WorldWideScience

Sample records for carbanions

  1. Transmetallation and silylation products of aminal carbanions.

    Science.gov (United States)

    Kamps, Ina; Langlitz, Irina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2009-10-21

    Reactions of the lithiated carbanion [(RLi)(2).(RH)] (R = MeN[CH(2)N(Me)](2)CH, 2,4,6-trimethyl-2,4,6-triazacyclohex-1-yl) with dialkylaluminium and -gallium chlorides lead to the corresponding dialkylaluminium and -gallium compounds (RAlMe(2))(2), (RAlEt(2))(2) and (RGaEt(2))(2). They were characterised by elemental analyses, NMR spectroscopy ((1)H, (13)C, (27)Al) and crystal structure determinations. In the solid state the aluminium and gallium compounds form dimers by intermolecular coordination between the metal acceptor and the nitrogen donor leading to six-membered M(2)C(2)N(2) rings in chair conformation. As a first test for the synthetic utility of [(RLi)(2).(RH)], nucleophilic aminomethylation of chlorotrimethylsilane was performed to give RSiMe(3). Further deprotonation of RSiMe(3) with tBuLi occurs at one of the methyl groups bound to the silicon atom leading to RMe(2)SiCH(2)Li. Reactions with dimethylaluminium and -gallium chlorides gave RMe(2)SiCH(2)AlMe(2) and RMe(2)SiCH(2)GaMe(2). The compounds were characterised by NMR spectroscopy ((1)H, (13)C, (29)Si, (27)Al), elemental analyses and single crystal X-ray diffraction. The compounds are monomeric in the solid state with intramolecular M-N bonds (M = Al, Ga) leading to five-membered rings. PMID:19789789

  2. Nucleophilic Substitution Reaction of p-Dinitrobenzene by a Carbanion: Evidence for Electron Transfer Mechanism

    Institute of Scientific and Technical Information of China (English)

    LIU,You-Cheng(刘有成); ZHANG,Kai-Dong(张凯东); L(U),Jian-Ming(吕建明); WU,Long-min(吴隆民); LIU,Zhong-Li(刘中立)

    2002-01-01

    On the basis of investigation of cyclic voltmmnetry, EPR spectroscopy and competition experunebts, the nucleophilic substitution reaction of p-dinitrobenzene with the sodium salt of ethyl α-cyanoacetate carbanion in dimethyl sulfoxide giving ethyl α-cyano- α- (p-nitrophenyl) acetate is shown to take place via the intermediacy of dinitrobenzene radical anion. The reaction rate goes faster than that between p-nitrohalobenzenes and the same sodium salt of ethyl α-cyanoacetate carbanion. There is an evidence for a single electron transfer mechanism.

  3. Stereoselective nucleophilic fluoromethylation of aryl ketones: dynamic kinetic resolution of chiral α-fluoro carbanions.

    Science.gov (United States)

    Shen, Xiao; Miao, Wenjun; Ni, Chuanfa; Hu, Jinbo

    2014-01-13

    Although many methods are available for the synthesis of optically enriched monofluoromethyl secondary alcohols, synthesizing optically enriched monofluoromethyl tertiary alcohols remains a challenge. An efficient and easy-to-handle nucleophilic fluoromethylation protocol was developed. The current monofluoromethylation showed much higher facial selectivity than the corresponding difluoromethylation and proceeded via a different type of transition state. Excellent stereoselective control at the fluorinated carbon chiral center was found, an effect believed to be facilitated by the dynamic kinetic resolution of the chiral α-fluoro carbanions.

  4. Mercury Methylation by HgcA: Theory Supports Carbanion Transfer to Hg(II)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [University of Tennessee (UT); Riccardi, Demian M [ORNL; Beste, Ariana [ORNL; Smith, Jeremy C [ORNL; Parks, Jerry M [ORNL

    2014-01-01

    Many proteins use corrinoid cofactors to facilitate methyl transfer reactions. Recently, a corrinoid protein, HgcA, has been shown to be required for the production of the neurotoxin methylmercury by anaerobic bacteria. A strictly conserved Cys residue in HgcA was predicted to be a lower-axial ligand to Co(III), which has never been observed in a corrinoid protein. Here, we use density functional theory to study homolytic and heterolytic Co-C bond dissociation and methyl transfer to Hg(II) substrates with model methylcobalamin complexes containing a lower-axial Cys or His ligand to cobalt, the latter of which is commonly found in other corrinoid proteins. We find that Cys thiolate coordination to Co facilitates both methyl radical and methyl carbanion transfer to Hg(II) substrates, but carbanion transfer is more favorable overall in the condensed phase. Thus, our findings are consistent with HgcA representing a new class of corrinoid protein capable of transferring methyl groups to electrophilic substrates.

  5. Chiral fluorinated α-sulfonyl carbanions: enantioselective synthesis and electrophilic capture, racemization dynamics, and structure.

    Science.gov (United States)

    Hellmann, Gunther; Hack, Achim; Thiemermann, Eric; Luche, Olaf; Raabe, Gerhard; Gais, Hans-Joachim

    2013-03-18

    Enantiomerically pure triflones R(1) CH(R(2) )SO2 CF3 have been synthesized starting from the corresponding chiral alcohols via thiols and trifluoromethylsulfanes. Key steps of the syntheses of the sulfanes are the photochemical trifluoromethylation of the thiols with CF3 Hal (Hal=halide) or substitution of alkoxyphosphinediamines with CF3 SSCF3 . The deprotonation of RCH(Me)SO2 CF3 (R=CH2 Ph, iHex) with nBuLi with the formation of salts [RC(Me)SO2 CF3 ]Li and their electrophilic capture both occurred with high enantioselectivities. Displacement of the SO2 CF3 group of (S)-MeOCH2 C(Me)(CH2 Ph)SO2 CF3 (95 % ee) by an ethyl group through the reaction with AlEt3 gave alkane MeOCH2 C(Me)(CH2 Ph)Et of 96 % ee. Racemization of salts [R(1) C(R(2) )SO2 CF3 ]Li follows first-order kinetics and is mainly an enthalpic process with small negative activation entropy as revealed by polarimetry and dynamic NMR (DNMR) spectroscopy. This is in accordance with a Cα S bond rotation as the rate-determining step. Lithium α-(S)-trifluoromethyl- and α-(S)-nonafluorobutylsulfonyl carbanion salts have a much higher racemization barrier than the corresponding α-(S)-tert-butylsulfonyl carbanion salts. Whereas [PhCH2 C(Me)SO2 tBu]Li/DMPU (DMPU = dimethylpropylurea) has a half-life of racemization at -105 °C of 2.4 h, that of [PhCH2 C(Me)SO2 CF3 ]Li at -78 °C is 30 d. DNMR spectroscopy of amides (PhCH2 )2 NSO2 CF3 and (PhCH2 )N(Ph)SO2 CF3 gave NS rotational barriers that seem to be distinctly higher than those of nonfluorinated sulfonamides. NMR spectroscopy of [PhCH2 C(Ph)SO2 R]M (M=Li, K, NBu4 ; R=CF3 , tBu) shows for both salts a confinement of the negative charge mainly to the Cα atom and a significant benzylic stabilization that is weaker in the trifluoromethylsulfonyl carbanion. According to crystal structure analyses, the carbanions of salts {[PhCH2 C(Ph)SO2 CF3 ]Li⋅L}2 (L=2 THF, tetramethylethylenediamine (TMEDA)) and [PhCH2 C(Ph)SO2 CF3 ]NBu4 have

  6. Nucleophilic Benzoylation Using a Mandelic Acid Dioxolanone as a Synthetic Equivalent of the Benzoyl Carbanion. Oxidative Decarboxylation of α-Hydroxyacids

    Directory of Open Access Journals (Sweden)

    José R. Pedro

    2004-04-01

    Full Text Available The synthesis of alkyl aryl ketones using a mandelic acid dioxolanone as a synthetic equivalent (Umpolung of the benzoyl carbanion is reported. The methodology involves alkylation of the mandelic acid dioxolanone, hydrolysis of the dioxolanone moiety in the alkylated products and oxidative decarboxylation of the resulting α-hydroxyacids. The last step is carried out in a catalytic aerobic way using a Co (III complex in the presence of pivalaldehyde under very mild conditions.

  7. The gas phase ion/molecule chemistry of four carbanions generated from vinylene carbonate and its methyl and dimethyl derivatives

    Science.gov (United States)

    Robinson, Marin S.; Breitbeil, Fred W.

    1992-09-01

    The gas phase ion/molecule chemistry of four carbanions generated by the reaction of vinylene carbonate, and its methyl and dimethyl derivatives with hydroxide ion has been investigated. From the parent the sole product is the ketenyl anion, HC[triple bond; length as m-dash]C---O-, arising from vinylic proton abstraction and loss of CO2. From the dimethyl derivative, abstraction of an allylic proton from one of the methyl groups followed by loss of CO2 leads exclusively to CH2=CC(O)CH3. Both pathways are observed for the monomethyl derivative, leading to a mixture of the ions CH3C[triple bond; length as m-dash]C---O- and CH2=CCHO. The ketenyl and methyl ketenyl ions do not exchange hydrogen for deuterium with D2O or CH3OD, but they do react with CS2 and COS to form the corresponding thioketenyl anions, HC[triple bond; length as m-dash]C---S- and CH3C=C---S-. The ions CH2=CC(O)CH3 and CH2=CCHO exchange one and three hydrogen atoms for deuterium atoms with D2O respectively, and react with CS2 to form thioketenyl anions by addition and loss of thioformaldehyde. Possible mechanisms for these reactions are discussed.

  8. Carbanion reactivity, kinetic and equilibrium studies of sigma-adduct formation and elimination in the reactions of 4-nitrobenzofurazan derivatives with nitroalkane anions.

    Science.gov (United States)

    Asghar, Basim H M; Crampton, Michael R

    2007-05-21

    1H NMR studies are reported of the reactions in [2H(6)]-DMSO of 4-nitrobenzofurazan, 2a, and its 7-chloro- and 7-methoxy-derivatives, 2b and 2c respectively, with anions derived from nitromethane, 3, nitroethane, 4, and 2-nitropropane, 5. The initial reactions result in sigma-adduct formation by carbanion attack at the 5-position of 2a-c and in the case of reaction of 2a with 5 the adduct at the 7-position is also observed. These reactions may be followed by base catalysed elimination of nitrous acid to yield anionic alkene derivatives. Kinetic and equilibrium measurements of these reactions were made spectrophotometrically in methanol. The carbon nucleophilicities of the carbanions decrease in the order 3> 4> 5, as also found in their reactions with benzhydrylium cations, and are much lower than the nucleophilicities of some cyano-substituted carbanions. Comparison with corresponding sigma-adduct forming reactions of 1,3,5-trinitrobenzene, TNB, show that here 2 and TNB have similar electrophilicity, although the value of the intrinsic rate coefficient k(o) = 0.05, for reaction of 2 is rather lower than that, k(o) = 0.20, for the TNB reactions. Literature data suggest that for reaction with a variety of nucleophiles 2 and TNB show similar electrophilicities. Measurements of the rates of elimination of nitrous acid from some 5-adducts in methanol catalysed by methoxide ions are reported. Values of rate constants may be influenced both by steric requirements at the reaction centre and by the electronic effects of the 7-substituent. PMID:17571196

  9. Ruthenium-BINAP Catalyzed Alcohol C-H tert-Prenylation via 1,3-Enyne Transfer Hydrogenation: Beyond Stoichiometric Carbanions in Enantioselective Carbonyl Propargylation.

    Science.gov (United States)

    Nguyen, Khoa D; Herkommer, Daniel; Krische, Michael J

    2016-04-27

    The chiral ruthenium complex formed in situ from (TFA)2Ru(CO)(PPh3)2 and (R)-BINAP is found to catalyze the enantioselective C-C coupling of diverse primary alcohols with the 1,3-enyne, TMSC≡CC(Me)═CH2, to form secondary homopropargyl alcohols bearing gem-dimethyl groups. All reagents for this byproduct-free coupling are inexpensive and commercially available, making this protocol a practical alternative to stoichiometric carbanions in enantioselective carbonyl reverse prenylation. PMID:27079149

  10. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. PMID:27132865

  11. Synthesis of 4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide ring systems on sugar templates via carbanion-mediated sulfonamide intramolecular cyclization reactions (CSIC protocols) of glyco-alpha-sulfonamidonitriles.

    Science.gov (United States)

    Domínguez, Laura; van Nhien, Albert Nguyen; Tomassi, Cyrille; Len, Christophe; Postel, Denis; Marco-Contelles, José

    2004-02-01

    The carbanion-mediated sulfonate intramolecular cyclizations (CSIC protocols) of glyco-alpha-sulfonamidonitriles derived from readily available monosaccharides have been extensively investigated using potassium carbonate, cesium carbonate, n-BuLi, and LDA as bases. As a result, a series of enantiomerically pure spiro(4-amino-5-H-2,3-dihydroisothiazole-1,1-dioxide) derivatives have been prepared efficiently and isolated in good yield. The synthesis of these new bicyclic systems is key to accessing a novel range of aza analogues of TSAO nucleosides (ATSAOs).

  12. Lanthanide(II) complexes of a phosphine-borane-stabilised carbanion.

    Science.gov (United States)

    Izod, Keith; Clegg, William; Harrington, Ross W

    2010-08-01

    The reaction between two equivalents of the potassium salt [(Me(3)Si)(2){Me(2)P(BH(3))}C]K (4) and SmI(2)(THF)(2) in refluxing THF yields the dialkylsamarium(II) compounds [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF) (5a) or [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Sm(THF)(3) (5b), depending on the crystallisation conditions, in good yield as air- and moisture-sensitive crystalline solids. X-ray crystallography shows that, whereas both alkyl ligands chelate the samarium(II) ion in 5a, in 5b one alkyl ligand chelates the metal centre and one binds the metal only through its borane hydrogen atoms. The reaction between YbI(2) and two equivalents of 4 in refluxing benzene yields the solvent-free dialkylytterbium(II) compound [(Me(3)Si)(2){Me(2)P(BH(3))}C](2)Yb (8). In contrast to 5a and 5b, compound 8 reacts rapidly with THF to give the free phosphine-borane (Me(3)Si)(2){Me(2)P(BH(3))}CH as the only identifiable product. PMID:20480086

  13. Relative reactivities of halogen-substituted substrates (R-Br, R-Cl) toward the halophilic attack by a carbanion

    Institute of Scientific and Technical Information of China (English)

    FU; Weimin

    2001-01-01

    Chitosans with various degrees of deacetylation (D.D.), which were used as standard sample for FTIR determination, were prepared from completely deacetylated chitosan by homogeneous N-acetylation reaction. By combining four probable probe bands, i.e. 1655, 1560, 1380 and 1320 cm-1, eight probable reference bands, i.e. 3430, 2920, 2880, 1425, 1155, 1070, 1030 and 895 cm-1 and two baseline methods, the most suitable ratios Aprobe band/Areference band from IR spectra to determine the degree of acetylation of chitosan were evaluated from 48 combinations to be A1560/A2880, A1560/A2920 and A1655/A3430(A1560/A2880 is mostly recommended). The second baseline method, i.e. linking between adjacent two valleys, was better for measuring the absorbances of 1560 and 1655 cm-1 bands. The determination range of the D.D. (1%-100%) covered almost the whole range. The standard curves with A1560/A2880 and A1655/A3430 were also suitable for the determination of degree of substitution of other N-acylated chitosan, such as N-propionyl chitosan, N-butyryl chitosan and N-hexanoyl chitosan.

  14. Polystyrene-supported Benzyl Selenide: An Efficient Reagent for Highly Stereocontrolled Synthesis of Substituted Olefins

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Polystyrene-supported benzyl selenide has been prepared. This novel reagent was treated with LDA to produce a selenium stabilized carbanion, which reacted with alkyl halide, followed by selenoxide syn-elimination, to give substituted olefins stereospecificly.

  15. Tetrabutylammonium fluoride promoted regiospecific reactions of trimethylsilyl-o-carborane with aldehydes

    International Nuclear Information System (INIS)

    Trimethylsilyl-o-carborane serves as o-carborane carbanion upon fluoride ion promoted reaction with carbonyl compounds. Thus, in the presence of tetrabutylammonium fluoride, trimethylsilyl-o-carborane undergoes facile, unprecedented, carbodesilylation with aromatic and aliphatic aldehydes. (author)

  16. Gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance mass spectrometry

    International Nuclear Information System (INIS)

    The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)

  17. Synthesis of New Quinoxalines Containing an Oxirane Ring by the TDAE Strategy and in Vitro Evaluation in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marc Montana

    2014-09-01

    Full Text Available Neuroblastoma is an aggressive pediatric malignancy with significant chemotherapeutic resistance. In order to obtain new compounds active on neuroblastoma cell lines, we investigated the reactivity of carbanion formed via TDAE in quinoxaline series. The new synthesized compounds were tested for their anti-proliferative activity on two neuroblastoma cell lines, and seven oxirane derivatives obtained interesting activities.

  18. Benzothiazines in organic synthesis. An approach to floresolide B

    Science.gov (United States)

    Chen, Yugang; Harmata, Michael

    2011-01-01

    The intramolecular conjugate addition of a sulfoximine carbanion to an α,β-unsaturated ester results in the formation of a benzothiaine bearing a benzylic stereocenter with extremely high fidelity. We have used this methodology to complete a formal total synthesis of the antitumor agent (+)-floresolide B. PMID:21818165

  19. Polystyrene-supported Selenides and Selenoxide:Versatile Routes to Synthesize Allylic Alcohols

    Institute of Scientific and Technical Information of China (English)

    Wei Ming XU; You Chu ZHANG; Xian HUANG

    2003-01-01

    Several polystyrene-supported selenides and selenoxide have been prepared firstly. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with aldehydes and alkyl halides, followed by selenoxide syn-elimination and [2,3] sigmatropic rearrangement respectively to give Z-allylic alcohols stereoselectively.

  20. Polystyrene-supported Selenomethyl-sulfonates:Efficient Reagents for Stereocontrolled Synthesis of Substituted Vinyl Sulfones

    Institute of Scientific and Technical Information of China (English)

    Wei Ming XU; Lu Ling WU; Xian HUANG

    2004-01-01

    Polystyrene-supported selenomethyl-sulfonates have been prepared. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with alkyl halide and epoxides, followed by selenoxide syn-elimination, to give E-vinyl sulfones and γ-hydroxy-substituted-E-vinyl sulfones respectively.

  1. New Processes for Annulation

    Institute of Scientific and Technical Information of China (English)

    Liu Hsing-Jang

    2004-01-01

    Making use of the high propensity of 2-cyano-2-cycloalkenones to undergo conjugate addition with various carbanions and the high reactivity of the ensuing α -cyano ketone system, a number of new annulation processes have been developed recently in our laboratories. As shown in Eq. 1 (n=1) with a specific example, one such process involves the addition of 3-butenylmagnesium bromide, followed by a palladium (Ⅱ) acetate mediated oxidative cyclization, to facilitate methylenecyclopentane ring formation. This annulation process could be readily extended to effect methylenecyclohexane ring formation (Eq. 1, n=2), using 4-pentenylmagnesinm bromide as the initial reagent, and to install the carbomethoxy-substituted methylenecyclopentane and methylenecyclohexane rings, using the carbanions derived from methyl 4-pentenoate and methyl 5-hexenoate, respectively (Eq. 2). In another annulation process, the addition of the enolate of methyl 5-chloropentanoate is involved initially, and the ring formation is readily effected by an intramolecular alkylation process. A specific example is given in Eq. 3.

  2. Carbenic vs. ionic mechanistic pathway in reaction of cyclohexanone with bromoform.

    Science.gov (United States)

    Vitnik, Vesna D; Vitnik, Zeljko J; Juranić, Ivan O

    2012-10-01

    The extensive computation study was done to elucidate the mechanism of formation dibromoepoxide from cyclohexanone and bromoform. In this reaction, the formation of dihaloepoxide 2 is postulated as a key step that determines the distribution and stereochemistry of products. Two mechanistic paths of reaction were investigated: the addition of dibromocarbene to carbonyl group of ketone, and the addition of tribromomethyl carbanion to the same (C=O) group. The mechanisms for the addition reactions of dibromocarbenes and tribromomethyl carbanions with cyclohexanone have been investigated using ab initio HF/6-311++G** and MP2/6-311+G* level of theory. Solvent effects on these reactions have been explored by calculations which included a continuum polarizable conductor model (CPCM) for the solvent (H₂O). The calculations showed that both mechanisms are possible and are exothermic, but have markedly different activation energies.

  3. A modular approach to marine macrolide construction. 4. Assembly of C36-C51 and C29-C44 building blocks and evaluation of key coupling reactions targeting spongistatin 1 (altohyrtin A).

    Science.gov (United States)

    Ciblat, Stephane; Kim, Jungchul; Stewart, Catherine A; Wang, Jizhou; Forgione, Pat; Clyne, Dean; Paquette, Leo A

    2007-02-15

    Routes have been developed for the stereocontrolled elaboration of two highly functionalized sectors of spongistatin 1. The approach to ring F takes advantage of B-alkyl Suzuki-Miyaura coupling to install the C44-C45 bond. The E-ring pyran moiety was generated by acylation of an alpha-sulfonyl carbanion, the stereogenic centers of which were incorporated by sequential asymmetric aldol reactions. [structure: see text].

  4. Synthesis and quantitative structure–activity relationship study of substituted imidazophosphor ester based tetrazolo[1,5-b]pyridazines as antinociceptive/anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    Wafaa M. Abdou

    2013-08-01

    Full Text Available A high-yielding general synthesis of imidazophosphor ester based tetrazolo[1,5-b]pyridazines is described. A conjugated reaction between 3,6-diazidopyridazine and different types of phosphonyl carbanion reagents followed by intramolecular cyclization afforded the target products, by using sodium ethanolate solution as a reaction medium. Among the products, five compounds, at a dose of 50 mg per kilogram body weight, showed a notable antinociceptive and anti-inflammatory activity without toxic side-effects.

  5. Synthesis of Fine Chemicals by the Conjugate Addition of Nitroalkanes to Electrophilic Alkenes

    Institute of Scientific and Technical Information of China (English)

    R. Ballini; G. Bosica; D. Fiorini; A. Palmieri

    2005-01-01

    @@ 1Introduction It is well known the ability of primary and secondary nitroalkanes to generate carbanions (under basic conditions) strongly stabilized by the electron-withdrawing effect of the nitro group[1-4]. Thus, the main use of nitroalkanes is devoted to the generation of new carbon-carbon bonds through two principal approaches (Scheme 1): (i) reaction with carbonyl derivatives (nitroaldol-Henry-reaction), and (ii) Michael addition to electron poor alkenes.

  6. Nucleophilic bromodifluoromethylation of iminium ions.

    Science.gov (United States)

    Tsymbal, Artem V; Kosobokov, Mikhail D; Levin, Vitalij V; Struchkova, Marina I; Dilman, Alexander D

    2014-09-01

    A method for bromodifluoromethylation of iminium ions using Me3SiCF2Br is described. The reaction involves room temperature activation of the silicon reagent by HMPA to generate difluorocarbene, which upon interacting with excess of bromide ion provides bromodifluoromethyl carbanionic species. The iminium electrophiles are generated in situ from aldehydes, secondary amines, proton sponge, and silyl triflate. The reaction can be extended for introduction of chlorodifluoromethyl and iododifluoromethyl groups. PMID:25116859

  7. The gas-phase acidity of nitrocyclopropane

    Science.gov (United States)

    Bartmess, John E.; Wilson, Burton; Sorensen, Daniel N.; Bloor, John E.

    1992-09-01

    Nitrocyclopropane is 10.5 kcal mol-1 weaker as an acid in the gas phase than its open-chain analog, 2-nitropropane. This is attributed to the conflicting hybridization requirements for carbanion stabilization by the cyclopropyl ring and by the nitro group. Based on reactivities, the deprotonated form does not ring-open to either the 2-nitroallyl anion or the 1-nitroallyl anion.

  8. Mg2+-Imidazole-Catalyzed Self-Condensation of Malonyl Thioesters: Getting Tuned for Biomimetic Polyketide Synthesis?

    Directory of Open Access Journals (Sweden)

    Stefan Matile

    2001-10-01

    Full Text Available We report that a subtle balance of carbanion reactivity, leaving group activation, and pKa of the catalyst is required for efficient self-condensation of thiomalonates to thioacetoacetates in up to 71% yield under “biomimetic” conditions originally proposed by Kobuke and Yoshida (Tetrahedron Lett. 1978, 19, 367.

  9. Acrylate metathesis via the second-generation Grubbs catalyst: unexpected pathways enabled by a PCy3-generated enolate.

    Science.gov (United States)

    Bailey, Gwendolyn A; Fogg, Deryn E

    2015-06-17

    The diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation. Related chemistry may be anticipated whenever labile metal-phosphine complexes are used to catalyze reactions of substrates bearing an electron-deficient olefin. PMID:26030596

  10. New aromatic activated dihalides and bisphenol monomers for the preparation of novel poly(arylene ethers)

    Science.gov (United States)

    Wolfe, James F.

    1993-01-01

    The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.

  11. A Strained Disilane-Promoted Carboxylation of Organic Halides with CO2 under Transition-Metal-Free Conditions.

    Science.gov (United States)

    Mita, Tsuyoshi; Suga, Kenta; Sato, Kaori; Sato, Yoshihiro

    2015-11-01

    By using a strained four-membered ring disilane (3,4-benzo-1,1,2,2-tetraethyldisilacyclobutene) and CsF, a wide range of aryl, alkenyl, alkynyl, benzyl, allyl, and alkyl halides was successfully carboxylated under an ambient CO2 atmosphere (CO2 balloon) at room temperature within 2 h. In this carboxylation, a highly reactive silyl anion, which is generated from the disilane and CsF, is a key to facilitating the formation of a carbanion equivalent. The resulting anionic species can be trapped with CO2 to produce carboxylic acids with high efficiency.

  12. Modern Arylation Methods

    CERN Document Server

    Ackermann, Lutz

    2009-01-01

    Today, arylation methods are belonging to the most important reaction types in organic synthesis. Lutz Ackermann, a young and ambitious professor has gathered a number of top international authors to present the first comprehensive book on the topic. Starting from a historical review, the book covers hot topics like Palladium-catalyzed arylation of N-H and alpha-C-H-acidic Bonds, Copper-catalyzed arylation of N-H and O-H Bonds, direct arylation reactions, carbanion aromatic synthesis, arylation reactions of alkenes, alkynes and much more. This compact source of high quality information is indi

  13. The Reactivity of 2,4,6-Tirphenylpyridinium Ylids

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Triphenylpyridinium ylid 2, generated by the decarboxylation of betaine 1, were noted to react with acetyl chloride, chloroform or acetone to form addition-elimination product and proton extraction - carbanion addition products, respectively. The reaction with chloroform was determined as pseudo first order from kinetic experiments. The values of kobsd and t1/2 for decarboxylation at 20, 40 and 50°C were calculated to be 4.6 x 10-4, 8.8 x 10-3, 2.8 x 10-2 min-1 and 1.5 x 103, 78, 24 minutes, respectively.

  14. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates.

    Science.gov (United States)

    Garrabou, Xavier; Beck, Tobias; Hilvert, Donald

    2015-05-01

    Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5-8, designed and evolved as a retro-aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X-ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution. PMID:25777153

  15. TDDFT Study on Different Sensing Mechanisms of Similar Cyanide Sensors Based on Michael Addition Reaction

    Institute of Scientific and Technical Information of China (English)

    Guang-yue Li; Ping Song; Guo-zhong He

    2011-01-01

    The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino-3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena.The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysical properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore,the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescencefor the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.

  16. Substitution of Tyr254 with Phe at the active site of flavocytochrome b2: consequences on catalysis of lactate dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, J.; Chapman, S.K.; Mathews, F.S.; Reid, G.A.; Lederer, F. (INSERM U 25, CNRS UA 122, Hopital Necker, Paris (France))

    1990-07-10

    A role for Tyr254 in L-lactate dehydrogenation catalyzed by flavocytochrome b2 has recently been proposed on the basis of the known active-site structure and of studies that had suggested a mechanism involving the initial formation of a lactate carbanion. This role is now examined after replacement of Tyr254 with phenylalanine. The kcat is decreased about 40-fold, Km for lactate appears unchanged, and the mainly rate-limiting step is still alpha-hydrogen abstraction, as judged from the steady-state deuterium isotope effect. Modeling studies with lactate introduced into the active site indicate two possible substrate conformations with different hydrogen-bonding partners for the substrate hydroxyl. If the hydrogen bond is formed with Tyr254, as was initially postulated, the mechanism must involve removal by His373 of the C2 hydrogen, with carbanion formation. If, in the absence of the Tyr254 phenol group, the hydrogen bond is formed with His373 N3, the substrate is positioned in such a way that the reaction must proceed by hydride transfer. Therefore the mechanism of the Y254F enzyme was investigated so as to distinguish between the two mechanistic possibilities. 2-Hydroxy-3-butynoate behaves with the mutant as a suicide reagent, as with the wild-type enzyme. Similarly, the mutant protein also catalyzes the reduction and the dehydrohalogenation of bromopyruvate under transhydrogenation conditions.

  17. Phosphorothioate anti-sense oligonucleotides: the kinetics and mechanism of the generation of the sulfurising agent from phenylacetyl disulfide (PADS).

    Science.gov (United States)

    Scotson, James L; Andrews, Benjamin I; Laws, Andrew P; Page, Michael I

    2016-09-21

    The synthesis of phosphorothioate oligonucleotides is often accomplished in the pharmaceutical industry by the sulfurisation of the nucleotide-phosphite using phenylacetyl disulfide (PADS) which has an optimal combination of properties. This is best achieved by an initial 'ageing' of PADS for 48 h in acetonitrile with 3-picoline to generate polysulfides. The initial base-catalysed degradation of PADS occurs by an E1cB-type elimination to generate a ketene and acyldisulfide anion. Proton abstraction to reversibly generate a carbanion is demonstrated by H/D exchange, the rate of which is greatly increased by electron-withdrawing substituents in the aromatic ring of PADS. The ketene can be trapped intramolecularly by an o-allyl group. The disulfide anion generated subsequently attacks unreacted PADS on sulfur to give polysulfides, the active sulfurising agent. The rate of degradation of PADS is decreased by less basic substituted pyridines and is only first order in PADS indicating that the rate-limiting step is formation of the disulfide anion from the carbanion. PMID:27531007

  18. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine [beta]-synthase

    Energy Technology Data Exchange (ETDEWEB)

    Koutmos, Markos; Kabil, Omer; Smith, Janet L.; Banerjee, Ruma (Michigan-Med)

    2011-08-17

    The catalytic potential for H{sub 2}S biogenesis and homocysteine clearance converge at the active site of cystathionine {beta}-synthase (CBS), a pyridoxal phosphate-dependent enzyme. CBS catalyzes {beta}-replacement reactions of either serine or cysteine by homocysteine to give cystathionine and water or H{sub 2}S, respectively. In this study, high-resolution structures of the full-length enzyme from Drosophila in which a carbanion (1.70 {angstrom}) and an aminoacrylate intermediate (1.55 {angstrom}) have been captured are reported. Electrostatic stabilization of the zwitterionic carbanion intermediate is afforded by the close positioning of an active site lysine residue that is initially used for Schiff base formation in the internal aldimine and later as a general base. Additional stabilizing interactions between active site residues and the catalytic intermediates are observed. Furthermore, the structure of the regulatory 'energy-sensing' CBS domains, named after this protein, suggests a mechanism for allosteric activation by S-adenosylmethionine.

  19. Lithium Halomethylcarbenoids: Preparation and Use in the Homologation of Carbon Electrophiles.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; De Kimpe, Norbert

    2016-08-01

    α-Halomethyllithium carbenoids are useful homologating reagents which - reacting under proper reaction conditions as carbanions - enable the installation via nucleophilic addition of a reactive halomethyl fragment onto a preformed carbon-heteroatom bond. The pronounced thermolability represented - since seminal studies by Köbrich - the Achilles' heel of these reagents: the use of Barbier-type methodologies (i.e., the electrophile should be present in the reaction mixture prior to the formation of the carbenoid) was pivotal in order to suppress decomposition through α-elimination processes. Nowadays, the use of low temperatures (-78 °C) guarantees reliable procedures and, significantly, the employment of microreactor technologies allows external trapping to be performed even at higher temperatures as reported by Luisi. We will discuss the α-halomethyllithium-mediated homologations of a series of carbon electrophiles such as carbonyl compounds, imines, esters, Weinreb amides, and isocyanates. PMID:27381551

  20. Development of Diversified Methods for Chemical Modification of the 5,6-Double Bond of Uracil Derivatives Depending on Active Methylene Compounds

    Directory of Open Access Journals (Sweden)

    Kosaku Hirota

    2012-05-01

    Full Text Available The reaction of 5-halogenouracil and uridine derivatives 1 and 7 with active methylene compounds under basic conditions produced diverse and selective C-C bond formation products by virtue of the nature of the carbanions. Three different types of reactions such as the regioselective C-C bond formation at the 5- and 6-positions of uracil and uridine derivatives (products 2, 5, 8, 17, 20 and 21, and the formation of fused heterocycle derivatives 2,4-diazabicyclo[4.1.0]heptane (15 and 2,4-diazabicyclo-[4.1.0]nonane (16 via dual C-C bond formations at both the 5- and 6-positions were due to the different active methylene compounds used as reagents.

  1. Chloro({2-[mesityl(quinolin-8-yl-κNboryl]-3,5-dimethyl-phenyl}methyl-κCpalladium(II as a Catalyst for Heck Reactions

    Directory of Open Access Journals (Sweden)

    Sem Raj Tamang

    2015-07-01

    Full Text Available We recently reported an air and moisture stable 16-electron borapalladacycle formed upon combination of 8-quinolyldimesitylborane with bis(benzonitriledichloropalladium(II. The complex features a tucked mesityl group formed upon metalation of an ortho-methyl group on a mesityl; however it is unusually stable due to contribution of the boron pz orbital in delocalizing the carbanion that gives rise to an η4-boratabutadiene fragment coordinated to Pd(II, as evidenced from crystallographic data. This complex was observed to be a highly active catalyst for the Heck reaction. Data of the catalyst activity are presented alongside data found in the literature, and initial comparison reveals that the borapalladacycle is quite active. The observed catalysis suggests the borapalladacycle readily undergoes reductive elimination; however the Pd(0 complex has not yet been isolated. Nevertheless, the ambiphilic ligand 8-quinolyldimesitylborane may be able to support palladium in different redox states.

  2. Chloro({2-[mesityl(quinolin-8-yl-κN)boryl]-3,5-dimethyl-phenyl}methyl-κC)palladium(II) as a catalyst for Heck reactions.

    Science.gov (United States)

    Tamang, Sem Raj; Hoefelmeyer, James D

    2015-01-01

    We recently reported an air and moisture stable 16-electron borapalladacycle formed upon combination of 8-quinolyldimesitylborane with bis(benzonitrile)dichloropalladium(II). The complex features a tucked mesityl group formed upon metalation of an ortho-methyl group on a mesityl; however it is unusually stable due to contribution of the boron pz orbital in delocalizing the carbanion that gives rise to an η4-boratabutadiene fragment coordinated to Pd(II), as evidenced from crystallographic data. This complex was observed to be a highly active catalyst for the Heck reaction. Data of the catalyst activity are presented alongside data found in the literature, and initial comparison reveals that the borapalladacycle is quite active. The observed catalysis suggests the borapalladacycle readily undergoes reductive elimination; however the Pd(0) complex has not yet been isolated. Nevertheless, the ambiphilic ligand 8-quinolyldimesitylborane may be able to support palladium in different redox states. PMID:26193250

  3. Porphyrin Analogues of a Trityl Cation and Anion.

    Science.gov (United States)

    Kato, Kenichi; Kim, Woojae; Kim, Dongho; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-05-17

    Porphyrin-stabilized meso- or β-carbocations were generated upon treatment of the corresponding bis(4-tert-butylphenyl)porphyrinylcarbinols with trifluoroacetic acid (TFA). Bis(4-tert-butylphenyl)porphyrinylcarbinols were treated with TFA to generate the corresponding carbocations stabilized by a meso- or β-porphyrinyl group. The meso-porphyrinylmethyl carbocation displayed more effective charge delocalization with decreasing aromaticity compared with the β-porphyrinylmethyl carbocation. A propeller-like porphyrin trimer, tris(β-porphyrinyl)carbinol, was also synthesized and converted to the corresponding cation that displayed a more intensified absorption reaching over the NIR region. meso-Porphyrinylmethyl carbanion was generated as a stable species upon deprotonation of bis(4-tert-butylphenyl)(meso-porphyrinyl)methane with potassium bis(trimethylsilyl)amide (KHMDS) and [18]crown-6, whereas β-porphyrinylmethyl anions were highly unstable. PMID:26991021

  4. Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Prakash, G K Surya; Rasul, Golam

    2016-02-10

    Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry. PMID:26760052

  5. Pulse radiolysis of fast reactions in molecular systems. Progress report, November 1979-September 1980

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The rectivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  6. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, November 1979-September 1980

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of reactive intermediates using the pulse radiolysis technique. Optical absorption spectra of these transient species, which determine the course of the chemistry, are being obtained. The types of reactive species currently of interest are organic molecule ions (both cations and anions) and radical ions, and transition metal carbonyl radicals in solution. Since reaction is initiated by a pulse of high energy electrons, our investigations inherently relate to radiation chemical systems. The information obtained is, however, also of interest in various areas of organic reaction kinetics in which ionic species are known to play a central role. The reactivity of the transition metal carbonyl radicals is of interest in the area of homogeneous catalysis. Current activities involve: spectra and reactivities of transition metal carbonyl radicals of the type M(CO)5; reactivity of organic ionic species (including carbocations and carbanions) in irradiated solutions

  7. Pulse radiolysis studies of fast reactions in molecular systems. Progress report, February 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    The rates of elementary chemical reactions in irradiated solutions are being studied by observation of the formation and decay of reactive intermediates using the pulse radiolysis technique. These short-lived species are monitored by fast optical absorption measurement; optical absorption spectra of the transients are also obtained. Reactive species currently of interest include organic molecule ions (both cations and anions) and radical anions. Transition metal carbonyl radicals in solution, another category of intermediates, are also under investigation. Since the reactions are initiated by a pulse of high energy electrons, this work inherently relates to radiation chemical systems. The information obtained is also of interest in various areas of organic reaction kinetics in which ions play a central role. In the area of homogeneous catalysis, the reactivity of transition metal carbonyl radicals is of interest. Current activities are directed at reactivity of organic ionic species (carbocations and carbanions) in irradiated solutions; and optical spectra and reactivities of transition metal carbonyl radicals

  8. Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry.

    Science.gov (United States)

    Olah, George A; Mathew, Thomas; Prakash, G K Surya

    2016-06-01

    Astrophysical observations show similarity of observed abiological "organics"-i.e., hydrocarbons, their derivatives, and ions (carbocations and carbanions)-with studied terrestrial chemistry. Their formation pathways, their related extraterrestrial hydrocarbon chemistry originating from carbon and other elements after the Big Bang, their parent hydrocarbon and derivative (methane and methanol, respectively), and transportation of derived building blocks of life by meteorites or comets to planet Earth are discussed in this Perspective. Their subsequent evolution on Earth under favorable "Goldilocks" conditions led to more complex molecules and biological systems, and eventually to humans. The relevance and significance of extraterrestrial hydrocarbon chemistry to the limits of science in relation to the physical aspects of evolution on our planet Earth are also discussed. PMID:27045758

  9. The Co-III-C bond in (1-thia-4,7-diazacyclodecyl-kappa N-3(4),N-7,C-10)(1,4,7-triazacyclononane-kappa N-3(1),N-4,N-7)-cobalt(III) dithionate hydrate

    DEFF Research Database (Denmark)

    Harris, Pernille; Kofod, P.; Song, Y.S.;

    2003-01-01

    In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6.H2O, the Co-C bond distance is 1.9930 (13) Angstrom, which is shorter than for related compounds with the linear 1,6-diamino-3-thiahexan-4-ide anion in place of the macrocyclic 1-thia-4,7-diazacyclodecan-8-ide anion. The coordinated carbanion...... produces an elongation of 0.102 (7) Angstrom of the Co-N bond to the 1,4,7-triazacyclononane N atom in the trans position. This relatively small trans influence is presumably a result of the triamine ligand forming strong bonds to the Co-III atom....

  10. A New Approach to the Asymmetric Reaction of the Chiron 5-L-Menthyloxy-2(5H)-furanones with Horner-Emmons Reagent

    Institute of Scientific and Technical Information of China (English)

    李学强; 王凤荣; 何兰; 陈庆华

    2003-01-01

    The asymmetric reaction of the chiron 2(5H )-furanones (4a-4c) with the Horner-Emmons reagents (5a-5b) has been investigated. The newly chirai organophosphorus derivatives 6 and 7 were obtained using the phosphoryl-stabilized carbanion as a building block in DMSO under mild conditions. Through the asymmetric introduction, the Horner-Emmons reagent could be transformed to a chiral building block to afford the novel functionalized phosphorus derivatives. The structures of the synthesized compounds 6 and 7 were identified on the basis of their elementary and spectroscopic data, such as IR,1H NMR, 13C NMR, MS and X-ray crystallography. These resuits provided a valuable approach to the synthesis of potentially interesting chirai organophosphorus derivatives and probing their biological activities.

  11. ICR studies of some anionic gas phase reactions and FTICR software design

    International Nuclear Information System (INIS)

    This thesis consists of two parts. Part one (Chs. 1-5) reports experimental results from mostly drift-cell ICR studies of negative ion-molecule reactions; part two (Chs. 6-11) concerns the design of software for an FTICR instrument. The author discusses successively: 1. ion cyclotron resonance spectrometry; 2. the gas phase allyl anion; 3. the (M-H) and (M-H2) anions from acetone; 4. negative ion-molecule reactions of aliphatic nitrites studied by cyclotron resonance; 5. homoconjugation versus charge-dipole interaction effects in the stabilization of carbanions in the gas phase; 6. the Fourier Transform ICR method; 7. the FTICR-software; 8. an efficient adaptive matcher filter for fast transient signals; 9. reduction of spectral peak height errors by time-domain weighing; 10. Chirp excitation; 11. Compact data storage. The book concludes with a Dutch and English summary (G.J.P.)

  12. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Science.gov (United States)

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms. PMID:25243743

  13. Azetidines. 5. Reaction of 1,1,3,3-tetramethyl- and 1-benzyl-1,3,3-trimethylazetidinium ions with butyllithium and phenyllithium. Deuterium labeling as a mechanistic probe

    International Nuclear Information System (INIS)

    The reactions of 1,1,3,3-tetramethylazetidinium iodide (1) and 1-benzyl-1,3,3-trimethylazetidinium bromide (7) with butyllithium and with phenyllithium were studied in ether. The products from the reaction of 1 with butyllithium were 1,3,3-trimethylpyrrolidine (2), 3,3-dimethyl-4-(methylamino)-1-butene (3), 1-(dimethylamino)-2,2-dimethylheptane (4), neopentylpyrrolidine (5), and 1-(dimethylamino)-2,2-dimethylcyclopropane (6). With phenyllithium, 1 gave 2 and 1-(dimethylamino)-2,2-dimethyl-3-phenylpropane (11). With butyllithium, 7 gave 2-phenyl-1,4,4-trimethylpyrrolidine (8), 1-benzyl-3,3-dimethylpyrrilidine (9), and 1-neopentyl-2-phenylpyrrolidine (10). The reaction of phenyllithium with 7 gave only 8 and 9. Mechanistic information was obtained by labeling 1 with deuterium in three different ways: N-methyl-d3,2,2-d2, and N-methyl-d3-2,2-d2. A primary kinetic isotope effect of 9.4 was found for the formation of 2 from 1-N-methyl-d3. When 2 was formed from 1-2,2-d2, a secondary kinetic isotope effect of 1.17 was measured. The formation of 4 from 1-2,2-d2 was accompanied by a primary kinetic isotope effect of 4.7, suggesting a carbene intermediate. Ylide carbanions involving decomposition to a carbene carbanion in the formation of 3 and an azomethine ylide in the formation of 5 and 9 are probable intermediates. It is postulated that the azomethine ylides react with ethylene formed from the reaction of butyllithium with the solvent ether by means of a concerted (4 + 2) cycloaddition reaction. A primary kinetic isotope effect of 20 was found for the formation of pentylbenzene from dibenzyldimethylammonium bromide and butyllithium

  14. Mechanism of formation of oil by the hot aqueous alkaline digestion of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Molten, P.M.; Miller, R.K.; Donovan, J.M.; Demmitt, T.F.

    1977-01-01

    The overall mechanism of cellulose converson in hot aqueous alkali appears to be one of degradation through glucose to low molecular weight saccharinic acids, dihydroxybutyric acid, glycolic acid, and carbonyl products such as acetone, acetaldehyde, formaldehyde, and similar compounds. Although the products identified in the present report were fairly complex furans, carbocyclic ketones, unsaturated hydrocarbons, and aromatic compounds, nevertheless, in most cases, they could have been formed from simple carbonyl compounds through a series of condensations involving carbanion intermediates. It is conceivable that residual alkali in the oil during acetone extraction could have given rise to diacetone alcohol as an artifact. This is refuted by examination of an aqueous residue which was extracted with diethyl ether and which was never exposed to any acetone: Compounds derived from diacetone alcohol (such as mesityl oxide or 4-methyl-3-penten-2-one) were also identified in the diethyl ether extract of the aqueous phase. Other compounds were identified in the oil acetone extract which could not have been derived from acetone or diacetone alcohol, but which could have been formed from other carbonyl compounds by the same mechanism. Hence, diacetone alcohol is a genuine product of cellulose conversion although apparently not an intermediate in further synthesis of other products. The further reaction of the postulated cyclic intermediates, and the route to formation of unsaturated hydrocarbons of high molecular weight is intended to be the next subject of investigation in the current work. The fundamental difference in the mechanism of cellulose conversion to oil by pyrolysis and by aqueous alkaline digestion predicted by theory is therefore confirmed. Pyrolysis products may be explained generally by carbonium ion and free radical reactions (in fact, cellulose decomposition is acid-catalyzed), while in aqueous alkali, nucleophilic carbanion reactions are favored.

  15. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes.

    Science.gov (United States)

    Stivers, J T; Washabaugh, M W

    1993-12-14

    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  16. Structure of a Class I Tagatose-1,6-bisphosphate Aldolase - Investigation into an Apparent Loss of Stereospecificity

    Energy Technology Data Exchange (ETDEWEB)

    LowKam, C.; Liotard, B; Sygusch, J

    2010-01-01

    Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a ({alpha}/{beta}){sub 8} fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys{sup 205}, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.

  17. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    Science.gov (United States)

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina

    2016-09-01

    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  18. Mechanistic and computational studies of the reductive half-reaction of tyrosine to phenylalanine active site variants of D-arginine dehydrogenase.

    Science.gov (United States)

    Gannavaram, Swathi; Sirin, Sarah; Sherman, Woody; Gadda, Giovanni

    2014-10-21

    The flavin-mediated enzymatic oxidation of a CN bond in amino acids can occur through hydride transfer, carbanion, or polar nucleophilic mechanisms. Previous results with D-arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) using multiple deuterium kinetic isotope effects (KIEs) and computational studies established preferred binding of the substrate protonated on the α-amino group, with cleavages of the NH and CH bonds occurring in asynchronous fashion, consistent with the three possible mechanisms. The hydroxyl groups of Y53 and Y249 are ≤4 Å from the imino and carboxylate groups of the reaction product iminoarginine, suggesting participation in binding and catalysis. In this study, we have investigated the reductive half-reactions of the Y53F and Y249F variants of PaDADH using substrate and solvent deuterium KIEs, solvent viscosity and pH effects, and quantum mechanical/molecular mechanical computational approaches to gain insights into the catalytic roles of the tyrosines and evaluate whether their mutations affect the transition state for substrate oxidation. Both Y53F and Y249F enzymes oxidized D-arginine with steady-state kinetic parameters similar to those of the wild-type enzyme. Rate constants for flavin reduction (k(red)) with D-leucine, a slow substrate amenable to rapid kinetics, were 3-fold smaller than the wild-type value with similar pKa values for an unprotonated group of ∼10.0. Similar pKa values were observed for (app)Kd in the variant and wild-type enzymes. However, cleavage of the substrate NH and CH bonds in the enzyme variants occurred in synchronous fashion, as suggested by multiple deuterium KIEs on k(red). These data can be reconciled with a hydride transfer mechanism, but not with carbanion and polar nucleophilic mechanisms.

  19. Diversification of ortho-Fused Cycloocta-2,5-dien-1-one Cores and Eight- to Six-Ring Conversion by σ Bond C-C Cleavage.

    Science.gov (United States)

    Eccleshare, Lee; Lozada-Rodríguez, Leticia; Cooper, Phillippa; Burroughs, Laurence; Ritchie, John; Lewis, William; Woodward, Simon

    2016-08-22

    Sequential treatment of 2-C6 H4 Br(CHO) with LiC≡CR(1) (R(1) =SiMe3 , tBu), nBuLi, CuBr⋅SMe2 and HC≡CCHClR(2) [R(2) =Ph, 4-CF3 Ph, 3-CNPh, 4-(MeO2 C)Ph] at -50 °C leads to formation of an intermediate carbanion (Z)-1,2-C6 H4 {CA (=O)C≡CB R(1) }{CH=CH(CH(-) )R(2) } (4). Low temperatures (-50 °C) favour attack at CB leading to kinetic formation of 6,8-bicycles containing non-classical C-carbanion enolates (5). Higher temperatures (-10 °C to ambient) and electron-deficient R(2) favour retro σ-bond C-C cleavage regenerating 4, which subsequently closes on CA providing 6,6-bicyclic alkoxides (6). Computational modelling (CBS-QB3) indicated that both pathways are viable and of similar energies. Reaction of 6 with H(+) gave 1,2-dihydronaphthalen-1-ols, or under dehydrating conditions, 2-aryl-1-alkynylnaphthlenes. Enolates 5 react in situ with: H2 O, D2 O, I2 , allylbromide, S2 Me2 , CO2 and lead to the expected C-E derivatives (E=H, D, I, allyl, SMe, CO2 H) in 49-64 % yield directly from intermediate 5. The parents (E=H; R(1) =SiMe3 , tBu; R(2) =Ph) are versatile starting materials for NaBH4 and Grignard C=O additions, desilylation (when R(1) =SiMe) and oxime formation. The latter allows formation of 6,9-bicyclics via Beckmann rearrangement. The 6,8-ring iodides are suitable Suzuki precursors for Pd-catalysed C-C coupling (81-87 %), whereas the carboxylic acids readily form amides under T3P® conditions (71-95 %). PMID:27452351

  20. Atomic resolution structures of discrete stages on the reaction coordinate of the [Fe4S4] enzyme IspG (GcpE)

    KAUST Repository

    Quitterer, Felix

    2015-04-11

    IspG is the penultimate enzyme in non-mevalonate biosynthesis of the universal terpene building blocks isopentenyl diphosphate and dimethylallyl diphosphate. Its mechanism of action has been the subject of numerous studies but remained unresolved due to difficulties in identifying distinct reaction intermediates. Using a moderate reducing agent as well as an epoxide substrate analogue, we were now able to trap and crystallographically characterize various stages in the IspG catalyzed conversion of 2-C-methyl-D-erythritol-2,4-cyclo-diphosphate (MEcPP) to (E)-1-hydroxy-2-methylbut-2-enyl-4-diphosphate (HMBPP). In addition, the enzyme’s structure was determined in complex with several inhibitors. These results, combined with recent electron paramagnetic resonance data, allowed us to deduce a detailed and complete IspG catalytic mechanism which describes all stages from initial ring opening to formation of HMBPP via discrete radical and carbanion intermediates. The data presented in this article provide a guide for the design of selective drugs against many pro- and eukaryotic pathogens to which the non-mevalonate pathway is essential for survival and virulence.

  1. Microwave-Assisted Decarboxylation of Sodium Oleate and Renewable Hydrocarbon Fuel Production

    Institute of Scientific and Technical Information of China (English)

    Wang Yunpu; Liu Yuhuan; Ruan Rongsheng; Wen Pingwei; Wan Yiqin; Zhang Jinsheng

    2013-01-01

    The carboxyl terminal of sodium oleate has a stronger polarity than that of oleic acid;this terminal is more likely to be dipole polarized and ionically conductive in a microwave ifeld. Sodium oleate was used as the model compound to study the decarboxylation of oleic acid leading to hydrocarbon formation via microwave-assisted pyrolysis technology. The pyrolysis gas, liquid, and solid products were precisely analyzed to deduce the mechanism for decarboxylation of sodium oleate. Microwave energy was able to selectively heat the carboxyl terminal of sodium oleate. During decarboxylation, the double bond in the long hydrocarbon chain formed a p-πconjugated system with the carbanion intermediate. The resulting p-πconjugated system was more stable and beneifcial to the pyrolysis reaction (decarboxylation, terminal allylation, isomeriza-tion, and aromatization). The physical properties of pyrolysis liquid were generally similar to those of diesel fuel, thereby demonstrating the possible use of microwaves for controlling the decarboxylation of sodium oleate in order to manufacture renewable hydrocarbon fuels.

  2. Voltammetric investigation of the dissociative electron transfer to polychloromethanes at catalytic and non-catalytic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Isse, Abdirisak Ahmed; Sandona, Giancarlo; Durante, Christian [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy); Gennaro, Armando [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy)], E-mail: armando.gennaro@unipd.it

    2009-04-30

    The electrochemical behavior of CCl{sub 4}, CHCl{sub 3} and CH{sub 2}Cl{sub 2} has been investigated by cyclic voltammetry at glassy carbon and silver electrodes in DMF + 0.1 M Et{sub 4}NClO{sub 4} in the absence and presence of a good proton donor. At both electrodes, each compound exhibits a series of reduction peaks which represent sequential hydrodechlorination steps up to methane. The nature of the electrode material and the proton availability of the medium affect drastically the voltammetric pattern of the compounds. Silver exhibits extraordinary electrocatalytic properties toward the reduction process, with positive shifts of the peak potentials of about 0.57-0.95 V as compared to glassy carbon. Reduction of any polychloromethane, CH{sub n}Cl{sub (4-n)} (n = 0-2), yields the carbanion CH{sub n}Cl{sub (3-n)}{sup -} which partitions into two reaction channels: (i) protonation and (ii) Cl{sup -} elimination to give a carbene :CH{sub n}Cl{sub (2-n)}. If a strong proton donor is added into the solution, sequential hydrodechlorination becomes the principal reaction route at both electrodes. When, instead, purposely added acid is not present in solution, both reaction pathways ought to be considered. In these conditions, when possible, self-protonation reactions play an important role in the overall reduction process.

  3. Electrochemical Studies of Betti Base and Its Copper(II Complex by Cyclic and Elimination Voltammetry

    Directory of Open Access Journals (Sweden)

    Shardul Bhatt

    2013-01-01

    Full Text Available The electrochemical behavior of Betti base 1-(α-amino benzyl-2-naphthol (BB and its copper(II complex by cyclic and elimination voltammetry (EVLS is reported in the present study. The cyclic voltammetric studies carried out at a glassy carbon working electrode, Ag/Ag+ reference electrode (0.01 M AgNO3 in acetonitrile in DCM at 100 mV/sec, 200 mV/sec, and 400 mV/sec scan rates indicated a preceding chemical oxidation of the adsorbed BB species to form an iminium ion followed by formation of a carbanion via two-step quasireversible reduction. The suggested reaction mechanism has been supported by the elimination voltammetry. The CV and EVLS studies revealed Cu(IIBB complex to undergo a chemical or a surface reaction before electron transfer from the electrode at −0.49 V to form Cu(IBB species. The oxidation of Cu(IBB species has been observed to be CV silent.

  4. Mechanism of Hg-C Protonolysis in the Organomercurial Lyase MerB

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Jerry M [ORNL; Guo, Hong [ORNL; Liang, Liyuan [ORNL; Miller, Susan M [ORNL; Summers, Anne O [ORNL; Smith, Jeremy C [ORNL

    2009-01-01

    Demethylation is a key reaction in global mercury cycling. The bacterial organomercurial lyase, MerB, catalyzes the demethylation of a wide range of organomercurials via Hg-C protonolysis. Two strictly conserved cysteine residues in the active site are required for catalysis, but the source of the catalytic proton and the detailed reaction mechanism have not been determined. Here, the two major proposed reaction mechanisms of MerB are investigated and compared using hybrid density functional theory calculations. A model of the active site was constructed from an X-ray crystal structure of the Hg(II)-bound MerB product complex. Stationary point structures and energies characterized for the Hg-C protonolysis of methylmercury rule out the direct protonation mechanism in which a cysteine residue delivers the catalytic proton directly to the organic leaving group. Instead, the calculations support a two-step mechanism in which Cys96 or Cys159 first donates a proton to Asp99, enabling coordination of two thiolates with R-Hg(II). At the rate-limiting transition state, Asp99 protonates the nascent carbanion in a trigonal planar, bis thiol-ligated R-Hg(II) species to cleave the Hg-C bond and release the hydrocarbon product. Reactions with two other substrates, vinylmercury and cis-2-butenyl-2-mercury, were also modeled, and the computed activation barriers for all three organomercurial substrates reproduce the trend in the experimentally observed enzymatic reaction rates. Analysis of atomic charges in the rate-limiting transition state structure using Natural Population Analysis shows that MerB lowers the activation free energy in the Hg-C protonolysis reaction by redistributing electron density into the leaving group and away from the catalytic proton.

  5. Synthesis and first use of pyridine-2,6-diylbis(pyrazine-2-ylmethanone) in metal cluster chemistry: a {Mn(III)3Na2} complex with an ideal trigonal bipyramidal geometry.

    Science.gov (United States)

    Giannopoulos, Dimosthenis P; Wilson-Konderka, Cody; Gagnon, Kevin J; Teat, Simon J; Escuer, Albert; Metallinos, Costa; Stamatatos, Theocharis C

    2015-03-01

    The successful organic synthesis of a new dipyrazole/pyridine-dicarbonyl organic molecule, namely pyridine-2,6-diylbis(pyrazine-2-ylmethanone) [(pz)CO(py)CO(pz)], followed by its employment in Mn coordination chemistry has yielded the neutral cluster compound [Mn3Na2O(N3)3(L)3] (1), where L(2-) is the (pz)C(CH2COCH3)(O(-))(py)C(CH2COCH3)(O(-))(pz) dianion. The latter group was formed in situ, presumably by the nucleophilic attack of the carbanion (-)CH2COCH3 to the carbonyl carbon atoms of (pz)CO(py)CO(pz), in the presence of Mn(n+) ions under basic conditions and in solvent Me2CO. Complex 1 possesses an almost ideal trigonal bipyramidal topology, with the two Na(I) ions occupying the apical positions and the three Mn(III) ions residing in the equatorial trigonal plane. The bridging ligation about the metal ions is provided by a μ3-O(2-) ion and six μ-OR(-) groups from the L(2-) ligand, while peripheral ligation is completed by three terminal azido groups and the pyridine N and carbonyl O atoms of L(2-). Magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the paramagnetic Mn(III) centres; the use of an anisotropic, equilateral Mn(III)3 triangle model allowed us to fit the magnetic data and obtain the best-fit parameters: J = -10.8 cm(-1), D = -5.3 cm(-1), and g = 1.99. The combined results demonstrate the rich chemical reactivity of carbonyl groups and the ability of poly-ketone ligands to stabilize cluster compounds with unprecedented structural motifs and interesting architectures.

  6. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  7. Stereoselective synthesis of 2,2-bis(C-branched-chain) glucopyranosid-3-ulose via autoxidation reaction

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Min; ZHANG Fuyi; TAO Jing-Chao

    2004-01-01

    can be rationalized by autoxidationof 1 followed by 1,4-Michael addition of various carbanions as the main steps.

  8. Gas-phase ion-molecule reactions of small nitroalkanes and their deprotonated anions.

    Science.gov (United States)

    Kato, Shuji; Carrigan, Kathleen E; DePuy, Charles H; Bierbaum, Veronica M

    2004-01-01

    Gas-phase reactions of nitromethane (1), nitroethane (2), 2-nitropropane (3), 2-methyl-2-nitropropane (4) and nitrocyclopropane (5) were studied at 300 K using the flowing afterglow technique. These nitroalkanes react with gas-phase bases HO(-), CH(3)O(-) and HOO(-) very rapidly with rate coefficients of (2.5-4.3) x 10(-9) cm(3) s(-1) and reaction efficiencies of 60-100%, for example, k = 3.2 x 10(-9) cm(3) s(-1) (86%) for 5 reacting with hydroperoxide anion. Proton transfer (PT) is the only reaction observed for 1 while elimination (E2) is the exclusive pathway for 4 yielding isobutene and NO(2)(-). Both PT and E2 reactions are observed for 2, 3 and 5, the former being the major pathway. Deprotonated anions of 1, 2, 3 and 5 were subjected to reactivity studies with CH(3)I, CO(2), CS(2) and SO(2). Nucleophilic substitution (S(N)2) reaction occurs with CH(3)I while characteristic products CS(2)O(-) and SO(3)(-) are formed from CS(2) and SO(2), respectively, along with competing adduct formation. The SN(2) rate is greater, whereas the reactivities with the triatomic reagents are smaller for deprotonated nitrocyclopropane than for the other acyclic anions. These observations strongly suggest that the reactions of nitroalkane [M - H](-) anions occur through initial attack from the terminal oxygen; the nitrocyclopropane carbanion is more strained and, thus, less stabilized by resonance [R(2)C(-) - NO2 R(2)=NO(2)(-)] resulting in the greater basicity/nucleophilicy and the less negative charge on the oxygen site. PMID:15103100

  9. Nitroaldol reaction over solid base catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Akutu, Kazumasa; Kabashima, Hajime; Seki, Tsunetake; Hattori, Hideshi [Center for Advanced Research of Energy Technology, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628 (Japan)

    2003-07-10

    Nitroaldol reaction of a nitro compound with a carbonyl compound was carried out over a variety of solid base catalysts to elucidate the activity-determining factors in the nature of the catalysts and in the nature of nitro and carbonyl compounds. Among the catalysts examined, MgO, CaO, Ba(OH){sub 2}, KOH/alumina, KF/alumina, Sr(OH){sub 2}, hydrotalcite, and MgCO{sub 3} exhibited high activity for nitroaldol reaction of nitromethane with propionaldehyde, the activities being in this order. Over these catalysts, the yields exceeded 20% at a reaction temperature of 313K and a reaction time of 1h. Mg(OH){sub 2}, {gamma}-alumina, SrO, Ca(OH){sub 2}, BaCO{sub 3}, SrCO{sub 3}, BaO, and La{sub 2}O{sub 3} exhibited moderate activites; the yield were in the range 20-2%. CaCO{sub 3}, ZrO{sub 2}, and ZnO scarcely showed the activity. It is suggested that strongly basic sites are not required for the reaction because the abstraction of a proton from a nitro compound is easy. The reactivities of the nitro compounds were nitroethane > nitromethane > 2-nitropropane, and those of carbonyl compounds were propionaldehyde>isobutyraldehyde>pivalaldehyde>acetone>benzaldehyde>methylpro pionate. On the basis of IR study of adsorbed reactants and the reactivities of the reactants, the reaction mechanisms are proposed. The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from nitro compounds to the cationic species formed by the adsorption of carbonyl compounds on the acidic sites (metal cations). The nitroaldol reaction of nitromethane with propionaldehyde over MgO was scarcely poisoned by carbon dioxide and water; nitromethane is so acidic that it is able to be adsorbed on the catalyst on which carbon dioxide or water was preadsorbed.

  10. Study of the lithiated phenylacetonitrile monoanions and dianions formed according to the lithiated base used (LHMDS, LDA, or n-BuLi). 2. Alkylation and deuteriation mechanism study by vibrational and NMR spectroscopy and quantum chemistry calculations.

    Science.gov (United States)

    Strzalko, Tekla; Wartski, Lya; Corset, Jacques; Castellà-Ventura, Martine; Froment, Françoise

    2012-08-01

    Mechanisms of alkylation by PhCH(2)Cl or CH(3)I in THF and of deuteriation by DCl (4 N in D(2)O) in THF or THF-toluene of lithiated phenylacetonitrile monoanions and dianions obtained with LHMDS, LDA, or n-BuLi are studied by vibrational and NMR spectroscopy and quantum chemistry calculations. Dialkylation of the three dilithio dianions generated with n-BuLi (2.0-2.7 equiv, THF-hexane) depends on their structure: N-lithio (PhCCNLi)(-)Li(+) and (C,N)-dilithio PhCLiCNLi dianions afford PhCR(2)CN (R = PhCH(2), CH(3)) from the intermediate N-lithio monoalkylated monoanion PhCRCNLi 10; C-lithio dianion (PhCLiCN)(-)Li(+) leads to a carbenoid species, the C-lithio monoalkylated nitrile PhCLiRCN 11, which either eliminates carbene Ph-C-R and different LiCN species or isomerizes to PhCRCNLi in the presence of LiX (X = Cl, I). Dialkylation or dideuteriation of monoanions (monomers, dimers, and heterodimers [PhCHCNLi·LiR'], R' = (SiMe(3))(2)N, (i-Pr)(2)N) obtained with LHMDS or LDA (2.4 equiv, THF) proceeds via a sequential mechanism involving monometalation-monoalkylation (or monodeuteriation) reactions. Some carbene and (LiCNLi)(+) are also observed, and explained by another mechanism implying the C-lithio monoalkylated monoanion PhCLiRCN 9 in the presence of LiX. These results show the ambiphilic behavior of PhCLiRCN as a carbenoid (11) or a carbanion (9) and the importance of LiX formed in situ in the first alkylation step.

  11. Cationic methyl complexes of the rare-earth metals: an experimental and computational study on synthesis, structure, and reactivity.

    Science.gov (United States)

    Kramer, Mathias U; Robert, Dominique; Arndt, Stefan; Zeimentz, Peter M; Spaniol, Thomas P; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Okuda, Jun

    2008-10-20

    Synthesis, structure, and reactivity of two families of rare-earth metal complexes containing discrete methyl cations [LnMe(2-x)(thf)n]((1+x)+) (x = 0, 1; thf = tetrahydrofuran) have been studied. As a synthetic equivalent for the elusive trimethyl complex [LnMe3], lithium methylates of the approximate composition [Li3LnMe6(thf)n] were prepared by treating rare-earth metal trichlorides [LnCl3(thf)n] with 6 equiv of methyllithium in diethyl ether. Heteronuclear complexes of the formula [Li3Ln2Me9L(n)] (Ln = Sc, Y, Tb; L = Et2O, thf) were isolated by crystallization from diethyl ether. Single crystal X-ray diffraction studies revealed a heterometallic aggregate of composition [Li3Ln2Me9(thf)n(Et2O)m] with a [LiLn2Me9](2-) core (Ln = Sc, Y, Tb). When tris(tetramethylaluminate) [Ln(AlMe4)3] (Ln = Y, Lu) was reacted with less than 1 equiv of [NR3H][BPh4], the dimethyl cations [LnMe2(thf)n][BPh4] were obtained. The coordination number as well as cis/trans isomer preference was studied by crystallographic and computational methods. Dicationic methyl complexes of the rare-earth metals of the formula [LnMe(thf)n][BAr4]2 (Ln = Sc, Y, La-Nd, Sm, Gd-Lu; Ar = Ph, C6H4F-4) were synthesized, by protonolysis of either the ate complex [Li3LnMe6(thf)n] (Ln = Sc, Y, Gd-Lu) or the tris(tetramethylaluminate) [Ln(AlMe4)3] (Ln = La-Nd, Sm, Dy, Gd) with ammonium borates [NR3H][BAr4] in thf. The number of coordinated thf ligands varied from n = 5 (Ln = Sc, Tm) to n = 6 (Ln = La, Y, Sm, Dy, Ho). The configuration of representative examples was determined by X-ray diffraction studies and confirmed by density-functional theory calculations. The highly polarized bonding between the methyl group and the rare-earth metal center results in the reactivity pattern dominated by the carbanionic character and the pronounced Lewis acidity: The dicationic methyl complex [YMe(thf)6](2+) inserted benzophenone as an electrophile to give the alkoxy complex [Y(OCMePh2)(thf)5](2+). Nucleophilic addition of

  12. 不同碱金属乌桕油皂微波极化脱羧成烃类燃料的工艺%Microwave polarizing decarboxylation of different saponificated Chinese tallow seed oil for the preparation of renewable hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    王允圃; 刘玉环; 阮榕生; 温平威; 马雯; 万益琴

    2014-01-01

    不饱和脂肪酸盐微波极化条件下更容易脱羧成烃,本研究分别以氢氧化锂、氢氧化钠、氢氧化钾皂化乌桕油,以不同碱金属乌桕油皂化物和乌桕油为研究对象,在恒定的微波功率下裂解脱羧成烃,通过GC-MS等分析裂解产物,微波能选择性地加热乌桕油皂羧基端,不饱和键在微波极化过程中与碳负离子中间体形成P-π共轭体系,使裂解反应(脱羧、端烯化、异构化和芳构化等)顺利进行。皂化物极性越大,升温速率越快,液体烃类产率越高,脱羧效果越明显,裂解液体的密度为0.825~0.865 g/cm3,黏度为2.10~2.55 mm2/s,与柴油的性质非常相似,从而证明微波极化乌桕油皂脱羧制烃类燃料的可行性。%It is easier for the decarboxylation reaction of unsaturated fatty acid salt. The Chinese tallow seed oil was saponified by lithium hydroxide,sodium hydroxide,potassium hydroxide. Different saponificated Chinese tallow seed oils were used as model compounds to study the decarboxylation leading to hydrocarbon formation via microwave-assisted pyrolysis technology,the pyrolysis products were analyzed by GC-MS and FT-IR. Microwave energy was able to selectively heat the carboxyl terminal of saponificated Chinese tallow seed oil. During decarboxylation,the double bond in the long hydrocarbon chain formed a P-πconjugated system with the carbanion intermediate. The resulting P-πconjugated system was more stable and beneficial to the pyrolysis reaction (decarboxylation,terminal allylation,isomerization,and aromatization). The saponificated oil has a stronger polarity,the heating rate is higher,liquid hydrocarbon yield is bigger. The viscosity(2.10-2.55 mm2/s) and density(0.825-0.865 g/cm3) of the pyrolysis liquid obtained from this experiment were similar to those of diesel. It was proved feasible to derive renewable hydrocarbon fuel from saponificated Chinese tallow seed oil by microwave

  13. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ka King [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe2)3 and KC(SiHMe2})3TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe2)3 with potassium benzyl. KC(SiHMe2)3TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe2)3}3 (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe2)3. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) are prepared from MI2 and 2 equiv of KC(SiHMe2)3. The compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) and La{C(SiHMe2)3}3 react with 1 equiv of B(C6F5)3 to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe2)3}2HB(C6F5)3, respectively. The corresponding reactions of Ln{C(SiHMe2)3}3 (Ln = Y, Lu) give the β-SiH abstraction product [{(Me2HSi)3C}2LnC(SiHMe2)2SiMe2][HB(C6F5)3] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2or TMEDA) and Ln{C(SiHMe2)3}3 (Ln = Y, Lu, La) and 2 equiv of B(C6

  14. Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ka King [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe2)3 and KC(SiHMe2})3TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe2)3 with potassium benzyl. KC(SiHMe2)3TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe2)3}3 (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe2)3. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) are prepared from MI2 and 2 equiv of KC(SiHMe2)3. The compounds M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2 or TMEDA) and La{C(SiHMe2)3}3 react with 1 equiv of B(C6F5)3 to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe2)3}2HB(C6F5)3, respectively. The corresponding reactions of Ln{C(SiHMe2)3}3 (Ln = Y, Lu) give the β-SiH abstraction product [{(Me2HSi)3C}2LnC(SiHMe2)2SiMe2][HB(C6F5)3] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe2)3}2L (M = Ca, Yb; L = THF2or TMEDA) and Ln{C(SiHMe2)3}3 (Ln = Y, Lu, La) and 2 equiv of B(C6