WorldWideScience

Sample records for carbazole degrader pseudomonas

  1. Degradation of carbazole, dibenzothiophene, and dibenzofuran at low temperature by Pseudomonas sp. strain C3211.

    Science.gov (United States)

    Jensen, Anne-Mette; Finster, Kai Waldemar; Karlson, Ulrich

    2003-04-01

    Pseudomonas sp. strain C3211 was isolated from a temperate climate soil contaminated with creosote. This strain was able to degrade carbazole, dibenzothiophene and dibenzofuran at 10 degrees C with acetone as a co-substrate. When dibenzothiophene was degraded by strain C3211, an orange compound, which absorbed at 472 nm, accumulated in the medium. Degradation of dibenzofuran was followed by accumulation of a yellowish compound, absorbing at 462 nm. The temperature optimum of strain C3211 for degradation of dibenzothiophene and dibenzofuran was at 20 to 21 degrees C, while the maximum temperature for degradation was at 27 degrees C. Both compounds were degraded at 4 degrees C. Degradation at 10 degrees C was faster than degradation at 25 degrees C. This indicates that strain C3211 is adapted to life at low temperatures.

  2. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  3. Combined ultrasound/ozone degradation of carbazole in APG{sub 1214} surfactant solution

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Guodong, E-mail: jiguodong@iee.pku.edu.cn [Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Zhang, Baolong; Wu, Yingchao [Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer We first describe the role of US/O{sub 3} in promoting carbazole degradation in APG{sub 1214} solution. Black-Right-Pointing-Pointer 20 W ultrasound for 30 min improves the effectiveness of carbazole ozonolysis by 5-10%. Black-Right-Pointing-Pointer 40 W or 80 W only plays a role in promoting degradation of carbazole in the first 5 min. Black-Right-Pointing-Pointer The content of {center_dot}OH radical is inversely proportional to the ultrasound power. Black-Right-Pointing-Pointer Absolute value of zeta potential of APG{sub 1214} micelles is inversely proportional to US power. - Abstract: We examined the effects of power and treatment time on the ultrasonically enhanced ozonation of carbazole dissolved in APG{sub 1214} surfactant solutions, including an analysis of the mechanism of {center_dot}OH radical formation, the zeta potential of the colloidal suspension, the influence of ultrasound on micellar morphology, and the degradation kinetics for carbazole and APG{sub 1214}. A 30 min ultrasound treatment at 28 kHz and 20 W improved the degradation of carbazole by 5-10%, while power levels of 40 W and 80 W provided improvements only during the first 5 min and resulted in reduced degradation after 15 min. The {center_dot}OH concentration was inversely proportional to ultrasound power, and directly proportional to the irradiation time. The absolute value of the APG{sub 1214} micelle zeta potential was inversely proportional to power and decreased with increasing irradiation time. The relationships of {center_dot}OH radical concentration in APG{sub 1214} micelles, the zeta potential, and the micellar dynamic radius (R{sub h}) to ultrasonic power and time are the key factors affecting carbazole degradation in this system.

  4. Combined ultrasound/ozone degradation of carbazole in APG1214 surfactant solution

    International Nuclear Information System (INIS)

    Ji, Guodong; Zhang, Baolong; Wu, Yingchao

    2012-01-01

    Highlights: ► We first describe the role of US/O 3 in promoting carbazole degradation in APG 1214 solution. ► 20 W ultrasound for 30 min improves the effectiveness of carbazole ozonolysis by 5–10%. ► 40 W or 80 W only plays a role in promoting degradation of carbazole in the first 5 min. ► The content of ·OH radical is inversely proportional to the ultrasound power. ► Absolute value of zeta potential of APG 1214 micelles is inversely proportional to US power. - Abstract: We examined the effects of power and treatment time on the ultrasonically enhanced ozonation of carbazole dissolved in APG 1214 surfactant solutions, including an analysis of the mechanism of ·OH radical formation, the zeta potential of the colloidal suspension, the influence of ultrasound on micellar morphology, and the degradation kinetics for carbazole and APG 1214 . A 30 min ultrasound treatment at 28 kHz and 20 W improved the degradation of carbazole by 5–10%, while power levels of 40 W and 80 W provided improvements only during the first 5 min and resulted in reduced degradation after 15 min. The ·OH concentration was inversely proportional to ultrasound power, and directly proportional to the irradiation time. The absolute value of the APG 1214 micelle zeta potential was inversely proportional to power and decreased with increasing irradiation time. The relationships of ·OH radical concentration in APG 1214 micelles, the zeta potential, and the micellar dynamic radius (R h ) to ultrasonic power and time are the key factors affecting carbazole degradation in this system.

  5. Advances of naphthalene degradation in Pseudomonas putida ND6

    Science.gov (United States)

    Song, Fu; Shi, Yifei; Jia, Shiru; Tan, Zhilei; Zhao, Huabing

    2018-03-01

    Naphthalene is one of the most common and simple polycyclic aromatic hydrocarbons. Degradation of naphthalene has been greatly concerned due to its economic, free-pollution and its fine effect in Pseudomonas putida ND6. This review summarizes the development history of naphthalene degradation, the research progress of naphthalene degrading gene and naphthalene degradation pathway of Pseudomonas putida ND6, and the researching path of this strain. Although the study of naphthalene degradation is not consummate in Pseudomonas putida ND6, there is a potential capability for Pseudomonas putida ND6 to degrade the naphthalene in the further research.

  6. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    Science.gov (United States)

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. Copyright © 2016. Published by Elsevier Editora Ltda.

  7. Degradation of aromatic compounds by Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    Dluhy, M. (Slovak Technical Univ., Bratislavia (Slovenia). Dept. of Chemical and Biochemical Engineering); Sefcik, J. (Slovak Technical Univ., Bratislavia (Slovenia). Dept. of Chemical and Biochemical Engineering); Bales, V. (Slovak Technical Univ., Bratislavia (Slovenia). Dept. of Chemical and Biochemical Engineering)

    1993-01-01

    The influence of different process kinetics on the course of phenol degradation has been studied as well as the influence of axial dispersion in the liquid phase on the reactor height with relatively large biofilm thickness in a conventional fluidized bed and air-lift bioreactor. The object of this was to achieve a high conversion of substrate in a device of real size in real process time. For calculating the mathematical model, the method of orthogonal collocation with the STIFF integration routine has been used. (orig.)

  8. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  9. Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials

    KAUST Repository

    Hong, Minki

    2016-07-25

    We investigate the dissociation mechanism of the C-N bond between carbazole and dibenzothiophene in carbazole-dibenzothiophene (Cz-DBT) positional isomers, selected as representative systems for blue host materials in organic light-emitting diodes (OLEDs). The C-N bond dissociation energies, calculated at the density functional theory level, are found to depend strongly on the charge states of the parental molecules. In particular, the anionic C-N bond dissociations resulting in a carbazole anion can have low dissociation energies (∼1.6 eV) with respect to blue emission energy. These low values are attributed to the large electron affinity of the carbazole radical, a feature that importantly can be modulated via substitution. Substitution also impacts the energies of the first excited electronic states of the Cz-DBT molecules since these states have an intramolecular charge-transfer nature due to the spatially localized character of the frontier molecular orbitals within the carbazole moiety (for the HOMO) and the dibenzothiophene moiety (for the LUMO). The implications of these results must be considered when designing blue OLED hosts since these materials must combine chemical stability and high triplet energy. © 2016 American Chemical Society.

  10. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida.

    Science.gov (United States)

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2015-01-01

    The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.

  11. Aflatoxin B1 Degradation by a Pseudomonas Strain

    Directory of Open Access Journals (Sweden)

    Lancine Sangare

    2014-10-01

    Full Text Available Aflatoxin B1 (AFB1, one of the most potent naturally occurring mutagens and carcinogens, causes significant threats to the food industry and animal production. In this study, 25 bacteria isolates were collected from grain kernels and soils displaying AFB1 reduction activity. Based on its degradation effectiveness, isolate N17-1 was selected for further characterization and identified as Pseudomonas aeruginosa. P. aeruginosa N17-1 could degrade AFB1, AFB2 and AFM1 by 82.8%, 46.8% and 31.9% after incubation in Nutrient Broth (NB medium at 37 °C for 72 h, respectively. The culture supernatant of isolate N17-1 degraded AFB1 effectively, whereas the viable cells and intra cell extracts were far less effective. Factors influencing AFB1 degradation by the culture supernatant were investigated. Maximum degradation was observed at 55 °C. Ions Mn2+ and Cu2+ were activators for AFB1 degradation, however, ions Mg2+, Li+, Zn2+, Se2+, Fe3+ were strong inhibitors. Treatments with proteinase K and proteinase K plus SDS significantly reduced the degradation activity of the culture supernatant. No degradation products were observed based on preliminary LC-QTOF/MS analysis, indicating AFB1 was metabolized to degradation products with chemical properties different from that of AFB1. The results indicated that the degradation of AFB1 by P. aeruginosa N17-1 was enzymatic and could have a great potential in industrial applications. This is the first report indicating that the isolate of P. aeruginosa possesses the ability to degrade aflatoxin.

  12. Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012.

    Science.gov (United States)

    Hu, Jun; Zhang, Li L; Chen, Jian M; Liu, Yu

    2013-01-01

    Pseudomonas aeruginosa strain HJ1012 was isolated on paracetamol as a sole carbon and energy source. This organism could completely degrade paracetamol as high as 2200 mg/L. Following paracetamol consumption, a CO₂ yield rate up to 71.4% proved that the loss of paracetamol was mainly via mineralization. Haldane's equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.201 g-Paracetamol/g-VSS·h and 0.101 mg of biomass yield/mg of paracetamol consumed, respectively. A total of 8 metabolic intermediates was identified and classified into aromatic compounds, carboxylic acids, and inorganic species (nitrite and nitrate ions). P-aminophenol and hydroquinone are the two key metabolites of the initial steps in the paracetamol catabolic pathway. Paracetamol is degraded predominantly via p-aminophenol to hydroquinone with subsequent ring fission, suggesting partially new pathways for paracetamol-degrading bacteria.

  13. Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, L B; Ilori, M O; Amund, O O; Numata, M; Horisaki, T; Nojiri, H

    2014-01-01

    Four bacterial strains isolated from hydrocarbon-contaminated soils in Lagos, Nigeria, displayed extensive degradation abilities on carbazole, an N-heterocyclic aromatic hydrocarbon. Physicochemical analyses of the sampling sites (ACPP, MWO, NESU) indicate gross pollution of the soils with a high hydrocarbon content (157,067.9 mg/kg) and presence of heavy metals. Phylogenetic analysis of the four strains indicated that they were identified as Achromobacter sp. strain SL1, Pseudomonas sp. strain SL4, Microbacterium esteraromaticum strain SL6, and Stenotrophomonas maltophilia strain BA. The rates of degradation of carbazole by the four isolates during 30 days of incubation were 0.057, 0.062, 0.036, and 0.050 mg L(-1) h(-1) for strains SL1, SL4, SL6, and BA. Gas chromatographic (GC) analyses of residual carbazole after 30 days of incubation revealed that 81.3, 85, 64.4, and 76 % of 50 mg l(-1) carbazole were degraded by strains SL1, SL4, SL6, and BA, respectively. GC-mass spectrometry and high-performance liquid chromatographic analyses of the extracts from the growing and resting cells of strains SL1, SL4, and SL6 cultured on carbazole showed detection of anthranilic acid and catechol while these metabolites were not detected in strain BA under the same conditions. This study has established for the first time carbazole angular dioxygenation and mineralization by isolates from African environment.

  14. Effect of Substituents on the Electronic Structure and Degradation Process in Carbazole Derivatives for Blue OLED Host Materials

    KAUST Repository

    Hong, Minki; Ravva, Mahesh Kumar; Winget, Paul; Bredas, Jean-Luc

    2016-01-01

    (OLEDs). The C-N bond dissociation energies, calculated at the density functional theory level, are found to depend strongly on the charge states of the parental molecules. In particular, the anionic C-N bond dissociations resulting in a carbazole anion

  15. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.

    Science.gov (United States)

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che

    2008-08-01

    Modeling of cometabolic kinetics is important for better understanding of degradation reaction and in situ application of bio-remediation. In this study, a model incorporated cell growth and decay, loss of transformation activity, competitive inhibition between growth substrate and non-growth substrate and self-inhibition of non-growth substrate was proposed to simulate the degradation kinetics of phenol and trichloroethylene (TCE) by Pseudomonas putida. All the intrinsic parameters employed in this study were measured independently, and were then used for predicting the batch experimental data. The model predictions conformed well to the observed data at different phenol and TCE concentrations. At low TCE concentrations (TCE concentrations (>6 mg l(-1)), only the model considering self-inhibition can describe the experimental data, suggesting that a self-inhibition of TCE was present in the system. The proposed model was also employed in predicting the experimental data conducted in a repeated batch reactor, and good agreements were observed between model predictions and experimental data. The results also indicated that the biomass loss in the degradation of TCE below 2 mg l(-1) can be totally recovered in the absence of TCE for the next cycle, and it could be used for the next batch experiment for the degradation of phenol and TCE. However, for higher concentration of TCE (>6 mg l(-1)), the recovery of biomass may not be as good as that at lower TCE concentrations.

  16. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  17. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  18. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges.

    Science.gov (United States)

    Wilkes, R A; Aristilde, L

    2017-09-01

    Synthetic plastics, which are widely present in materials of everyday use, are ubiquitous and slowly-degrading polymers in environmental wastes. Of special interest are the capabilities of microorganisms to accelerate their degradation. Members of the metabolically diverse genus Pseudomonas are of particular interest due to their capabilities to degrade and metabolize synthetic plastics. Pseudomonas species isolated from environmental matrices have been identified to degrade polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane, polyethylene terephthalate, polyethylene succinate, polyethylene glycol and polyvinyl alcohol at varying degrees of efficiency. Here, we present a review of the current knowledge on the factors that control the ability of Pseudomonas sp. to process these different plastic polymers and their by-products. These factors include cell surface attachment within biofilms, catalytic enzymes involved in oxidation or hydrolysis of the plastic polymer, metabolic pathways responsible for uptake and assimilation of plastic fragments and chemical factors that are advantageous or inhibitory to the biodegradation process. We also highlight future research directions required in order to harness fully the capabilities of Pseudomonas sp. in bioremediation strategies towards eliminating plastic wastes. © 2017 The Society for Applied Microbiology.

  19. Anaerobic degradation of long-chain alkylamines by a denitrifying Pseudomonas stutzeri

    NARCIS (Netherlands)

    Nguyen, P.D.; Ginkel, van C.G.; Plugge, C.M.

    2008-01-01

    The anaerobic degradation of tetradecylamine and other long-chain alkylamines by a newly isolated denitrifying bacterium was studied. Strain ZN6 was isolated from a mixture of soil and active sludge and was identified as representing Pseudomonas stutzeri, based on partial 16S rRNA gene sequence

  20. Catabolite repression and nitrogen control of allantoin-degrading enzymes in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, D.B.; Drift, C. van der

    1983-01-01

    The formation of the allantoin-degrading enzymes allantoinase, allantoicase and ureidoglycolase in Pseudomonas aeruginosa was found to be regulated by induction, catabolite repression and nitrogen control. Induction was observed when urate, allantoin or allantoate were included in the growth medium,

  1. Physiological and biochemical characterization of a novel nicotine-degrading bacterium Pseudomonas geniculata N1.

    Directory of Open Access Journals (Sweden)

    Yanghui Liu

    Full Text Available Management of solid wastes with high nicotine content, such as those accumulated during tobacco manufacturing, poses a major challenge, which can be addressed by using bacteria such as Pseudomonas and Arthrobacter. In this study, a new species of Pseudomonas geniculata, namely strain N1, which is capable of efficiently degrading nicotine, was isolated and identified. The optimal growth conditions for strain N1 are a temperature of 30°C, and a pH 6.5, at a rotation rate of 120 rpm min(-1 with 1 g l(-1 nicotine as the sole source of carbon and nitrogen. Myosmine, cotinine, 6-hydroxynicotine, 6-hydroxy-N-methylmyosmine, and 6-hydroxy-pseudooxynicotine were detected as the five intermediates through gas chromatography-mass and liquid chromatography-mass analyses. The identified metabolites were different from those generated by Pseudomonas putida strains. The analysis also highlighted the bacterial metabolic diversity in relation to nicotine degradation by different Pseudomonas strains.

  2. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  3. Draft genome sequence of a caprolactam degrader bacterium: Pseudomonas taiwanensis strain SJ9

    Directory of Open Access Journals (Sweden)

    Sung-Jun Hong

    Full Text Available Abstract Pseudomonas taiwanensis strain SJ9 is a caprolactam degrader, isolated from industrial wastewater in South Korea and considered to have the potential for caprolactam bioremediation. The genome of this strain is approximately 6.2 Mb (G + C content, 61.75% with 6,010 protein-coding sequences (CDS, of which 46% are assigned to recognized functional genes. This draft genome of strain SJ9 will provide insights into the genetic basis of its caprolactam-degradation ability.

  4. Characterization of cefalexin degradation capabilities of two Pseudomonas strains isolated from activated sludge.

    Science.gov (United States)

    Lin, Bokun; Lyu, Jinling; Lyu, Xian-jin; Yu, Han-qing; Hu, Zhong; Lam, James C W; Lam, Paul K S

    2015-01-23

    Pharmaceuticals have recently been regarded as contaminants of emerging concern. To date, there is limited knowledge about antibiotic-degrading microorganisms in conventional activated sludge treatment systems and their characteristics toward antibiotic degradation especially in the presence of a pharmaceutical mixture. As such, antibiotic-degrading microorganisms were investigated and isolated from the activated sludge, and their degradation capabilities were evaluated. Two strains of cefalexin-degrading bacteria CE21 and CE22 were isolated and identified as Pseudomonas sp. in the collected activated sludge. Strain CE22 was able to degrade over 90% of cefalexin, while CE21 was able to remove 46.7% of cefalexin after incubation for 24h. The removal efficiency of cefalexin by CE22, different from that of CE21, was not significantly affected by an increase in cefalexin concentration, even up to 10ppm, however the presence of 1ppm of other pharmaceuticals had a significant effect on the degradation of cefalexin by CE22, but no significant effect on CE21. The degradation product of cefalexin by the two strains was identified to be 2-hydroxy-3-phenyl pyrazine. Our results also indicated that CE21 and CE22 were able to degrade caffeine, salicylic acid and chloramphenicol. Moreover, CE21 was found to be capable of eliminating sulfamethoxazole and naproxen. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].

    Science.gov (United States)

    Liu, Wen-Chao; Wu, Bin-Bin; Li, Xiao-Sen; Lu, Dian-Nan; Liu, Yong-Min

    2015-02-01

    Abstract: A naphthalene-degrading bacterium (referred as HD-5) was isolated from the diesel-contaminated soil and was assigned to Pseudomonas aeruginosa according to 16S rDNA sequences analysis. Gene nah, which encodes naphthalene dioxygenase, was identified from strain HD-5 by PCR amplification. Different bioremediation approaches, including nature attenuation, bioaugmentation with strain Pseudomonas aeruginosa, biostimulation, and an integrated degradation by bioaugmentation and biostimulation, were evaluated for their effectiveness in the remediating soil containing 5% naphthalene. The degradation rates of naphthalene in the soil were compared among the different bioremediation approaches, the FDA and dehydrogenase activity in bioremediation process were measured, and the gene copy number of 16S rRNA and nah in soil were dynamically monitored using real-time PCR. It was shown that the naphthalene removal rate reached 71.94%, 62.22% and 83.14% in approaches of bioaugmentation (B), biostimulation(S) and integrated degradation composed of bioaugmentation and biostimulation (BS), respectively. The highest removal rate of naphthalene was achieved by using BS protocol, which also gives the highest FDA and dehydrogenase activity. The gene copy number of 16S rRNA and nah in soil increased by about 2.67 x 10(11) g(-1) and 8.67 x 10(8) g(-1) after 31 days treatment using BS protocol. Above-mentioned results also demonstrated that the screened bacterium, Pseudomonas aeruginosa, could grow well in naphthalene-contaminated soil and effectively degrade naphthalene, which is of fundamental importance for bioremediation of naphthalene-contaminated soil.

  6. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    Science.gov (United States)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  7. The Regulation of para-Nitrophenol Degradation in Pseudomonas putida DLL-E4.

    Directory of Open Access Journals (Sweden)

    Qiongzhen Chen

    Full Text Available Pseudomonas putida DLL-E4 can efficiently degrade para-nitrophenol and its intermediate metabolite hydroquinone. The regulation of para-nitrophenol degradation was studied, and PNP induced a global change in the transcriptome of P. putida DLL-E4. When grown on PNP, the wild-type strain exhibited significant downregulation of 2912 genes and upregulation of 845 genes, whereas 2927 genes were downregulated and 891 genes upregulated in a pnpR-deleted strain. Genes related to two non-coding RNAs (ins1 and ins2, para-nitrophenol metabolism, the tricarboxylic acid cycle, the outer membrane porin OprB, glucose dehydrogenase Gcd, and carbon catabolite repression were significantly upregulated when cells were grown on para-nitrophenol plus glucose. pnpA, pnpR, pnpC1C2DECX1X2, and pnpR1 are key genes in para-nitrophenol degradation, whereas pnpAb and pnpC1bC2bDbEbCbX1bX2b have lost the ability to degrade para-nitrophenol. Multiple components including transcriptional regulators and other unknown factors regulate para-nitrophenol degradation, and the transcriptional regulation of para-nitrophenol degradation is complex. Glucose utilization was enhanced at early stages of para-nitrophenol supplementation. However, it was inhibited after the total consumption of para-nitrophenol. The addition of glucose led to a significant enhancement in para-nitrophenol degradation and up-regulation in the expression of genes involved in para-nitrophenol degradation and carbon catabolite repression (CCR. It seemed that para-nitrophenol degradation can be regulated by CCR, and relief of CCR might contribute to enhanced para-nitrophenol degradation. In brief, the regulation of para-nitrophenol degradation seems to be controlled by multiple factors and requires further study.

  8. Cometabolic Degradation of Trichloroethylene by Pseudomonas cepacia G4 in a Chemostat with Toluene as the Primary Substrate

    NARCIS (Netherlands)

    Landa, Andrew S.; Sipkema, E. Marijn; Weijma, Jan; Beenackers, Antonie A.C.M.; Dolfing, Jan; Janssen, Dick B.

    Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion

  9. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-05-01

    Full Text Available D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100% D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  10. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    OpenAIRE

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantl...

  11. Degradation of ethyl mercaptan and its major intermediate diethyl disulfide by Pseudomonas sp. strain WL2.

    Science.gov (United States)

    Wang, Xiangqian; Wu, Chao; Liu, Nan; Li, Sujing; Li, Wei; Chen, Jianmeng; Chen, Dongzhi

    2015-04-01

    A Pseudomonas sp. strain WL2 that is able to efficiently metabolize ethyl mercaptan (EM) into diethyl disulfide (DEDS) through enzymatic oxidation was isolated from the activated sludge of a pharmaceutical wastewater plant. One hundred percent removal of 113.5 mg L(-1) EM and 110.3 mg L(-1) DEDS were obtained within 14 and 32 h, respectively. A putative EM degradation pathway that involved the catabolism via DEDS was proposed, which indicated DEDS were further mineralized into carbon dioxide (CO2), bacterial cells, and sulfate (SO4 (2-)) through the transformation of element sulfur and ethyl aldehyde. Degradation kinetics for EM and DEDS with different initial concentrations by strain WL2 were evaluated using Haldane-Andrews model with maximum specific degradation rates of 3.13 and 1.33 g g(-1) h(-1), respectively, and maximum degradation rate constants of 0.522 and 0.175 h(-1) using pseudo-first-order kinetic model were obtained. Results obtained that aerobic degradation of EM by strain WL2 was more efficient than those from previous studies. Substrate range studies of strain WL2 demonstrated its ability to degrade several mercaptans, disulfides, aldehydes, and methanol. All the results obtained highlight the potential of strain WL2 for the use in the biodegradation of volatile organic sulfur compounds (VOSCs).

  12. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.

    Science.gov (United States)

    Karishma, M; Trivedi, Vikas D; Choudhary, Alpa; Mhatre, Akanksha; Kambli, Pranita; Desai, Jinal; Phale, Prashant S

    2015-10-01

    Soil isolates Pseudomonas putida CSV86, Pseudomonas aeruginosa PP4 and Pseudomonas sp. C5pp degrade naphthalene, phthalate isomers and carbaryl, respectively. Strain CSV86 displayed a diauxic growth pattern on phenylpropanoid compounds (veratraldehyde, ferulic acid, vanillin or vanillic acid) plus glucose with a distinct second lag-phase. The glucose concentration in the medium remained constant with higher cell respiration rates on aromatics and maximum protocatechuate 3,4-dioxygenase activity in the first log-phase, which gradually decreased in the second log-phase with concomitant depletion of the glucose. In strains PP4 and C5pp, growth profile and metabolic studies suggest that glucose is utilized in the first log-phase with the repression of utilization of aromatics (phthalate or carbaryl). All three strains utilize benzoate via the catechol 'ortho' ring-cleavage pathway. On benzoate plus glucose, strain CSV86 showed preference for benzoate over glucose in contrast to strains PP4 and C5pp. Additionally, organic acids like succinate were preferred over aromatics in strains PP4 and C5pp, whereas strain CSV86 co-metabolizes them. Preferential utilization of aromatics over glucose and co-metabolism of organic acids and aromatics are found to be unique properties of P. putida CSV86 as compared with strains PP4 and C5pp and this property of strain CSV86 can be exploited for effective bioremediation. © FEMS 2015. All rights reserved.

  13. Degradation of Uniquely Glycosylated Secretory Immunoglobulin A in Tears From Patients With Pseudomonas aeruginosa Keratitis

    DEFF Research Database (Denmark)

    Lomholt, Jeanet Andersen; Kilian, Mogens

    2008-01-01

    PURPOSE. To investigate the integrity of secretory IgA (S-IgA) in tear fluid during bacterial keratitis and to evaluate the significance of specific Pseudomonas aeruginosa extracellular proteases in the observed degradation of S-IgA. METHODS. The integrity of component chains of S-IgA in tear fluid...... from patients with keratitis caused by P. aeruginosa, Streptococcus group G, Moraxella catarrhalis, Staphylococcus aureus, coagulase-negative staphylococci, and the IgA1 protease-producing Streptococcus pneumoniae were compared with S-IgA in tear fluid, colostrum, and saliva from healthy individuals......, and with tear S-IgA incubated with clinical isolates and genetically engineered P. aeruginosa strains with different protease profiles. Degradation of S-IgA and the significance of its glycosylation were analyzed in Western blots developed with antibodies against individual chains of S-IgA. RESULTS. Secretory...

  14. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  15. Bidirectional gene sequences with similar homology to functional proteins of alkane degrading bacterium pseudomonas fredriksbergensis DNA

    International Nuclear Information System (INIS)

    Megeed, A.A.

    2011-01-01

    The potential for two overlapping fragments of DNA from a clone of newly isolated alkanes degrading bacterium Pseudomonas frederiksbergensis encoding sequences with similar homology to two parts of functional proteins is described. One strand contains a sequence with high homology to alkanes monooxygenase (alkB), a member of the alkanes hydroxylase family, and the other strand contains a sequence with some homology to alcohol dehydrogenase gene (alkJ). Overlapping of the genes on opposite strands has been reported in eukaryotic species, and is now reported in a bacterial species. The sequence comparisons and ORFS results revealed that the regulation and the genes organization involved in alkane oxidation represented in Pseudomonas frederiksberghensis varies among the different known alkane degrading bacteria. The alk gene cluster containing homologues to the known alkane monooxygenase (alkB), and rubredoxin (alkG) are oriented in the same direction, whereas alcohol dehydrogenase (alkJ) is oriented in the opposite direction. Such genomes encode messages on both strands of the DNA, or in an overlapping but different reading frames, of the same strand of DNA. The possibility of creating novel genes from pre-existing sequences, known as overprinting, which is a widespread phenomenon in small viruses. Here, the origin and evolution of the gene overlap to bacteriophages belonging to the family Microviridae have been investigated. Such a phenomenon is most widely described in extremely small genomes such as those of viruses or small plasmids, yet here is a unique phenomenon. (author)

  16. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.

    Science.gov (United States)

    Chen, Yan-Min; Lin, Tsair-Fuh; Huang, Chih; Lin, Jui-Che; Hsieh, Feng-Ming

    2007-09-30

    The degradability of phenol and trichloroethene (TCE) by Pseudomonas putida BCRC 14349 in both suspended culture and immobilized culture systems are investigated. Chitosan beads at a size of about 1-2mm were employed to encapsulate the P. putida cells, becoming an immobilized culture system. The phenol concentration was controlled at 100 mg/L, and that of TCE was studied from 0.2 to 20 mg/L. The pH, between 6.7 and 10, did not affect the degradation of either phenol or TCE in the suspended culture system. However, it was found to be an important factor in the immobilized culture system in which the only significant degradation was observed at pH >8. This may be linked to the surface properties of the chitosan beads and its influence on the activity of the bacteria. The transfer yield of TCE on a phenol basis was almost the same for the suspended and immobilized cultures (0.032 mg TCE/mg phenol), except that these yields occurred at different TCE concentrations. The transfer yield at a higher TCE concentration for the immobilized system suggested that the cells immobilized in carriers can be protected from harsh environmental conditions. For kinetic rate interpretation, the Monod equation was employed to describe the degradation rates of phenol, while the Haldane's equation was used for TCE degradation. Based on the kinetic parameters obtained from the two equations, the rate for the immobilized culture systems was only about 1/6 to that of the suspended culture system for phenol degradation, and was about 1/2 for TCE degradation. The slower kinetics observed for the immobilized culture systems was probably due to the slow diffusion of substrate molecules into the beads. However, compared with the suspended cultures, the immobilized cultures may tolerate a higher TCE concentration as much less inhibition was observed and the transfer yield occurred at a higher TCE concentration.

  17. Effect of Eu(III) on the degradation of malic acid by Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Nankawa, T.; Ozaki, T.; Ohnuki, T.; Suzuki, Y.; Francis, A.J.

    2005-01-01

    Full text of publication follows: The transuranic elements, such as Am(III) and Cm(III), are highly toxic because they emit high-energy α particles and have long half-lives. To estimate their long-term environmental behavior, we need to elucidate degradation of actinide-organic complexes by microorganisms. We studied the biodegradation of Eu(III)-malic acid complexes by Pseudomonas fluorescens. Malic acid is ubiquitous in the environment and is one of the microbial metabolites that is part of the tri-carboxylic acid (TCA) cycle. Europium(III) is a good analogue for Am(III) and Cm(III). To investigate the effect of Eu(III) on the degradation of malic acid by P. fluorescens, we compared the degradation behavior of Eu(III)-malic acid complexes to that of Fe(III) and Al(III)-malic acid complexes. In the medium containing 1 mM malic acid and 0-0.5 mM Fe(III), malic acid was degraded completely. In the medium containing 1 mM malic acid and 0.05-0.5 mM Al(III), malic acid was degraded until the concentration of malic acid became equal to that of Al(III), indicating that Al(III)-malic acid complex with 1: 1 molar ratio was recalcitrant to biodegradation. In the medium containing 1 mM malic acid and 0.05-0.5 mM Eu(III), degradation of malic acid was not observed. The effect of metals on degradation of malic acid was in the order of Fe(III) < Al(III) < Eu(III). The stability constants of 1:1 Fe(III)-, Al(III)-, and Eu(III)-malic acid complexes are 7.1, 4.6, and 4.9, respectively. These results indicate that degradability of malic acid does not depend on the stability constants of metal-malic acid complexes. We found that 10 mM malic acid was degraded in the presence of 0.05 and 0.1 mM Eu(III) but 1 mM malic acid was not degraded in the presence of 0.05 and 0.1 mM Eu(III). The degradation rate of malic acid increased with a decreasing ratio of Eu(III) to malic acid. (authors)

  18. Strategy of Pseudomonas pseudoalcaligenes C70 for effective degradation of phenol and salicylate.

    Directory of Open Access Journals (Sweden)

    Merike Jõesaar

    Full Text Available Phenol- and naphthalene-degrading indigenous Pseudomonas pseudoalcaligenes strain C70 has great potential for the bioremediation of polluted areas. It harbours two chromosomally located catechol meta pathways, one of which is structurally and phylogenetically very similar to the Pseudomonas sp. CF600 dmp operon and the other to the P. stutzeri AN10 nah lower operon. The key enzymes of the catechol meta pathway, catechol 2,3-dioxygenase (C23O from strain C70, PheB and NahH, have an amino acid identity of 85%. The metabolic and regulatory phenotypes of the wild-type and the mutant strain C70ΔpheB lacking pheB were evaluated. qRT-PCR data showed that in C70, the expression of pheB- and nahH-encoded C23O was induced by phenol and salicylate, respectively. We demonstrate that strain C70 is more effective in the degradation of phenol and salicylate, especially at higher substrate concentrations, when these compounds are present as a mixture; i.e., when both pathways are expressed. Moreover, NahH is able to substitute for the deleted PheB in phenol degradation when salicylate is also present in the growth medium. The appearance of a yellow intermediate 2-hydroxymuconic semialdehyde was followed by the accumulation of catechol in salicylate-containing growth medium, and lower expression levels and specific activities of the C23O of the sal operon were detected. However, the excretion of the toxic intermediate catechol to the growth medium was avoided when the growth medium was supplemented with phenol, seemingly due to the contribution of the second meta pathway encoded by the phe genes.

  19. Photoluminescence properties of carbazole compounds

    International Nuclear Information System (INIS)

    Qu Yufeng; Xu Liang; Sun Lianlai; Cao Linhong; Fang Yu; Zhang Qingjun; Luo Xuan; Liu Hongjie; Huang Jin; Jiang Xiaodong

    2013-01-01

    Poly[bis(6-carbazolhexyloxy)]phosphazene with good thermal stability(about 290 ℃) and a low glass transition temperature(about 36 ℃) was synthesized with N-(6-hydroxyhexyl)carbazole and linear polydichlorophosphazene. Steady state fluorescence spectra elucidated that the maximum fluorescence-emission wavelengths of carbazole, N-(6-hydroxyhexyl)carbazole and poly[bis(6-carbazolhexyloxy)]phosphazene are 420, 410, and 393 nm, respectively. The fluorescence intensity of N-(6-hydroxyhexyl)carbazole and poly[bis(6-carbazolhexyloxy)]phosphazene decreases orderly and has a blue-shift compared with carbazole. The transient fluorescence spectra show that the linear backbone and the isolated dπ-pπ hybrid orbital of polyphosphazene might increase steric hindrance and disrupt the previous conjugate system, leading to decrease of the fluorescence lifetime of poly[bis(6-carbazolhexyloxy)]phosphazene at several emission wavelengths. (authors)

  20. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    OpenAIRE

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degrad...

  1. Purification and Characterization of a Novel β-Cypermethrin-Degrading Aminopeptidase from Pseudomonas aeruginosa GF31.

    Science.gov (United States)

    Tang, Ai-Xing; Liu, Hu; Liu, You-Yan; Li, Qing-Yun; Qing, Yi-Ming

    2017-11-01

    In this study, a novel β-cypermethrin-degrading enzyme was isolated and purified by 32.8 fold from the extracellular cell-free filtrate of Pseudomonas aeruginosa GF31with the protein recovery of 26.6%. The molecular mass of the enzyme was determined to be 53 kDa. The optimum temperature for the activity was surprisingly 60 °C, and moreover, the purified enzyme showed a good pH stability, maintaining over 85% of its initial activity in the pH 5.0-9.0 range. Most of the common metal ions exhibited little influence on the activity except for Hg 2+ , Ag + , and Cu 2+ . After the complete gene sequence of the degrading enzyme was obtained by subcloning, sequence analyses as well as enzymatic properties demonstrated that the islolated enzyme should be an aminopeptidase. This is the first reported aminopeptidase for pyrethroid hydrolase, providing new potential enzyme resources for the degradation of this type of pesticide.

  2. Cyanide Degradation by Pseudomonas pseudoalcaligenes Strain W_2 Isolated from Mining Effluent

    International Nuclear Information System (INIS)

    Belinda Tiong; Zaratulnur Mohd Bahari; Nor Sahslin Irwan Shah Lee; Jafariah Jaafar; Zaharah Ibrahim; Shafinaz Shahir

    2015-01-01

    Cyanide is highly toxic to the living organisms as it inhibits respiration system in the cell mitochondria. Cyanide is commonly used in gold extraction process and its discharge into the environment not only causes pollution but it also brings harm to the surrounding population. Chemical treatment is expensive and the use of hazardous compound can exacerbate the problem. Biodegradation offers cheap and safe alternative as it overcomes the problems faced by chemical treatment. In this study, indigenous bacteria from mining wastewater were isolated. Cyanide degradation was done via shake flask method. A bacterium, designated W2 was found able to grow in the mining wastewater. 16S rRNA analysis identified the strain as Pseudomonas pseudoalcaligenes which could tolerate up to 39 mg/L cyanide concentration and growth was depleted at 52 mg/L. 60 % cyanide degradation was achieved in wastewater containing medium. End-product analysis from high performance liquid chromatography (HPLC) detected formamide implicating the role of cyanide hydratase in cyanide degradation. It can be concluded that P. pseudoalcaligenes is capable of biodegrading cyanide and its potential in wastewater treatment containing cyanide is feasible. (author)

  3. Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1T.

    Science.gov (United States)

    Peng, Peng; Zheng, Ying; Koehorst, Jasper J; Schaap, Peter J; Stams, Alfons J M; Smidt, Hauke; Atashgahi, Siavash

    2017-06-15

    Haloalkanoates are environmental pollutants that can be degraded aerobically by microorganisms producing hydrolytic dehalogenases. However, there is a lack of information about the anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas chloritidismutans AW-1 T , a facultative anaerobic chlorate-reducing bacterium, showed the presence of two putative haloacid dehalogenase genes, the l-DEX gene and dehI , encoding an l-2-haloacid dehalogenase (l-DEX) and a halocarboxylic acid dehydrogenase (DehI), respectively. Hence, we studied the concurrent degradation of haloalkanoates and chlorate as a yet-unexplored trait of strain AW-1 T The deduced amino acid sequences of l-DEX and DehI revealed 33 to 37% and 26 to 86% identities with biochemically/structurally characterized l-DEX and the d- and dl-2-haloacid dehalogenase enzymes, respectively. Physiological experiments confirmed that strain AW-1 T can grow on chloroacetate, bromoacetate, and both l- and d-α-halogenated propionates with chlorate as an electron acceptor. Interestingly, growth and haloalkanoate degradation were generally faster with chlorate as an electron acceptor than with oxygen as an electron acceptor. In line with this, analyses of l-DEX and DehI dehalogenase activities using cell-free extract (CFE) of strain AW-1 T grown on dl-2-chloropropionate under chlorate-reducing conditions showed up to 3.5-fold higher dehalogenase activity than the CFE obtained from AW-1 T cells grown on dl-2-chloropropionate under aerobic conditions. Reverse transcription-quantitative PCR showed that the l-DEX gene was expressed constitutively independently of the electron donor (haloalkanoates or acetate) or acceptor (chlorate or oxygen), whereas the expression of dehI was induced by haloalkanoates. Concurrent degradation of organic and inorganic halogenated compounds by strain AW-1 T represents a unique metabolic capacity in a single bacterium, providing a new piece of the puzzle of the microbial halogen cycle

  4. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    Science.gov (United States)

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  5. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil

    Directory of Open Access Journals (Sweden)

    Mardani Gashtasb

    2016-01-01

    Full Text Available Bioremediation use to promote degradation and/or removal of contaminants into nonhazardous or less-hazardous substances from the environment using microbial metabolic ability. Pseudomonas spp. is one of saprotrophic soil bacterium and can be used for biodegradation of polycyclic aromatic hydrocarbons (PAHs but this activity in most species is weak. Phenanthrene and pyrene could associate with a risk of human cancer development in exposed individuals. The aim of the present study was application of genetically engineered P. putida that produce dioxygenase for degradation of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC method. The nahH gene that encoded catechol 2,3-dioxygenase (C23O was cloned into pUC18 and pUC18-nahH recombinant vector was generated and transformed into wild P. putida, successfully. The genetically modified and wild types of P. putida were inoculated in soil and pilot plan was prepared. Finally, degradation of phenanthrene and pyrene by this bacterium in spiked soil were evaluated using HPLC measurement technique. The results were showed elimination of these PAH compounds in spiked soil by engineered P. putida comparing to dishes containing natural soil with normal microbial flora and inoculated autoclaved soil by wild type of P. putida were statistically significant (p0.05 but it was few impact on this process (more than 2%. Additional and verification tests including catalase, oxidase and PCR on isolated bacteria from spiked soil were indicated that engineered P. putida was alive and functional as well as it can affect on phenanthrene and pyrene degradation via nahH gene producing. These findings indicated that genetically engineered P. putida generated in this work via producing C23O enzyme can useful and practical for biodegradation of phenanthrene and pyrene as well as petroleum compounds in polluted environments.

  6. Biosurfactant production by Pseudomonas fluorescens growing on molasses and its application in phenol degradation

    Science.gov (United States)

    Suryantia, Venty; Marliyana, Soerya Dewi; Wulandari, Astri

    2015-12-01

    A molasses based medium for the biosurfactant production by Pseudomonas fluorescens was developed, where the effect of pre-treated of molasses and medium composition were evaluated. Biosurfactant production was followed by measuring optical density (OD), surface tension and emulsifying index (E24) over 12 days of fermentation. The optimum condition for the biosurfactant production was obtained when a medium containing of 8 g/L nutrient broth, 5 g/L NaCl, 1 g/L NH4NO3 and 5% v/v pre-treated molasses with centrifugation was used as media with 3 days of fermentation. The biosurfactant was identified as a rhamnolipid type biosurfactant which had critical micelle concentration (CMC) value of 801 mg/L and was able to reduce the surface tension of the water from 80 mN/m to 51 mN/m. The biosurfactants had water in oil (w/o) emulsion type. Biosurfactant was able to emulsify various hydrocarbons, which were able to decrase the interfacial tension about 50-75% when benzyl chloride, anisaldehyde and palm oil were used as immiscible compounds. The biosurfactant exhibited the E24 value of about 50% and the stable emulsion was reached up to 30 days when lubricant was used as an immiscible compound. Up to 68% of phenol was degraded in the presence of biosurfactant within 15 days, whereas only 56% of phenol was degraded in the absence of biosurfactant. Overall, the results exhibited that molasses are recommended for the rhamnolipids production which possessed good surface-active properties and had potential application in the enhancement of phenol degradation.

  7. Characterization and Genome Analysis of a Nicotine and Nicotinic Acid-Degrading Strain Pseudomonas putida JQ581 Isolated from Marine.

    Science.gov (United States)

    Li, Aiwen; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Wang, Yuhong; Tong, Lu; Jiang, Jiandong; Chen, Jianmeng

    2017-05-31

    The presence of nicotine and nicotinic acid (NA) in the marine environment has caused great harm to human health and the natural environment. Therefore, there is an urgent need to use efficient and economical methods to remove such pollutants from the environment. In this study, a nicotine and NA-degrading bacterium-strain JQ581-was isolated from sediment from the East China Sea and identified as a member of Pseudomonas putida based on morphology, physio-biochemical characteristics, and 16S rDNA gene analysis. The relationship between growth and nicotine/NA degradation suggested that strain JQ581 was a good candidate for applications in the bioaugmentation treatment of nicotine/NA contamination. The degradation intermediates of nicotine are pseudooxynicotine (PN) and 3-succinoyl-pyridine (SP) based on UV, high performance liquid chromatography, and liquid chromatography-mass spectrometry analyses. However, 6-hydroxy-3-succinoyl-pyridine (HSP) was not detected. NA degradation intermediates were identified as 6-hydroxynicotinic acid (6HNA). The whole genome of strain JQ581 was sequenced and analyzed. Genome sequence analysis revealed that strain JQ581 contained the gene clusters for nicotine and NA degradation. This is the first report where a marine-derived Pseudomonas strain had the ability to degrade nicotine and NA simultaneously.

  8. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela); Synthesis and Biotics Div., Indian Oil Corp., Research and Development Center, Haryana (India); Leon, V.; Materano, A.D.S.; Ilzins, O.A.; Galindo-Castro, I.; Fuenmayor, S.L. [Unidad de Biotecnologia del Petroleo, Centro de Biotecnologia, Fundacion Inst. de Estudios Avanzados (IDEA), Caracas (Venezuela)

    2006-03-15

    We characterized a newly isolated bacterium, designated as IR1, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs) and to produce biosurfactants. Isolated IR1 was identified as Pseudomonas putida by analysis of 16S rRNA sequences (99.6% homology). It was capable of utilizing two-, three- and four-ring PAHs but not hexadecane and octadecane as a sole carbon and energy source. PCR and DNA hybridization studies showed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by IR1 during growth on both water miscible and immiscible substrates. The biosurfactants lowered the surface tension of medium from 54.9 dN cm{sup -1} to 35.4 dN cm{sup -1} and formed a stable and compact emulsion with an emulsifying activity of 74% with diesel oil, when grown on dextrose. These findings indicate that this isolate may be useful for bioremediation of sites contaminated with aromatic hydrocarbons. (orig.)

  9. Degradation of waste waters from olive oil mills by Yarrowia lipolytica ATCC 20255 and Pseudomonas putida

    Energy Technology Data Exchange (ETDEWEB)

    De Felice, B.; Pontecorvo, G.; Carfagna, M. [Univ. of Naples, Caserta (Italy). Inst. of Biology

    1997-12-31

    Waste water from olive oil processing may cause severe pollution in the Mediterranean area, since they have a high level of chemical oxygen demand (COD) (100-200 g/l) and contain other organic and inorganic compounds. In all olive oil producing countries, the reduction of pollution in olive oil mill waste waters at reasonable costs and using techniques suitable for most industrial applications is an unsolved problem. For this paper, the yeast Yarrowia lipolytica ATCC 20255 was grown on waste waters from an olive oil mill in a 3.5 l fermenter under batch culture conditions. The results showed that the yeast was capable of reducing the COD value by 80% in 24 h. In this way, a useful biomass of 22.45 g/l as single cell protein (SCP) and enzyme lipase were produced. During this process, most of the organic and inorganic substances were consumed, only aromatic pollutants were still present in the fermentation effluents. Therefore, we used a phenol degrader, namely Pseudomonas putida, to reduce phenolic compounds in the fermentation effluents after removing Yarrowia lipolytica cells. P. putida was effective in reducing phenols in only 12 h. (orig.)

  10. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA.

    Science.gov (United States)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-07-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor.

  11. Toxicity of Phenol and Salt on the Phenol-Degrading Pseudomonas aeruginosa Bacterium

    Directory of Open Access Journals (Sweden)

    Samaei

    2016-08-01

    Full Text Available Background Phenolic compounds, phenol and phenol derivatives are environmental contaminants in some industrial effluents. Entrance of such substances into the environment causes severe environmental pollution, especially pollution of water resources. Biological treatment is a method that uses the potential of microorganisms to clean up contaminated environments. Among microorganisms, bacteria play an important role in treating wastewater contaminated with phenol. Objectives This study aimed to examine the effects of Pseudomonas aeruginosa on degradation of phenol in wastewater contaminated with this pollutant. Methods In this method, the growth rate of P. aeruginosa bacteria was investigated using different concentrations of salt and phenol. This is an experimental study conducted as a pilot in a batch reactor with different concentrations of phenol (25, 50, 100, 150, 300 and 600 mg L-1 and salt (0%, 0.5%, 1%, 2.5% and 5% during 9, 12 and 15 hours. During three days, from 5 experimental and 3 control samples, 18 samples were taken a day forming a sample size of 54 samples for each phenol concentration. Given the number of phenol concentrations (n = 6, a total of 324 samples were analyzed using a spectrophotometer at a wavelength of 600 nm. Results The phenol concentration of 600 mg L-1 was toxic for P. aeruginosa. However, at a certain concentration, it acts as a carbon source for P. aeruginosa. During investigations, it was found that increasing the concentration of phenol increases the rate of bacteria growth. The highest bacteria growth rate occurred was at the salt concentration of zero and phenol concentration of 600 mg L-1. Conclusions The findings of the current study indicate that at high concentrations of salt, the growth of bacteria reduces so that it stops at a concentration of 50 mg L-1 (5%. Thus, the bacterium is halotolerant or halophilic. With an increase in phenol concentration, the growth rate increased. Phenol toxicity appears

  12. Paracetamol - toxicity and microbial utilization. Pseudomonas moorei KB4 as a case study for exploring degradation pathway.

    Science.gov (United States)

    Żur, Joanna; Wojcieszyńska, Danuta; Hupert-Kocurek, Katarzyna; Marchlewicz, Ariel; Guzik, Urszula

    2018-09-01

    Paracetamol, a widely used analgesic and antipyretic drug, is currently one of the most emerging pollutants worldwide. Besides its wide prevalence in the literature only several bacterial strains able to degrade this compound have been described. In this study, we isolated six new bacterial strains able to remove paracetamol. The isolated strains were identified as the members of Pseudomonas, Bacillus, Acinetobacter and Sphingomonas genera and characterized phenotypically and biochemically using standard methods. From the isolated strains, Pseudomonas moorei KB4 was able to utilize 50 mg L -1 of paracetamol. As the main degradation products, p-aminophenol and hydroquinone were identified. Based on the measurements of specific activity of acyl amidohydrolase, deaminase and hydroquinone 1,2-dioxygenase and the results of liquid chromatography analyses, we proposed a mechanism of paracetamol degradation by KB4 strain under co-metabolic conditions with glucose. Additionally, toxicity bioassays and the influence of various environmental factors, including pH, temperature, heavy metals at no-observed-effective-concentrations, and the presence of aromatic compounds on the efficiency and mechanism of paracetamol degradation by KB4 strain were determined. This comprehensive study about paracetamol biodegradation will be helpful in designing a treatment systems of wastewaters contaminated with paracetamol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds

    KAUST Repository

    Holert, Johannes; Alam, Intikhab; Larsen, Michael; Antunes, Andre; Bajic, Vladimir B.; Stingl, Ulrich; Philipp, Bodo

    2013-01-01

    Bacterial degradation of steroid compounds is of high ecological and biotechnological relevance. Pseudomonas sp. strain Chol1 is a model organism for studying the degradation of the steroid compound cholate. Its draft genome sequence is presented and reveals one gene cluster responsible for the metabolism of steroid compounds.

  14. Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds

    KAUST Repository

    Holert, Johannes

    2013-01-15

    Bacterial degradation of steroid compounds is of high ecological and biotechnological relevance. Pseudomonas sp. strain Chol1 is a model organism for studying the degradation of the steroid compound cholate. Its draft genome sequence is presented and reveals one gene cluster responsible for the metabolism of steroid compounds.

  15. Pseudomonas pseudoalcaligenes CECT5344, a cyanide-degrading bacterium with by-product (polyhydroxyalkanoates) formation capacity.

    Science.gov (United States)

    Manso Cobos, Isabel; Ibáñez García, María Isabel; de la Peña Moreno, Fernando; Sáez Melero, Lara Paloma; Luque-Almagro, Víctor Manuel; Castillo Rodríguez, Francisco; Roldán Ruiz, María Dolores; Prieto Jiménez, María Auxiliadora; Moreno Vivián, Conrado

    2015-06-10

    Cyanide is one of the most toxic chemicals produced by anthropogenic activities like mining and jewelry industries, which generate wastewater residues with high concentrations of this compound. Pseudomonas pseudoalcaligenes CECT5344 is a model microorganism to be used in detoxification of industrial wastewaters containing not only free cyanide (CN(-)) but also cyano-derivatives, such as cyanate, nitriles and metal-cyanide complexes. Previous in silico analyses suggested the existence of genes putatively involved in metabolism of short chain length (scl-) and medium chain length (mcl-) polyhydroxyalkanoates (PHAs) located in three different clusters in the genome of this bacterium. PHAs are polyesters considered as an alternative of petroleum-based plastics. Strategies to optimize the bioremediation process in terms of reducing the cost of the production medium are required. In this work, a biological treatment of the jewelry industry cyanide-rich wastewater coupled to PHAs production as by-product has been considered. The functionality of the pha genes from P. pseudoalcaligenes CECT5344 has been demonstrated. Mutant strains defective in each proposed PHA synthases coding genes (Mpha(-), deleted in putative mcl-PHA synthases; Spha(-), deleted in the putative scl-PHA synthase) were generated. The accumulation and monomer composition of scl- or mcl-PHAs in wild type and mutant strains were confirmed by gas chromatography-mass spectrometry (GC-MS). The production of PHAs as by-product while degrading cyanide from the jewelry industry wastewater was analyzed in batch reactor in each strain. The wild type and the mutant strains grew at similar rates when using octanoate as the carbon source and cyanide as the sole nitrogen source. When cyanide was depleted from the medium, both scl-PHAs and mcl-PHAs were detected in the wild-type strain, whereas scl-PHAs or mcl-PHAs were accumulated in Mpha(-) and Spha(-), respectively. The scl-PHAs were identified as homopolymers of 3

  16. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.

    Science.gov (United States)

    Zuo, Zhenqiang; Gong, Ting; Che, You; Liu, Ruihua; Xu, Ping; Jiang, Hong; Qiao, Chuanling; Song, Cunjiang; Yang, Chao

    2015-06-01

    Agricultural soils are usually co-contaminated with organophosphate (OP) and pyrethroid pesticides. To develop a stable and marker-free Pseudomonas putida for co-expression of two pesticide-degrading enzymes, we constructed a suicide plasmid with expression cassettes containing a constitutive promoter J23119, an OP-degrading gene (mpd), a pyrethroid-hydrolyzing carboxylesterase gene (pytH) that utilizes the upp gene as a counter-selectable marker for upp-deficient P. putida. By introduction of suicide plasmid and two-step homologous recombination, both mpd and pytH genes were integrated into the chromosome of a robust soil bacterium P. putida KT2440 and no selection marker was left on chromosome. Functional expression of mpd and pytH in P. putida KT2440 was demonstrated by Western blot analysis and enzyme activity assays. Degradation experiments with liquid cultures showed that the mixed pesticides including methyl parathion, fenitrothion, chlorpyrifos, permethrin, fenpropathrin, and cypermethrin (0.2 mM each) were degraded completely within 48 h. The inoculation of engineered strain (10(6) cells/g) to soils treated with the above mixed pesticides resulted in a higher degradation rate than in noninoculated soils. All six pesticides could be degraded completely within 15 days in fumigated and nonfumigated soils with inoculation. Theses results highlight the potential of the engineered strain to be used for in situ bioremediation of soils co-contaminated with OP and pyrethroid pesticides.

  17. Synthesis of pyrano[2,3-c]carbazoles, pyrano[3,2-b]carbazoles and ...

    Indian Academy of Sciences (India)

    2,3-c]carbazoles, pyrano[3,2-b]carbazoles and furo[3,2-b]carbazole derivatives via iodocyclization. KRISHNA CHAITANYA TALLURI and RAJAGOPAL NAGARAJAN. ∗. School of Chemistry, University of Hyderabad, Hyderabad 500046, India.

  18. Pseudomonas A1 influences the formation of hydroxyapatite and degrades bioglass

    International Nuclear Information System (INIS)

    Papadopoulou, E.; Papadopoulou, L.; Paraskevopoulos, K.M.; Koidis, P.; Sivropoulou, A.

    2009-01-01

    Bacterial infections frequently lead to hard tissue destructions. The purpose of the present study was to address the question as to how the bacteria destroy hard tissues with the use of an in vitro system. A bacterium was isolated from a solution simulating body fluid which was identified as Pseudomonas A1, and is able to solubilize tricalcium phosphate when it grows in IP broth. The presence of Pseudomonas A1 resulted in dose-dependent inhibition of the formation of hydroxyapatite layer, on the surface of bioglass specimens immersed in SBF solution, in contrast to the control. When the bioglass specimens were immersed in IP broth without Ca 3 (PO 4 ) 2 , so as to be present the appropriate inorganic ions for the survival of Pseudomonas but the only source of phosphate be derived from bioactive glass specimens, the formation of hydroxyapatite layer was not observed in any specimen. Additionally the presence of Pseudomonas resulted in 93.4% (w/w) and 85.9% (w/w) reduction on the surface composition of Ca and P, respectively, and further the rate of the decrease of specimen's weight was almost 50% higher in the presence of Pseudomonas compared with the control.

  19. Pseudomonas A1 influences the formation of hydroxyapatite and degrades bioglass

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulou, E. [Laboratory of General Microbiology, Section of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Papadopoulou, L. [School of Geology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Paraskevopoulos, K.M. [Physics Department Solid State Physics Section, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Koidis, P. [Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Sivropoulou, A., E-mail: asivropo@bio.auth.g [Laboratory of General Microbiology, Section of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2009-12-15

    Bacterial infections frequently lead to hard tissue destructions. The purpose of the present study was to address the question as to how the bacteria destroy hard tissues with the use of an in vitro system. A bacterium was isolated from a solution simulating body fluid which was identified as Pseudomonas A1, and is able to solubilize tricalcium phosphate when it grows in IP broth. The presence of Pseudomonas A1 resulted in dose-dependent inhibition of the formation of hydroxyapatite layer, on the surface of bioglass specimens immersed in SBF solution, in contrast to the control. When the bioglass specimens were immersed in IP broth without Ca{sub 3}(PO{sub 4}){sub 2}, so as to be present the appropriate inorganic ions for the survival of Pseudomonas but the only source of phosphate be derived from bioactive glass specimens, the formation of hydroxyapatite layer was not observed in any specimen. Additionally the presence of Pseudomonas resulted in 93.4% (w/w) and 85.9% (w/w) reduction on the surface composition of Ca and P, respectively, and further the rate of the decrease of specimen's weight was almost 50% higher in the presence of Pseudomonas compared with the control.

  20. Aerobic degradation of N-methyl-4-nitroaniline (MNA by Pseudomonas sp. strain FK357 isolated from soil.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available N-Methyl-4-nitroaniline (MNA is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA, 4-aminophenol (4-AP, and 1, 2, 4-benzenetriol (BT as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  1. Evaluation of the effects of a polyurethane carrier on the degradation of chlorinated anilines by Pseudomonas acidovorans CA50

    International Nuclear Information System (INIS)

    Loidl, M.; Stockinger, J.; Hinteregger, C.; Streichsbier, F.

    1994-01-01

    A previously described model system for the treatment of harzardous chloroaniline-containing waste waters using immobilized bacterial cells in a bioreactor was enhanced in its degradation efficiency. This was achieved by the substitution of the calcium alginate beads by an inert polyurethane (PU)-carrier. The supply of chloroaniline-polluted waste waters with the PU-carrier (1.25% w/v) resulted in a distinct decrease of the pollutant concentrations in the solution due to the effects of adsorption. Nevertheless, the initially bound amounts of the chloroanilines, were also degraded, which was proved by the chloride balance. In comparative batch-degradation experiments with the Pseudomonas acidovorans strain CA50 with and without the addition of the PU-carrier (1.25% v/w), respectively, the advantages of the PU-supplied treatment system were demonstrated; among others a marked shortening of the degradation periods was achieved. The advantage of the PU-carrier was also shown by using a bubble reactor. In this connection, it is particularly worth mentioning, that high degradation rates can be achieved for a long time even for strongly persistent pollutants. (orig.)

  2. N-hexanoyl-L-homoserine lactone-degrading Pseudomonas aeruginosa PsDAHP1 protects zebrafish against Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Vinoj, Gopalakrishnan; Jayakumar, Rengarajan; Chen, Jiann-Chu; Withyachumnarnkul, Boonsirm; Shanthi, Sathappan; Vaseeharan, Baskaralingam

    2015-01-01

    Four strains of N-hexanoyl-L-homoserine lactone (AHL)-degrading Pseudomonas spp., named PsDAHP1, PsDAHP2, PsDAHP3, and PsDAHP4 were isolated and identified from the intestine of Fenneropenaeus indicus. PsDAHP1 showed the highest AHL-degrading activity among the four isolates. PsDAHP1 inhibited biofilm-forming exopolysaccharide and altered cell surface hydrophobicity of virulent green fluorescent protein (GFP)-tagged Vibrio parahaemolyticus DAHV2 (GFP-VpDAHV2). Oral administration of PsDAHP1 significantly reduced zebrafish mortality caused by GFP-VpDAHV2 challenge, and inhibited colonisation of GFP-VpDAHV2 in the gills and intestine of zebrafish as evidence by confocal laser scanning microscope and selective plating. Furthermore, zebrafish receiving PsDAHP1-containing feed had increased phagocytic cells of its leucocytes, increased serum activities of superoxide dismutase and lysozyme. The results suggest that Pseudomonas aeruginosa PsDAHP1 could protect zebrafish from V. parahaemolyticus infection by inhibiting biofilm formation and enhancing defence mechanisms of the fish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pseudomonas and Beyond : Polyamine metabolism, lignin degradation and potential applications in industrial biotechnology

    NARCIS (Netherlands)

    Bandounas, L.

    2011-01-01

    Renewable resources such as lignocellulosic biomass are promising feedstocks for the production of bio-fuels and value-added products. Biocatalysts are considered important tools in such processes. Pseudomonas putida S12 has a broad metabolic potential and is exceptionally tolerant towards a range

  4. Mechanistic Insights into Elastin Degradation by Pseudolysin, the Major Virulence Factor of the Opportunistic Pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Yang, Jie; Zhao, Hui-Lin; Ran, Li-Yuan; Li, Chun-Yang; Zhang, Xi-Ying; Su, Hai-Nan; Shi, Mei; Zhou, Bai-Cheng; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2015-01-01

    Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1’ positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1’ sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection. PMID:25905792

  5. Comparative study on the degradation of dibutyl phthalate by two newly isolated Pseudomonas sp. V21b and Comamonas sp. 51F

    Directory of Open Access Journals (Sweden)

    Vinay Kumar

    2017-09-01

    Full Text Available Dibutyl phthalate is (DBP the top priority toxicant responsible for carcinogenicity, teratogenicity and endocrine disruption. This study demonstrates the DBP degradation capability of the two newly isolated bacteria from municipal solid waste leachate samples. The isolated bacteria were designated as Pseudomonas sp. V21b and Comamonas sp. 51F after scanning electron microscopy, transmission electron microscopy, Gram-staining, antibiotic sensitivity tests, biochemical characterization, 16S-rRNA gene identification and phylogenetic studies. They were able to grow on DBP, benzyl butyl phthalate, monobutyl phthalate, diisodecyl phthalate, dioctyl phthalate, and protocatechuate. It was observed that Pseudomonas sp. V21b was more efficient in DBP degradation when compared with Comamonas sp. 51F. It degraded 57% and 76% of the initial DBP in minimal salt medium and in DBP contaminated samples respectively. Kinetics for the effects of DBP concentration on Pseudomonas sp. V21b and Comamonas sp. 51F growth was also evaluated. Stoichiometry for DBP degradation and biomass formation were compared for both the isolates. Two major metabolites diethyl phthalate and monobutyl phthalates were identified using GC–MS in the extracts. Key genes were amplified from the genomes of Pseudomonas sp. V21b and Comamonas sp. 51F. DBP degradation pathway was also proposed.

  6. Effect of degradative plasmid CAM-OCT on responses of Pseudomonas bacteria to UV light

    International Nuclear Information System (INIS)

    McBeth, D.L.

    1989-01-01

    The effect of plasmid CAM-OCT on responses to UV irradiation was compared in Pseudomonas aeruginosa, in Pseudomonas putida, and in Pseudomonas putida mutants carrying mutations in UV response genes. CAM-OCT substantially increased both survival and mutagenesis in the two species. P. aeruginosa strains without CAM-OCT exhibited much higher UV sensitivity than did P. putida strains. UV-induced mutagenesis of plasmid-free P. putida was easily detected in three different assays (two reversion assays and one forward mutation assay), whereas UV mutagenesis of P. aeruginosa without CAM-OCT was seen only in the forward mutation assay. These results suggest major differences in DNA repair between the two species and highlight the presence of error-prone repair functions on CAM-OCT. A number of P. putida mutants carrying chromosomal mutations affecting either survival or mutagenesis after UV irradiation were isolated, and the effect of CAM-OCT on these mutants was determined. All mutations producing a UV-sensitive phenotype in P. putida were fully suppressed by the plasmid, whereas the plasmid had a more variable effect on mutagenesis mutations, suppressing some and producing no suppression of others. On the basis of the results reported here and results obtained by others with plasmids carrying UV response genes, it appears that CAM-OCT may differ either in regulation or in the number and functions of UV response genes encoded

  7. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    Directory of Open Access Journals (Sweden)

    Santanu Pailan

    2015-11-01

    Full Text Available An organophosphate (OP degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degraded within 96 h at 37 °C. Growth studies indicated the strain to be moderately thermo-halo tolerant in nature. Investigation based on identification of intermediates of parathion degradation by thin layer chromatography (TLC, high performance liquid chromatography (HPLC, gas chromatography (GC and liquid chromatography mass spectrometry (LC-MS/MS provided evidence for possible existence of two pathways. The first pathway proceeds via 4-nitrophenol (4-NP while the second proceeds through formation of 4-aminoparathion (4-APar, 4-aminophenol (4-AP and parabenzoquinone (PBQ. This is the first report of chemotaxis towards organophosphate compound by a thermo-halo tolerant bacterium.

  8. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  9. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- -D-Glutamic Acid Anthrax Capsule

    KAUST Repository

    Stabler, R. A.

    2013-01-24

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  10. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy

    DEFF Research Database (Denmark)

    Møller, Søren; Pedersen, Anne Rathmann; Poulsen, L.K.

    1996-01-01

    As a representative member of the toluene-degrading population in a biofilter for waste gas treatment, Pseudomonas putida was investigated with a 16S rRNA targeting probe, The three-dimensional distribution of P. putida was visualized in the biofilm matrix by scanning confocal laser microscopy...

  11. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-γ-d-Glutamic Acid Anthrax Capsule.

    Science.gov (United States)

    Stabler, Richard A; Negus, David; Pain, Arnab; Taylor, Peter W

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  12. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly-?-d-Glutamic Acid Anthrax Capsule

    OpenAIRE

    Stabler, Richard A.; Negus, David; Pain, Arnab; Taylor, Peter W.

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-?-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  13. Draft Genome Sequences of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8, Soil Bacteria That Cooperate To Degrade the Poly- -D-Glutamic Acid Anthrax Capsule

    KAUST Repository

    Stabler, R. A.; Negus, D.; Pain, Arnab; Taylor, P. W.

    2013-01-01

    A mixed culture of Pseudomonas fluorescens BS2 and Pusillimonas noertemannii BS8 degraded poly-γ-d-glutamic acid; when the 2 strains were cultured separately, no hydrolytic activity was apparent. Here we report the draft genome sequences of both soil isolates.

  14. Comparative developmental dermal toxicity and mutagenicity of carbazole and benzo[a]carbazole

    International Nuclear Information System (INIS)

    Dutson, S.M.; Booth, G.M.; Seegmiller, R.E.; Schaalje, G.B.; Castle, R.N.

    1997-01-01

    The objectives of this study were (1) to determine the developmental toxicity of carbazole and benzo[a]carbazole following daily dermal administration to female Sprague-Dawley rats on days 0 through 20 of gestation and (2) to determine the mutagenicity of these two compounds using a modified version of the Ames assay. These chemicals are of concern because they are found in a variety of environmental matrices including crude oil mixtures. No signs of maternal or developmental toxicity were considered to be related to dermal administration of carbazole at does of 2.5, 25.0, and 250.0 mg/kg. Signs of maternal toxicity considered to be related to administration of benzo[a]carbazole included significantly decreased body-weight gain and decreased absolute-food consumption at a dose of 250.0 mg/kg. Signs of developmental toxicity considered to be related to administration of benzo[a]carbazole included significantly decreased number of total (live and dead combined) and live pups on lactation day 0 as well as significantly decreased average pup weight on lactation days 0 and 4 at a dose of 250.0 mg/kg. Because developmental toxicity following benzo[a]carbazole treatment was observed only at a dose at which maternal toxicity was observed, it is likely that the effects on the offspring are secondary to the treatment effects on the dam. Evidence of toxic effects with benzo[a]carbazole in the absence of effects with carbazole suggests that the substituted benzene ring enhances the biological activity of this compound. Carbazole was nonmutagenic with or without S-9 activation, whereas benzo[a]carbazole showed a clear dose-response with S-9 activation. Without S-9 activation, benzo[a]carbazole was nonmutagenic. Apparently benzo[a]carbazole must be enzymatically activated in order to be mutagenic

  15. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  16. Biphenyl Modulates the Expression and Function of Respiratory Oxidases in the Polychlorinated-Biphenyls Degrader Pseudomonas pseudoalcaligenes KF707

    Directory of Open Access Journals (Sweden)

    Federica Sandri

    2017-06-01

    Full Text Available Pseudomonas pseudoalcaligenes KF707 is a soil bacterium which is known for its capacity to aerobically degrade harmful organic compounds such as polychlorinated biphenyls (PCBs using biphenyl as co-metabolite. Here we provide the first genetic and functional analysis of the KF707 respiratory terminal oxidases in cells grown with two different carbon sources: glucose and biphenyl. We identified five terminal oxidases in KF707: two c(caa3 type oxidases (Caa3 and Ccaa3, two cbb3 type oxidases (Cbb31 and Cbb32, and one bd type cyanide-insensitive quinol oxidase (CIO. While the activity and expression of both Cbb31 and Cbb32 oxidases was prevalent in glucose grown cells as compared to the other oxidases, the activity and expression of the Caa3 oxidase increased considerably only when biphenyl was used as carbon source in contrast to the Cbb32 oxidase which was repressed. Further, the respiratory activity and expression of CIO was up-regulated in a Cbb31 deletion strain as compared to W.T. whereas the CIO up-regulation was not present in Cbb32 and C(caa3 deletion mutants. These results, together, reveal that both function and expression of cbb3 and caa3 type oxidases in KF707 are modulated by biphenyl which is the co-metabolite needed for the activation of the PCBs-degradation pathway.

  17. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3.

    Science.gov (United States)

    Parthipan, Punniyakotti; Elumalai, Punniyakotti; Sathishkumar, Kuppusamy; Sabarinathan, Devaraj; Murugan, Kadarkarai; Benelli, Giovanni; Rajasekar, Aruliah

    2017-10-01

    The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

  18. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.

    Science.gov (United States)

    Trivedi, Vikas D; Bharadwaj, Anahita; Varunjikar, Madhushri S; Singha, Arminder K; Upadhyay, Priya; Gautam, Kamini; Phale, Prashant S

    2017-08-01

    Pseudomonas sp. strain C7 isolated from sediment of Thane creek near Mumbai, India, showed the ability to grow on glucose and carbaryl in the presence of 7.5 and 3.5% of NaCl, respectively. It also showed good growth in the absence of NaCl indicating the strain to be halotolerant. Increasing salt concentration impacted the growth on carbaryl; however, the specific activity of various enzymes involved in the metabolism remained unaffected. Among various enzymes, 1-naphthol 2-hydroxylase was found to be sensitive to chloride as compared to carbaryl hydrolase and gentisate 1,2-dioxygenase. The intracellular concentration of Cl - ions remained constant (6-8 mM) for cells grown on carbaryl either in the presence or absence of NaCl. Thus the ability to adapt to the increasing concentration of NaCl is probably by employing chloride efflux pump and/or increase in the concentration of osmolytes as mechanism for halotolerance. The halotolerant nature of the strain will be beneficial to remediate carbaryl from saline agriculture fields, ecosystems and wastewaters.

  19. Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.

    Science.gov (United States)

    Leddy, M B; Phipps, D W; Ridgway, H F

    1995-01-01

    Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499

  20. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake.

    Science.gov (United States)

    Joshi, Chetna; Mathur, Priyanka; Khare, S K

    2011-04-01

    Large amount of seed cake is generated as by-product during biodiesel production from Jatropha seeds. Presence of toxic phorbol esters restricts its utilization as livestock feed. Safe disposal or meaningful utilization of this major by-product necessitates the degradation of these phorbol esters. The present study describes the complete degradation of phorbol esters by Pseudomonas aeruginosa PseA strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in nine days under the optimized SSF conditions viz. deoiled cake 5.0 g; moistened with 5.0 ml distilled water; inoculum 1.5 ml of overnight grown P. aeruginosa; incubation at temperature 30 °C, pH 7.0 and RH 65%. SSF of deoiled cake seems a potentially viable approach towards the complete degradation of the toxic phorbol esters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Zhi, E-mail: cdz@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Sun, Yi-Ming; Han, Li-Mei [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen, Jing [College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316004 (China); Ye, Jie-Xu; Chen, Jian-Meng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2016-01-25

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h{sup −1}; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S{sup 0}, SO{sub 4}{sup 2−}, and CO{sub 2}. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m{sup 3} PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m{sup 3} isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  2. A newly isolated Pseudomonas putida S-1 strain for batch-mode-propanethiol degradation and continuous treatment of propanethiol-containing waste gas

    International Nuclear Information System (INIS)

    Chen, Dong-Zhi; Sun, Yi-Ming; Han, Li-Mei; Chen, Jing; Ye, Jie-Xu; Chen, Jian-Meng

    2016-01-01

    Highlights: • A novel strain capable of effectively degrading 1-propanethiol (PT) was isolated. • Cells could be feasibly cultured in nutrition-rich media for PT degradation. • A possible pathway for PT degradation was proposed. • Pseudomonas putida S-1 could degrade mixed pollutants with diauxic growth. • Continuous removal of gaseous PT with or without isopropanol was demonstrated. - Abstract: Pseudomonas putida S-1 was isolated from activated sludge. This novel strain was capable of degrading malodorous 1-propanethiol (PT). PT degradation commenced with no lag phase by cells pre-grown in nutrition-rich media, such as Luria–Bertani (LB), and PT-contained mineral medium at specific growth rates of 0.10–0.19 h"−"1; this phenomenon indicated the operability of a large-scale cell culture. A possible PT degradation pathway was proposed on the basis of the detected metabolites, including dipropyl disulfide, 3-hexanone, 2-hexanone, 3-hexanol, 2-hexanol, S"0, SO_4"2"−, and CO_2. P. putida S-1 could degrade mixed pollutants containing PT, diethyl disulfide, isopropyl alcohol, and acetaldehyde, and LB-pre-cultured cells underwent diauxic growth. Waste gas contaminated with 200–400 mg/m"3 PT was continuously treated by P. putida S-1 pre-cultured in LB medium in a completely stirred tank reactor. The removal efficiencies exceeded 88% when PT stream was mixed with 200 mg/m"3 isopropanol; by contrast, the removal efficiencies decreased to 60% as the empty bed residence time was shortened from 40 s to 20 s.

  3. 9-Butyl-9H-carbazole

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1°. No classical hydrogen bonds are observed in the crystal structure.

  4. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil.

    Science.gov (United States)

    Pacwa-Płociniczak, Magdalena; Płaza, Grażyna Anna; Poliwoda, Anna; Piotrowska-Seget, Zofia

    2014-01-01

    The Pseudomonas sp. P-1 strain, isolated from heavily petroleum hydrocarbon-contaminated soil, was investigated for its capability to degrade hydrocarbons and produce a biosurfactant. The strain degraded crude oil, fractions A5 and P3 of crude oil, and hexadecane (27, 39, 27 and 13% of hydrocarbons added to culture medium were degraded, respectively) but had no ability to degrade phenanthrene. Additionally, the presence of gene-encoding enzymes responsible for the degradation of alkanes and naphthalene in the genome of the P-1 strain was reported. Positive results of blood agar and methylene blue agar tests, as well as the presence of gene rhl, involved in the biosynthesis of rhamnolipid, confirmed the ability of P-1 for synthesis of glycolipid biosurfactant. 1H and 13C nuclear magnetic resonance, Fourier transform infrared spectrum and mass spectrum analyses indicated that the extracted biosurfactant was affiliated with rhamnolipid. The results of this study indicate that the P-1 and/or biosurfactant produced by this strain have the potential to be used in bioremediation of hydrocarbon-contaminated soils.

  5. Synthesis and antimicrobial activities of 9H-carbazole derivatives

    Directory of Open Access Journals (Sweden)

    Nadia Salih

    2016-09-01

    Full Text Available In this work 9H-carbazole was utilized as a precursor to prepare new heterocyclic derivatives. Treatment of carbazole 1 with ethyl acetoacetate gave ethyl 9H-carbazol-9-ylacetate 2. The acetate ester derivative 2 was transformed into the 2-(9H-carbazol-9-ylacetohydrazide 3 through treatment with hydrazine hydrate. Reaction of compound 3 with sodium nitrite/HCl afforded [(9H-carbazol-9-ylacetylamino]diazonium chloride 4. Compounds 3-[3-(9H-carbazol-9-ylacetyltriazanylidene]pentane-2,4-dione 5 and ethyl 2-[3-(9H-carbazol-9-ylacetyltriazanylidene]-3-oxobutnoate 6 were obtained by reaction of compound 4 with acetylacetone and ethyl acetoacetate, respectively. Treatment of compounds 5 and 6 with urea and phenylhydrazine afforded 5-[3-(9H-carbazol-9-ylacetyltriazanylidene]-4,6-dimethyl pyrimidin-2(5H-one 7 and 4-[3-(9H-carbazol-9-yl acetyltriazanylidene]-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one 8, respectively. The structures of the synthesized compounds were characterized by IR, 1H NMR, 13C NMR and elemental analysis. All synthesized products were tested and evaluated as antimicrobial agents.

  6. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    International Nuclear Information System (INIS)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; Lelie, Daniel van der; Carleer, Robert; Vangronsveld, Jaco

    2010-01-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l -1 TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l -1 TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. - The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  7. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  8. Biodegradation of nicotine by a novel nicotine-degrading bacterium, Pseudomonas plecoglossicida TND35 and its new biotransformation intermediates.

    Science.gov (United States)

    Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan

    2014-02-01

    Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.

  9. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    Science.gov (United States)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. ISOLATION AND CHARACTERIZATION OF A MOLYBDENUM-REDUCING, PHENOL- AND CATECHOL-DEGRADING PSEUDOMONAS PUTIDA STRAIN AMR-12 IN SOILS FROM EGYPT

    Directory of Open Access Journals (Sweden)

    M. Abd. AbdEl-Mongy

    2016-02-01

    Full Text Available Sites contaminated with both heavy metals and organic xenobiotic pollutants warrants the effective use of either a multitude of bacterial degraders or bacteria having the capacity to detoxify numerous toxicants simultaneously. A molybdenum-reducing bacterium with the capacity to degrade phenolics is reported. Molybdenum (sodium molybdate reduction was optimum between pH 6.0 and 7.0 and between 20 and 30 °C. The most suitable electron donor was glucose. A narrow range of phosphate concentrations between 5.0 and 7.5 mM was required for optimal reduction, while molybdate between 20 and 30 mM were needed for optimal reduction. The scanning absorption spectrum of the molybdenum blue produced indicated that Mo-blue is a reduced phosphomolybdate. Molybdenum reduction was inhibited by the heavy metals mercury, silver and chromium. Biochemical analysis identified the bacterium as Pseudomonas putida strain Amr-12. Phenol and phenolics cannot support molybdenum reduction. However, the bacterium was able to grow on the phenolic compounds (phenol and catechol with observable lag periods. Maximum growth on phenol and catechol occurred around the concentrations of 600 mg∙L-1. The ability of this bacterium to detoxify molybdenum and grown on toxic phenolic makes this bacterium an important tool for bioremediation.

  11. The Genome of the Toluene-Degrading Pseudomonas veronii Strain 1YdBTEX2 and Its Differential Gene Expression in Contaminated Sand.

    Directory of Open Access Journals (Sweden)

    Marian Morales

    Full Text Available The natural restoration of soils polluted by aromatic hydrocarbons such as benzene, toluene, ethylbenzene and m- and p-xylene (BTEX may be accelerated by inoculation of specific biodegraders (bioaugmentation. Bioaugmentation mainly involves introducing bacteria that deploy their metabolic properties and adaptation potential to survive and propagate in the contaminated environment by degrading the pollutant. In order to better understand the adaptive response of cells during a transition to contaminated material, we analyzed here the genome and short-term (1 h changes in genome-wide gene expression of the BTEX-degrading bacterium Pseudomonas veronii 1YdBTEX2 in non-sterile soil and liquid medium, both in presence or absence of toluene. We obtained a gapless genome sequence of P. veronii 1YdBTEX2 covering three individual replicons with a total size of 8 Mb, two of which are largely unrelated to current known bacterial replicons. One-hour exposure to toluene, both in soil and liquid, triggered massive transcription (up to 208-fold induction of multiple gene clusters, such as toluene degradation pathway(s, chemotaxis and toluene efflux pumps. This clearly underlines their key role in the adaptive response to toluene. In comparison to liquid medium, cells in soil drastically changed expression of genes involved in membrane functioning (e.g., lipid composition, lipid metabolism, cell fatty acid synthesis, osmotic stress response (e.g., polyamine or trehalose synthesis, uptake of potassium and putrescine metabolism, highlighting the immediate response mechanisms of P. veronii 1YdBTEX2 for successful establishment in polluted soil.

  12. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

    International Nuclear Information System (INIS)

    Huertas, M.J.; Saez, L.P.; Roldan, M.D.; Luque-Almagro, V.M.; Martinez-Luque, M.; Blasco, R.; Castillo, F.; Moreno-Vivian, C.; Garcia-Garcia, I.

    2010-01-01

    Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN - L -1 O.D. -1 h -1 ; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN - L -1 O.D. -1 h -1 to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

  13. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, M.J., E-mail: mjhuertas@us.es [Instituto de Bioquimica Vegetal y Fotosintesis, CSIC-Universidad de Sevilla Avda Americo Vespucio, 49, 41092 Sevilla (Spain); Saez, L.P.; Roldan, M.D.; Luque-Almagro, V.M.; Martinez-Luque, M. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Blasco, R. [Departamento de Bioquimica y Biologia Molecular y Genetica, Facultad de Veterinaria, Universidad de Extremadura, 11071 Caceres (Spain); Castillo, F.; Moreno-Vivian, C. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Garcia-Garcia, I. [Departamento de Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain)

    2010-07-15

    Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1}; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1} to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

  14. Electronic transitions of fluorene, dibenzofuran, carbazole, and dibenzothiophene

    DEFF Research Database (Denmark)

    Nguyen, Duy Duc; Trunk, John; Nakhimovsky, Lina

    2010-01-01

    A comparative study of the electronic transitions of fluorene and its hetero-analogues dibenzofuran, carbazole, and dibenzothiophene was performed in a wide energy range. Gas phase, crystal phase, and linear dichroism electronic transmittance spectra were measured with synchrotron radiation...

  15. Investigation of Halohydrins Degradation by Whole Cells and Cell-free Extract of Pseudomonas putida DSM 437: A Kinetic Approach

    Directory of Open Access Journals (Sweden)

    A. Konti

    2017-10-01

    Full Text Available The biodegradation of two halohydrins (1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol by P. putida DSM 437 was investigated. Intact cells of previously acclimatized P. putida DSM 437 as well as cell-free extracts were used in order to study the degradation kinetics. When whole cells were used, a maximum biodegradation rate of 3-CPD (vmax = 1.28.10–5 mmol mg–1 DCW h–1 was determined, which was more than 4 times higher than that of 1,3-DCP. However, the affinity towards both halohydrins (Km was practically the same. When using cell-free extract, the apparent vmax and Km values for 1,3-DCP were estimated at 9.61.10–6 mmol mg–1 protein h–1 and 8.00 mM, respectively, while for 3-CPD the corresponding values were 2.42.10–5 mmol mg–1 protein h–1 and 9.07 mM. GC-MS analysis of cell-free extracts samples spiked with 1,3-DCP revealed the presence of 3-CPD and glycerol, intermediates of 1,3-DCP degradation pathway. 3-CPD degradation was strongly inhibited by the presence of epichlorohydrin and to a lesser extent by glycidol, intermediates of dehalogenation pathway.

  16. Synthesis of new pyrano[2,3-c]carbazoles, pyrano[3,2-b]carbazoles ...

    Indian Academy of Sciences (India)

    nagarajan

    b]carbazole derivatives via iodocyclization. T. Krishna Chaitanya and Rajagopal Nagarajan*. School of Chemistry, University of Hyderabad, Hyderabad-500046, India. E-mail: rnsc@uohyd.ernet.in. Table of contents page number. Spectra (. 1.

  17. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India.

    Science.gov (United States)

    Patel, Vilas; Jain, Siddharth; Madamwar, Datta

    2012-03-01

    Naphthalene degrading bacterial consortium (DV-AL) was developed by enrichment culture technique from sediment collected from the Alang-Sosiya ship breaking yard, Gujarat, India. The 16S rRNA gene based molecular analyzes revealed that the bacterial consortium (DV-AL) consisted of four strains namely, Achromobacter sp. BAB239, Pseudomonas sp. DV-AL2, Enterobacter sp. BAB240 and Pseudomonas sp. BAB241. Consortium DV-AL was able to degrade 1000 ppm of naphthalene in Bushnell Haas medium (BHM) containing peptone (0.1%) as co-substrate with an initial pH of 8.0 at 37°C under shaking conditions (150 rpm) within 24h. Maximum growth rate and naphthalene degradation rate were found to be 0.0389 h(-1) and 80 mg h(-1), respectively. Consortium DV-AL was able to utilize other aromatic and aliphatic hydrocarbons such as benzene, phenol, carbazole, petroleum oil, diesel fuel, and phenanthrene and 2-methyl naphthalene as sole carbon source. Consortium DV-AL was also efficient to degrade naphthalene in the presence of other pollutants such as petroleum hydrocarbons and heavy metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A convenient preparation of 9 H -carbazole-3,6-dicarbonitrile and 9 H -carbazole-3,6-dicarboxylic acid

    KAUST Repository

    Weselinski, Lukasz Jan

    2014-01-23

    A catalytic, high yielding and scalable procedure for the synthesis of 9H-carbazole-3,6-dicarbonitrile has been developed. Subsequent hydrolysis of the dinitrile in the presence of a catalytic copper species (i.e., CuI) yields 9H-carbazole-3,6-dicarboxylic acid. Both compounds are versatile and fine-tunable organic building blocks and therefore offer potential in material science, medicinal and supramolecular chemistry. © Georg Thieme Verlag Stuttgart New York.

  19. Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida

    Directory of Open Access Journals (Sweden)

    Ashvini Chauhan

    2016-06-01

    Full Text Available We recently isolated a Pseudomonas sp. strain W15Feb9B from Ochlockonee River, Florida and demonstrated potent biodegradative activity against two commonly used pesticides - Alachlor [(2-chloro-2′,6′-diethylphenyl-N (methoxymethylacetanilide] and Endosulfan [(6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9methano-2,3,4-benzo(edi-oxathiepin-3-oxide], respectively. To further identify the repertoire of metabolic functions possessed by strain W15Feb9B, a draft genome sequence was obtained, assembled, annotated and analyzed. The genome sequence of strain 2385 has been deposited in GenBank under accession number JTKF00000000; BioSample number SAMN03151543. The sequences obtained from strain 2385 assembled into 192 contigs with a genome size of 6,031,588, G + C content of 60.34, and 5512 total number of putative genes. RAST annotated a total of 542 subsystems in the genome of strain W15Feb9B along with the presence of 5360 coding sequences. A genome wide survey of strain W15Feb9B indicated that it has the potential to degrade several other pollutants including atrazine, caprolactam, dioxin, PAHs (such as naphthalene and several chloroaromatic compounds.

  20. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2.

    Science.gov (United States)

    Zhang, Hui; Li, Mengya; Li, Jie; Wang, Guangli; Liu, Yuan

    2017-05-10

    Quizalofop-p-ethyl (QPE) is a post-emergence herbicide that effectively controls grass weeds and is often detected in the environment. However, the biochemical and molecular mechanisms of QPE degradation in the environment remains unclear. In this study, a highly effective QPE-degrading bacterial strain J-2 was isolated from acclimated activated sludge and identified as a Pseudomonas sp., containing the QPE breakdown metabolite quizalofop acid (QA) identified by Liquid Chromatography-Ion Trap-Mass Spectrometry (LC-IT-MS n ) analysis. A novel QPE hydrolase esterase-encoding gene qpeH was cloned from strain J-2 and functionally expressed in Escherichia coli BL21 (DE3). The specific activity of recombinant QpeH was 198.9 ± 2.7 U mg -1 for QPE with K m and K cat values of 41.3 ± 3.6 μM and 127.3 ± 4.5 s -1 . The optimal pH and temperature for the recombinant QpeH were 8.0 and 30 °C, respectively and the enzyme was activated by Ca 2+ , Cd 2+ , Li + , Fe 3+ and Co 2+ and inhibited by Ni 2+ , Fe 2+ , Ag + , DEPC, SDS, Tween 80, Triton X, β-mercaptoethanol, PMSF, and pCMB. In addition, the catalytic efficiency of QpeH toward different AOPP herbicides in descending order was as follows: fenoxaprop-P-ethyl > quizalofop-P-tefuryl > QPE > haloxyfop-P-methyl > cyhalofopbutyl > clodinafop-propargyl. On the basis of the phylogenetic analysis and multiple sequence alignment, the identified enzyme QpeH, was clustered with esterase family V, suggesting a new member of this family because of its low similarity of amino acid sequence with esterases reported previously.

  1. Small molecule n-(alpha-peroxy) carbazole compounds and methods of use

    KAUST Repository

    Wang, Xinbo; Lai, Zhiping; Pan, Yupeng; Huang, Kuo-Wei

    2017-01-01

    The invention relates to novel N-(α-peroxy)carbazole compounds of Formula I and methods for use. (I) The N-(α-peroxy)carbazole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)carbazole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy)carbazole compounds.

  2. Small molecule n-(alpha-peroxy) carbazole compounds and methods of use

    KAUST Repository

    Wang, Xinbo

    2017-11-16

    The invention relates to novel N-(α-peroxy)carbazole compounds of Formula I and methods for use. (I) The N-(α-peroxy)carbazole compounds described herein are useful for treating or preventing parasitic infections, bacterial infections, and cancer in subjects. The methods include administering an N-(α-peroxy)carbazole compound as described herein to a subject. Also described herein are methods for synthesizing N-(α-peroxy)carbazole compounds.

  3. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    International Nuclear Information System (INIS)

    Fei-Peng, Chen; Bin, Xu; Wen-Jing, Tian; Zu-Jin, Zhao; Ping, Lü; Chan, Im

    2010-01-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq 3 )/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m 2 . The investigation reveals that the white light is composed of a blue–green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films

  4. White organic light-emitting diodes based on electroplex from polyvinyl carbazole and carbazole oligomers blends

    Science.gov (United States)

    Chen, Fei-Peng; Xu, Bin; Zhao, Zu-Jin; Tian, Wen-Jing; Lü, Ping; Im, Chan

    2010-03-01

    White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.

  5. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    Science.gov (United States)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  6. Pseudomonas - Fact Sheet

    OpenAIRE

    Public Health Agency

    2012-01-01

    Fact sheet on Pseudomonas, including:What is Pseudomonas?What infections does it cause?Who is susceptible to pseudomonas infection?How will I know if I have pseudomonas infection?How can Pseudomonas be prevented from spreading?How can I protect myself from Pseudomonas?How is Pseudomonas infection treated?

  7. Prokaryotic Homologs of the Eukaryotic 3-Hydroxyanthranilate 3,4-Dioxygenase and 2-Amino-3-Carboxymuconate-6-Semialdehyde Decarboxylase in the 2-Nitrobenzoate Degradation Pathway of Pseudomonas fluorescens Strain KU-7†

    OpenAIRE

    Muraki, Takamichi; Taki, Masami; Hasegawa, Yoshie; Iwaki, Hiroaki; Lau, Peter C. K.

    2003-01-01

    The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase a...

  8. Combinatorial efficacy of Trichoderma spp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea.L

    Directory of Open Access Journals (Sweden)

    P Rajeswari

    2017-12-01

    Full Text Available Fusarium oxysporum, the soil borne pathogen causes vascular wilt, on majority of crop plants. It has been demonstrated that two different species of Trichoderma and Pseudomonas fluorescens suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol agents, and thus of several suppressive mechanisms, may represent a viable control strategy. A necessity for biocontrol by combinations of biocontrol agents can be the compatibility of the co-inoculated micro-organisms. Hence, compatibility between Trichoderma spp. and Pseudomonas fluorescens that have the ability to suppress Fusarium oxysporum in vitro on the activity of pectinolytic enzymes of Fusarium oxysporum. The activity of pectinolytic enzymes, i.e. pectin methyl esterase, endo and exo polymethylgalacturonases and exo and endo pectin trans eliminases produced by Fusarium oxysporum (Control was higher. Maximum inhibition of pectin methylesterase, exo and endo polymethylgalacturonase and exo and endopectin trans eliminase was shown by culture filtrate of Trichoderma viride + Pseudomonas fluorescens (Tv+Pf (1+2%, followed by Trichoderma harzianum + Pseudomonas fluorescens, (Th +Pf (1.5+2% and Trichoderma viride + Trichoderma harzianum (Tv+Th (1+1.5%. However, pathogenecity suppression of Fusarium oxysporum, a causative of Arachis hypogaea. L by the compatible combination of Trichodema viride + Pseudomonas fluorescens (1+2% was significantly better as compared to the single bio-agent. This indicates that specific interactions between biocontrol agents influence suppression of pathogenicity factors directly by combinations of these compatible bio-agents.

  9. Electrochemical characterization of alternate conducting carbazole-bisthiophene units

    Energy Technology Data Exchange (ETDEWEB)

    Lapkowski, Mieczyslaw; Data, Przemyslaw [Silesian University of Technology, Department of Chemistry, Strzody 9, 44-100 Gliwice (Poland); Centre of Polymer and Carbon Materials of the Polish Academy of Sciences, Sowinskiego 5, 44-100 Gliwice (Poland); Nowakowska-Oleksy, Anna [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Soloducho, Jadwiga, E-mail: jadwiga.soloducho@pwr.wroc.pl [Wroclaw University of Technology, Faculty of Chemistry, Department of Medicinal Chemistry and Microbiology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Roszak, Szczepan [Wroclaw University of Technology, Institute of Physical and Theoretical Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2012-01-05

    Highlights: Black-Right-Pointing-Pointer Molecular structures and electronic properties of monomer influence every step of polymerization and shape the polymer. Black-Right-Pointing-Pointer The electroactivity of carbazole-bithiophene polymer depends on thickness of film. Black-Right-Pointing-Pointer Total electroconductivity of polymer is connected with electrode potential sufficient to oxidize bithiophene mers. Black-Right-Pointing-Pointer There was observed non-typical behavior of conducting polymers. Black-Right-Pointing-Pointer Achieved material is characterized by mixed conductivity redox and electron one. - Abstract: An electrochemical and theoretical character of alternate copolymer of carbazole and bithiophene units was investigated. Polymerization is processed as two steps bielectronic oxidation of molecule. With monoelectronic oxidation is connected stable radical cation with spin located mainly on carbazole. The electrochemical properties of polymer are dependent on thickness of film deposited on electrode. In case of the thin layers one it is observed characteristic redox couple of carbazole oxidation to radical cation. Analysis of polymer behavior and results of spectrochemical measurements indicate on mixed type of electroconductivity. Molecular structures, HOMO-LUMO gaps and nature of highest occupied and lowest unoccupied molecular orbitals were also studied in presented work for oligomers ranging from monomer to octamer. The studies applied density functional theory (DFT).

  10. Carbazole functionalized isocyanide brushes in heterojunction photovoltaic devices

    NARCIS (Netherlands)

    Lim, E.; Gao, F.; Schwartz, E.; Schwartz, E.; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, R.J.M.; Rowan, A.E.; Greenham, N.C.; Do, L.M.

    2012-01-01

    In this work, carbazole-containing polyisocyanide (PIACz) brushes were used for photovoltaic devices. A photovoltaic device was fabricated on top of the brushes by spin-coating a suitable acceptor and evaporating an Al cathode. Devices with a poly(N-vinylcarbazole) (PVK) bulk polymer were also

  11. CHARACTERIZATION AND NUCLEOTIDE SEQUENCE DETERMINATION OF A REPEAT ELEMENT ISOLATED FROM A 2,4,5,-T DEGRADING STRAIN OF PSEUDOMONAS CEPACIA

    Science.gov (United States)

    Pseudomonas cepacia strain AC1100, capable of growth on 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), was mutated to the 2,4,5-T− strain PT88 by a ColE1 :: Tn5 chromosomal insertion. Using cloned DNA from the region flanking the insertion, a 1477-bp sequence (designated RS1100) wa...

  12. 9-Ethyl-3,6-diformyl-9H-carbazole

    Directory of Open Access Journals (Sweden)

    Jun Jie Wang

    2008-07-01

    Full Text Available The structure of the title compound, C16H13NO2, was determined as a part of a project on the synthesis of new compounds which can make two-photon absorptions. In the crystal structure, both aldehyde groups are located within the carbazole plane. One of these groups is disordered and was refined using a split model with site-occupation factors for each position of 0.5.

  13. Efficient and Simple Synthesis of 6-Aryl-1,4-dimethyl-9H-carbazoles

    Directory of Open Access Journals (Sweden)

    Sylvain Rault

    2008-06-01

    Full Text Available A synthetic method for the preparation of 6-aryl-1,4-dimethyl-9H-carbazoles involving a palladium catalyzed coupling reaction of 1,4-dimethyl-9H-carbazole-6-boronic acids and (heteroaryl halides is described.

  14. Alternative products to carbazoles in the oxidation of diphenylamines with palladium (II) acetate

    OpenAIRE

    Raposo, M. Manuela M.; Campos, Ana M. F. Oliveira; Shannon, Patrick V. R.

    1997-01-01

    Although simple diphenylamines are conveniently oxidised with Palladium (II) acetate to give carbazoles, for more complex examples, carbazoles are minor products amongst many. CRUP (Portugal). British Council - Treaty of Windsor Programme. Junta Nacional de Investigação Científica e Tecnológica.

  15. 75 FR 38076 - Carbazole Violet Pigment 23 from India: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-07-01

    ... the form of presscake and dry color. Pigment dispersions in any form (e.g., pigment dispersed in... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... carbazole violet pigment 23 (CVP 23) from India. The review covers exports of this merchandise to the United...

  16. 75 FR 33243 - Carbazole Violet Pigment 23 From India: Final Results of Countervailing Duty Administrative Review

    Science.gov (United States)

    2010-06-11

    ... powder, paste, wet cake) and finished pigment in the form of presscake and dry color. Pigment dispersions... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty order on carbazole violet pigment 23 from India for the period January 1, 2007, through...

  17. 75 FR 52930 - Carbazole Violet Pigment 23 From India: Preliminary Results of Antidumping Duty Changed...

    Science.gov (United States)

    2010-08-30

    ... of presscake and dry color. Pigment dispersions in any form (e.g., pigment dispersed in oleoresins... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... order on carbazole violet pigment 23 from India to determine whether Meghmani Pigments (Meghmani) is the...

  18. 75 FR 977 - Carbazole Violet Pigment 23 From India: Preliminary Results of Countervailing Duty Administrative...

    Science.gov (United States)

    2010-01-07

    ... the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments dispersed in... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty order on carbazole violet pigment 23 (CVP-23) from India for the period January 1, 2007...

  19. Salicylic acid degradation from aqueous solutions using Pseudomonas fluorescens HK44: parameters studies and application tools Degradação de ácido salicílico presente em soluções sintéticas utilizando Pseudomonas fluorescens HK44

    Directory of Open Access Journals (Sweden)

    Tatyane R. Silva

    2007-03-01

    Full Text Available The optimal conditions for salicylic acid biodegradation by Pseudomonas fluorescens HK44 were determined in this study with the intention to create a microbial sensor. Kinetic experiments permitted a definition of 60 and 30min the time needed to achieve the maximum degradation of salicylic acid presented in a medium with and without yeast extract, respectively. The degradation in medium without yeast extract and the quantification by spectrophotometry 230 nm were selected to be used in further tests. The use of preactivated cells or on the exponential growth phase showed better salicylic acid degradation percentages when compared to nonactivated cells or on the stationary growth state. Finally, the best cellular concentration used on the salicylic acid degradation was 0,1 g.L-1. Strain HK44 shows to be capable of degrade salicylic acid presented in simple aqueous systems, making this strain a promising tool for the application on a luminescent microbial sensor.Com a intenção de criar um sensor microbiano, as condições ótimas para a biodegradação de ácido salicílico por Pseudomonas fluorescens HK44 foram determinadas neste estudo. Os experimentos cinéticos permitiram a definição dos tempos de 60 e 30 minutos como necessários para atingir a máxima degradação de ácido salicílico presente em meio com ou sem extrato de lêvedo, respectivamente. A degradação no meio sem extrato de lêvedo e a quantificação através de espectrofotometria 230 nm foram selecionadas para serem utilizadas em testes posteriores. O uso de células pré-ativadas ou na fase exponencial de crescimento apresentou melhores porcentagens de degradação de ácido salicílico quando comparadas a células não-ativadas ou no estado estacionário de crescimento. Além disso, a melhor concentração celular utilizada nessa degradação foi 0,1 g.L¹. A cepa HK44 parece ser capaz de degradar o ácido salicílico presente em sistemas aquosos simples, tornando este

  20. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Tatsuya; Yamamoto, Junichi; Fukuchi, Masashi; Kaji, Hironori, E-mail: kaji@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hirata, Shuzo; Jung, Heo Hyo; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyusyu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Hirata, Osamu; Shibano, Yuki [Nissan Chemical Industries, LTD, 722-1 Tsuboi, Funabashi 274-8507 (Japan)

    2015-08-15

    Liquid organic light-emitting diodes (liquid OLEDs) are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR) experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  1. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    Science.gov (United States)

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  2. Preparation, one- and two-photon properties of carbazole derivatives containing nitrogen heterocyclic ring

    Science.gov (United States)

    Zhang, Yichi; Wang, Ping; Li, Liang; Chen, Zhimin; He, Chunying; Wu, Yiqun

    Preparation of recording materials with high two-photon absorption activities is one of the important issues to superhigh- density two-photon absorption (TPA) three-dimensional (3D) optical data storage. In this paper, three new carbazole derivatives containing nitrogen heterocyclic ring with symmetric and asymmetric structures are prepared using ethylene as the π bridge between the carbazole unit and nitrogen heterocyclic ring, namely, 9-butyl-3-(2-(1,8- naphthyridin)vinyl)-carbazole (material 1), 9-butyl-3,6-bis(2-(1,8-naphthyl)vinyl)-carbazole (material 2) and 9-butyl-3,6- bis(2-(quinolin)vinyl)-carbazole (material 3). Their one photon properties including linear absorption spectra, fluorescence emission spectra, and fluorescence quantum yields are studied. The fluorescence excited by 120 fs pulse at 800 nm Ti: sapphire laser operating at 1 kHz repetition rate with different incident powers of 9-butyl-3-(2-(quinolin) vinyl)-carbazole (material 3) was investigated, and two-photon absorption cross-sections has been obtained. It is shown that material 3 containing quinoline rings as electron acceptor with symmetric structure exhibit high two-photon absorption activity. The result implies that material 3 (9-butyl-3-(2-(quinolin) vinyl)-carbazole) is a good candidate as a promising recording material for super-high-density two-photon absorption (TPA) three-dimensional (3D) optical data storage. The influence of chemical structure of the materials on the optical properties is discussed.

  3. 3,6-Dibromo-9-(4-tert-butylbenzyl-9H-carbazole

    Directory of Open Access Journals (Sweden)

    Duan-Lin Cao

    2008-08-01

    Full Text Available In the title compound, C23H21Br2N, which was synthesized by the N-alkylation of 1-tert-butyl-4-(chloromethylbenzene with 3,6-dibromo-9H-carbazole, the asymmetric unit contains two unique molecules. Each carbazole ring system is essentially planar, with mean deviations of 0.0077 and 0.0089 Å for the two molecules. The carbazole planes make dihedral angles of 78.9 (2 and 81.8 (2° with the planes of the respective benzene rings.

  4. The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida.

    Science.gov (United States)

    Arias-Barrau, Elsa; Olivera, Elías R; Luengo, José M; Fernández, Cristina; Galán, Beatriz; García, José L; Díaz, Eduardo; Miñambres, Baltasar

    2004-08-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.

  5. Origin of the blue emissions of polyacetylenes bearing carbazole side groups

    International Nuclear Information System (INIS)

    Huang Yuanming; Song Yibing; Huang Chong; Zhou Xueping; Ouyang Yandong; Ge Weikun; Lam, Jacky W.Y.; Tang Benzhong

    2005-01-01

    The optical properties and electronic structures of one mono-substituted polyacetylene and two di-substituted polyacetylenes have been investigated. Each of the substituted polyacetylenes bears a carbazole unit in the side chain. In spite of the differences in their molecular structures, the dilute solutions (∼1x10 -6 M) of these substituted polyacetylenes exhibit the same absorptions and the same deep-blue emissions (∼360 nm). Interestingly, the absorption and emission spectra of these substituted polyacetylenes are similar to those of the small molecule carbazole. As the concentration of the substituted polyacetylenes increases to about 1x10 -3 M, we have detected intense blue emissions at about 475 nm. Using Hueckel tight binding programs, we have calculated the electronic structures of the carbazole-containing polyacetylenes. Our results indicate that the absorption, the deep-blue emission (∼360 nm) and the intense blue emission (∼475 nm) originate from the carbazole chromophores in the side chain

  6. Synthesis and electrochemical properties of peripheral carbazole functional Ter(9,9-spirobifluorene)s.

    Science.gov (United States)

    Tang, Shi; Liu, Meirong; Gu, Cheng; Zhao, Yang; Lu, Ping; Lu, Dan; Liu, Linlin; Shen, Fangzhong; Yang, Bing; Ma, Yuguang

    2008-06-06

    A facile approach for synthesis of spirobifluorene trimers with peripheral carbazole functional groups by utilizing Suzuki coupling as the key reaction has been developed. These novel compounds exhibit blue emission with high quantum yields in solution and thin films, and excellent spectral stability upon photoirradiation and annealing in air. By the introduction of carbazole groups, the oxidation potentials of spirobifluorene trimers S TCPC-6 and STCPC-4 were significantly lower than that of model compound STHPH without peripheral carbazole groups, which reflect that the title compounds process higher HOMO energy level and better hole-injection ability. Highly luminescent films were obtained by electrochemical coupling between carbazole units. Pure blue-emission single-layer LEDs based on electrochemical deposition films as light emitting layers were achieved.

  7. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui; Zheng, Shijun; Bottger, Rebecca; Chae, HyunSik; Tanaka, Takeshi; Li, Sheng; Mochizuki, Amane; Jabbour, Ghassan E.

    2011-01-01

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency

  8. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Jack L. Arbiser; Baskaran Govindarajan; Traci E. Battle; Rebecca Lynch; David A. Frank; Masuko Ushio-Fukai; Betsy N. Perry; David F. Stern; G. Tim Bowden; Anquan Liu; Eva Klein; Pawel J. Kolodziejski; N. Tony Eissa; Chowdhury F. Hossain; Dale G. Nagle [Emory University School of Medicine, Atlanta, GA (United States). Department of Dermatology

    2006-06-15

    Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelial cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.

  9. Thermally and electrochemically stable amorphous hole-transporting materials based on carbazole dendrimers for electroluminescent devices

    International Nuclear Information System (INIS)

    Promarak, Vinich; Ichikawa, Musubu; Sudyoadsuk, Taweesak; Saengsuwan, Sayant; Jungsuttiwong, Siriporn; Keawin, Tinnagon

    2008-01-01

    Amorphous hole-transporting carbazole dendrimers, 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-2,6-di(2-ethylhexyloxy)benzene (G2CB) and 1,4-bis[3,6-di(carbazol-9-yl)carbazol-9-yl]-9-(2-ethylhexyl)carbazole (G2CC), were synthesized by a divergent approach involving bromination and Ullmann coupling reactions. Compounds G2CB and G2CC showed high thermal stability (T g = 206 to 245 deg. C) and excellent electrochemical reversibility. Double-layer organic light-emitting diodes were fabricated by using G2CB and G2CC as hole-transporting layers (HTLs) and tris(8-quinolinato)aluminum (Alq 3 ) as light-emissive layer with the device configuration of indium tin oxide/HTL/Alq 3 /LiF:Al. Both devices exhibited bright green emission from Alq 3 . The device using G2CC as HTL has the best performance with a maximum brightness of 8900 cd/m 2 at 14 V and a low turn-on voltage of 3.5 V

  10. Aminopropyl carbazole analogues as potent enhancers of neurogenesis.

    Science.gov (United States)

    Yoon, Hye Jin; Kong, Sun-Young; Park, Min-Hye; Cho, Yongsung; Kim, Sung-Eun; Shin, Jae-Yeon; Jung, Sunghye; Lee, Jiyoun; Farhanullah; Kim, Hyun-Jung; Lee, Jeewoo

    2013-11-15

    Neural stem cells are multipotent and self-renewing cells that can differentiate into new neurons and hold great promise for treating various neurological disorders including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Small molecules that can trigger neurogenesis and neuroprotection are particularly useful not only because of their therapeutic implications but also because they can provide an invaluable tool to study the mechanisms of neurogenesis. In this report, we have developed and screened 25 aminopropyl carbazole derivatives that can enhance neurogenesis of cultured neural stem cells. Among these analogues, compound 9 demonstrated an excellent proneurogenic and neuroprotective activity with no apparent toxicity. We believe that compound 9 can serve as an excellent lead to develop various analogues and to study the underlying mechanisms of neurogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Ethyl 2-(1,2,3,4-tetrahydrospiro[carbazole-3,2′-[1,3]dioxolan]-9-ylacetate

    Directory of Open Access Journals (Sweden)

    Philipp M. G. Löffler

    2009-04-01

    Full Text Available In the title compound, C18H21NO4, the hydrogenated six-membered ring of the carbazole unit adopts a half-chair conformation. The dioxolane ring and ethylacetate substituent point to opposite sides of the carbazole plane. The ethylacetate substituent adopts an essentially fully extended conformation, and its mean plane forms a dihedral angle of 83.8 (1° with respect to the carbazole mean plane. The molecules are arranged into stacks in which the carbazole planes form a dihedral angle of 4.4 (1° and have an approximate interplanar separation of 3.6 Å.

  12. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. 76 FR 55003 - Carbazole Violet Pigment 23 From the People's Republic of China: Preliminary Intent To Rescind...

    Science.gov (United States)

    2011-09-06

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... antidumping duty order on carbazole violet pigment 23 (CVP 23) from the People's Republic of China (PRC). This...

  14. 77 FR 1463 - Carbazole Violet Pigment 23 From the People's Republic of China: Final Rescission of Antidumping...

    Science.gov (United States)

    2012-01-10

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigments... DEPARTMENT OF COMMERCE International Trade Administration [A-570-892] Carbazole Violet Pigment 23... administrative review of the antidumping duty order on carbazole violet pigment 23 (CVP-23) from the People's...

  15. 75 FR 10759 - Carbazole Violet Pigment 23 from India: Initiation of Antidumping Duty Changed-Circumstances Review

    Science.gov (United States)

    2010-03-09

    ... dispersions in any form (e.g., pigment dispersed in oleoresins, flammable solvents, water) are not included... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... changed-circumstances review of the antidumping duty order on carbazole violet pigment 23 from India with...

  16. 75 FR 13257 - Carbazole Violet Pigment 23 from India: Final Results of the Expedited Five-year (Sunset) Review...

    Science.gov (United States)

    2010-03-19

    ...) and finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... countervailing duty (CVD) order on Carbazole Violet Pigment 23 (CVP-23) [[Page 13258

  17. Crystallization and preliminary X-ray diffraction analyses of the redox-controlled complex of terminal oxygenase and ferredoxin components in the Rieske nonhaem iron oxygenase carbazole 1,9a-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Jun; Aikawa, Hiroki; Umeda, Takashi [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Ashikawa, Yuji [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Suzuki-Minakuchi, Chiho [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kawano, Yoshiaki [RIKEN SPring-8 Center, RIKEN Harima Branch, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fujimoto, Zui [National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 (Japan); Okada, Kazunori [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Yamane, Hisakazu [Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-0003 (Japan); Nojiri, Hideaki, E-mail: anojiri@mail.ecc.u-tokyo.ac.jp [The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-09-25

    A crystal was obtained of the complex between reduced terminal oxygenase and oxidized ferredoxin components of carbazole 1,9a-dioxygenase. The crystal belonged to space group P2{sub 1} and diffracted to 2.25 Å resolution. The initial reaction in bacterial carbazole degradation is catalyzed by carbazole 1,9a-dioxygenase, which consists of terminal oxygenase (Oxy), ferredoxin (Fd) and ferredoxin reductase components. The electron-transfer complex between reduced Oxy and oxidized Fd was crystallized at 293 K using the hanging-drop vapour-diffusion method with PEG 3350 as the precipitant under anaerobic conditions. The crystal diffracted to a maximum resolution of 2.25 Å and belonged to space group P2{sub 1}, with unit-cell parameters a = 97.3, b = 81.6, c = 116.2 Å, α = γ = 90, β = 100.1°. The V{sub M} value is 2.85 Å{sup 3} Da{sup −1}, indicating a solvent content of 56.8%.

  18. Synthesis of novel carbazole derived substances using some organoboron compounds by palladium catalyzed and investigation of its semiconductor device characteristics

    Science.gov (United States)

    Gorgun, Kamuran; Caglar, Yasemin

    2018-04-01

    Carbazole compounds in particular represent one of the most intensely used and studied class of semiconducting materials. In this study, considering the information given in the literature the Ullman and Suzuki-Miyaura coupling reaction were carried out using carbazole, 1,4-dibromobenzene and pyrene-1-boronic acid. The synthesized carbazole derivatives are characterized by 1H NMR and elemental analysis. The spectroscopic and thermal properties of the synthesized novel carbazole derivative 9-(4-(pyren-4-yl)phenyl)-9H-carbazole (Cz-py) were investigated. And also, the n-Si/p-Cz:py heterojunction diode was fabricated. The electrical properties of this diode were characterized by current-voltage (I-V) and capacitance-voltage (C-V) measurements.

  19. Investigating side chain mediated electroluminescence from carbazole-modified polyfluorene.

    Science.gov (United States)

    Liao, Jin-Long; Chen, Xiwen; Liu, Ching-Yang; Chen, Show-An; Su, Chiu-Huen; Su, An-Chung

    2007-09-06

    In molecular design of electroluminescent (EL) conjugated polymers, introducing a charge transport moiety on a side chain is found to be a promising method for balancing electron and hole fluxes in EL devices without changing the emitting color if there is no interaction between moiety and main chain. In the case of grafting a carbazole (Cz) moiety (hole transporting) on blue emitting polyfluorene, a green emission appears with intensity comparable to the blue emission, which was attributed to a possible interaction between main chain and Cz as previously reported by us. Here, a detailed study of its EL mechanism was carried out by means of time-resolved EL with the assistance of molecular simulation and thermally stimulated current measurements; exploration of how main chain segments interact with the transport moiety was performed. We found the Cz groups in Cz100PF play multiple roles: they act as (1) hole transporter to improve hole injection, (2) hole trapping site for efficient electron-hole recombination to yield blue-emitting excitons, and (3) source of green emission from electroplex formed via electric field-mediated interaction of the Cz/Cz radical cation with an electron in the nearby PF backbone. In combination, these observations suggest that integrated consideration for both intramolecular and intermolecular interactions provides a new route of molecular design of efficient EL polymers.

  20. tert-Butyl 6-bromo-1,4-dimethyl-9H-carbazole-9-carboxylate

    Directory of Open Access Journals (Sweden)

    Jean-François Lohier

    2010-08-01

    Full Text Available The title compound, C19H20BrNO2, consists of a carbazole skeleton with methyl groups at positions 1 and 4, a protecting group located at the N atom and a Br atom at position 6. The pyrrole ring is oriented at dihedral angles of 1.27 (7 and 4.86 (7° with respect to the adjacent benzene rings. The dihedral angle between the benzene rings is 5.11 (7. The crystal structure is determined mainly by intramolecular C—H...O and intermolecular π–π interactions. π-stacking between adjacent molecules forms columns with a parallel arrangement of the carbazole ring systems. The presence of the tert-butoxycarbonyl group on the carbazole N atom and the intramolecular hydrogen bond induce a particular conformation of the exocyclic N—C bond within the molecule.

  1. Charge photogeneration and transport in side-chain carbazole polymers and co-polymers

    KAUST Repository

    Li, Huawei; Termine, Roberto; Godbert, Nicolas; Angiolini, Luigi; Giorgini, Loris; Golemme, Attilio

    2011-01-01

    The photoconductivity, hole mobility and charge photogeneration efficiency of a series of side-chain carbazole homopolymers and copolymers (with azo side-chains) have been investigated. Cyclic voltammetry measurement of frontier orbitals energies show that the HOMO energy is determined by the nature and the position of attachment of the linker between the main chain and the carbazole, the azo-moiety being not relevant in this respect. Hole mobility is not influenced by the HOMO energy but seems to depend on the degree of conformational mobility of the side-chains, reaching values of the order of 10-3cm2V-1s-1 in the best cases. The HOMO energy is instead extremely important when considering photogeneration efficiency, that can change by 10 orders of magnitude depending on the density of the carbazole side-chains in co-polymers and on the linker nature and attachment position. © 2011 Elsevier B.V. All rights reserved.

  2. Charge photogeneration and transport in side-chain carbazole polymers and co-polymers

    KAUST Repository

    Li, Huawei

    2011-07-01

    The photoconductivity, hole mobility and charge photogeneration efficiency of a series of side-chain carbazole homopolymers and copolymers (with azo side-chains) have been investigated. Cyclic voltammetry measurement of frontier orbitals energies show that the HOMO energy is determined by the nature and the position of attachment of the linker between the main chain and the carbazole, the azo-moiety being not relevant in this respect. Hole mobility is not influenced by the HOMO energy but seems to depend on the degree of conformational mobility of the side-chains, reaching values of the order of 10-3cm2V-1s-1 in the best cases. The HOMO energy is instead extremely important when considering photogeneration efficiency, that can change by 10 orders of magnitude depending on the density of the carbazole side-chains in co-polymers and on the linker nature and attachment position. © 2011 Elsevier B.V. All rights reserved.

  3. Glyphosate catabolism by Pseudomonas sp

    International Nuclear Information System (INIS)

    Shinabarger, D.L.

    1986-01-01

    The pathway for the degradation of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. PG2982 has been determined using metabolic radiolabeling experiments. Radiorespirometry experiments utilizing [3- 14 C] glyphosate revealed that approximately 50-59% of the C3 carbon was oxidized to CO 2 . Fractionation of stationary phase cells labeled with [3- 14 C]glyphosate revealed that from 45-47% of the assimilated C3 carbon is distributed to proteins and that amino acids methionine and serine are highly labeled. The nucleic acid bases adenine and guanine received 90% of the C3 label that was incorporated into nucleic acids, and the only pyrimidine base labeled was thymine. Pulse labeling of PG2982 cells with [3- 14 C]glyphosate revealed that [3- 14 C]sarcosine is an intermediate in glyphosate degradation. Examination of crude extracts prepared from PG2982 cells revealed the presence of an enzyme that oxidizes sarcosine to glycine and formaldehyde. These results indicate that the first step in glyphosate degradation by PG2982 is cleavage of the carbon-phosphorus bond, resulting in the release of sarcosine and a phosphate group. The phosphate group is utilized as a source of phosphorus, and the sarcosine is degraded to glycine and formaldehyde. Phosphonate utilization by Pseudomonas sp. PG2982 was investigated. Each of the ten phosphonates tested were utilized as a sole source of phosphorus by PG2982. Representative compounds tested included alkylphosphonates, 1-amino-substituted alkylphosphonates, amino-terminal phosphonates, and an arylphosphonate. PG2982 cultures degraded phenylphosphonate to benzene and produced methane from methylphosphonate. The data indicate that PG2982 is capable of cleaving the carbon-phosphorus bond of several structurally different phosphonates

  4. Anoxic degradation of nitrogenous heterocyclic compounds by activated sludge and their active sites.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-05-01

    The potential for degradation of five nitrogenous heterocyclic compounds (NHCs), i.e., imidazole, pyridine, indole, quinoline, and carbazole, was investigated under anoxic conditions with acclimated activated sludge. Results showed that NHCs with initial concentration of 50 mg/L could be completely degraded within 60 hr. The degradation of five NHCs was dependent upon the chemical structures with the following sequence: imidazole>pyridine>indole>quinoline>carbazole in terms of their degradation rates. Quantitative structure-biodegradability relationship studies of the five NHCs showed that the anoxic degradation rates were correlated well with highest occupied molecular orbital. Additionally, the active sites of NHCs identified by calculation were confirmed by analysis of intermediates using gas chromatography and mass spectrometry. Copyright © 2015. Published by Elsevier B.V.

  5. Persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil.

    Science.gov (United States)

    Mumbo, John; Henkelmann, Bernhard; Abdelaziz, Ahmed; Pfister, Gerd; Nguyen, Nghia; Schroll, Reiner; Munch, Jean Charles; Schramm, Karl-Werner

    2015-01-01

    Halogenated carbazoles have recently been detected in soil and water samples, but their environmental effects and fate are unknown. Eighty-four soil samples obtained from a site with no recorded history of pollution were used to assess the persistence and dioxin-like toxicity of carbazole and chlorocarbazoles in soil under controlled conditions for 15 months. Soil samples were divided into two temperature conditions, 15 and 20 °C, both under fluctuating soil moisture conditions comprising 19 and 44 drying-rewetting cycles, respectively. This was characterized by natural water loss by evaporation and rewetting to -15 kPa. Accelerated solvent extraction (ASE) and cleanup were performed after incubation. Identification and quantification were done using high-resolution gas chromatogram/mass spectrometer (HRGC/MS), while dioxin-like toxicity was determined by ethoxyresorufin-O-deethylase (EROD) induction in H4IIA rat hepatoma cells assay and multidimensional quantitative structure-activity relationships (mQSAR) modelling. Carbazole, 3-chlorocarbazole and 3,6-dichlorocarbazole were detected including trichlorocarbazole not previously reported in soils. Carbazole and 3-chlorocarbazole showed significant dissipation at 15 °C but not at 20 °C incubating conditions indicating that low temperature could be suitable for dissipation of carbazole and chlorocarbazoles. 3,6-Dichlorocarbazole was resistant at both conditions. Trichlorocarbazole however exhibited a tendency to increase in concentration with time. 3-Chlorocarbazole, 3,6-dibromocarbazole and selected soil extracts exhibited EROD activity. Dioxin-like toxicity did not decrease significantly with time, whereas the sum chlorocarbazole toxic equivalence concentrations (∑TEQ) did not contribute significantly to the soil assay dioxin-like toxicity equivalent concentrations (TCDD-EQ). Carbazole and chlorocarbazoles are persistent with the latter also toxic in natural conditions.

  6. Synthesis, spectroscopic and thermochemical studies of some novel carbazole-pyridine co-polymers (abstract)

    International Nuclear Information System (INIS)

    Saeed, A.; Irfan, M.

    2011-01-01

    Two series of a novel class of carbazole-4-phenylpyridine co-polymers has been synthesized by a modified Chichibabin reaction. The synthesis was carried out by a simple and cheaper method compared to the lengthy methods usually adopted for the preparation of carbazole-pyridine copolymers which involve costly catalysts. All the polymers were characterized by IR, /sup 1/H and /sup 13/C NMR, UV-vis spectroscopy, fluorimetry, TGA and DSC. The weight average molecular masses (M/sub w/) of the polymers were estimated by Laser Light Scattering (LLS) technique. (author)

  7. Solution processed multilayer red, green and blue phosphorescent organic light emitting diodes using carbazole dendrimer as a host

    International Nuclear Information System (INIS)

    Hasan, Zainal Abidin; Woon, Kai Lin; Wong, Wah Seng; Ariffin, Azhar; Chen, Show-An

    2017-01-01

    4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl, a novel carbazole dendrimer, has been synthesized. This compound shows an excellent thermal stability with a high glass transition temperature of 283 °C and decomposition temperature of 487 °C. Density functional theory is used to investigate the frontier orbitals. It was found that the Highest Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital levels of 4, 4'-bis(3,6-bis(3, 6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2,2'-dimethylbiphenyl are nearly degenerate to the next highest or lowest frontier orbitals. The electron rich outer dendrons along with Highest Occupied Molecular Orbital level of 5.24 eV as determined from cyclic voltammetry makes 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl)carbazol-9-yl)-2, 2'-dimethylbiphenyl a good hole transporting material. This compound also shows a triplet energy of 2.83 eV. Solution processable multilayer red, green and blue phosphorescent organic light emitting diodes are fabricated having 4, 4'-bis(3,6-bis(3,6-ditert-pentyl-carbazol-9-yl) carbazol-9-yl)-2,2'-dimethylbiphenyl as a hole transporting host. It was found that the CIE-coordinates remain constant within a wide range of brightness.

  8. Palladium-Catalyzed Synthesis of Natural and Unnatural 2-, 5-, and 7-Oxygenated Carbazole Alkaloids from N-Arylcyclohexane Enaminones

    Directory of Open Access Journals (Sweden)

    Joaquín Tamariz

    2013-08-01

    Full Text Available A palladium-catalyzed synthesis of the carbazole framework is described, including the preparation of 2-, 5-, and 7-oxygenated natural and unnatural carbazole alkaloids. A series of N-arylcyclohexane enaminones, generated by condensation of cyclohexane-1,3-dione with diverse anilines, were aromatized by a Pd(0-catalyzed thermal treatment to afford the corresponding diarylamines. The latter were submitted to a Pd(II-catalyzed cyclization and methylation processes to provide the desired carbazoles, including clausine V. Following an inverse strategy, a new and short total synthesis of glycoborine is also reported.

  9. Controlled electropolymerisation of a carbazole-functionalised iron porphyrin electrocatalyst for CO2 reduction

    DEFF Research Database (Denmark)

    Hu, Xinming; Salmi, Zakaria; Lillethorup, Mie

    2016-01-01

    Using a one-step electropolymerisation procedure, CO2 absorbing microporous carbazole-functionalised films of iron porphyrins are prepared in a controlled manner. The electrocatalytic reduction of CO2 for these films is investigated to elucidate their efficiency and the origin of their ultimate...

  10. New electroluminescent carbazole-containing conjugated polymer: synthesis, photophysics, and electroluminescence

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Ulbricht, C.; Dzhabarov, Vagif; Výprachtický, Drahomír; Egbe, D. A. M.

    2014-01-01

    Roč. 55, č. 24 (2014), s. 6220-6226 ISSN 0032-3861 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : carbazole-containing conjugated polymer * synthesis * photophysics and electroluminescence Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  11. Antiseptic Effects of New 3'-N-Substituted Carbazole Derivatives In Vitro and In Vivo.

    Science.gov (United States)

    Lee, Wonhwa; Kwak, Soyoung; Yun, Eunju; Lee, Jee Hyun; Na, MinKyun; Song, Gyu-Yong; Bae, Jong-Sup

    2015-08-01

    Inhibition of high-mobility group box 1 (HMGB1) protein and restoration of endothelial integrity are emerging as attractive therapeutic strategies in the management of sepsis. Here, new five structurally related 3'-N-substituted carbazole derivatives were examined for their effects on lipopolysaccharide (LPS)-mediated or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. We accessed this question by monitoring the effects of posttreatment carbazole derivatives on LPS- and CLP-mediated release of HMGB1 and HMGB1-mediated regulation of proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. The new 3'-N-substituted carbazole derivatives 1-5 inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. New compounds also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with each compound reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that the new 3'-N-substituted carbazole derivatives could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway.

  12. 75 FR 29719 - Carbazole Violet Pigment 23 From India: Continuation of Countervailing Duty Order

    Science.gov (United States)

    2010-05-27

    ..., paste, wet cake) and finished pigment in the form of presscake and dry color. Pigment dispersions in any... DEPARTMENT OF COMMERCE International Trade Administration [C-533-839] Carbazole Violet Pigment 23... Pigment 23 From India, 69 FR 77995 (December 29, 2004). On November 2, 2009, the Department initiated and...

  13. Biodegradation of resorcinol byPseudomonas sp.

    Institute of Scientific and Technical Information of China (English)

    Nader Hajizadeh; Najibeh Shirzad; Ali Farzi; Mojtaba Salouti; Azra Momeni

    2016-01-01

    ABSTRACT Objective:To investigate the ability ofPseudomonas sp. isolated from East Azarbaijan, Iran in bioremediation of resorcinol. Methods: Resorcinol biodegradation was evaluated using spectrophotometry and confirmed by gas chromatography-mass spectroscopy. Results:This isolate was able to remove up to 37.12% of resorcinol from contaminated water. Reusability experiments had confirmed the biodegradation process which produced seven intermediate compounds. These intermediates were characterized by gas chromatography-mass spectroscopy technique. The products of resorcinol biodegradation were apparently 1, 4-cyclohexadiene, nonadecene, 2-heptadecanone, 1-isopropyl-2-methoxy-4-methylbenzene, hexadecanoic acid, 9-octadecenoic acid, phenol and 5-methyl-2-(1-methylethyl). Conclusions: The findings revealed thatPseudomonas sp. is able to degrade resorcinol. Because of being an indigenous organism, this isolate is more compatible with the climate of the northwest region of Iran and possibly will be used for degradation of other similar aromatic compounds.

  14. Synthesis of Dendrimer Containing Carbazole Unit as a Core Chromophore

    International Nuclear Information System (INIS)

    Han, Seung Choul; Lee, Jae Wook; Jin, Sungho

    2012-01-01

    for the synthesis of Frechet-type dendrimers having a carbazole unit at core, which will be soluble in common organic solvents and easily spin-coated with high quality optical thin films

  15. Morphological, dielectric and electric conductivity characteristics of clay-containing nanohybrids of Poly(N-Vinyl Carbazole) and Polypyrrole

    CSIR Research Space (South Africa)

    Haldar, I

    2012-10-01

    Full Text Available Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared...

  16. Efficient synthesis of N-alkyl-2,7-dihalocarbazoles by simultaneous carbazole ring closure and N-alkylation

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Kmínek, Ivan; Pokorná, Veronika; Cimrová, Věra

    2012-01-01

    Roč. 68, č. 25 (2012), s. 5075-5080 ISSN 0040-4020 R&D Projects: GA MŠk(CZ) 1M06031; GA ČR GAP106/12/0827 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : carbazole ring closure * carbazole alkylation * heterocycles Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.803, year: 2012

  17. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuya Fukushima

    2015-08-01

    Full Text Available Liquid organic light-emitting diodes (liquid OLEDs are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  18. Pseudomonas Lipopeptide Biosurfactants

    DEFF Research Database (Denmark)

    Bonnichsen, Lise

    Pseudomonas lipopetide biosurfactants are amphiphilic molecules with a broad range of natural functions. Due to their surface active properties, it has been suggested that Pseudomonas lipopetides potentially play a role in biodegradation of hydrophobic compounds and have essential functions...... lipopetide biosurfactants in pollutant biodegradation and natural roles in biofilm formation. The work presented is a combination of environmental microbiology and exploiting genetic manipulation of pure cultures to achieve insightinto the effects and mechanisms of lipopeptides on microbial processes...

  19. Carbazole Scaffold in Medicinal Chemistry and Natural Products: A Review from 2010-2015.

    Science.gov (United States)

    Tsutsumi, Lissa S; Gündisch, Daniela; Sun, Dianqing

    2016-01-01

    9H-carbazole is an aromatic molecule that is tricyclic in nature, with two benzene rings fused onto a 5-membered pyrrole ring. Obtained from natural sources or by synthetic routes, this scaffold has gained much interest due to its wide range of biological activity upon modifications, including antibacterial, antimalarial, anticancer, and anti-Alzheimer properties. This review reports a survey of the literature on carbazole-containing molecules and their medicinal activities from 2010 through 2015. In particular, we focus on their in vitro and in vivo activities and summarize structure-activity relationships (SAR), mechanisms of action, and/or cytotoxicity/selectivity findings when available to provide future guidance for the development of clinically useful agents from this template.

  20. Photoconducting hybrid perovskite containing carbazole moiety as the organic layer: Fabrication and characterization

    International Nuclear Information System (INIS)

    Deng Meng; Wu Gang; Cheng Siyuan; Wang Mang; Borghs, Gustaaf; Chen Hongzheng

    2008-01-01

    PbCl 2 -based thin films of perovskite structure with hole-transporting carbazole derivatives as the organic layer were successfully prepared by spin-coating from dimethylformamide solution containing stoichiometric amounts of organic and inorganic moieties. The crystal structure and optical property of the hybrid perovskite were characterized by Fourier transform infrared (FT-IR) spectrum, X-ray diffraction (XRD), UV-vis absorption and photoluminescence (PL). FT-IR spectra confirmed the formation of organic-inorganic hybrid perovskite structure. UV-vis spectra of hybrid perovskite thin films exhibited a wide absorption band in ultraviolet region as well as a sharp peak at 330 nm characteristic of PbCl 2 -based layered perovskite. X-ray diffraction profiles indicated that the layered structure was oriented parallel to the silica glass slide plane. Meanwhile, double-layer photoreceptors of the hybrid perovskite were also fabricated, which showed the enhancement of photoconductivity by carbazole chromophore

  1. Electroluminescent properties of an electrochemically cross-linkable carbazole peripheral poly(benzyl ether) dendrimer.

    Science.gov (United States)

    Park, Jin Young; Kim, Dong-Eun; Ponnapati, Ramakrishna; Kim, Jong-Min; Kwon, Young-Soo; Advincula, Rigoberto C

    2011-04-04

    The electroluminescent (EL) properties of a cross-linkable carbazole-terminated poly(benzyl ether) dendrimer, G(3)-cbz DN, doped into a PVK:PBD host matrix with a double-layer device configuration are investigated. Different concentrations of the guest material can control device efficiency, related to chromaticity of white emission and the origin of excited-state complexes occurring between hole-transporting carbazole units (PVK or G(3)-cbz DN) and electron-transporting oxadiazole (PBD). Two excited states (exciplex and electroplex) generated at the interfaces of PVK/G(3)-cbz DN and PBD result in competitive emission, exhibiting a broad band in the EL spectra. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Highly efficient deep-blue organic light emitting diode with a carbazole based fluorescent emitter

    Science.gov (United States)

    Sahoo, Snehasis; Dubey, Deepak Kumar; Singh, Meenu; Joseph, Vellaichamy; Thomas, K. R. Justin; Jou, Jwo-Huei

    2018-04-01

    High efficiency deep-blue emission is essential to realize energy-saving, high-quality display and lighting applications. We demonstrate here a deep-blue organic light emitting diode using a novel carbazole based fluorescent emitter 7-[4-(diphenylamino)phenyl]-9-(2-ethylhexyl)-9H-carbazole-2-carbonitrile (JV234). The solution processed resultant device shows a maximum luminance above 1,750 cd m-2 and CIE coordinates (0.15,0.06) with a 1.3 lm W-1 power efficiency, 2.0 cd A-1 current efficiency, and 4.1% external quantum efficiency at 100 cd m-2. The resulting deep-blue emission enables a greater than 100% color saturation. The high efficiency may be attributed to the effective host-to-guest energy transfer, suitable device architecture facilitating balanced carrier injection and low doping concentration preventing efficiency roll-off caused by concentration quenching.

  3. Synthesis and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties

    International Nuclear Information System (INIS)

    Aydın, Aysel; Kaya, İsmet

    2012-01-01

    Graphical abstract: The homopolymer of 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane and the copolymer with EDOT of 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane were synthesized via electrochemical reaction on indium tin oxide (ITO)-coated glass plate. The obtained polymeric compounds were investigated as fluorescence properties in solution form. The synthesized polymers showed good fluorescence property indicating tunable light emission with green and yellow colors. This shows that these polymers could be used in production of new polymeric light emitting diodes (PLED)s for green and yellow color emissions. - Abstract: The compounds 1,5-bis(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)pentane (B1) and 1,2-bis(2-(3,6-di(thiophen-3-yl)-9H-carbazol-9-yl)ethoxy)ethane (B2) were synthesized via Ullmann and Suzuki couplings. Additionally, the homopolymers and copolymers of these compounds with 3,4-ethylenedioxythiophene (EDOT) and thiophene (Th) were synthesized and coated onto an ITO-glass surface via electrochemical oxidative polymerization. The spectroelectrochemical and electrochromic properties of these compounds were also investigated. The switching ability of these polymers was measured as the percent transmittance (%T) at their point of maximum contrast. The solid state electrical conductivities of the polymeric films coated onto the ITO-glass surface were measured via the four point probe technique using an electrometer. The compounds were characterized by FT-IR and NMR, and their thermal stabilities were determined via TG measurements. Fluorescence measurements were performed using DMSO solutions, and the synthesized polymers emitted both green and yellow colors based on the tuning of the excitation wavelength, which indicates that these polymers could be used to produce new polymeric light emitting diodes (PLEDs) with green and yellow emissions.

  4. 40 CFR 180.1114 - Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae 742RS; exemptions from the requirement of a tolerance... Tolerances § 180.1114 Pseudomonas fluorescens A506, Pseudomonas fluorescens 1629RS, and Pseudomonas syringae...

  5. Mechanistic studies of thioxanthone–carbazole as a one-component type II photoinitiator

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, Nurcan; Karaca Balta, Demet; Ocal, Nuket; Arsu, Nergis, E-mail: nergisarsu@gmail.com

    2014-02-15

    A mechanistic study concerning photoinitiated free radical polymerization using Thioxanthone–Carbazole (TX–Cz) as a one-component Type II photoinitiator was performed. TX–Cz presented visible initiator characteristics with absorptions at 434 and 414 nm where the molar absorption coefficients were 2014 and 1754 L mol{sup −1} cm{sup −1}, respectively. Fluorescence and phosphorescence spectroscopy, as well as laser flash photolysis was employed to study the photophysical properties of TX–Cz. In addition, photopolymerization of methyl methacrylate (MMA) showed that TX–Cz is efficient photoinitiator. To explain the initiation mechanism of TX–Cz, fluorescence and phosphorescence emission spectra of poly (methyl methacrylate) (PMMA) were also taken to see whether the initiator covalently bonded to the polymer. The postulated mechanism is based on inter- molecular reaction of the triplet, {sup 3}(TX–Cz){sup ⁎} with the carbazole moiety at ground state, TX–Cz. The photoinitiation efficiency of TX–Cz during gelation of multifunctional acrylates was also investigated by Photo-Differential Scanning Calorimetry (Photo-DSC) technique and high polymerization rates were obtained. -- Highlights: • Thioxanthone–Carbazole was used as visible light photoinitiator for radical polymerization of meth(acrylates). • The detailed photophysical properties of TX–Cz was reported. • Fluorescence quantum yield, phosphorescence lifetime , triplet energy and triplet lifetime were determined. • Photo-DSC was used to follow photopolymerizatin kinetics of acrylates.

  6. Synthesis and Properties of 1,8-Carbazole-Based Conjugated Copolymers

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Michinobu

    2010-07-01

    Full Text Available A new series of conjugated carbazole polymers based on the 1,8-carbazolylene unit was synthesized by the Pd-catalyzed polycondensation between the 1,8-diiodocarbazole derivative and various bifunctional counter comonomers. An alkyne spacer was found to be a key to increasing the molecular weight of the resulting polymers. All the obtained polymers showed good solubilities in the common organic solvents, and they were fully characterized by Gel permeation chromatography (GPC, and 1H NMR and infrared (IR spectroscopies. The UV-vis absorption and fluorescence spectra revealed the relationship between the chemical structure and effective conjugation length. The efficiency order of the carbazole connectivity was 2,7-carbazolylene > 1,8-carbazolylene > 3,6-carbazolylene. The electrochemical properties of these polymers suggested the relatively facile oxidation at ca. +0.5–0.7 V vs. Fc/Fc+ or a high potential as p-type semiconductors. The combination of the electrochemical oxidation potentials and the optical band gaps allowed us to estimate the HOMO and LUMO levels of the polymers. It was shown that the energy levels of the 1,8-carbazole-based conjugated polymers can be tunable by selecting the appropriate comonomer structures.

  7. Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing

    Directory of Open Access Journals (Sweden)

    Assi Al Mousawi

    2017-12-01

    Full Text Available Radical chemistry is a very convenient way to produce polymer materials. Here, an application of a particular photoinduced radical chemistry is illustrated. Seven new carbazole derivatives Cd1–Cd7 are incorporated and proposed as high performance near-UV photoinitiators for both the free radical polymerization (FRP of (methacrylates and the cationic polymerization (CP of epoxides utilizing Light Emitting Diodes LEDs @405 nm. Excellent polymerization-initiating abilities are found and high final reactive function conversions are obtained. Interestingly, these new derivatives display much better near-UV polymerization-initiating abilities compared to a reference UV absorbing carbazole (CARET 9H-carbazole-9-ethanol demonstrating that the new substituents have good ability to red shift the absorption of the proposed photoinitiators. All the more strikingly, in combination with iodonium salt, Cd1–Cd7 are likewise preferred as cationic photoinitiators over the notable photoinitiator bis(2,4,6-trimethylbenzoylphenylphosphine oxide (BAPO for mild irradiation conditions featuring their remarkable reactivity. In particular their utilization in the preparation of new cationic resins for LED projector 3D printing is envisioned. A full picture of the included photochemical mechanisms is given.

  8. Synthesis and luminescence properties of novel 4-(N-carbazole methyl) benzoyl hydrazone Schiff bases

    International Nuclear Information System (INIS)

    Guo Dongcai; Wu Panliang; Tan Hui; Xia Long; Zhou Wenhui

    2011-01-01

    4-(N-carbazole methyl) benzoyl hydrazine was synthesized on the basis of carbazole, and then nine novel carbazolyl acylhydrazone Schiff bases were synthesized by the condensation reaction between 4-(N-carbazole methyl) benzoyl hydrazine and the substituted benzaldehydes. The relationships between the substituted group types and the UV fluorescence spectral properties, as well as the fluorescence quantum yields of the title Schiff bases were also investigated. The results show that the introduction of both the donating and accepting electron groups causes various grade redshifts of the fluorescence characteristic emission peak of the title Schiff bases to occur.The fluorescence quantum yields of the title Schiff bases with the donating group are increased, and the highest fluorescence quantum yield is up to 0.703. - Highlights: → Nine novel Schiff bases have been designed and synthesized. → Introduction of the donating electron groups causes various grade red shifts of the fluorescence characteristic emission peak and the UV characteristic absorption peak of the synthesized Schiff bases. → Introduction of the donating electron groups causes the fluorescence quantum yields to be increased considerably. →Introduction of the accepting electron groups causes the fluorescence intensity and quantum yield of the synthesized Schiff bases to be reduced. → Fluorescence quantum yield of o-hydroxyl-substituted Schiff base is up to 0.703; this Schiff base is expected to be used as hole transport optical material.

  9. Environmental levels and toxicological potencies of a novel mixed halogenated carbazole

    Directory of Open Access Journals (Sweden)

    Miren Pena-Abaurrea

    2016-09-01

    Full Text Available The present work involves an extensive analytical and toxicological description of a recently identified mixed halogenated carbazole found in sediment samples, 1,8-dibromo-3,6-dichloro-9H-carbazole (BCCZ. Concentrations and the relative effect potency (REP were calculated for the target BCCZ in a set of stream sediments collected in 2008 in Ontario, Canada. The levels calculated for BCCZ as compared to those previously assessed for legacy persistent organic pollutants (POPs in the same samples revealed a significant contribution of BCCZ to the total organic chemical contamination (<1%–95%; average 37%. The corresponding dioxin toxic equivalencies (TEQs of BCCZ in the sediment extracts were estimated from experimental REP data. The experimental data presented supports the classification of this emerging halogenated chemical as a contaminant of emerging environmental concern. Although potential emission sources could not be identified, this study highlights the importance of on-going research for complete characterization of halogenated carbazoles and related compounds.

  10. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  11. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-07-01

    Full Text Available The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic–organic hybrid perovskite solar cells (PSCs are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs. Designing hole-transporting materials (HTMs is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO level and higher hole mobility.

  12. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells.

    Science.gov (United States)

    Li, Wei; Otsuka, Munechika; Kato, Takehito; Wang, Yang; Mori, Takehiko; Michinobu, Tsuyoshi

    2016-01-01

    The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic-organic hybrid perovskite solar cells (PSCs) are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs). Designing hole-transporting materials (HTMs) is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility.

  13. Novel high band gap pendant-borylated carbazole polymers with deep HOMO levels through direct +N=B- interaction for organic photovoltaics

    DEFF Research Database (Denmark)

    Brandt, Rasmus G.; Sveegaard, Steffen G.; Xiao, Manjun

    2016-01-01

    In this communication, we investigate the direct and still conjugated intramolecular +N=B- interactions in novel high band gap borylated carbazole containing polymers, namely, poly(3,6-(N-di(2,4,6-trimethyl)-phenylboryl-carbazole)-alt- 4,8-di(5-(2-ethylhexyl)thiophene-2-yl)benzo[1,2-b: 4,5-b...

  14. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-01-01

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction

  15. Novel biosensor system model based on fluorescence quenching by a fluorescent streptavidin and carbazole-labeled biotin.

    Science.gov (United States)

    Zhu, Xianwei; Shinohara, Hiroaki; Miyatake, Ryuta; Hohsaka, Takahiro

    2016-10-01

    In the present study, a novel molecular biosensor system model was designed by using a couple of the fluorescent unnatural mutant streptavidin and the carbazole-labeled biotin. BODIPY-FL-aminophenylalanine (BFLAF), a fluorescent unnatural amino acid was position-specifically incorporated into Trp120 position of streptavidin by four-base codon method. On the other hand, carbazole-labeled biotin was synthesized as a quencher for the fluorescent Trp120BFLAF mutant streptavidin. The fluorescence of fluorescent Trp120BFLAF mutant streptavidin was decreased as we expected when carbazole-labeled biotin was added into the mutant streptavidin solution. Furthermore, the fluorescence decrease of Trp120BFLAF mutant streptavidin with carbazole-labeled biotin (100 nM) was recovered by the competitive addition of natural biotin. This result demonstrated that by measuring the fluorescence quenching and recovery, a couple of the fluorescent Trp120BFLAF mutant streptavidin and the carbazole-labeled biotin were successfully applicable for quantification of free biotin as a molecular biosensor system. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Effects of Phenobarbital and Carbazole on Carcinogenesis of the Lung, Thyroid, Kidney, and Bladder of Rats Pretreated with N‐Bis(2‐hydroxypropyl)nitrosamine

    Science.gov (United States)

    Masuda, Atsuko; Imaida, Katsumi; Ogiso, Tadashi; Ito, Nobuyuki

    1988-01-01

    Studies were made on potential modifying effects of phenobarbital (PB) and carbazole on tumor development induced by N‐bis(2‐hydroxypropyl)nitrosamine (DHPN), a wide‐spectrum carcinogen in rats. Effects on the lung, thyroid, kidney, bladder and liver were investigated. Male F344 rats were given 0.2% DHPN in their drinking water for 1 week and then 0.05% PB or 0.6% carbazole in their diet for 50 weeks. Control animals were treated with either DHPN or PB or carbazole only. Neither PB nor carbazole affected the incidence or histology of lung tumors. However, PB promoted the development of thyroid tumors and preneoplastic lesions of the liver, while carbazole promoted the induction of renal pelvic tumors. PMID:3133336

  17. Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

    OpenAIRE

    S. Potivichayanon; T. Sungmon; W. Chaikongmao; S. Kamvanin

    2011-01-01

    Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in fir...

  18. 4-Fluoro-N-methyl-N-(1,2,3,4-tetra-hydro-carbazol-3-yl)benzene-sulfonamide

    DEFF Research Database (Denmark)

    Rasmussen, Kaspar Gothardt; Ulven, Trond; Bond, Andrew D

    2009-01-01

    into layers containing the carbazole units and fluoro-phenyl rings in alternate (200) planes. The carbazole units form centrosymmetric face-to-face inter-actions [inter-planar separation = 4.06 (1) Å] and edge-to-face inter-actions in which the N-H group is directed towards an adjacent carbazole face......, with a shortest H⋯C contact of 2.53 Å. The fluoro-phenyl rings form face-to-face contacts with an approximate inter-planar separation of 3.75 Å and a centroid-centroid distance of 4.73 (1) Å....

  19. Nondoped deep blue OLEDs based on Bis-(4-benzenesulfonyl-phenyl)-9-phenyl-9H-carbazoles

    International Nuclear Information System (INIS)

    Huang, Bin; Yin, Zhihui; Ban, Xinxin; Ma, Zhongming; Jiang, Wei; Tian, Wenwen; Yang, Min; Ye, Shanghui; Lin, Baoping; Sun, Yueming

    2016-01-01

    Two bipolar materials based on 9-phenylcarbazole and diphenyl sulfone for nondoped deep blue OLEDs, namely bis-(4-benzenesulfonyl-phenyl)-9-phenyl-9H-carbazoles, have been designed and synthesized by Suzuki coupling reactions. Their thermal, photophysical, and electrochemical properties have been systematically investigated. The nondoped devices using 3,6–bis–(4-benzenesulfonyl-phenyl)-9-phenyl-9H-carbazoles and 2,7-bis-(4-benzenesulfonyl-phenyl)-9-phenyl-9H-carbazoles as the emitters show deep blue emission color with peaks at 424 and 444 nm, and the Commission Internationale de l'Eclairage (CIE) coordinates of (0.177, 0.117) and (0.160, 0.117), respectively. Furthermore, these materials based devices have high color-purity with small width at half-maximum (FWHM) of 65 and 73 nm, respectively. The results provide a novel approach for the design of deep blue emitter for nondoped OLEDs.

  20. Gentamicin in Pseudomonas aeruginosa

    African Journals Online (AJOL)

    infections by Ps. aeruginosa is contra-indicated. In our study only 2,3 % of the Ps. aeruginosa strains were resistant to gentamicin (MIC 25 Ilg/ml). In view of the synergy reported for combined gentamicin and carbeni- cillin therapy," a combination of these two drugs may be recommended in the treatment of all Pseudomonas.

  1. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV- and Visible-Light Methods in Continuous Flow.

    Science.gov (United States)

    Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K

    2015-11-09

    An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pd(II)-catalyzed di-o-olefination of carbazoles directed by the protecting N-(2-pyridyl)sulfonyl group.

    Science.gov (United States)

    Urones, Beatriz; Gómez Arrayás, Ramón; Carretero, Juan Carlos

    2013-03-01

    Despite the significance of carbazole in pharmacy and material science, examples of the direct C-H functionalization of this privileged unit are quite rare. The N-(2-pyridyl)sulfonyl group enables the Pd(II)-catalyzed ortho-olefination of carbazoles and related systems, acting as both a directing and readily removable protecting group. This method features ample structural versatility, affording typically the double ortho-olefination products (at C1 and C8) in satisfactory yields and complete regiocontrol. The application of this procedure to related heterocyclic systems, such as indoline, is also described.

  3. Novel carbazole aminoalcohols as inhibitors of β-hematin formation: Antiplasmodial and antischistosomal activities

    Directory of Open Access Journals (Sweden)

    Weisi Wang

    2017-08-01

    Full Text Available Malaria and schistosomiasis are two of the most socioeconomically devastating parasitic diseases in tropical and subtropical countries. Since current chemotherapeutic options are limited and defective, there is an urgent need to develop novel antiplasmodials and antischistosomals. Hemozoin is a disposal product formed from the hemoglobin digestion by some blood-feeding parasites. Hemozoin formation is an essential process for the parasites to detoxify free heme, which is a reliable therapeutic target for identifying novel antiparasitic agents. A series of novel carbazole aminoalcohols were designed and synthesized as potential antiplasmodial and antischistosomal agents, and several compounds showed potent in vitro activities against Plasmodium falciparum 3D7 and Dd2 strains and adult and juvenile Schistosoma japonicum. Investigations on the dual antiparasitic mechanisms showed the correlation between inhibitory activity of β-hematin formation and antiparasitic activity. Inhibiting hemozoin formation was identified as one of the mechanisms of action of carbazole aminoalcohols. Compound 7 displayed potent antiplasmodial (Pf3D7 IC50 = 0.248 μM, PfDd2 IC50 = 0.091 μM and antischistosomal activities (100% mortality of adult and juvenile schistosomes at 5 and 10 μg/mL, respectively and exhibited low cytotoxicity (CC50 = 7.931 μM, which could be considered as a promising lead for further investigation. Stoichiometry determination and molecular docking studies were also performed to explain the mode of action of compound 7. Keywords: Carbazole aminoalcohols, Plasmodium falciparum, Schistosoma japonicum, Antiplasmodials, Antischistosomals, Hematin

  4. Theoretical study on alkyne-linked carbazole polymers for blue-light multifunctional materials

    International Nuclear Information System (INIS)

    Yi Ling; Wang Xueye

    2011-01-01

    This paper studied poly[(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] (P1), butadiynylene-linked poly (3,6-carbazole) (P2) and butadiynylene-linked poly (2,7-carbazole) (P3) through the theoretical measurements with Gaussian 03 program package. To investigate the relationship between structures and properties of these multifunctional electroluminescent materials, their geometrical structures of ground and excited-states were optimized by B3LYP/6-31G (d) and CIS/6-31G (d) methods, respectively. The lowest excitation energies (E g 's), and the maximum absorption and emission wavelengths of these polymers were calculated by time-dependent density functional theory methods (TD-DFT). The important parameters for luminescent materials were also predicated including the ionization potentials (I p 's) and electron affinities (E a 's). The calculated results show that the highest-occupied molecular orbital (HOMO) energies lift about 0.27-0.49 eV compared to N,N'-bis(naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), suggesting the significant improved hole-accepting and transporting abilities. In addition, substitution of alkyne for carbazole resulted in a narrow band gap and a red shift of both the absorption and emission peaks. Through above calculations, it is evidenced that these polymers can be considered as candidates for excellent OLEDs with good hole-creating abilities and high blue-light emission. - Highlights: → We studied poly [(3,6-di-tert-butyl-N-hexadecyl-1,8-carbazolylene) butadiynylene] by theoretical method. → The geometrical structures of ground and excited-states had been optimized by B3LYP/6-31G (d) and CIS/6-31G (d). → The relationship between structures and properties of these multifunctional electroluminescent materials had been investigated. → These molecules are excellent candidates for multifunctional OLED materials. → The substitution of alkyne for carbazole results in a narrow band gap and a red shift of both

  5. Genotoxicity of 7H-dibenzo[c,g]carbazole and its methyl derivatives in human keratinocytes

    Czech Academy of Sciences Publication Activity Database

    Valovičová, Z.; Mesárošová, M.; Trilecová, L.; Hrubá, E.; Marvanová, S.; Krčmář, P.; Milcová, Alena; Schmuczerová, Jana; Vondráček, Jan; Machala, M.; Topinka, Jan; Gábelová, A.

    2012-01-01

    Roč. 743, 1-2 (2012), s. 91-98 ISSN 1383-5718 R&D Projects: GA MŠk 2B08005 Grant - others:GA MZe(CZ) MZE0002716202 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50390512; CEZ:AV0Z50040702 Keywords : dibenzo[c,g]carbazoles * DNA strand-breaks * micronuclei Subject RIV: DN - Health Impact of the Environment Quality; BO - Biophysics (BFU-R) Impact factor: 2.220, year: 2012

  6. Novel soluble fluorene-thienothiadiazole and fluorene-carbazole copolymers for optoelectronics

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Kmínek, Ivan; Výprachtický, Drahomír

    2010-01-01

    Roč. 295, č. 1 (2010), s. 65-70 ISSN 1022-1360. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. Prague, 05.07.2009-09.07.2009] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA4050409 Institutional research plan: CEZ:AV0Z40500505 Keywords : fluorene – thienothiadiazole copolymers * photovoltaics * fluorene-carbazole copolymers Subject RIV: JA - Electronics ; Optoelectronics , Electrical Engineering

  7. Ethyl 4-oxo-2,3,4,9-tetrahydro-1H-carbazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Cevher Gündoğdu

    2011-06-01

    Full Text Available In the title compound, C15H15NO3, the carbazole skeleton includes an ethoxycarbonyl group at the 3-position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 0.89 (4°. The cyclohexenone ring has an envelope conformation. In the crystal, intermolecular N—H...O and C—H...O hydrogen bonds link the molecules into a three dimensional network. A weak C—H...π interaction is also observed.

  8. Biodegradation of propargite by Pseudomonas putida, isolated from tea rhizosphere.

    Science.gov (United States)

    Sarkar, Soumik; Seenivasan, Subbiah; Asir, Robert Premkumar Samuel

    2010-02-15

    Biodegradation of miticide propargite was carried out in vitro by selected Pseudomonas strains isolated from tea rhizosphere. A total number of 13 strains were isolated and further screened based on their tolerance level to different concentrations of propargite. Five best strains were selected and further tested for their nutritional requirements. Among the different carbon sources tested glucose exhibited the highest growth promoting capacity and among nitrogen sources ammonium nitrate supported the growth to the maximum. The five selected Pseudomonas strain exhibited a range of degradation capabilities. Mineral salts medium (MSM) amended with glucose provided better environment for degradation with the highest degradation potential in strain SPR 13 followed by SPR 8 (71.9% and 69.0% respectively).

  9. Influence of bacteria on degradation of bioplastics

    Science.gov (United States)

    Blinková, M.; Boturová, K.

    2017-10-01

    The degradation rate of bioplastic in soil is closely related to the diversity of soil microbiota. To investigate the effect of soil bacterial on biodegradation, 4 bacterial strains of soil - Pseudomonas chlororaphis, Kocuria rosea, Cupriavidus necator and Bacillus cereus, were used to accelerate the decomposition of bioplastics manufactured from Polylactid acid (PLA) by direct action during 250 days. The best results were obtained with bacterial strains Cupriavidus necator and Pseudomonas chlororaphis that were isolated of lagoons with anthropogenic sediments.

  10. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  11. 75 FR 12497 - Carbazole Violet Pigment 23 from India and the People's Republic of China: Final Results of the...

    Science.gov (United States)

    2010-03-16

    ... Pigment 23 from India and the People's Republic of China: Final Results of the Expedited Sunset Reviews of... antidumping duty orders on carbazole violet pigment 23 (CVP 23) from India and the People's Republic of China... Five-Year (``Sunset'') Review, 74 FR 56593 (November 2, 2009) (Notice of Initiation). The Department...

  12. 5-Methyl-4-oxo-4,6-dihydro-3H-pyridazino[4,5-b]carbazole-1-carbonitrile

    Directory of Open Access Journals (Sweden)

    Norbert Haider

    2010-02-01

    Full Text Available The title compound was prepared in excellent yield from 5-methyl-4-oxo-4,6-dihydro-3H-pyridazino[4,5-b]carbazole-1-carbaldehyde by treatment with hydroxylamine hydrochloride in formic acid without isolation of the intermediate oxime.

  13. Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes.

    Science.gov (United States)

    Yuan, Zhi-Guang; Wang, Qiang; Zheng, Ang; Zhang, Kai; Lu, Liang-Qiu; Tang, Zilong; Xiao, Wen-Jing

    2016-04-14

    We successfully developed an unprecedented route to carbazole synthesis through a visible light-photocatalysed formal (4+2) cycloaddition of indole-derived bromides and alkynes. This novel protocol features extremely mild conditions, a broad substrate scope and high reaction efficiency.

  14. 75 FR 36630 - Carbazole Violet Pigment 23 from the People's Republic of China: Final Results of Antidumping...

    Science.gov (United States)

    2010-06-28

    ... from the People's Republic of China: Final Results of Antidumping Duty Administrative Review AGENCY... the People's Republic of China (PRC). See Carbazole Violet Pigment 23 From the People's Republic of... (December 29, 2009) (Preliminary Results). This administrative review covers one exporter of the subject...

  15. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding; Lee, Sangsu; Zheng, Bin; Sun, Zhe; Zeng, Wangdong; Huang, Kuo-Wei; Furukawa, Ko; Kim, Dongho; Webster, Richard D.; Wu, Jishan

    2014-01-01

    and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate

  16. 75 FR 62765 - Carbazole Violet Pigment 23 From India: Final Results of Antidumping Duty Changed-Circumstances...

    Science.gov (United States)

    2010-10-13

    ... finished pigment in the form of presscake and dry color. Pigment dispersions in any form (e.g., pigment... DEPARTMENT OF COMMERCE International Trade Administration [A-533-838] Carbazole Violet Pigment 23... Act), that Meghmani Pigments is the successor-in-interest to Alpanil Industries. DATES: Effective Date...

  17. New triarylamine organic dyes containing the 9-hexyl-2-(hexyloxy)-9H-carbazole for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Su, Jianyang; Chen, Yu; Wu, Yungen; Ghimire, Raju Prasad; Xu, Yingjun; Liu, Xiujie; Wang, Zhihui; Liang, Mao

    2017-01-01

    Highlights: •9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) was synthesized for organic dyes. •Three new triarylamine sensitizers based on the HHCBZ unit were synthesized. •The HHCBZ unit outperforms the HCBZ when used as an electron donor. •An efficiency of 8.67% was achieved by M92 with the HHCBZ donor. -- Abstract: Developing carbazole derivatives as the electron donor for organic dyes have attracted extensive interest recently. Three organic dyes M92-94 based on the 9-hexyl-2-(hexyloxy)-9H-carbazole (HHCBZ) electron donor have been successfully designed and synthesized for dye-sensitized solar cells. M95 with the 9-hexyl-9H-carbazole (HCBZ) unit has also been synthesized for comparison. An introduction of the HHCBZ unit in triarylamine brings several advantages: (i) red shifting the absorption peak and increasing the maximum molar absorption coefficient of absorption bands; (ii) decreasing the charge recombination in cobalt cells as well as iodine cells; (iii) enhancing photocurrent/photovoltage and thus the power conversion efficiencies of cobalt cells as well as iodine cells. Devices prepared with M92 show consistently higher light-to-electric energy conversion efficiencies, with the champion device reaching 8.67%, surpassing M93-95.

  18. An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells.

    Science.gov (United States)

    Shin, Jae-Yeon; Kong, Sun-Young; Yoon, Hye Jin; Ann, Jihyae; Lee, Jeewoo; Kim, Hyun-Jung

    2015-07-01

    P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.

  19. Neuroprotective Efficacy of an Aminopropyl Carbazole Derivative P7C3-A20 in Ischemic Stroke.

    Science.gov (United States)

    Wang, Shu-Na; Xu, Tian-Ying; Wang, Xia; Guan, Yun-Feng; Zhang, Sai-Long; Wang, Pei; Miao, Chao-Yu

    2016-09-01

    NAMPT is a novel therapeutic target of ischemic stroke. The aim of this study was to investigate the effect of a potential NAMPT activator, P7C3-A20, an aminopropyl carbazole derivative, on ischemic stroke. In vitro study, neuron protection effect of P7C3-A20 was investigated by co-incubation with primary neurons subjected to oxygen-glucose deprivation (OGD) or oxygen-glucose deprivation/reperfusion (OGD/R) injury. In vivo experiment, P7C3-A20 was administrated in middle cerebral artery occlusion (MCAO) rats and infarct volume was examined. Lastly, the brain tissue nicotinamide adenine dinucleotide (NAD) levels were detected in P7C3-A20 treated normal or MCAO mice. Cell viability, morphology, and Tuj-1 staining confirmed the neuroprotective effect of P7C3-A20 in OGD or OGD/R model. P7C3-A20 administration significantly reduced cerebral infarction in MCAO rats. Moreover, brain NAD levels were elevated both in normal and MCAO mice after P7C3-A20 treatment. P7C3-A20 has neuroprotective effect in cerebral ischemia. The study contributes to the development of NAMPT activators against ischemic stroke and expands the horizon of the neuroprotective effect of aminopropyl carbazole chemicals. © 2016 John Wiley & Sons Ltd.

  20. Solvent-dependent fluorescence enhancement and piezochromism of a carbazole-substituted naphthopyran

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihui; Wang, Aixia [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Wang, Guang, E-mail: wangg923@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Munyentwari, Alexis [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Zhou, Yihan, E-mail: yhzhou@ciac.ac.cn [National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-09-15

    A novel carbazole-substituted naphthopyran, 3,3-bis-(4-carbazolylphenyl)-[3H]-naphtho[2,1-b]pyran (CzNP) was designed and synthesized. The new compound exhibited normal photochromism in dichloromethane solution and the UV irradiation did not influence its fluorescence. On the contrary, the fluorescence of CzNP in N,N-dimethylformamide (DMF) was intensively enhanced to 29 times after 60 min of the UV irradiation and this enhanced fluorescence can be quenched by addition of triethylamine (TEA). The study of enhanced extent of fluorescence of CzNP in solvents with different polarities and in mixed solvents demonstrated that the enhanced fluorescence is dependent on the polarity of solvents. The larger the polarity of solvent was, the stronger was the fluorescence of CzNP. CzNP also exhibited piezochromic performance and the pressure led to the cleavage of the C–O bond of pyran ring. - Highlights: • A carbazole-substituted photochromic naphthopyran was designed and synthesized. • The fluorescence was enhanced under the existence of DMF and UV irradiation. • The polarity of solvent was the dominating factor to affect the fluorescence. • The new compound also displayed piezochromic performance.

  1. Valence one-electron and shake-up ionization bands of fluorene, carbazole and dibenzofuran

    International Nuclear Information System (INIS)

    Reza Shojaei, S.H.; Morini, Filippo; Deleuze, Michael S.

    2013-01-01

    Highlights: • The photoelectron spectra of the title compounds are assigned in details. • Shake-up lines are found to severely contaminate both π- and σ-ionization bands. • σ-ionization onsets are subject to severe vibronic coupling complications. • We compare the results of OVGF, ADC(3) and TDDFT calculations. - Abstract: A comprehensive study of the He (I) ultra-violet photoelectron spectra of fluorene, carbazole and dibenzofuran is presented with the aid of one-particle Green’s Function calculations employing the outer-valence Green’s Function (OVGF) approach and the third-order algebraic diagrammatic construction [ADC(3)] scheme, along with Dunning’s correlation consistent basis sets of double and triple zeta quality (cc-pVDZ, cc-pVTZ). Extrapolations of the ADC(3) results for the outermost one-electron π-ionization energies to the cc-pVTZ basis set enable theoretical insights into He (I) measurements within ∼0.15 eV accuracy, up to the σ-ionization onset. The lower ionization energy of carbazole is the combined result of mesomeric and electronic relaxation effects. OVGF/cc-pVDZ or OVGF/cc-pVTZ pole strengths smaller than 0.85 systematically corroborate a breakdown of the orbital picture of ionization at the ADC(3) level. Comparison is made with calculations of the lowest doublet–doublet excitation energies of the radical cation of fluorene, by means of time-dependent density functional theory (TDDFT)

  2. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Directory of Open Access Journals (Sweden)

    Dnyanada S. Khanolkar

    2014-12-01

    Full Text Available A bacterial isolate capable of utilizing tributyltin chloride (TBTCl as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM. Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2 through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites.

  3. Biotransformation of Tributyltin chloride by Pseudomonas stutzeri strain DN2

    Science.gov (United States)

    Khanolkar, Dnyanada S.; Naik, Milind Mohan; Dubey, Santosh Kumar

    2014-01-01

    A bacterial isolate capable of utilizing tributyltin chloride (TBTCl) as sole carbon source was isolated from estuarine sediments of west coast of India and identified as Pseudomonas stutzeri based on biochemical tests and Fatty acid methyl ester (FAME) analysis. This isolate was designated as strain DN2. Although this bacterial isolate could resist up to 3 mM TBTCl level, it showed maximum growth at 2 mM TBTCl in mineral salt medium (MSM). Pseudomonas stutzeri DN2 exposed to 2 mM TBTCl revealed significant alteration in cell morphology as elongation and shrinkage in cell size along with roughness of cell surface. FTIR and NMR analysis of TBTCl degradation product extracted using chloroform and purified using column chromatography clearly revealed biotransformation of TBTCl into Dibutyltin dichloride (DBTCl2) through debutylation process. Therefore, Pseudomonas stutzeri strain DN2 may be used as a potential bacterial strain for bioremediation of TBTCl contaminated aquatic environmental sites. PMID:25763027

  4. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.

  5. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  6. Carbazole Containing Copolymers: Synthesis, Characterization, and Applications in Reversible Holographic Recording

    Directory of Open Access Journals (Sweden)

    Bénédicte Mailhot-Jensen

    2010-01-01

    Full Text Available Carbazolic copolymers have been developed to be used in reversible holographic recording. This paper describes a complete analysis, from synthesis of the material to its applications, together with the corresponding characterizations. The investigated materials were photosensitive copolymers obtained from carbazolylalkylmethacrylates (CEM and octylmethacrylate (OMA. A detailed investigation was undertaken involving infrared spectroscopy and NMR techniques, 1H, 13C, COSY, and HSQC, in order to establish the chemical structure and the composition of the copolymers. Holographic recording characteristics were investigated with one- and two-layer photothermoplastic carriers. The two-layer carrier contains separate photosensitive and thermoplastic layers and gives the best holographic response. The surface of microstructured samples has been characterized by atomic force microscopy analysis. It is shown that via a photothermoplastic recording process, it is possible to record and read holograms practically in real time (~3 s with a diffraction efficiency of 10% and a spatial resolution higher than 1000 mm−1.

  7. Ethyl 1-oxo-1,2,3,4-tetrahydro-9H-carbazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2009-07-01

    Full Text Available The title compound, C15H15NO3, contains a carbazole skeleton with an ethoxycarbonyl group at the 3 position. In the indole ring system, the benzene and pyrrole rings are nearly coplanar, forming a dihedral angle of 1.95 (8°. The cyclohexenone ring has an envelope conformation. In the crystal structure, pairs of strong N—H...O hydrogen bonds link the molecules into centrosymmetric dimers with R22(10 ring motifs. π–π contacts between parallel pyrrole rings [centroid–centroid distance = 3.776 (2 Å] may further stabilize the structure. A weak C—H...π interaction is also observed.

  8. Preparation of Photoresponsive Functionalized Acrylic Nanoparticles Cantaining Carbazole Groups for Smart Cellulosic Papers

    Directory of Open Access Journals (Sweden)

    Jaber Keyvan Rad

    2017-11-01

    Full Text Available Photoresponsive functionalized polymer nanoparticles were prepared as useful materials for preparation of smart papers. Such polymer nanoparticles have wide applications in several fields including papers, sensors, bioimaging and biomedicine. First, carbazole as a photosensitive compound was modified with 2-bromoethanol through substitution nucleation reaction to its hydroxyl derivative (N-(2-hydroxyethyl carbazole, CzEtOH. The synthesis of 2-N-carbazolylethyl acrylate (CzEtA monomer was carried out by modification reaction of CzEtOH with acryloyl chloride and the chemical structures of the products were characterized. Next, CzEtA, methyl methacrylate (MMA and butyl acrylate were copolymerized to prepare photoresponsive functionalized polymer nanoparticles through mini-emulsion polymerization in order to form a hydrophobic core. This was followed by copolymerization of MMA and glycidyl methacrylate by seeded emulsion polymerization to give a functionalized outer layer on the latex particles. Absorption characteristics, size, size distribution (narrow size distribution and morphology of the nanoparticles were studied by ultraviolet-visible (UV-Vis spectroscopy, dynamic laser light scattering (DLS analysis and scanning electron microscopy (SEM micrographs, respectively. Finally, due to the importance of photoresponsive smart papers and their wide applications, cellulosic fibers were reacted with the prepared functionalized latex particles for preparation of smart papers. Morphology of the fibers was investigated with respect to the surface-immobilized polymers on the cellulosic paper and their smart behavior was evaluated by UV irradiation at 254 nm. The results revealed fast color changes and the obtained cellulosic papers became violet upon irradiation. This work shows some promising feature of these materials for preparation of anti-counterfeiting papers, where the safety becomes a major concern.

  9. White organic light emitting diodes based on fluorene-carbazole dendrimers

    International Nuclear Information System (INIS)

    Usluer, Özlem; Demic, Serafettin; Kus, Mahmut; Özel, Faruk; Serdar Sariciftci, Niyazi

    2014-01-01

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m 2 and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films

  10. Charge transport properties of carbazole dendrimers in organic field-effect transistors

    Science.gov (United States)

    Mutkins, Karyn; Chen, Simon S. Y.; Aljada, Muhsen; Powell, Ben J.; Olsen, Seth; Burn, Paul L.; Meredith, Paul

    2011-10-01

    We report three generations of p-type dendrimer semiconductors comprised of spirobifluorene cores, carbazole branching units and fluorene surface groups for use in organic field-effect transistors (OFETs). The group of dendrimers are defined by their generation and noted as SBF-(Gx)2, where x is the generation. Top contact-bottom gate OFETs were fabricated by spin-coating the dendrimers onto an n-octyltrichlorosilane (OTS) passivated silicon dioxide surface. The dendrimer films were found to be amorphous. The highest mobility was measured for the first generation dendrimer (SBF-(G1)2), which had an average mobility of (6.6 +/- 0.2) × 10-5 cm2/V s and an ON/OFF ratio of 3.0 × 104. As the generation of the dendrimer was increased there was only a slight decrease in the measured mobility in spite of the significantly different molecular sizes of the dendrimers. The mobility of SBF-(G3)2, which had a hydrodynamic radius almost twice of SBF-(G1)2, still had an average mobility of (4.7 +/- 0.6) × 10-5 cm2/V s and an ON/OFF ratio of 2.7 × 103. Density functional theory calculations showed that the highest occupied molecular orbital was distributed over the core and carbazole units meaning that both intra- and intermolecular charge transfer could occur enabling the hole mobility to remain essentially constant even though the dendrimers would pack differently in the solid-state.

  11. White organic light emitting diodes based on fluorene-carbazole dendrimers

    Energy Technology Data Exchange (ETDEWEB)

    Usluer, Özlem, E-mail: usluerozlem@yahoo.com.tr [Department of Chemistry, Muğla Sıtkı Koçman University, 48000 Muğla (Turkey); Demic, Serafettin [Department of Materials Science and Engineering, Izmir Katip Çelebi University, 35620 Çiğli, Izmir (Turkey); Kus, Mahmut, E-mail: mahmutkus1@gmail.com [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Özel, Faruk [Chemical Engineering Department and Advanced Technology R and D Center, Selçuk University, Konya (Turkey); Serdar Sariciftci, Niyazi [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz (Austria)

    2014-02-15

    In this paper, we report on theProd. Type: FTP fabrication and characterization of blue and white light emitting devices based on two fluorene-carbazole containing dendrimers and para-sexiphenyl (6P) oligomers. Blue light emitting diodes were fabricated using 9′,9″-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (OFC-G2) and 9′,9″-(9,9′-spirobi[fluorene]-2,7-diyl)bis-9′H-9,3′:6′,9″-tercarbazole (SBFC-G2) dendrimers as a hole transport and emissive layer (EML) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as an electron transport layer. White light emitting diodes were fabricated using 6P and these two dendrimers as an EML. OLED device with the structure of ITO/PEDOT:PSS (50 nm)/OFC-G2 (40 nm)/6P (20 nm)/LiF:Al (0.5:100 nm) shows maximum luminance of nearly 1400 cd/m{sup 2} and a Commission Internationale de l'Eclairage chromaticity coordinates of (0.27, 0.30) at 12 V. -- Highlights: • White organic light emitting diodes have been fabricated using two fluorene-carbazole dendrimers and para-sexiphenyl (6P) oligomers. • When only these two dendrimers are used as EML, OLED devices are emitted blue light. • The emission colors of OLED devices change from blue to white when 6P is coated on dendrimer films.

  12. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  13. Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization.

    Science.gov (United States)

    Wang, Yueqiang; Chen, Bin; Wu, Wenjun; Li, Xin; Zhu, Weihong; Tian, He; Xie, Yongshu

    2014-09-26

    Porphyrin dyes containing the carbazole electron donor have been designed and optimized by wrapping the porphyrin framework, introducing an additional ethynylene bridge to extend the wavelength range of light absorption, and further suppression of the dye aggregation by introducing additional alkoxy chains. Application of a cosensitization approach results in improved current density (Jsc) and open-circuit voltage (Voc) values, thus achieving the highest cell efficiency of 10.45%. This work provides an effective combined strategy of molecular design and cosensitization for developing efficient dye-sensitized solar cells (DSSCs). In addition, carbazole has been demonstrated to be a promising donor for porphyrin sensitizers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    GROWTH OF TOMATO CHALLENGED WITH PHTOPATHOGENS ... This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth .... the 5 days old culture in starch agar with Lugol's.

  15. Performance variation from triphenylamine- to carbazole-triphenylamine-rhodaniline-3-acetic acid dyes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chien-Hsin, E-mail: yangch@nuk.edu.tw [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lin, Wen-Churng [Department of Environmental Engineering, Kun Shan University, Tainan 710, Taiwan (China); Wang, Tzong-Liu; Shieh, Yeong-Tarng; Chen, Wen-Janq; Liao, Shao-Hong; Sun, Yu-Kuang [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan (China)

    2011-10-17

    Highlights: {yields} We synthesized an organic dye of carbazole-rhodaniline-3-acetic acid-triphenylamine. {yields} A dye-sensitized solar cell is fabricated using this dye with efficiency of 4.64%. {yields} Carbazole donor in the dye molecule provides electron in increasing efficiency. {yields} Two rhodaniline-3-acetic acids play a key role in increasing efficiency. {yields} AC impedance proves this dye's effect on enhancing charge transfer in TiO{sub 2}. - Abstract: Organic dyes have been synthesized which contain an extra-electron donor (carbazole) and electron acceptors (rhodaniline-3-acetic acid) on triphenylamines (TPA). Photophysical, electrochemical, and theoretical computational methods have categorized these compounds. Nanocrystalline TiO{sub 2}-based dye-sensitized solar cells (DSSCs) are fabricated using these dye molecules as light-harvesting sensitizers. The overall efficiency of sensitized cells has 4.64% relative to a cis-di(thiocyanato)-bis(2,2'-bipyridyl)-4,4'-dicarboxylate ruthenium (II) (N3 dye)-sensitized device (7.83%) fabricated and measured under the same conditions. Carbazole-electron donation in the dye molecules plays a key role in the increased efficiency. Two rhodaniline-3-acetic acid groups appear to help convey the charge transfer from the excited dye molecules to the conduction band of TiO{sub 2}, leading to a higher efficiency of devices using such a dye. Electrochemical impedance supports this dye's effect on enhancing charge transfer in TiO{sub 2} (e{sup -}). Computations on this dye compound also indicate the larger charge transfer efficiency in the electronically excited state.

  16. Small Rna Regulatory Networks In Pseudomonas Putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; Long, Katherine

    2015-01-01

    chemicals and has a potential to be used as an efficient cell factory for various products. P. putida KT2240 is a genome-sequenced strain and a well characterized pseudomonad. Our major aim is to identify small RNA molecules (sRNAs) and their regulatory networks. A previous study has identified 37 sRNAs...... in this strain, while in other pseudomonads many more sRNAs have been found so far.P. putida KT2440 has been grown in different conditions which are likely to be encountered in industrial fermentations with the aim of using sRNAs for generation of improved cell factories. For that, cells have been grown in LB......Pseudomonas putida is a ubiquitous Gram-negative soil bacterium with a versatile metabolism and ability to degrade various toxic compounds. It has a high tolerance to different future biobased building blocks and various other stringent conditions. It is used in industry to produce some important...

  17. HIDRODENITROGENACION DE CARBAZOL SOBRE CATALIZADORES NiMo/Al2O3-SiO2(x

    Directory of Open Access Journals (Sweden)

    Felipe Sánchez-Minero

    2012-01-01

    Full Text Available En este trabajo se estudió la velocidad de reacción del carbazol sobre catalizadores NiMo soportados sobre Al2O3 modificada superficialmente con SiO2 (0 y 10 % en peso de SiO2 en el soporte. Los catalizadores fueron evaluados en un reactor intermitente a cuatro temperaturas (287, 300, 312 y 325oC, presión de 4.0 MPa y relación molar hidrogeno/carbazol de 2400. A partir de los resultados experimentales se realizó un estudio cinético utilizando ecuaciones del tipo Langmuir-Hinshelwood (L-H. Luego, los parámetros cinéticos fueron estimados mediante la minimización de Powell (programa Scientist de MicroMath. Los resultados muestran que el catalizador con sílice (NiMo-SAC 10 alcanza una mayor actividad para la HDN de carbazol debido a que presenta un mayor número de sitios activos (valor de A, así como una menor fuerza de adsorción entre el reactante y la superficie catalítica (valor de KN, lo cual posiblemente favorece una mejor regeneración de sitios activos.

  18. Biological Activity of Carbazole Alkaloids and Essential Oil of Murraya koenigii Against Antibiotic Resistant Microbes and Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Thilahgavani Nagappan

    2011-11-01

    Full Text Available A total of three carbazole alkaloids and essential oil from the leaves of Murraya koenigii (Rutaceae were obtained and examined for their effects on the growth of five antibiotic resistant pathogenic bacteria and three tumor cell lines (MCF-7, P 388 and Hela. The structures of these carbazoles were elucidated based on spectroscopy data and compared with literature data, hence, were identified as mahanine (1, mahanimbicine (2 and mahanimbine (3. The chemical constituents of the essential oil were identified using Gas Chromatography-Mass Spectroscopy (GCMS. These compounds exhibited potent inhibition against antibiotic resistant bacteria such as Staphylococcus aureus (210P JTU, Psedomonas aeruginosa (ATCC 25619, Klebsiella pneumonia (SR1-TU, Escherchia coli (NI23 JTU and Streptococcus pneumoniae (SR16677-PRSP with significant minimum inhibition concentration (MIC values (25.0–175.0 mg/mL and minimum bacteriacidal concentrations (MBC (100.0–500.0 mg/mL. The isolated compounds showed significant antitumor activity against MCF-7, Hela and P388 cell lines. Mahanimbine (3 and essential oil in particular showed potent antibacteria and cytotoxic effect with dose dependent trends (≤5.0 μg/mL. The findings from this investigation are the first report of carbazole alkaloids’ potential against antibiotic resistant clinical bacteria, MCF-7 and P388 cell lines.

  19. Effect of carbazole-oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes

    Science.gov (United States)

    Jiang, Xuezhong; Register, Richard A.; Killeen, Kelly A.; Thompson, Mark E.; Pschenitzka, Florian; Hebner, Thomas R.; Sturm, James C.

    2002-05-01

    Interactions between hole-transporting carbazole groups and electron-transporting 1,3,4-oxadiazole groups were studied by photoluminescence and electroluminescence (EL) spectroscopy, in blends of poly(N-vinylcarbazole) with 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PVK:PBD) and in random copolymers with carbazole and oxadiazole groups attached as side chains. Different excited-state complexes form in the blends, which exhibit exciplexes, and in the copolymers, which manifest electroplexes, due to topological constraints on the position of carbazole and oxadiazole units in the polymer. Both types of complex red-shift the EL spectra of the matrices compared with pure PVK homopolymer, although the shift is significantly greater for the electroplex. The presence of these complexes has a profound effect on the external quantum efficiency of dye-doped organic light-emitting diodes employing the blends or copolymers as matrices, as it strongly affects the efficiency of Förster energy transfer from the matrix to the dye. Single-layer devices doped with either coumarin 47 (C47), coumarin 6 (C6), or nile red (NR) were compared. Among the three dye-doped PVK:PBD devices, C6 doping yields the highest efficiency, while NR doping produced the most efficient copolymer devices, consistent with the degree of overlap between the EL spectrum of the matrix material and the absorption spectrum of the dye.

  20. Polyethers containing 4-(carbazol-2-yl)-7-arylbenzo[c]-1,2,5-thiadiazole chromophores as solution processed materials for hole transporting layers of OLEDs

    Science.gov (United States)

    Krucaite, G.; Tavgeniene, D.; Xie, Z.; Lin, X.; Zhang, B.; Grigalevicius, S.

    2018-02-01

    Two polyethers containing electroactive pendent 4-(carbazol-2-yl)-7-arylbenzo[c]-1,2,5-thiadiazole moieties have been synthesized by the multi-step synthetic route. Full characterization of their structures is presented. The polymers represent derivatives of very high thermal stability with initial thermal degradation temperatures of 425 °C and 431 °C. Glass transition temperatures of the amorphous materials were also very high and reached values of 154 °C and 163 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of 5.84 eV and 5.93 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting material. An electroluminescent device containing hole-transporting layer (HTL) of the polymer with electroactive 4-carbazolyl-7-phenylbenzo[c]-1,2,5-thiadiazole moieties exhibited turn on voltage of 6.2 V, maximum photometric efficiency of 2.5 cd/A and maximum brightness exceeding 300 cd/m2. The device containing HTL of the polymer with 4-carbazolyl-7-(1-naphtyl)benzo[c]-1,2,5-thiadiazole moieties demonstrated turn on voltage of 5.2 V, maximum photometric efficiency of 1.6 cd/A and maximum brightness exceeding 1500 cd/m2. The efficiencies were about 30-90% higher than that of the device containing widely used hole transporting layers of poly(9-vinylcarbazole).

  1. Matrix evaluation for Pseudomonas spp. immobilisation in phenol bioremediation

    Directory of Open Access Journals (Sweden)

    Leonel Chitiva Urbina

    2003-07-01

    Full Text Available Pseudomonas spp. were cultivated in a free cell suspension and also immobilised in three different matrices to observe the influence of a contaminant like phenol on degradation velocity and compare each one's results. Polyurethane polymers, alginate (Manohar et al, 2001 and a mixture of alginate and polyvinyl alcohol (Doria et al, 2002 were selected and tested as matrices; all of them proved viable as matrices for cell immobilisation. Pseudomonas were cultivated in an initial 10 cfu/ml concentration in each one of the matrices for comparison purposes and in a medium without matrix; all mediums were supplemented with a minimum salt medium and 200 ppm phenol. A removal time of 23 days was observed in the medium without matrix, 15 days in the polyurethane matrix and 7 days in the alginate matrices. Improved removal times were observed in all matrices when compared to the free cell suspension.

  2. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  3. Carbazole based electrochromic polymers with benzoazole units: Effect of heteroatom variation on electrochromic performance

    Directory of Open Access Journals (Sweden)

    C. Doyranli

    2016-09-01

    Full Text Available A series of carbazole-based polymers were synthesized via Suzuki polymerization between N-(2-ethylhexylcarbazole-3,6-bis(ethyleneboronate (Cbz and dibromobenzazole unit. Three different polymers, PCBN, PCBS and PCBSe were obtained from 4,7-dibromo-2-hexyl-2H-benzotriazole (BN, 4,7-dibromo-2,1,3-benzothiadiazole- (BS and 4,7-dibromo-2,1,3-benzoselenadiazole (BSe, respectively. It is observed that, the variation of heteroatoms (N,S and Se on the benzazole unit have most important effect on electro-optic properties of the PCBX polymers. Neutral state color of the polymer films and their electrochromic performances are also influenced. Among the synthesized polymers, the PCBS bearing 2,1,3-benzothiadiazole as acceptor units has a broad absorption and 50% of ΔT in the near-IR regime at the oxidized state. This property of PCBS is a great advantage for near-IR electrochromic applications.

  4. Quickly Updatable Hologram Images Using Poly(N-vinyl Carbazole (PVCz Photorefractive Polymer Composite

    Directory of Open Access Journals (Sweden)

    Wataru Sakai

    2012-08-01

    Full Text Available Quickly updatable hologram images using photorefractive (PR polymer composite based on poly(N-vinyl carbazole (PVCz is presented. PVCz is one of the pioneer materials of photoconductive polymers. PR polymer composite consists of 44 wt % of PVCz, 35 wt % of 4-azacycloheptylbenzylidene-malonitrile (7-DCST as a nonlinear optical dye, 20 wt % of carbazolylethylpropionate (CzEPA as a photoconductive plasticizer and 1 wt % of 2,4,7-trinitro-9-fluorenone (TNF as a sensitizer. PR composite gives high diffraction efficiency of 68% at E = 45 V μm−1. Response speed of optical diffraction is the key parameter for real-time 3D holographic display. The key parameter for obtaining quickly updatable holographic images is to control the glass transition temperature lower enough to enhance chromophore orientation. Object image of the reflected coin surface recorded with reference beam at 532 nm (green beam in the PR polymer composite is simultaneously reconstructed using a red probe beam at 642 nm. Instead of using a coin object, an object image produced by a computer was displayed on a spatial light modulator (SLM and used for the hologram. The reflected object beam from an SLM was interfered with a reference beam on PR polymer composite to record a hologram and simultaneously reconstructed by a red probe beam.

  5. Theoretical rationalization for reduced charge recombination in bulky carbazole-based sensitizers in solar cells.

    Science.gov (United States)

    Surakhot, Yaowarat; Laszlo, Viktor; Chitpakdee, Chirawat; Promarak, Vinich; Sudyoadsuk, Taweesak; Kungwan, Nawee; Kowalczyk, Tim; Irle, Stephan; Jungsuttiwong, Siriporn

    2017-05-05

    The search for greater efficiency in organic dye-sensitized solar cells (DSCs) and in their perovskite cousins is greatly aided by a more complete understanding of the spectral and morphological properties of the photoactive layer. This investigation resolves a discrepancy in the observed photoconversion efficiency (PCE) of two closely related DSCs based on carbazole-containing D-π-A organic sensitizers. Detailed theoretical characterization of the absorption spectra, dye adsorption on TiO 2 , and electronic couplings for charge separation and recombination permit a systematic determination of the origin of the difference in PCE. Although the two dyes produce similar spectral features, ground- and excited-state density functional theory (DFT) simulations reveal that the dye with the bulkier donor group adsorbs more strongly to TiO 2 , experiences limited π-π aggregation, and is more resistant to loss of excitation energy via charge recombination on the dye. The effects of conformational flexibility on absorption spectra and on the electronic coupling between the bright exciton and charge-transfer states are revealed to be substantial and are characterized through density-functional tight-binding (DFTB) molecular dynamics sampling. These simulations offer a mechanistic explanation for the superior open-circuit voltage and short-circuit current of the bulky-donor dye sensitizer and provide theoretical justification of an important design feature for the pursuit of greater photocurrent efficiency in DSCs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. SYNTHESIS AND CHARACTERIZATION OF NOVEL BIPOLAR PPV-BASED COPOLYMER CONTAINING TRIAZOLE AND CARBAZOLE UNITS

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Li-xiang Wang; Xia-bin Jing; Fo-song Wang

    2001-01-01

    Two new blue light-emitting PPV-based conjugated copolymers containing both an electron-withdrawing unit (triazole-TAZ) and electron-rich moieties (carbazole-CAR and bicarbazole-BCAR) were prepared by Wittig condensation polymerization between the triazole diphosphonium salt and the corresponding dialdehyde monomers. Their structures and properties were characterized by FT-IR, TGA, DSC, UV-Vis, PL spectroscopy and electrochemical measurements. The resulting copolymers are soluble in common organic solvents and thermally stable with a Ts of 147C for TAZ-CAR-PPV and of 157C for TAZ-BCAR-PPV. The maximum photoluminescence wavelengths of TAZ-CAR-PPV and TAZ-BCAR-PPV film appear at 460 nm and 480 nm, respectively. Cyclic voltammetry measurement demonstrates that TAZ-BCAR-PPV has good electrochemical reversibility, while TAZ-CAR-PPV exhibits the irreversible redox process. The triazole unit was found to be an effective π-conjugation interrupter and can play the rigid spacer role in determining the emission colour of the resulting copolymer.

  7. A series of copper complexes with carbazole and oxadiazole moieties: Synthesis, characterization and luminescence performance

    Energy Technology Data Exchange (ETDEWEB)

    Bai Weiyang, E-mail: baiwy02@163.com [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Sun Li [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2012-10-15

    In this paper, various moieties of ethyl, carbazole and oxadiazole are attached to 2-thiazol-4-yl-1H-benzoimidazole to form a series of diamine ligands. Their corresponding Cu(I) complexes are also synthesized using bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand. Crystal structures, thermal property, electronic nature and luminescence property of these Cu(I) complexes are discussed in detail. These Cu(I) complexes are found to be efficient green-emitting ones in solutions and the emissive parameters are improved largely by the incorporation of substituent moieties. Detailed analysis suggests that the effective suppression of solvent-induced exciplex quenching is responsible for this phenomenon. On the other hand, the introduction of substituent moieties exerts no obvious influence on molecular structure, thermal stability and emitting-energy of the Cu(I) complexes, owing to their absence from inner coordination sphere. - Highlights: Black-Right-Pointing-Pointer Diamine ligands with various moieties and Cu(I) complexes are synthesized. Black-Right-Pointing-Pointer Crystal structures and photophysical property are discussed in detail. Black-Right-Pointing-Pointer The incorporation of substituent moieties improves luminescence performance. Black-Right-Pointing-Pointer Solvent-induced exciplex quenching is suppressed by substituent moieties.

  8. 1-(1-Hydroxy-9H-carbazol-2-yl-3-methylbut-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Matthias Zeller

    2010-02-01

    Full Text Available The title compound, C17H15NO2, was prepared as one of two products of the AlCl3/POCl3-catalysed reaction of 9-carbazol-1-ol with 3,3-dimethyacrylic acid. It crystallizes with two crystallographically independent molecules, A and B, which are virtually superimposable but not related by any translational or other pseudosymmetry. Both independent molecules are almost planar [r.m.s. deviations from planarity = 0.053 (1 and 0.079 (1 Å in A and B, respectively] and contain an intramolecular O—H...O hydrogen bond. Each type of molecules is connected via pairs of N—H...O hydrogen bonds, forming centrosymmetric A2 and B2 dimers which are, in turn, arranged in offset π-stacks extending along the a-axis direction. The offset of the dimers and the tilt angle of the molecules allows the formation of alternating C—H...π interactions between A and B molecules of parallel stacks.

  9. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  10. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    Science.gov (United States)

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  11. CLONING AND SEQUENCING OF PSEUDOMONAS GENES DETERMINING SODIUM DODECYL-SULFATE BIODEGRADATION

    NARCIS (Netherlands)

    DAVISON, J; BRUNEL, F; PHANOPOULOS, A; PROZZI, D; TERPSTRA, P

    1992-01-01

    The nucleotide sequences of two genes involved in sodium dodecyl sulfate (SDS) degradation, by Pseudomonas, have been determined. One of these, sdsA, codes for an alkyl sulfatase (58 957 Da) and has similarity (31.8% identity over a 201-amino acid stretch) to the N terminus of a predicted protein of

  12. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  13. Metabolic Pathways of Polychlorinated Biphenyls Degradation by Pseudomonas sp. 2

    Czech Academy of Sciences Publication Activity Database

    Komancová, M.; Jurčová, Irena; Kochánková, L.; Burkhard, J.

    2003-01-01

    Roč. 50, č. 4 (2003), s. 537ů543 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z4072921 Keywords : polychlorinated biphenyls * biodegradation * aerobic bacteria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.904, year: 2003

  14. Effect of pH and inoculum size on pentachlorophenol degradation ...

    African Journals Online (AJOL)

    The success of this depends on finding strains able to degrade PCP in a changeable environment. The aim of this work was to study the influence of pH of the medium and the effect of inoculum size on pentachlorophenol degradation by Pseudomonas sp. A study of PCP degradation kinetics was performed to assess such ...

  15. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  16. Synthesis, structural characterization and photoluminescence properties of rhenium(I) complexes based on bipyridine derivatives with carbazole moieties.

    Science.gov (United States)

    Li, Hong-Yan; Wu, Jing; Zhou, Xin-Hui; Kang, Ling-Chen; Li, Dong-Ping; Sui, Yan; Zhou, Yong-Hui; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng

    2009-12-21

    Three N,N-bidentate ligands, 5,5'-dibromo-2,2-bipyridine (L1) and two carbazole containing ligands of 5-bromo-5'-carbazolyl-2,2-bipyridine (L2), 5,5'-dicarbazolyl-2,2'-bipyridine (L3), and their corresponding rhenium Re(CO)3Cl(L) complexes (ReL1-ReL3) have been successfully synthesized and characterized by elemental analysis, 1H NMR and IR spectra. Their photophysical properties and thermal analysis, along with the X-ray crystal structure analysis of L3 and complexes ReL1 and ReL3 are also described. In CH2Cl2 solution at room temperature, all complexes display intense absorption bands at ca. 220-350 nm, which can be assigned to spin-allowed intraligand (pi-->pi*) transitions, and the low energy broad bands in the 360-480 nm region are attributed to the metal to ligand charge-transfer d(Re)-->pi* (diimine) (MLCT). The introduction of carbazole moieties improves the MLCT absorption and molar extinction coefficient of these complexes. Upon excitation at the peak maxima, all complexes show strong emissions around 620 nm, which are assigned to d(Re)-->pi* (diimine) MLCT phosphorescence. The photoluminescence lifetime decay of Re(I) complexes were measured and the quantum efficiencies of the rhenium(I) complexes were calculated by using air-equilibrated [Ru(bpy)3]2+ x 2 Cl- aqueous solution as standard (phi(std) = 0.028). The complexes with appended carbazole moieties exhibit enhanced luminescence performances relative to ReL1.

  17. Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-09-01

    Full Text Available Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE, which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8, accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA. When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.

  18. The Pseudomonas Quinolone Signal (PQS)

    DEFF Research Database (Denmark)

    Sams, Thomas; Baker, Ysobel; Hodgkinson, James

    2015-01-01

    Pseudomonas aeruginosa is an opportunistichuman pathogen that routinely appears near the top ofpublic health threat lists worldwide. P. aeruginosa causes in-fections by secreting a wealth of exceptionally active exo-products, leading to tissue damage. The synthesis of manyof these virulence factors...

  19. A New Star-shaped Carbazole Derivative with Polyhedral Oligomeric Silsesquioxane Core: Crystal Structure and Unique Photoluminescence Property.

    Science.gov (United States)

    Xu, Zixuan; Yu, Tianzhi; Zhao, Yuling; Zhang, Hui; Zhao, Guoyun; Li, Jianfeng; Chai, Lanqin

    2016-01-01

    A new inorganic–organic hybrid material based on polyhedral oligomeric silsesquioxane (POSS) capped with carbazolyl substituents, octakis[3-(carbazol-9-yl)propyldimethylsiloxy]-silsesquioxane (POSS-8Cz), was successfully synthesized and characterized. The X-ray crystal structure of POSS-8Cz were described. The photophysical properties of POSS-8Cz were investigated by using UV–vis,photoluminescence spectroscopic analysis. The hybrid material exhibits blue emission in the solution and the solid film.The morphology and thermal stablity properties were measured by X-ray diffraction (XRD) and TG-DTA analysis.

  20. A Sm(II)-mediated cascade approach to Dibenzoindolo[3,2-b]carbazoles : synthesis and evaluation

    OpenAIRE

    Levick, Matthew T.; Grace, Iain; Dai, Sheng-Yao; Kasch, Nicholas; Muryn, Christopher; Lambert, Colin; Turner, Michael L.; Procter, David J.

    2014-01-01

    Previously unstudied dibenzoindolo[3,2-b]carbazoles have been prepared by two-directional, phase tag-assisted synthesis utilizing a connective-Pummerer cyclization and a SmI2-mediated tag cleavage-cyclization cascade. The use of a phase tag allows us to exploit unstable intermediates that would otherwise need to be avoided. The novel materials were characterized by X-ray, cyclic voltammetry, UV-vis spectroscopy, TGA, and DSC. Preliminary studies on the performance of OFET devices are also des...

  1. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding

    2014-01-01

    Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet-triplet energy gap (ΔES-T ≅ -1.78 kcal mol-1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future. This journal

  2. DFT and experimental studies on structure and spectroscopic parameters of 3,6-diiodo-9-ethyl-9H-carbazole

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2016-01-01

    The first report on crystal and molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented. Experimental room-temperature X-ray and 13C chemical shift studies were supported by advanced theoretical calculations using density functional theory (DFT). The 13C nuclear magnetic shieldings were...... predicted at the non-relativistic and relativistic level of theory using the zeroth-order regular approximation (ZORA). Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from...

  3. Isolation and evaluation of potent Pseudomonas species for bioremediation of phorate in amended soil.

    Science.gov (United States)

    Jariyal, Monu; Gupta, V K; Jindal, Vikas; Mandal, Kousik

    2015-12-01

    Use of phorate as a broad spectrum pesticide in agricultural crops is finding disfavor due to persistence of both the principal compound as well as its toxic residues in soil. Three phorate utilizing bacterial species (Pseudomonas sp. strain Imbl 4.3, Pseudomonas sp. strain Imbl 5.1, Pseudomonas sp. strain Imbl 5.2) were isolated from field soils. Comparative phorate degradation analysis of these species in liquid cultures identified Pseudomonas sp. strain Imbl 5.1 to cause complete metabolization of phorate during seven days as compared to the other two species in 13 days. In soils amended with phorate at different levels (100, 200, 300 mg kg(-1) soil), Pseudomonas sp. strain Imbl 5.1 resulted in active metabolization of phorate by between 94.66% and 95.62% establishing the same to be a potent bacterium for significantly relieving soil from phorate residues. Metabolization of phorate to these phorate residues did not follow the first order kinetics. This study proves that Pseudomonas sp. strain Imbl 5.1 has huge potential for active bioremediation of phorate both in liquid cultures and agricultural soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

    Science.gov (United States)

    De Jesús-Cortés, Héctor; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; Tran, Stephanie; Britt, Jeremiah; Tesla, Rachel; Morlock, Lorraine; Naidoo, Jacinth; Melito, Lisa M; Wang, Gelin; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the dentate gyrus. Here, we provide evidence that P7C3 also protects mature neurons in brain regions outside of the hippocampus. P7C3 blocks 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated cell death of dopaminergic neurons in the substantia nigra of adult mice, a model of Parkinson disease (PD). Dose-response studies show that the P7C3 analog P7C3A20 blocks cell death with even greater potency and efficacy, which parallels the relative potency and efficacy of these agents in blocking apoptosis of newborn neural precursor cells of the dentate gyrus. P7C3 and P7C3A20 display similar relative effects in blocking 1-methyl-4-phenylpyridinium (MPP(+))-mediated death of dopaminergic neurons in Caenorhabditis elegans, as well as in preserving C. elegans mobility following MPP(+) exposure. Dimebon, an antihistaminergic drug that is weakly proneurogenic and neuroprotective in the dentate gyrus, confers no protection in either the mouse or the worm models of PD. We further demonstrate that the hippocampal proneurogenic efficacy of eight additional analogs of P7C3 correlates with their protective efficacy in MPTP-mediated neurotoxicity. In vivo screening of P7C3 analogs for proneurogenic efficacy in the hippocampus may thus provide a reliable means of predicting neuroprotective efficacy. We propose that the chemical scaffold represented by P7C3 and P7C3A20 provides a basis for optimizing and advancing pharmacologic agents for the treatment of patients with PD.

  5. Enzyme-mediated quenching of the Pseudomonas quinolone signal (PQS promotes biofilm formation of Pseudomonas aeruginosa by increasing iron availability

    Directory of Open Access Journals (Sweden)

    Beatrix Tettmann

    2016-12-01

    Full Text Available The 2-alkyl-3-hydroxy-4(1H-quinolone 2,4-dioxygenase HodC was previously described to cleave the Pseudomonas quinolone signal, PQS, which is exclusively used in the complex quorum sensing (QS system of Pseudomonas aeruginosa, an opportunistic pathogen employing QS to regulate virulence and biofilm development. Degradation of PQS by exogenous addition of HodC to planktonic cells of P. aeruginosa attenuated production of virulence factors, and reduced virulence in planta. However, proteolytic cleavage reduced the efficacy of HodC. Here, we identified the secreted protease LasB of P. aeruginosa to be responsible for HodC degradation. In static biofilms of the P. aeruginosa PA14 lasB::Tn mutant, the catalytic activity of HodC led to an increase in viable biomass in newly formed but also in established biofilms, and reduced the expression of genes involved in iron metabolism and siderophore production, such as pvdS, pvdL, pvdA and pvdQ. This is likely due to an increase in the levels of bioavailable iron by degradation of PQS, which is able to sequester iron from the surrounding environment. Thus, HodC, despite its ability to quench the production of virulence factors, is contraindicated for combating P. aeruginosa biofilms.

  6. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives...

  7. Soluble Electrochromic Polymers Incorporating Benzoselenadiazole and Electron Donor Units (Carbazole or Fluorene: Synthesis and Electronic-Optical Properties

    Directory of Open Access Journals (Sweden)

    Jianzhong Xu

    2018-04-01

    Full Text Available A series of π-conjugated polymers containing alternating benzoselenadiazole (BSe-bi(thiophene derivative-carbazole or benzoththiadiazole (BSe-bi(thiophene derivative-fluorene units were designed and synthesized. Thiophene derivatives, namely 3-hexylthiophene, 3,4-bihexyloxythiophene, and 3,4-bioctyloxythiophene, were used as the π-bridges of the polymers. The polymers were characterized in detail in terms of their thermal stabilities, cyclic voltammograms, UV-Vis absorption, spectroelectrochemistry, dynamic switching property and so forth. The alkoxy thiophene π-bridged polymers have lower onset oxidation potentials and bandgaps than that of their corresponding alkyl thiophene π-bridged polymers. The selection of the donor units between the carbazole and the fluorene units has nearly no effect on the bandgaps and colors as well as the onset oxidation potentials of the polymers. The increase in the length of the side alkyl chains on the thiophene ring caused a slight increase in the polymer bandgap, which may be caused by the space hindrance effect. The dynamic switching abilities of the polymers were obtained by the chronoabsorptometry method, and the results also suggested that the alkoxy thiophene-containing polymers (as π-bridges have higher contrast ratios than the corresponding alkyl thiophene-containing polymers. Furthermore, the increase in the length of the side alkyl chain might have a detrimental effect on the optical contrast ratios of the polymers.

  8. Novel Hole Transporting Materials Based on 4-(9H-Carbazol-9-yltriphenylamine Derivatives for OLEDs

    Directory of Open Access Journals (Sweden)

    Quynh Pham Bao Nguyen

    2014-09-01

    Full Text Available During the past few years, organic light emitting diodes (OLEDs have been increasingly studied due to their emerging applicability. However, some of the properties of existing OLEDs could be improved, such as their overall efficiency and durability; these aspects have been addressed in the current study. A series of novel hole-transporting materials (HTMs 3a–c based on 4-(9H-carbazol-9-yltriphenylamine conjugated with different carbazole or triphenylamine derivatives have been readily synthesized by Suzuki coupling reactions. The resulting compounds showed good thermal stabilities with high glass transition temperatures between 148 and 165 °C. The introduction of HTMs 3b and 3c into the standard devices ITO/HATCN/NPB/HTMs 3 (indium tin oxide/dipyrazino(2,3-f:2ꞌ,3ꞌ-hquinoxaline 2,3,6,7,10,11-hexacarbonitrile/N,Nꞌ-bis(naphthalen-1-yl-N,Nꞌ-bis(phenyl-benzidine/HTMs/CBP (4,4ꞌ-Bis(N-carbazolyl-1,1ꞌ-biphenyl: 5% Ir(ppy3/Bphen/LiF/Al (tris[2-phenylpyridinato-C2,N]iridium(III/4,7-diphenyl-1,10-phenanthroline/LiF/Al resulted in significantly enhanced current, power, and external quantum efficiencies (EQE as compared to the reference device without any layers of HTMs 3.

  9. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO

    Science.gov (United States)

    Gu, Yingchun; Lin, Dayong; Tang, Yalin; Fei, Xuening; Wang, Cuihong; Zhang, Baolian; Zhou, Jianguo

    2018-02-01

    As its significant role, the selective recognition of G-quadruplex with specific structures and functions is important in biological and medicinal chemistry. Carbazole derivatives have been reported as a kind of fluorescent probe with many excellent optical properties. In the present study, the fluorescence of the dye (carbazole TO) increased almost 70 fold in the presence of bcl-2 2345 G4 compared to that alone in aqueous buffer condition with almost no fluorescence and 10-30 fold than those in the presence of other DNAs. The binding study results by activity inhibition of G4/Hemin peroxidase experiment, NMR titration and molecular docking simulation showed the high affinity and selectivity to bcl-2 2345 G4 arises from its end-stacking interaction with G-quartet. It is said that a facile approach with excellent sensitive, good selectivity and quick response for bcl-2 2345 G-quadruplex was developed and may be used for antitumor recognition or antitumor agents.

  10. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    Science.gov (United States)

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    Science.gov (United States)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  12. Ultrafast intramolecular charge transfer with N-(4-cyanophenyl)carbazole. Evidence for a LE precursor and dual LE + ICT fluorescence.

    Science.gov (United States)

    Galievsky, Victor A; Druzhinin, Sergey I; Demeter, Attila; Mayer, Peter; Kovalenko, Sergey A; Senyushkina, Tamara A; Zachariasse, Klaas A

    2010-12-09

    The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ⇄ ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ∼4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE

  13. Pseudomonas-follikulitis efter badning i spabad

    DEFF Research Database (Denmark)

    Uldall Pallesen, Kristine Appel; Andersen, Klaus Ejner; Mørtz, Charlotte Gotthard

    2012-01-01

    . We describe a 23-year-old healthy woman who developed a pustular rash and general malaise after using a spa bath contaminated with Pseudomonas aeruginosa. Bacterial culture from a pustule confirmed Pseudomonas folliculitis and the patient was treated with ciprofloxacin with rapid good effect....

  14. Pseudomonas Septic Arthritis | Thanni | Nigerian Journal of ...

    African Journals Online (AJOL)

    BACKGROUND: Septic arthritis due to pseudomonas species is unusual and when it occurs, there is often an underlying cause like immune depression, intravenous drug abuse or a penetrating injury. PATIENT AND METHOD: We report a case of pseudomonas septic arthritis complicating cannulation of a leg vein following ...

  15. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  16. Indolo[3,2-a]carbazoles from a deep-water sponge of the genus Asteropus.

    Science.gov (United States)

    Russell, Floyd; Harmody, Dedra; McCarthy, Peter J; Pomponi, Shirley A; Wright, Amy E

    2013-10-25

    Two new indolo[3,2-a]carbazoles (1, 2) were isolated from a deep-water collection of a sponge of the genus Asteropus. The structures of 1 and 2 were determined through the analysis of spectroscopic data including mass spectrometry and 2D-NMR. Compound 1 showed minimum inhibitory concentrations of 25 μg/mL against the fungal pathogen Candida albicans and 50 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA). Compounds 1 and 2 showed no cytotoxicity against the PANC1 human pancreatic carcinoma and NCI/ADR-RES ovarian adenocarcinoma cell lines at our standard test concentration of 5 μg/mL.

  17. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    Science.gov (United States)

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  18. Biotransformation of geosmin by terpene-degrading bacteria.

    Science.gov (United States)

    Two terpene-degrading bacteria that are able to transform geosmin have been identified. Pseudomonas sp. SBR3-tpnb, isolated on -terpinene, converts geosmin to several products; the major products are keto-geosmins. This geosmin transformation ability is inducible by -terpinene. Rhodococcus wratisl...

  19. Effects of surfactants on microwave-assisted solid-state intercalation of poly(carbazole) in Bentonite

    International Nuclear Information System (INIS)

    Riaz, Ufana; Ashraf, S. M.; Khan, Nisha

    2011-01-01

    The present preliminary investigation reports, for the first time, the effects of typical cationic and anionic surfactants on the microwave-assisted solid-state intercalation and polymerization of carbazole (Cz) in the basal spacings of Bentonite. The intercalation of cetyl pyridinium chloride (CPCl), a cationic surfactant, and naphthalene sulfonic acid (NSA), an anionic surfactant, in Bentonite was carried out at two loadings—25 and 50 wt%—using microwave irradiation. The in situ polymerization of Cz was successfully carried out into the surfactant-modified galleries of Bentonite. This was confirmed by Gel permeation chromatography (GPC). The intercalation of poly(carbazole) (PCz) was confirmed by FT-IR, UV–Visible, and XRD analyses. Although polymerization was carried out in the solid-state, the UV–Visible spectra revealed the doped state of PCz and the presence of a charge carrier tail. The XRD studies showed that the increase in the height of the galleries was higher in case of Bentonite/CPCl/PCz nanocomposites as compared to Bentonite/NSA/PCz nanocomposites. It also revealed different orientations of the two surfactants in the galleries of the clay. The average particle size of Bentonite/CPCl/PCz (1:0.25:0.25) and (1:0.5:0.5) nanocomposites was found to be in the range of 25–35 and 50–60 nm, respectively. The Bentonite/NSA/PCz (1:0.25:0.25) and (1:0.5:0.5) nanocomposites showed the average particle size in the range of 20–30 nm and 40–50 nm, respectively. The results revealed that both cationic and anionic surfactants strongly influenced the morphology of Bentonite/PCz nanocomposites. The difference in the mechanisms of solid-state intercalation of PCz in the presence of these surfactants has been proposed.

  20. Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation.

    Directory of Open Access Journals (Sweden)

    Vasundhara Paliwal

    Full Text Available Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNA(Gly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.

  1. Pseudomonas aeruginosa elastase cleaves a C-terminal peptide from human thrombin that inhibits host inflammatory responses

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; Bhongir, Ravi K V; Kjellström, Sven

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21...

  2. Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Zeuthen, Louise; Pedersen, Susanne Brix

    2009-01-01

    Pseudomonas aeruginosa releases a wide array of toxins and tissue-degrading enzymes. Production of these malicious virulence factors is controlled by interbacterial communication in a process known as quorum sensing. An increasing body of evidence reveals that the bacterial signal molecule N-(3-o...

  3. Microbial degradation of resins fractionated from Arabian light crude oil

    International Nuclear Information System (INIS)

    Venkateswaran, K.; Hoaki, T.; Kato, M.; Maruyama, T.

    1995-01-01

    Sediment samples from the Japanese coasts were screened for microorganisms able to degrade resin components of crude oil. A mixed population that could degrade 35% of 5000 ppm resin in 15 days was obtained. This population also metabolized 50% of saturates and aromatics present in crude oil (5000 ppm) in 7 days. A Pseudomonas sp., isolated from the mixed population, emulsified and degraded 30% of resins. It also degraded saturates and aromatics (30%) present in crude oil (5000 ppm). These results were obtained from Iatroscan analysis. Degradation of crude oil was also analyzed by gas chromatography (GC). The peaks corresponding to known aliphatic hydrocarbons in crude oil greatly decreased within the first two days of incubation in the cultures of the RY-mixed population and of Pseudomonas strain UN3. Aromatic compounds detected as a broad peak by GC were significantly degraded at day 7 by Pseudomonas strain UN3, and at day 15 by the RY-mixed population. Investigations are ongoing to determine the genetic basis for the ability of these organisms to grow on the resin fractions of crude oil as a sole source of carbon and energy. 28 refs., 4 figs., 1 tab

  4. One-pot synthesis of carbazole based 3-hydroxy-4H-chromen-4-ones by modified Algar-Flynn-Oyamada reaction and their antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Ashok Dongamanti

    2015-01-01

    Full Text Available A new series of 2-(9-ethyl-9H-carbazol-3-yl-3-hydroxy-4Hchromen-4-ones have been synthesized from substituted 2-hydroxy acetophenones and 9-ethyl-9H-carbazole-3-carbaldehyde using NaOH and H2O2 by modified Algar-Flynn-Oyamada reaction. In this method flavonols are synthesized without isolating chalcones in good yields (70-82%. The structures of the compounds were established on the basis of 1H-NMR, 13CNMR, FT-IR and mass spectral and analytical data. All the compounds were evaluated for their antimicrobial activity against bacteria such as Staphylococus aureus, Bacillus subtilis, Escherichia coli and Klebsiella pneumoniae as well as fungi such as Aspergillus flavus and Fusarium oxysporum.

  5. Molecular modeling and experimental studies on structure and NMR parameters of 9-benzyl-3,6-diiodo-9H-carbazole

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2015-01-01

    A combined experimental and theoretical study has been performed on 9-benzyl-3,6-diiodo-9H-carbazole. Experimental X-ray (100.0 K) and room-temperature 13C NMR studies were supported by advanced density functional theory (DFT) calculations. The non relativistic structure optimization was performed...... and the 13C nuclear magnetic shieldings were predicted at the relativistic level of theory using the Zeroth Order Regular Approximation (ZORA). The changes in the benzene and pyrrole rings compared to the unsubstituted carbazole or the parent molecules were discussed in terms of aromaticity changes using...... the harmonic oscillator model of aromaticity (HOMA) and the nucleus independent chemical shift (NICS) indexes. Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from experiment of 41...

  6. Biodegradation of Chlorpyrifos by Pseudomonas Resinovarans Strain AST2.2 Isolated from Enriched Cultures.

    OpenAIRE

    Anish Sharma*,; Jyotsana Pandit; Ruchika Sharma and; Poonam Shirkot

    2016-01-01

    A bacterial strain AST2.2 with chlorpyrifos degrading ability was isolated by enrichment technique from apple orchard soil with previous history of chlorpyrifos use. Based on the morphological, biochemical tests and 16S rRNA sequence analysis, AST2.2 strain was identified as Pseudomonas resinovarans. The strain AST2.2 utilized chlorpyrifos as the sole source of carbon and energy. This strain exhibited growth upto 400mg/l concentration of chlorpyrifos and exhibited high extracellular organopho...

  7. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil

    OpenAIRE

    Vijay Kumar; Simranjeet Singh; Anu Manhas; Joginder Singh; Sourav Singla; Parvinder Kaur; Shivika Data; Pritika Negi; Arjun Kalia

    2014-01-01

    A newly isolated strain Pseudomonas fluorescens (Accession number KF 279042.1) have potential in diesel degradation and can be recommended for bioremediation of sites that are contaminated with diesel. This bacterium was characterized on the basis of microbiological, biochemical and molecular analysis. Bacterial growth optimization was studied based on carbon source, nitrogen source, pH and temperature. The strain was selected based on its ability to show growth in medium containing diesel. I...

  8. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7H-dibenzo[c,g]carbazole

    Czech Academy of Sciences Publication Activity Database

    Mesárošová, M.; Valovičová, Z.; Srančíková, A.; Krajčovičová, Z.; Milcová, Alena; Sokolová, Romana; Schmuczerová, Jana; Topinka, Jan; Gábelová, A.

    2011-01-01

    Roč. 255, č. 3 (2011), s. 307-315 ISSN 0041-008X R&D Projects: GA MŠk 2B08005 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z40400503; CEZ:AV0Z50040507 Keywords : cytochrome P4503A4 * 7H-dibenzo[c,g]carbazole * Hprt gene mutations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.447, year: 2011

  9. Preparation of Benzo[c]carbazol-6-amines via Manganese-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Oxidative Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Li, Zhenmin; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2018-03-02

    Manganese-catalyzed C 2 -H enaminylation of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. A migration of the directing group pyrimidinyl occurred during this process. The synthesized 2-enaminyl indoles could be conveniently converted into 5-aryl-7H-benzo[c]carbazol-6-amines.

  10. Anion Binding Studies on Receptors Derived from the Indolo[2,3-a]carbazole Scaffold Having Different Binding Cavity Sizes

    Directory of Open Access Journals (Sweden)

    Guzmán Sánchez

    2014-07-01

    Full Text Available The indolo[2,3-a]carbazole scaffold is a fused polyheteroaromatic system bearing two NH groups which suitably converge as hydrogen bond donor sites for the recognition of anions. A simple derivatisation of the indolocarbazole system at positions 1 and 10 with different functional groups, namely alcohols and amides, has contributed to modulate the anion binding selectivity and sensibility. A particularly good response has been obtained for the benzoate anion.

  11. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheema, Hammad [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States); Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan [Physics Department, North Carolina State University, Raleigh, NC, 27695 (United States); El-Shafei, Ahmed, E-mail: Ahmed_El-Shafei@ncsu.edu [Polymer and Color Chemistry Program, North Carolina State University, Raleigh, NC, 27695 (United States)

    2016-12-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO{sub 2} surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO{sub 2} solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO{sub 2} surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO{sub 2.}.

  12. Study of the pore filling fraction of carbazole-based hole-transporting materials in solid-state dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Marwa Ben Manaa

    2016-07-01

    Full Text Available Carbazole-based molecular glasses have emerged as a promising alternative to the widely used hole-transporting materials (HTM spiro-OMeTAD in solid-state dye-sensitized solar cells (DSSCs. The pore filling fraction (PFF of the mesoporous TiO2 layer by the HTM appears as a key parameter determining the final efficiency of a DSSC. In this work, the pore-filling properties of a family of carbazole-based HTMs are investigated for the first time and the photovoltaic behavior of DSSC devices (fabricated using the D102 dye is discussed in light of the present findings. It is found that N-aryl substituted 3,6-bis(diphenylaminyl-carbazole derivatives exhibit relatively low PFF of ca. 60%. Methoxy groups on the diphenylamine moieties have little influence on the PFF, indicating that the strong enhancement in power conversion efficiency (PCE is not related to an improved filling of the pores by the HTM. N-alkylated HTMs lead to higher PFF, increasing with the alkyl chain length, up to 78%.

  13. Design and synthesis of BODIPY sensitizers with long alkyl chains tethered to N-carbazole and their application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Cheema, Hammad; Younts, Robert; Gautam, Bhoj; Gundogdu, Kenan; El-Shafei, Ahmed

    2016-01-01

    In this study, three boron dipyrromethenes (BODIPY) dyes with extended conjugation and electron donating carbazole groups with different alkyl chain lengths tethered to N-carbazole were synthesized and characterized for dye-sensitized solar cells. The goal was to study the effect of different alkyl chain lengths on dye aggregation at TiO_2 surface. The proposed molecular strategy resulted in BODIPY dyes which showed interesting electronic absorption and fluorescence properties. It was observed that intramolecular energy transfer decreases with the increase in alkyl chain length possibly due to induced changes in molecular geometry caused by long alkyl chains. Additionally, interface analysis by impedance spectroscopy in comparison to N719 sensitized TiO_2 solar cell showed significant charge transport related losses (Nyquist plot) most likely due to impedance resulted from aggregated BODIPY dye on TiO_2 surface. Femtosecond transient absorption studies showed the loss of excited electrons by recombination with oxidized ground state of the sensitizers. - Highlights: • BODIPY dyes with carbazole electron donating groups are characterized. • Photophysics is discussed based on transient and steady state spectroscopy results. • Impedance spectroscopy found huge charge transport related losses on TiO_2_.

  14. Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species.

    Science.gov (United States)

    Wang, Beibei; Wang, Qingling; Liu, Wuxing; Liu, Xiaoyan; Hou, Jinyu; Teng, Ying; Luo, Yongming; Christie, Peter

    2017-09-01

    Phytoremediation together with microorganisms may confer the advantages of both phytoremediation and microbial remediation of soils containing organic contaminants. In this system biosurfactants produced by Pseudomonas sp. SB may effectively help to increase the bioavailability of organic pollutants and thereby enhance their microbial degradation in soil. Plants may enhance the rhizosphere environment for microorganisms and thus promote the bioremediation of contaminants. In the present pot experiment study, dichlorodiphenyltrichloroethane (DDT) residues underwent an apparent decline after soil bioremediation compared with the original soil. The removal efficiency of fertilizer + tall fescue, fertilizer + tall fescue + Pseudomonas, fertilizer + perennial ryegrass, and fertilizer + perennial ryegrass + Pseudomonas treatments were 59.4, 65.6, 69.0, and 65.9%, respectively, and were generally higher than that in the fertilizer control (40.3%). Principal coordinates analysis (PCoA) verifies that plant species greatly affected the soil bacterial community irrespective of inoculation with Pseudomonas sp. SB. Furthermore, community composition analysis shows that Proteobacteria, Acidobacteria and Actinobacteria were the three dominant phyla in all groups. In particular, the relative abundance of Pseudomonas for fertilizer + tall fescue + Pseudomonas (0.25%) was significantly greater than fertilizer + tall fescue and this was related to the DDT removal efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  16. Pseudomona pseudomallei community acquired pneumonia

    International Nuclear Information System (INIS)

    Severiche, Diego

    1998-01-01

    This is the first published case report en Colombia about pseudomona pseudomallei community acquired pneumonia. This uncommon pathogen is from the epidemiological standpoint a very important one and medical community should be aware to look after it in those patients where no other etiological pathogen is recovered. A brief summary about epidemiology is showed, emphasizing those regions where it can be found. Likewise, comments about the differential diagnosis are important since it should be considered in those patients where tuberculosis is suspected. This is particularly representative for countries with high tuberculosis rates. Furthermore, a microbiological review is shown, emphasizing on isolation techniques, descriptions about therapeutics and other regarding treatment issues according international standards. Finally; a description about the clinical picture, laboratory findings, treatment and evolution of the case reported are shown for discussion

  17. Biodegradasi Petroleum dan Hidrokarbon Eikosana oleh Isolat Bakteri Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Faiqah Umar

    2015-01-01

    Full Text Available Biodegradation of petroleum and hydrocarbon eicosane by Pseudomonas aeruginosa isolate. Hydrocarbon are important environmental contaminants in soil and water. These compounds have a potential risk to human health, as many of them are carsinogenic and toxic to marine organisms such as diatome, gasthrophode, mussel, and fish. The purpose of this research was to know the ability of Pseudomonas aeruginosa to degradate the hydrocarbon (petroleum Hundill and eicosane substrate. Growing test used in two steps, the preculture and culture step. The biodegradation capacity was measured by quantitative and qualitative tests. The essay showed an increasing biodegradation capacitypercentage of bacteria cell mass on hydrocarbon substrate. The percentage on petroleum Hundill substrat as follows; log phase was 51,6%, descelerate phase was 73%, and linear phase was 81,4%. On eicosane substrate as follows; log phase was 62,7%, descelerate phase was 85,2%, and linear phase was 85,2%. The qualitative biodegradation capacity by chromatography result showed separate enchained of carbon n-alkana in each growth phase on petroleum Hundill substrate. Carbon chain termination as follows; C11, C12, C14, C15, C16, C18, C22 on log phase, C12, C17, C19, C20, C24 on descelerate phase, and C12 until C25 even better on linear phase.

  18. Production and characterization of biosurfactant from Pseudomonas ...

    African Journals Online (AJOL)

    Further characterization of biosurfactant using Fourier transform infrared spectroscopy (FTIR) revealed it as a rhamnolipid. Keywords: Mangrove ecosystems, Pseudomonas aeruginosa, biosurfactant, critical micelle concentration (CMC), FT-IR fourier transform infrared spectroscopy (FTIR). African Journal of Biotechnology, ...

  19. Pseudomonas aeruginosa (Family Pseudomonadaceae) is an ...

    African Journals Online (AJOL)

    Pseudomonas aeruginosa (Family Pseudomonadaceae) is an obligate aerobic, motile, gram negative bacillus.which is able to grow and survive in almost any environment and resistant to temperature extremes. It is involved in the etiology of several diseases i.

  20. Growth of Pseudomonas fluorescens on Cassava Starch ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: The potential of local strains of microorganism (Pseudomonas fluorescens) in polyhydroxbutyrate production ... The demand for the use of biopolymers ... This work therefore investigates the production of polyhydroxybutyrate from.

  1. Antibiotics Susceptibility Pattern of Pseudomonas aeruginosa ...

    African Journals Online (AJOL)

    ABSTRACT: This work investigated the prevalence and antibiotics sensitivity of Pseudomonas aeruginosa isolated from ... skin triggers coagulation and an acute inflammatory response ... agents with anti-pseudomonal activity, life-threatening.

  2. Phase I metabolism of the carbazole derived synthetic cannabinoids EG-018, EG-2201 and MDMB-CHMCZCA and detection in human urine samples.

    Science.gov (United States)

    Mogler, Lukas; Franz, Florian; Wilde, Maurice; Huppertz, Laura M; Halter, Sebastian; Angerer, Verena; Moosmann, Bjoern; Auwärter, Volker

    2018-05-04

    Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG-018 (naphthalen-1-yl(9-pentyl-9H-carbazol-3-yl)methanone), EG-2201 ((9-(5-fluoropentyl)-9H-carbazol-3-yl)(naphthalen-1-yl)methanone) and MDMB-CHMCZCA (methyl 2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate) are three representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (LC-ESI-QToF-MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG-018 (n=8). A hydroxypentyl metabolite, most probably the 4-hydroxypentyl isomer, and an N-dealkylated metabolite mono-hydroxylated at the carbazole core system were most abundant. In vitro studies of EG-018 and EG-2201 indicated that oxidative defluorination of the 5-fluoropentyl side chain of EG-2201 as well as dealkylation led to common metabolites with EG-018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG-018 and EG-2201 (n=1) uptake is possible by the detection of compound-specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB-CHMCZCA users (n=20), one metabolite mono-hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound-specific consumption marker while a biotransformation product of mono-hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity

  3. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa.

    Science.gov (United States)

    Iiyama, Kazuhiro; Takahashi, Eigo; Lee, Jae Man; Mon, Hiroaki; Morishita, Mai; Kusakabe, Takahiro; Yasunaga-Aoki, Chisa

    2017-04-01

    The role of the alkaline protease (AprA) in pyocyanin production in Pseudomonas aeruginosa was investigated. AprA was overproduced when a plasmid carrying the aprA gene was introduced to an aprA-deletion mutant strain, EG03; thus, aprA-complemented EG03 was used as an overproducing strain. The complemented strain produced higher pyocyanin than the mutant strain in all commercially available media evaluated. Particularly, pyocyanin production was higher in the complemented than in the parental strain in brain-heart infusion and tryptic soy broths. These results suggested that protein degradation products by AprA were utilized for pyocyanin production. Protein-rich media were used in subsequent validation studies. Similar results were obtained when the basal medium was supplemented with casein or skim milk as the sole organic nitrogen source. However, gelatin failed to induce abundant pyocyanin production in the complemented strain, despite the presence of protein degradation products by AprA as assessed by SDS-PAGE. Thus, gelatin degradation products may not be suitable for pyocyanin synthesis. In conclusion, AprA could contribute to pyocyanin production in the presence of several proteins or peptides. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    Science.gov (United States)

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  5. OXIDATION OF POLYCHLORINATED BIPHENYLS BY PSEUDOMONAS SP. STRAIN LB400 AND PSEUDOMONAS PSEUDOALCALIGENES KF707

    Science.gov (United States)

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in th...

  6. Capsule production by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, A.R.

    1984-01-01

    Mucoid strains of Pseudomonas aeruginosa, associated almost exclusively with chronic respiratory infections in patients with cystic fibrosis, possess a capsule composed of alginic acid similar to one produced by Azotobacter vinelandii. Recent reports have provided evidence that the biosynthetic pathway for alginate in P. aeruginosa may differ from the pathway proposed for A. vinelandii in that synthesis in P. aeruginosa may occur by way of the Entner-Doudoroff pathway. Incorporation of isotope from (6-/sup 14/C)glucose into alginate by both P. aueroginosa and A. vinelandii was 10-fold greater than that from either (1-/sup 14/C)/sup -/ or (2-/sup 14/C)glucose, indicating preferential utilization of the bottom half of the glucose molecule for alginate biosynthesis. These data strongly suggest that the Entner-Doudoroff pathway plays a major role in alginate synthesis in both P. aeruginosa and A. vinelandii. The enzymes of carbohydrate metabolism in mucoid strains of P. aeruginosa appear to be unchanged whether alignate is actively produced or not and activities do not differ significantly from nonmucoid strain PAO.

  7. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong

    2015-06-26

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  8. Efficacy of Carbazole Alkaloids, Essential Oil and Extract of Murraya koenigii in Enhancing Subcutaneous Wound Healing in Rats

    Directory of Open Access Journals (Sweden)

    Thilahgavani Nagappan

    2012-12-01

    Full Text Available The traditional use of Murraya koenigii as Asian folk medicine prompted us to investigate its wound healing ability. Three carbazole alkaloids (mahanine (1, mahanimbicine (2, mahanimbine (3, essential oil and ethanol extract of Murraya koenigii were investigated for their efficacy in healing subcutaneous wounds. Topical application of the three alkaloids, essential oil and crude extract on 8 mm wounds created on the dorsal skin of rats was monitored for 18 days. Wound contraction rate and epithelialization duration were calculated, while wound granulation and collagen deposition were evaluated via histological method. Wound contraction rates were obvious by day 4 for the group treated with extract (19.25% and the group treated with mahanimbicine (2 (12.60%, while complete epithelialization was achieved on day 18 for all treatment groups. Wounds treated with mahanimbicine (2 (88.54% and extract of M. koenigii (91.78% showed the highest rate of collagen deposition with well-organized collagen bands, formation of fibroblasts, hair follicle buds and with reduced inflammatory cells compared to wounds treated with mahanine (1, mahanimbine (3 and essential oil. The study revealed the potential of mahanimbicine (2 and crude extract of M. koenigii in facilitation and acceleration of wound healing.

  9. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Fatma Baycan, E-mail: fatmabaycan@hotmail.co [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Koyuncu, Sermet [Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey); Ozdemir, Eyup, E-mail: eozdemir@comu.edu.t [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey)

    2010-07-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E{sub g} was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  10. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  11. Synthesis and photoinduced electron transfer in platinum(II) bis(N-(4-ethynylphenyl)carbazole)bipyridine fullerene complexes.

    Science.gov (United States)

    Lee, Sai-Ho; Chan, Chris Tsz-Leung; Wong, Keith Man-Chung; Lam, Wai Han; Kwok, Wai-Ming; Yam, Vivian Wing-Wah

    2014-12-21

    Platinum(ii) bis(N-(4-ethynylphenyl)carbazole)bipyridine fullerene complexes, (Cbz)2-Pt(bpy)-C60 and ((t)BuCbz)2-Pt(bpy)-C60, were synthesized. Their photophysical properties were studied by electronic absorption and emission spectroscopy and the origin of the transitions was supported by computational studies. The electrochemical properties were also studied and the free energies for charge-separation and charge-recombination processes were evaluated. The photoinduced electron transfer reactions in the triads were investigated by femtosecond and nanosecond transient absorption spectroscopy. In dichloromethane, both triads undergo ultrafast charge separation from the (3)MLCT/LLCT excited state within 300 fs to yield their respective triplet charge-separated (CS) states, namely (Cbz)2˙(+)-Pt(bpy)-C60˙(-) and ((t)BuCbz)2˙(+)-Pt(bpy)-C60˙(-), and the CS states would undergo charge recombination to give the (3)C60* state, which subsequently decays to the ground state in 22-28 μs.

  12. Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate

    Science.gov (United States)

    Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan

    2016-10-01

    An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.

  13. Study of the electroluminescence of highly stereoregular poly(N-pentenyl-carbazole) for blue and white OLEDs

    Science.gov (United States)

    Liguori, R.; Botta, A.; Pragliola, S.; Rubino, A.; Venditto, V.; Velardo, A.; Aprano, S.; Maglione, M. G.; Prontera, C. T.; De Girolamo Del Mauro, A.; Fasolino, T.; Minarini, C.

    2017-06-01

    The electroluminescence (EL) of isotactic and syndiotactic poly(N-pentenyl-carbazole) (PPK), achieved by coordination polymerization, is studied in order to investigate the interrelation between the polymer tacticity and their physical-chemical properties. The use of these polymers in organic light-emitting diode (OLED) fabrication is also explored. Thermal and x-ray diffraction analyses of PPKs show that the isotactic stereoisomer is semicrystalline, whereas the syndiotactic one is amorphous. Optical analysis of both stereoisomers, carried out on film samples, reveals the presence of two different excimers: ‘sandwich-like’ and ‘partially overlapping’. Nevertheless, the emission intensity ratio between ‘sandwich-like’ and ‘partially overlapping’ excimers is higher in the isotactic than in the syndiotactic stereoisomer. Using the synthesized polymers as OLED emitting layers, the influence of the polymer tacticity on the EL properties of the device is highlighted. In detail, while blue OLEDs are obtained by using the syndiotactic stereoisomer, OLEDs with a multilayer structure fabricated with the isotactic stereoisomer emit white light. The contribution of three different emissions (fluorescence, phosphorescence and electromer emissions) with comparable intensities to the detected white light is discussed.

  14. Facile Synthesis and High performance of a New Carbazole-Based Hole Transporting Material for Hybrid Perovskite Solar Cells

    KAUST Repository

    Wang, Hong; Sheikh, Arif D.; Feng, Quanyou; Li, Feng; Chen, Yin; Yu, Weili; Alarousu, Erkki; Ma, Chun; Haque, Mohammed; Shi, Dong; Wang, Zhong-Sheng; Mohammed, Omar F.; Bakr, Osman; Wu, Tao

    2015-01-01

    Perovskite solar cells are very promising for practical applications owing to their rapidly rising power conversion efficiency and low cost of solution-based processing. 2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine) 9,9’-spirobifluorene (Spiro-OMeTAD) is most widely used as hole transporting material (HTM) in perovskite solar cells. However, the tedious synthesis and high cost of Spiro-OMeTAD inhibit its commercial-scale application in the photovoltaic industry. In this article, we report a carbazole-based compound (R01) as a new HTM in efficient perovskite solar cells. R01 is synthesized via a facile route consisting of only two steps from inexpensive commercially available materials. Furthermore, R01 exhibits higher hole mobility and conductivity than the state-of-the-art Spiro-OMeTAD. Perovskite solar cells fabricated with R01 produce a power conversion efficiency of 12.03%, comparable to that obtained in devices using Spiro-OMeTAD in this study. Our findings underscore R01 as a highly promising HTM with high performance, and its facile synthesis and low cost may facilitate the large-scale applications of perovskite solar cells.

  15. The isolation and functional identification on producing cellulase of Pseudomonas mendocina

    Science.gov (United States)

    Zhang, Jianfeng; Hou, Hongyan; Chen, Guang; Wang, Shusheng; Zhang, Jiejing

    2016-01-01

    ABSTRACT The straw can be degraded efficiently into humus by powerful enzymes from microorganisms, resulting in the accelerated circulation of N,P,K and other effective elements in ecological system. We isolated a strain through screening the straw degradation strains from natural humic straw in the low temperature area in northeast of china, which can produce cellulase efficiently. The strain was identified as Pseudomonas mendocina by using morphological, physiological, biochemical test, and molecular biological test, with the functional clarification on producing cellulase for Pseudomonas mendocina for the first time. The enzyme force constant Km and the maximum reaction rate (Vmax) of the strain were 0.3261 g/L and 0.1525 mg/(min.L) through the enzyme activity detection, and the molecular weight of the enzyme produced by the strain were 42.4 kD and 20.4 kD based on SDS-PAGE. The effects of various ecological factors such as temperature, pH and nematodes on the enzyme produced by the strain in the micro ecosystem in plant roots were evaluated. The result showed that the optimum temperature was 28°C, and the best pH was 7.4∼7.8, the impact heavy metal was Pb2+ and the enzyme activity and biomass of Pseudomonas mendocina increased the movement and predation of nematodes. PMID:27710430

  16. Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Singh Pooja

    2009-03-01

    Full Text Available Abstract Background Microorganisms have devised ways by which they increase the bioavailability of many water immiscible substrates whose degradation rates are limited by their low water solubility. Hexadecane is one such water immiscible hydrocarbon substrate which forms an important constituent of oil. One major mechanism employed by hydrocarbon degrading organisms to utilize such substrates is the production of biosurfactants. However, much of the overall mechanism by which such organisms utilize hydrocarbon substrate still remains a mystery. Results With an aim to gain more insight into hydrocarbon uptake mechanism, an efficient biosurfactant producing and n-hexadecane utilizing Pseudomonas sp was isolated from oil contaminated soil which was found to produce rhamnolipid type of biosurfactant containing a total of 13 congeners. Biosurfactant action brought about the dispersion of hexadecane to droplets smaller than 0.22 μm increasing the availability of the hydrocarbon to the degrading organism. Involvement of biosurfactant was further confirmed by electron microscopic studies. Biosurfactant formed an emulsion with hexadecane thereby facilitating increased contact between hydrocarbon and the degrading bacteria. Interestingly, it was observed that "internalization" of "biosurfactant layered hydrocarbon droplet" was taking place suggesting a mechanism similar in appearance to active pinocytosis, a fact not earlier visually reported in bacterial systems for hydrocarbon uptake. Conclusion This study throws more light on the uptake mechanism of hydrocarbon by Pseudomonas aeruginosa. We report here a new and exciting line of research for hydrocarbon uptake involving internalization of biosurfactant covered hydrocarbon inside cell for subsequent breakdown.

  17. Genotypische diversiteit en rhizosfeerkolonisatie van DAPG-producerende Pseudomonas spp.

    NARCIS (Netherlands)

    Bergsma-Vlami, M.

    2009-01-01

    Het antibioticum 2,4-diacetylphloroglucinol (DAPG) speelt een belangrijke rol in biologische bestrijding van verschillende plantenpathogenen door fluorescerende Pseudomonas-soorten. DAPG-producerende Pseudomonas-stammen zijn effectief in biologische bestrijding, maar hun saprofytisch vermogen is

  18. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2013-01-01

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed.......Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....

  19. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter

    DEFF Research Database (Denmark)

    Herrmann, Susan; Seidelin, Michel; Bisgaard, Hanne Cathrine

    2002-01-01

    Indole-3-carbinol (I3C) is a naturally occurring substance that shows anti-carcinogenic properties in animal models. Besides its clear anti-carcinogenic effects, some studies indicate that I3C may sometimes act as a tumor promoter. Indolo[3,2-b]carbazole (ICZ), which is formed in the acidic...... environment of the stomach after intake of I3C, has a similar structure to, and shares biological effects with, the well-known tumor promoter 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD). Therefore, we hypothesized that ICZ could be responsible for the potential tumor-promoting activity of I3C. The aim...

  20. Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5- trimethyl-2,5-dihydrofuran Acceptor

    International Nuclear Information System (INIS)

    Cho, Min Ju; Kim, Ja Youn; Kim, Jae Hong; Lee, Seung Hwan; Choi, Dong Hoon; Dalton, Larry R.

    2005-01-01

    We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity

  1. Photoanode Thickness Optimization and Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells based on a Carbazole-Containing Ruthenium Dye

    Science.gov (United States)

    Choi, Jongwan; Kim, Felix Sunjoo

    2018-03-01

    We studied the influence of photoanode thickness on the photovoltaic characteristics and impedance responses of the dye-sensitized solar cells based on a ruthenium dye containing a hexyloxyl-substituted carbazole unit (Ru-HCz). As the thickness of photoanode increases from 4.2 μm to 14.8 μm, the dye-loading amount and the efficiency increase. The device with thicker photoanode shows a decrease in the efficiency due to the higher probability of recombination of electron-hole pairs before charge extraction. We also analyzed the electron-transfer and recombination characteristics as a function of photoanode thickness through detailed electrochemical impedance spectroscopy analysis.

  2. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria...

  3. 21 CFR 866.3415 - Pseudomonas spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pseudomonas spp. serological reagents. 866.3415... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3415 Pseudomonas spp. serological reagents. (a) Identification. Pseudomonas spp. serological reagents are devices that...

  4. Pseudomonas aeruginosa Population Structure Revisited

    Science.gov (United States)

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  5. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

    Science.gov (United States)

    Kowalczyk, Agnieszka; Eyice, Özge; Schäfer, Hendrik; Price, Oliver R; Finnegan, Christopher J; van Egmond, Roger A; Shaw, Liz J; Barrett, Glyn; Bending, Gary D

    2015-10-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Fast biodegradation of toxic bisphenol a by Pseudomonas aeruginosa NR.22 (Ps.NR.22) isolated from Malaysian local lake

    Science.gov (United States)

    Him, Nik Raikhan Nik; Zainuddin, Mohammad Fiqri; Basha, Anuar Zain Anuar

    2017-12-01

    The paper focused on microbial degradation of Bisphenol A (BPA) as a safe and fast method to reduce BPA contamination in water. BPA is found in waste water, sea water and home water pipeline and it is nondegradable pollutant. Biodegradation is suggested to be practical solution for large volume of BPA. Biodegradation plays an important role and the effect of low concentration significantly decreased the degradation rate. Pseudomonas aeruginosa NR.22 (Ps.NR.22) which has been isolated from a lake at Seksyen 2, Shah Alam, was used. In Malaysia, Ps.NR.22 isolation agar is used for the BPA degradation process. It was stained with Gram negative-rod shaped bacteria that confirmed to carry a 16S rRNA gene. BPA as a sole carbon has been tested at various concentrations. The research showed that BPA was degraded at 10, 20, 30, 40 and 50 ppm and the bacteria growth rate was excellent in 20 ppm BPA. Degradation of BPA was carried out for 9 hours to 18 hours and the maximum degradation was recorded at 9 hours. The value of the highest peak of growth at 540 nm was 2.0617 using 20 ppm BPA. This novel Pseudomonas aeruginosa NR.22 has great potential to be used in waste water treatment.

  7. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk.

    Science.gov (United States)

    von Neubeck, M; Huptas, C; Glück, C; Krewinkel, M; Stoeckel, M; Stressler, T; Fischer, L; Hinrichs, J; Scherer, S; Wenning, M

    2016-03-01

    Analysis of the microbiota of raw cow's milk and semi-finished milk products yielded seven isolates assigned to the genus Pseudomonas that formed two individual groups in a phylogenetic analysis based on partial rpoD and 16S rRNA gene sequences. The two groups could be differentiated from each other and also from their closest relatives as well as from the type species Pseudomonas aeruginosa by phenotypic and chemotaxonomic characterization and average nucleotide identity (ANIb) values calculated from draft genome assemblies. ANIb values within the groups were higher than 97.3 %, whereas similarity values to the closest relatives were 85 % or less. The major cellular lipids of strains WS4917T and WS4993T were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; the major quinone was Q-9 in both strains, with small amounts of Q-8 in strain WS4917T. The DNA G+C contents of strains WS4917T and WS4993T were 58.08 and 57.30 mol%, respectively. Based on these data, strains WS4917T, WS4995 ( = DSM 29141 = LMG 28434), WS4999, WS5001 and WS5002 should be considered as representatives of a novel species of the genus Pseudomonas, for which the name Pseudomonas helleri sp. nov. is proposed. The type strain of Pseudomonas helleri is strain WS4917T ( = DSM 29165T = LMG 28433T). Strains WS4993T and WS4994 ( = DSM 29140 = LMG 28438) should be recognized as representing a second novel species of the genus Pseudomonas, for which the name Pseudomonas weihenstephanensis sp. nov. is proposed. The type strain of Pseudomonas weihenstephanensis is strain WS4993T ( = DSM 29166T = LMG 28437T).

  8. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C A; Gray, R D; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  9. Evaluation of gamma irradiation effect and Pseudomonas ...

    African Journals Online (AJOL)

    Antagonistic effect of Pseudomonas fluorescens and influence of gamma irradiation on the development of Penicillium expansum, the causal agent of postharvest disease on apple fruit was studied. P. fluorescens was originally isolated from rhizosphere of the apple trees. Suspension of P. fluorescens and P. expansum ...

  10. Extracytoplasmic function sigma factors in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Kiil, Kristoffer; Oguiza, J.A.; Ussery, D.W.

    2005-01-01

    Genome analyses of the plant pathogens Pseudomonas syringae pv. tomato DC3000, pv. syringae B728a and pv. phaseolicola 1448A reveal fewer extracytoplasmic function (ECF) sigma factors than in related Pseudomonads with different lifestyles. We highlight the presence of a P. syringae-specific ECF...

  11. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... protease production was 37°C at pH 9, with 2% inoculum in the medium for 24 h. .... Positive. Catalase test. Positive ... The enzyme activity gradually decreases from ... Effect of temperature on protease production by Pseudomonas fluorescens. 0 .... between RNA polymerase and upstream promotes DNA.

  12. Comparative evaluation of organic formulations of Pseudomonas ...

    African Journals Online (AJOL)

    An experiment was conducted in the laboratory and farm of the Department of Biotechnology, Gauhati University, to explore the potentiality of various organic formulations of Pseudomonas fluorescens (Pf) and to manage bacterial wilt disease of brinjal (Solanum melongena L.) under local conditions. Different organic ...

  13. High pressure inactivation of Pseudomonas in black truffle - comparison with Pseudomonas fluorescens in tryptone soya broth

    Science.gov (United States)

    Ballestra, Patricia; Verret, Catherine; Cruz, Christian; Largeteau, Alain; Demazeau, Gerard; El Moueffak, Abdelhamid

    2010-03-01

    Pseudomonas is one of the most common genera in black Perigord truffle. Its inactivation by high pressure (100-500 MPa/10 min) applied on truffles at sub-zero or low temperatures was studied and compared with those of Pseudomonas fluorescens in tryptone soya broth. Pressurization of truffles at 300 MPa/4 °C reduced the bacterial count of Pseudomonas by 5.3 log cycles. Higher pressures of 400 or 500 MPa, at 4 °C or 20 °C, allowed us to slightly increase the level of destruction to the value of ca. 6.5 log cycles but did not permit us to completely inactivate Pseudomonas. The results showed a residual charge of about 10 CFU/g. Pressure-shift freezing of truffles, which consists in applying a pressure of 200 MPa/-18 °C for 10 min and then quickly releasing this pressure to induce freezing, reduced the population of Pseudomonas by 3.3 log cycles. The level of inactivation was higher than those obtained with conventional freezing. Endogenous Pseudomonas in truffle was shown to be more resistant to high pressure treatments than P. fluorescens used for inoculation of broths.

  14. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  15. Development of a carbazole-based fluorescence probe for G-quadruplex DNA: The importance of side-group effect on binding specificity

    Science.gov (United States)

    Wang, Ming-Qi; Ren, Gui-Ying; Zhao, Shuang; Lian, Guang-Chang; Chen, Ting-Ting; Ci, Yang; Li, Hong-Yao

    2018-06-01

    G-quadruplex DNAs are highly prevalent in the human genome and involved in many important biological processes. However, many aspects of their biological mechanism and significance still need to be elucidated. Therefore, the development of fluorescent probes for G-quadruplex detection is important for the basic research. We report here on the development of small molecular dyes designed on the basis of carbazole scaffold by introducing styrene-like substituents at its 9-position, for the purpose of G-quadruplex recognition. Results revealed that the side group on the carbazole scaffold was very important for their ability to selectively recognize G-quadruplex DNA structures. 1a with the pyridine side group displayed excellent fluorescence signal turn-on property for the specific discrimination of G-quadruplex DNAs against other nucleic acids. The characteristics of 1a were further investigated with UV-vis spectrophotometry, fluorescence, circular dichroism, FID assay and molecular docking to validate the selectivity, sensitivity and detailed binding mode toward G-quadruplex DNAs.

  16. Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1

    International Nuclear Information System (INIS)

    Kalyani, D.C.; Telke, A.A.; Dhanve, R.S.; Jadhav, J.P.

    2009-01-01

    The aim of this work is to evaluate textile dyes degradation by novel bacterial strain isolated from the waste disposal sites of local textile industries. Detailed taxonomic studies identified the organisms as Pseudomonas species and designated as strain Pseudomonas sp. SUK1. The isolate was able to decolorize sulfonated azo dye (Reactive Red 2) in a wide range (up to 5 g l -1 ), at temperature 30 deg. C, and pH range 6.2-7.5 in static condition. This isolate also showed decolorization of the media containing a mixture of dyes. Measurements of COD were done at regular intervals to have an idea of mineralization, showing 52% reduction in the COD within 24 h. Induction in the activity of lignin peroxidase and azoreductase was observed during decolorization of Reactive Red 2 in the batch culture, which represented their role in degradation. The biodegradation was monitored by UV-vis, IR spectroscopy, HPLC. The final product, 2-naphthol was characterized by GC-mass spectroscopy. The phytotoxicity study revealed the degradation of Reactive Red 2 into non-toxic product by Pseudomonas sp. SUK1

  17. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge

    International Nuclear Information System (INIS)

    Khan, Adnan Hossain; Topp, Edward; Scott, Andrew; Sumarah, Mark; Macfie, Sheila M.; Ray, Madhumita B.

    2015-01-01

    Highlights: • Pseudomonas sp. degraded two benzalkonium chlorides: BDDA and BDTA. • Although BDTA biodegraded at low concentration, it inhibited the degradation of BDDA. • For BDDA, two transformation products indicate two sites of bacterial activity. • "1"4C-labelled BDDA was mineralized to "1"4CO_2 within 300 h. - Abstract: Bactericidal cationic surfactants such as quaternary ammonium compounds (QACs) are widely detected in the environment, and found at mg kg"−"1 concentrations in biosolids. Although individual QACs are amenable to biodegradation, it is possible that persistence is increased for mixtures of QACs with varying structure. The present study evaluated the biodegradation of benzyl dimethyl dodecyl ammonium chloride (BDDA) singly and in the presence of benzyl dimethyl tetradecyl ammonium chloride (BDTA) using Pseudomonas sp., isolated from returned activated sludge. Growth was evaluated, as was biodegradation using "1"4C and HPLC-MS methods. BDTA was more toxic to growth of Pseudomonas sp. compared to BDDA, and BDTA inhibited BDDA biodegradation. The benzyl ring of [U-"1"4C-benzyl] BDDA was readily and completely mineralized. The detection of the transformation products benzyl methyl amine and dodecyl dimethyl amine in spent culture liquid was consistent with literature. Overall, this study demonstrates the antagonistic effect of interactions on biodegradation of two widely used QACs suggesting further investigation on the degradation of mixture of QACs in wastewater effluents and biosolids.

  18. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Adnan Hossain, E-mail: akhan462@uwo.ca [Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada); Topp, Edward, E-mail: Ed.Topp@AGR.GC.CA [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada); Scott, Andrew, E-mail: Andrew.Scott@AGR.GC.CA [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Sumarah, Mark, E-mail: Mark.Sumarah@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Macfie, Sheila M., E-mail: smacfie@uwo.ca [Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada); Ray, Madhumita B., E-mail: mbhowmic@uwo.ca [Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada)

    2015-12-15

    Highlights: • Pseudomonas sp. degraded two benzalkonium chlorides: BDDA and BDTA. • Although BDTA biodegraded at low concentration, it inhibited the degradation of BDDA. • For BDDA, two transformation products indicate two sites of bacterial activity. • {sup 14}C-labelled BDDA was mineralized to {sup 14}CO{sub 2} within 300 h. - Abstract: Bactericidal cationic surfactants such as quaternary ammonium compounds (QACs) are widely detected in the environment, and found at mg kg{sup −1} concentrations in biosolids. Although individual QACs are amenable to biodegradation, it is possible that persistence is increased for mixtures of QACs with varying structure. The present study evaluated the biodegradation of benzyl dimethyl dodecyl ammonium chloride (BDDA) singly and in the presence of benzyl dimethyl tetradecyl ammonium chloride (BDTA) using Pseudomonas sp., isolated from returned activated sludge. Growth was evaluated, as was biodegradation using {sup 14}C and HPLC-MS methods. BDTA was more toxic to growth of Pseudomonas sp. compared to BDDA, and BDTA inhibited BDDA biodegradation. The benzyl ring of [U-{sup 14}C-benzyl] BDDA was readily and completely mineralized. The detection of the transformation products benzyl methyl amine and dodecyl dimethyl amine in spent culture liquid was consistent with literature. Overall, this study demonstrates the antagonistic effect of interactions on biodegradation of two widely used QACs suggesting further investigation on the degradation of mixture of QACs in wastewater effluents and biosolids.

  19. Vanillin production using Escherichia coli cells over-expressing isoeugenol monooxygenase of Pseudomonas putida.

    Science.gov (United States)

    Yamada, Mamoru; Okada, Yukiyoshi; Yoshida, Toyokazu; Nagasawa, Toru

    2008-04-01

    The isoeugenol monooxygenase gene of Pseudomonas putida IE27 was inserted into an expression vector, pET21a, under the control of the T7 promoter. The recombinant plasmid was introduced into Escherichia coli BL21(DE3) cells, containing no vanillin-degrading activity. The transformed E. coli BL21(DE3) cells produced 28.3 g vanillin/l from 230 mM isoeugenol, with a molar conversion yield of 81% at 20 degrees C after 6 h. In the reaction system, no accumulation of undesired by-products, such as vanillic acid or acetaldehyde, was observed.

  20. Investigation Of The Primary Transcriptome Of The Production Organism Pseudomonas Putida

    DEFF Research Database (Denmark)

    D'Arrigo, Isotta; Bojanovic, Klara; Long, Katherine

    2015-01-01

    Introduction: Pseudomonas putida is a nonpathogenic, Gram-negative bacterium and an excellent model organism for biotechnological applications. Due to its metabolic versatility, P. putida can grow in different environments including in extreme conditions. It has several genes to degrade xenobiotic....... putida KT2440 transcriptome, in the presence of citrate or glucose as sole carbon source. Results: A total of 7937 putative transcription start sites (TSSs) have been identified. 5’ RACE experiments have been performed to confirm putative TSSs, and 5’ UTR regions have been investigated for conservative......, our study has allowed for the investigation of several biological features of P. putida....

  1. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  2. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from bovine raw milk.

    Science.gov (United States)

    von Neubeck, Mario; Huptas, Christopher; Glück, Claudia; Krewinkel, Manuel; Stoeckel, Marina; Stressler, Timo; Fischer, Lutz; Hinrichs, Jörg; Scherer, Siegfried; Wenning, Mareike

    2017-06-01

    Five strains, designated WS 4672T, WS 4998, WS 4992T, WS 4997 and WS 5000, isolated from bovine raw milk formed two individual groups in a phylogenetic analysis. The most similar species on the basis of 16S rRNA gene sequences were Pseudomonas azotoformans IAM 1603T, Pseudomonas gessardii CIP 105469T and Pseudomonas libanensis CIP 105460T showing 99.7-99.6 % similarity. Using rpoD gene sequences Pseudomonas veronii LMG 17761T (93.3 %) was most closely related to strain WS 4672T and Pseudomonas libanensis CIP 105460T to strain WS 4992T (93.3 %). The five strains could be differentiated from their closest relatives and from each other by phenotypic and chemotaxonomic characterization and ANIb values calculated from draft genome assemblies. ANIb values of strains WS 4992T and WS4671T to the closest relatives are lower than 90 %. The major cellular polar lipids of both strains are phosphatidylethanolamine, phosphatidylglycerol, a phospholipid and diphosphatidylglycerol, and their major quinone is Q-9. The DNA G+C content of strains WS 4992T and WS 4672T were 60.0  and 59.7  mol%, respectively. Based on these genotypic and phenotypic traits two novel species of the genus Pseudomonas are proposed: Pseudomonas lactis sp. nov. [with type strain WS 4992T (=DSM 29167T=LMG 28435T) and the additional strains WS 4997 and WS 5000], and Pseudomonasparalactis sp. nov. [with type strain WS 4672T (=DSM 29164T=LMG 28439T) and additional strain WS 4998].

  3. Continuous aerobic phenol degradation by defined mixed immobilized cultutre in packed bed reactors

    Czech Academy of Sciences Publication Activity Database

    Páca jr., J.; Páca, J.; Kostečková, A.; Stiborová, M.; Sobotka, Miroslav; Gerrard, A. M.; Soccol, C. R.

    2005-01-01

    Roč. 50, č. 4 (2005), s. 301-308 ISSN 0015-5632 R&D Projects: GA ČR GA104/03/0407 Institutional research plan: CEZ:AV0Z50200510 Keywords : phenol degradation * pseudomonas putida * commamonas testosteroni Subject RIV: EE - Microbiology, Virology Impact factor: 0.918, year: 2005

  4. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria

    NARCIS (Netherlands)

    Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; Koning, Wim de; Janssen, Dick B.

    The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a

  5. The function of a toluene-degrading bacterial community in a waste gas trickling filter

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1999-01-01

    oligonucleotide 16S ribosomal RNA probe targeting the toluene-degrading species Pseudomonas putida, and by computer simulations (AQUASIM) of the biofilm growth based on a food web model. Biofilms were taken from a lab-scale trickling filter for treatment of toluene-polluted air. The biofilm growth...

  6. Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida.

    Directory of Open Access Journals (Sweden)

    Hiren Joshi

    2009-06-01

    Full Text Available Competition between species plays a central role in the activity and structure of communities. Stable co-existence of diverse organisms in communities is thought to be fostered by individual tradeoffs and optimization of competitive strategies along resource gradients. Outside the laboratory, microbes exist as multispecies consortia, continuously interacting with one another and the environment. Survival and proliferation of a particular species is governed by its competitive fitness. Therefore, bacteria must be able to continuously sense their immediate environs for presence of competitors and prevailing conditions. Here we present results of our investigations on a novel competition sensing mechanism in the rhizosphere-inhabiting Pseudomonas putida KT2440, harbouring gfpmut3b-modified Kan(R TOL plasmid. We monitored benzyl alcohol (BA degradation rate, along with GFP expression profiling in mono species and dual species cultures. Interestingly, enhanced plasmid expression (monitored using GFP expression and consequent BA degradation were observed in dual species consortia, irrespective of whether the competitor was a BA degrader (Pseudomonas aeruginosa or a non-degrader (E. coli. Attempts at elucidation of the mechanistic aspects of induction indicated the role of physical interaction, but not of any diffusible compounds emanating from the competitors. This contention is supported by the observation that greater induction took place in presence of increasing number of competitors. Inert microspheres mimicking competitor cell size and concentration did not elicit any significant induction, further suggesting the role of physical cell-cell interaction. Furthermore, it was also established that cell wall compromised competitor had minimal induction capability. We conclude that P. putida harbouring pWW0 experience a competitive stress when grown as dual-species consortium, irrespective of the counterpart being BA degrader or not. The immediate

  7. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems and later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.

  8. Degradation in organic light emitting devices

    Science.gov (United States)

    Dinh, Vincent Vinh

    This thesis is about the fundamental causes of degradation in tris(8-Hydroxyquinoline) Aluminum (Alq3)-based organic light emitting diodes (OLEDs). Degradation typically occurs when a current is forced through an insulating material. Since the insulator does not support conduction waves (in its ground state), chemical restructuring must occur to accommodate the current. OLEDs have many technical advantages over the well known semiconductor-based light emitting diodes (LEDs). OLEDs have quantum efficiencies ˜1% (˜10 times higher than the LEDs), and operational power thresholds ˜.05mW (˜100 lower than the LEDs). OLEDs are preferred in power limited and portable devices; devices such as laptops and displays consume ˜1/4 of the supplied power---any power saving is significant. Other advantages, like better compliance to curved surfaces and ease of fabrication, give the OLEDs an even greater edge over the LEDs. OLEDs must have at least comparable or better lifetimes to remain attractive. Typical OLEDs last several 100hrs compared to the several 1000hrs for the LEDs. For reliable OLED application, it is necessary to understand the above breakdown mechanism. In this thesis, we attempt to understand the breakdown by looking at how OLEDs are made, how they work, and when they don't. In the opening sections, we give an overview of OLEDs and LEDs, especially how sustained luminescence is achieved through current circulation. Then in Chapter 2, we look at the basic components in the OLEDs. In Chapter 3 we look at how a hole material (like poly-vinyl carbazole or PVK) establishes an excitonic environment for the sustained luminescence in Alq3. We then approximate how potential is distributed when a simple luminescence system is in operation. In Chapter 4, we look at ways of measuring this distribution via the OLED impedance. Finally in Chapter 5, we look at the OLED stability under light emission conditions via PVK and Alq3 photoemission and photoabsorption spectra

  9. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    Science.gov (United States)

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Growth of Pseudomonas spp. in cottage cheese

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre; Dalgaard, Paw

    Cottage cheese is a mixture of cheese curd with pH 4.5-4.8 and an uncultured or cultured cream dressing with a pH as high as 7.0. This results in a final product with microenvironments and a bulk pH of about 4.8 to 5.5. As for other lightly preserved foods microbial contamination and growth...... of spoilage microorganisms in cottage cheese can cause undesirable alterations in flavour, odour, appearance and texture. Contamination and growth of psychrotolerant pseudomonads including Pseudomonas fragi and Pseudomonas putida has been reported for cottage cheese but the influence of these bacteria...... on product spoilage and shelf-life remains poorly described. The present study used a quantitative microbial ecology approach to model and predict the effect of product characteristics and storage conditions on growth of psychrotolerant pseudomonads in cottage cheese. The effect of temperature (5-15˚C) and p...

  11. Aspergillus triggers phenazine production in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib

    in the contact area of A. niger, A. flavus, A. oryzae, but not A. fumigatus. In addition, other metabolites with UV chromophores similar to the phenazines were only found in the contact zone between Aspergillus and Pseudomonas. No change in secondary metabolite profiles were seen for the Aspergilli, when......Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen, commonly infecting cystic fibrosis (CF) patients. Aspergilli, especially Aspergillus fumigatus, are also frequently isolated from CF patients. Our aim was to examine the possible interaction between P. aeruginosa and different...... Aspergillus species. Methods: A suspension of fungal spores was streaked onto WATM agar plates. After 24 hours incubation at 37 °C, a P. aeruginosa overnight culture was streaked out perpendicular to the fungal streak. The plates were incubated at 37 °C for five days, examined and plugs were extracted...

  12. Nosocomial outbreak of Pseudomonas aeruginosa endophthalmitis.

    Science.gov (United States)

    Mateos, I; Valencia, R; Torres, M J; Cantos, A; Conde, M; Aznar, J

    2006-11-01

    We describe an outbreak of nosocomial endophthalmitis due to a common source, which was determined to be trypan blue solution prepared in the hospital's pharmacy service. We assume that viable bacteria probably gained access to the trypan blue stock solution during cooling after autoclaving. The temporal cluster of Pseudomonas aeruginosa endophthalmitis was readily perceived on the basis of clinical and microbiological findings, and an exogenous source of contamination was unequivocally identified by means of DNA fingerprinting.

  13. Pseudomonas biofilms: possibilities of their control

    Czech Academy of Sciences Publication Activity Database

    Masák, J.; Čejková, A.; Schreiberová, O.; Řezanka, Tomáš

    2014-01-01

    Roč. 89, č. 2 (2014), s. 1-14 ISSN 0168-6496 R&D Projects: GA ČR GA14-23597S; GA ČR GA14-00227S Grant - others:Ministry of Industry and Trade(CZ) FR-TI1/456; Ministry of Education, Youth and Sports(CZ) LF11016 Institutional support: RVO:61388971 Keywords : biofilm * pseudomonas * review Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  14. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    OpenAIRE

    Gilbertsen, Adam; Williams, Bryan

    2014-01-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this pr...

  15. Cyanide utilization and degradation by microorganisms.

    Science.gov (United States)

    Knowles, C J

    1988-01-01

    Various microorganisms can produce (cyanogenesis) or degrade cyanide. They degrade cyanide either to detoxify it, or to use it as a source of nitrogen for growth. Significant amounts of cyanide are formed as a secondary metabolite by a wide range of fungi and a few bacteria by decarboxylation of glycine. When cyanide has been formed by the snow mould fungus it is degraded by conversion to carbon dioxide and ammonia via an unknown pathway. In contrast, cyanogenic bacteria either do not further catabolize cyanide or they convert it into beta-cyanoalanine by addition to cysteine or O-acetylserine. Several non-cyanogenic fungi that are pathogens of cyanogenic plants are known to degrade cyanide by hydration to formamide by the enzyme cyanide hydratase. Such fungi can be immobilized and used in packed-cell columns to continuously detoxify cyanide. ICI Biological Products Business market a preparation of spray-dried fungal mycelia, 'CYCLEAR', to detoxify industrial wastes. Novo Industri have also introduced a cyanidase preparation to convert cyanide directly into formate and ammonia. Bacteria have been isolated that use cyanide as a source of nitrogen for growth. Because cyanide, as KCN or NaCN, is toxic for growth, the bacteria (Pseudomonas fluorescens) have to be grown in fed-batch culture with cyanide as the limiting nutrient. Cyanide is converted to carbon dioxide and ammonia (which is then assimilated) by an NADH-linked cyanide oxygenase system.

  16. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amr Abd-EL Mooti EL Hanafy

    2016-01-01

    Full Text Available Twenty-three crude-oil-degrading bacteria were isolated from oil-contaminated sites near the Red Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, four strains were selected from the 23 isolated strains for further study. These four strains were selected on the basis of dichlorophenolindophenol assay. The nucleotide sequences of the 16S rRNA gene showed that these isolated strains belonged to genus Pseudomonas and Nitratireductor. Among the four isolates, strains S5 (Pseudomonas sp., 95% and 4b (Nitratireductor sp., 70% were the most effective ones in degrading crude oil. Using a spectrophotometer and gas chromatography–mass spectrometry, degradation of more than 90% of the crude oil was observed after two weeks of cultivation in Bushnell–Haas medium. The results showed that these strains have the ability to degrade crude oil and may be used for environmental remediation.

  17. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

    Science.gov (United States)

    Cross, Megan; Biberacher, Sonja; Park, Suk-Youl; Rajan, Siji; Korhonen, Pasi; Gasser, Robin B; Kim, Jeong-Sun; Coster, Mark J; Hofmann, Andreas

    2018-04-24

    The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulnerable to the detrimental effects of intracellular T6P accumulation. In the present study, we explored the structural and functional properties of trehalose 6-phosphate phosphatase (TPP) in P. aeruginosa in support of future target-based drug discovery. A survey of genomes revealed the existence of 2 TPP genes with either chromosomal or extrachromosomal location. Both TPPs were produced as recombinant proteins, and characterization of their enzymatic properties confirmed specific, magnesium-dependent catalytic hydrolysis of T6P. The 3-dimensional crystal structure of the chromosomal TPP revealed a protein dimer arising through β-sheet expansion of the individual monomers, which possess the overall fold of halo-acid dehydrogenases.-Cross, M., Biberacher, S., Park, S.-Y., Rajan, S., Korhonen, P., Gasser, R. B., Kim, J.-S., Coster, M. J., Hofmann, A. Trehalose 6-phosphate phosphatases of Pseudomonas aeruginosa.

  18. Pseudomonas biofilm matrix composition and niche biology

    Science.gov (United States)

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  19. CXCR1 regulates pulmonary anti-Pseudomonas host defense

    Science.gov (United States)

    Carevic, M.; Öz, H.; Fuchs, K.; Laval, J.; Schroth, C.; Frey, N.; Hector, A.; Bilich, T.; Haug, M.; Schmidt, A.; Autenrieth, S. E.; Bucher, K.; Beer-Hammer, S.; Gaggar, A.; Kneilling, M.; Benarafa, C.; Gao, J.; Murphy, P.; Schwarz, S.; Moepps, B.; Hartl, D.

    2016-01-01

    Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-Pseudomonas aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway Pseudomonas aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against Pseudomonas aeruginosa. Mechanistically, CXCR1 regulated anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with toll-like receptor 5 expression. These studies define CXCR1 as a novel non-canonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases. PMID:26950764

  20. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  1. Enhanced extracellular chitinase production in Pseudomonas fluorescens: biotechnological implications

    Directory of Open Access Journals (Sweden)

    Azhar Alhasawi

    2017-06-01

    Full Text Available Chitin is an important renewable biomass of immense commercial interest. The processing of this biopolymer into value-added products in an environmentally-friendly manner necessitates its conversion into N-acetyl glucosamine (NAG, a reaction mediated by the enzyme chitinase. Here we report on the ability of the soil microbe Pseudomonas fluorescens to secrete copious amounts of chitinase in the spent fluid when cultured in mineral medium with chitin as the sole source of carbon and nitrogen. Although chitinase was detected in various cellular fractions, the enzyme was predominantly localized in the extracellular component that was also rich in NAG and glucosamine. Maximal amounts of chitinase with a specific activity of 80 µmol NAG produced mg–1 protein min–1 was obtained at pH 8 after 6 days of growth in medium with 0.5 g of chitin. In-gel activity assays and Western blot studies revealed three isoenzymes. The enzyme had an optimal activity at pH 10 and a temperature range of 22–38 ℃. It was stable for up to 3 months. Although it showed optimal specificity toward chitin, the enzyme did readily degrade shrimp shells. When these shells (0.1 g were treated with the extracellular chitinase preparation, NAG [3 mmoles (0.003 g-mol] was generated in 6 h. The extracellular nature of the enzyme coupled with its physico-chemical properties make this chitinase an excellent candidate for biotechnological applications.

  2. Screening of Gibberellic Acid Production by Pseudomonas SPP

    International Nuclear Information System (INIS)

    Khine Zar Wynn Myint; Khin Mya Lwin; Myo Myint

    2010-12-01

    The microbial gibberellic acid (GA3) production of Pseudomonas spp., was studied and qualitatively indentified by UV spectrophotometer. 20 strains of Pseudomonas spp., were isolated and screened the gibberellic acid productivily in King's B medium. Among them, only four strains can produce microbial gibberellic acid. The Rf values and colour appearance under UV were the same as authentic gibberellic acid. Moreover, the gibberellic acid producer strains were identified as Pseudomonas spp., by cultural, biochemical and drug sensitivity pattern.

  3. Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria.

    Science.gov (United States)

    Paulo, Ana M S; Aydin, Rozelin; Dimitrov, Mauricio R; Vreeling, Harm; Cavaleiro, Ana J; García-Encina, Pedro A; Stams, Alfons J M; Plugge, Caroline M

    2017-06-01

    The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L -1 , to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A 2 /O) concept. In the 50 mg L -1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L -1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L -1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L -1 . Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L -1 . The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.

  4. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  5. A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation.

    Science.gov (United States)

    Samin, Ghufrana; Pavlova, Martina; Arif, M Irfan; Postema, Christiaan P; Damborsky, Jiri; Janssen, Dick B

    2014-09-01

    1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.

    Science.gov (United States)

    Singh, P B; Sharma, S; Saini, H S; Chadha, B S

    2009-09-01

    To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos. A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0.01 g l(-1)). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0.2 g l(-1), was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0.01 g l(-1)) by ChlD strain. The best degradation efficiency was observed at 0.1 g l(-1) supplement of biosurfactant, as validated by GC and HPLC studies. The addition of biosurfactant at 0.1 g l(-1) resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation. This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.

  7. Simultaneous biodegradation of bifenthrin and chlorpyrifos by Pseudomonas sp. CB2.

    Science.gov (United States)

    Zhang, Qun; Li, Shuhuai; Ma, Chen; Wu, Nancun; Li, Chunli; Yang, Xinfeng

    2018-05-04

    The degradation of bifenthrin (BF) and chlorpyrifos (CP), either together or individually, by a bacterial strain (CB2) isolated from activated sludge was investigated. Strain CB2 was identified as belonging to genus Pseudomonas based on the morphological, physiological, and biochemical characteristics and a homological analysis of the 16S rDNA sequence. Strain CB2 has the potential to degrade BF and CP, either individually or in a mixture. The optimum conditions for mixture degradation were as follows: OD 600nm = 0.5; incubation temperature = 30°C; pH = 7.0; BF-CP mixture (10 mg L -1 of each). Under these optimal conditions, the degradation rate constants (and half-lives) were 0.4308 d -1 (1.61 d) and 0.3377 d -1 (2.05 d) for individual BF and CP samples, respectively, and 0.3463 d -1 (2.00 d) and 0.2931 d -1 (2.36 d) for the BF-CP mixture. Major metabolites of BF and CP were 2-methyl-3-biphenylyl methanol and 3,5,6-trichloro-2-pyridinol, respectively. No metabolite bioaccumulation was observed. The ability of CB2 to efficiently degrade BF and CP, particularly in a mixture, may be useful in bioremediation efforts.

  8. White light-emitting nanocomposites based on an oxadiazole–carbazole copolymer (POC) and InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Annalisa, E-mail: annalisa.bruno@enea.it; Borriello, Carmela, E-mail: carmela.borriello@enea.it; Di Luccio, Tiziana, E-mail: tiziana.diluccio@enea.it; Nenna, Giuseppe [Centro Ricerche Portici, ENEA, UTTP NANO (Italy); Sessa, Lucia [University of Salerno, Department of Pharmacy (Italy); Concilio, Simona [University of Salerno, Department of Industrial Engineering (Italy); Haque, Saif A. [Imperial College London, Chemistry Department (United Kingdom); Minarini, Carla [Centro Ricerche Portici, ENEA, UTTP NANO (Italy)

    2013-11-15

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  9. White light-emitting nanocomposites based on an oxadiazole-carbazole copolymer (POC) and InP/ZnS quantum dots

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Nenna, Giuseppe; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2013-11-01

    In this work, we studied energetic and optical proprieties of a polyester-containing oxadiazole and carbazole units that we will indicate as POC. This polymer is characterized by high photoluminescence activity in the blue region of the visible spectrum, making it suitable for the development of efficient white-emitting organic light emission devices. Moreover, POC polymer has been combined with two red emitters InP/ZnS quantum dots (QDs) to obtain nanocomposites with wide emission spectra. The two types of QDs have different absorption wavelengths: 570 nm [InP/ZnS(570)] and 627 nm [InP/ZnS(627)] and were inserted in the polymer at different concentrations. The optical properties of the nanocomposites have been investigated and compared to the ones of the pure polymer. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to QDs, resulting in white-emitting nanocomposites.

  10. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    Science.gov (United States)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  11. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways.

    Science.gov (United States)

    Laarman, Alexander J; Bardoel, Bart W; Ruyken, Maartje; Fernie, Job; Milder, Fin J; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2012-01-01

    The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.

  12. Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains.

    Science.gov (United States)

    Yu, J; Wang, X; Yue, P L

    2001-10-01

    Pseudomonas spp were isolated from an anaerobic-aerobic dyeing house wastewater treatment facility as the most active azo-dye degraders. Decolorization of azo dyes and non-azo dyes including anthraquinone, metal complex and indigo was compared with individual strains and a bacterial consortium consisting of the individual strain and municipal sludge (50 50wt). The consortium showed a significant improvement on decolorization of two recalcitrant non-azo dyes, but little effect on the dyes that the individual strains could degrade to a great or moderate extent. Decolorization of Acid violet 7 (monoazo) by a Pseudomonas strain GM3 was studied in detail under various conditions. The optimum decolorization activity was observed in a narrow pH range (7-8), a narrow temperature range (35-40 degrees C), and at the presence of organic and ammonium nitrogen. Nitrate had a severe inhibitory effect on azo dye decolorization: 10 mg/L led to 50% drop in decolorization activity and 1000 mg/L to complete activity depression. A kinetic model is established giving the dependence of decolorization rate on cell mass concentration (first-order) and dye concentration (half order). The rate increased with temperature from 10 to 35 C, which can be predicted by Arrhenius equation with the activation energy of 16.87 kcal/mol and the frequency factor of 1.49 x 10(11) (mg L)1/2/g DCM min.

  13. In-situ fabrication of diketopyrrolopyrrole-carbazole-based conjugated polymer/TiO2 heterojunction for enhanced visible light photocatalysis

    Science.gov (United States)

    Yang, Long; Yu, Yuyan; Zhang, Jianling; Chen, Fu; Meng, Xiao; Qiu, Yong; Dan, Yi; Jiang, Long

    2018-03-01

    Aiming at developing highly efficient photocatalysts by broadening the light-harvesting region and suppressing photo-generated electron-hole recombination simultaneously, this work reports rational design and fabrication of donor-acceptor (D-A) conjugated polymer/TiO2 heterojunction catalyst with strong interfacial interactions by a facile in-situ thermal treatment. To expand the light-harvesting window, soluable conjugated copolymers with D-A architecture are prepared by Pd-mediated polycondensation of diketopyrrolopyrrole (DPP) and t-butoxycarbonyl (t-Boc) modified carbazole (Car), and used as visible-light-harvesting antenna to couple with TiO2 nanocrystals. The DPP-Car/TiO2 composites show wide range absorption in 300-1000 nm. To improve the interfacial binding at the interface, a facile in-situ thermal treatment is carried out to cleave the pendant t-Boc groups in carbazole units and liberate the polar amino groups (-NH-) which strongly bind to the surface of TiO2 through dipole-dipole interactions, forming a heterojunction interface. This in-situ thermal treatment changes the surface elemental distribution of TiO2, reinforces the interface bonding at the boundary of conjugated polymers/TiO2 and finally improves the photocatalytic efficiency of DPP-Car/TiO2 under visible-light irradiation. The interface changes are characterized and verified through Fourier-transform infrared spectroscopy (FT-IR), photo images, UV/Vis (solution state and powder diffuse reflection spectroscopy), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence, scanning electron microscopy(SEM) and transmission electron microscopy (TEM) techniques. This study provides a new strategy to avoid the low solubility of D-A conjugated polymers and construct highly-efficient conjugated polymer/TiO2 heterojunction by enforcing the interface contact and facilitating charge or energy transfer for the applications in photocatalysis.

  14. Detection of Toluene Degradation in Bacteria Isolated from Oil Contaminated Soils

    International Nuclear Information System (INIS)

    Ainon Hamzah; Tavakoli, A.; Amir Rabu

    2011-01-01

    Toluene (C 7 H 8 ) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monooxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/ mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene. (author)

  15. Isolation and study of Biodegradiation Potential of Phenanthrene degrading bacteria

    Directory of Open Access Journals (Sweden)

    nafise Nourieh

    2009-11-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs are among of potentially hazardous chemicals for environment and cause health concern. These compounds exhibit carcinogenic and/or mutagenic properties and are listed by the United States Environmental Protection Agency (USEPA as priority pollutants. Polycyclic Aromatic Hydrocarbons are hardly degraded and therefore bioremediation is often considered as a desirable and cost effective remediation technique for soil. contaminated with them. Materials and Methods: In this research Phenanthrene (C14H10, a three-benzene ring PAHs, was selected as a PAH representative compound and two different concentrations of Phenanthrene (100mg/kg and 500mg/kg were studied. First, PAH-degrading microorganisms were separated and after adaptation and enrichment PAH-degrading bacteria were identified. Results: The results showed that removal efficiency of Phenanthrene in the samples containing pseudomonas was more than other specified bacteria. Also the most removal efficiency of Phenanthrene occurred in first 45 days of biotreatment and then decreasing trend slowed down. Other finding was that the bioremediation of the lower concentration of Phenanthrene takes shorter time compared with the higher concentration and also the comparison of Phenanthrene bioremediation by pure bacteria and Consertium indicated that, at the beginning of the process, the pace of eliminating Phenanthrene by Consertium is more than other bacteria. Conclusion: Microbial analysis, based on cinfirmation tests and analytical profile index (api 20E kit tests, showed that Pseudomonas. SPP, Bacillus, Pseudomonas aeruginosa and Acinetobacter were the bacteria, responsible for Phenanthrene degradation. Extraction was conducted by ultra sonic method and Phenanthrene concentration was measured by (HPLC.

  16. Structural characterization of pyoverdines produced by Pseudomonas putida KT2440 and Pseudomonas taiwanensis VLB120.

    Science.gov (United States)

    Baune, Matthias; Qi, Yulin; Scholz, Karen; Volmer, Dietrich A; Hayen, Heiko

    2017-08-01

    The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.

  17. Biosynthesis of Gold Nanoparticles Using Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Abd El-Aziz, M.; Badr, Y.; Mahmoud, M. A.

    2007-01-01

    Pseudomonas aeruginosa were used for extracellular biosynthesis of gold nanoparticles (Au NPs). Consequently, Au NPs were formed due to reduction of gold ion by bacterial cell supernatant of P. aeruginos ATCC 90271, P. aeruginos (2) and P. aeruginos (1). The UV-Vis. and fluorescence spectra of the bacterial as well as chemical prepared Au NPs were recorded. Transmission electron microscopy (TEM) micrograph showed the formation of well-dispersed gold nanoparticles in the range of 15-30 nm. The process of reduction being extracellular and may lead to the development of an easy bioprocess for synthesis of Au NPs

  18. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  19. Extracellular toxins of pseudomonas aeruginosa. Pt. 4

    International Nuclear Information System (INIS)

    Obernesser, H.J.; Doering, G.

    1982-01-01

    A sensitive and specific solid phase radioimmunoassay (RIA) for detection of the elastase (Ela) of Pseudomonas aeruginosa (PA) was developed and the RIA was used to assay 10 PA strains of various origin and serotype. A great strain variability of Ela production was found which different from 94.1 to 0.1 μg per ml of culture supernatant fluid (CSF). The Ela and alkaline protease (AP) concentrations were converted to proteolytic activity and combined. The sum of the calculated enzymatic values of Ela and AP correlated well with the experimentally determined values of total proteolytic activity of the CSF. (orig.) [de

  20. Production of metabolites from chloro biphenyls by resting cells of Pseudomonas strain LB400 after growth on different carbon sources

    International Nuclear Information System (INIS)

    Billingsley, K.A.; Ward, O.P.

    1999-01-01

    The transformation of polychlorinated biphenyl (PCB), when exposed to microorganisms, into chlorobenzoic acid metabolites was studied. PCBs are widely used in electrical transformers and have become widely dispersed in the environment. A proposed system for clean up of PCBs involves the combined use of anaerobic reductive dehalogenation of highly chlorinated congeners followed by aerobic degradation of moderately chlorinated PCBs, mediated by oxidative ring attack. Much of this work focused on biphenyl-grown cells, in particular Pseudomonas strain LB400 grown on biphenyl, which contains a multicomponent enzyme system. It was shown that resting cells of Pseudomonas strain LB400, grown on glycerol or glucose, could also transform purified PCB congeners and mixtures of PCBs in Aroclors, however, transformation rates were less than those observed with biphenyl-grown cells. 29 refs., 2 tabs., 2 figs

  1. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives.

    Science.gov (United States)

    Beaupré, Serge; Boudreault, Pierre-Luc T; Leclerc, Mario

    2010-02-23

    World energy needs grow each year. To address global warming and climate changes the search for renewable energy sources with limited greenhouse gas emissions and the development of energy-efficient lighting devices are underway. This Review reports recent progress made in the synthesis and characterization of conjugated polymers based on bridged phenylenes, namely, poly(2,7-fluorene)s, poly(2,7-carbazole)s, and poly(2,7-dibenzosilole)s, for applications in solar cells and white-light-emitting diodes. The main strategies and remaining challenges in the development of reliable and low-cost renewable sources of energy and energy-saving lighting devices are discussed.

  2. Genetic Detection of Pseudomonas spp. in Commercial Amazonian Fish

    Science.gov (United States)

    Ardura, Alba; Linde, Ana R.; Garcia-Vazquez, Eva

    2013-01-01

    Brazilian freshwater fish caught from large drainages like the River Amazon represent a million ton market in expansion, which is of enormous importance for export to other continents as exotic seafood. A guarantee of bacteriological safety is required for international exports that comprise a set of different bacteria but not any Pseudomonas. However, diarrhoea, infections and even septicaemia caused by some Pseudomonas species have been reported, especially in immune-depressed patients. In this work we have employed PCR-based methodology for identifying Pseudomonas species in commercial fish caught from two different areas within the Amazon basin. Most fish caught from the downstream tributary River Tapajòs were contaminated by five different Pseudomonas species. All fish samples obtained from the River Negro tributary (Manaus markets) contained Pseudomonas, but a less diverse community with only two species. The most dangerous Pseudomonas species for human health, P. aeruginosa, was not found and consumption of these fish (from their Pseudomonas content) can be considered safe for healthy consumers. As a precautionary approach we suggest considering Pseudomonas in routine bacteriological surveys of imported seafood. PMID:24065035

  3. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    NARCIS (Netherlands)

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot

  4. Verspreiding, diversiteit en activiteit van antibioticaproducerende Pseudomonas spp

    NARCIS (Netherlands)

    Souza, J.T.

    2003-01-01

    Pseudomonas bacteriën zijn potentiële antagonisten van diverse plantenpathogene schimmels en oömyceten. De productie van antibiotica speelt een belangrijke rol in de activiteit van diverse Pseudomonas isolaten tegen plantenpathogenen. Dit artikel is een samenvatting van het proefschrift getiteld

  5. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Schultz, Marc J.; Knapp, Sylvia; Florquin, Sandrine; Pater, Jennie; Takeda, Kiyoshi; Akira, Shizuo; van der Poll, Tom

    2003-01-01

    Interleukin-18 (IL-18) is a potent cytokine with many different proinflammatory activities. To study the role of IL-18 in the pathogenesis of Pseudomonas pneumonia, IL-18-deficient (IL-18(-/-)) and wild-type mice were intranasally inoculated with Pseudomonas aeruginosa. IL-18 deficiency was

  6. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa...

  7. Isolation and characterization of a new Pseudomonas-related strain ...

    African Journals Online (AJOL)

    % with Pseudomonas putida ()AB680847). The phylogenetic tree formed by 16S rDNA sequences from both strain SKDP-1 and its most related bacteria also proved strain SKDP-1 to be one member of the genus Pseudomonas. Strain SKDP-1 ...

  8. Typing of Pseudomonas aeruginosa strains in Norwegian cystic fibrosis patients

    DEFF Research Database (Denmark)

    Fluge, G; Ojeniyi, B; Høiby, N

    2001-01-01

    OBJECTIVES: Typing of Pseudomonas aeruginosa isolates from Norwegian cystic fibrosis (CF) patients with chronic Pseudomonas lung infection in order to see whether cross-infection might have occurred. METHODS: Isolates from 60 patients were collected during the years 1994-98, and typed by pulsed...

  9. Biosynthesis and regulation of cyclic lipopeptides in Pseudomonas fluorescens

    NARCIS (Netherlands)

    Bruijn, de I.

    2009-01-01

    Cyclic lipopeptides (CLPs) are surfactant and antibiotic metabolites produced by a variety of bacterial
    genera. For the genus Pseudomonas, many structurally different CLPs have been identified. CLPs play an
    important role in surface motility of Pseudomonas strains, but also in virulence

  10. Distribution, diversity, and activity of antibiotic-producing Pseudomonas spp.

    NARCIS (Netherlands)

    Souza, de J.T.

    2002-01-01

    Bacteria of the genus Pseudomonas are potential biocontrol agents of plant diseases caused by various fungi and oomycetes. Antibiotic production is an important trait responsible for the activity of several Pseudomonas

  11. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  12. Energetics of binary mixed culture of Pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Bioenergetic analysis of the growth of the binary mixed culture (Pseudomonas aeruginosa and Pseudomonas fluorescence) on phenol chemostat culture was carried out. The data were checked for consistency using carbon and available electron balances. When more than the minimum number of variables are measured, ...

  13. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection

    Science.gov (United States)

    Pseudomonas syringae is a Gram-negative bacterial pathogen that causes disease on more than 100 different plant species, including the model plant Arabidopsis thaliana. Dissection of the Arabidopsis thaliana-Pseudomonas syringae pathosystem has identified many factors that contribute to successful ...

  14. Facial Nerve Paralysis seen in Pseudomonas sepsis with ecthyma gangrenosum

    Directory of Open Access Journals (Sweden)

    Suleyman Ozdemir

    2013-02-01

    Full Text Available Ecthyma gangrenosum is a skin lesion which is created by pseudomonas auriginosa. Peripheral facial paralysis and mastoiditis as a rare complication of otitis media induced by pseudomonas auriginosa.In this study, 4 months child who has ecthyma gangrenosum and facial nerve paralysis was reported. [Cukurova Med J 2013; 38(1.000: 126-130

  15. Petroleum-hydrocarbons biodegradation by Pseudomonas strains ...

    African Journals Online (AJOL)

    The capability of these isolates to degrade petroleum was performed by measuring the optical density, colony forming unit counts (CFU/ml) and concentration of total petroleum hydrocarbons (TPH). Degradation of Isomerate by these isolates was analyzed by gas chromatography with flame ionization detector (FID). Results ...

  16. Quick change: post-transcriptional regulation in Pseudomonas.

    Science.gov (United States)

    Grenga, Lucia; Little, Richard H; Malone, Jacob G

    2017-08-01

    Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas. © FEMS 2017.

  17. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, H.K.; Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. OBJECTIVES......: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH STRATEGY: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search May 2008) and PubMed using the terms vaccin* AND cystic...... fibrosis (last search May 2008). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. DATA COLLECTION AND ANALYSIS: The authors independently selected trials...

  18. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2015-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed....... This is an update of a previously published review. OBJECTIVES: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search 30...... March 2015). We previously searched PubMed using the terms vaccin* AND cystic fibrosis (last search 30 May 2013). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic...

  19. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  20. Occurrence of pseudomonas aeruginosa in post-operative wound infection

    International Nuclear Information System (INIS)

    Oguntibeju, O.O.; Nwobu, R.A.U.

    2004-01-01

    Objective: To determine the prevalence of Pseudomonas aeruginosa in post-operative wound infection. Results: Out of the 60 bacterial isolates found in post-operative wound infection, 20 (33.3%) were Pseudomonas aeruginosa, followed by Staphylococcus aureus 13(21.7%), Klebsiella species 10(16.7%), Escherichia coli 7(11.7%), Atypical coliform 4(6.7%), Proteus species 4(6.7%), Streptococcus pyogenes 1(1.7%) and Enterococcus faecalis 1(1.7%) in the order. Pseudomonas aeruginosa infections was higher in female than male, ratio 3:2 and was found more among young and elderly debilitated patients. The in vitro sensitivity pattern of 20 isolates of Pseudomonas aeruginosa showed colistin (100%), gentamicin (75%), streptomycin (30%), and tetracycline (10%). Conclusion: The role of Pseudomonas aeruginosa as an agent of nosocomial infection is re-emphasised. (author)

  1. Synthesis and luminescent properties of star-burst D-π-A compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Liu, Rui, E-mail: rui.liu@njtech.edu.cn [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Zhu, Xiaolin [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Li, Yuhao [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chang, Jin [Queensland University of Technology, 2 George St., Brisbane 4000 (Australia); Zhu, Hongjun, E-mail: zhuhjnjut@hotmail.com [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Ma, Liangwei; Lv, Wangjie; Guo, Jun [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China)

    2014-12-15

    Two new star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms (1a and 1b) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both compounds exhibit strong {sup 1}π–π{sup ⁎} transitions in the UV region and intense {sup 1}π–π{sup ⁎}/intramolecular charge transfer ({sup 1}ICT) absorption bands in the UV–vis region. Introducing the carbazole end-capped phenylene ethynylene arm on the 1,3,5-triazine core causes a slight bathochromic shift and enhanced molar extinction coefficient of the {sup 1}π–π{sup ⁎}/{sup 1}ICT transition band. Both compounds are emissive in solution at room temperature and 77 K, which exhibit pronounced positive solvatochromic effect. The emitting state could be ascribed to {sup 1}ICT state in more polar solvent, and {sup 1}π–π{sup ⁎} state in low-polarity solvent. The high emission quantum yields (Φ{sub em}=0.90∼1.0) of 1a and 1b (in hexane and toluene) make them potential candidates as efficient light-emitting materials. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these compounds can be tuned by the carbazole end-capped phenylene ethynylene arm, which would also be useful for rational design of photofunctional materials. - Highlights: • Star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms. • Photophysical properties of target compounds were investigated systematically via spectroscopic and theoretical methods. • The relatively high fluorescence quantum yields make them potential candidates as light-emitting materials.

  2. Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7

    Directory of Open Access Journals (Sweden)

    Zhang Shuangyu

    2012-03-01

    Full Text Available Abstract Background para-Nitrophenol (PNP, a priority environmental pollutant, is hazardous to humans and animals. However, the information relating to the PNP degradation pathways and their enzymes remain limited. Results Pseudomonas sp.1-7 was isolated from methyl parathion (MP-polluted activated sludge and was shown to degrade PNP. Two different intermediates, hydroquinone (HQ and 4-nitrocatechol (4-NC were detected in the catabolism of PNP. This indicated that Pseudomonas sp.1-7 degraded PNP by two different pathways, namely the HQ pathway, and the hydroxyquinol (BT pathway (also referred to as the 4-NC pathway. A gene cluster (pdcEDGFCBA was identified in a 10.6 kb DNA fragment of a fosmid library, which cluster encoded the following enzymes involved in PNP degradation: PNP 4-monooxygenase (PdcA, p-benzoquinone (BQ reductase (PdcB, hydroxyquinol (BT 1,2-dioxygenase (PdcC, maleylacetate (MA reductase (PdcF, 4-hydroxymuconic semialdehyde (4-HS dehydrogenase (PdcG, and hydroquinone (HQ 1,2-dioxygenase (PdcDE. Four genes (pdcDEFG were expressed in E. coli and the purified pdcDE, pdcG and pdcF gene products were shown to convert HQ to 4-HS, 4-HS to MA and MA to β-ketoadipate respectively by in vitro activity assays. Conclusions The cloning, sequencing, and characterization of these genes along with the functional PNP degradation studies identified 4-NC, HQ, 4-HS, and MA as intermediates in the degradation pathway of PNP by Pseudomonas sp.1-7. This is the first conclusive report for both 4-NC and HQ- mediated degradation of PNP by one microorganism.

  3. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media

    DEFF Research Database (Denmark)

    Aagot, N.; Nybroe, O.; Nielsen, P.

    2001-01-01

    We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed to be Pseu......We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed....... Several of these analyses showed that the amount of Casamino Acids significantly influenced the diversity of the recovered Pseudomonas isolates. Furthermore, the data suggested that specific Pseudomonas subpopulations were represented on the nutrient-poor media. The NAA 1:100 medium, containing ca. 15 mg...... of organic carbon per liter, consistently gave significantly higher Pseudomonas CFU counts than Gould's S1 when tested on four Danish soils. NAA 1:100 may, therefore, be a better medium than Gould's S1 for enumeration and isolation of Pseudomonas from the low-nutrient soil environment....

  4. Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase

    International Nuclear Information System (INIS)

    Ashikawa, Yuji; Fujimoto, Zui; Noguchi, Haruko; Habe, Hiroshi; Omori, Toshio; Yamane, Hisakazu; Nojiri, Hideaki

    2005-01-01

    The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution. Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P2 1 , with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R merge of 8.0% and a completeness of 100%. Its V M value is 2.63 Å 3 Da −1 , indicating a solvent content of 53.2%

  5. Crystallization and preliminary X-ray diffraction analysis of the electron-transfer complex between the terminal oxygenase component and ferredoxin in the Rieske non-haem iron oxygenase system carbazole 1,9a-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Ashikawa, Yuji [Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Fujimoto, Zui [Department of Biochemistry, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602 (Japan); Noguchi, Haruko; Habe, Hiroshi; Omori, Toshio; Yamane, Hisakazu; Nojiri, Hideaki, E-mail: anojiri@mail.ecc.u-tokyo.ac.jp [Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2005-06-01

    The electron-transfer complex between the terminal oxygenase and ferredoxin of carbazole 1,9a-dioxygenase was crystallized and diffraction data were collected to 1.90 Å resolution. Carbazole 1,9a-dioxygenase, which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. The electron-transport complex between CARDO-O and CARDO-F crystallizes at 293 K using hanging-drop vapour diffusion with the precipitant PEG MME 2000 (type I crystals) or PEG 3350 (type II). Blossom-shaped crystals form from a pile of triangular plate-shaped crystals. The type I crystal diffracts to a maximum resolution of 1.90 Å and belongs to space group P2{sub 1}, with unit-cell parameters a = 97.1, b = 89.8, c = 104.9 Å, α = γ = 90, β = 103.8°. Diffraction data for the type I crystal gave an overall R{sub merge} of 8.0% and a completeness of 100%. Its V{sub M} value is 2.63 Å{sup 3} Da{sup −1}, indicating a solvent content of 53.2%.

  6. SYNTHESıS OF A NEW ELECTROCHROMıC POLYMER BASED ON TETRAPHENYLETHYLENE CORED TETRAKıS CARBAZOLE COMPLEX AND ıTS ELECTROCHROMıC DEVıCE APPLıCATıON

    International Nuclear Information System (INIS)

    Carbas, Buket Bezgin; Odabas, Serhat; Türksoy, Figen; Tanyeli, Cihangir

    2016-01-01

    Highlights: • A novel tetraphenylethylene containing tetrakis carbazole electropolymerized polymer was synthesized. • The polymer displayed transparent colored to dark green coloration upon oxidation. • A neutral state colorless electrochromic device was constructed. - Abstract: Poly-1,1,2,2-tetrakis(4-9H-carbazol-9-yl)phenyl)ethene P(TCP) was successfully synthesized by electrochemical oxidation of corresponding monomer, namely, 1,1,2,2-tetrakis(4-9H-carbazol-9-yl)phenyl)ethene (TCP) using dichloromethane as the solvent and tetrabutylammonium hexafluorophosphate (TBAPF 6 ) as supporting electrolyte. Spectroelectrochemical properties of P(TCP) were investigated in situ recording the electronic absorption spectra of the polymer film coated on indium-tin oxide (ITO) at various potentials. P(TCP) displayed transparent to military green color in 1.80 s with an optical contrast of 23.0% (at 770 nm) and an optical band gap of 3.1 eV. The objective evaluation of the colors of P(TCP) at various potentials was performed through colorimetry studies on the basis of “Commission Internationale de l′Eclairage” (CIE) standards. The morphology of the polymer film was investigated by AFM analysis. A dual type electrochromic device based on P(TCP) was constructed and its spectroelectrochemical properties were investigated. The electrochromic device exhibits color change from transparent to dark blue with a good open circuit memory.

  7. PAMDB: a comprehensive Pseudomonas aeruginosa metabolome database.

    Science.gov (United States)

    Huang, Weiliang; Brewer, Luke K; Jones, Jace W; Nguyen, Angela T; Marcu, Ana; Wishart, David S; Oglesby-Sherrouse, Amanda G; Kane, Maureen A; Wilks, Angela

    2018-01-04

    The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Biotransformation of myrcene by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hashemi Elham

    2011-05-01

    Full Text Available Abstract Background Dihydrolinalool and terpineol are sources of fragrances that provide a unique volatile terpenoid alcohol of low toxicity and thus are widely used in the perfumery industry, in folk medicine, and in aromatherapy. They are important chemical constituents of the essential oil of many plants. Previous studies have concerned the biotransformation of limonene by Pseudomonas putida. The objective of this research was to study biotransformation of myrcene by Pseudomonas aeruginosa. The culture preparation was done using such variables as different microbial methods and incubation periods to obtain maximum cells of P. aeruginosa for myrcene biotransformation. Results It was found that myrcene was converted to dihydrolinalool and 2,6-dimethyloctane in high percentages. The biotransformation products were identified by Fourier-transform infrared spectroscopy (FT-IR, ultraviolet (UV analysis, gas chromatography (GC, and gas chromatography-mass spectroscopy (GC-MS. Comparison of the different incubation times showed that 3 days was more effective, the major products being 2,6-dimethyloctane (90.0% and α-terpineol (7.7% and comprising 97.7%. In contrast, the main compounds derived for an incubation time of 1.5 days were dihydrolinalool (79.5% and 2,6-dimethyloctane (9.3%, with a total yield of 88.8%.

  9. Post-secretional activation of Protease IV by quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Oh, Jungmin; Li, Xi-Hui; Kim, Soo-Kyong; Lee, Joon-Hee

    2017-06-30

    Protease IV (PIV), a key virulence factor of Pseudomonas aeruginosa is a secreted lysyl-endopeptidase whose expression is induced by quorum sensing (QS). We found that PIV expressed in QS mutant has severe reduction of activity in culture supernatant (CS), even though it is overexpressed to high level. PIV purified from the QS mutant (M-PIV) had much lower activity than the PIV purified from wild type (P-PIV). We found that the propeptide cleaved from prepro-PIV was co-purified with M-PIV, but never with P-PIV. Since the activity of M-PIV was restored by adding the CS of QS-positive and PIV-deficient strain, we hypothesized that the propeptide binds to and inhibits PIV, and is degraded to activate PIV by a QS-dependent factor. In fact, the CS of the QS-positive and PIV-deficient strain was able to degrade the propeptide. Since the responsible factor should be a QS-dependently expressed extracellular protease, we tested QS-dependent proteases of P. aeruginosa and found that LasB (elastase) can degrade the propeptide and activate M-PIV. We purified the propeptide of PIV and confirmed that the propeptide can bind to and inhibit PIV. We suggest that PIV is post-secretionally activated through the extracellular degradation of the propeptide by LasB, a QS-dependent protease.

  10. Phytate degradation by fungi and bacteria that inhabit sawdust and coffee residue composts.

    Science.gov (United States)

    Fathallh Eida, Mohamed; Nagaoka, Toshinori; Wasaki, Jun; Kouno, Kenji

    2013-01-01

    Phytate is the primary source of organic phosphorus, but it cannot be directly utilized by plants and is strongly adsorbed by the soil, reducing bioavailability. Composting is a process used to improve the bioavailability of phytate in organic wastes through degradation by microorganisms. In this study, we aimed to investigate the phytate-degrading ability of fungi and bacteria that inhabit sawdust compost and coffee residue compost, and their contribution to the composting process. In the plate assay, the fungi that formed clear zones around their colonies belonged to the genera Mucor, Penicillium, Galactomyces, Coniochaeta, Aspergillus, and Fusarium, while the bacteria belonged to the genera Pseudomonas, Enterobacter, Chitinophaga, and Rahnella. Eight fungal isolates (genera Mucor, Penicillium, Galactomyces, and Coniochaeta) and four bacterial isolates (genera Pseudomonas, Enterobacter, and Rahnella) were selected to evaluate phytase activity in their liquid culture and their ability to degrade phytate in organic materials composed of mushroom media residue and rice bran. The selected fungi degraded phytate in organic materials to varying degrees. Penicillium isolates showed the highest degradation ability and Coniochaeta isolate exhibited relatively high degradation ability. The clear zone diameters of these fungal isolates displayed significantly positive and negative correlations with inorganic and phytate phosphorus contents in the organic materials after incubation, respectively; however, none of the selected bacteria reduced phytate phosphorus in organic materials. It is therefore possible that fungi are major contributors to phytate degradation during composting.

  11. Preparation of Bio-beads and Their Atrazine Degradation Characteristics

    Institute of Scientific and Technical Information of China (English)

    BI Hai-tao; ZHANG Lan-ying; LIU Na; ZHU Bo-lin

    2011-01-01

    Screened atrazine-mineralizing bacterium-Pseudomonas W4 was embedded inside an improved PVAH3BO3 embedment matrix to make bio-beads to degrade atrazine. The atrazine degradation characteristics were studied. The preparation procedure of bio-beads was as follows: (1) preparing a mixture of 100, 12.5, 10, 1.5 and 1 g/L PVA, bentonite(Ca), activated carbon powder, sodium alginate and centrifuged Pseudomonas W4 bacterium, respectively; (2) the mixture was dropped into a gently stirred cross linker solution(pH=6.7) and cured at 10 ℃ for 24 h.The optimal atrazine degradation conditions by bio-beads were as follows: pH=7, the auxiliary carbon source was glucose, and the concentration of glucose was greater than 325 mg/L. The bio-beads demonstrated stronger tolerance ability than the free microorganism to the increase of PCBs, hydrogen ion and hydroxide ion. SEM images show the uniform distribution of the microorganism inside bio-beads and the porous cross-linked structure of bio-beads which provides excellent mass transfer capacity.

  12. Uranium and thorium uptake by live and dead cells of Pseudomonas Sp

    International Nuclear Information System (INIS)

    Siva Prasath, C.S.; Manikandan, N.; Prakash, S.

    2010-01-01

    This study presents uptake of uranium (U) and thorium (Th) by live and dead cells of Pseudomonas Sp. Increasing concentration of U and Tb showed decrease in absorption by Pseudomonas Sp. Dead cells of Pseudomonas Sp. exhibited same or more uptake of U and Th than living cells. Increasing temperature promotes uptake of U and Th by Pseudomonas Sp. (author)

  13. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein.

    Science.gov (United States)

    Folders, J; Algra, J; Roelofs, M S; van Loon, L C; Tommassen, J; Bitter, W

    2001-12-01

    The gram-negative bacterium Pseudomonas aeruginosa secretes many proteins into its extracellular environment via the type I, II, and III secretion systems. In this study, a gene, chiC, coding for an extracellular chitinolytic enzyme, was identified. The chiC gene encodes a polypeptide of 483 amino acid residues, without a typical N-terminal signal sequence. Nevertheless, an N-terminal segment of 11 residues was found to be cleaved off in the secreted protein. The protein shows sequence similarity to the secreted chitinases ChiC of Serratia marcescens, ChiA of Vibrio harveyi, and ChiD of Bacillus circulans and consists of an activity domain and a chitin-binding domain, which are separated by a fibronectin type III domain. ChiC was able to bind and degrade colloidal chitin and was active on the artificial substrates carboxymethyl-chitin-Remazol Brilliant Violet and p-nitrophenyl-beta-D-N,N',N"-triacetylchitotriose, but not on p-nitrophenyl-beta-D-N-acetylglucosamine, indicating that it is an endochitinase. Expression of the chiC gene appears to be regulated by the quorum-sensing system of P. aeruginosa, since this gene was not expressed in a lasIR vsmI mutant. After overnight growth, the majority of the ChiC produced was found intracellularly, whereas only small amounts were detected in the culture medium. However, after several days, the cellular pool of ChiC was largely depleted, and the protein was found in the culture medium. This release could not be ascribed to cell lysis. Since ChiC did not appear to be secreted via any of the known secretion systems, a novel secretion pathway seems to be involved.

  14. A novel synthesis of octahydropyrido[3,2-c]carbazole framework of aspidospermidine alkaloids and a combined computational, FT-IR, NMR, NBO, NLO, FMO, MEP study of the cis-4a-Ethyl-1-(2hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagul; Yinanc, Abdullah

    2018-06-01

    In this study, we performed a novel synthesis of the octahydropyrido[3,2-c]carbazole derivative 6 from 1 in five steps with a 34% overall yield. We also developed a unique compound 2 by a cyclization reaction from the cyanoethylation of compound 1, which is an intermediate step in the synthesis of Aspidospermidine. The parent compound of Aspidospermidine alkaloids, comprise a large family of diverse structures. As a result, we obtained octahydropyrido[3,2-c]carbazole (6)and the proposed method may be applicable to other alkaloids. All quantum chemical calculations of the cis-4a-Ethyl-1-(2-hydroxyethyl)-2,3,4,4a,5,6,7,11c-octahydro-1H-pyrido[3,2-c]carbazole have been performed with the DFT/B3LYP and HF methods by using the Gaussian 09W software package. The most stable conformer obtained from the Potential Energy Surface (PES) scan analysis at the B3LYP/6-31G** level of theory in the gas phase was used as the starting structure of the title compound to further computational analysis. The Natural Bond Orbital (NBO) and NLO analyses were performed to evaluate the intra-molecular interactions contributing to the molecular stability and to predict the optical properties of the title compound, respectively. Gauge-Independent Atomic Orbital (GIAO) approach was used to determine the 1H and 1C NMR chemical shifts of the title compound by subtracting the shielding constants of TMS at both methods. The calculated vibrational frequencies of the title compound were assigned by using the VEDA program and were scaled down by using the scaling factor 0.9668 for B3LYP/6-311++G(d, p) and 0.9050 for HF/6-311++G(d, p) to improve the calculated vibrational frequencies. The FMO (frontier molecular orbital) analysis was evaluated to predict the chemical and physical properties of the title compound and the HOMO, LUMO, and MEP diagrams were visualized by GaussView 4.1 program to present the reactive site of the title compound.

  15. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    Science.gov (United States)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  16. 14C-glyphosate mineralization and follow up of the dynamics of Pseudomonas sp. populations in three soils under different uses in Tolima (Colombia)

    OpenAIRE

    Liliana Figueroa del Castillo; Myriam Rocío Melgarejo P; Cilia L. Fuentes de Piedrahíta; Amanda Lozano de Yunda

    2010-01-01

    The capacity of Pseudomonas sp. to degrade different pesticides has been the object of numerous studies; due to this, its dynamics was evaluated and the effect of the application of glyphosate (Roundup®) in soils of Tolima, taxonomically classified as Entic haplustolls, Typic ustipsamments, and Inceptic haplustalfs with coverage of secondary forest, stubble and sorghum crop, respectively, through the in vitro 14C-glyphosate mineralization. These soils were subjected to presence/absence of hea...

  17. Heterogeneity of heat-resistant proteases from milk Pseudomonas species.

    Science.gov (United States)

    Marchand, Sophie; Vandriesche, Gonzalez; Coorevits, An; Coudijzer, Katleen; De Jonghe, Valerie; Dewettinck, Koen; De Vos, Paul; Devreese, Bart; Heyndrickx, Marc; De Block, Jan

    2009-07-31

    Pseudomonas fragi, Pseudomonas lundensis and members of the Pseudomonas fluorescens group may spoil Ultra High Temperature (UHT) treated milk and dairy products, due to the production of heat-stable proteases in the cold chain of raw milk. Since the aprX gene codes for a heat-resistant protease in P. fluorescens, the presence of this gene has also been investigated in other members of the genus. For this purpose an aprX-screening PCR test has been developed. Twenty-nine representatives of important milk Pseudomonas species and thirty-five reference strains were screened. In 42 out of 55 investigated Pseudomonas strains, the aprX gene was detected, which proves the potential of the aprX-PCR test as a screening tool for potentially proteolytic Pseudomonas strains in milk samples. An extensive study of the obtained aprX-sequences on the DNA and the amino acid level, however, revealed a large heterogeneity within the investigated milk isolates. Although this heterogeneity sets limitations to a general detection method for all proteolytic Pseudomonas strains in milk, it offers a great potential for the development of a multiplex PCR screening test targeting individual aprX-genes. Furthermore, our data illustrated the potential use of the aprX gene as a taxonomic marker, which may help in resolving the current taxonomic deadlock in the P. fluorescens group.

  18. Management and treatment of contact lens-related Pseudomonas keratitis

    Directory of Open Access Journals (Sweden)

    Willcox MD

    2012-06-01

    Full Text Available Mark DP WillcoxSchool of Optometry and Vision Science, University of New South Wales, Sydney, AustraliaAbstract: Pubmed and Medline were searched for articles referring to Pseudomonas keratitis between the years 2007 and 2012 to obtain an overview of the current state of this disease. Keyword searches used the terms "Pseudomonas" + "Keratitis" limit to "2007–2012", and ["Ulcerative" or "Microbial"] + "Keratitis" + "Contact lenses" limit to "2007–2012". These articles were then reviewed for information on the percentage of microbial keratitis cases associated with contact lens wear, the frequency of Pseudomonas sp. as a causative agent of microbial keratitis around the world, the most common therapies to treat Pseudomonas keratitis, and the sensitivity of isolates of Pseudomonas to commonly prescribed antibiotics. The percentage of microbial keratitis associated with contact lens wear ranged from 0% in a study from Nepal to 54.5% from Japan. These differences may be due in part to different frequencies of contact lens wear. The frequency of Pseudomonas sp. as a causative agent of keratitis ranged from 1% in Japan to over 50% in studies from India, Malaysia, and Thailand. The most commonly reported agents used to treat Pseudomonas keratitis were either aminoglycoside (usually gentamicin fortified with a cephalosporin, or monotherapy with a fluoroquinolone (usually ciprofloxacin. In most geographical areas, most strains of Pseudomonas sp. (≥95% were sensitive to ciprofloxacin, but reports from India, Nigeria, and Thailand reported sensitivity to this antibiotic and similar fluoroquinolones of between 76% and 90%.Keywords: Pseudomonas, keratitis, contact lens

  19. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  20. Identification of New Aflatoxin B1-Degrading Bacteria from Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Sangi

    2018-04-01

    Full Text Available Background: Aflatoxin B1 (AFB1 is a mutagenic and carcinogenic compound mainly produced by the Aspergillus parasiticus, A. flavus, A. nomius, A. tamari, and A. pseudotamarii. AFB1 biodegradation is the most important strategy for reducing AFB1 in plant tissues. Bacteria can deactivate and biodegrade AFB1 for effective detoxification of contaminated products. The present study investigated the efficiency of AFB1 degradation by soil bacteria from the Southern Khorasan Province in Eastern Iran by thin-layer and high-performance liquid chromatography during 2014–2015. Methods: DNA was extracted from AFB1-degrading isolates by the cetyltrimethylammonium bromide method and the 16S rRNA gene was amplified with the 27f and 1492r general bacterial primers and the sequences were used to identify the isolates based on their similarity to Gene Bank sequences of known bacterial species. Results: We isolated five strains from four species of AFB1-degrading bacteria from Birjand plain, including Bacillus pumilus, two isolates of Ochrobactrum pseudogrigonens, Pseudomonas aeruginosa, and Enterobacter cloace, which had AFB1-degrading activities of 88%, 78%, 61%, 58%, and 51%, respectively. Conclusion: We provide the first demonstration of AFB1 degradation by B. pumilus in from Iran and the first report identifying O. pseudogrigonens and E. cloace species as having AFB1-degrading activity.

  1. Experimental Pseudomonas aeruginosa mediated rhino sinusitis in mink

    DEFF Research Database (Denmark)

    Kirkeby, S.; Hammer, A. S.; Høiby, N.

    2017-01-01

    The nasal and sinus cavities in children may serve as reservoirs for microorganisms that cause recurrent and chronic lung infections. This study evaluates whether the mink can be used as an animal model for studying Pseudomonas aeruginosa mediated rhino-sinusitis since there is no suitable...... in the infected mink shows features of carbohydrate expression comparable to what has been described in the respiratory system after Pseudomonas aeruginosa infection in humans. It is suggested that the mink is suitable for studying Pseudomonas aeruginosa mediated rhino-sinusitis....

  2. Cemaran Staphylococcus aureus dan Pseudomonas aerogenosa Pada Stetoskop dirumah Sakit

    Directory of Open Access Journals (Sweden)

    leka lutpiatina

    2017-10-01

    The result of the research was found contamination of Staphylococcus aureus and Pseudomonas aerogenosa on steteskop. The site home condition of the research data was 66.7% cleaned daily, the storage method was placed on the table 70% and the duration of using the set home more than 1 year as much as 70%. The conclusion of stethoscope at Banjarbaru Hospital was contaminated with Staphylococcus aureus by 70% and Pseudomonas aerogenosa by 17%. The suggestion of research can be continued by knowing the existence of Staphylococcus aureus resistant antibiotic and Pseudomonas aerogenous antibiotic resistant at steteskop at Hospital.

  3. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  4. Pseudomonas putida as a microbial cell factory

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth

    for sustainable production of chemicals, which can be achieved by microbial cell factories. The work presented in this PhD thesis elucidates the application of Pseudomonas putida as a microbial cell factory for production of the biosurfactant rhamnolipid. The rhamnolipid production was achieved by heterologous...... phase. The genomic alterations were identified by genome sequencing and revealed parallel evolution. Glycerol was also shown to be able to support biofilm growth and as a result of this it can be used as an alternative substrate for producing biochemicals in conventional and biofilm reactors. The use...... of biofilm as a production platform and the usage of glycerol as a feedstock show the potential of using microbial cell factories in the transition toward sustainable production of chemicals. Particularly, the applicability of biofilm as a production platform can emerge as a promising alternative...

  5. Vesiculation from Pseudomonas aeruginosa under SOS.

    Science.gov (United States)

    Maredia, Reshma; Devineni, Navya; Lentz, Peter; Dallo, Shatha F; Yu, Jiehjuen; Guentzel, Neal; Chambers, James; Arulanandam, Bernard; Haskins, William E; Weitao, Tao

    2012-01-01

    Bacterial infections can be aggravated by antibiotic treatment that induces SOS response and vesiculation. This leads to a hypothesis concerning association of SOS with vesiculation. To test it, we conducted multiple analyses of outer membrane vesicles (OMVs) produced from the Pseudomonas aeruginosa wild type in which SOS is induced by ciprofloxacin and from the LexA noncleavable (lexAN) strain in which SOS is repressed. The levels of OMV proteins, lipids, and cytotoxicity increased for both the treated strains, demonstrating vesiculation stimulation by the antibiotic treatment. However, the further increase was suppressed in the lexAN strains, suggesting the SOS involvement. Obviously, the stimulated vesiculation is attributed by both SOS-related and unrelated factors. OMV subproteomic analysis was performed to examine these factors, which reflected the OMV-mediated cytotoxicity and the physiology of the vesiculating cells under treatment and SOS. Thus, SOS plays a role in the vesiculation stimulation that contributes to cytotoxicity.

  6. Pseudomonas aeruginosa ventilator-associated pneumonia management

    Science.gov (United States)

    Ramírez-Estrada, Sergio; Borgatta, Bárbara; Rello, Jordi

    2016-01-01

    Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. PMID:26855594

  7. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped...... by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  8. Complement activation by Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, E T; Kharazmi, A; Garred, P

    1993-01-01

    In chronic infections, such as the bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients, bacteria persist despite an intact host immune defense and frequent antibiotic treatment. An important reason for the persistence of the bacteria is their capacity for the biofilm...... mode of growth. In this study we investigated the role of biofilms in activation of complement, a major contributor to the inflammatory process. Complement activation by P. aeruginosa was examined in a complement consumption assay, production of C3 and factor B conversion products assessed by crossed...... immuno-electrophoresis, C5a generation tested by a PMN chemotactic assay, and terminal complement complex formation measured by ELISA. Two of the four assays showed that P. aeruginosa grown in biofilm activated complement less than planktonic bacteria, and all assays showed that activation by intact...

  9. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein...... and DNA. In CF lungs, the polysaccharide alginate is the major part of the P. aeruginosa biofilm matrix. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and resist phagocytosis, as well as other components of the innate and the adaptive immune system....... As a consequence, a pronounced antibody response develops, leading to immune complex-mediated chronic inflammation, dominated by polymorphonuclear leukocytes. The chronic inflammation is the major cause of the lung tissue damage in CF. Biofilm growth in CF lungs is associated with an increased frequency...

  10. Pseudomonas aeruginosa endophthalmitis masquerading as chronic uveitis

    Directory of Open Access Journals (Sweden)

    Kalpana Badami Nagaraj

    2013-01-01

    Full Text Available A 65-year-old male presented with decreased vision in the left eye of 15-day duration after having undergone an uneventful cataract surgery 10 months back. He had been previously treated with systemic steroids for recurrent uveitis postoperatively on three occasions in the same eye. B-scan ultrasonography showed multiple clumplike echoes suggestive of vitreous inflammation. Aqueous tap revealed Pseudomonas aeruginosa sensitive to ciprofloxacin. The patient was treated with intravitreal ciprofloxacin and vancomycin along with systemic ciprofloxacin with good clinical response. Even a virulent organism such as P.aeruginosa can present as a chronic uveitis, which, if missed, can lead to a delay in accurate diagnosis and appropriate management.

  11. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2012-04-01

    Full Text Available Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis method. Six isolates of bacteria have been selected, one isolate was fraction saturates degrading bacteria that are Mycobacterium sp. T1H2D4-7 at degradation rate 0.0199 mgs/h with density 8.4x106 cfu/g from stage I. The isolate T2H1D2-4, identified as Pseudomonas sp. was fraction aromatics degrading bacteria at accelerate 0.0141 mgs/h with density 5.1x106 cfu/g are obtained at stage II. Two isolates namely Micrococcus sp. T3H2D4-2 and Pseudomonas sp. T1H1D5-5 were fraction resins degrading bacteria by accelerate 0.0088 mgs/h at density 5.6x106 cfu/g and 0.0089 mgs/h at density 5.7x106 cfu/g are obtained at stage III. Isolation of stage IV has been obtained two isolates Pseudomonas sp. T4H1D3-1and Pseudomonas sp. T4H3D5-4 were fraction asphaltenes degrading bacteria by accelerate 0.0057 mgs/h at density 5.6x106 cfu/g and accelerate 0.0058 mgs/h at density 5.7x106 cfu/g.

  12. Phospholipids and protein adaptation of Pseudomonas sp. to the xenoestrogen tributyltin chloride (TBT).

    Science.gov (United States)

    Bernat, Przemysław; Siewiera, Paulina; Soboń, Adrian; Długoński, Jerzy

    2014-09-01

    A tributyltin (TBT)-resistant strain of Pseudomonas sp. isolated from an overworked car filter was tested for its adaptation to TBT. The isolate was checked for organotin degradation ability, as well as membrane lipid and cellular protein composition in the presence of TBT. The phospholipid profiles of bacteria, grown with and without increased amounts of TBT, were characterized using liquid chromatography/electrospray ionization/mass spectrometry. The strain reacted to the biocide by changing the composition of its phospholipids. TBT induced a twofold decline in the amounts of many molecular species of phosphatidylglycerol and an increase in the levels of phosphatidic acid (by 58%) and phosphatidylethanolamine (by 70%). An increase in the degree of saturation of phospholipid fatty acids of TBT exposed Pseudomonas sp. was observed. These changes in the phospholipid composition and concentration reflect the mechanisms which support optimal lipid ordering in the presence of toxic xenobiotic. In the presence of TBT the abundances of 16 proteins, including TonB-dependent receptors, porins and peroxidases were modified, which could indicate a contribution of some enzymes to TBT resistance.

  13. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    Energy Technology Data Exchange (ETDEWEB)

    Guilan, Niu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Junjie, Zhang [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Shuo, Zhao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Hong, Liu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Zhou Ningyi [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)], E-mail: n.zhou@pentium.whiov.ac.cn

    2009-03-15

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria.

  14. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    International Nuclear Information System (INIS)

    Niu Guilan; Zhang Junjie; Zhao Shuo; Liu Hong; Boon, Nico; Zhou Ningyi

    2009-01-01

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria

  15. Pseudomonas savastanoi pv. savastanoi: some like it knot.

    Science.gov (United States)

    Ramos, Cayo; Matas, Isabel M; Bardaji, Leire; Aragón, Isabel M; Murillo, Jesús

    2012-12-01

    Pseudomonas savastanoi pv. savastanoi is the causal agent of olive (Olea europaea) knot disease and an unorthodox member of the P. syringae complex, causing aerial tumours instead of the foliar necroses and cankers characteristic of most members of this complex. Olive knot is present wherever olive is grown; although losses are difficult to assess, it is assumed that olive knot is one of the most important diseases of the olive crop. The last century witnessed a large number of scientific articles describing the biology, epidemiology and control of this pathogen. However, most P. savastanoi pv. savastanoi strains are highly recalcitrant to genetic manipulation, which has effectively prevented the pathogen from benefitting from the scientific progress in molecular biology that has elevated the foliar pathogens of the P. syringae complex to supermodels. A number of studies in recent years have made significant advances in the biology, ecology and genetics of P. savastanoi pv. savastanoi, paving the way for the molecular dissection of its interaction with other nonpathogenic bacteria and their woody hosts. The selection of a genetically pliable model strain was soon followed by the development of rapid methods for virulence assessment with micropropagated olive plants and the analysis of cellular interactions with the plant host. The generation of a draft genome of strain NCPPB 3335 and the closed sequence of its three native plasmids has allowed for functional and comparative genomic analyses for the identification of its pathogenicity gene complement. This includes 34 putative type III effector genes and genomic regions, shared with other pathogens of woody hosts, which encode metabolic pathways associated with the degradation of lignin-derived compounds. Now, the time is right to explore the molecular basis of the P. savastanoi pv. savastanoi-olive interaction and to obtain insights into why some pathovars like it necrotic and why some like it knot

  16. Influence of Environmental Stressors on the Physiology of Pollutant Degrading Bacteria

    DEFF Research Database (Denmark)

    Svenningsen, Nanna Bygvraa

    of model degrader bacteria to nutrient- and oxidative stress, two highly relevant stress scenarios in natural environments, and at evaluating the impact of these environmental stress conditions on catabolic gene expression. The results suggest that environmental bacteria, here represented by the toluene...... biodegradative or catabolic performance. To date, details concerning the physiology of degrader microorganisms and their ability to express the relevant catabolic genes in the context of a complex and stressful environment have yet to be elucidated. In order to fully exploit the catabolic potential of degrader......- and xylene degrading bacterium Pseudomonas putida mt-2 and the phenoxy acid herbicide degrading bacterium Cupriavidus pinatubonensis JMP134, have a high defense capacity towards archetypical environmental stressors. However, the results also showed that induction of a stress defense may have a cost in regard...

  17. Aromatic Hydrocarbons: Degrading Bacteria in the Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, M.; Diab, A.; Al-Hilali, A.; Abu-Shady, A. Sattar

    2005-01-01

    Soil samples of different levels of oil pollutants were collected from Kuwait's Burgan Oil Field, near an oil lake. The samples represented, highly polluted (8.0% w/w), moderately polluted (2.1%-3.4%) and slightly polluted (2.1%-3.4%) and slightly polluted (0.5- 0.8%). The aromatic fractions of the collected samples were in the range of (0.21-2.57g/100g) soil. (GC) analysis of the aromatic fractions of the resolution of the different individual (PAHs) revealed the presence of (16) different (PAHs) resolved from the aromatic fraction of the highly polluted sample (S3). (15), (14) and (13) individual (PAHs) were identified soil samples (S5), (S2) and (S1, S4, S6) respectively. The most frequent (PAH) was indeno (1, 2, 3-c, d) pyrene (22.5%-45.11%) followed chrysene (13.6%-19.48%). Eight carcinogenic (PAHs) were resolved from the aromatic fractions of the polluted samples. Total carcinogenic (PAHs) recorded in this study were in this study were in the range of (11.53) (forS4) - (510.98) (for S3) ppm. The counts of (CFU) of aromatic degraders (AD) were in the range of (3x10) - (110x 10) (CFU/g) soil (with a percent of (2.2%-69.6%)). The results show that, higher counts of (AD) were recorded from a highly polluted sample (S3), followed by the moderately polluted samples; total of (51) bacteria, that gave presumptive positive biodegradation activities, were isolated and identified (45.1%) of them were isolated and identified. (45.1%) of them were isolated from the highly polluted sample (S3). Total of (13) different species were identified of which Micrococcus luteus was more frequent (23.5) followed by Bacillus licheniformis (19.6%) and Bacillus subtilis (11.8%). The three Pseudomonas species collectively were presented by (11.8%). Five different species proved to be of good activities, they are: Bacillus brevis, Bacillus lichenoformis, Pseudomonas aeruginosa, Pseudomonas stutzeri and Pseudomonas flourescens. The ability of five species and their mixture was

  18. Differential infectivity of two Pseudomonas species and the immune response in the milkweed bug, Oncopeltus fasciatus (Insecta: Hemiptera).

    Science.gov (United States)

    Schneider, M; Dorn, A

    2001-10-01

    Pseudomonas aeruginosa and Pseudomonas putida show a profound differential infectivity after inoculation in Oncopeltus fasciatus. Whereas P. putida has no significant impact on nymphs, P. aeruginosa kills all experimental animals within 48 h. Both Pseudomonas species, however, induce the same four hemolymph peptides in O. fasciatus. Also injection of saline solution and injury induced these peptides. In general peptide induction was stronger in nymphs than in adult males. A significantly higher number of nymphs survived a challenge with P. aeruginosa when an immunization with P. putida preceded. The antibacterial properties of the hemolymph were demonstrated in inhibition experiments with P. putida. Two of the four inducible peptides (peptides 1 and 4) could be partially sequenced after Edman degradation and were compared with known antibacterial peptides. Peptide 1, of 15 kDa, showed 47.1% identity with the glycine-rich hemiptericin of Pyrrhocoris apterus. Peptide 4, of 2 kDa, had a 77.8% identity with the proline-rich pyrrhocoricin of P. apterus and a 76.9% identity with metalnikowin 1 of Palomena prasina. Peptides 2 and 3 are also small, with molecular weights of 8 and 5 kDa.

  19. Biodegradation of 2,4'-dichlorobiphenyl, a congener of polychlorinated biphenyl, by Pseudomonas isolates GSa and GSb.

    Science.gov (United States)

    Gayathri, D; Shobha, K J

    2015-08-01

    Bioegradation of 2,4'-dichlorobiphenyl (2,4 CB), by two isolates of Pseudomonas (GSa and GSb) was compared using GC-MS. Transformer oil polluted soil was used for the isolation of 2,4 CB degrading bacteria. GC-MS analysis of the solvent extracts obtained from Pseudomonas sp. GSa spent culture indicated the presence of Phenol 2,6-bis (1,1-dimethyl)-4-methyl (C15H24O). Further, the enzyme analysis of the cell free extracts showed the presence of 2,4'-dichlorobiphenyl dehalogenase (CBD), 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR) with specific activity of 6.00, 0.4 and 0.22 pmol/min/mg of protein, suggesting that dechlorination as an important step during 2,4 CB catabolism. Further, the cell free extract of GSb showed only 2,4'-dichlorobiphenyl-NADPH-oxido-reductase (2,4 CBOR) and 2,3-dihydroxybiphenyl-NADPH-oxido-reductase (2,3 DHOR), with specific activity of 0.3 and 0.213 μmol/min/mg of protein, suggesting attack on non-chlorinated aromatic ring of 2,4 CB, releasing chlorinated intermediates which are toxic to the environment. Although, both the isolated bacteria (GSa and GSb) belong to Pseudomonas spp., they exhibited different metabolic potential.

  20. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 33 original article infections a pseudomonas aeruginosa dans un

    African Journals Online (AJOL)

    boaz

    COPYRIGHT 2014. AFR. J. CLN. EXPER. .... Effective management of P. aeruginosa infections requires good ... a guide for doctors managing patients with. Pseudomonas .... Principles and practice of infectious diseases.5th edition. Edited by ...

  2. Detection of Pseudomonas fluorescens from broth, water and ...

    African Journals Online (AJOL)

    sonal

    2015-04-08

    Apr 8, 2015 ... Author(s) agree that this article remains permanently open access under the terms of ... grown in nutrient broth overnight, pond water, mucus and kidney ... a rapid test for detection of Pseudomonas strains in milk is required.

  3. New strategies for genetic engineering Pseudomonas syringae using recombination

    Science.gov (United States)

    Here we report that DNA oligonucleotides (oligos) introduced directly into bacteria by electroporation can recombine with the bacterial chromosome. This phenomenon was identified in Pseudomonas syringae and we subsequently found that Escherichia coli, Salmonella typhimurium and Shigella flexneri are...

  4. Pseudomonas aeruginosa Dose-Response and Bathing Water Infection

    Science.gov (United States)

    Pseudomonas aeruginosa is the most commonly identified opportunistic pathogen associated with pool acquired bather disease. To better understand why this microorganism poses this protracted problem we recently appraised P. aeruginosa pool risk management. Much is known about the ...

  5. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Vad, Brian S; Dueholm, Morten S

    2015-01-01

    The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered...... that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm...... hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm...

  6. Resistance patterns of Pseudomonas aeruginosa isolated from HIV ...

    African Journals Online (AJOL)

    negative bacilli in patients with impaired host defences emphasizes the need for information on the antibiotic susceptibility of the organisms that infects such patients. Pseudomonas aeruginosa are becoming increasingly resistant to ...

  7. Caenorhabditis elegans reveals novel Pseudomonas aeruginosa virulence mechanism

    NARCIS (Netherlands)

    Utari, Putri Dwi; Quax, Wim J.

    The susceptibility of Caenorhabditis elegans to different virulent phenotypes of Pseudomonas aeruginosa makes the worms an excellent model for studying host-pathogen interactions. Including the recently described liquid killing, five different killing assays are now available offering superb

  8. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Accelerated storage testing of freeze-dried Pseudomonas fluorescens BTP1, ... of all P. fluorescens strains were not significantly different and thermal inactivation ... useful to the development of improved reference materials and samples held ...

  9. The Enzymes of the Ammonia Assimilation in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Janssen, Dick B.; Camp, Huub J.M. op den; Leenen, Pieter J.M.; Drift, Chris van der

    1980-01-01

    Glutamine synthetase from Pseudomonas aeruginosa is regulated by repression/derepression of enzyme synthesis and by adenylylation/deadenylylation control. High levels of deadenylylated biosynthetically active glutamine synthetase were observed in cultures growing with limiting amounts of nitrogen

  10. Interactions between biosurfactant-producing Pseudomonas and Phytophthora species

    OpenAIRE

    Tran, H.

    2007-01-01

    Fluorescent Pseudomonas bacteria produce a wide variety of antimicrobial metabolites, including soap-like compounds referred to as biosurfactants. The results of this thesis showed that biosurfactant-producing Pseudomonas bacteria are effective in controlling Phytophthora foot rot disease of black pepper in Vietnam and promote root and shoot development of the ‘King of Spices’. Biosurfactant-producing P. fluorescens strain SS101 was also effective in controlling tomato late blight caused by P...

  11. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7

    International Nuclear Information System (INIS)

    Lee, Kangtaek; Park, Jin-Won; Ahn, Ik-Sung

    2003-01-01

    Addition of a carbon source as a nutrient into soil is believed to enhance in situ bioremediation by stimulating the growth of microorganisms that are indigenous to the subsurface and are capable of degrading contaminants. However, it may inhibit the biodegradation of organic contaminants and result in diauxic growth. The objective of this work is to study the effect of pyruvate as another carbon source on the biodegradation of polynuclear aromatic hydrocarbons (PAHs). In this study, naphthalene was used as a model PAH, ammonium sulfate as a nitrogen source, and oxygen as an electron acceptor. Pseudomonas putida G7 was used as a model naphthalene-degrading microorganism. From a chemostat culture, the growth kinetics of P. putida G7 on pyruvate was determined. At concentrations of naphthalene and pyruvate giving similar growth rates of P. putida G7, diauxic growth of P. putida G7 was not observed. It is suggested that pyruvate does not inhibit naphthalene biodegradation and can be used as an additional carbon source to stimulate the growth of P. putida G7 that can degrade polynuclear aromatic hydrocarbons

  12. Effect of cimetidine on catalase activity of Pseudomonas aeruginosa: a suggested mechanism of action.

    Science.gov (United States)

    Masoud, Masoudeh; Ebrahimi, Farnoosh; Minai-Tehrani, Dariush

    2014-01-01

    Catalase is an important enzyme for the degradation of hydrogen peroxide in cells. Bacteria have potent catalase to deal with H2O2 in their medium culture. Any chemicals that inhibit catalase activity can be harmful for cells. Histamine H2 antagonist drugs such as cimetidine and ranitidine are used for the treatment of gastrointestinal tract disorders. The present results showed that cimetidine could inhibit the catalase activity of Pseudomonas aeruginosa in a competitive inhibition. The determination of IC50 value and Ki (6.5 μM) of cimetidine demonstrated that the enzyme binds to the drug with high affinity. Binding of the drug to the enzyme was pH-dependent and no binding was observed at basic pH (>9) and acidic pH (effect on the catalase activity. © 2014 S. Karger AG, Basel.

  13. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa.

    Science.gov (United States)

    Kirienko, Natalia V; Ausubel, Frederick M; Ruvkun, Gary

    2015-02-10

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa.

  14. Ternary thiophene-X-thiophene semiconductor building blocks (X = fluorene, carbazole, phenothiazine): Modulating electronic properties and electropolymerization ability by tuning the X core

    Energy Technology Data Exchange (ETDEWEB)

    Tacca, Alessandra, E-mail: alessandra.tacca@eni.com [Centro Ricerche per le Energie non Convenzionali, Istituto ENI Donegani, ENI S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Po, Riccardo; Caldararo, Maria; Chiaberge, Stefano; Gila, Liliana; Longo, Luca [Centro Ricerche per le Energie non Convenzionali, Istituto ENI Donegani, ENI S.p.A., Via G. Fauser 4, 28100 Novara (Italy); Mussini, Patrizia Romana [Dipartimento di Chimica Fisica ed Elettrochimica, Universita degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy); Pellegrino, Andrea; Perin, Nicola; Salvalaggio, Mario; Savoini, Alberto; Spera, Silvia [Centro Ricerche per le Energie non Convenzionali, Istituto ENI Donegani, ENI S.p.A., Via G. Fauser 4, 28100 Novara (Italy)

    2011-07-30

    Highlights: > Effect of aromatic core on electronic properties in thiophene-X-thiophene trimers. > The lower the electron richness of X core, the deeper the HOMO level. > Different thiophene positions on X lead to kinked structure with lower conjugation. > The fluorene structure exhibits the lowest Stokes shift and the highest quantum yield. > The corresponding polymers obtained through three routes were studied. - Abstract: To achieve rationalization criteria for target-oriented molecular design of Th-X-Th (Th = thiophene) semiconductor building blocks, we have carried out an extensive investigation on the effects of the X core (X = fluorene, carbazole or phenothiazine) on the electronic properties and polymerization ability of Th-X-Th monomers and on the electronic and structural properties of the corresponding periodic conducting polymers -(Th-X-Th){sub n}-, obtained by electropolymerization and, for comparison's sake, by FeCl{sub 3}-catalyzed polymerization and/or Suzuki coupling. The effects of molecule bending and of solubilising bulky alkyl substituents have also been considered. The systematic, exhaustive template sequence combined with a rigorous, multitechnique investigation protocol affords a unique data library and a complete set of reliable interpretative/predictive guidelines.

  15. 1,4,9,12-Tetramethoxy-14-octyl-5,8-dihydrodiindolo[3,2-b;2′,3′-h]carbazole with an unknown solvent

    Directory of Open Access Journals (Sweden)

    Norma Wrobel

    2017-03-01

    Full Text Available The title compound, 2C36H39N3O4·H2O, is a linear π-conjugated ladder oligomer with an alkyl chain on the central nitrogen atom. This diindolocarbazole, prepared via a twofold Cadogan reaction, adopts a sligthly convex shape, anti to the disordered octyl group. The unit cell contains nine molecules of the title compound and half a water molecule per main molecule. The water molecule forms hydrogen bridges, connecting the carbazole-NH and methoxy groups of different molecules. The crystal contains solvent molecules which are located in a channel parallel to the c axis. It was not possible to determine the position and nature of the solvent (a mixure of choroform, n-pentane and DMSO. The SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] option of PLATON was used to model the missing electron density. The given chemical formula and other crystal data do not take into account these solvent molecules.

  16. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    Science.gov (United States)

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  17. Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants

    Science.gov (United States)

    Bardoel, Bart W.; van der Ent, Sjoerd; Pel, Michiel J. C.; Tommassen, Jan; Pieterse, Corné M. J.; van Kessel, Kok P. M.; van Strijp, Jos A. G.

    2011-01-01

    The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants. PMID:21901099

  18. Pseudomonas evades immune recognition of flagellin in both mammals and plants.

    Directory of Open Access Journals (Sweden)

    Bart W Bardoel

    2011-08-01

    Full Text Available The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5 in mammals and flagellin-sensitive 2 (FLS2 in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR antagonists, we screened bacterial supernatants and identified alkaline protease (AprA of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.

  19. Introduction of Atrazine-Degrading Pseudomonas SP. Strain ADP to Enhance Phytoremediation of Atrazine

    Science.gov (United States)

    Atrazine (ATR) has been widely applied in the US Midwestern states. Public health and ecological concerns have been raised about contamination of surface and ground water by ATR and its chlorinated metabolites, due to their toxicity and potential carcinogenic or endocrinology effects. Phytoremediati...

  20. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach

    DEFF Research Database (Denmark)

    Tribelli, Paula Maria; Rossi, Leticia; Ricardi, Martiniano M

    2018-01-01

     days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic...

  1. Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07

    Digital Repository Service at National Institute of Oceanography (India)

    De, J.; Ramaiah, N.; Sarkar, A.

    are the ultimate global sinks for worldwide accumulations of PCBs (Berkaw et al., 1996). The toxicity of different congeners of PCBs varies according to the chlorine substitution at different positions of the biphenyl ring and the physical effects of PCBs vary... attractive alternative for dealing with PCBs due to the high costs of transportation, incineration and other procedures of remediation that currently exist. BT can be used to treat low concentration of contaminants; prevent physical and chemical treatment...

  2. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation

    OpenAIRE

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D. K.; Sharma, G. D.

    2011-01-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPTT) which ...

  3. Crystal Structure of the LasA Virulence Factor from Pseudomonas aeruginosa: Substrate Specificity and Mechanism of M23 Metallopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, James; Murphy, Loretta M.; Conners, Rebecca; Sessions, Richard B.; Gamblin, Steven J. (Wales); (Bristol Med Sci); (NIMR)

    2010-09-21

    Pseudomonas aeruginosa is an opportunist Gram-negative bacterial pathogen responsible for a wide range of infections in immunocompromized individuals and is a leading cause of mortality in cystic fibrosis patients. A number of secreted virulence factors, including various proteolytic enzymes, contribute to the establishment and maintenance of Pseudomonas infection. One such is LasA, an M23 metallopeptidase related to autolytic glycylglycine endopeptidases such as Staphylococcus aureus lysostaphin and LytM, and to DD-endopeptidases involved in entry of bacteriophage to host bacteria. LasA is implicated in a range of processes related to Pseudomonas virulence, including stimulating ectodomain shedding of the cell surface heparan sulphate proteoglycan syndecan-1 and elastin degradation in connective tissue. Here we present crystal structures of active LasA as a complex with tartrate and in the uncomplexed form. While the overall fold resembles that of the other M23 family members, the LasA active site is less constricted and utilizes a different set of metal ligands. The active site of uncomplexed LasA contains a five-coordinate zinc ion with trigonal bipyramidal geometry and two metal-bound water molecules. Using these structures as a starting point, we propose a model for substrate binding by LasA that explains its activity against a wider range of substrates than those used by related lytic enzymes, and offer a catalytic mechanism for M23 metallopeptidases consistent with available structural and mutagenesis data. Our results highlight how LasA is a structurally distinct member of this endopeptidase family, consistent with its activity against a wider range of substrates and with its multiple roles in Pseudomonas virulence.

  4. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index.

    Science.gov (United States)

    Canchignia, Hayron; Altimira, Fabiola; Montes, Christian; Sánchez, Evelyn; Tapia, Eduardo; Miccono, María; Espinoza, Daniel; Aguirre, Carlos; Seeger, Michael; Prieto, Humberto

    2017-03-17

    The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.

  5. Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil.

    Science.gov (United States)

    Frasson, David; Opoku, Michael; Picozzi, Tara; Torossi, Tanja; Balada, Stefanie; Smits, Theo H M; Hilber, Urs

    2017-08-01

    Within the frame of a biotechnological screening, we isolated two Pseudomonas strains from forest soil. 16S rRNA gene sequence analysis indicated that strain CCOS 864T shared 99.8 % similarity with Pseudomonas donghuensis HYST, while strain CCOS 865T shared 99.0 % similarity with Pseudomonas putida DSM 291T and lower similarity with other P. putida group type strains. Based on multilocus sequence analysis, the two strains were genotypically distinct from each other, each forming a separate clade. Strains CCOS 864T and CCOS 865T were Gram-stain-negative, motile and rod-shaped, growing at a temperature range of 4-37 °C. Strain CCOS 864T could be phenotypically distinguished from P. putida group species by the combination of gelatinase-positive reaction and positive growth on N-acetyl-d-glucosamine, p-hydroxyphenylacetic acid and inosine but lack of fluorescein production on King's B medium, while strain CCOS 865T could be distinguished from P. putida group species by the combination of positive growth with saccharic acid and negative growth with p-hydroxyphenylacetic acid and l-pyroglutamic acid. The major polar lipid for both strains was phosphatidylethanolamine; the major quinone was ubiquinone Q-9. DNA-DNA hybridization and average nucleotide identities confirmed the novel species status for the two strains. The DNA G+C contents of CCOS 864T and CCOS 865T were 62.1 and 63.8 mol%, respectively. The phenotypic, phylogenetic and DNA-DNA relatedness data support the suggestion that CCOS 864T and CCOS 865T represent two novel Pseudomonas species. The names Pseudomonas wadenswilerensis sp. nov. (type strain CCOS 864T=LMG 29327T) and Pseudomonas reidholzensis sp. nov. (type strain CCOS 865T=LMG 29328T) are proposed.

  6. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  7. Pseudomonas putida and Pseudomonas fluorescens Species Group Recovery from Human Homes Varies Seasonally and by Environment.

    Directory of Open Access Journals (Sweden)

    Susanna K Remold

    Full Text Available By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms' distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively. Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.

  8. Diuron degradation by bacteria from soil of sugarcane crops

    Directory of Open Access Journals (Sweden)

    Tassia C. Egea

    2017-12-01

    Full Text Available The isolation of microorganisms from soil impacted by xenobiotic chemicals and exposing them in the laboratory to the contaminant can provide important information about their response to the contaminants. The purpose of this study was to isolate bacteria from soil with historical application of herbicides and to evaluate their potential to degrade diuron. The isolation media contained either glucose or diuron as carbon source. A total of 400 bacteria were isolated, with 68% being Gram-positive and 32% Gram-negative. Most isolates showed potential to degrade between 10 and 30% diuron after five days of cultivation; however Stenotrophomonas acidophila TD4.7 and Bacillus cereus TD4.31 were able to degrade 87% and 68%, respectively. The degradation of diuron resulted in the formation of the metabolites DCPMU, DCPU, DCA, 3,4-CAC, 4-CA, 4-CAC and aniline. Based on these results it was proposed that Pseudomonas aeruginosa TD2.3, Stenotrophomonas acidaminiphila TD4.7, B. cereus TD4.31 and Alcaligenes faecalis TG 4.48, act on 3,4-DCA and 4-CA by alkylation and dealkylation while Micrococcus luteus and Achromobacter sp follow dehalogenation directly to aniline. Growth on aniline as sole carbon source demonstrates the capacity of strains to open the aromatic ring. In conclusion, the results show that the role of microorganisms in the degradation of xenobiotics in the environment depends on their own metabolism and also on their synergistic interactions.

  9. Isolation and identification of aerobic polychlorinated biphenyls degrading bacteria

    Directory of Open Access Journals (Sweden)

    Bibi Fatemeh Nabavi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to isolate and identify aerobic polychlorinated biphenyls (PCBs degrading bacteria. Materials and Methods: This study was performed in lab scale aerobic sequencing batch biofilm reactor. Polyurethane foams were used as bio-carrier and synthetic wastewater was prepared with PCBs in transformer oil as the main substrate (20-700 μg/l and acetone as a solvent for PCBs as well as microelements. After achieving to adequate microbial population and acclimation of microorganisms to PCB compounds with high efficiency of PCB removal, identification of degrading microbial species was performed by 16s rRNA gene sequencing of isolated bacteria. Results: Gene sequencing results of the isolated bacteria showed that Rhodococcus spp., Pseudomonas spp., Pseudoxanthomonas spp., Agromyces spp., and Brevibacillus spp. were dominant PCB-degrading bacteria. Conclusion: PCB compounds can be degraded by some microorganisms under aerobic or anaerobic conditions or at least be reduced to low chlorinated congeners, despite their chemical stability and toxicity. Based on the results of the study, five bacterial species capable of degrading PCBs in transformer oil have been identified.

  10. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  11. Degradation of organic pollutants by methane grown microbial consortia.

    Science.gov (United States)

    Hesselsoe, Martin; Boysen, Susanne; Iversen, Niels; Jørgensen, Lars; Murrell, J Colin; McDonald, Ian; Radajewski, Stefan; Thestrup, Helle; Roslev, Peter

    2005-10-01

    Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge ("AAE-A2"), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 degrees C was 3.1 +/- 1.2 mg l(-1) and 8.7 +/- 1.1 mg DBP (g protein x h)(-1), respectively. AAE-A2 also showed fast degradation of BTX (230 +/- 30 nmol benzene (mg protein x h)(-1) at 20 degrees C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83-92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).

  12. Spoilage potential of Pseudomonas species isolated from goat milk.

    Science.gov (United States)

    Scatamburlo, T M; Yamazi, A K; Cavicchioli, V Q; Pieri, F A; Nero, L A

    2015-02-01

    Pseudomonas spp. are usually associated with spoilage microflora of dairy products due to their proteolytic potential. This is of particular concern for protein-based products, such as goat milk cheeses and fermented milks. Therefore, the goal of the present study was to characterize the proteolytic activity of Pseudomonas spp. isolated from goat milk. Goat milk samples (n=61) were obtained directly from bulk tanks on dairy goat farms (n=12), and subjected to a modified International Organization for Standardization (ISO) protocol to determine the number and proteolytic activity of Pseudomonas spp. Isolates (n=82) were obtained, identified by PCR, and subjected to pulsed-field gel electrophoresis with XbaI macro-restriction. Then, the isolates were subjected to PCR to detect the alkaline protease gene (apr), and phenotypic tests were performed to check proteolytic activity at 7°C, 25°C, and 35°C. Mean Pseudomonas spp. counts ranged from 2.9 to 4.8 log cfu/mL, and proteolytic Pseudomonas spp. counts ranged from 1.9 to 4.6 log cfu/mL. All isolates were confirmed to be Pseudomonas spp., and 41 were identified as Pseudomonas fluorescens, which clustered into 5 groups sharing approximately 82% similarity. Thirty-six isolates (46.9%) were positive for the apr gene; and 57 (69.5%) isolates presented proteolytic activity at 7°C, 82 (100%) at 25°C, and 64 (78%) at 35°C. The isolates were distributed ubiquitously in the goat farms, and no relationship among isolates was observed when the goat farms, presence of apr, pulsotypes, and proteolytic activity were taken into account. We demonstrated proteolytic activity of Pseudomonas spp. present in goat milk by phenotypic and genotypic tests and indicated their spoilage potential at distinct temperatures. Based on these findings and the ubiquity of Pseudomonas spp. in goat farm environments, proper monitoring and control of Pseudomonas spp. during production are critical. Copyright © 2015 American Dairy Science Association

  13. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  14. Microbial flora analysis for the degradation of beta-cypermethrin.

    Science.gov (United States)

    Qi, Zhang; Wei, Zhang

    2017-03-01

    In the Xinjiang region of Eurasia, sustained long-term and continuous cropping of cotton over a wide expanse of land is practiced, which requires application of high levels of pyrethroid and other classes of pesticides-resulting in high levels of pesticide residues in the soil. In this study, soil samples were collected from areas of long-term continuous cotton crops with the aim of obtaining microbial resources applicable for remediation of pyrethroid pesticide contamination suitable for the soil type and climate of that area. Soil samples were first used to culture microbial flora capable of degrading beta-cypermethrin using an enrichment culture method. Structural changes and ultimate microbial floral composition during enrichment were analyzed by high-throughput sequencing. Four strains capable of degrading beta-cypermethrin were isolated and preliminarily classified. Finally, comparative rates and speeds of degradation of beta-cypermethrin between relevant microbial flora and single strains were determined. After continuous subculture for 3 weeks, soil sample microbial flora formed a new type of microbial flora by rapid succession, which showed stable growth by utilizing beta-cypermethrin as the sole carbon source (GXzq). This microbial flora mainly consisted of Pseudomonas, Hyphomicrobium, Dokdonella, and Methyloversatilis. Analysis of the microbial flora also permitted separation of four additional strains; i.e., GXZQ4, GXZQ6, GXZQ7, and GXZQ13 that, respectively, belonged to Streptomyces, Enterobacter, Streptomyces, and Pseudomonas. Under culture conditions of 37 °C and 180 rpm, the degradation rate of beta-cypermethrin by GXzq was as high as 89.84% within 96 h, which exceeded that achieved by the single strains GXZQ4, GXZQ6, GXZQ7, and GXZQ13 and their derived microbial flora GXh.

  15. Isolation and Characterization of Pseudomonas spp. Strains That Efficiently Decompose Sodium Dodecyl Sulfate

    Directory of Open Access Journals (Sweden)

    Ewa M. Furmanczyk

    2017-11-01

    Full Text Available Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS. We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher, and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band

  16. Bioadsorption characteristics of Pseudomonas aeruginosa PAOI

    Directory of Open Access Journals (Sweden)

    Kőnig-Péter Anikó

    2014-01-01

    Full Text Available Biosorption of Cd(II and Pb(II ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II adsorption was found to be 5.0, and for Cd(II 5.0 − 6.0. The Pb(II and Cd(II bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II and Cd(II was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II bioadsorption. In case of Cd(II bioadsorption the adsorbed amount decreased with increasing temperature.

  17. Pseudomonas aeruginosa ventilator-associated pneumonia management

    Directory of Open Access Journals (Sweden)

    Ramírez-Estrada S

    2016-01-01

    Full Text Available Sergio Ramírez-Estrada,1 Bárbara Borgatta,1,2 Jordi Rello3,4 1Critical Care Department, Vall d'Hebron University Hospital, 2CRIPS, Vall d'Hebron Institute of Research (VHIR, 3Department of Medicine, Universitat Autònoma de Barcelona (UAB, Barcelona, 4Centro de Investigación Biomédica en Red Enfermedad Respiratoria – CIBERES, Madrid, Spain Abstract: Ventilator-associated pneumonia is the most common infection in intensive care unit patients associated with high morbidity rates and elevated economic costs; Pseudomonas aeruginosa is one of the most frequent bacteria linked with this entity, with a high attributable mortality despite adequate treatment that is increased in the presence of multiresistant strains, a situation that is becoming more common in intensive care units. In this manuscript, we review the current management of ventilator-associated pneumonia due to P. aeruginosa, the most recent antipseudomonal agents, and new adjunctive therapies that are shifting the way we treat these infections. We support early initiation of broad-spectrum antipseudomonal antibiotics in present, followed by culture-guided monotherapy de-escalation when susceptibilities are available. Future management should be directed at blocking virulence; the role of alternative strategies such as new antibiotics, nebulized treatments, and vaccines is promising. Keywords: multidrug-resistant, ICU, new-antibiotics, adjunctive-therapies, care-bundles

  18. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wooseong Kim

    Full Text Available Understanding the effects of spaceflight on microbial communities is crucial for the success of long-term, manned space missions. Surface-associated bacterial communities, known as biofilms, were abundant on the Mir space station and continue to be a challenge on the International Space Station. The health and safety hazards linked to the development of biofilms are of particular concern due to the suppression of immune function observed during spaceflight. While planktonic cultures of microbes have indicated that spaceflight can lead to increases in growth and virulence, the effects of spaceflight on biofilm development and physiology remain unclear. To address this issue, Pseudomonas aeruginosa was cultured during two Space Shuttle Atlantis missions: STS-132 and STS-135, and the biofilms formed during spaceflight were characterized. Spaceflight was observed to increase the number of viable cells, biofilm biomass, and thickness relative to normal gravity controls. Moreover, the biofilms formed during spaceflight exhibited a column-and-canopy structure that has not been observed on Earth. The increase in the amount of biofilms and the formation of the novel architecture during spaceflight were observed to be independent of carbon source and phosphate concentrations in the media. However, flagella-driven motility was shown to be essential for the formation of this biofilm architecture during spaceflight. These findings represent the first evidence that spaceflight affects community-level behaviors of bacteria and highlight the importance of understanding how both harmful and beneficial human-microbe interactions may be altered during spaceflight.

  19. Benzoate transport in Pseudomonas putida CSV86.

    Science.gov (United States)

    Choudhary, Alpa; Purohit, Hemant; Phale, Prashant S

    2017-07-03

    Pseudomonas putida strain CSV86 metabolizes variety of aromatic compounds as the sole carbon source. Genome analysis revealed the presence of genes encoding putative transporters for benzoate, p-hydroxybenzoate, phenylacetate, p-hydroxyphenylacetate and vanillate. Bioinformatic analysis revealed that benzoate transport and metabolism genes are clustered at the ben locus as benK-catA-benE-benF. Protein topology prediction suggests that BenK (aromatic acid-H+ symporter of major facilitator superfamily) has 12 transmembrane α-helices with the conserved motif LADRXGRKX in loop 2, while BenE (benzoate-H+ symporter protein) has 11 predicted transmembrane α-helices. benF and catA encode benzoate specific porin, OprD and catechol 1,2-dioxygenase, respectively. Biochemical studies suggest that benzoate was transported by an inducible and active process. Inhibition (90%-100%) in the presence of dinitrophenol suggests that the energy for the transport process is derived from the proton motive force. The maximum rate of benzoate transport was 484 pmole min-1 mg-1 cells with an affinity constant, Kmof 4.5 μM. Transcriptional analysis of the benzoate and glucose-grown cells showed inducible expression of benF, benK and benE, suggesting that besides outer membrane porin, both inner membrane transporters probably contribute for the benzoate transport in P. putida strain CSV86. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Antivirulence activity of azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Francesco eImperi

    2014-04-01

    Full Text Available Antibiotics represent our bulwark to combat bacterial infections, but the spread of antibiotic resistance compromises their clinical efficacy. Alternatives to conventional antibiotics are urgently needed in order to complement the existing antibacterial arsenal. The macrolide antibiotic azithromycin (AZM provides a paradigmatic example of an unconventional antibacterial drug. Besides its growth-inhibiting activity, AZM displays potent anti-inflammatory properties, as well as antivirulence activity on some intrinsically resistant bacteria, such as Pseudomonas aeruginosa. In this bacterium, the antivirulence activity of AZM mainly relies on its ability to interact with the ribosome, resulting in direct and/or indirect repression of specific subsets of genes involved in virulence, quorum sensing, biofilm formation and intrinsic antibiotic resistance. Both clinical experience and clinical trials have shown the efficacy of AZM in the treatment of chronic pulmonary infections caused by P. aeruginosa. The aim of this review is to combine results from laboratory studies with evidence from clinical trials in order to unify the information on the in vivo mode of action of AZM in P. aeruginosa infection.

  1. Development of a Pseudomonas aeruginosa Agmatine Biosensor

    Directory of Open Access Journals (Sweden)

    Adam Gilbertsen

    2014-10-01

    Full Text Available Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice.

  2. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens is...

  4. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.

    Science.gov (United States)

    Simon, Oliver; Klaiber, Iris; Huber, Armin; Pfannstiel, Jens

    2014-09-23

    Understanding of the molecular response of bacteria to precursors, products and environmental conditions applied in bioconversions is essential for optimizing whole-cell biocatalysis. To investigate the molecular response of the potential biocatalyst Pseudomonas putida KT2440 to the flavor compound vanillin we applied complementary gel- and LC-MS-based quantitative proteomics approaches. Our comprehensive proteomics survey included cytoplasmic and membrane proteins and led to the identification and quantification of 1614 proteins, corresponding to 30% of the total KT2440 proteome. 662 proteins were altered in abundance during growth on vanillin as sole carbon source as compared to growth on glucose. The proteome response entailed an increased abundance of enzymes involved in vanillin degradation, significant changes in central energy metabolism and an activation of solvent tolerance mechanisms. With respect to vanillin metabolism, particularly enzymes belonging to the β-ketoadipate pathway including a transcriptional regulator and porins specific for vanillin uptake increased in abundance. However, catabolism of vanillin was not dependent on vanillin dehydrogenase (Vdh), as shown by quantitative proteome analysis of a Vdh-deficient KT2440 mutant (GN235). Other aldehyde dehydrogenases that were significantly increased in abundance in response to vanillin may replace Vdh and thus may represent interesting targets for improving vanillin production in P. putida KT2440. The high demand for the flavor compound vanillin by the food and fragrance industry makes natural vanillin from vanilla pods a scarce and expensive resource rendering its biotechnological production economically attractive. Pseudomonas bacteria are metabolically very versatile and accept a broad range of hydrocarbons as carbon source making them suitable candidates for bioconversion processes. This work describes the impact of vanillin on the metabolism of the reference strain P. putida KT2440 on a

  5. Pseudomonas cepacia adherence to respiratory epithelial cells is enhanced by Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Saiman, L.; Cacalano, G.; Prince, A.

    1990-01-01

    Pseudomonas aeruginosa and Pseudomonas cepacia are both opportunistic pathogens of patients with cystic fibrosis. The binding characteristics of these two species were compared to determine if they use similar mechanisms to adhere to respiratory epithelial cells. P. cepacia 249 was shown to be piliated, but there was no detectable homology between P. aeruginosa pilin gene probes and P. cepacia genomic DNA. P. cepacia and P. aeruginosa did not appear to compete for epithelial receptors. In the presence of purified P. aeruginosa pili, the adherence of 35S-labeled strain 249 to respiratory epithelial monolayers was unaffected, while that of P. aeruginosa PAO1 was decreased by 55%. The binding of P. cepacia 249 and 715j was increased by 2.4-fold and 1.5-fold, respectively, in the presence of an equal inoculum of PAO1. Interbacterial agglutination contributed to the increased adherence of P. cepacia, as the binding of 249 was increased twofold in the presence of irradiated PAO1. PAO1 exoproducts had a marked effect in enhancing the ability of the P. cepacia strains to adhere to the epithelial monolayers. A PAO1 supernatant increased the binding of 249 by eightfold and that of 715j by fourfold. Thus, there appears to be a synergistic relationship between P. aeruginosa and P. cepacia in which PAO1 exoproducts modify the epithelial cell surface, exposing receptors and facilitating increased P. cepacia attachment

  6. Polythene and Plastics-degrading microbes from the mangrove soil

    Directory of Open Access Journals (Sweden)

    K Kathiresan

    2003-09-01

    Full Text Available Biodegradation of polythene bags and plastic cups was analyzed after 2, 4, 6, and 9 months of incubation in the mangrove soil. The biodegradation of polythene bags was significantly higher (up to 4.21% in 9 months than that of plastic cups (up to 0.25% in 9 months. Microbial counts in the degrading materials were recorded up to 79.67 x 10 4 per gram for total heterotrophic bacteria, and up to 55.33 x 10 2 per gram for fungi. The microbial species found associated with the degrading materials were identified as five Gram positive and two Gram negative bacteria, and eight fungal species of Aspergillus. The species that were predominant were Streptococcus, Staphylococcus, Micrococcus (Gram +ve, Moraxella, and Pseudomonas (Gram -ve and two species of fungi (Aspergillus glaucus and A. niger. Efficacy of the microbial species in degradation of plastics and polythene was analyzed in shaker cultures. Among the bacteria, Pseudomonas species degraded 20.54% of polythene and 8.16% of plastics in one-month period. Among the fungal species, Aspergillus glaucus degraded 28.80% of polythene and 7.26% of plastics in one-month period. This work reveals that the mangrove soil is a good source of microbes capable of degrading polythene and plasticsLa biodegradación de las bolsas de polietileno y vasos de plástico fue analizada después de 2, 4, 6 y 9 meses de incubación en suelo de manglar. La biodegradación de las bolsas fue significativamente más alta (hasta 4.21% en 9 meses que los vasos plásticos (hasta 0.25% en 9 meses. Los conteos microbianos en los materiales degradados mostraron hasta 79.67 x 10(4 por gramo para las bacterias heterotroficas totales, y hasta 55.33 x 10² por gramo para los hongos. Se identificó 5 especies microbianas Gram positivas, 2 Gram negativas, y 8 especies de hongos del género Aspergillus en asociación con materiales degradados. Las especies predominantes fueron Streptococcus, Staphylococcus, Micrococcus (Gram +, Moraxella

  7. Use of Silica-Encapsulated Pseudomonas sp. Strain NCIB 9816-4 in Biodegradation of Novel Hydrocarbon Ring Structures Found in Hydraulic Fracturing Waters

    Science.gov (United States)

    Aukema, Kelly G.; Kasinkas, Lisa; Aksan, Alptekin

    2014-01-01

    The most problematic hydrocarbons in hydraulic fracturing (fracking) wastewaters consist of fused, isolated, bridged, and spiro ring systems, and ring systems have been poorly studied with respect to biodegradation, prompting the testing here of six major ring structural subclasses using a well-characterized bacterium and a silica encapsulation system previously shown to enhance biodegradation. The direct biological oxygenation of spiro ring compounds was demonstrated here. These and other hydrocarbon ring compounds have previously been shown to be present in flow-back waters and waters produced from hydraulic fracturing operations. Pseudomonas sp. strain NCIB 9816-4, containing naphthalene dioxygenase, was selected for its broad substrate specificity, and it was demonstrated here to oxidize fundamental ring structures that are common in shale-derived waters but not previously investigated with this or related enzymes. Pseudomonas sp. NCIB 9816-4 was tested here in the presence of a silica encasement, a protocol that has previously been shown to protect bacteria against the extremes of salinity present in fracking wastewaters. These studies demonstrate the degradation of highly hydrophobic compounds by a silica-encapsulated model bacterium, demonstrate what it may not degrade, and contribute to knowledge of the full range of hydrocarbon ring compounds that can be oxidized using Pseudomonas sp. NCIB 9816-4. PMID:24907321

  8. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  9. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  10. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    International Nuclear Information System (INIS)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo; Rosa, Derval dos Santos

    2011-01-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  11. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways

    NARCIS (Netherlands)

    Poelarends, GJ; Kulakov, LA; Larkin, MJ; van Hylckama Vlieg, Johan E.T.; Janssen, DB

    The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct

  12. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation...... of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P.putidaDOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P.extremaustralis and the second strain of P.putida to have their transcriptomes analysed for sRNAs, and we identify...... the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited...

  13. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  14. Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa.

    Science.gov (United States)

    Sabaeifard, Parastoo; Abdi-Ali, Ahya; Soudi, Mohammad Reza; Gamazo, Carlos; Irache, Juan Manuel

    2016-10-10

    Amikacin is a very effective aminoglycoside antibiotic but according to its high toxicity, the use of this antibiotic has been limited. The aim of this study was to formulate and characterize amikacin loaded PLGA nanoparticles. Nanoparticles were synthetized using a solid-in-oil-in-water emulsion technique with different ratio of PLGA 50:50 (Resomer 502H) to drug (100:3.5, 80:3.5 and 60:3.5), two different concentrations of stabilizer (pluronic F68) (0.5% or 1%) and varied g forces to recover the final products. The most efficient formulation based on drug loading (26.0±1.3μg/mg nanoparticle) and encapsulation efficiency (76.8±3.8%) was the one obtained with 100:3.5 PLGA:drug and 0.5% luronic F68, recovered by 20,000×g for 20min. Drug release kinetic study indicated that about 50% of the encapsulated drug was released during the first hour of incubation in phospahte buffer, pH7.4, 37°C, 120rpm. Using different cell viability/cytotoxicity assays, the optimized formulation showed no toxicity against RAW macrophages after 2 and 24h of exposure. Furthermore, released drug was active and maintained its bactericidal activity against Pseudomonas aeruginosa in vitro. These results support the effective utilization of the PLGA nanoparticle formulation for amikacin in further in vivo studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Chromosomal organization and segregation in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Isabelle Vallet-Gely

    2013-05-01

    Full Text Available The study of chromosomal organization and segregation in a handful of bacteria has revealed surprising variety in the mechanisms mediating such fundamental processes. In this study, we further emphasized this diversity by revealing an original organization of the Pseudomonas aeruginosa chromosome. We analyzed the localization of 20 chromosomal markers and several components of the replication machinery in this important opportunistic γ-proteobacteria pathogen. This technique allowed us to show that the 6.3 Mb unique circular chromosome of P. aeruginosa is globally oriented from the old pole of the cell to the division plane/new pole along the oriC-dif axis. The replication machinery is positioned at mid-cell, and the chromosomal loci from oriC to dif are moved sequentially to mid-cell prior to replication. The two chromosomal copies are subsequently segregated at their final subcellular destination in the two halves of the cell. We identified two regions in which markers localize at similar positions, suggesting a bias in the distribution of chromosomal regions in the cell. The first region encompasses 1.4 Mb surrounding oriC, where loci are positioned around the 0.2/0.8 relative cell length upon segregation. The second region contains at least 800 kb surrounding dif, where loci show an extensive colocalization step following replication. We also showed that disrupting the ParABS system is very detrimental in P. aeruginosa. Possible mechanisms responsible for the coordinated chromosomal segregation process and for the presence of large distinctive regions are discussed.

  16. The Versatile Mutational Resistome of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carla López-Causapé

    2018-04-01

    Full Text Available One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.

  17. The Versatile Mutational Resistome of Pseudomonas aeruginosa.

    Science.gov (United States)

    López-Causapé, Carla; Cabot, Gabriel; Del Barrio-Tofiño, Ester; Oliver, Antonio

    2018-01-01

    One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.

  18. Pseudomonas fluorescens' view of the periodic table.

    Science.gov (United States)

    Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J

    2008-01-01

    Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.

  19. Bis(carbazol-9-ylphenyl)aniline end-capped oligoarylenes as solution-processed nondoped emitters for full-emission color tuning organic light-emitting diodes.

    Science.gov (United States)

    Khanasa, Tanika; Prachumrak, Narid; Rattanawan, Rattanawaree; Jungsuttiwong, Siriporn; Keawin, Tinnagon; Sudyoadsuk, Taweesak; Tuntulani, Thawatchai; Promarak, Vinich

    2013-07-05

    A series of bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline end-capped oligoarylenes, BCPA-Ars, are synthesized by double palladium-catalyzed cross-coupling reactions. By using this bis(carbazol-9-yl)triphenylamine moiety as an end-cap, we are able to reduce the crystallization and retain the high-emission ability of these planar fluorescent oligoarylene cores in the solid state, as well as improve the amorphous stability and solubility of the materials. The results of optical and electrochemical studies show that their HOMOs, LUMOs, and energy gaps can be easily modified or fine-tuned by either varying the degree of π-conjugation or using electron affinities of the aryl cores which include fluorene, oligothiophenes, 2,1,3-benzothiadiazole, 4,7-diphenyl-4-yl-2,1,3-benzothiadiazole, and 4,7-dithien-2-yl-2,1,3-benzothiadiazole. As a result, their emission spectra measured in solution and thin films can cover the full UV-vis spectrum (426-644 nm). Remarkably, solution-processed nondoped BCPA-Ars-based OLEDs could show moderate to excellent device performance with emission colors spanning the whole visible spectrum (deep blue to red). Particularly, the RGB (red, green, blue) OLEDs exhibit good color purity close to the pure RGB colors. This report offers a practical approach for both decorating the highly efficient but planar fluorophores and tuning their emission colors to be suitable for applications in nondoped and solution-processable full-color emission OLEDs.

  20. 5,6,7,9-Tetrahydro-[1,3]dioxolo[4,5-h]carbazol-8-one: A solvatochromic PET-acceptor fluorescent probe

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sujay [Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Mitra, Amrit Krishna [Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073 (India); Basu, Samita, E-mail: samita.basu@saha.ac.in [Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Chakraborty, Suchandra; Saha, Chandan [Department of Clinical and Experimental Pharmacology, School of Tropical Medicine, Kolkata 700073 (India)

    2014-09-15

    In the present work, 5,6,7,9-tetrahydro-[1,3]dioxolo[4,5-h]carbazol-8-one (TDCO) has been established as a solvatochromic probe and an acceptor of photoinduced electron transfer through electronic absorption spectroscopy, steady-state and time-resolved fluorescence measurements and also by using the laser flash photolysis technique. Fluorescence spectra of the compound are more sensitive than its absorption spectra towards the nature of solvent and the composition of solvent mixture. In solvents with higher dielectric constant and better H-bond formation ability, fluorescence maximum of the compound shifts toward red. The reasons behind such solvent sensitivity of TDCO in electronic excited state are its higher dipole moment in excited state and formation of hydrogen bond with solvents. TDCO interacts with aromatic amine bases N,N-dimethylaniline (DMA) and N,N-diethylaniline (DEA) in excited state and as a consequence its fluorescence intensity and lifetime are quenched. The quenching order is the same as the order of ionization potential of the amines. Transient absorption studies indicate the involvement of photoinduced electron transfer from the amines to TDCO as a result of which the corresponding radical cations and anions have been formed. Simulation studies show that TDCO has the tendency to remain in stacked conformation with DMA and DEA, which facilitates photoinduced electron transfer. - Highlights: • Emission spectrum of TDCO is a mirror image of its absorption spectrum. • Both electrostatic and H-bonding interactions influence TDCO emission maxima. • Acidity and basicity of solvent influence TDCO emission maxima the most. • Organic bases DMA and DEA quench TDCO fluorescence via PET mechanism. • DMA and DEA interact with TDCO via stacked conformation which is perfect for PET.

  1. Delineation of G-Quadruplex Alkylation Sites Mediated by 3,6-Bis(1-methyl-4-vinylpyridinium iodide)carbazole-Aniline Mustard Conjugates.

    Science.gov (United States)

    Chen, Chien-Han; Hu, Tsung-Hao; Huang, Tzu-Chiao; Chen, Ying-Lan; Chen, Yet-Ran; Cheng, Chien-Chung; Chen, Chao-Tsen

    2015-11-23

    A new G-quadruplex (G-4)-directing alkylating agent BMVC-C3M was designed and synthesized to integrate 3,6-bis(1-methyl-4-vinylpyridinium iodide)carbazole (BMVC) with aniline mustard. Various telomeric G-4 structures (hybrid-2 type and antiparallel) and an oncogene promoter, c-MYC (parallel), were constructed to react with BMVC-C3M, yielding 35 % alkylation yield toward G-4 DNA over other DNA categories (alkylation adducts by electrospray ionization mass spectroscopy (ESI-MS) revealed the stepwise DNA alkylation mechanism of aniline mustard for the first time. Furthermore, the monoalkylation sites and intrastrand cross-linking sites were determined and found to be dependent on G-4 topology based on the results of footprinting analysis in combination with mass spectroscopic techniques and in silico modeling. The results indicated that BMVC-C3M preferentially alkylated at A15 (H26), G12 (H24), and G2 (c-MYC), respectively, as monoalkylated adducts and formed A15-C3M-A21 (H26), G12-C3M-G4 (H24), and G2-C3M-G4/G17 (c-MYC), respectively, as cross-linked dialkylated adducts. Collectively, the stability and site-selective cross-linking capacity of BMVC-C3M provides a credible tool for the structural and functional characterization of G-4 DNAs in biological systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Combination of microautoradiography and fluorescence in situ hybridization for identification of microorganisms degrading xenobiotic contaminants.

    Science.gov (United States)

    Yang, Yanru; Zarda, Annatina; Zeyer, Josef

    2003-12-01

    One of the central topics in environmental bioremediation research is to identify microorganisms that are capable of degrading the contaminants of interest. Here we report application of combined microautoradiography (MAR) and fluorescence in situ hybridization (FISH). The method has previously been used in a number of systems; however, here we demonstrate its feasibility in studying the degradation of xenobiotic compounds. With a model system (coculture of Pseudomonas putida B2 and Sphingomonas stygia incubated with [14C] o-nitrophenol), combination of MAR and FISH was shown to be able to successfully identify the microorganisms degrading o-nitrophenol. Compared with the conventional techniques, MAR-FISH allows fast and accurate identification of the microorganisms involved in environmental contaminant degradation.

  3. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  4. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  5. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  6. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  7. [Risk factors for Pseudomonas aeruginosa infections, resistant to carbapenem].

    Science.gov (United States)

    Ghibu, Laura; Miftode, Egidia; Teodor, Andra; Bejan, Codrina; Dorobăţ, Carmen Mihaela

    2010-01-01

    Since their introduction in clinical practice,carbapenems have been among the most powerful antibiotics for treating serious infections cased by Gram-negative nosocomial pathogens, including Pseudomonas aeruginosa. The emergence of betalactamases with carbapenem-hydrolyzing activity is of major clinical concern. Pseudomonas aeruginosa is a leading cause of nosocomial infection. Risk factors for colonization with carbapenems-resistant Pseudomonas in hospital are: history of P. aeruginosa infection or colonization within the previous year, (length of hospital stay, being bedridden or in the ICU, mechanical ventilation, malignant disease, and history of chronic obstructive pulmonary disease have all been identified as independent risk factors for MDR P. aeruginosa infection. Long-term-care facilities are also reservoirs of resistant bacteria. Risk factors for colonization of LTCF residents with resistant bacteria included age > 86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit.

  8. Uji produksi biosurfaktan oleh Pseudomonas sp. pada substrat yang berbeda

    Directory of Open Access Journals (Sweden)

    Fatimah Fatimah

    2012-02-01

    Full Text Available Biosurfactant, microbial metabolite whose properties like surfactant, was suggested to replace chemically synthesized surfactant for take in hand environtmental pollution by petroleum hydrocarbon. This work was done to examine potency of Pseudomonas sp. isolated from Tanjung Perak Harbor to produce biosurfactant. Also, to know the effect of different substrates (glucose + yeast extract, lubricating oil and hexadecane toward biosurfactant production. Pseudomonas sp. grown in mineral synthetic water and biosurfactant production was measured on stationary phase. Biosurfactant production based on emulsification activity and surface tension reduction of supernatant (using Du Nouy tensiometer. Solar, lubricating oil, and hexadecane were used to examine emulsification activity. Results indicated that Pseudomonas sp. have a potency to produce biosurfactant. Surface tension of supernatant decreased up to 20 dyne/cm, when grown on hexadecane substrate. Hexadecane is the best growing substrate for biosurfactant production than others.

  9. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  10. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis.

    Science.gov (United States)

    Johansen, Helle Krogh; Gøtzsche, Peter C

    2015-08-23

    Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. This is an update of a previously published review. To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search 30 March 2015). We previously searched PubMed using the terms vaccin* AND cystic fibrosis (last search 30 May 2013). Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. The authors independently selected trials, assessed them and extracted data. Six trials were identified. Two trials were excluded since they were not randomised and one old, small trial because it was not possible to assess whether is was randomised. The three included trials comprised 483, 476 and 37 patients, respectively. No data have been published from one of the large trials, but the company stated in a press release that the trial failed to confirm the results from an earlier study and that further clinical development was suspended. In the other large trial, relative risk for chronic infection was 0.91 (95% confidence interval 0.55 to 1.49), and in the small trial, the risk was also close to one. In the large trial, one patient was reported to have died in the observation period. In that trial, 227 adverse events (4 severe) were registered in the vaccine group and 91 (1 severe) in the control group. In this large trial of a vaccine developed against flagella antigens, antibody titres against the epitopes contained in the vaccine were higher in the vaccine group compared to the placebo group (P Vaccines against

  11. Regulation of phenylacetic acid uptake is sigma54 dependent in Pseudomonas putida CA-3.

    LENUS (Irish Health Repository)

    O' Leary, Niall D

    2011-10-13

    Abstract Background Styrene is a toxic and potentially carcinogenic alkenylbenzene used extensively in the polymer processing industry. Significant quantities of contaminated liquid waste are generated annually as a consequence. However, styrene is not a true xenobiotic and microbial pathways for its aerobic assimilation, via an intermediate, phenylacetic acid, have been identified in a diverse range of environmental isolates. The potential for microbial bioremediation of styrene waste has received considerable research attention over the last number of years. As a result the structure, organisation and encoded function of the genes responsible for styrene and phenylacetic acid sensing, uptake and catabolism have been elucidated. However, a limited understanding persists in relation to host specific regulatory molecules which may impart additional control over these pathways. In this study the styrene degrader Pseudomonas putida CA-3 was subjected to random mini-Tn5 mutagenesis and mutants screened for altered styrene\\/phenylacetic acid utilisation profiles potentially linked to non-catabolon encoded regulatory influences. Results One mutant, D7, capable of growth on styrene, but not on phenylacetic acid, harboured a Tn5 insertion in the rpoN gene encoding σ54. Complementation of the D7 mutant with the wild type rpoN gene restored the ability of this strain to utilise phenylacetic acid as a sole carbon source. Subsequent RT-PCR analyses revealed that a phenylacetate permease, PaaL, was expressed in wild type P. putida CA-3 cells utilising styrene or phenylacetic acid, but could not be detected in the disrupted D7 mutant. Expression of plasmid borne paaL in mutant D7 was found to fully restore the phenylacetic acid utilisation capacity of the strain to wild type levels. Bioinformatic analysis of the paaL promoter from P. putida CA-3 revealed two σ54 consensus binding sites in a non-archetypal configuration, with the transcriptional start site being resolved by

  12. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    Science.gov (United States)

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  13. 40 CFR 180.1145 - Pseudomonas syringae; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Pseudomonas syringae; exemption from... FOOD Exemptions From Tolerances § 180.1145 Pseudomonas syringae; exemption from the requirement of a tolerance. Pseudomonas syringae is exempted from the requirement of a tolerance on all raw agricultural...

  14. Conservation of the response regulator gene gacA in Pseudomonas species

    NARCIS (Netherlands)

    Souza, J.T.; Mazzola, M.; Raaijmakers, J.M.

    2003-01-01

    The response regulator gene gacA influences the production of several secondary metabolites in both pathogenic and beneficial Pseudomonas spp. In this study, we developed primers and a probe for the gacA gene of Pseudomonas species and sequenced a 425 bp fragment of gacA from ten Pseudomonas strains

  15. Ultraviolet-B lethal damage on Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Degiorgi, C.F.; Fernandez, R.O.; Pizarro, R.A.

    1996-01-01

    Pseudomonas aeruginosa has shown an increased sensitivity compared with that of Escherichia coli and Enterobacter cloacae, when they were exposed to 0.4 kJ/m2 of ultraviolet-B radiation. The rapid decay in cell viability observed in Pseudomonas aeruginosa after the irradiation was influenced by factors such as culture media and the presence of pyocyanine during the irradiation. The radioinduced lethal damage could be prevented by photoreactivating treatment, indicating that pyrimidine dimer formation was the mechanism causing bacterial death. The results indicate that several environmental conditions may act as protective agents against ultraviolet-B-induced damage

  16. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    Science.gov (United States)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  17. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  18. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  19. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  20. Effectiveness of a model constructed wetland system containing Cyperus papyrus in degrading diesel oil

    Science.gov (United States)

    Harbowo, Danni Gathot; Choesin, Devi Nandita

    2014-03-01

    Synergism between wetland systems and the provision of degrading bacterial inoculum is now being developed for the recovery of areas polluted waters of pollutants. In connection with the frequent cases of diesel oil pollution in the waters of Indonesia, we need a way of water treatment as an efficient. In this study conducted a series of tests to develop an construcred wetland design that can effectively degrade diesel oil. Tested five systems: blanko (A), substrated, without bacterial inoculums, and vegetation (B); with the addition of inoculum (C); subsrated and vegetated (D); substrated and vegetated with the addition of inoculum (E). Vegetation used in this study is Cyperus papyrus because it has the ability to absorb pollutants. Inoculum used was Pseudomonas aeruginosa and Enterobacter aerogenes which is a bacteria degrading organic compounds commonly found in water. To measure the effectiveness of the system, use several indicators to see the degradation of pollutants, namely changes in viscosity, surface tension of pollutants, and the emergence of compound degradation. Based on the results of the study can be determined that the substrated and vegetated system with Cyperus papyrus inoculum (E) was considered the most capable of degrading diesel oil due to the large changes in all parameters. In the system E, 40.6% increase viscosity, surface tension decreased 32.7%, the appearance of degradation compounds with relatively 3614.7 points, and increased to 227.8% TDS. In addition the environmental conditions in the system E also supports the growth of vegetation and degrading microbes.