cross-linking with either a nitrene or a carbene photolytically generated from corresponding light-sensitive phosphatidylcholine analogues. The toxin was labeled only at pHs lower than 5.5. The low pH acquired hydrophobicity of tetanus toxin appears to be confined to its light chain and to the 45-kDa NH2-terminal fragment of the heavy chain. Negatively charged lipids promote the interaction of this toxin with the hydrocarbon chain of phospholipids. The relevance of the present findings to the possible mechanism of nerve cell penetration by tetanus toxin is discussed

  5. Binding of molecular oxygen by an artificial heme analogue: investigation on the formation of an Fe-tetracarbene superoxo complex.

    Science.gov (United States)

    Anneser, Markus R; Haslinger, Stefan; Pöthig, Alexander; Cokoja, Mirza; D'Elia, Valerio; Högerl, Manuel P; Basset, Jean-Marie; Kühn, Fritz E

    2016-04-12

    The dioxygen reactivity of a cyclic iron(ii) tetra-NHC-complex (NHC: N-heterocyclic carbene) is investigated. Divergent oxidation behavior is observed depending on the choice of the solvent (acetonitrile or acetone). In the first case, exposure to molecular oxygen leads to an oxygen free Fe(iii) whereas in the latter case an oxide bridged Fe(iii) dimer is formed. In acetone, an Fe(iii)-superoxide can be trapped, isolated and characterized as intermediate at low temperatures. An Fe(iii)-O-Fe(iii) dimer is formed from the Fe(iii) superoxide in acetone upon warming and the molecular structure has been revealed by single crystal X-ray diffraction. It is shown that the oxidation of the Fe(ii) complex in both solvents is a reversible process. For the regeneration of the initial Fe(ii) complex both organic and inorganic reducing agents can be used. PMID:26952651

  6. Acyclic Diene Metathesis (ADMET Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends

    Directory of Open Access Journals (Sweden)

    Tahmina Haque

    2015-03-01

    Full Text Available This accounts introduces unique characteristics by adopting the acyclic diene metathesis (ADMET polymerization for synthesis of conjugated polymers, poly(arylene vinylenes, known as promising molecular electronics. The method is more suitable than the other methods in terms of atom efficiency affording defect-free, stereo-regular (exclusive trans polymers with well-defined chain ends; the resultant polymers possess better property than those prepared by the conventional methods. The chain ends (vinyl group in the resultant polymer prepared by ruthenium-carbene catalyst(s can be modified by treating with molybdenum-alkylidene complex (olefin metathesis followed by addition of various aldehyde (Wittig type cleavage, affording the end-functionalized polymers exclusively. An introduction of initiating fragment, the other conjugated segment, and one-pot synthesis of end-functionalized block copolymers, star shape polymers can be achieved by adopting this methodology.

  7. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    Directory of Open Access Journals (Sweden)

    Karolina Żukowska

    2015-08-01

    Full Text Available Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  8. Lewis Acid Binding and Transfer as a Versatile Experimental Gauge of the Lewis Basicity of Fe(0) , Ru(0) , and Pt(0) Complexes.

    Science.gov (United States)

    Braunschweig, Holger; Brunecker, Carina; Dewhurst, Rian D; Schneider, Christoph; Wennemann, Benedikt

    2015-12-21

    A number of zerovalent ruthenium tri- and tetracarbonyl complexes of the form [Ru(CO)5-n Ln ] (n=1, 2) with neutral phosphine or N-heterocyclic carbene donor ligands have been treated with the Lewis acids GaCl3 and Ag(+) to form a range of metal-only Lewis pairs (MOLPs). The spectroscopic and structural parameters of the adducts are compared to each other and to related iron carbonyl based MOLPs. The Lewis basicity of the original Ru(0) complexes is gauged by transfer experiments, as well as through the degree of pyramidization of the bound GaCl3 units and the RuM bond lengths. The work shows the benefits of the MOLP concept as one of the few direct experimental gauges of metal basicity, and one that can allow comparisons between metal complexes with different metal centers and ligand sets. PMID:26555043

  9. Molecular electrocatalysts for the hydrogen production from iron based hydrogenases

    International Nuclear Information System (INIS)

    The complex type [Fe2(CO)6(μ-SRS)] are structural analogue of the active site of iron hydrogenases constituted of a dinuclear entity and diatomic ligands CO and CN. The today knowledge on the electrocatalytic activity of some of these organometallic complexes towards the proton reduction in hydrogen1,2,3, makes possible the elaboration of bio inspired electrocatalysts. Studies must now be realized to better understand the reduction processes of the iron dinuclear complexes with and without acids. In this framework the authors synthesized series of complexes type [Fe2(CO)6-n Ln(μ-E-CH2-X-CH2-E)] (n=0,1 or 2; L=carbene N-heterocyclic; E=S or P(Ph); X= CH2, C6H4 or NR). (A.L.B.)

  10. Binding of molecular oxygen by an artificial heme analogue: investigation on the formation of an Fe–tetracarbene superoxo complex

    KAUST Repository

    Anneser, Markus R.

    2016-02-26

    The dioxygen reactivity of a cyclic iron(II) tetra–NHC-complex (NHC: N-heterocyclic carbene) is investigated. Divergent oxidation behavior is observed depending on the choice of the solvent (acetonitrile or acetone). In the first case, exposure to molecular oxygen leads to an oxygen free Fe(III) whereas in the latter case an oxide bridged Fe(III) dimer is formed. In acetone, an Fe(III)-superoxide can be trapped, isolated and characterized as intermediate at low temperatures. An Fe(III)–O–Fe(III) dimer is formed from the Fe(III) superoxide in acetone upon warming and the molecular structure has been revealed by single crystal X-ray diffraction. It is shown that the oxidation of the Fe(II) complex in both solvents is a reversible process. For the regeneration of the initial Fe(II) complex both organic and inorganic reducing agents can be used.

  11. The Isocyanide-Induced Formation of Dicyclopentadienyltantalum Monoalkyl Species from Hydride Olefin Complexes

    OpenAIRE

    Klazinga, A.H.; Teuben, J.H.

    1980-01-01

    Reaction of endo Cp2Ta(H)L (L = C3H6, C4H8 (1-butene)) with aryl- and alkyl-isocyanides R´NC (R´ = 2,6-(CH3)2C6H3, cyclo-C6H11, CH3 and t-C4H9) gives the thermally stable isocyanide adducts of Cp2TaR (R = C3H7, C4H9). The extraordinarily strong metal—isocyanide interaction leads to a non-linear “carbene-like” structure for these complexes and gives rise to the possibility of reactions at the nitrogen lone-pair electrons. The tantalocene isocyanide complexes react with Lewis acids, such as AlE...

  12. Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines.

    Science.gov (United States)

    Paraja, Miguel; Valdés, Carlos

    2016-05-01

    Two different Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones are described. The outcome of the cascade processes is determined by the substitution on the N-alkenyl fragment. The reactions with N-tosyl-N-ethylene-o-iodoanilines lead to indoles through a sequence that involves the sequential migratory insertions of a carbene ligand and a C-C double bond, featuring a 5-exo-trig cyclization. The reactions with N-alkyl-N-alkenyl-o-iodoanilines provide 1,4-dihydroquinolines through a cascade reaction that includes a formal 6-endo-trig cyclization. In both cases the benzofused heterocycles are built through the formation of two C-C bonds on the hydrazonic carbon atom. PMID:27087628

  13. Rhodium-catalyzed acyloxy migration of propargylic esters in cycloadditions, inspiration from the recent "gold rush".

    Science.gov (United States)

    Shu, Xing-Zhong; Shu, Dongxu; Schienebeck, Casi M; Tang, Weiping

    2012-12-01

    Transition metal-catalyzed acyloxy migration of propargylic esters offers versatile entries to allene and vinyl carbene intermediates for various fascinating subsequent transformations. Most π-acidic metals (e.g. gold and platinum) are capable of facilitating these acyloxy migration events. However, very few of these processes involve redox chemistry, which are well-known for most other transition metals such as rhodium. The coupling of acyloxy migration of propargylic esters with oxidative addition, migratory insertion, and reductive elimination may lead to ample new opportunities for the design of new reactions. This tutorial review summarizes recent developments in Rh-catalyzed 1,3- and 1,2-acyloxy migration of propargylic esters in a number of cycloaddition reactions. Related Au- and Pt-catalyzed cycloadditions involving acyloxy migration are also discussed. PMID:22895533

  14. Proton Affinities of Cationic Carbone Adducts [AC(PPh3 )2 ](+) (A=Halogen, Hydrogen, Methyl) and Unusual Electronic Structures of the Cations and Dications [AC(H)(PPh3 )2 ](2.).

    Science.gov (United States)

    Petz, Wolfgang; Kuzu, Istemi; Frenking, Gernot; Andrada, Diego M; Neumüller, Bernhard; Fritz, Maximilian; Münzer, Jörn E

    2016-06-13

    This work reports the syntheses and the first crystal structures of the cationic carbone adducts [FC(PPh3 )2 ](+) and [BrC(PPh3 )2 ](+) and the protonated dication [FC(H)(PPh3 )2 ](2+) , which are derived from the carbone C(PPh3 )2 . Quantum chemical calculations and bonding analyses were carried out for the series of cations [AC(PPh3 )2 ](+) and dications [AC(H)(PPh3 )2 ](2+) , where A=H, Me, F, Cl, Br, I. The bonding analysis suggests that the cations are best described as phosphane complexes L→(CA)(+) ←L (L=PPh3 ), which are related to the neutral borylene adducts L→(BA)←L (L=cyclic carbene; A=H, aryl) that were recently isolated. The carbone adducts [AC(PPh3 )2 ](+) possess a π electron lone pair at carbon and they can easily be protonated to the dications [AC(H)(PPh3 )2 ](2+) . The calculations of the dications indicate that the molecules are best represented as complexes L→(CHA)(2+) ←L (L=PPh3 ) where a carbene dication is stabilized by the ligands. The central carbon atom in the cations and even in the dications carries a negative partial charge, which is larger than the negative charge at fluorine. There is also the peculiar situation in which the carbon-fluorine bonds in [FC(PPh3 )2 ](+) and [FC(H)(PPh3 )2 ](2+) exhibit the expected polarity with the negative end at fluorine, but the carbon atom has a larger negative charge than fluorine. Given the similarity of carbodiphosphorane C(PPh3 )2 and carbodicarbene C(NHC)2 , we expect that analogous compounds [AC(NHC)2 ](+) and [AC(H)(NHC)2 ](2+) with similar features as [AC(PPh3 )2 ](+) and [AC(H)(PPh3 )2 ](2+) can be isolated. PMID:27166027

  15. Significant Cooperativity Between Ruthenium and Silicon in Catalytic Transformations of an Isocyanide.

    Science.gov (United States)

    Lipke, Mark C; Liberman-Martin, Allegra L; Tilley, T Don

    2016-08-01

    Complexes [PhBP3]RuH(η(3)-H2SiRR') (RR' = Me,Ph, 1a; RR' = Ph2, 1b; RR' = Et2, 1c) react with XylNC to form carbene complexes [PhBP3]Ru(H)═[C(H)(N(Xyl)(η(2)-H-SiRR'))] (2a-c; previously reported for 2a,b). Reactions of 1a-c with XylNC were further investigated to assess how metal complexes with multiple M-H-Si bonds can mediate transformations of unsaturated substrates. Complex 2a eliminates an N-methylsilacycloindoline product (3a) that results from hydrosilylation, hydrogenation, and benzylic C-H activation of XylNC. Turnover was achieved in a pseudocatalytic manner by careful control of the reaction conditions. Complex 1c mediates a catalytic isocyanide reductive coupling to furnish an alkene product (4) in a transformation that has precedent only in stoichiometric processes. The formations of 3a and 4 were investigated with deuterium labeling experiments, KIE and other kinetic studies, and by examining the reactivity of XylNC with an η(3)-H2SiMeMes complex (1d) to form a C-H activated complex (6). Complex 6 serves as a model for an intermediate in the formation of 3a, and NMR investigations at -30 °C reveal that 6 forms via a carbene complex (1d) that isomerizes to aminomethyl complex 7d. These investigations reveal that the formations of 3a and 4 involve multiple 4-, 5-, and 6-coordinate silicon species with 0, 1, 2, or 3 Ru-H-Si bonds. These mechanisms demonstrate exceptionally intricate roles for silicon in transition-metal-catalyzed reactions with a silane reagent. PMID:27384746

  16. Probing the Carbon-phosphorus Bond Coupling in Low-temperature Phosphine PH3—Methane CH4 Interstellar Ice Analogues

    Science.gov (United States)

    Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-03-01

    Phosphine, which has now been confirmed around the carbon-rich star IRC+10216, provides the first example of a phosphorus-containing single bond in interstellar or circumstellar media. While four compounds containing both phosphorus and carbon have been discovered, none contain a carbon-phosphorus single bond. Here, we show that this moiety is plausible from the reaction of phosphine with methane in electron-irradiated interstellar ice analogues. Fractional sublimation allows for detection of individual products at distinct temperatures using reflectron time-of-flight mass spectrometry (ReTOF) coupled with vacuum ultraviolet photoionization. This method produced phosphanes and methylphosphanes as large as P8H10 and CH3P8H9, which demonstrates that a phosphorus-carbon bond can readily form and that methylphosphanes sublime at 12-17 K higher temperatures than the non-organic phosphanes. Also, irradiated ices of phosphine with deuterated-methane untangle the reaction pathways through which these methylphosphanes were formed and identified radical recombination to be preferred over carbene/phosphinidene insertion reactions. In addition, these ReTOF results confirm that CH3PH2 and CH6P2 can form via insertion of carbene and phosphinidene and that the methylenediphosphine (PH2CH2PH2) isomer forms in the ices, although methylphosphine (CH3P2H3) is likely the more abundant isomer and that phosphanes and organophosphanes preferentially fragment via the loss of a phosphino group when photoionized. While the formation of methylphosphine is overall endoergic, the intermediates produced by interactions with energetic electrons proceed toward methylphosphine favorably and barrierlessly and provide plausible mechanisms toward hitherto unidentified interstellar compounds.

  17. Azetidines. 5. Reaction of 1,1,3,3-tetramethyl- and 1-benzyl-1,3,3-trimethylazetidinium ions with butyllithium and phenyllithium. Deuterium labeling as a mechanistic probe

    International Nuclear Information System (INIS)

    The reactions of 1,1,3,3-tetramethylazetidinium iodide (1) and 1-benzyl-1,3,3-trimethylazetidinium bromide (7) with butyllithium and with phenyllithium were studied in ether. The products from the reaction of 1 with butyllithium were 1,3,3-trimethylpyrrolidine (2), 3,3-dimethyl-4-(methylamino)-1-butene (3), 1-(dimethylamino)-2,2-dimethylheptane (4), neopentylpyrrolidine (5), and 1-(dimethylamino)-2,2-dimethylcyclopropane (6). With phenyllithium, 1 gave 2 and 1-(dimethylamino)-2,2-dimethyl-3-phenylpropane (11). With butyllithium, 7 gave 2-phenyl-1,4,4-trimethylpyrrolidine (8), 1-benzyl-3,3-dimethylpyrrilidine (9), and 1-neopentyl-2-phenylpyrrolidine (10). The reaction of phenyllithium with 7 gave only 8 and 9. Mechanistic information was obtained by labeling 1 with deuterium in three different ways: N-methyl-d3,2,2-d2, and N-methyl-d3-2,2-d2. A primary kinetic isotope effect of 9.4 was found for the formation of 2 from 1-N-methyl-d3. When 2 was formed from 1-2,2-d2, a secondary kinetic isotope effect of 1.17 was measured. The formation of 4 from 1-2,2-d2 was accompanied by a primary kinetic isotope effect of 4.7, suggesting a carbene intermediate. Ylide carbanions involving decomposition to a carbene carbanion in the formation of 3 and an azomethine ylide in the formation of 5 and 9 are probable intermediates. It is postulated that the azomethine ylides react with ethylene formed from the reaction of butyllithium with the solvent ether by means of a concerted (4 + 2) cycloaddition reaction. A primary kinetic isotope effect of 20 was found for the formation of pentylbenzene from dibenzyldimethylammonium bromide and butyllithium

  18. Study of the factors supporting the selective complexation of the trivalent lanthanide and actinide ions; Etude des facteurs favorisant la complexation selective des ions lanthanides et actinides trivalents

    Energy Technology Data Exchange (ETDEWEB)

    Mehdoui, T

    2005-09-15

    In order to obtain clear-cut information on the factors which favour the discrimination between trivalent actinides and lanthanides, we investigated the complexation of the tris(cyclopentadienyl) Ce(III) and U(III) compounds, (RCp)3M (R = tBu, SiMe3), with a series of monocyclic azines with distinct Lewis basicity and reduction potential. Coordination of pyrazine and 4,4' and 2,2'-bipyridines on the (RCp)3M complexes has also been studied. Of major interest is the reversible oxidation of the (RCp)3U species into the uranium(IV) [(RCp)3U]2(pyz) complexes by pyrazine. The presence of cooperativity in the binding of the cyclopentadienyl groups by U(III), due to late appearance of back-bonding, leads to a greater stabilization of the uranium(III) complexes. Complexation of the species Cp*2MI (M = Ce, U) by 2,2'-bipyridine, phenanthroline and ter-pyridine affords the adducts [Cp*2M(L)]I. For L = bipy and terpy, these compounds are reduced into Cp*2M(L). The magnetic data for [Cp*2M(terpy)]I and Cp*2M(terpy) are consistent with Ce(III) and U(III) species, with the formulation Cp*2MIII(terpy). An electron transfer reaction between these species was observed in NMR. Reactions of the [Cp*2M(terpy)]I and Cp*2M(terpy) complexes with H and H{sup +} donor reagents lead to a clear differentiation of these trivalent ions. We studied the coordination of the stable N-heterocyclic carbene and isonitrile molecules on (RCp)3M and Cp*2MI; competition reactions and comparison of the crystal structures of the carbene compounds reveal the much better affinity of the NHC and tBuNC ligands for the 5f rather than for the 4f ion. (authors)

  19. 1. Medicinal chemistry of a small molecule drug lead: Tamoxilog 2. Electronic communication through ruthenium nanoparticles: Synthesis of custom ligands and nanoparticles

    Science.gov (United States)

    Zuckerman, Nathaniel Benjamin

    1. Compound NSC-670224, previously shown to be toxic to Saccharomyces cerevisiae at low micromolar concentrations, potentially acts via a mechanism of action related to that of tamoxifen (NSC 180973), a widely utilized breast cancer drug. The structure of NSC-670224, previously thought to be a 2,4-dichloro arene, was established as the 3,4-dichloro arene, and a focused library of analogues were synthesized and biologically evaluated in conjunction with the UCSC Chemical Screening Center. The synthesis of a biotinylated affinity probe was also completed in order to extract the protein target(s) of NSC-670224 from yeast and human cell lines in collaboration with the Hartzog lab (UCSC MCD Biology) 2. Stabilization of ruthenium nanoparticles (Ru NPs) through carbene bound ligands has led to a simple and effective means to generate new materials with unique optoelectronic properties. The affinity of freshly prepared Ru NPs to diazo compounds, specifically octyl diazoacetate (ODA), provides a robust nanostructure that can be further functionalized via metathesis of terminal olefins to generate these unique materials. Carbene-stabilized Ru NPs have provided insights into the nature of extended conjugation and intraparticle charge delocalization through covalently bound probes (e.g., ferrocene and pyrene). The growing interest to study electronic communication through Ru NPs has lead to collaborative, multidisciplinary efforts between analytical (Shaowei Chen lab, UCSC), theoretical (Haobin Wang Lab, NMSU), and synthetic organic chemists (Konopelski Lab, UCSC). With this powerful collaboration, new methods to generate stabilized Ru NPs, testing theory with experiment, and efficient means to functionalize NPs have been investigated. The syntheses of custom ligands and their applications to nanoparticle-mediated electronic communication are reported.

  20. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-01

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied. PMID:26307480

  1. Electronic structure and thermal decomposition of 5-aminotetrazole studied by UV photoelectron spectroscopy and theoretical calculations

    International Nuclear Information System (INIS)

    Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 oC, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: → Electronic structure of 5ATZ studied by photoelectron spectroscopy. → Gas-phase 5-ATZ exists mainly as the 2H-tautomer. → Thermal decomposition of 5ATZ gives N2, NH2CN, HN3 and HCN, at 245 oC. → HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 ± 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N2, HN3 and NH2CN as the primary products, and HCN from the decomposition of a intermediate CH3N3 compound. The reaction barriers for the formation of HN3 and N2 from 2H-5ATZ are predicted to be ∼228 and ∼150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH3N3 carbene intermediate is also investigated.

  2. Study of the factors supporting the selective complexation of the trivalent lanthanide and actinide ions

    International Nuclear Information System (INIS)

    In order to obtain clear-cut information on the factors which favour the discrimination between trivalent actinides and lanthanides, we investigated the complexation of the tris(cyclopentadienyl) Ce(III) and U(III) compounds, (RCp)3M (R = tBu, SiMe3), with a series of monocyclic azines with distinct Lewis basicity and reduction potential. Coordination of pyrazine and 4,4' and 2,2'-bipyridines on the (RCp)3M complexes has also been studied. Of major interest is the reversible oxidation of the (RCp)3U species into the uranium(IV) [(RCp)3U]2(pyz) complexes by pyrazine. The presence of cooperativity in the binding of the cyclopentadienyl groups by U(III), due to late appearance of back-bonding, leads to a greater stabilization of the uranium(III) complexes. Complexation of the species Cp*2MI (M = Ce, U) by 2,2'-bipyridine, phenanthroline and ter-pyridine affords the adducts [Cp*2M(L)]I. For L = bipy and terpy, these compounds are reduced into Cp*2M(L). The magnetic data for [Cp*2M(terpy)]I and Cp*2M(terpy) are consistent with Ce(III) and U(III) species, with the formulation Cp*2MIII(terpy). An electron transfer reaction between these species was observed in NMR. Reactions of the [Cp*2M(terpy)]I and Cp*2M(terpy) complexes with H and H+ donor reagents lead to a clear differentiation of these trivalent ions. We studied the coordination of the stable N-heterocyclic carbene and isonitrile molecules on (RCp)3M and Cp*2MI; competition reactions and comparison of the crystal structures of the carbene compounds reveal the much better affinity of the NHC and tBuNC ligands for the 5f rather than for the 4f ion. (authors)

  3. Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Bergman, Robert; Ellman, Jonathan

    2008-02-04

    Nitrogen heterocycles are present in many compounds of enormous practical importance, ranging from pharmaceutical agents and biological probes to electroactive materials. Direct funtionalization of nitrogen heterocycles through C-H bond activation constitutes a powerful means of regioselectively introducing a variety of substituents with diverse functional groups onto the heterocycle scaffold. Working together, our two groups have developed a family of Rh-catalyzed heterocycle alkylation and arylation reactions that are notable for their high level of functional-group compatibility. This Account describes their work in this area, emphasizing the relevant mechanistic insights that enabled synthetic advances and distinguished the resulting transformations from other methods. They initially discovered an intramolecular Rh-catalyzed C-2-alkylation of azoles by alkenyl groups. That reaction provided access to a number of di-, tri-, and tetracyclic azole derivatives. They then developed conditions that exploited microwave heating to expedite these reactions. While investigating the mechanism of this transformation, they discovered that a novel substrate-derived Rh-N-heterocyclic carbene (NHC) complex was involved as an intermediate. They then synthesized analogous Rh-NHC complexes directly by treating precursors to the intermediate [RhCl(PCy{sub 3}){sub 2}] with N-methylbenzimidazole, 3-methyl-3,4-dihydroquinazolein, and 1-methyl-1,4-benzodiazepine-2-one. Extensive kinetic analysis and DFT calculations supported a mechanism for carbene formation in which the catalytically active RhCl(PCy{sub 3}){sub 2} fragment coordinates to the heterocycle before intramolecular activation of the C-H bond occurs. The resulting Rh-H intermediate ultimately tautomerizes to the observed carbene complex. With this mechanistic information and the discovery that acid co-catalysts accelerate the alkylation, they developed conditions that efficiently and intermolecularly alkylate a variety of

  4. Unique Reactivity Patterns Catalyzed by Internal Lewis Acid Assisted Hydrogen Bond Donors

    Science.gov (United States)

    Auvil, Tyler Jay

    The advancement of hydrogen bond donor (HBD) organocatalysis has been inhibited by a number of challenges. Conventional HBDs suffer from high catalyst loadings and operate in only limited types of reactions, typically the activation of 1,2- and 1,4-acceptors for nucleophilic attack. One strategy to address the shortcomings of HBD catalysis is to design innovative catalysts with improved reactivity. To this end, boronate ureas have been developed as a new family of enhanced HBD catalysts that enable useful new reactivity patterns. Boronate ureas are easily-accessible, small organic molecules that benefit from improved catalytic abilities plausibly due to internal coordination of the urea carbonyl to a strategically placed Lewis acid. Optimization of the boronate urea scaffold has revealed their enhanced catalytic activity, enabling new directions in HBD catalysis. The discovery of boronate ureas has allowed for the unveiling of new HBD activation modes, providing unique reactivity patterns that are inaccessible with conventional HBD catalysts. Among these reactivity patterns is the activation of strained nitrocyclopropane carboxylates for nucleophilic ring-opening reactions, which affords a swift route to access gamma-amino-alpha-nitroester building blocks. The ring-opening method was highlighted by its utilization in the total synthesis of a CB-1 receptor inverse agonist, which was recently patented by Eli Lilly. Additionally, boronate ureas can elicit carbene-like reactivity from alpha-diazocarbonyl compounds, allowing for organocatalytic heteroatom-hydrogen insertions reactions, the first of their kind. The boronate urea activation of alpha-nitrodiazoesters has permitted the development of an unsymmetric double alpha-arylation process, affording a synthetically challenging motif in a single flask. The alpha-arylation reaction proceeds through a conceptually novel organocatalytic transient N--H insertion process, employing anilines as carbene activators. The use

  5. Reactions of a Ruthenium Complex with Substituted N-Propargyl Pyrroles.

    Science.gov (United States)

    Chia, Pi-Yeh; Huang, Shou-Ling; Liu, Yi-Hong; Lin, Ying-Chih

    2016-04-01

    In an investigation into the chemical reactions of N-propargyl pyrroles 1 a-c, containing aldehyde, keto, and ester groups on the pyrrole ring, with [Ru]-Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=C5 H5 ), an aldehyde group in the pyrrole ring is found to play a crucial role in stimulating the cyclization reaction. The reaction of 1 a, containing an aldehyde group, with [Ru]-Cl in the presence of NH4 PF6 yields the vinylidene complex 2 a, which further reacts with allyl amine to give the carbene complex 6 a with a pyrrolizine group. However, if 1 a is first reacted with allyl amine to yield the iminenyne 8 a, then the reaction of 8 a with [Ru]-Cl in the presence of NH4 PF6 yields the ruthenium complex 9 a, containing a cationic pyrrolopyrazinium group, which has been fully characterized by XRD analysis. These results can be adequately explained by coordination of the triple bond of the propargyl group to the ruthenium metal center first, followed by two processes, that is, formation of a vinylidene intermediate or direct nucleophilic attack. Additionally, the deprotonation of 2 a by R4 NOH yields the neutral acetylide complex 3 a. In the presence of NH4 PF6 , the attempted alkylation of 3 a resulted in the formation the Fischer-type amino-carbene complex 5 a as a result of the presence of NH3 , which served as a nucleophile. With KPF6 , the alkylation of 3 a with ethyl and benzyl bromoacetates afforded the disubstituted vinylidene complexes 10 a and 11 a, containing ester groups, which underwent deprotonation reactions to give the furyl complexes 12 a and 13 a, respectively. For 13 a, containing an O-benzyl group, subsequent 1,3-migration of the benzyl group was observed to yield product 14 a with a lactone unit. Similar reactivity was not observed for the corresponding N-propargyl pyrroles 1 b and 1 c, which contained keto and ester groups, respectively, on the pyrrole ring. PMID:26865008

  6. Understanding chemical reactions of CO{sub 2} and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS{sub 2} in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cabaço, M. Isabel, E-mail: isabelcabaco@ist.utl.pt [Departamento de Física, Instituto Superior Técnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Física Atómica da UL, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Besnard, Marcel; Danten, Yann [GSM Institut des Sciences Moléculaires, CNRS (UMR 5255), Université de Bordeaux, 351, Cours de la Libération 33405 Talence Cedex (France); Chávez, Fabián Vaca [Centro de Física da Matéria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Pinaud, Noël [CESAMO Institut des Sciences Moléculaires, CNRS (UMR 5255), Université de Bordeaux, 351, Cours de la Libération 33405 Talence Cedex (France); Sebastião, Pedro J. [Departamento de Física, Instituto Superior Técnico, UTL, Av. Rovisco Pais 1049-001 Lisboa (Portugal); Centro de Física da Matéria Condensada da UL, Av. Prof. Gama Pinto 2, 1694-003 Lisboa (Portugal); Coutinho, João A. P. [CICECO, Departamento de Química, Universidade de Aveiro 3810-193 Aveiro (Portugal)

    2014-06-28

    NMR spectroscopy ({sup 1}H, {sup 13}C, {sup 15}N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS{sub 2} leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH{sub 3}COS{sup −}), CO{sub 2}, OCS, and trithiocarbonate (CS{sub 3}{sup 2−}). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]{sup +} cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS{sub 2}-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO{sub 2}-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS{sub 2} reacts with the acetate anion leading to the formation of CH{sub 3}COS{sup −}, CO{sub 2}, and OCS. After these reactions have proceeded the nascent CO{sub 2} and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO{sub 2}) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO{sub 2}-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO{sub 2} molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO{sub 2}, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically

  7. Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by changing the nature of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functional theory calculations

    International Nuclear Information System (INIS)

    NMR spectroscopy (1H, 13C, 15N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS−), CO2, OCS, and trithiocarbonate (CS32−). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]+ cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS−, CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS2 is

  8. Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules.

    Science.gov (United States)

    Wang, Yao; Lu, Hong; Xu, Peng-Fei

    2015-07-21

    With the increasing concerns about chemical pollution and sustainability of resources, among the significant challenges facing synthetic chemists are the development and application of elegant and efficient methods that enable the concise synthesis of natural products, drugs, and related compounds in a step-, atom- and redox-economic manner. One of the most effective ways to reach this goal is to implement reaction cascades that allow multiple bond-forming events to occur in a single vessel. This Account documents our progress on the rational design and strategic application of asymmetric catalytic cascade reactions in constructing diverse scaffolds and synthesizing complex chiral molecules. Our research is aimed at developing robust cascade reactions for the systematic synthesis of a range of interesting molecules that contain structural motifs prevalent in natural products, pharmaceuticals, and biological probes. The strategies employed to achieve this goal can be classified into three categories: bifunctional base/Brønsted acid catalysis, covalent aminocatalysis/N-heterocyclic carbene catalysis, and asymmetric organocatalytic relay cascades. By the use of rationally designed substrates with properly reactive sites, chiral oxindole, chroman, tetrahydroquinoline, tetrahydrothiophene, and cyclohexane scaffolds were successfully assembled under bifunctional base/Brønsted acid catalysis from simple and readily available substances such as imines and nitroolefins. We found that some of these reactions are highly efficient since catalyst loadings as low as 1 mol % can promote the multistep sequences affording complex architectures with high stereoselectivities and yields. Furthermore, one of the bifunctional base/Brønsted acid-catalyzed cascade reactions for the synthesis of chiral cyclohexanes has been used as a key step in the construction of the tetracyclic core of lycorine-type alkaloids and the formal synthesis of α-lycorane. Guided by the principles of

  9. Insertion of singlet chlorocarbenes across C-H bonds in alkanes: Evidence for two phase mechanism

    Indian Academy of Sciences (India)

    M Ramalingam; K Ramasami; P Venuvanalingam

    2007-09-01

    Transition states for the insertion reactions of singlet mono and dichlorocarbenes (1CHCl and 1CCl2) into C-H bonds of alkanes (methane, ethane, propane and -butane) have been investigated at MP2 and DFT levels with 6-31g ( , ) basis set. The of 1CHCl and 1CCl2 may interact with alkane’s filled fragment orbital of either or symmetry. So chlorocarbenes insertion reactions have been investigated for both (/) approaches. The approach has been adjudicated to be the minimum energy path over the approach both at the MP2 and DFT levels. Mulliken, NPA and ESP derived charge analyses have been carried out along the minimal energy reaction path using the IRC method for 1CHCl and 1CCl2 insertions into the primary and secondary C-H bonds of propane. The occurrence of TSs either in the electrophilic or nucleophilic phase has been identified through NBO charge analyses in addition to the net charge flow from alkane to the carbene moiety.

  10. Neutral zero-valent s-block complexes with strong multiple bonding.

    Science.gov (United States)

    Arrowsmith, Merle; Braunschweig, Holger; Celik, Mehmet Ali; Dellermann, Theresa; Dewhurst, Rian D; Ewing, William C; Hammond, Kai; Kramer, Thomas; Krummenacher, Ivo; Mies, Jan; Radacki, Krzysztof; Schuster, Julia K

    2016-07-01

    The metals of the s block of the periodic table are well known to be exceptional electron donors, and the vast majority of their molecular complexes therefore contain these metals in their fully oxidized form. Low-valent main-group compounds have recently become desirable synthetic targets owing to their interesting reactivities, sometimes on a par with those of transition-metal complexes. In this work, we used stabilizing cyclic (alkyl)(amino)carbene ligands to isolate and characterize the first neutral compounds that contain a zero-valent s-block metal, beryllium. These brightly coloured complexes display very short beryllium-carbon bond lengths and linear beryllium coordination geometries, indicative of strong multiple Be-C bonding. Structural, spectroscopic and theoretical results show that the complexes adopt a closed-shell singlet configuration with a Be(0) metal centre. The surprising stability of the molecule can be ascribed to an unusually strong three-centre two-electron π bond across the C-Be-C unit. PMID:27334631

  11. Photocatalytic Reduction of CO2 with Re-Pyridyl-NHCs.

    Science.gov (United States)

    Huckaba, Aron J; Sharpe, Emily Anne; Delcamp, Jared H

    2016-01-19

    A series of Re(I) pyridyl N-heterocyclic carbene (NHC) complexes have been synthesized and examined in the photocatalytic reduction of CO2 using a simulated solar spectrum. The catalysts were characterized through NMR, UV-vis, cyclic voltammetry under nitrogen, and cyclic voltammetry under carbon dioxide. The complexes were compared directly with a known benchmark catalyst, Re(bpy) (CO)3Br. An electron-deficient NHC substituent (PhCF3) was found to promote catalytic activity when compared with electron-neutral and -rich substituents. Re(PyNHC-PhCF3) (CO)3Br was found to exceed the CO production of the benchmark Re(bpy) (CO)3Br catalyst (51 vs 33 TON) in the presence of electron donor BIH and photosensitizer fac-Ir(ppy)3. Importantly, Re(PyNHC-PhCF3) (CO)3Br was found to function without a photosensitizer (32 TON) at substantially higher turnovers than the benchmark catalyst Re(bpy) (CO)3Br (14 TON) under a solar simulated spectrum. PMID:26703758

  12. Sequence change in the HS2-LCR and Gg-globin gene promoter region of sickle cell anemia patients

    Directory of Open Access Journals (Sweden)

    E.V. Adorno

    2008-02-01

    Full Text Available The fetal hemoglobin (HbF levels and ßS-globin gene haplotypes of 125 sickle cell anemia patients from Brazil were investigated. We sequenced the Gg- and Ag-globin gene promoters and the DNase I-2 hypersensitive sites in the locus control regions (HS2-LCR of patients with HbF level disparities as compared to their ßS haplotypes. Sixty-four (51.2% patients had CAR/Ben genotype; 36 (28.8% Ben/Ben; 18 (14.4% CAR/CAR; 2 (1.6% CAR/Atypical; 2 (1.6% Ben/Cam; 1 (0.8% CAR/Cam; 1 (0.8% CAR/Arab-Indian, and 1 (0.8% Sen/Atypical. The HS2-LCR sequence analyses demonstrated a c.-10.677G>A change in patients with the Ben haplotype and high HbF levels. The Gg gene promoter sequence analyses showed a c.-157T>C substitution shared by all patients, and a c.-222_-225del related to the Cam haplotype. These results identify new polymorphisms in the HS2-LCR and Gg-globin gene promoter. Further studies are required to determine the correlation between HbF synthesis and the clinical profile of sickle cell anemia patients.

  13. Cytotoxic 1,2-dialkynylimidazole-based aza-enediynes: aza-Bergman rearrangement rates do not predict cytotoxicity.

    Science.gov (United States)

    Laroche, Christophe; Li, Jing; Kerwin, Sean M

    2011-07-28

    A new class of potential antitumor agents inspired by the enediyne antitumor antibiotics has been synthesized: the 1,2-dialkynylimidazoles. The aza-Bergman rearrangement of these 1,2-dialkynylimidazoles has been investigated theoretically at the B3LYP/6-31G(d,p) level and experimentally by measuring the kinetics of rearrangement in 1,4-cyclohexadiene. There is a good correlation between the theoretical and experimental results; subtle substituent effects on the initial aza-Bergman cyclization barrier predicted by theory are confirmed by experiment. Yet, despite the ability of these 1,2-dialkynylimidazoles to undergo Bergman rearrangement to diradical/carbene intermediates under relatively mild conditions, there is no correlation between the rate of Bergman cyclization and cytotoxicity to A459 cells. In addition, cytotoxic 1,2-dialkynylimidazoles do not cause nicking of supercoiled plasmid DNA or cleavage of bovine serum albumin. An alternative mechanism for cytotoxicity involving the unexpected selective thiol addition to the N-ethynyl group of certain 1,2-dialkynylimidazoles is proposed. PMID:21667990

  14. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene.

    Science.gov (United States)

    Xu, Songchen; Boschen, Jeffery S; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L; Sadow, Aaron D

    2015-09-28

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ(3)-N,Si,C-PhB(Ox(Me2))(Ox(Me2)SiHPh)Im(Mes)}Rh(H)CO][HB(C6F5)3] (, Ox(Me2) = 4,4-dimethyl-2-oxazoline; Im(Mes) = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(Ox(Me2))2Im(Mes)}RhH(SiH2Ph)CO () and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(Ox(Me2))2Im(Mes)}RhH(SiHPh)CO][HB(C6F5)3] generated by H abstraction. Complex catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenation of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C6F5)3 catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH3 as the reducing agent. PMID:26278517

  15. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-06-06

    The mechanism of hydrogenolysis of alkanes, promoted by Ta-hydrides supported on silica via 2 ≡ Si-O- bonds, has been studied with a density functional theory (DFT) approach. Our study suggests that the initial monohydride (≡ Si-O-)2Ta(III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta-alkyl species is formed, the C-C activation step corresponds to a β-alkyl transfer to the metal with elimination of an olefin. According to these calculations, an α-alkyl transfer to the metal to form a Ta-carbene species is of higher energy. The olefins formed during the C-C activation step can be rapidly hydrogenated by both mono- and tris-Ta-hydride species, making the overall process of alkane cracking thermodynamically favored. © 2014 American Chemical Society.

  16. Activity of rhodium-catalyzed hydroformylation: added insight and predictions from theory.

    Science.gov (United States)

    Sparta, Manuel; Børve, Knut J; Jensen, Vidar R

    2007-07-11

    We have performed a density functional theory investigation of hydroformylation of ethylene for monosubstituted rhodium-carbonyl catalysts, HRh(CO)3L, where the modifying ligand, L, is a phosphite (L = P(OMe)3, P(OPh)3, or P(OCH2CF3)3), a phosphine (L = PMe3, PEt3, PiPr3, or PPh3), or a N-heterocyclic carbene (NHC) based on the tetrahydropyrimidine, imidazol, or tetrazol ring, respectively. The study follows the Heck and Breslow mechanism. Excellent correspondence between our calculations and existing experimental information is found, and the present results constitute the first example of a realistic quantum chemical description of the catalytic cycle of hydroformylation using ligand-modified rhodium carbonyl catalysts. This description explains the mechanistic and kinetic basis of the contemporary understanding of this class of reaction and offers unprecedented insight into the electronic and steric factors governing catalytic activity. The insight has been turned into structure-activity relationships and used as guidelines when also subjecting to calculation phosphite and NHC complexes that have yet to be reported experimentally. The latter calculations illustrate that it is possible to increase the electron-withdrawing capacity of both phosphite and NHC ligands compared to contemporary ligands through directed substitution. Rhodium complexes of such very electron-withdrawing ligands are predicted to be more active than contemporary catalysts for hydroformylation. PMID:17555314

  17. Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids.

    Science.gov (United States)

    Bacinello, Daniel; Garanger, Elisabeth; Taton, Daniel; Tam, Kam Chiu; Lecommandoux, Sébastien

    2014-05-12

    The peptide PVGLIG, which is known to be selectively cleaved by the tumor-associated enzyme matrix metalloproteinase-2 (MMP-2), was conjugated to α-alkene poly(trimethylene carbonate) (PTMC) blocks of varying sizes via UV-initiated thiol-ene "click" chemistry. The PTMC precursor was synthesized by metal-free ring-opening polymerization using allyl alcohol as an initiator and an N-heterocyclic carbene as an organic catalyst. The unprecedented PVGLIG-b-PTMC hybrids were self-assembled in aqueous solution and various submicrometer-sized morphologies obtained by a nanoprecipitation process. Characterization of particle morphology was carried out by multiangle dynamic light scattering (DLS) and static light scattering (SLS) evidencing spherical nanoparticles with different morphologies and narrow size distributions. Microstructure details were also observed on transmission electron micrographs and were in good agreement with light scattering measurements showing the assembly of core-shell, large compound micelles, and vesicle morphologies, the particle morphology varying with the hydrophilic weight fractions (f) of the hybrids. These nanostructures displayed selective degradation in the presence of the cancer-associated enzyme MMP-2, as probed by the morphological change both by TEM and DLS. All these results demonstrated that PVGLIG-b-PTMC hybrids were suitable to target the tumor microenvironment. PMID:24670109

  18. Steric Maps to Evaluate the Role of Steric Hindrance on the IPr NHC Ligand

    KAUST Repository

    Poater, Albert

    2013-06-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) (IPr) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes effect the metal environment and therefore the related catalytic behaviour by simple steric maps. Bearing in mind that there is a significant structural difference between IPr and IPr* ligands, that translated in different reactivity for several olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. Furthermore, this communication endeavours to modify further the skeleton of the IPr NHC ligand. The optimization of these bulky new systems go to the limits of the DFT computational method.

  19. Chemistry and structure of coal-derived asphaltenes, Phase III. Quarterly progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1978-01-01

    The solubility limits of Synthoil and PAMCO asphaltenes have been measured as a function of Hildebrand solubility parameters and hydrogen bonding. Solvents with moderate hydrogen bonding capacity such as dioxane, ethyl benzoate and dibutyl phthalate were found to be most effective in dissolving asphaltenes over the widest range of solubility parameters. VPO molecular weight studies of coal liquid derived carbenes, as a function of concentration in the solvent THF, indicate that these fractions are more strongly self-associated than the corresponding asphaltenes, and generally afford high infinite dilution number average molecular weights: Synthoil, 861; HRI H-Coal, 1156; Cat. Inc. SRC, 1228; PAMCO SRC, 1054. The variable ESR temperature dependence of the spin intensity for a Synthoil asphaltene-I/sub 2/ charge transfer followed a 1/T (Curie--Weiss) dependence over the temperature range from 25/sup 0/ to -114/sup 0/C suggesting that independent, non-interacting donor and acceptor doublets were formed. Weight percent OH values, determined from 'H NMR analysis of silylated asphaltenes, were found to provide a reasonably linear correlation with the absorbance of the monomeric OH infrared stretching bands of the asphaltenes.

  20. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dichloridodinitrosyltungsten(II tetrahydrofuran-d8 monosolvate

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available The molecular structure of the title compound, [WCl2(NO2(C21H24N22]·C4D8O, displays a distorted octahedral arrangement around the W atom with two trans 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands in axial positions. The four equatorial positions are occupied by nitrosyl and chloride ligands, which are trans to each other. The Ccarbene—W—Ccarbene bond angle of 173.44 (18° and the Cl—W—Nnitrosyl bond angles of 171.34 (11 and 171.32 (13° deviate only slightly from linearity. The distortion comes from the nitrosyl and chloride ligands which are not fully coplanar since the two N atoms deviate from the WCl2 plane by −0.279 (4 and 0.272 (4 Å, respectively. An intermolecular C—H...O interaction connects the organometallic molecule and the tetrahydrofuran-d8 solvent molecule.

  1. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING

    Energy Technology Data Exchange (ETDEWEB)

    LICHTENBERGER, DENNIS L.

    2002-03-26

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems.

  2. A quantitative approach to nucleophilic organocatalysis

    Directory of Open Access Journals (Sweden)

    Herbert Mayr

    2012-09-01

    Full Text Available The key steps in most organocatalytic cyclizations are the reactions of electrophiles with nucleophiles. Their rates can be calculated by the linear free-energy relationship log k(20 °C = sN(E + N, where electrophiles are characterized by one parameter (E and nucleophiles are characterized by the solvent-dependent nucleophilicity (N and sensitivity (sN parameters.Electrophilicity parameters in the range –10 E N N parameters of enamines derived from phenylacetaldehyde and MacMillan’s imidazolidinones one can rationalize why only strong electrophiles, such as stabilized carbenium ions (–8 E E = –6.75, are suitable electrophiles for enamine activated reactions with imidazolidinones. Several mechanistic controversies concerning iminium and enamine activated reactions could thus be settled by studying the reactivities of independently synthesized intermediates.Kinetic investigations of the reactions of N-heterocyclic carbenes (NHCs with benzhydrylium ions showed that they have similar nucleophilicities to common organocatalysts (e.g., PPh3, DMAP, DABCO but are much stronger (100–200 kJ mol–1 Lewis bases. While structurally analogous imidazolylidenes and imidazolidinylidenes have comparable nucleophilicities and Lewis basicities, the corresponding deoxy Breslow intermediates differ dramatically in reactivity. The thousand-fold higher nucleophilicity of 2-benzylidene-imidazoline relative to 2-benzylidene-imidazolidine is explained by the gain of aromaticity during electrophilic additions to the imidazoline derivatives. O-Methylated Breslow intermediates are a hundred-fold less nucleophilic than deoxy Breslow intermediates.

  3. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis

    2008-12-16

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO){sub 3} and CpFe(CO){sub 2} have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO){sub 5}[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO){sub 5} have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  4. Designing NHC-Copper(I) Dipyridylamine Complexes for Blue Light-Emitting Electrochemical Cells.

    Science.gov (United States)

    Elie, Margaux; Sguerra, Fabien; Di Meo, Florent; Weber, Michael D; Marion, Ronan; Grimault, Adèle; Lohier, Jean-François; Stallivieri, Aurélie; Brosseau, Arnaud; Pansu, Robert B; Renaud, Jean-Luc; Linares, Mathieu; Hamel, Matthieu; Costa, Rubén D; Gaillard, Sylvain

    2016-06-15

    This study presents the influence of various substituents on the photophysical features of heteroleptic copper(I) complexes bearing both N-heterocyclic carbene (NHC) and dipyridylamine (dpa = dipyridylamine skeleton corresponding to ligand L1) ligands. The luminescent properties have been compared to our recently reported archetypal blue emitting [Cu(IPr)(dpa)][PF6] complex. The choice of the substituents on both ligands has been guided to explore the effect of the electron donor/acceptor and "push-pull" on the emission wavelengths and photoluminescence quantum yields. A selection of the best candidates in terms of their photophysical features were applied for developing the first blue light-emitting electrochemical cells (LECs) based on copper(I) complexes. The device analysis suggests that the main concern is the moderate redox stability of the complexes under high applied driving currents, leading to devices with moderate stabilities pointing to a proof-of-concept for further development. Nevertheless, under low applied driving currents the blue emission is stable, showing performance levels competitive to those reported for blue LECs based on iridium(III) complexes. Overall, this work provides valuable guidelines to tackle the design of enhanced NHC copper complexes for lighting applications in the near future. PMID:27224961

  5. Mechanism and Selectivity of Ru(II) - and Rh(III) -Catalyzed Oxidative Spiroannulation of Naphthols and Phenols with Alkynes through a C-H Activation/Dearomatization Strategy.

    Science.gov (United States)

    Zhang, Mei; Huang, Genping

    2016-06-27

    The ruthenium- and rhodium-catalyzed oxidative spiroannulation of naphthols and phenols with alkynes was investigated by means of density functional theory calculations. The results show that the reaction undergoes O-H deprotonation/C(sp(2) )-H bond cleavage through a concerted metalation-deprotonation mechanism/migratory insertion of the alkyne into the M-C bond to deliver the eight-membered metallacycle. However, the dearomatization through the originally proposed enol-keto tautomerization/C-C reductive elimination was calculated to be kinetically inaccessible. Alternatively, an unusual metallacyclopropene, generated from the isomerization of the eight-membered metallacycle through rotation of the C-C double bond, was identified as a key intermediate to account for the experimental results. The subsequent C-C coupling between the carbene carbon atom and the carbon atom of the 2-naphthol/phenol ring was calculated to be relatively facile, leading to the formation of the unexpected dearomatized products. The calculations reproduce quite well the experimentally observed formal [5+2] cycloaddition in the rhodium-catalyzed oxidative annulation of 2-vinylphenols with alkynes. The calculations show that compared with the case of 2-alkenylphenols, the presence of conjugation effects and less steric repulsion between the phenol ring and the vinyl moiety make the competing reductive oxyl migration become dominant, which enables the selectivity switch from the spiroannulation to the formal [5+2] cycloaddition. PMID:27225930

  6. Effect of thione-thiol tautomerism on the inhibition of lactoperoxidase by anti-thyroid drugs and their analogues

    Indian Academy of Sciences (India)

    P N JAyaram; Gouriprasanna Roy; Govindasamy Mugesh

    2008-01-01

    The keto-enol type tautomerism in anti-thyroid drugs and their selenium analogues are described. The commonly used anti-thyroid drug methimazole exists predominantly in its thione form, whereas its selenium analogue exists in a zwitterionic form. To understand the effect of thione/thiol and selone/selenol tautomerism on the inhibition of peroxidase-catalysed reactions, we have synthesized some thiones and selones in which the formation of thiol/selenol forms are blocked by different substituents. These compounds were synthesized by a carbene route utilizing an imidazolium salt. The crystal structures of these compounds reveal that the C=Se bonds in the selones are more polarized than the C=S bonds in the corresponding thiones. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming their zwitterionic structures in solution. The inhibition of lactoperoxidase by the synthetic thiones indicates that the presence of a free N-H moiety is essential for an efficient inhibition. In contrast, such moiety is not required for an inhibition by the selenium compounds.

  7. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately. PMID:26998737

  8. Experimental and Theoretical Study of the Reactivity of Gold Nanoparticles Towards Benzimidazole-2-ylidene Ligands.

    Science.gov (United States)

    Rodríguez-Castillo, María; Lugo-Preciado, Gustavo; Laurencin, Danielle; Tielens, Frederik; van der Lee, Arie; Clément, Sébastien; Guari, Yannick; López-de-Luzuriaga, José M; Monge, Miguel; Remacle, Françoise; Richeter, Sébastien

    2016-07-18

    The reactivity of benzimidazol-2-ylidenes with respect to gold nanoparticles (AuNPs) has been investigated using a combined experimental and computational approach. First, the grafting of benzimidazol-2-ylidenes bearing benzyl groups on the nitrogen atoms is described, and comparisons are made with structurally similar N-heterocyclic carbenes (NHCs) bearing other N-groups. Similar reactivity was observed for all NHCs, with 1) the erosion of the AuNPs under the effect of the NHC and 2) the formation of bis(NHC) gold complexes. DFT calculations were performed to investigate the modes of grafting of such ligands, to determine adsorption energies, and to rationalize the spectroscopic data. Two types of computational models were developed to describe the grafting onto large or small AuNPs, with either periodic or cluster-type DFT calculations. Calculations of NMR parameters were performed on some of these models, and discussed in light of the experimental data. PMID:27344993

  9. Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory☆

    Institute of Scientific and Technical Information of China (English)

    Yingying Yao; Yao Li; Xiaomin Liu; Xiaochun Zhang; Jianji Wang; Xiaoqian Yao; Suojiang Zhang

    2015-01-01

    Ionic liquids (ILs) have attracted many attentions in the dissolution of cellulose due to their unique physicochem-ical properties as green solvents. However, the mechanism of dissolution is stil under debate. In this work, com-putational investigation for the mechanisms of dissolution of cellulose in [Bmim]Cl, [Emim]Cl and [Emim]OAc ILs was performed, and it was focused on the process of breakage of cel ulose chain and ring opening using cel obiose as a model molecule. The detailed mechanism and reaction energy barriers were computed for various possible pathways by density functional theoretical method. The key finding was that ILs catalyze the dissolution process by synergistic effect of anion and cation, which led to the cleavage of cellulose chain and formation of derivatives of cel ulose. The investigation on ring opening process of cellobiose suggested that carbene formed in ILs played an important role in the side reaction of cellulose, and it facilitated the formation of a covalent bond between cel-lulose and imidazolium core. These computation results may provide new perspective to understand and apply ILs for pretreatment of cellulose.

  10. Synthesis and Crystal Structure of an Indenylnickel(Ⅱ) NHC Complex (Ind)NiBr(1,3-bisbenzylimidazol-2-ylidene)

    Institute of Scientific and Technical Information of China (English)

    HU Dong-Mei; SUN Hong-Mei; WANG Yong-Sheng; SHEN Qi; XUE Feng

    2006-01-01

    The complex (Ind)NiBr(1,3-bisbenzylimidazol-2-ylidene) (Ind = indenyl) 1 has been prepared in ca. 65% yield via the reaction of (Ind)2Ni with an equivalent of 1,3-bis-benzylimidazolium bromide in THF/CH2Cl2 at 45 °C, supported by elemental analysis, NMR spectroscopy and X-ray crystal determination. The crystal belongs to the triclinic system, space group P1 with a = 7.072(1), b = 11.264(2), c = 14.541(3) (A), a = 102.21(3),β = 93.44(3), γ = 90.81(3)°, V= 1129.7(4)(A)3, Z = 2, Mr = 502.08, Dc. = 1.476 g/cm3, F(000) = 512,μ = 2.642 mm-1, R = 0.0490and wR = 0.1137 for 3913 observed reflections (I > 2σ(I)). The center nickel atom is coordinated by a bromide ligand, a carbene carbon and three carbon atoms of the five-membered indenyl group to form either a highly distorted square pyramid or a highly distorted square plane.

  11. Highly efficient light-emitting diodes based on intramolecular rotation

    CERN Document Server

    Di, Dawei; Yang, Le; Jones, Saul; Friend, Richard H; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2016-01-01

    The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quant...

  12. Theoretical Study on the Mechanism of CF2 Reaction with CH2O

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Feng; Lü Ling-Ling; ZHU Yuan-Cheng; LIU Xin-Wen

    2008-01-01

    The insertion reaction mechanism of CF2 with CH2O was investigated at the B3LYP/6-311G(d)//MP2/6-311G(d) level.The geometric conformations at each stationary point in reaction potential surface were fully optimized and the transition states were verified by intrinsic reaction coordinate (IRC) and frequency analysis.The energies of all reactants were calculated with CCSD(T)/6-311G(d)//G2MP2 methods.Results indicated that the P1 reaction route with difuoroaldehyde as product is the dominant reaction pathway, which exhibits nucleophilic character.According to NBO analysis, the starting point of insertion reaction is the interaction between carbene LP(C3) and formaldehyde (*(C1-O2).Besides, the thermodynamic and dynamic properties of dominated reaction (1) at different temperature were studied with statistic thermo- dynamic method and Eyring transition state theory adjusted by Wigner means, from which the proper temperature (500~1200 K) of reaction (1) could be estimated.Finally, the thermo- dynamic and dynamic properties of insertion reaction mechanisms (CF2, CX2 (X = Cl, Br) with CH2O) were compared and discussed.

  13. Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH

    Energy Technology Data Exchange (ETDEWEB)

    Harter, C.; Baechi, T.S.; Semenza, G.; Brunner, J.

    1988-03-22

    To investigate the molecular basis of the low-pH-mediated interaction of the bromelain-solubilized ectodomain of influenza virus hemagglutinin (BHA) with membranes, we have photolabeled BHA in the presence of liposomes with the two carbene-generating, membrane-directed reagents 3-(trifluoromethyl)-3-(m-(/sup 125/I)iodophenyl)diazirine ((/sup 125/I)TID) and a new analogue of a phospholipid, 1-palmitoyl-2-(11-(4-(3-(trifluoromethyl)diazirinyl)phenyl)(2-/sup 3/H) undecanoyl)-sn-glycero-3-phosphocholine ((/sup 3/H)-PTPC/11). With the latter reagent, BHA was labeled in a strictly pH-dependent manner, i.e., at pH 5 only, whereas with (/sup 125/I)TID, labeling was seen also at pH 7. In all experiments, the label was selectively incorporated into the BHA2 polypeptide, demonstrating that the interaction of BHA with membranes is mediated through this subunit, possibly via its hydrophobic N-terminal segment. Similar experiments with a number of other water-soluble proteins (ovalbumin, carbonic anhydrase, alpha-lactalbumin, trypsin, and soybean trypsin inhibitor) indicate that the ability to interact with liposomes at low pH is not a property specific for BHA but is observed with other, perhaps most, proteins.

  14. Coordinatively unsaturated ruthenium complexes as efficient alkyneazide cycloaddition catalysts

    KAUST Repository

    Lamberti, Marina

    2012-01-23

    The performance of 16-electron ruthenium complexes with the general formula Cp*Ru(L)X (in which L = phosphine or N-heterocyclic carbene ligand; X = Cl or OCH2CF3) was explored in azidealkyne cycloaddition reactions that afford the 1,2,3- triazole products. The scope of the Cp*Ru(PiPr 3)Cl precatalyst was investigated for terminal alkynes leading to new 1,5-disubstituted 1,2,3-triazoles in high yields. Mechanistic studies were conducted and revealed a number of proposed intermediates. Cp*Ru- (PiPr3)(2-HCCPh)Cl was observed and characterized by 1H, 13C, and 31P NMR at temperatures between 273 and 213 K. A rare example of N,N-κ2-phosphazide complex, Cp*Ru(κ2- iPr3PN3Bn)Cl, was fully characterized, and a single-crystal X-ray diffraction structure was obtained. DFT calculations describe a complete map of the catalytic reactivity with phenylacetylene and/or benzylazide. © 2012 American Chemical Society.

  15. Voltammetric investigation of the dissociative electron transfer to polychloromethanes at catalytic and non-catalytic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Isse, Abdirisak Ahmed; Sandona, Giancarlo; Durante, Christian [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy); Gennaro, Armando [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy)], E-mail: armando.gennaro@unipd.it

    2009-04-30

    The electrochemical behavior of CCl{sub 4}, CHCl{sub 3} and CH{sub 2}Cl{sub 2} has been investigated by cyclic voltammetry at glassy carbon and silver electrodes in DMF + 0.1 M Et{sub 4}NClO{sub 4} in the absence and presence of a good proton donor. At both electrodes, each compound exhibits a series of reduction peaks which represent sequential hydrodechlorination steps up to methane. The nature of the electrode material and the proton availability of the medium affect drastically the voltammetric pattern of the compounds. Silver exhibits extraordinary electrocatalytic properties toward the reduction process, with positive shifts of the peak potentials of about 0.57-0.95 V as compared to glassy carbon. Reduction of any polychloromethane, CH{sub n}Cl{sub (4-n)} (n = 0-2), yields the carbanion CH{sub n}Cl{sub (3-n)}{sup -} which partitions into two reaction channels: (i) protonation and (ii) Cl{sup -} elimination to give a carbene :CH{sub n}Cl{sub (2-n)}. If a strong proton donor is added into the solution, sequential hydrodechlorination becomes the principal reaction route at both electrodes. When, instead, purposely added acid is not present in solution, both reaction pathways ought to be considered. In these conditions, when possible, self-protonation reactions play an important role in the overall reduction process.

  16. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties

    Science.gov (United States)

    Du, Jiehao; Huang, Jingjing; Xia, Huan; Yang, Ling; Xu, Weilin

    2016-01-01

    Summary A series of copper complexes (3–6) stabilized by 1,2,3-triazole-tethered N-heterocyclic carbene ligands have been prepared via simple reaction of imidazolium salts with copper powder in good yields. The structures of bi- and trinuclear copper complexes were fully characterized by NMR, elemental analysis (EA), and X-ray crystallography. In particular, [Cu2(L2)2](PF6)2 (3) and [Cu2(L3)2](PF6)2 (4) were dinuclear copper complexes. Complexes [Cu3(L4)2](PF6)3 (5) and [Cu3(L5)2](PF6)3 (6) consist of a triangular Cu3 core. These structures vary depending on the imidazolium backbone and N substituents. The copper–NHC complexes tested are highly active for the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in an air atmosphere at room temperature in a CH3CN solution. Complex 4 is the most efficient catalyst among these polynuclear complexes in an air atmosphere at room temperature. PMID:27340477

  17. Versatile deprotonated NHC: C,N-bridged dinuclear iridium and rhodium complexes

    Science.gov (United States)

    2016-01-01

    Summary Bearing the versatility of N-heterocyclic carbene (NHC) ligands, here density functional theory (DFT) calculations unravel the capacity of coordination of a deprotonated NHC ligand (pNHC) to generate a doubly C2,N3-bridged dinuclear complex. Here, in particular the discussion is based on the combination of the deprotonated 1-arylimidazol (aryl = mesityl (Mes)) with [M(cod)(μ-Cl)] (M = Ir, Rh) generated two geometrical isomers of complex [M(cod){µ-C3H2N2(Mes)-κC2,κN3}]2). The latter two isomers display conformations head-to-head (H-H) and head-to-tail (H-T) of C S and C 2 symmetry, respectively. The isomerization from the H-H to the H-T conformation is feasible, whereas next substitutions of the cod ligand by CO first, and PMe3 later confirm the H-T coordination as the thermodynamically preferred. It is envisaged the exchange of the metal, from iridium to rhodium, confirming here the innocence of the nature of the metal for such arrangements of the bridging ligands. PMID:26877814

  18. New Routes to a Series of σ-Borane/Borate Complexes of Molybdenum and Ruthenium.

    Science.gov (United States)

    Ramalakshmi, Rongala; Saha, Koushik; Roy, Dipak Kumar; Varghese, Babu; Phukan, Ashwini K; Ghosh, Sundargopal

    2015-11-23

    A series of agostic σ-borane/borate complexes have been synthesized and structurally characterized from simple borane adducts. A room-temperature reaction of [Cp*Mo(CO)3 Me], 1 with Li[BH3 (EPh)] (Cp*=pentamethylcyclopentadienyl, E=S, Se, Te) yielded hydroborate complexes [Cp*Mo(CO)2 (μ-H)BH2 EPh] in good yields. With 2-mercapto-benzothiazole, an N,S-carbene-anchored σ-borate complex [Cp*Mo(CO)2 BH3 (1-benzothiazol-2-ylidene)] (5) was isolated. Further, a transmetalation of the B-agostic ruthenium complex [Cp*Ru(μ-H)BHL2 ] (6, L=C7 H4 NS2 ) with [Mn2 (CO)10 ] affords a new B-agostic complex, [Mn(CO)3 (μ-H)BHL2 ] (7) with the same structural motif in which the central metal is replaced by an isolobal and isoelectronic [Mn(CO)3 ] unit. Natural-bond-orbital analyses of 5-7 indicate significant delocalization of the electron density from the filled σBH orbital to the vacant metal orbital. PMID:26450356

  19. The cross-metathesis of methyl oleate with cis-2-butene-1,4-diyl diacetate and the influence of protecting groups

    Directory of Open Access Journals (Sweden)

    Jessica Pérez Gomes

    2011-01-01

    Full Text Available Background: α,ω-Difunctional substrates are useful intermediates for polymer synthesis. An attractive, sustainable and selective (but as yet unused method in the chemical industry is the oleochemical cross-metathesis with preferably symmetric functionalised substrates. The current study explores the cross-metathesis of methyl oleate (1 with cis-2-butene-1,4-diyl diacetate (2 starting from renewable resources and quite inexpensive base chemicals.Results: This cross-metathesis reaction was carried out with several phosphine and N-heterocyclic carbene ruthenium catalysts. The reaction conditions were optimised for high conversions in combination with high cross-metathesis selectivity. The influence of protecting groups present in the substrates on the necessary catalyst loading was also investigated.Conclusions: The value-added methyl 11-acetoxyundec-9-enoate (3 and undec-2-enyl acetate (4 are accessed with nearly quantitative oleochemical conversions and high cross-metathesis selectivity under mild reaction conditions. These two cross-metathesis products can be potentially used as functional monomers for diverse sustainable polymers.

  20. Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers

    Science.gov (United States)

    Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.

    2016-03-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.

  1. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  2. Controlling the hydrogenolysis of silica-supported tungsten pentamethyl leads to a class of highly electron deficient partially alkylated metal hydrides

    KAUST Repository

    Maity, Niladri

    2015-11-30

    The well-defined single-site silica-supported tungsten complex [([triple bond, length as m-dash]Si–O–)W(Me)5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at −78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [([triple bond, length as m-dash]Si–O–)WH3(Me)2], as the predominant species at −78 °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between −78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [([triple bond, length as m-dash]Si–O–)WH3([double bond, length as m-dash]CH2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.

  3. N2S2 and N4S4 precursors to PS2 macrocycles and cyclic amidinium salts.

    Science.gov (United States)

    Cox, Katrina; Kariuki, Benson M; Smyth, Alexander; Newman, Paul D

    2016-05-28

    The cyclo-condensation of 1R,2R-diaminocyclohexane with 2,2'-(ethane-1,2-diyldisulfanediyl)dibenzaldehyde gave the 1 : 1 addition compound chxn-(im)N2S2 in high yield. When the same condensation reaction was performed with 1R,3S-diamino-1,7,7-trimethylcyclopentane as the diamine, the 2 : 2 addition compound tmcp-(im)N4S4 was obtained selectively. Reduction of the diimines gave the saturated analogues chxn-N2S2 (1) and tmcp-N4S4 (3) the former of which could be phosphorylated with PhP(NMe2)2 to give the novel 13-membered macrocycle chxn-PS2, 2. Introduction of the phenylphosphine function proved stereoselective with a preference for the N(R)/N(S) configuration at the nitrogen atoms. The coordination chemistry of the novel phosphine has been explored with Cu(i) and Mo(0) through formation of the complexes Cu(2)I, 4, and Mo(CO)3(2), 5. Extension of the phosphorylation chemistry to tmcp-N4S4 (3) proved unsuccessful but ring closure reactions of both 1 and 3 with triethylorthoformate gave cyclic amidinium salts which are potential precursors to macrocyclic N-heterocyclic carbenes. PMID:27112102

  4. Oxidative degradation of the organometallic iron(II) complex [Fe{bis[3-(pyridin-2-yl)-1H-imidazol-1-yl]methane}(MeCN)(PMe3)](PF6)2: structure of the ligand decomposition product trapped via coordination to iron(II).

    Science.gov (United States)

    Haslinger, Stefan; Pöthig, Alexander; Cokoja, Mirza; Kühn, Fritz E

    2015-12-01

    Iron is of interest as a catalyst because of its established use in the Haber-Bosch process and because of its high abundance and low toxicity. Nitrogen-heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron-NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1'-bis(pyridin-2-yl)-2,2-bi(1H-imidazole)-κN(3)][3,3'-bis(pyridin-2-yl-κN)-1,1'-methanediylbi(1H-imidazol-2-yl-κC(2))](trimethylphosphane-κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C-C-coupled biimidazole, is trapped by coordination to still-intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions. PMID:26632838

  5. Switchable [3+2] and [4+2] Heteroannulation of Primary Propargylamines with Isonitriles to Imidazoles and 1,6-Dihydropyrimidines: Catalyst Loading Enabled Reaction Divergence.

    Science.gov (United States)

    Tong, Shuo; Wang, Qian; Wang, Mei-Xiang; Zhu, Jieping

    2016-06-01

    Isonitrile 1 due to its carbene-like reactivity serves generally as a one-carbon synthon in a diverse set of organic transformations. We report in this article that the isocyano group can also act as a polarized triple bond to undergo, as a two-atom synthon, heteroannulation with primary propargylamines 15. In addition, we serendipitously discovered that the reaction pathways can be modulated by simply changing the catalyst loading. In the presence of 0.1 equiv of Yb(OTf)3 or TfOH, the reaction between 1 and 15 afforded exclusively imidazoles 16 by a formal [3+2] cycloaddition. At a higher catalyst loading (Yb(OTf)3 (0.4 equiv) or TfOH (0.5 equiv)) under otherwise identical conditions, the same reaction furnished 1,6-dihydropyrimidines 17 in good to excellent yields by way of a formal [4+2] cycloaddition process. Mechanistic investigations indicated that both annulations went through an amidine intermediate resulting from the insertion of the isocyano group to the NH bond of the primary amine. Subsequent catalyst-loading-dependent 5-exo-dig or 6-endo-dig cyclization provided selectively the two heterocycles, respectively. PMID:27142526

  6. CHEMICAL ACTIVATION OF MOLECULES BY METALS: EXPERIMENTAL STUDIES OF ELECTRON DISTRIBUTIONS AND BONDING; FINAL

    International Nuclear Information System (INIS)

    This research program is directed at obtaining detailed experimental information on the electronic interactions between metals and organic molecules. These interactions provide low energy pathways for many important chemical and catalytic processes. A major feature of the program is the continued development and application of our special high-resolution valence photoelectron spectroscopy (UPS), and high-precision X-ray core photoelectron spectroscopy (XPS) instrumentation for study of organometallic molecules in the gas phase. The study involves a systematic approach towards understanding the interactions and activation of bound carbonyls, C-H bonds, methylenes, vinylidenes, acetylides, alkenes, alkynes, carbenes, carbynes, alkylidenes, alkylidynes, and others with various monometal, dimetal, and cluster metal species. Supporting ligands include -aryls, alkoxides, oxides, and phosphines. We are expanding our studies of both early and late transition metal species and electron-rich and electron-poor environments in order to more completely understand the electronic factors that serve to stabilize particular organic fragments and intermediates on metals. Additional new directions for this program are being taken in ultra-high vacuum surface UPS, XPS, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) experiments on both physisorbed and chemisorbed organometallic thin films. The combination of these methods provides additional electronic structure information on surface-molecule and molecule-molecule interactions. A very important general result emerging from this program is the identification of a close relationship between the ionization energies of the species and the thermodynamics of the chemical and catalytic reactions of these systems

  7. Gold(I) catalysts with bifunctional P, N ligands.

    Science.gov (United States)

    Wetzel, Corinna; Kunz, Peter C; Thiel, Indre; Spingler, Bernhard

    2011-08-15

    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds [(5)(2)Au(3)Cl(2)]Cl and [(3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene). PMID:21761834

  8. Gold(I) biscarbene complexes derived from vascular-disrupting combretastatin A-4 address different targets and show antimetastatic potential.

    Science.gov (United States)

    Muenzner, Julienne K; Biersack, Bernhard; Kalie, Hussein; Andronache, Ion C; Kaps, Leonard; Schuppan, Detlef; Sasse, Florenz; Schobert, Rainer

    2014-06-01

    Gold N-heterocyclic carbene (NHC) complexes are an emerging class of anticancer drugs. We present a series of gold(I) biscarbene complexes with NHC ligands derived from the plant metabolite combretastatin A-4 (CA-4) that retain its vascular-disrupting effect, yet address different cellular and protein targets. Unlike CA-4, these complexes did not interfere with tubulin, but with the actin cytoskeleton of endothelial and cancer cells. For the highly metastatic 518A2 melanoma cell line this effect was accompanied by a marked accumulation of cells in the G1 phase of the cell cycle and a suppression of active prometastatic matrix metalloproteinase-2. Despite these mechanistic differences the complexes were as strongly antivascular as CA-4 both in vitro in tube formation assays with human umbilical vein endothelial cells, and in vivo as to blood vessel disruption in the chorioallantoic membrane of chicken eggs. The antiproliferative effect of the new gold biscarbene complexes in a panel of six human cancer cell lines was impressive, with low sub-micromolar IC50 values (72 h) even against CA-4-refractory HT-29 colon and multidrug-resistant MCF-7 breast carcinoma cells. In preliminary studies with a mouse melanoma xenograft model the complexes led to significant decreases in tumor volume while being very well tolerated. PMID:24648184

  9. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    Science.gov (United States)

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  10. Direct Measure of Metal-Ligand Bonding Replacing the Tolman Electronic Parameter.

    Science.gov (United States)

    Setiawan, Dani; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2016-03-01

    The Tolman electronic parameter (TEP) derived from the A1-symmetrical CO stretching frequency of nickel-tricarbonyl complexes L-Ni(CO)3 with varying ligands L is misleading as (i) it is not based on a mode decoupled CO stretching frequency and (ii) a generally applicable and quantitatively correct or at least qualitatively reasonable relationship between the TEP and the metal-ligand bond strength does not exist. This is shown for a set of 181 nickel-tricarbonyl complexes using both experimental and calculated TEP values. Even the use of mode-mode decoupled CO stretching frequencies (L(ocal)TEPs) does not lead to a reliable description of the metal-ligand bond strength. This is obtained by introducing a new electronic parameter that is directly based on the metal-ligand local stretching force constant. For the test set of 181 nickel complexes, a direct metal-ligand electronic parameter (MLEP) in the form of a bond strength order is derived, which reveals that phosphines and related ligands (amines, arsines, stibines, bismuthines) are bonded to Ni both by σ-donation and π-back-donation. The strongest Ni-L bonds are identified for carbenes and cationic ligands. The new MLEP quantitatively assesses electronic and steric factors. PMID:26900632

  11. A study of the C$_3$H$_2$ isomers and isotopologues: first interstellar detection of HDCCC

    CERN Document Server

    Spezzano, S; Brünken, S; Gottlieb, C A; Caselli, P; Menten, K M; Müller, H S P; Bizzocchi, L; Schilke, P; McCarthy, M C; Schlemmer, S

    2015-01-01

    The partially deuterated linear isomer HDCCC of the ubiquitous cyclic carbene ($c$-C$_3$H$_2$) was observed in the starless cores TMC-1C and L1544 at 96.9 GHz, and a confirming line was observed in TMC-1 at 19.38 GHz. To aid the identification in these narrow line sources, four centimetre-wave rotational transitions (two in the previously reported $K_a =0$ ladder, and two new ones in the $K_a =1$ ladder), and 23 transitions in the millimetre band between 96 and 272 GHz were measured in high-resolution laboratory spectra. Nine spectroscopic constants in a standard asymmetric top Hamiltonian allow the principal transitions of astronomical interest in the $K_a \\le 3$ rotational ladders to be calculated to within 0.1 km s$^{-1}$ in radial velocity up to 400 GHz. Conclusive evidence for the identification of the two astronomical lines of HDCCC was provided by the $V_{\\rm{LSR}}$ which is the same as that of the normal isotopic species (H$_2$CCC) in the three narrow line sources. In these sources, deuterium fraction...

  12. Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles.

    Science.gov (United States)

    Lu, Wei; Hu, Haitao; Li, Yongxin; Ganguly, Rakesh; Kinjo, Rei

    2016-05-25

    3,4-dihydro-2H-1,2,4,3-triazaborol-3-yl-lithium 3 was synthesized and fully characterized. The (11)B NMR spectrum, X-ray diffraction analysis, and computational studies revealed the ionic nature of the B-Li bond, and indeed 3 displays nucleophilic property which allowed preparation of a series of 1,2,4,3-triazaborol-3-yl-metal complexes (Al; 5, Au; 6, Zn; 7, Mg; 8, Sb; 9, and Bi; 10). 3 reacted with CO (1 atm) and various isonitriles under ambient condition, and mechanistic study suggests that the reactions with CO and aryl isonitriles proceed via an insertion of CO and isonitrile carbon into the B-Li bond followed by isomerization to yield transient carbene species, one of which was confirmed by trapping with S8. With PhNC, compounds 5 and 7·(thf) underwent exchange of THF molecule coordinating to the metal center with isonitrile, whereas insertion of isonitrile carbon occurred at the B-Bi bond in 10 which afforded stable bismuth (boryl)iminomethane 20. PMID:27135617

  13. Gas-phase reactions of cyclopropenylidene with protonated alkyl amines.

    Science.gov (United States)

    Lin, Ziqing; Tan, Lei; Yang, Yang; Dai, Mingji; Tureček, František; Ouyang, Zheng; Xia, Yu

    2016-04-21

    Vinylidene carbenes (C3H2) are of high interest to interstellar, combustion, and organic chemistry. Due to their high instability, the direct experimental investigation of their chemical reactivity has rarely been achieved. Herein, we report a first study on the reactions of cyclopropenylidene (c-C3H2) with protonated alkyl amines in the gas phase using a home-built ion trap mass spectrometer. The high gas-phase basicity (GB) of ((1)A1) c-C3H2 (calculated as 920 kJ mol(-1)) facilitates the formation of a proton-bound dimer with protonated amines as the first step in the reaction. The dimer can stay as it is or rearrange to a covalent product. The formation of the covalent complex is highly exothermic and its yield is affected by the GB of alkyl amines. The highest yield (82%) was achieved when the GB of the amine was slightly lower but comparable to that of c-C3H2. Our results demonstrate a new reaction pathway of c-C3H2, which has long been considered as a "dead end" in interstellar carbon chemistry. PMID:26978226

  14. Metal nanoparticles functionalized with metal-ligand covalent bonds

    Science.gov (United States)

    Kang, Xiongwu

    advantage of such extensively conjugated metal-ligand bonding and effective intraparticle charge delocalization of ruthenium nanoparticles, Ru=carbene nanoparticles functionalized with multiple moieties by olefin metathesis reactions was further exploited for metal ion sensing. When the nanoparticles were co-functionalized with 1-vinylpyrene and 4-vinylbenzo-18-crown-6, upon the binding of metal ions into the crown ether cavity, the emission intensity of the nanoparticle fluorescence from the conjugation of vinylpyrene was found to diminish, with the most significant effects observed with K+ ions. In the case of ruthenium nanoparticles co-functionalized with pyrene and histidine derivative moieties through Ru=carbene pi bonds. The selective complexation of the histidine moiety with transition metal ions led to marked diminishment of the emission intensity from conjugation of pyrene. Of all the metal ions tested, the impacts were much more drastic with Pb2+ , Co2+ and Hg2+ than with Li +, K+, Rb+, Mg2+ Ca 2+ and Zn2+ ions. These were ascribed to the selective binding of 18-crown-6 to potassium ions or complexation of histidine derivative to transition metal ions, where the metal ions led to polarization of the nanoparticle core electrons to the metal surface and hence impeded intraparticle charge delocalization. Functionalization of semiconductor with metal nanoparticles could be exploited to remarkably enhance their photo catalytic performance. Before this exploration, in the last chapter, the impacts of the TiO2 nanocrystalline structure on the photocatalytic activity were then examined by using the reduction of methylene blue in water. It was found that in the presence of anatase and brookite crystalline phase, TiO2 nanotube arrays exhibited the highest photo catalytic activity. This is ascribed to synergistic coupling of the anatase and brookite crystalline domains, which led to effective charge separation upon photoirradiation.

  15. Intramolecular cyclopropanation and C-H insertion reactions with metal carbenoids generated from cyclopropenes.

    Science.gov (United States)

    Archambeau, Alexis; Miege, Frédéric; Meyer, Christophe; Cossy, Janine

    2015-04-21

    Activation of unsaturated carbon-carbon bonds by means of transition metal catalysts is an exceptionally active research field in organic synthesis. In this context, due to their high ring strain, cyclopropenes constitute an interesting class of substrates that displays a versatile reactivity in the presence of transition metal catalysts. Metal complexes of vinyl carbenes are involved as key intermediates in a wide variety of transition metal-catalyzed ring-opening reactions of cyclopropenes. Most of the reported transformations rely on intermolecular or intramolecular addition of nucleophiles to these latter reactive species. This Account focuses specifically on the reactivity of carbenoids resulting from the ring-opening of cyclopropenes in cyclopropanation and C-H insertion reactions, which are arguably two of the most representative transformations of metal complexes of carbenes. Compared with the more conventional α-diazo carbonyl compounds, the use of cyclopropenes as precursors of metal carbenoids in intramolecular cyclopropanation or C-H insertion reactions has been largely underexploited. One of the challenges is to devise appropriately substituted and readily available cyclopropenes that would not only undergo regioselective ring-opening under mild conditions but also trigger the subsequent desired transformations with a high level of chemoselectivity and stereoselectivity. These goals were met by considering several substrates derived from the readily available 3,3-dimethylcyclopropenylcarbinols or 3,3-dimethylcyclopropenylcarbinyl amines. In the case of 1,6-cyclopropene-enes, highly efficient and diastereoselective gold(I)-catalyzed ring-opening/intramolecular cyclopropanations were developed as a route to diversely substituted heterocycles and carbocycles possessing a bicyclo[4.1.0]heptane framework. The use of rhodium(II) catalysts enabled us to widen the scope of this transformation for the synthesis of medium-sized heterocyclic scaffolds

  16. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    high temperatures and long reaction times. To address this issue, we have developed several new families of carbon- and boron-based ligands, which are even better donors. The corresponding metal complexes (particularly gold, rhodium, iridium, and ruthenium) of all these species will be tested in the Markovnikov and anti-Markovnikov hydroamination of alkynes, allenes, and also alkenes with ammonia and hydrazine. We will also develop metal-free catalytic processes for the functionalization of ammonia and hydrazine. By possessing both a lone pair of electrons and an accessible vacant orbital, singlet carbenes resemble and can mimic the chemical behavior of transition metals. Our preliminary results demonstrate that specially designed carbenes can split the N–H bond of ammonia by an initial nucleophilic activation that prevents the formation of Lewis acid-base adducts, which is the major hurdle for the transition metal catalyzed functionalization of NH3. The use of purely organic compounds as catalysts will eliminate the major drawbacks of transition-metal-catalysis technology, which are the excessive cost of metal complexes (metal + ligands) and in many cases the toxicity of the metal.

  17. Instability of metal 1,3-benzodi(thiophosphinoyl)methandiide complexes: formation of hafnium, tin and zirconium complexes of 1,3-benzodi(thiophosphinoyl)thioketone dianionic ligand [1,3-C6H4(PhPS)2CS](2(-)).

    Science.gov (United States)

    Yang, Ya-Xiu; Li, Yongxin; Ganguly, Rakesh; So, Cheuk-Wai

    2015-07-28

    The reaction of [LCH2] (1, L = 1,3-C6H4(PhPS)2) and M(NMe2)4 (M = Hf, Zr) in toluene at 110 °C afforded a mixture of group 4 metal complexes [{LC(S)}2M] [M = Hf (2), Zr (3)] and [1,3-C6H4(PhPS)(PhP)CH2]. The reactions appear to proceed through the formation of metal bis(carbene) complexes, [LC=M=CL], which then undergo an intermolecular sulphur transfer reaction with the P=S bond of [LCH2] to form 2 and 3, and the byproduct is [1,3-C6H4(PhPS)(PhP)CH2]. In addition, the reaction of 1, [CH2(PPh2S)2] (4) and M(NMe2)4 in refluxing toluene gave a mixture of [{LC(S)}M(NHMe2){C(PPh2S)2}] [M = Hf (5), Zr (6)], [1,3-C6H4(PhPS)(PhP)CH2] and [CH2(PPh2S)(PPh2)]. Moreover, the intermolecular sulfur transfer reaction is evidenced by the reaction of the tin(ii) 1,3-benzodi(thiophosphinoyl)methandiide complex [{μ-1,3-C6H4(PhPS)2C}Sn]2 (7) with two equivalents of elemental sulfur in CH2Cl2 at ambient temperature to give [{1,3-C6H4(PhPS)2CS}2Sn] (8). Compounds 2, 3, 5, 6, and 8 were characterized by NMR spectroscopy and X-ray crystallography. PMID:26079794

  18. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    Science.gov (United States)

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  19. Chemical studies of viral entry mechanisms: I. Hydrophobic protein-lipid interactions during Sendai virus membrane fusion. II. Kinetics of bacteriophage λ DNA injection

    International Nuclear Information System (INIS)

    Sendai virus glycoprotein interactions with target membranes during the early stages of fusion were examined using time-resolved hydrophobic photoaffinity labeling with the lipid-soluble carbene generator 3-(trifluoromethyl)-3-(m[125I] iodophenyl)diazirine. During Sendai virus fusion with liposomes composed of cardiolipin or phosphatidylserine, the viral fusion (F) protein is preferentially labeled at early time points, supporting the hypothesis that hydrophobic interaction of the fusion peptide at the N-terminus of the F1 subunit with the target membrane is an initiating event in fusion. Correlation of hydrophobic interactions with independently monitored fusion kinetics further supports this conclusion. The F1 subunit, containing the putative hydrophobic fusion sequence, is exclusively labeled, and the F2 subunit does not participate in fusion. Labeling shows temperature and pH dependence consistent with a need for protein conformational mobility and fusion at neutral pH. Higher amounts of labeling during fusion with CL vesicles than during virus-PS vesicle fusion reflects membrane packing regulation of peptide insertion into target membranes. Labeling of the viral hemagglutinin/neuraminidase (HN) at low pH indicates that HN-mediated fusion is triggered by hydrophobic interactions. Controls for diffusional labeling exclude a major contribution from this source. Labeling during reconstituted Sendai virus envelope-liposome fusion shows that functional reconstitution involves protein retention of the ability to undergo hydrophobic interactions. Examination of Sendai virus fusion with erythrocyte membranes indicates that hydrophobic interactions also trigger fusion between biological membranes. The data show that hydrophobic fusion protein interaction with both artificial and biological membranes is a triggering event in fusion

  20. Intramolecular hydroxycarbene C–H-insertion: The curious case of (o-methoxyphenylhydroxycarbene

    Directory of Open Access Journals (Sweden)

    Dennis Gerbig

    2010-11-01

    Full Text Available The first C–H insertion of a hydroxycarbene species in the gas phase has been observed experimentally by means of high vacuum flash pyrolysis (HVFP and subsequent matrix isolation: (o-Methoxyphenylglyoxylic acid gives non-isolable (o-methoxyphenylhydroxycarbene upon pyrolysis at 600 °C, which rapidly inserts into the methyl C–H bond. The insertion product, 2,3-dihydrobenzofuran-3-ol, was trapped in an excess of Ar at 11 K and characterized by infrared spectroscopy. The insertion process kinetically outruns the alternative [1,2]H-tunneling reaction to o-anisaldehyde, a type of reaction observed for other hydroxycarbenes. Traces of the dehydration product, benzo[b]furan, were also detected. The potential energy hypersurface including the insertion and hydrogen migration processes was computed at the all-electron coupled-cluster level of theory encompassing single and double substitutions and perturbatively included triple excitations [AE-CCSD(T] in conjunction with a correlation-consistent double-ζ basis set (cc-pVDZ by utilizing density functional theory (DFT optimized geometries (M06-2X/cc-pVDZ with zero-point vibrational energy (ZPVE corrections. Exchange of the methoxy for a trifluoromethoxy group successfully prevents insertion and (o-trifluoromethoxybenzaldehyde is produced instead; however, the carbene cannot be observed under these conditions. Thermal decomposition of (o-methoxyphenylglyoxylic acid in refluxing xylenes does not give the insertion product but yields o-anisaldehyde. This unanticipated outcome can be rationalized by protonation of the hydroxycarbene intermediate leading to the tautomeric formyl group. Thermochemical computations at M06-2X/cc-pVDZ in conjunction with a self-consistent solvent reaction field model support this suggested reaction pathway.

  1. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme Catalysis

    Directory of Open Access Journals (Sweden)

    Pierre Vogel

    2016-08-01

    Full Text Available Catalysis fulfills the promise that high-yielding chemical transformations will require little energy and produce no toxic waste. This message is carried by the study of the evolution of molecular catalysis of some of the most important reactions in organic chemistry. After reviewing the conceptual underpinnings of catalysis, we discuss the applications of different catalysts according to the mechanism of the reactions that they catalyze, including acyl group transfers, nucleophilic additions and substitutions, and C–C bond forming reactions that employ umpolung by nucleophilic additions to C=O and C=C double bonds. We highlight the utility of a broad range of organocatalysts other than compounds based on proline, the cinchona alkaloids and binaphthyls, which have been abundantly reviewed elsewhere. The focus is on organocatalysts, although a few examples employing metal complexes and enzymes are also included due to their significance. Classical Brønsted acids have evolved into electrophilic hands, the fingers of which are hydrogen donors (like enzymes or other electrophilic moieties. Classical Lewis base catalysts have evolved into tridimensional, chiral nucleophiles that are N- (e.g., tertiary amines, P- (e.g., tertiary phosphines and C-nucleophiles (e.g., N-heterocyclic carbenes. Many efficient organocatalysts bear electrophilic and nucleophilic moieties that interact simultaneously or not with both the electrophilic and nucleophilic reactants. A detailed understanding of the reaction mechanisms permits the design of better catalysts. Their construction represents a molecular science in itself, suggesting that sooner or later chemists will not only imitate Nature but be able to catalyze a much wider range of reactions with high chemo-, regio-, stereo- and enantioselectivity. Man-made organocatalysts are much smaller, cheaper and more stable than enzymes.

  2. Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and 3H-3He groundwater dating: a case study in Portugal.

    Science.gov (United States)

    Amaral, Helena I F; Fernandes, Judite; Berg, Michael; Schwarzenbach, René P; Kipfer, Rolf

    2009-10-01

    Trinitrotoluene (TNT) and dinitrotoluene (DNT) originating from 50 years of explosives production have heavily contaminated two stacked aquifers in the vicinity of Lisboa, Portugal. To assess if these poly-nitroaromatic compounds (P-NACs) are being degraded in the subsurface, tracer-based groundwater dating techniques combined with compound-specific isotope analyses (CSIA) were applied. The groundwater residence times were distinctly different in the two aerobic aquifers, as determined by the tritium ((3)H)-(3)He method. In the contaminated zones, the upper aquifer exhibited groundwater ages of 25 years, whereas the lower (presumably confined) aquifer contained hardly any tritium which indicates water ages >55 years. P-NACs-containing waste waters are known to have leaked into the upper, unconfined aquifer. However, P-NACs were present in both aquifers in high concentrations (up to 33000 microg L(-1) TNT), which implies a hydraulic connection, although tritium concentrations and chemical data suggest two separated aquifers. Based on the (3)H-(3)He groundwater dating and the presence of very high P-NAC concentrations, the contamination of the lower aquifer must have happened during the early stage of the explosive production, i.e. >50 years ago. Despite this 'old' contamination, TNT and DNT have not been transformed until to date as is demonstrated by the negligible changes in their carbon isotopic signatures (delta(13)C). Thus, P-NACs are very recalcitrant to degradation at the investigated site. If the aquifers remain aerobic, TNT and DNT are expected to persist in the subsurface for many decades to centuries. The presented approach of assessing time scales of natural attenuation at the field scale by the combination of CSIA and (3)H-(3)He water dating has the potential to be applied to any other groundwater contaminants, such as chlorinated hydrocarbons, gasoline components, heterocyclic carbenes, or polyaromatic hydrocarbons. PMID:19740509

  3. Synthesis of acetylenic derivatives of hydroxynaphthoquinone

    International Nuclear Information System (INIS)

    The acetylene derivatives synthesis 2-hydroxy-1 ,4-naphthoquinones was studied using different reaction conditions: coupling with copper and silver acetylides, Sonogashira reaction with and without CU (I) as cocatalyst. The reaction conditions are optimized for coupling of iodine lawson and ylide phenyl lawsone of iodine with various terminal acetylenes: phenyl acetylene, propargyl alcohol, 1-heptin and 2-methyl-3-butyne-2-ol. Also, reactants such as bromides of hidroxinaphthoquinones were used with protecting groups such as acetate, methoxy, phenyloxy, benzyloxy and tricloroetoxy. The synthesis of 2-hydroxy-3-(3-hydroxy-3-ynyl-1-methylbutane)-1,4-naphthoquinone, 2-methoxy-3-(2-phenylethynyl) -1,4-naphthoquinone and 2-(2-phenylethynyl)-3-(2,2,2-tricloroetoxy)-1,4-naphthoquinone was performed with rates of return of 22%, 57% and 67% respectively. The reaction of the yodolawsona was obtained with 3-chloro-3-methyl-1-butyne in the presence of CuI, CsI and Cs2Co3 obtaining the enol ether: 3,3-dimethyl-2-methyl-2 ,3-dihydronaphto [2 ,3-b]furan-4,9-dione (dehydro-α-dunion), with a rate of return of 58%. This enol ether was used as a reactant for the formation, through a regioselective hydrogenation with PtO2/t-butanol of α-dunion with a yield of 50%. Furthermore, by acid hydrolysis with H2SO4 has been possible to obtain a percentage yield of 75% streptocarpone. Both, α-dunion and streptocarpone, natural products extracted from Streptocarpus dunni shrub, with antiparasitic activity, and which so far had not presented an efficient synthesis. A mechanism is proposed for the reaction of formation of the enol ether where it is presumed the presence of a zwitterion-vinyl carbene as key intermediate of the reaction. All products were characterized by spectroscopy 1H and 13C-NMR, UV-Vis and IR. (author)

  4. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [Al]-based frustrated Lewis pairs

    KAUST Repository

    He, Jianghua

    2014-11-25

    A combined experimental and theoretical study on mechanistic aspects of polymerization of conjugated polar alkenes by frustrated Lewis pairs (FLPs) based on N-heterocyclic carbene (NHC) and Al(C6F5)3 pairs is reported. This study consists of three key parts: structural characterization of active propagating intermediates, propagation kinetics, and chain-termination pathways. Zwitterionic intermediates that simulate the active propagating species in such polymerization have been generated or isolated from the FLP activation of monomers such as 2-vinylpyridine and 2-isopropenyl-2-oxazoline-one of which, IMes+-CH2C(Me)=(C3H2NO)Al(C6F5)3 - (2), has been structurally characterized. Kinetics performed on the polymerization of 2-vinylpyridine by ItBu/Al(C6F5)3 revealed that the polymerization follows a zero-order dependence on monomer concentration and a first-order dependence on initiator (ItBu) and activator [Al(C6F5)3] concentrations, indicating a bimolecular, activated monomer propagation mechanism. The Lewis pair polymerization of conjugate polar alkenes such as methacrylates is accompanied by competing chain-termination side reactions; between the two possible chain-termination pathways, the one that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated ester group of the growing polymer chain by the O-ester enolate active chain end to generate a six-membered lactone (δ-valerolactone)-terminated polymer chain is kinetically favored, but thermodynamically disfavored, over the pathway leading to the -ketoester-terminated chain, as revealed by computational studies.

  5. LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

    Energy Technology Data Exchange (ETDEWEB)

    Hascall, Anthony G.; Kemp, Richard Alan

    2004-11-01

    The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O chelated homogeneous complexes, with new ligands that replace P with a stable carbene. We will also examine a commercially catalyst system and investigate the active site in it via X-ray crystallography. We will also attempt to support these materials inside the pores of nano- and mesoporous materials. Essentially, we will be tailoring the size and scale of the catalyst active site and its surrounding environment to match the size of the molecular product(s) we wish to make. The overall purpose of the study will be to prepare new homogeneous catalysts, and if successful in supporting them to examine the effects that steric constraints and pore structures can have on growing oligomer

  6. Chemical dynamics in time and energy space

    Energy Technology Data Exchange (ETDEWEB)

    Myers, J.D.

    1993-04-01

    The development of a versatile picosecond ultraviolet/vacuum ultraviolet temporal spectrometer and its potential use for measuring internal energy redistribution in isolated molecules are described in detail. A detailed description of the double-pass Nd:YAG amplifier and the dye amplifiers is given with the pulse energies achieved in the visible, ultraviolet, and vacuum ultraviolet. The amplified visible pulses are shown to be of sub-picosecond duration and near transform limited. The instrument`s temporal response ({le}10 ps) is derived from an instrument limited measurement of the dissociation lifetime of methyl iodide at 266 nm. The methyl iodide experiment is used to discuss the various sources of noise and background signals that are intrinsic to this type of experiment. Non-time-resolved experiments measuring the branching ratio and kinetic energy distributions of products from the 193 nm photodissociation of cyclopentadiene and thiophene are presented. These studies were done using the molecular beam Photofragment Translational Spectroscopy (PTS) technique. The results from the cyclopentadiene experiment confirm that H atom elimination to yield the cyclopentadienyl radical is the dominant dissociation channel. A barrier of {ge}5 kcal/mol can be understood in terms of the delocalization of the radical electron of the cyclopentadienyl fragment. A concerted elimination yielding cyclopropene and acetylene was also observed and is proposed to occur via a bicyclo-[2.1.0]pent-2-ene intermediate. Two other channels, yielding acetylene plus the CH{sub 2}CHCH triplet carbene, and CH{sub 2} plus 1-buten-3-yne, are postulated to occur via ring opening. The implications of the experimental results for bulk thermal oxidation and pyrolysis models are discussed. The thiophene experiment shows six competing dissociation channels. The postulated intermediates for the various thiophene dissociation channels include bicyclo, ring opened, and possibly ring contracted forms.

  7. Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer.

    Science.gov (United States)

    Aweda, Tolulope A; Zhang, Shiyi; Mupanomunda, Chiedza; Burkemper, Jennifer; Heo, Gyu Seong; Bandara, Nilantha; Lin, Mai; Cutler, Cathy S; Cannon, Carolyn L; Youngs, Wiley J; Wooley, Karen L; Lapi, Suzanne E

    2015-05-30

    Purified (111) Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of (111) Ag acetate, [(111) Ag]SCC1, and [(111) Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the (111) Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of mice was estimated to be 2.6 ± 0.3% of the dose inhaled per mouse for [(111) Ag]SCC1 and twice as much dose was observed for the [(111) Ag]SCKs (5.0 ± 0.3% and 5.9 ± 0.8% for [(111) Ag]aSCK and [(111) Ag]zSCK, respectively) at 1 h post administration (p.a.). [(111) Ag]SCKs also exhibited higher dose retention in the lungs; 62-68% for [(111) Ag]SCKs and 43% for [(111) Ag]SCC1 of the initial 1 h dose were observed in the lungs at 24 h p.a.. This study demonstrates the utility of (111) Ag as a useful tool for monitoring the pharmacokinetics of silver-loaded antimicrobials in vivo. PMID:25952472

  8. Synthesis, characterization, and in vivo efficacy of shell cross-linked nanoparticle formulations carrying silver antimicrobials as aerosolized therapeutics.

    Science.gov (United States)

    Shah, Parth N; Lin, Lily Yun; Smolen, Justin A; Tagaev, Jasur A; Gunsten, Sean P; Han, Daniel S; Heo, Gyu Seong; Li, Yali; Zhang, Fuwu; Zhang, Shiyi; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Brody, Steven L; Wooley, Karen L; Cannon, Carolyn L

    2013-06-25

    The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2-4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag(+) delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence. PMID:23718195

  9. White Light Emission from Planar Remote Phosphor Based on NHC Cycloplatinated Complexes.

    Science.gov (United States)

    Fuertes, Sara; Chueca, Andrés J; Perálvarez, Mariano; Borja, Pilar; Torrell, Marc; Carreras, Josep; Sicilia, Violeta

    2016-06-29

    We report on the generation of bright white luminescence through solid-state illumination of remote phosphors based on novel cycloplatinated N-heterocyclic carbene (NHC) compounds. Following a stepwise protocol we got the new NHC compound [{Pt(μ-Cl)(C(∧)C*)}2] (4) (HC(∧)C*-κC* = 1-(4-(ethoxycarbonyl)phenyl)-3-methyl-1H-imidazol-2-ylidene), which was used together with the related ones 4a (HC(∧)C*-κC*= 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) and 4b (HC(∧)C*-κC*= 3-methyl-1-(naphthalen-2-yl)-1H-imidazol-2-ylidene) as starting materials for the synthesis of the new ionic derivatives [Pt(R-C(∧)C*) (CNR')2]PF6 (R = -COOEt, R' = t-Bu (5), Xyl (6); R = -CN, R' = t-Bu (7), Xyl (8); R(∧)C = Naph, R' = t-Bu (9), Xyl (10)). The X-ray structures of 6 and 8-10 have been determined. The photophysical properties of these cationic compounds have been studied and supported by the time-dependent-density functional theory (TD-DFT) calculations. The compounds 5, 8, and 9 have been revealed as the most efficient emitters in the solid state with quantum yields of 41%, 21%, and 40%, respectively. White-light remote-phosphors have been prepared just by stacking different combinations of these compounds and [Pt(bzq) (CN) (CN(t)Bu)] (R1) as blue (5, 8), yellow (9), and red (R1) components onto the same substrate. The CCT (correlated color temperature) and the CRI (color rendering index) of the emitted white-light have been tuned by accurately controlling the individual contributions. PMID:27268265

  10. Photoinduced Hydrodefluorination Mechanisms of Perfluorooctanoic Acid by the SiC/Graphene Catalyst.

    Science.gov (United States)

    Huang, Dahong; Yin, Lifeng; Niu, Junfeng

    2016-06-01

    Cleavage of the strong carbon-fluorine bonds is critical for elimination of perfluorooctanoic acid (PFOA) from the environment. In this work, we investigated the decomposition of PFOA with the SiC/graphene catalyst under UV light irradiation. The decomposition rate constant (k) with SiC/graphene was 0.096 h(-1), 2.2 times higher than that with commercial nano-TiO2. Surface fluorination on SiC/graphene was analyzed by X-ray photoelectron spectroscopy (XPS), revealing the conversions of Si-H bonds into Si-F bonds. A different route was found to generate the reactive Si-H bonds on SiC/graphene, substituting for silylium (R3Si(+)) to activate C-F bonds. During the activation process, photogenerated electrons on SiC transfer rapidly to perfluoroalkyl groups by the medium of graphene, further reducing the electron cloud density of C-F bonds to promote the activation. The hydrogen-containing hydrodefluorination intermediates including (CF3(CF2)2CFH, CF3(CF2)3CH2, CF3(CF2)4CH2, and CF3(CF2)4CFHCOOH) were detected to verify the hydrodefluorination process. The photoinduced hydrodefluorination mechanisms of PFOA can be consequently inferred as follows: (1) fluorine atoms in perfluoroalkyl groups were replaced by hydrogen atoms due to the nucleophilic substitution reaction via the Si-H/C-F redistribution, and (2) generation of CH2 carbene from the hydrogen-containing perfluoroalkyl groups and the C-C bonds scission by the Photo-Kolbe decarboxylation reaction under UV light excitation. This photoinduced hydrodefluorination provides insight into the photocatalytic decomposition of perfluorocarboxylic acids (PFCAs) in an aqueous environment. PMID:27128100

  11. Clinical and molecular characteristics of sickle cell anemia in the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    Elisângela Vitória Adorno

    2008-01-01

    Full Text Available Beta S-globin gene (βS-globin haplotypes, markers for severe sickle cell anemia (SCA, and the alpha-thalassemia 2 gene 3.7 kb deletion (-α2(3.7 kb thal along with demographic and clinical data were investigated in SCA outpatients (n = 125, 63 female and 62 male in the Brazilian state of Bahia, which has a high prevalence SCA. PCR-RFLP showed that the Central African Republic/Benin (CAR/BEN, 51.2% haplotype was most frequent, followed by the Benin/Benin (Ben/Ben, 28.8%. At least one CAR haplotype was present in every outpatient with a history of cerebrovascular accident. The Cameroon (Cam, Senegal (Sen and Arab-India haplotypes occurred in small numbers, as did atypical haplotypes. Fetal hemoglobin (HbF, % was unevenly distributed. Compared to those > 18 y, those aged < 18 y had had fewer erythrocyte transfusions and high HbF levels (12.3% ± 7.01 to 7.9% ± 4.36 but a higher frequency of spleen sequestration and pneumonia. Compared with normal α - genes carriers values, the outpatients with -α2(3.7 kb thal (determined by PCR analysis had significantly higher mean hemoglobin concentration (Hb (8.3 ± 1.34 g/dL, p = 0.018 and packed cell volume (PCV = 27.1% ± 4.26, p = 0.019 but low mean corpuscular volume (MCV = 86.1 fL = 10-15 L ± 9.56, p = 0.0004 and mean corpuscular hemoglobin (MCH = 26.6% ± 4.60, p = 0.039.

  12. Stereolability of chiral ruthenium catalysts with frozen NHC ligand conformations investigated by dynamic-HPLC.

    Science.gov (United States)

    Menta, Sergio; Pierini, Marco; Cirilli, Roberto; Grisi, Fabia; Perfetto, Alessandra; Ciogli, Alessia

    2015-10-01

    The stereolability of chiral Hoveyda-Grubbs II type ruthenium complexes bearing N-heterocyclic carbene (NHC) ligands with Syn-phenyl groups on the backbone and Syn- or Anti-oriented o-tolyl N-substituents was studied by resorting to dynamic high-performance liquid chromatography (D-HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti- and two for Syn-complexes) was achieved at very low temperatures (-53°C and -40°C respectively), at which the NHC-Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom (#) ), all derived by rotation around the NHC-Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC-Ru bond. PMID:26250890

  13. HARNESSING THE CHEMISTRY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  14. Activation et transfert de l'oxygène moléculaire catalysés par les complexes des métaux de transition Activation and Tranfer of Molecular Oxygen Catalyzed by Transition Metal Complexes

    Directory of Open Access Journals (Sweden)

    Nimoun H.

    2006-11-01

    Full Text Available Cet article tente de rationaliser les différents processus par lesquels les complexes des métaux de transition permettent d'activer l'oxygène moléculaire et de le transférer sélectivement sur des substrats définis. Après un bref rappel des propriétés de l'oxygène moléculaire et de ses associations possibles avec les métaux, nous distinguons trois voies essentielles par les-quelles l'oxygène peut être activé a Les oxydations catalysées par les complexes de type peroxo dans lesquelles substrat et oxygène sont coordinés ensemble sur le même métal formant intermédiairement un peroxométallocycle. b Les oxydations catalysées par les complexes superoxo dans lesquelles l'attaque du substrat s'effectue sur l'oxygène coordiné au métal. c Les oxydations catalysées par les complexes oxo dans lesquelles ces derniers ont un comportement carbénique. This article attempts to make a rational explanation of the different processes by which transition metal complexes can be used to activate molecular oxygen and selectively transfer it on specific substrates. After a brief review of the properties of molecular oxygen and of its possible associations with metals, a distinction is made between three basic ways of activating oxygen: a Oxidations catalyzed by peroxo-type complexes in which substrate and oxygen are both coordinated on the saure metal forming transiently a peroxometallocycle. b Oxidations catalyzed by superoxo complexes in which the substrate attacks the coordinated oxygen. c Oxidations catalyzed by oxo complexes in which these oxo complexes have a carbenic behavior.

  15. A broadly applicable NHC-Cu-catalyzed approach for efficient, site-, and enantioselective coupling of readily accessible (pinacolato)alkenylboron compounds to allylic phosphates and applications to natural product synthesis.

    Science.gov (United States)

    Gao, Fang; Carr, James L; Hoveyda, Amir H

    2014-02-01

    A set of protocols for catalytic enantioselective allylic substitution (EAS) reactions that allow for additions of alkenyl units to readily accessible allylic electrophiles is disclosed. Transformations afford 1,4-dienes that contain a tertiary carbon stereogenic site and are promoted by 1.0-5.0 mol % of a copper complex of an N-heterocyclic carbene (NHC). Aryl- as well as alkyl-substituted electrophiles bearing a di- or trisubstituted alkene may be employed. Reactions can involve a variety of robust alkenyl-(pinacolatoboron) [alkenyl-B(pin)] compounds that can be either purchased or prepared by various efficient, site-, and/or stereoselective catalytic reactions, such as cross-metathesis or proto-boryl additions to terminal alkynes. Vinyl-, E-, or Z-disubstituted alkenyl-, 1,1-disubstituted alkenyl-, acyclic, or heterocyclic trisubstituted alkenyl groups may be added in up to >98% yield, >98:2 SN2':SN2, and 99:1 enantiomeric ratio (er). NHC-Cu-catalyzed EAS with alkenyl-B(pin) reagents containing a conjugated carboxylic ester or aldehyde group proceed to provide the desired 1,4-diene products in good yield and with high enantioselectivity despite the presence of a sensitive stereogenic tertiary carbon center that could be considered prone to epimerization. In most instances, the alternative approach of utilizing an alkenylmetal reagent (e.g., an Al-based species) represents an incompatible option. The utility of the approach is illustrated through applications to enantioselective synthesis of natural products such as santolina alcohol, semburin, nyasol, heliespirone A, and heliannuol E. PMID:24467274

  16. Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins

    KAUST Repository

    Borguet, Yannick

    2015-01-01

    © The Royal Society of Chemistry. Deprotonation of 1,3-di(2-tolyl)benzimidazolium tetrafluoroborate with a strong base afforded 1,3-di(2-tolyl)benzimidazol-2-ylidene (BTol), which dimerized progressively into the corresponding dibenzotetraazafulvalene. The complexes [RhCl(COD)(BTol)] (COD is 1,5-cyclooctadiene) and cis-[RhCl(CO)2(BTol)] were synthesized to probe the steric and electronic parameters of BTol. Comparison of the percentage of buried volume (%VBur) and of the Tolman electronic parameter (TEP) of BTol with those determined previously for 1,3-dimesitylbenzimidazol-2-ylidene (BMes) revealed that the two N-heterocyclic carbenes displayed similar electron donicities, yet the 2-tolyl substituents took a slightly greater share of the rhodium coordination sphere than the mesityl groups, due to a more pronounced tilt. The anti,anti conformation adopted by BTol in the molecular structure of [RhCl(COD)(BTol)] ensured nonetheless a remarkably unhindered access to the metal center, as evidenced by steric maps. Second-generation ruthenium-benzylidene and isopropoxybenzylidene complexes featuring the BTol ligand were obtained via phosphine exchange from the first generation Grubbs and Hoveyda-Grubbs catalysts, respectively. The atropisomerism of the 2-tolyl substituents within [RuCl2(=CHPh)(PCy3)(BTol)] was investigated by using variable temperature NMR spectroscopy, and the molecular structures of all four possible rotamers of [RuCl2(=CH-o-OiPrC6H4)(BTol)] were determined by X-ray crystallography. Both complexes were highly active at promoting the ring-closing metathesis (RCM) of model α,ω-dienes. The replacement of BMes with BTol was particularly beneficial to achieve the ring-closure of tetrasubstituted cycloalkenes. More specifically, the stable isopropoxybenzylidene chelate enabled an almost quantitative RCM of two challenging substrates, viz., diethyl 2,2-bis(2-methylallyl

  17. Analysis of photoaffinity label derivatives to probe thyroid hormone receptor in human fibroblasts, GH1 cells, and soluble receptor preparations

    International Nuclear Information System (INIS)

    The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-[125I]T3-PAL). On exposure to 254 nm UV light, L-[125I]T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-[125I]T3-PAL. Labeling by L-[125I]rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-[125I]T3 and L-[125I]T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-[125I]T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-[125I]T4-PAL greater than L-[125I]T3-PAL greater than L-[125I]T4 greater than L-[125I]T3. Although L-[125I]T4-PAL has a lower affinity for receptor than L-[125I]T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-[125I]T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-[125I]T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei

  18. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.

    Science.gov (United States)

    Chirik, Paul J

    2015-06-16

    The hydrogenation of alkenes is one of the most impactful reactions catalyzed by homogeneous transition metal complexes finding application in the pharmaceutical, agrochemical, and commodity chemical industries. For decades, catalyst technology has relied on precious metal catalysts supported by strong field ligands to enable highly predictable two-electron redox chemistry that constitutes key bond breaking and forming steps during turnover. Alternative catalysts based on earth abundant transition metals such as iron and cobalt not only offer potential environmental and economic advantages but also provide an opportunity to explore catalysis in a new chemical space. The kinetically and thermodynamically accessible oxidation and spin states may enable new mechanistic pathways, unique substrate scope, or altogether new reactivity. This Account describes my group's efforts over the past decade to develop iron and cobalt catalysts for alkene hydrogenation. Particular emphasis is devoted to the interplay of the electronic structure of the base metal compounds and their catalytic performance. First generation, aryl-substituted pyridine(diimine) iron dinitrogen catalysts exhibited high turnover frequencies at low catalyst loadings and hydrogen pressures for the hydrogenation of unactivated terminal and disubstituted alkenes. Exploration of structure-reactivity relationships established smaller aryl substituents and more electron donating ligands resulted in improved performance. Second generation iron and cobalt catalysts where the imine donors were replaced by N-heterocyclic carbenes resulted in dramatically improved activity and enabled hydrogenation of more challenging unactivated, tri- and tetrasubstituted alkenes. Optimized cobalt catalysts have been discovered that are among the most active homogeneous hydrogenation catalysts known. Synthesis of enantiopure, C1 symmetric pyridine(diimine) cobalt complexes have enabled rare examples of highly enantioselective

  19. Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates.

    Science.gov (United States)

    D'Silva, P. R.; Lala, A. K.

    1999-01-01

    Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent--2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels alpha-lactalbumin as a function of pH (3-7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23-34) and C (86-98) helix of the native structure are extensively labeled. The small beta-domain (40-50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of alpha-lactalbumin, the alpha-domain has a greater degree of persistent structure than the beta-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on

  20. Combined Experimental and Theoretical Study on the Formation of the Elusive 2-Methyl-1-silacycloprop-2-enylidene Molecule under Single Collision Conditions via Reactions of the Silylidyne Radical (SiH; X(2)Π) with Allene (H2CCCH2; X(1)A1) and D4-Allene (D2CCCD2; X(1)A1).

    Science.gov (United States)

    Yang, Tao; Dangi, Beni B; Maksyutenko, Pavlo; Kaiser, Ralf I; Bertels, Luke W; Head-Gordon, Martin

    2015-12-17

    The crossed molecular beam reactions of the ground-state silylidyne radical (SiH; X(2)Π) with allene (H2CCCH2; X(1)A1) and D4-allene (D2CCCD2; X(1)A1) were carried out at collision energies of 30 kJ mol(-1). Electronic structure calculations propose that the reaction of silylidyne with allene has no entrance barrier and is initiated by silylidyne addition to the π electron density of allene either to one carbon atom (C1/C2) or to both carbon atoms simultaneously via indirect (complex forming) reaction dynamics. The initially formed addition complexes isomerize via two distinct reaction pathways, both leading eventually to a cyclic SiC3H5 intermediate. The latter decomposes through a loose exit transition state via an atomic hydrogen loss perpendicularly to the plane of the decomposing complex (sideways scattering) in an overall exoergic reaction (experimentally: -19 ± 13 kJ mol(-1); computationally: -5 ± 3 kJ mol(-1)). This hydrogen loss yields the hitherto elusive 2-methyl-1-silacycloprop-2-enylidene molecule (c-SiC3H4), which can be derived from the closed-shell cyclopropenylidene molecule (c-C3H2) by replacing a hydrogen atom with a methyl group and the carbene carbon atom by the isovalent silicon atom. The synthesis of the 2-methyl-1-silacycloprop-2-enylidene molecule in the bimolecular gas-phase reaction of silylidyne with allene enriches our understanding toward the formation of organosilicon species in the gas phase of the interstellar medium in particular via exoergic reactions of no entrance barrier. This facile route to 2-methyl-1-silacycloprop-2-enylidene via a silylidyne radical reaction with allene opens up a versatile approach to form hitherto poorly characterized silicon-bearing species in extraterrestrial environments; this reaction class might represent the missing link, leading from silicon-bearing radicals via organosilicon chemistry eventually to silicon-carbon-rich interstellar grains even in cold molecular clouds where temperatures are as

  1. Respiratory training and prompting effective discharging of sputum for COPD patients in acute aggravation period%呼吸训练和促进有效排痰应用于急性加重期慢性阻塞性肺疾病患者的效果观察

    Institute of Scientific and Technical Information of China (English)

    张洪; 邱丽清; 陈丽延

    2008-01-01

    Objective To discuss the influence of respiratory training and prompting effective discharging of sputum for chronic obstructive pulmonary disease (COPD) patients in acute aggravation period. Methods 50 patients were randomized into the intervention group and the control group with 25 cases in each group.The intervention group received respiratory training and prompting effective discharging of sputum while the control was only given routine treatment and nursing.The ratio of first second expiration volume to forced vital capacity, oxygen partial pressure (PaO2),carben dioxide partial pressure (PaCO2) ,blood oxygen saturation (SpO2)and the in-hospital days were compared between the two groups. Results The clinical effect in the intervention group was superior to that of the control group with shorter in-hospital days (P<0.01).Conclusion Better results could be obtained by application of respiratory training and prompting effective discharging of sputum for COPD patients in acute aggravation period.%目的 探讨呼吸训练和促进有效排痰对慢性阻塞性肺疾病(COPD)急性加重期患者康复的影响.方法 将50例患者随机分成干预组和对照组各25例,干预组由护士进行呼吸训练和促进有效排痰,对照组按常规进行治疗护理,比较2组患者第1秒用力呼气容积占用力肺活量百分比、氧分压、二氧化碳分压、血氧饱和度及2组患者住院天数.结果 干预组肺功能各项指标显著优于对照组,P<0.05,住院天数缩短,P<0.01. 结论呼吸训练和促进有效排痰对COPD急性加重期患者康复有较好的效果.

  2. Synthesis and evaluation of germanic organometallic compounds as precursors for chemical vapor deposition (CVD) and for obtaining nanoparticles of elemental germanium

    International Nuclear Information System (INIS)

    The interest in the development of materials that have applications in areas such as electronics or biomarkers has affected the synthesis of new compounds based on germanium. This element has two states of common oxidation, +4 and +2, of them, the +2 oxidation state is the least studied and more reactive. Additionally, compounds of germanium (II) have similarities to carbenes in terms Lewis'acid base chemistry. The preparation of compounds of germanium (II) with ligands β-diketiminates has made possible the stabilization of new chemical functionalities and, simultaneously, it has provided interesting thermal properties to develop new methods of preparation of materials with novel properties. The preparation of amides germanium (II) L'Ge (NHPh) [1, L'= {HC (CMeN-2,4,6-Me3C6H2)2}-], L'Ge (4-NHPy) [2], L'Ge (2-NHPy) [3] and LGe(2-NHPy) [4, L = {HC (CMeN-2,6-iPr2C6H3)2]-] are presented, the chemical and structural composition was determined by using techniques such as nuclear magnetic resonance (1H, 13C), elemental analysis, melting point, infrared spectroscopy, X-ray diffraction of single crystal and thermogravimetric analysis (TGA). The TGA has demonstrated that 1-4 experience a thermal decomposition, therefore, these compounds could be considered as potential starting materials for the obtaining of germanium nitride (GeNx). Certainly, the availability of coordinating nitrogen atoms in the chemical composition in 2-4 have been interesting given that it could act as ligands in reactions with transition metal complexes. Thus, relevant information to molecular level could be obtained for some reactions and interactions that have used similar link sites in surface chemistry, for example, the chemical functionalization of silicon and germanium substrate. Additionally, the synthesis and structural characterization of germanium chloride compound (II) LGeCl [5, L' = HC{(CMe) (N-2,6-Me2C6H3)}2-] is reported, which subsequently could be used to

  3. One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups%一步法合成富氧基团石墨烯量子点及光致发光特性

    Institute of Scientific and Technical Information of China (English)

    代云茜; 孙贻白; 龙欢; 柴蕴玲; 孙岳明

    2014-01-01

    To achieve a new type of carbon-based quantum dots with unique photoluminescence PL a simple approach for fabrication of graphene quantum dots GQDs with oxygen-rich groups was developed via the hydrothermal reaction by using graphene oxides GOs as a precursor. Transmission electron microscope TEM and atomic force microscope AFM characterizations confirmed that the sizes and heights of GQDs were 5.02 ±0.92 nm and 0.6 nm respectively.A strong PL emission exhibited unique excitation wavelength dependent features.Also the carbene-like free zigzag edge sites were proposed to be the origin of the strong PL emission.The GQDs were demonstrated to be a superior probe for Fe3+ detection in aqueous solution with a high sensitivity and feasibility due to the special coordinate interaction between Fe3+and the phenolic hydroxyl group at GQDs.%为获得独特的光致发光特性的碳基量子点,以氧化石墨烯( GOs )为前驱物,采用水热反应合成了一类富氧官能团修饰的石墨烯量子点(GQDs).TEM和AFM表征GQDs平均粒径为(5.02±0.92) nm,厚度为0.6 nm.GQDs呈现特有的光致发光峰位随激发波长移动的特性,其光致发光机理来源于量子点边缘的类卡宾zigzag活性位.由于Fe3+与GQDs表面羟基的配位作用使GQDs呈现出对Fe3+离子检测的高灵敏度和快速响应,有望成为高效检测Fe3+离子的新型荧光探针.

  4. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.

    Science.gov (United States)

    Yuan, Jian; Bourgeois, Cheryl J; Rheingold, Arnold L; Hughes, Russell P

    2015-12-01

    -dash]CFRF gives stereospecific cis-addition to give single diastereomers of Cp*Ir(L)(CHFRF)Cl; addition of HCl to several different E/Z ratios of Cp*(L)Ir[double bond, length as m-dash]CFRF affords ratios of diastereomeric products Cp*(L)Ir(CHFRF)Cl identical to the original ratio of starting material isomers. The addition of HCl is therefore demonstrated to be unambiguously regio- and stereo-specific. The observed product regiochemistry of addition of HCl to Ir[double bond, length as m-dash]CF2, Ir[double bond, length as m-dash]CFRF, and Ir[double bond, length as m-dash]C(CF3)2 ligands is the same and is not dependent on the ground state energy preference (singlet or triplet) for the free perfluorocarbene. DFT calculations on model HCl addition reactions indicate that this regiochemistry is strongly preferred thermodynamically, but predict that in H(δ+)-Cl(δ-) addition to Cp(PH3)Ir[double bond, length as m-dash]CF2, H(δ+) attack at Ir has a lower energy transition state, while for Cp(PH3)Ir[double bond, length as m-dash]CFCF3 and Cp(PH3)Ir[double bond, length as m-dash]C(CF3)2, H(δ+) attack at C is the kinetically preferred pathway. The carbene carbon atoms in Ir[double bond, length as m-dash]CFCF3 and Ir[double bond, length as m-dash]C(CF3)2 complexes are unambiguously basic towards HCl, while in the Ir[double bond, length as m-dash]CF2 analogues the carbene carbon is less basic than its Ir partner, and the eventual regiochemistry of HCl addition arises from thermodynamic control. PMID:26211437

  5. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    conditions, it was found that the oxidative dehydrogenation of dibenzylamine to Nbenzylidenebenzylamine, with N-methylmorpholine N-oxide (NMMO), was nearly quantitative (96%) within 24 h. However, the reaction with oxygen was much slower, with only a 52% yield of imine product over the same time period. Moreover, the rate of reaction was found to be influenced by the nature of the amine N-oxide. For example, the use of the weakly basic pyridine N-oxide (PyNO) led to an imine yield of only 6% after 24 h. A comparison of amine N-oxide and O2 was also examined in the oxidation of PhCH{sub 2}OH to PhCHO catalyzed by bulk gold. In this reaction, a 52% yield of the aldehyde was achieved when NMMO was used, while only a 7% product yield was afforded when O{sub 2} was the oxidant after 48 h. The bulk gold-catalyzed oxidative dehydrogenation of cyclic amines generates amidines, which upon treatment with Aerosil and water were found to undergo hydrolysis to produce lactams. Moreover, 5-, 6-, and 7-membered lactams could be prepared through a one-pot reaction of cyclic amines by treatment with oxygen, water, bulk gold, and Aerosil. This method is much more atom economical than industrial processes, does not require corrosive acids, and does not generate undesired byproducts. Additionally, the gold and Aerosil catalysts can be readily separated from the reaction mixture. The second project involved studying iron(III) tetraphenylporphyrin chloride, Fe(TPP)Cl, as a homogeneous catalyst for the generation of carbenes from diazo reagents and their reaction with heteroatom compounds. Fe(TPP)Cl, efficiently catalyzed the insertion of carbenes derived from methyl 2-phenyldiazoacetates into O-H bonds of aliphatic and aromatic alcohols. Fe(TPP)Cl was also found to be an effective catalyst for tandem N-H and O-H insertion/cyclization reactions when 1,2-diamines and 1,2-alcoholamines were treated with diazo reagents. This approach provides a one-pot process for synthesizing piperazinones and

  6. Computational Insights into the Central Role of Nonbonding Interactions in Modern Covalent Organocatalysis.

    Science.gov (United States)

    Walden, Daniel M; Ogba, O Maduka; Johnston, Ryne C; Cheong, Paul Ha-Yeon

    2016-06-21

    The flexibility, complexity, and size of contemporary organocatalytic transformations pose interesting and powerful opportunities to computational and experimental chemists alike. In this Account, we disclose our recent computational investigations of three branches of organocatalysis in which nonbonding interactions, such as C-H···O/N interactions, play a crucial role in the organization of transition states, catalysis, and selectivity. We begin with two examples of N-heterocyclic carbene (NHC) catalysis, both collaborations with the Scheidt laboratory at Northwestern. In the first example, we discuss the discovery of an unusual diverging mechanism in a catalytic kinetic resolution of a dynamic racemate that depends on the stereochemistry of the product being formed. Specifically, the major product is formed through a concerted asynchronous [2 + 2] aldol-lactonization, while the minor products come from a stepwise spiro-lactonization pathway. Stereoselectivity and catalysis are the results of electrophilic activation from C-H···O interactions between the catalyst and the substrate and conjugative stabilization of the electrophile. In the second example, we show how knowledge and understanding of the computed transition states led to the development of a more enantioselective NHC catalyst for the butyrolactonization of acyl phosphonates. The identification of mutually exclusive C-H···O interactions in the computed major and minor TSs directly resulted in structural hypotheses that would lead to targeted destabilization of the minor TS, leading to enhanced stereoinduction. Synthesis and evaluation of the newly designed NHC catalyst validated our hypotheses. Next, we discuss two works related to Lewis base catalysis involving 4-dimethylaminopyridine (DMAP) and its derivatives. In the first, we discuss our collaboration with the Smith laboratory at St Andrews, in which we discovered the origins of the regioselectivity in carboxyl transfer reactions. We

  7. B═B and B≡E (E = N and o) multiple bonds in the coordination sphere of late transition metals.

    Science.gov (United States)

    Brand, Johannes; Braunschweig, Holger; Sen, Sakya S

    2014-01-21

    diborene (RB═BR) moiety, a bonding motif that thus far had only been accessible when stabilized by N-heterocyclic carbenes (NHCs). In the new π-diborene [(Et3P)2Pt(B2Dur2)] (Dur = 2,3,5,6-Me4-C6H) complex, the diborene ligand receives electron density from Pt, leading to a strong Pt-B bond and a B═B bond. We attribute this result to the very short B═B bond distance (1.51(2) Å) while coordinated to platinum. Overall, an increasing number of chemists are examining the chemistry of multiply bound boron compounds. The isolation of an oxoboryl complex is of special interest not only from a structural standpoint but also because of its orbital similarities to the ubiquitous CO ligand. Detailed computational studies of the π-diborene complex [(Et3P)2Pt(B2Dur2)] show that the bonding properties of this molecule violate the widely accepted Dewar-Chatt-Duncanson (DCD) bonding model. PMID:23952302

  8. Regeneration of ammonia borane spent fuel

    International Nuclear Information System (INIS)

    carbene catalyst dehydrogenation. In this cycle, the PB is digested with benzenedithiol to yield two products which can both be converted to AB using Bu3SnH and BU2SnH2 as reductants. However, in a real world situation the process becomes more complicated for several reasons. Bu2SnH2 is thermally unstable and therefore not viable in a process scale operation. This has led to the development of Bu3SnH as the sole reductant although this requires an additional amine exchange step in order to facilitate the reduction to an amine-borane which can then be converted to AB. The tin by-products also need to be recycled in order to maximize the overall energy efficiency and therefore minimize the overall cost of the process. In addition, on an industrial scale, the mass of the tin reductant generates significant cost due to the manipulation of the relatively large quantities involved so reducing the mass at this stage would be of vast significance. We will discuss further developments made to the tin recycle component of the cycle (including methods to minimize tin usage) and investigate new methods of reduction of the digested products, primarily focusing on lighter reductants, including lighter analogs of Bu2SnH2 and Bu3SnH. These advances will have a significant impact on the cost of production and therefore the viability of AB as a fuel. Minimization of tin reagents and their recycle will contribute to reduction of the overall cost of AB regeneration and all stages of AB regeneration have been demonstrated.

  9. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guodong Du

    2004-12-19

    products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of {alpha}-ketols to {alpha}-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  10. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao

    2012-01-01

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  11. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion.

    Science.gov (United States)

    Dhayal, Rajendra S; van Zyl, Werner E; Liu, C W

    2016-01-19

    Metal hydride clusters have historically been studied to unravel their aesthetically pleasing molecular structures and interesting properties, especially toward hydrogen related applications. Central to this work is the hydride ligand, H¯, the smallest closed-shell spherical anion known. Two new developments in polyhydrido nanocluster chemistry include the determination of heretofore unknown hydride coordination modes and novel structural constructs, and conversion from the molecular entities to rhombus-shaped copper nanoparticles (CuNPs). These advances, together with hydrogen evolution and catalysis, have provided both experimentalists and theorists with a rich scientific directive to further explore. The isolation of hexameric [{(Ph3P)CuH}6] (Stryker reagent) could be regarded as the springboard for the recent emergence of polyhydrido copper cluster chemistry due to its utilization in a variety of organic chemical transformations. The stability of clusters of various nuclearity was improved through phosphine, pyridine, and carbene type ligands. Our focus lies with the isolation of novel copper (poly)hydride clusters using mostly the phosphor-1,1-dithiolato type ligands. We found such chalcogen-stabilized clusters to be exceptionally air and moisture stable over a wide range of nuclearities (Cu7 to Cu32). In this Account, we (i) report on state-of-the-art copper hydride cluster chemistry, especially with regards to the diverse and novel structural types generally, and newly discovered hydride coordination modes in particular, (ii) demonstrate the indispensable power of neutron diffraction for the unambiguous assignment and location of hydride ligand(s) within a cluster, and (iii) prove unique transformations that can occur not only between well characterized high nuclearity clusters, but also how such clusters can transform to uniquely shaped nanoparticles of several nanometers in diameter through copper hydride reduction. The increase in the number of low- to

  12. Bonding, Luminescence, Metallophilicity in Linear Au3 and Au2Ag Chains Stabilized by Rigid Diphosphanyl NHC Ligands.

    Science.gov (United States)

    Ai, Pengfei; Mauro, Matteo; Gourlaouen, Christophe; Carrara, Serena; De Cola, Luisa; Tobon, Yeny; Giovanella, Umberto; Botta, Chiara; Danopoulos, Andreas A; Braunstein, Pierre

    2016-09-01

    The heterofunctional and rigid ligand N,N'-diphosphanyl-imidazol-2-ylidene (PCNHCP; P = P(t-Bu)2), through its phosphorus and two N-heterocyclic carbene (NHC) donors, stabilizes trinuclear chain complexes, with either Au3 or AgAu2 cores, and dinuclear Au2 complexes. The two oppositely situated PCNHCP (L) ligands that "sandwich" the metal chain can support linear and rigid structures, as found in the known tricationic Au(I) complex [Au3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 (OTf = CF3SO3; [Au3L2](OTf)3; Chem. Commun. 2014, 50, 103-105) now also obtained by transmetalation from [Ag3(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Ag3L2](OTf)3), or in the mixed-metal tricationic [Au2Ag(μ3-PCNHCP,κP,κCNHC,κP)2](OTf)3 ([Au2AgL2](OTf)3). The latter was obtained stepwise by the addition of AgOTf to the digold(I) complex [Au2(μ2-PCNHCP,κP,κCNHC)2](OTf)2 ([Au2L2](OTf)2). The latter contains two dangling P donors and displays fluxional behavior in solution, and the Au···Au separation of 2.8320(6) Å in the solid state is consistent with metallophilic interactions. In the solvento complex [Au3Cl2(tht)(μ3-PCNHCP,κP,κCNHC,κP)](OTf)·MeCN ([Au3Cl2(tht)L](OTf)·MeCN), which contains only one L and one tht ligand (tht = tetrahydrothiophene), the metal chain is bent (148.94(2)°), and the longer Au···Au separation (2.9710(4) Å) is in line with relaxation of the rigidity due to a more "open" structure. Similar features were observed in [Au3Cl2(SMe2)L](OTf)·2MeCN. A detailed study of the emission properties of [Au3L2](OTf)3, [Au3Cl2(tht)L](OTf)·MeCN, [Au2L2](OTf)2, and [Au2AgL2](OTf)3 was performed by means of steady state and time-resolved photophysical techniques. The complex [Au3L2](OTf)3 displays a bright (photoluminescence quantum yield = 80%) and narrow emission band centered at 446 nm with a relatively small Stokes' shift and long-lived excited-state lifetime on the microsecond timescale, both in solution and in the solid state. In line with the very narrow emission

  13. Main Group Element Chemistry in Service of Hydrogen Storage and Activation. Final report

    International Nuclear Information System (INIS)

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an 'endless' hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular weight

  14. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Energy Technology Data Exchange (ETDEWEB)

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  15. Final Report: Main Group Element Chemistry in Service of Hydrogen Storage and Activation

    Energy Technology Data Exchange (ETDEWEB)

    David A. Dixon; Anthony J. Arduengo, III

    2010-09-30

    goal was met in terms of reducing the number of costly experiments and helping to focus the experimental effort on the potentially optimal targets. We have used computational chemistry approaches to predict the thermodynamic properties of a wide range of compounds containing boron, nitrogen, hydrogen, and other elements as appropriate including carbon. These calculations were done in most cases with high level molecular orbital theory methods that have small error bars on the order of ± 1 to 2 kcal/mol. The results were used to benchmark more approximate methods such as density functional theory for larger systems and for database development. We predicted reliable thermodynamics for thousands of compounds for release and regeneration schemes to aid/guide materials design and process design and simulation. These are the first reliable computed values for these compounds and for many represent the only available values. Overall, the computational results have provided us with new insights into the chemistry of main group and organic-base chemical hydrogen systems from the release of hydrogen to the regeneration of spent fuel. A number of experimental accomplishments were also made in this project. The experimental work on hydrogen storage materials centered on activated polarized σ- or π-bonded frameworks that hold the potential for ready dihydrogen activation, uptake, and eventually release. To this end, a large number of non-traditional valence systems including carbenes, cyanocarbons, and C-B and and B-N systems were synthesized and examined. During the course of these studies an important lead arose from the novel valency of a class of stable organic singlet bi-radical systems. A synthetic strategy to an “endless” hydrogen storage polymer has been developed based on our cyanocarbon chemistry. A key issue with the synthetic efforts was being able to link the kinetics of release with the size of the substituents as it was difficult to develop a low molecular

  16. Organometallic and Bioorganometallic Chemistry - Ferrocene and Metal Carbonyls

    Directory of Open Access Journals (Sweden)

    Čakić Semenčić, M.

    2011-02-01

    Full Text Available Organometallic chemistry deals with compounds containing metal-carbon bonds. Basic organometallics derived from the s- and p-block metals (containing solely σ-bonds were understood earlier, while organometallic chemistry of the d- and f-block has developed much more recently. These compounds are characterized by three types of M-C bonds (σ, π and δand their structures are impossible to deduce by chemical means alone; fundamental advances had to await the development of X-ray diffraction, as well as IR- and NMR-spectroscopy. On the other hand, elucidation of the structure of e. g. vitamin B12 and ferrocene (discovered in 1951 contributed to progress in these instrumental analytical methods, influencing further phenomenal success of transition-metal organometallic chemistry in the second half of the twentieth century. The most thoroughly explored fields of application of organometallics were in the area of catalysis, asymmetric synthesis, olefin metathesis, as well as organic synthesis and access to new materials and polymers.The most usual ligands bound to d- and f-metals are carbon monoxide, phosphines, alkyls, carbenes and arenes, and in this review the bonding patterns in the metal carbonyls and ferrocene are elaborated. The common characteristics of these two classes are two-component bonds. The CO-M bonds include (i donation from ligand HOMO to vacant M d-orbitals (σ-bond, and (ii back-donation from the filled M d-orbitals in the ligand LUMO (π-bond. Similar (but much more complicated ferrocene contains delocalized bonds consisting of electron donation from Cp to Fe (σ-bonds- and π-bonding and δ-back-bonding from metal to Cp. In such a way ferrocene, i. e. (η5-Cp2Fe contains 18 bonding electrons giving to this compound "superaromatic" properties in the sense of stability and electrophilic substitution. In contrast to benzenoid aromatic compounds reactions in two Cp-rings can occur giving homo- and heteroannularly mono-, two-… per

  17. Regeneration of ammonia borane spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew David [Los Alamos National Laboratory; Davis, Benjamin L [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory

    2009-01-01

    , polyborazylene (PB) which can be obtained readily from the decomposition of borazine or from nickel carbene catalyst dehydrogenation. In this cycle, the PB is digested with benzenedithiol to yield two products which can both be converted to AB using Bu{sub 3}SnH and BU{sub 2}SnH{sub 2} as reductants. However, in a real world situation the process becomes more complicated for several reasons. Bu{sub 2}SnH{sub 2} is thermally unstable and therefore not viable in a process scale operation. This has led to the development of Bu{sub 3}SnH as the sole reductant although this requires an additional amine exchange step in order to facilitate the reduction to an amine-borane which can then be converted to AB. The tin by-products also need to be recycled in order to maximize the overall energy efficiency and therefore minimize the overall cost of the process. In addition, on an industrial scale, the mass of the tin reductant generates significant cost due to the manipulation of the relatively large quantities involved so reducing the mass at this stage would be of vast significance. We will discuss further developments made to the tin recycle component of the cycle (including methods to minimize tin usage) and investigate new methods of reduction of the digested products, primarily focusing on lighter reductants, including lighter analogs of Bu{sub 2}SnH{sub 2} and Bu{sub 3}SnH. These advances will have a significant impact on the cost of production and therefore the viability of AB as a fuel. Minimization of tin reagents and their recycle will contribute to reduction of the overall cost of AB regeneration and all stages of AB regeneration have been demonstrated.

  18. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    Science.gov (United States)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton