WorldWideScience

Sample records for capture therapy cooperative

  1. Boron neutron capture therapy: An interdisciplinary co-operation

    International Nuclear Information System (INIS)

    The international (European) undertaking in BNCT in the Netherlands has required close scrutiny of the organisational structure required to establish BNCT facilities. The multidisciplinary co-operation and the tasks of the participants in the hospital (Radiation Oncologist, Medical Physicist, Pharmacist and other medical and paramedical staff) and those attached to the reactor) are described. The organisational structure and regulatory aspects required for the international functioning of the Petten treatment facility are provided for guidance to new projects in this field. (author)

  2. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  3. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  4. Neutron capture therapy

    International Nuclear Information System (INIS)

    The overall state of the art related with neutron capture therapy(NCT) is surveyed. Since the field related with NCT is very wide, it is not intended to survey all related subjects in depth. The primary objective of this report is to help those working for the installation of a NCT facility and a PGNAA(prompt gamma ray neutron activation analysis) system for the boron analysis understand overall NCT at Hanaro. Therefore, while the parts of reactor neutron source and PGNAA are dealt in detail, other parts are limited to the level necessary to understand related fields. For example, the subject of chemical compound which requires intensive knowledge on chemistry, is not dealt as a separated item. However, the requirement of a compound for NCT, currently available compounds, their characteristics, etc. could be understood through this report. Although the subject of cancer treated by NCT is out of the capability of the author, it is dealt focussing its characteristics related with the success of NCT. Each detailed subject is expected to be dealt more detail by specialists in future. This report would be helpful for the researchers working for the NCT to understand related fields. (author). 128 refs., 3 tabs., 12 figs

  5. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  6. Neutron capture therapy for melanoma

    International Nuclear Information System (INIS)

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs

  7. Workshop on neutron capture therapy

    International Nuclear Information System (INIS)

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior

  8. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  9. Research needs for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  10. Research needs for neutron capture therapy

    International Nuclear Information System (INIS)

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted

  11. Clinical aspects of boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is potentially useful in treating malignant tumors of the central nervous system and is technically possible. Additional in vitro and in vivo testing is required to determine toxicities, normal tissue tolerances and tissue responses to treatment parameters. Adequate tumor uptake of the capture agent can be evaluated clinically prior to implementation of a finalized treatment protocol. Phase I and Phase II protocol development, clinical pharmacokinetic studies and neutron beam development

  12. Gadolinium as a Neutron Capture Therapy Agent

    Science.gov (United States)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  13. Mobility and Cooperation to Thwart Node Capture Attacks in MANETs

    Directory of Open Access Journals (Sweden)

    Mauro Conti

    2009-01-01

    Full Text Available The nature of mobile ad hoc networks (MANETs, often unattended, makes this type of networks subject to some unique security issues. In particular, one of the most vexing problem for MANETs security is the node capture attack: an adversary can capture a node from the network eventually acquiring all the cryptographic material stored in it. Further, the captured node can be reprogrammed by the adversary and redeployed in the network in order to perform malicious activities. In this paper, we address the node capture attack in MANETs. We start from the intuition that mobility, in conjunction with a reduced amount of local cooperation, helps computing effectively and with a limited resource usage network global security properties. Then, we develop this intuition and use it to design a mechanism to detect the node capture attack. We support our proposal with a wide set of experiments showing that mobile networks can leverage mobility to compute global security properties, like node capture detection, with a small overhead.

  14. Neutron capture therapy. Principles and applications

    International Nuclear Information System (INIS)

    State of the art report on neutron capture therapy. Summarizes the progress made in recent decades. Multidisciplinary approach. Written by the most experienced specialists Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter. This in principle allows for tumor cell-selective high-LET particle radiotherapy. NCT is exciting scientifically but challenging clinically, and a key factor in success is close collaboration among very different disciplines. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.

  15. Current status of neutron capture therapy

    International Nuclear Information System (INIS)

    There are about 6000 new glioblastoma multiform brain tumours diagnosed each year in the United States of America alone. This cancer is usually fatal within six months of diagnosis even with current standard treatments. Research on boron neutron capture therapy (BNCT) has been considered as a method of potentially curing such cancers. There is a great interest at under-utilised research reactors institutions to identify new medical utilization, attractive to the general public. Neutron capture therapy is a true multidisciplinary topic with a large variety of individuals involved. This publication attempts to provide current information for all those thinking about being involved with NCT, based on the knowledge and experience of those who have pioneered the treatment. It covers the whole range of NCT from designing reactor conversions or new facilities, through to clinical trials and their effectiveness. However, since most work has been done with boron capture therapy for brain tumours using modified thermal research reactors, this tends to be the focus of the report. One of the factors which need to be addressed at the beginning is the timing of the further development of NCT facilities. It should be emphasised that all current work is still at the research stage. Many of those now involved believe that there is little need for many more research facilities until such time as the treatment shows more promising results. For this and other reasons discussed in the report, very serious consideration should be given by research reactor owners and operators before spending large sums of money converting their facilities for NCT

  16. Recent advances in neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1985-01-01

    The application of the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since the discovery of the neutron. This paper briefly summarizes data describing recently developed boronated compounds with evident tumor specificity and extended biological half-lives. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT using band-pass filtered beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 24 refs., 3 figs., 3 tabs.

  17. Spectromicroscopy in Boron Neutron Capture Therapy Research

    Science.gov (United States)

    Gilbert, Benjamin; Redondo, Jose; Andres, Roger; Suda, Takashi; Neumann, Michael; Steen, Steffi; Gabel, Detlef; Mercanti, Delio; Ciotti, Teresa; Perfetti, Paolo; Margaritondo, Giorgio; de Stasio, Gelsomina

    1998-03-01

    The MEPHISTO synchrotron imaging spectromicroscope can analyse ashed cells or tissue sections to reveal the microdistribution of trace elements. MEPHISTO performs core level x-ray absorption spectroscopy with synchrotron radiation, and uses an electron optics system to provide magnified photoelectron images. An application of the MEPHISTO spectromicroscope is in boron neutron capture therapy (BNCT). BNCT is a binary cancer therapy that will selectively destroy cancer cells provided that compounds containing a boron isotope are selectively accumulated in tumor tissue. Important factors for the success of BNCT include the ability to target every cancer cell, and the distribution of boron inside the cell. To investigate the boron distribution in tissue, sections of human glioblastoma containing a BNCT compound, and stained with nickel against a protein found in the nuclei of proliferating (cancer) cells, were studied with MEPHISTO.

  18. Neutron capture therapy at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Application of the 10B(n,α)7Li reaction to cancer radiotherapy (Neutron Capture therapy, or NCT) has intrigued investigators since shortly after the discovery of the neutron. This paper summarizes data describing recently developed boronated compounds designed to serve as vehicles for boron transport to tumor. Whole-body (mouse) Neutron Capture Radiograms (NCR) of some of the most promising compounds are presented; these graphically demonstrate selective uptake in tumor, at times varying from hours to days post administration. Comparison is made to the ubiquitous distribution of inorganic boron compounds used in the first clinical trials of NCT. Since some compounds are now available that allow physiological targeting of boron to tumor at concentrations adequate for therapy, the NCR technique can be used to evaluate important questions concerning the microdistribution of boron within the tumor. The implication of these compounds to NCT is evaluated in terms of Therapeutic Gain (TG). The optimization of NCT by using band-pass filtered neutron beams is described, again in terms of TG, and irradiation times with these less intense beams are estimated. 35 references, 12 figures, 4 tables

  19. Microdosimetry for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    The specific aims of the research proposal were as follows: (1) To design and construct small volume tissue equivalent proportional counters for the dosimetry and microdosimetry of high intensity thermal and epithermal neutron beams used in BNCT, and of modified fast neutron beams designed for boron neutron capture enhanced fast neutron therapy (BNCEFNT). (2) To develop analytical methods for estimating the biological effectiveness of the absorbed dose in BNCT and BNCEFNT based on the measured microdosimetric spectra. (3) To develop an analytical framework for comparing the biological effectiveness of different epithermal neutron beams used in BNCT and BNCEFNT, based on correlated sets of measured microdosimetric spectra and radiobiological data. Specific aims (1) and (2) were achieved in their entirety and are comprehensively documented in Jay Burmeister's Ph.D. dissertation entitled ''Specification of physical and biologically effective absorbed dose in radiation therapies utilizing the boron neutron capture reaction'' (Wayne State University, 1999). Specific aim (3) proved difficult to accomplish because of a lack of sufficient radiobiological data

  20. Considerations for boron neutron capture therapy studies

    International Nuclear Information System (INIS)

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps

  1. Boron thermal/epithermal neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the /sup 10/B(n, ..cap alpha..)/sup 7/Li reaction is approx. 10..mu.., or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor.

  2. Neutron capture therapy: Years of experimentation---Years of reflection

    International Nuclear Information System (INIS)

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program

  3. Advances in neutron capture therapy 2006. Proceedings of 12th international congress on neutron capture therapy

    International Nuclear Information System (INIS)

    The Twelfth International Congress on Neutron Capture Therapy (ICNCT-12) is being held from October 9th to 13th, 2006 at the Kagawa International Congress Hall in Takamatsu, Kagawa, Japan. The main theme of the congress is From the past to the Future'. Five symposiums were organized to accommodate all the contributions from the international scientific committees of the International Society for Neutron Capture Therapy (ISNCT), and two symposiums were added to balance the number of fields of specialties. The seven symposiums for ICNCT-12 are as follows: 1) Clinical Results of BNCT for Brain Tumors, 2) Dosimetry, 3) Treatment Planning system, 4) Drug Delivery System, 5) Biomedical and General Matters, 6) BNCT Systems using Accelerators, 7) New Applications and Protocols for BNCT. There are a total of 195 presentations in this congress: 3 special lectures, 34 symposium presentations, 10 presentations in two special sessions from the recipients of the Ralph G. Fairchild Award, 70 presentations in the oral parallel sessions and 78 presentations in the poster sessions. A compilation of 169 papers are published in this proceedings. The 165 of the presented papers are indexed individually. (J.P.N.)

  4. Recent progress of basic studies for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koji [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst

    2001-01-01

    Epi-thermal neutron irradiation for malignant brain tumors is the mainstream of recent studies in boron neutron capture therapy. To improve the depth dose distribution in water phantom, a LiF plate (5 mmt, 6 cm {phi}) is located in the front of center axis of KUR irradiation field. Thermal neutron flux at the center surface of the water phantom is shielded by the LiF plate. The depth and peripheral dose distribution of thermal neutron flux becomes to uniform. The boron dose at 6 cm in the depths of the phantom increases to about 1.71 times greater than the usual irradiation field. Two-kinds of nuclear medicines, Na{sub 2}B{sub 12}H{sub 11}SH(BSH) and Borono Phenyl Alanine (BPA), have been used for boron neutron capture therapy. BPA-ol, a new medicine of modified compound of the BPA can be used effectively on hyperthermia of cancer parts to 42 - 43degC. Cell death and mutagenesis of chinese hamster ovary cells (CHO) after pre-incubation with BPA and BSH are investigated for the validity of boron neutron capture therapy. The effects of BSH on the cell death and the mutagenesis are few in comparison with those of BPA. It is thought that the BSH is not accumulated in the cell. The effects of boron neutron capture therapy on sensitivity of intratumor quiescent and total cells are investigated. (Suetake, M.)

  5. Proceedings of the first international symposium on neutron capture therapy

    International Nuclear Information System (INIS)

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration

  6. Proceedings of the first international symposium on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Brownell, G.L. (eds.)

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  7. How getting noticed helps getting on: successful attention capture doubles children's cooperative play.

    Science.gov (United States)

    Yuill, Nicola; Hinske, Steve; Williams, Sophie E; Leith, Georgia

    2014-01-01

    Cooperative social interaction is a complex skill that involves maintaining shared attention and continually negotiating a common frame of reference. Privileged in human evolution, cooperation provides support for the development of social-cognitive skills. We hypothesize that providing audio support for capturing playmates' attention will increase cooperative play in groups of young children. Attention capture was manipulated via an audio-augmented toy to boost children's attention bids. Study 1 (48 6- to 11-year-olds) showed that the augmented toy yielded significantly more cooperative play in triads compared to the same toy without augmentation. In Study 2 (33 7- to 9-year-olds) the augmented toy supported greater success of attention bids, which were associated with longer cooperative play, associated in turn with better group narratives. The results show how cooperation requires moment-by-moment coordination of attention and how we can manipulate environments to reveal and support mechanisms of social interaction. Our findings have implications for understanding the role of joint attention in the development of cooperative action and shared understanding. PMID:24904453

  8. How Getting Noticed Helps Getting On: Successful Attention Capture Doubles Children’s Cooperative Play

    Directory of Open Access Journals (Sweden)

    Nicola eYuill

    2014-05-01

    Full Text Available Cooperative social interaction is a complex skill that involves maintaining shared attention and continually negotiating a common frame of reference. Privileged in human evolution, cooperation provides support for the development of social-cognitive skills. We hypothesise that providing audio support for capturing playmates’ attention will increase cooperative play in groups of young children. Attention capture was manipulated via an audio-augmented toy to boost children’s attention bids. Study 1 (48 6- to 11-year-olds showed that the augmented toy yielded significantly more cooperative play in triads compared to the same toy without augmentation. In Study 2 (33 7- to 9-year-olds the augmented toy supported greater success of attention bids which were associated with longer cooperative play, associated in turn with better group narratives. The results show how cooperation requires moment-by-moment coordination of attention and how we can manipulate environments to reveal and support mechanisms of social interaction. Our findings have implications for understanding the role of joint attention in the development of cooperative action and shared understanding.

  9. Medical and biological requirements for boron neutron capture therapy

    International Nuclear Information System (INIS)

    In conventional radiation therapy, tumor doses applied to most solid tumors are limited by the tolerance of normal tissues. The promise of Boron Neutron Capture Therapy lies in its potential to deposit high doses of radiation very specifically to tumor tissue. Theoretically ratios of tumor to normal tissue doses can be achieved significantly higher than conventional radiotherapeutic techniques would allow. Effective dose distributions obtainable are a complex function of the neutron beam characteristics and the macro and micro distributions of boron in tumor and normal tissues. Effective RBE doses are calculated in tumors and normal tissue for thermal, epithermal and 2 keV neutrons

  10. Web-sharing Sociality and Cooperative Prey Capture in a Malagasy Spitting Spider (Araneae: Scytodidae)

    NARCIS (Netherlands)

    Miller, J.A.

    2006-01-01

    Web-sharing sociality and cooperative prey capture are reported for Scytodes socialis, sp. nov., a spitting spider discovered in a dry deciduous forest in Eastern Madagascar. Transect-based sampling was used to investigate colony demographics, estimate web volume and stratigraphic position, and asse

  11. Carborane derivative development for boron neutron capture therapy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barnum, Beverly A.; Yan Hao; Moore, Roger; Hawthorne, M. Frederick; Baum, Kurt

    1999-04-01

    Boron Neutron Capture Therapy [BNCT] is a binary method of cancer therapy based on the capture of neutrons by a boron-10 atom [{sup 10}B]. Cytotoxic {sup 7}Li nuclei and {alpha}-particles are emitted, with a range in tissue of 9 and 5 {micro}m, respectively, about one cell diameter. The major obstacle to clinically viable BNCT is the selective localization of 5-30 ppm {sup 10}B in tumor cells required for effective therapy. A promising approach to BNCT is based on hydrophilic boron-rich oligomeric phosphate diesters, or ''trailers'' that have been shown to concentrate selectively in tumor tissue. Examples of these compounds were prepared previously at high cost using an automated DNA synthesizer. Direct synthesis methods are needed for the production of gram-scale quantities for further biological evaluation. The work accomplished as a result of the collaboration between Fluorochem, Inc. and UCLA demonstrates that short oligomers containing at least five carborane units with four phosphodiester linkages can be prepared in substantial quantities. This work was accomplished by the application of standard phosphoramidite coupling chemistry.

  12. Boron neutron capture therapy; Radioterapia per cattura neutronica del boro

    Energy Technology Data Exchange (ETDEWEB)

    Mattioda, F. [Turin Politecnico, Turin (Italy); Merlone, A. [Pisa Univ., Pisa (Italy); Agosteo, S. [Milan Politecnico, Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan (Italy); Burn, K.W.; Tinti, R. [ENEA, Bologna (Italy). Dipt. energia; Capannesi, G.; Rosi, G. [ENEA, Casaccia (Italy). Dipt. innovazione; Casali, F.; Nava, E. [Bologna UNiv., Bologna (Italy); Gambarini, G. [Milan Univ., Milan (Italy)

    1999-08-01

    Boron radiotherapy in cancer treatment and the feasibility of using the Tapiro reactor as a neutron source is discussed. In particle, the article aims to focus attention on the possibility using ENEA's (National Agency for New Technology, Energy and the Environment) Tapiro reactor, appropriately modified, as a suitable neutron source for the experimental phase of boron neutron capture therapy in Italy. [Italian] Sono presentati gli studi sulla radioterapia per cattura neutronica del boro nella cura di alcune neoplasie e l'utilizzo del reattore Tapiro come sorgente di neutroni nel progetto italiano di ricerca condotto dall'ENEA.

  13. Selective thermal neutron capture therapy of cancer cells using their specific functional differentiation

    International Nuclear Information System (INIS)

    The theory and the history of selective thermal neutron capture therapy for malignant melanoma, thermal neutron capture therapy which has been developed by authors, synthesis and effects of 10B-compounds accumulating in melanoma cells and absorbing thermal neutron easily, and many experiments concerning this therapy were reviewed and discussed. (Tsunoda, M.)

  14. New compounds for neutron capture therapy (NCT) and their significance

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P.

    1982-01-01

    Clearly the most effective tumor therapy would be obtained by the selective targeting of cytotoxic agents to tumor cells. Although many biomolecules are known to be taken up in tumors, the targeting of cytotoxic agents to tumors is limited by the fact that other essential cell pools compete with equal or even greater effectiveness. The approach of delivering stable non-toxic isotopes to tumor, with activation by means of an external radiation beam, is advantageous for two reasons: (1) it obviates problems associated with high uptake of isotopes in normal tissues, as these cell pools can be excluded from the radiation field, and (2) the general tumor area can be included in the activating beam field; thus, the possibility exists that all microscopic tumor extensions can be irradiated. As long as range of reaction products is short, dose will be restricted to the tumor, with a resultant high therapeutic ratio. This method can be accomplished with either photon activation therapy (PAT) or Neutron Capture Therapy (NCT), the latter will be emphasized here. The range of the high LET, low OER particles from the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is approx. 10 ..mu..m, or one cell diameter; hence this reaction is optimal for cell killing. A number of biomolecules have been investigated as possible vehicles for transport of boron to tumors, including phenothiazines, thiouracils, porphyrins, nucleosides, and amino acids. Biodistributions of these compounds show selective concentration in tumor adequate for therapy. The biological halflives are in the order of days, allowing the possibility of fractionated or protracted irradiations. The radiobiological and physical implication of these parameters on NCT are discussed. The possibility of using an approximately-monoenergetic, scandium-filtered beam of about 2 keV, to reduce the dose from background radiations by about 85%, is also discussed. (ERB)

  15. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  16. Carborane compounds for neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    The possibility of using thiouracil as a vehicle for stable nuclei such as 10B for neutron capture therapy (NCT) of melanoma was first discussed by Fairchild and co-workers in 1982. The author's research has been directed towards the design and synthesis of a number of o-carboranyl-thiouracils, the ten boron atoms of the carborane cage having a clear advantage for NCT. The first step was the preparation, previously reported, of thiouracils bearing an alkyl group continuing a triple bond for later elaboration to a carborane. The present paper describes the continuation of this work with the preparation of the carboranes of this series and its extension to the synthesis of a thiouracil in which a carboranylalkyl group is attached to the nitrogen in the 3-position

  17. Physico-technical progress in neutron-capture therapy method

    International Nuclear Information System (INIS)

    This paper describes mainly development studies on the determination method of in vivo 10B for the purpose of employment for neutron capture therapy for malignant melanoma and other tumors. To darify the efficacy of the neutron capture therapy, it is necessary to determine 10B concentration in the diseased part. This study aimed at in vivo 10B concention determination in living sample to the level of ppm order with 10 % of analytical error within 1 hour, and these determination conditions were satified by prompt γ-ray (478 keV) determination of 10B (n, αγ)7Li reaction. This method required no sample pretreatment. Further, data normalization by γ-ray of H(n, γ)D reaction permitted no disturbance by sample shape or size. Lower limit of detection of the proposed method was estimated in terms of measuring time and statistical error by the equations of 10B concentration and error analysis derived by the authors. As for the effect of prompt γ-rays of 23Na(n, γ)24Na and 6Li(n, γ)7Li reactions, it was clarified that the former showed no disturbance but some correction was necessary in case of less than 0.1 g of smaple size owing to the latter reaction. In vivo sample determination showed the proposed method was practical. In this paper some results of phantom experiment for in vivo non-destructive 10B measurement and related simulation calculation, and examination of effect of (γ, n) reaction in heavy water of biomedical irradiation equipment on radiation quality were also described. (Takagi, S.)

  18. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  19. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  20. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    Science.gov (United States)

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  1. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    OpenAIRE

    Peters, Tanja; Grunewald, Catrin; Blaickner, Matthias; Ziegner, Markus; Schütz, Christian; Iffland, Dorothee; Hampel, Gabriele; Nawroth, Thomas; Langguth, Peter

    2015-01-01

    Background Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The f...

  2. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    Science.gov (United States)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  3. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a tumor-cell targeted radiotherapy. When 10B absorbs thermal neutrons, the alpha and 7Li particles generated by the 10B (n, α) 7Li reaction are high linear energy transfer (LET) particles, and carry high kinetic energy (2.34 MeV), and have short ranges (4-9 micron-meters) of approximately one-cell diameter, resulting in a large relative biological effectiveness (RBE) and selective destruction of tumor cells containing 10B. We have, for the first time in the world, used BNCT to treat 11 patients with recurrent head and neck malignancies (HNM) after a standard primary therapy since 2001. The 11 patients were composed of 6 squamous cell carcinomas, 3 salivary gland tumors and 2 sarcomas. The results of BNCT were as follows. Regression rates (volume %) were complete response (CR): 2 cases, >90%: 5 cases, 73%: 1 case, 54%: 1 case, progressive disease (PD): 1 case, NE (not evaluated): 1 case. The response rate was 82%. Improvement of quality of life (QOL) was recognized, such as disappearance of tumor ulceration and covering with normal skin: relief of severe pain, bleeding, trismus and dyspnea: improvement of performance status (PS) (from 4 to 2) allowing the patients to return to work and elongate his survival period. Survival periods after BNCT were 1-38 months (mean: 8.5 months). The survival rate was 36% (4 cases). There are a few side-effects such as transient mucositis and alopecia less than Grade-2. These results indicate that BNCT represents a new and promising treatment approach even for a huge or far-advanced HNM. (author)

  4. Autonomous robotic capture of non-cooperative target by adaptive extended Kalman filter based visual servo

    Science.gov (United States)

    Dong, Gangqi; Zhu, Zheng H.

    2016-05-01

    This paper presents a real-time, vision-based algorithm for the pose and motion estimation of non-cooperative targets and its application in visual servo robotic manipulator to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter and photogrammetry is developed for the real-time pose and motion estimation of non-cooperative targets. Based on the pose and motion estimates, the desired pose and trajectory of end-effector is defined and the corresponding desired joint angles of the robotic manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is then developed for the robotic manipulator to track, approach and capture the target. Validating experiments are designed and performed on a custom-built six degrees of freedom robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the feasibility, effectiveness and robustness of the proposed adaptive extended Kalman filter enabled pose and motion estimation and visual servo strategy.

  5. Boron neutron capture therapy for recurrent head and neck malignancies

    International Nuclear Information System (INIS)

    To avoid severe impairment of oro-facial structures and functions, it is necessary to explore new treatments for recurrent head and neck malignancies (HNM). Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. So far for 4 years and 3 months, we have treated with 37 times of BNCT for 21 patients (14 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results are (1) 10B concentration of tumor/normal tissue ratio (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 6cases, PR: 11cases, PD: 3cases NE (not evaluated): 1case. Response rate was 81%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-51 months (mean: 9.8 months). 4-year survival rate was 39% by Kaplan-Meier analysis. (5) A few adverse-effects such as transient mucositis, alopecia were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM. (author)

  6. Boron neutron capture therapy in cancer: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Pisarev, Mario A.; Dagrosa, Maria Alejandra; Juvenal, Guilermo J. [National Atomic Energy Commission, Buenos Aires (Argentina). Div. of Nuclear Biochemistry; University of Buenos Aires (Argentina). School of Medicine. Dept. of Human Biochemistry

    2007-07-15

    Undifferentiated thyroid cancer (UTC) is a very aggressive tumor with no effective treatment, since it lacks iodine uptake and does not respond to radio or chemotherapy. The prognosis of these patients is bad, due to the rapid growth of the tumor and the early development of metastasis. Boron neutron capture therapy (BNCT) is based on the selective uptake of certain boron non-radioactive compounds by a tumor, and the subsequent irradiation of the area with an appropriate neutron beam. {sup 10}B is then activated to {sup 11}B, which will immediately decay releasing alpha particles and {sup 7}Li, of high linear energy transfer (LET) and limited reach. Clinical trials are being performed in patients with glioblastoma multiform and melanoma. We have explored its possible application to UTC. Our results demonstrated that a cell line of human UTC has a selective uptake of borophenylalanine (BPA) both in vitro and after transplantation to nude mice. Treatment of mice by BNCT led to a complete control of growth and cure of 100% of the animals. Moreover dogs with spontaneous UTC also have a selective uptake of BPA. At the present we are studying the biodistribution of BPA in patients with UTC before its application in humans. (author)

  7. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    Science.gov (United States)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  8. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  9. Carboranyl Oligonucleotides for Neutron Capture Therapy Final Report

    International Nuclear Information System (INIS)

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-(β-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  10. A standardized method for beam design in neutron capture therapy

    International Nuclear Information System (INIS)

    A desirable end point for a given beam design for Neutron Capture Therapy (NCT) should be quantitative description of tumour control probability and normal tissue damage. Achieving this goal will ultimately rely on data from NCT human clinical trials. Traditional descriptions of beam designs have used a variety of assessment methods to quantify proposed or installed beam designs. These methods include measurement and calculation of open-quotes free fieldclose quotes parameters, such as neutron and gamma flux intensities and energy spectra, and figures-of-merit in tissue equivalent phantoms. The authors propose here a standardized method for beam design in NCT. This method would allow all proposed and existing NCT beam facilities to be compared equally. The traditional approach to determining a quantitative description of tumour control probability and normal tissue damage in NCT research may be described by the following path: Beam design → dosimetry → macroscopic effects → microscopic effects. Methods exist that allow neutron and gamma fluxes and energy dependence to be calculated and measured to good accuracy. By using this information and intermediate dosimetric quantities such as kerma factors for neutrons and gammas, macroscopic effect (absorbed dose) in geometries of tissue or tissue-equivalent materials can be calculated. After this stage, for NCT the data begins to become more sparse and in some areas ambiguous. Uncertainties in the Relative Biological Effectiveness (RBE) of some NCT dose components means that beam designs based on assumptions considered valid a few years ago may have to be reassessed. A standard method is therefore useful for comparing different NCT facilities

  11. A suggestion for B-10 imaging during boron neutron capture therapy

    OpenAIRE

    Cortesi, M.

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake ...

  12. Spacecraft Stabilization and Control for Capture of Non-Cooperative Space Objects

    Science.gov (United States)

    Joshi, Suresh; Kelkar, Atul G.

    2014-01-01

    This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.

  13. GNC architecture for autonomous robotic capture of a non-cooperative target: Preliminary concept design

    Science.gov (United States)

    Jankovic, Marko; Paul, Jan; Kirchner, Frank

    2016-04-01

    Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.

  14. Cooperative capture synthesis: yet another playground for copper-free click chemistry.

    Science.gov (United States)

    Hou, Xisen; Ke, Chenfeng; Fraser Stoddart, J

    2016-07-21

    Click chemistry describes a family of modular, efficient, versatile and reliable reactions which have acquired a pivotal role as one of the most useful synthetic tools with a potentially broad range of applications. While copper(i)-catalysed alkyne-azide cycloaddition is the most widely adopted click reaction in the family, the fact that it is cytotoxic restricts its practice in certain situations, e.g., bioconjugation. Consequently, researchers have been exploring the development of copper-free click reactions, the most popular example so far being strain-promoted alkyne-azide cycloadditions. An early example of copper-free click reactions that is rarely mentioned in the literature is the cucurbit[6]uril (CB6) catalysed alkyne-azide cycloaddition (CB-AAC). Despite the unique ability of CB-AAC to generate mechanically interlocked molecules (MIMs) - in particular, rotaxanes - its slow reaction rate and narrow substrate acceptance limit its scope. In this Tutorial Review, we describe our efforts of late in developing the fundamental principles and practical applications of a new copper-free click reaction - namely, cooperative capture synthesis, whereby introducing a cyclodextrin (CD) as an accelerator in CB-AAC, hydrogen bonding networks are formed between the rims of CD and CB6 in a manner that is positively cooperative, giving rise to a high level of pre-organisation during efficient and quick rotaxane formation. For example, [4]rotaxanes can be prepared nearly quantitatively within a minute in water. Furthermore, we have demonstrated that CB-AAC can accommodate a wider substrate tolerance by introducing pillararenes as promoters. To date, we have put cooperative capture synthesis into practice by (i) preparing polyrotaxanes containing up to 200 rings in nearly quantitative yields, (ii) trapping conformational isomers of polymacrocycles as rings in rotaxanes, (iii) demonstrating solid-state fluorescence and Förster resonance energy transfer (FRET) processes by

  15. Cooperative capture synthesis: yet another playground for copper-free click chemistry.

    Science.gov (United States)

    Hou, Xisen; Ke, Chenfeng; Fraser Stoddart, J

    2016-07-21

    Click chemistry describes a family of modular, efficient, versatile and reliable reactions which have acquired a pivotal role as one of the most useful synthetic tools with a potentially broad range of applications. While copper(i)-catalysed alkyne-azide cycloaddition is the most widely adopted click reaction in the family, the fact that it is cytotoxic restricts its practice in certain situations, e.g., bioconjugation. Consequently, researchers have been exploring the development of copper-free click reactions, the most popular example so far being strain-promoted alkyne-azide cycloadditions. An early example of copper-free click reactions that is rarely mentioned in the literature is the cucurbit[6]uril (CB6) catalysed alkyne-azide cycloaddition (CB-AAC). Despite the unique ability of CB-AAC to generate mechanically interlocked molecules (MIMs) - in particular, rotaxanes - its slow reaction rate and narrow substrate acceptance limit its scope. In this Tutorial Review, we describe our efforts of late in developing the fundamental principles and practical applications of a new copper-free click reaction - namely, cooperative capture synthesis, whereby introducing a cyclodextrin (CD) as an accelerator in CB-AAC, hydrogen bonding networks are formed between the rims of CD and CB6 in a manner that is positively cooperative, giving rise to a high level of pre-organisation during efficient and quick rotaxane formation. For example, [4]rotaxanes can be prepared nearly quantitatively within a minute in water. Furthermore, we have demonstrated that CB-AAC can accommodate a wider substrate tolerance by introducing pillararenes as promoters. To date, we have put cooperative capture synthesis into practice by (i) preparing polyrotaxanes containing up to 200 rings in nearly quantitative yields, (ii) trapping conformational isomers of polymacrocycles as rings in rotaxanes, (iii) demonstrating solid-state fluorescence and Förster resonance energy transfer (FRET) processes by

  16. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  17. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy.

    Science.gov (United States)

    Hiramatsu, Ryo; Kawabata, Shinji; Tanaka, Hiroki; Sakurai, Yoshinori; Suzuki, Minoru; Ono, Koji; Miyatake, Shin-ichi; Kuroiwa, Toshihiko; Hao, Erhong; Vicente, M Graça H

    2015-03-01

    Carboranyl-containing chlorins have emerged as promising dual sensitizers for use in both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT), by virtue of their known tumor affinity, low cytotoxicity in dark conditions, and their strong absorptions in the red region of the optical spectrum. Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC) is a new synthetic carboranyl-containing chlorin of high boron content (24% by weight). To evaluate TPFC's applicability as sensitizer for both PDT and BNCT, we performed an in vitro and in vivo study using F98 rat glioma cells and F98 rat glioma-bearing brain tumor models. For the in vivo BNCT study, we used boronophenylalanine (BPA), which is currently used in clinical BNCT studies, via intravenous administration (i.v.) and/or used TPFC via convection-enhanced delivery (CED), a method for local drug infusion directly into the brain. In the in vitro PDT study, the cell surviving fraction following laser irradiation (9 J/cm(2) ) was 0.035 whereas in the in vitro BNCT study, the cell surviving fraction following neutron irradiation (thermal neutron = 1.73 × 10(12) n/cm(2) ) was 0.04. In the in vivo BNCT study, the median survival time following concomitant administration of BPA (i.v.) and TPFC (CED) was 42 days (95% confidence interval; 37-43 days).

  18. Hemorrhage in mouse tumors induced by dodecaborate cluster lipids intended for boron neutron capture therapy

    Directory of Open Access Journals (Sweden)

    Schaffran T

    2014-07-01

    Full Text Available Tanja Schaffran,1 Nan Jiang,1 Markus Bergmann,2,3 Ekkehard Küstermann,4 Regine Süss,5 Rolf Schubert,5 Franz M Wagner,6 Doaa Awad,7 Detlef Gabel1,2,8 1Department of Chemistry, University of Bremen, 2Institute of Neuropathology, Klinikum Bremen-Mitte; 3Cooperative Center Medicine, University of Bremen, 4“In-vivo-MR” AG, FB2, University of Bremen, Bremen, 5Pharmaceutical Technology, University of Freiburg, Freiburg im Breisgau, 6Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II, Technische Unversitaet Muenchen, Garching, Germany; 7Department of Biochemistry, Alexandria University, Alexandria, Egypt; 8School of Engineering and Science, Jacobs University Bremen, Bremen, Germany Abstract: The potential of boron-containing lipids with three different structures, which were intended for use in boron neutron capture therapy, was investigated. All three types of boron lipids contained the anionic dodecaborate cluster as the headgroup. Their effects on two different tumor models in mice following intravenous injection were tested; for this, liposomes with boron lipid, distearoyl phosphatidylcholine, and cholesterol as helper lipids, and containing a polyethylene glycol lipid for steric protection, were administered intravenously into tumor-bearing mice (C3H mice for SCCVII squamous cell carcinoma and BALB/c mice for CT26/WT colon carcinoma. With the exception of one lipid (B-THF-14, the lipids were well tolerated, and no other animal was lost due to systemic toxicity. The lipid which led to death was not found to be much more toxic in cell culture than the other boron lipids. All of the lipids that were well tolerated showed hemorrhage in both tumor models within a few hours after administration. The hemorrhage could be seen by in vivo magnetic resonance and histology, and was found to occur within a few hours. The degree of hemorrhage depended on the amount of boron administered and on the tumor model. The observed unwanted effect of the lipids

  19. Gadolinium as an element for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  20. Gadolinium as an element for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-12-31

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  1. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  2. Medical aspects of boron-slow neutron capture therapy

    International Nuclear Information System (INIS)

    Earlier radiations of patients with cerebral tumors disclosed the need: (1) to find a carrier of the boron compound which would leave the blood and concentrate in the tumor, (2) to use a more penetrating neutron beam, and (3) to develop a much faster method for assaying boron in blood and tissue. To some extent number1 has been accomplished in the form of Na2 B12 H11 SH, number2 has yet to be achieved, and number3 has been solved by the measurement of the 478-keV gamma ray when the 10B atom disintegrates following its capture of a slow neutron. The hitherto unreported data in this paper describe through the courtesy of Professor Hiroshi Hatanaka his studies on the pharmacokinetics and quality control of Na2 B12 H11SH based on 96 boron infusions in 86 patients. Simultaneous blood and tumor data are plotted here for 30 patients with glioblastomas (Grade III-IV gliomas), illustrating remarkable variability. Detailed autopsy findings on 18 patients with BNCT showed radiation injury in only 1. Clinical results in 12 of the most favorably situated glioblastomas reveal that 5 are still alive with a 5-year survival rate of 58% and the excellent Karnofsky performance rating of 87%. For the first time evidence is presented that slow-growing astrocytomas may benefit from BNCT. 10 references, 8 figures, 5 tables

  3. A colorimetric determination of boron in biological sample for boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The boron neutron capture therapy (BNCT) has shown better prognosis in the treatment of glyemas and gluoblastomas grade III and IV than other therapies. During the treatment the levels of Na210B12H11SH must be known in several compartiments of the organism and with this purpose the method of colorimetric determination of boron using curcumine was established. This method is simple, reprodutible and adequate sensitivity for this control. (author)

  4. Boron neutron capture therapy (BNCT) using fast neutrons: Effects in two human tumor cell lines

    International Nuclear Information System (INIS)

    The results demonstrate that the effect of fast neutrons on cell survival in cell culture can be enhanced by boron neutron capture reaction. Even with lower enhancement ratios, the concept of NCT assisted fast neutron therapy may successfully be applied for tumor treatment with the Essen cyclotron. (orig.)

  5. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  6. Further development of thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented thermal neutron capture therapy for metastatic and deeply-invasive human malignant melanoma. Separate abstracts were prepared for 2 of the papers in this report. The remaining 32 papers were considered outside the subject scope of INIS. (J.P.N.)

  7. To gadolinium using for neutron capture therapy researches at WWR-SM reactor

    International Nuclear Information System (INIS)

    The analysis of using gadolinium (isotope and natural) for the medical purposes in neutron-capture therapy of cancer diseases is carried out. Results of definition of the epithermal neutron beam irradiation dose for biological objects with gadolinium-containing preparations are presented by using the WWR-SM reactor. (authors)

  8. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.;

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few...

  9. Neutron capture therapy of ocular melanoma: dosimetry and microdosimetry approaches; Therapie par capture de neutrons des melanomes oculaires: approches dosimetrique et microdosimetrique

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Methlin, G. [Centre Paul Strauss, 67 - Strasbourg (France); Abbe, J.C. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Stampfler, A. [Strasbourg-1 Univ., 67 (France); Lefebvre, O. [Faculte de Medecine, 67 - Strasbourg (France); Sahel, J. [Centre Hospitalier Universitaire, 67 - Strasbourg (France)

    1994-06-01

    Neutron capture therapy (NCT) aims at destroying cancerous cells with the {alpha} and {sup 7}Li particles produced by the neutron capture reaction on {sup 10}B. This note reports on the study of the boron distribution in tissues on an animal model (nude mice) xenografted with a human ocular melanoma after an i.p.injection of 2g/kg of {sup 10}B-BPA and in cells cultured in the presence of 530 {mu}mol/l of {sup 10}B-BPA. A concentration of 64 ppm of {sup 10}B in the active part of the tumour with a ratio of concentrations versus the skin of 3.7 are observed. Investigations on cells reveal the presence of boron in the cytoplasm. The biological, dosimetric and microdosimetric consequences of these findings are discussed. (authors). 15 refs., 2 tabs., 2 figs.

  10. Implications for clinical treatment from the micrometer site dosimetric calculations in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Trent L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37901 (United States)], E-mail: tnichol2@utk.edu; Kabalka, George W. [Department of Chemistry, University of Tennessee, Knoxville, TN 37901 (United States); Miller, Laurence F. [Department of Nuclear and Radiological Engineering, University of Tennessee, Knoxville, TN 37901 (United States); McCormack, Michael T. [Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920 (United States); Johnson, Andrew [Rush University Medical Center, Chicago, IL 60612 (United States)

    2009-07-15

    Boron neutron capture therapy has now been used for several malignancies. Most clinical trials have addressed its use for the treatment of glioblastoma multiforme. A few trials have focused on the treatment of malignant melanoma with brain metastases. Trial results for the treatment of glioblastoma multiforme have been encouraging, but have not achieved the success anticipated. Results of trials for the treatment of malignant melanoma have been very promising, though with too few patients for conclusions to be drawn. Subsequent to these trials, regimens for undifferentiated thyroid carcinoma, hepatic metastases from adenocarcinoma of the colon, and head and neck malignancies have been developed. These tumors have also responded well to boron neutron capture therapy. Glioblastoma is an infiltrative tumor with distant individual tumor cells that might create a mechanism for therapeutic failure though recurrences are often local. The microdosimetry of boron neutron capture therapy can provide an explanation for this observation. Codes written to examine the micrometer scale energy deposition in boron neutron capture therapy have been used to explore the effects of near neighbor cells. Near neighbor cells can contribute a significantly increased dose depending on the geometric relationships. Different geometries demonstrate that tumors which grow by direct extension have a greater near neighbor effect, whereas infiltrative tumors lose this near neighbor dose which can be a significant decrease in dose to the cells that do not achieve optimal boron loading. This understanding helps to explain prior trial results and implies that tumors with small, closely packed cells that grow by direct extension will be the most amenable to boron neutron capture therapy.

  11. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf;

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  12. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo; Stich, Theresia; Higgins, Samantha Caroline; Lloyd, Rhiannon Eleanor Iris; Smith, James Richard; Fatouros, Dimitrios; Calabrese, Gianpiero; Pilkington, Geoffrey John; Tsibouklis, John

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue1. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of α-particles and 7Li+ is only 8 and 5 µm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells2. Poor selectivity is the main ...

  13. Formulation and preliminary evaluation of delivery vehicles for the boron neutron capture therapy of cancer

    OpenAIRE

    Olusanya, Temidayo Olajumoke Bolanle

    2015-01-01

    Boron neutron capture therapy (BNCT) is a method for selectively destroying malignant (normally glioma) cells whilst sparing normal tissue. Irradiation of 10B (large neutron capture cross-section) with thermal neutrons effects the nuclear fission reaction: 10B + 1n → → 7Li+ + α + γ; where the penetration of -particles and 7Li+ is only 8 and 5 μm, respectively, i.e., within a single cell thickness, assuming 10B can be preferentially located within glioma cells. Poor selectivity is the main r...

  14. Cellular uptake and in vitro antitumor efficacy of composite liposomes for neutron capture therapy

    International Nuclear Information System (INIS)

    Neutron capture therapy for glioblastoma has focused mainly on the use of 10B as neutron capture isotope. However, 157Gd offers several advantages over boron, such as higher cross section for thermal neutrons and the possibility to perform magnetic resonance imaging during neutron irradiation, thereby combining therapy and diagnostics. We have developed different liposomal formulations of gadolinium-DTPA (Magnevist®) for application in neutron capture therapy of glioblastoma. The formulations were characterized physicochemically and tested in vitro in a glioma cell model for their effectiveness. Liposomes entrapping gadolinium-DTPA as neutron capture agent were manufactured via lipid/film-extrusion method and characterized with regard to size, entrapment efficiency and in vitro release. For neutron irradiation, F98 and LN229 glioma cells were incubated with the newly developed liposomes and subsequently irradiated at the thermal column of the TRIGA reactor in Mainz. The dose rate derived from neutron irradiation with 157Gd as neutron capturing agent was calculated via Monte Carlo simulations and set in relation to the respective cell survival. The liposomal Gd-DTPA reduced cell survival of F98 and LN229 cells significantly. Differences in liposomal composition of the formulations led to distinctly different outcome in cell survival. The amount of cellular Gd was not at all times proportional to cell survival, indicating that intracellular deposition of formulated Gd has a major influence on cell survival. The majority of the dose contribution arises from photon cross irradiation compared to a very small Gd-related dose. Liposomal gadolinium formulations represent a promising approach for neutron capture therapy of glioblastoma cells. The liposome composition determines the uptake and the survival of cells following radiation, presumably due to different uptake pathways of liposomes and intracellular deposition of gadolinium-DTPA. Due to the small range of the

  15. Initiation of a phase-I trial of neutron capture therapy at the MIT research reactor

    International Nuclear Information System (INIS)

    The Massachusetts Institute of Technology (MIT), the New England Medical Center (NEMC), and Boston University Medical Center (BUMC) initiated a phase-1 trial of boron neutron capture therapy (BNCT) on September 6, 1994, at the 5-MW(thermal) MIT research reactor (MITR). A novel form of experimental cancer therapy, BNCT is being developed for certain types of highly malignant brain tumors such as glioblastoma and melanoma. The results of the phase-1 trials on patients with tumors in the legs or feet are described

  16. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  17. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  18. Optimal timing of neutron irradiation for boron neutron capture therapy after intravenous infusion of sodium borocaptate in patients with glioblastoma

    International Nuclear Information System (INIS)

    Purpose: A cooperative study in Europe and Japan was conducted to determine the pharmacokinetics and boron uptake of sodium borocaptate (BSH: Na2B12H11SH), which has been introduced clinically as a boron carrier for boron neutron capture therapy in patients with glioblastoma. Methods and Materials: Data from 56 patients with glioblastoma who received BSH intravenous infusion were retrospectively reviewed. The pharmacokinetics were evaluated in 50 patients, and boron uptake was investigated in 47 patients. Patients received BSH doses between 12 and 100 mg/kg of body weight. For the evaluation, the infused boron dose was scaled linearly to 100 mg/kg BSH. Results: In BSH pharmacokinetics, the average value for total body clearance, distribution volume of steady state, and mean residence time was 3.6±1.5 L/h, 223.3±160.7 L, and 68.0±52.5 h, respectively. The average values of the boron concentration in tumor adjusted to 100 mg/kg BSH, the boron concentration in blood adjusted to 100 mg/kg BSH, and the tumor/blood boron concentration ratio were 37.1±35.8 ppm, 35.2±41.8 ppm, and 1.53±1.43, respectively. A good correlation was found between the logarithmic value of Tadj and the interval from BSH infusion to tumor tissue sampling. About 12-19 h after infusion, the actual values for Tadj and tumor/blood boron concentration ratio were 46.2±36.0 ppm and 1.70±1.06, respectively. The dose ratio between tumor and healthy tissue peaked in the same interval. Conclusion: For boron neutron capture therapy using BSH administered by intravenous infusion, this work confirms that neutron irradiation is optimal around 12-19 h after the infusion is started

  19. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  20. Plastic scintillation dosimetry for radiation therapy: minimizing capture of Cerenkov radiation noise

    International Nuclear Information System (INIS)

    Over the last decade, there has been an increased interest in scintillation dosimetry using small water-equivalent plastic scintillators, because of their favourable characteristics when compared with other more commonly used detector systems. Although plastic scintillators have been shown to have many desirable dosimetric properties, as yet there is no successful commercial detector system of this type available for routine clinical use in radiation oncology. The main factor preventing this new technology from realizing its full potential in commercial applications is the maximization of signal coupling efficiency and the minimization of noise capture. A principal constituent of noise is Cerenkov radiation. This study reports the calculated capture of Cerenkov radiation by an optical fibre in the special case where the radiation is generated by a relativistic particle on the fibre axis and the fibre axis is parallel to the Cerenkov cone. The fraction of radiation captured is calculated as a function of the fibre core refractive index and the refractive index difference between the core and the cladding of the fibre for relativistic particles. This is then used to deduce the relative intensity captured for a range of fibre core refractive indices and fibre core-cladding refractive index differences. It is shown that the core refractive index has little effect on the amount of radiation captured compared to the refractive index difference. The implications of this result for the design of radiation therapy plastic scintillation dosimeters are considered

  1. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu

    2006-08-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm{sup 2} treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm{sup 2} collimation was 21.9% per 100-ppm {sup 10}B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm{sup 2} fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm{sup 2} collimator. Five 1.0-cm thick 20x20 cm{sup 2} tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm {sup 10}B) to measure dose due to boron neutron capture. The measured dose enhancement at 5.0-cm depth

  2. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  3. A suggestion for B-10 imaging during boron neutron capture therapy

    CERN Document Server

    Cortesi, M

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake of B-10 compound. In this work, experimental methods are proposed and evaluated for the determination in vivo of B-10 compound in biological samples, in particular based on neutron radiography and gammaray spectroscopy by telescopic system. Measures and Monte Carlo calculations have been performed to investigate the possibility of executing imaging of the 10B distribution, both by radiography with thermal neutrons, using 6LiF/ZnS:Ag scintillator screen and a CCD camera, and by spectroscopy, based on the revelation of gamm...

  4. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  5. Synthesis and biological evaluation of boronated polyglycerol dendrimers as potential agent for neutron capture therapy

    International Nuclear Information System (INIS)

    In this work, the polyglycerol dendrimer (PGLD) generation 5 was used to obtain a boronated macromolecule for boron neutron capture therapy. The PGLD dendrimer was synthesized by the ring opening polymerization of deprotonated glycidol using polyglycerol as core functionality in a step-growth processes denominated divergent synthesis. The PGLD dendritic structure was confirmed by gel permeation chromatography, nuclear magnetic resonance (1H-NMR, 13C-NMR) and matrix assisted laser desorption/ionization techniques. The synthesized dendrimer presented low dispersion in molecular weights (Mw/Mn = 1.05) and a degree of branching of 0.82, which characterize the polymer dendritic structure. Quantitative neutron capture radiography was used to investigate the boron-10 enrichment of the polyglycerol dendrimer. The in vitro cytotoxicity to Chinese hamster ovary cells of 10B-PGLD dendrimer indicate lower cytotoxicity, suggesting that the macromolecule is a biocompatible material. (author)

  6. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. 10B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the 10B with a thermal neutron (neutron capture) causes the 10B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the 10B(n, α)7Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 μm, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to 10B-loaded cells

  7. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  8. Withholding or withdrawing therapy in intensive care units: improving interdisciplinary cooperation

    DEFF Research Database (Denmark)

    Jensen, Hanne Irene; Ammentorp, Jette; Ørding, Helle

    INTRODUCTION. Decisions regarding withholding or withdrawing therapy are common in the intensive care units. The health care professionals involved in the decision-making process do not always assess the situation identically, leading to potential conflicts. Studies have suggested that improving...... interdisciplinary communication can improve the decision-making process (1;2). OBJECTIVES. To test interdisciplinary audits as an intervention for improving interdisciplinary communication, cooperation and satisfaction with the decision-making process. METHODS. Three interdisciplinary two-hour long audits......) where withholding and withdrawing therapy decisions had been made. The participants were first asked to assess the cases and subsequently, based on the discussions, to formulate quality goals for withholding and withdrawing therapy decision-making, cooperation and care for patients and relatives. Form...

  9. Boron neutron capture therapy for advanced and/or recurrent cancers in the oral cavity

    International Nuclear Information System (INIS)

    This preliminary study of 5 patients with advanced and/or recurrent cancer in the oral cavity was performed to evaluate the effectiveness of Boron Neutron Capture Therapy (BNCT). The patients received therapy with the 10B-carrier p-boronophenylalanine (BPA) with or without borocaptate sodium (BSH) and irradiation thereafter with epithermal neutrons. All underwent 18F-BPA PET studies before receiving BNCT to determine the accumulation ratios of BPA in tumor and normal tissues. The tumor mass was decreased in size and at minimum a transient partial response was achieved in all cases, though rapid tumor re-growth was observed in 2. Although tentative clinical responses and improvements in quality of life were recognized, obliteration of the tumor was not obtained in any of the cases. Additional studies are required to determine the utility and indication of BNCT for oral cancer. (author)

  10. Study of characteristics for heavy water photoneutron source in boron neutron capture therapy

    CERN Document Server

    Salehi, Danial; Sardari, Dariush

    2013-01-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Ev...

  11. Boron neutron capture therapy as new treatment for clear cell sarcoma: Trial on different animal model

    International Nuclear Information System (INIS)

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In our previous study, the tumor disappeared under boron neutron capture therapy (BNCT) on subcutaneously-transplanted CCS-bearing animals. In the present study, the tumor disappeared under this therapy on model mice intramuscularly implanted with three different human CCS cells. BNCT led to the suppression of tumor-growth in each of the different model mice, suggesting its potentiality as an alternative to, or integrative option for, the treatment of CCS. - Highlights: • BNCT with the use of L-BPA was applied for three human clear cell sarcoma (CCS) cell lines. • BNCT trial was performed on a newly established intramuscularly CCS-bearing animal model. • A significant decrease of the tumor-volume was seen by single BNCT with the use of L-BPA. • A multiple BNCT application would be required for controlling the growth of any residual tumors

  12. Dose Determination using alanine detectors in a Mixed Neutron and Gamma Field for Boron Neutron Capture Therapy of Liver Malignancies

    DEFF Research Database (Denmark)

    Schmitz, T.; Blaickner, M.; Ziegner, M.;

    2011-01-01

    Introduction Boron Neutron Capture Therapy for liver malignancies is being investigated at the University of Mainz. One important aim is the set-up of a reliable dosimetry system. Alanine dosimeters have previously been applied for dosimetry of mixed radiation fields in antiproton therapy, and may...

  13. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 4th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 24 in 1992. First, clinical experiences of BNCT in the Kyoto University Research Reactor in 1992 were briefly reported. Then, the killing effects of boron cluster-containing nucleic acid precursors on tumor cells were shown (Chap. 2). The various trials of the optical resolution of B-p-boronophenylalanine for neutron capture therapy were made (Chap. 3). The borate-dextran gel complexes were investigated by the nuclear magnetic resonance spectroscopy. The stability constants of borate complexes were listed, and are useful in the solution chemistry of boron compounds (Chap. 4). The interactions between boron compounds and biological materials were studied by the paper electrophoresis which had been developed by us (Chap. 5). Molecular design of boron-10 carriers and their organic synthesis were reported (Chap. 6). Carborane-containing aziridine boron carriers which were directed to the DNA alkylation were synthesized and their cancer cell killing efficacies were tested (Chap. 7). The solution chemistry of deuterium oxide which is a good neutron moderator was reported, relating to the BNCT (Chap. 8). (author)

  14. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Science.gov (United States)

    Gilbert, B.; Redondo, J.; Baudat, P.-A.; Lorusso, G. F.; Andres, R.; Van Meir, E. G.; Brunet, J.-F.; Hamou, M.-F.; Suda, T.; Mercanti, Delio; Ciotti, M. Teresa; Droubay, T. C.; Tonner, B. P.; Perfetti, P.; Margaritondo, M.; DeStasio, Gelsomina

    1998-10-01

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of ? in tumour cells after injection of a boron compound (in our case ?, or BSH). With the Mephisto (microscope à emission de photoélectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy.

  15. Spectromicroscopy of boron for the optimization of boron neutron capture therapy (BNCT) for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, B.; Redondo, J.; Baudat, P-A. [Institut de Physique Appliquee, Ecole Polytechnique Federale, Lausanne (Switzerland)] [and others

    1998-10-07

    We used synchrotron spectromicroscopy to study the microscopic distribution of boron in rat brain tumour and healthy tissue in the field of boron neutron capture therapy (BNCT). The success of this experimental cancer therapy depends on the preferential uptake of {sup 10}B in tumour cells after injection of a boron compound (in our case B{sub 12}H{sub 11}SH, or BSH). With the Mephisto (microscope a emission de photoelectrons par illumination synchrotronique de type onduleur) spectromicroscope, high-magnification imaging and chemical analysis was performed on brain tissue sections from a rat carrying an implanted brain tumour and the results were compared with inductively coupled plasma-atomic emission spectroscopy (ICP-AES) detection of boron in bulk tissue. Boron was found to have been taken up more favourably by regions of tumour rather than healthy tissue, but the resulting boron distribution in the tumour was inhomogeneous. The results demonstrate that Mephisto can perform microchemical analysis of tissue sections, detect and localize the presence of boron with submicron spatial resolution. The application of this technique to boron in brain tissue can therefore be used to evaluate the current efforts to optimize BNC therapy. (author)

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  17. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Valente, M. [Department of Physics of the University and INFN, Via Celoria 16, I-20133 Milan (Italy); Moss, R.L.; Daquino, G.G.; Nievaart, V.A. [Joint Research Centre, Institute for Energy, P.O. Box 2, NL-1755ZG Petten, The Netherlands (Netherlands); Mariani, M.; Vanossi, E. [Department of Nuclear Engineering of Polytechnic, CESNEF, Via Ponzio, 34/3 - I-20133 Milan (Italy); Carrara, M. [Medical Physics Department, National Cancer Institute, Via Venezian 1, I-20131, Milan (Italy)

    2006-07-01

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  18. Biological models in vivo for boron neutronic capture studies as tumors therapy

    International Nuclear Information System (INIS)

    The use of experimental models for Boron Neutronic Capture studies as Tumors Therapy have as two main objectives: 1) To contribute to the basic knowledge of the biological mechanisms involved to increase the method therapeutical advantage, and 2) To explore the possible application of this therapeutic method to other pathologies. In this frame it was studied the carcinogenesis model of hamster cheek pouch, a type of human buccal cancer. Biodistribution studies of boron compound were performed in tumor, blood and in different precancerous and normal tissues as well as BNCT studies. Results validated this method for BNCT studies and show the capacity of the oral mucosa tumors of selectively concentrate the boron compound, showing a deleterious clear effect on the tumor after 24 hours with BNCT treatment. (author)

  19. New concepts for compact accelerator/target for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Two new target concepts, NIFTI and DISCOS, that enable a large reduction in the proton beam current needed to produce epithermal neutrons for BNCT (Boron Neutron Capture Therapy) are described. In the NIFTI concept, high energy neutrons produced by (p, n) reactions of 2.5 MeV protons on Li are down scattered to treatment energies (∼ 20 keV) by relatively thin layers of PbF2 and iron. In the DISCOS concept, treatment energy neutrons are produced directly in a succession of thin (∼ 1 micron) liquid Li films on rotating Be foils. These foils interact with a proton beam that operates just above threshold for the (p, n) reaction, with an applied DC field to re-accelerate the proton beam between the target foils

  20. FiR 1 Reactor in Service for Boron Neutron Capture Therapy (BNCT) and Isotope Production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). Although BNCT dominates the current utilization of the reactor, it also has an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics, etc. with isotope produc- tion and activation analysis services. The whole reactor building has been renovated, creating a dedicated clinical BNCT facility at the reactor. Close to 30 patients have been treated since May 1999, when the licence for patient treatment was granted to the responsible BNCT treatment organization. The treatment organization has a close connection to the Helsinki University Central Hospital. (author)

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  2. Establishment of optimal thermal neutron capture therapy for 5 types of human malignant melanoma

    International Nuclear Information System (INIS)

    A series of boron neutron capture therapy (BNCT) studies has already germinated in 1972, with a view to establishing the BNCT particularly suited for the treatment of various types of malignant melanoma, and has been succeeded by research teams comprised of multi-disciplinary members. Twelve patients (7 men and 5 women, aged from 50 to 85 years) with malignant melanoma have been treated with BNCT; among them, six patients were completely cured, four had extremely reduced tumors, and two were still in the clinical process. The present Progress Report is a compilation of 39 research presentations for the recent two years. In this report, three patients are described. Of these, one patient had deep-seated lesions in right and left lymph nodes. These lesions were cured by the use of D2O that allowed neutron beams to reach them. Application of positron emission tomography to the diagnosis of melanoma is a highlight in this Report. (N.K.)

  3. Accelerator based neutron source for the neutron capture therapy at hospital

    International Nuclear Information System (INIS)

    Accelerator source of epithermal neutrons for the hospital-based boron neutron capture therapy is proposed and discussed. Kinematically collimated neutrons are produced via near-threshold 7Li(p, n)7Be reaction at proton energies of 1.883 - 1.9 MeV. Steady-state accelerator current of 40 mA allows to provide therapeutically useful beams with treatment times of tens of minutes. The basic components of the facility are a hydrogen negative ion source, an electrostatic tandem accelerator with vacuum insulation, a sectioned rectifier, and a thin lithium neutron generating target on the surface of tungsten disk cooled by liquid metal heat carrier. Design features of facility components are discussed. The possibility of stabilization of proton energy is considered. At proton energy of 2.5 MeV the neutron beam production for NCT usage after moderation is also considered. (author)

  4. Gel dosimeters as useful dose and thermal-fluence detectors in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The dosimetry method based on Fricke-Xylenol-Orange-infused gels in form of layers has shown noticeable potentiality for in-phantom or in-free-beam dose and thermal flux profiling and imaging in the high fluxes of thermal or epithermal neutrons utilised for boron neutron capture therapy (BNCT). Gel-dosimeters in form of layers give the possibility not only of obtaining spatial dose distributions but also of achieving measurements of each dose contribution in neutron fields. The discrimination of the various dose components is achieved by means of pixel-to-pixel manipulations of pairs of images obtained with gel-dosimeters having different isotopic composition. It is possible to place large dosimeters, detecting in such a way large dose images, because the layer geometry of dosimeters avoids sensitive variation of neutron transport due to the gel isotopic composition. Some results obtained after the last improvements of the method are reported. (Author)

  5. Incorporation and characterization of boron neutron capture therapy agents into mesoporous silicon and silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ke; Coffer, Jeffery L. [Department of Chemistry, Texas Christian University, Fort Worth, TX 76129 (United States); Loni, Armando; Canham, Leigh T. [PSi Medica Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom); Intrinsiq Materials Ltd., Malvern, Worcestershire, WR14 3SZ (United Kingdom)

    2009-06-15

    The tunable pore size, biodegradability, and surface chemistry of mesoporous silicon (BioSilicon trademark) are important to a broad spectrum of uses for drug delivery. For the case of Boron Neutron Capture Therapy (BNCT), encapsulation of a given boron-containing drug molecule within a porous BioSilicon trademark microparticle provides a vehicle for a brachytherapy method that avoids the necessity of drug modification. In this work, the loading and characterization of three clinically approved BNCT drugs into mesoporous Si is demonstrated. Because of difficulties associated with light element detection, a method based on a Beer's Law analysis of selected FTIR vibrational bands has been developed to estimate boron-containing drug loading in these materials. As a complementary nanostructural platform, a cathodic deposition process for the surface enriched growth of selected drugs onto the surface of silicon nanowires is also described. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  7. Electroporation increases the effect of borocaptate (10B-BSH) in neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The cell membrane permeability of borocaptate (10B-BSH) and its extent of accumulation in cells are controversial. This study was performed to elucidate these points. Methods and Materials: Two different treatments were applied to SCCVII tumor cells. The first group of tumor cells was incubated in culture medium with 10B-BSH or 10B-enriched boric acid, and was exposed to neutrons from the heavy water facility of the Kyoto University Reactor (KUR). More than 99% of neutrons were thermal neutrons at flux base. The second group was pretreated by electroporation in combination with 10B-BSH, and thereafter the cells were irradiated with neutrons. The cell killing effects of boron neutron capture therapy (BNCT) using BSH were investigated by colony formation assay. Results: Surviving cell fraction decreased exponentially with neutron fluence, and addition of BSH significantly enhanced the cell killing effect of neutron capture therapy (NCT) depending on 10B concentration. The effect of BSH-BNCT also increased with preincubation time of cells in the medium containing BSH. The electroporation of cells with BSH at 10 ppm 10B markedly enhanced BSH-BNCT effects in comparison with that of preincubation alone. The effect of BSH-BNCT with electroporation was equal to that of BNCT using 10B-boric acid at a same 10B concentration (10 ppm). Conclusions: BSH is suggested to penetrate the cells slowly and remained after washing. Electroporation can introduce BSH into the cells very efficiently, and BSH stays in the cells and is not lost by washing. Therefore, if electroporation is applied to tumors after BSH injection, 10B remains in tumors but is cleared from normal tissues, and selective accumulation of 10B in tumors will be achieved after an adequate waiting time

  8. DNA damage induced by boron neutron capture therapy is partially repaired by DNA ligase IV.

    Science.gov (United States)

    Kondo, Natsuko; Sakurai, Yoshinori; Hirota, Yuki; Tanaka, Hiroki; Watanabe, Tsubasa; Nakagawa, Yosuke; Narabayashi, Masaru; Kinashi, Yuko; Miyatake, Shin-ichi; Hasegawa, Masatoshi; Suzuki, Minoru; Masunaga, Shin-ichiro; Ohnishi, Takeo; Ono, Koji

    2016-03-01

    Boron neutron capture therapy (BNCT) is a particle radiation therapy that involves the use of a thermal or epithermal neutron beam in combination with a boron ((10)B)-containing compound that specifically accumulates in tumor. (10)B captures neutrons and the resultant fission reaction produces an alpha ((4)He) particle and a recoiled lithium nucleus ((7)Li). These particles have the characteristics of high linear energy transfer (LET) radiation and therefore have marked biological effects. High-LET radiation is a potent inducer of DNA damage, specifically of DNA double-strand breaks (DSBs). The aim of the present study was to clarify the role of DNA ligase IV, a key player in the non-homologous end-joining repair pathway, in the repair of BNCT-induced DSBs. We analyzed the cellular sensitivity of the mouse embryonic fibroblast cell lines Lig4-/- p53-/- and Lig4+/+ p53-/- to irradiation using a thermal neutron beam in the presence or absence of (10)B-para-boronophenylalanine (BPA). The Lig4-/- p53-/- cell line had a higher sensitivity than the Lig4+/+ p53-/-cell line to irradiation with the beam alone or the beam in combination with BPA. In BNCT (with BPA), both cell lines exhibited a reduction of the 50 % survival dose (D 50) by a factor of 1.4 compared with gamma-ray and neutron mixed beam (without BPA). Although it was found that (10)B uptake was higher in the Lig4+/+ p53-/- than in the Lig4-/- p53-/- cell line, the latter showed higher sensitivity than the former, even when compared at an equivalent (10)B concentration. These results indicate that BNCT-induced DNA damage is partially repaired using DNA ligase IV. PMID:26573366

  9. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    The resulting neutron captures in 10B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image analysis was

  10. The design, construction and performance of a variable collimator for epithermal neutron capture therapy beams

    Science.gov (United States)

    Riley, K. J.; Binns, P. J.; Ali, S. J.; Harling, O. K.

    2004-05-01

    A patient collimator for the fission converter based epithermal neutron beam (FCB) at the Massachusetts Institute of Technology Research Reactor (MITR-II) was built for clinical trials of boron neutron capture therapy (BNCT). A design was optimized by Monte Carlo simulations of the entire beam line and incorporates a modular construction for easy modifications in the future. The device was formed in-house by casting a mixture of lead spheres (7.6 mm diameter) in epoxy resin loaded with either 140 mg cm-3 of boron carbide or 210 mg cm-3 of lithium fluoride (95% enriched in 6Li). The cone shaped collimator allows easy field placement anywhere on the patient and is equipped with a laser indicator of central axis, beam's eye view optics and circular apertures of 80, 100, 120 and 160 mm diameter. Beam profiles and the collateral dose in a half-body phantom were measured for the 160 mm field using fission counters, activation foils as well as tissue equivalent (A-150) and graphite walled ionization chambers. Leakage radiation through the collimator contributes less than 10% to the total collateral dose up to 0.15 m beyond the edge of the aperture and becomes relatively more prominent with lateral displacement. The measured whole body dose equivalent of 24 ± 2 mSv per Gy of therapeutic dose is comparable to doses received during conventional therapy and is due principally (60-80%) to thermal neutron capture reactions with boron. These findings, together with the dose distributions for the primary beam, demonstrate the suitability of this patient collimator for BNCT.

  11. Neutron capture therapy for cancer: development at the National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) involves the concurrent presence of a flux of neutrons of adequate energy and Boron 10 as a capture agent. They interact to damage tumor cells but fail to produce significant damage to healthy tissue because the destructive effect occurs mainly in the tumor cells that have selectively accumulated boron. This technique is applied for the treatment of brain tumors of the glioblastoma multiform type and melanoma in different locations. The aim of this project at CNEA is to develop the technological, scientific, clinical know-how and facilities to undertake clinical trials in Argentina. The development of the irradiation facility, the clinical beam and dosimetry was developed at the RA-6 reactor, Bariloche Atomic Center. Treatment planning, instrumentation for the neutron beam, boron measurements, neutron beam for small animal irradiation at the RA-1 reactor and basic research in radiobiology, microdosimetry and autoradiography were developed at Constituyentes Atomic Center. It is also conducted an intense activity in accelerator based BNCT. The infusions to be injected to the patients are prepared at Ezeiza Atomic Center. The clinics of BNCT radiotherapy is developed at the Roffo Institute of Oncology and the neurosurgery at the Argerich Hospital. At present, the project is close to start in the following months to treat melanoma in the limbs, when the authorization procedure is completed. (author)

  12. Proceedings of workshop on 'boron chemistry and boron neutron capture therapy'

    International Nuclear Information System (INIS)

    This volume contains the proceedings of the 5th Workshop on 'the Boron Chemistry and Boron Neutron Capture Therapy' held on February 22 in 1993. The solubility of the boron carrier play an important role in the BNCT. New water-soluble p-boronophenylalanine derivatives are synthesized and their biological activities are investigated (Chap. 2 and 3). Some chemical problems on the BNCT were discussed, and the complex formation reaction of hydroxylboryl compounds were studied by the paper electrophoresis (Chap. 4). The results of the medical investigation on the BNCT using BSH compounds are shown in Chap. 5. Syntheses of o- and m-boronophenylalanine were done and their optical resolution was tried (Chap. 6). The complex formation reaction of p-boronophenylalanine (BPA) with L-DOPA and the oxidation reaction of the analogs are found in Chap. 7. The pka of BPA were determined by the isotachophoresis (Chap. 8). The chemical nature of dihydroxyboryl compounds were investigated by an infrared spectroscopy and electrophoresis (Chap. 9). New synthetic methods of BPA and p-boronophenylserine using ester of isocyanoacetic acid are described in Chap. 10. The induction of chromosomal aberations by neutron capture reaction are discussed from a point of the biological view. The a of the presented papers are indexed individually. (J.P.N.)

  13. The role of radiation therapy in pediatric oncology as assessed by cooperative clinical trials

    International Nuclear Information System (INIS)

    Major advances have been made in pediatric oncology, and many are due to the advent of the cooperative clinical trial. This important research tool was originally developed for the testing of various therapeutic strategies for the management of children with acute leukemia. Such trials were eminently successful, as the consistently better long-term survival rates for children with this hitherto uniformly lethal disease can attest. The method soon found favor for the investigation of patients with so-called solid tumors. These trails were originally concerned with the elucidation of the value of various chemotherapeutic agents. Radiation therapists soon became involved, however, and this discipline became more heavily represented in study design and data analyses. Much radiation therapy information has been gained, some through prospective, randomized clinical investigations and some through retrospective reviews of roentgen therapy as it was employed in protocols accenting other aspects of care. Voluminous, important radiation therapy data have been deduced through the latter retrospective kinds of analyses, but this review will be confined largely to the published results of prospective, randomized cooperative clinical trials where radiation therapy was a governing variable. Certain investigations of historical interest will also be cited together with other results that established important principles even though not so rigorous in design

  14. Final Report: 8th International Symposium on Neutron Capture Therapy (NCT) for Cancer, May 15, 1998 - May 15, 1999

    International Nuclear Information System (INIS)

    The 8th International Symposium on Neutron Capture Therapy for Cancer (8th ISNCTC) was held in La Jolla, CA on Sept. 13-18, 1998. This biennial meeting of the International Society for Neutron Capture Therapy (ISNCT) was hosted by Society President M.F. Hawthorne (UCLA Dept. of Chemistry and Biochemistry). The Symposium brought together scientists (300 registrants from 21 countries) from diverse fields to report the latest developments in NCT. Topics of the 275 papers presented (30 plenary lectures, 81 oral presentations, and 164 posters) included the physics of neutron sources, chemistry of tumor-targeting agents, dosimetry, radiobiological studies, and clinical applications

  15. Indication and possibility of boron neutron capture therapy in head and neck cancer

    International Nuclear Information System (INIS)

    Background: Boron neutron capture therapy (BNCT) is a targeted type of radiotherapy that has a number of significant advantages over conventional external beam photon irradiation, especially in that radiation can be selectively delivered to tumor cells. We had, first in the world, treated with BNCT for a patient with recurrent head and neck cancer (HNC) in 2001. Methods : From December, 2001 to February, 2013, we had treated 37 patients with recurrent HNC by means of 54 applications of BNCT at Kyoto University Research Reactor Institute (KURRI) and Japan Atomic Energy Agency (JAEA). All of them had received standard therapy and subsequently developed recurrent disease for which there were no other treatment options. Results : All of the (1) Regression rates were complete response (CR) : 19 patients (51%), partial response (PR) : 14(38%), progressive disease (PD) : 3(8%), and not evaluated (NE) : 1(3%) patient. (2) The overall patient response rate was 91%, though all the patients had advanced disease. The 4-year and 7-year OS rates were 42% and 36%, respectively. (3) BNCT improved quality of life (QOL), performance status (PS) and survival times. (4) The primary adverse events were brain necrosis, osteomyelitis and transient mucositis and alopecia. Conclusions : Our results indicate that we could make sure that safety and effectiveness of BNCT, and BNCT represents a new and promising treatment modality in patients for whom there are no other treatment options. (author)

  16. Boron neutron capture therapy for advanced salivary gland carcinoma in head and neck

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a among the radiation treatments known to have a selective lethal effect on tumor cells. This study summarizes the tumor responses and the acute and late adverse effects of BNCT in the treatment of patients with both recurrent and newly diagnosed T4 salivary gland carcinoma. Two patients with recurrent cancer and 3 with newly diagnosed T4 advanced malignancy were registered between October 2003 and September 2007, with the approval of the medical ethics committees of Kawasaki Medical School and Kyoto University. BNCT was performed, in a single fraction using an epithermal beam, at Japan Research Reactor 4. All patients achieved a complete response within 6 months of treatment. The median duration of the complete response was 24.0 months; the median overall survival time was 32.0 months. Three of the 5 patients are still alive; the other 2 died of distant metastatic disease. Open biopsy of the parotid gland after BNCT was performed in 1 patient and revealed no residual viable cancer cells and no serious damage to the normal glandular system. Although mild alopecia, xerostomia, and fatigue occurred in all patients, there were no severe adverse effects of grade 3 or greater. Our preliminary results demonstrate that BNCT is a potential curative therapy for patients with salivary gland carcinoma. The treatment does not cause any serious adverse effects, and may be used regardless of whether the primary tumor has been previously treated. (author)

  17. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  18. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  19. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  20. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy.

    Science.gov (United States)

    Altieri, S; Balzi, M; Bortolussi, S; Bruschi, P; Ciani, L; Clerici, A M; Faraoni, P; Ferrari, C; Gadan, M A; Panza, L; Pietrangeli, D; Ricciardi, G; Ristori, S

    2009-12-10

    Boron neutron capture therapy (BNCT) is an anticancer therapy based on the incorporation of (10)B in tumors, followed by neutron irradiation. Recently, the synthesis and delivery of new boronated compounds have been recognized as some of the main challenges in BNCT application. Here, we report on the use of liposomes as carriers for BNCT active compounds. Two carborane derivatives, i.e., o-closocarboranyl beta-lactoside (LCOB) and 1-methyl-o-closocarboranyl-2-hexylthioporphyrazine (H(2)PzCOB), were loaded into liposomes bearing different surface charges. The efficacy of these formulations was tested on model cell cultures, that is, DHD/K12/TRb rat colon carcinoma and B16-F10 murine melanoma. These induce liver and lung metastases, respectively, and are used to study the uptake of standard BNCT drugs, including borophenylalanine (BPA). Boron concentration in treated cells was measured by alpha spectrometry at the TRIGA mark II reactor (University of Pavia). Results showed high performance of the proposed formulations. In particular, the use of cationic liposomes increased the cellular concentration of (10)B by at least 30 times more than that achieved by BPA. PMID:19954249

  1. Characteristics of a heavy water photoneutron source in boron neutron capture therapy

    Institute of Scientific and Technical Information of China (English)

    Danial Salehi; Dariush Sardari; M.Salehi Jozani

    2013-01-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors.Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head,patient's body,and treatment room ambient.Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons,the energy spectrum of which shows an end point equal to the electron beam energy.By varying the target thickness,an optimum thickness exists for which,at the given electron energy,maximum photon flux is achievable.If a source of high-energy photons i.e.bremsstrahlung,is conveniently directed to a suitable D2O target,a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible.This study consists of two parts.1.Comparison and assessment of deuterium photonuclear cross section data.2.Evaluation of the heavy water photonuclear source.

  2. Accelerator-based neutron source for the neutron-capture and fast neutron therapy at hospital

    Science.gov (United States)

    Bayanov, B. F.; Belov, V. P.; Bender, E. D.; Bokhovko, M. V.; Dimov, G. I.; Kononov, V. N.; Kononov, O. E.; Kuksanov, N. K.; Palchikov, V. E.; Pivovarov, V. A.; Salimov, R. A.; Silvestrov, G. I.; Skrinsky, A. N.; Soloviov, N. A.; Taskaev, S. Yu.

    The proton accelerator complex for neutron production in lithium target discussed, which can operate in two modes. The first provides a neutron beam kinematically collimated with good forward direction in 25° and average energy of 30 keV, directly applicable for neutron-capture therapy with high efficiency of proton beam use. The proton energy in this mode is 1.883-1.890 MeV that is near the threshold of the 7Li( p, n) 7Be reaction. In the second mode, at proton energy of 2.5 MeV, the complex-produced neutron beam with maximum energy board of 790 keV which can be used directly for fast neutron therapy and for neutron-capture therapy after moderation. The project of such a neutron source is based on the 2.5 MeV original electrostatic accelerator tandem with vacuum insulation developed at BINP which is supplied with a high-voltage rectifier. The rectifier is produced in BINP as a part of ELV-type industrial accelerator. Design features of the tandem determining its high reliability in operation with a high-current (up to 40 mA) H - ion beam are discussed. They are: the absence of ceramic accelerator columns around the beam passage region, good conditions for pumping out of charge-exchange gaseous target region, strong focusing optics and high acceleration rate minimizing the space charge effects. The possibility of stabilization of protons energy with an accuracy level of 0.1% necessary for operation in the near threshold region is considered. The design description of H - continuous ion source with a current of 40 mA is also performed. To operate with a 100 kW proton beam it is proposed to use liquid-lithium targets. A thin lithium layer on the surface of a tungsten disk cooled intensively by a liquid metal heat carrier is proposed for use in case of the vertical beam, and a flat liquid lithium jet flowing through the narrow nozzle - for the horizontal beam.

  3. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  4. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of 10B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry 10B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue 10B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.

  5. Can epithermal boron neutron capture therapy treat primary and metastatic liver cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.A. [Austin Repatriation Medical Centre, Heidelberg (Australia); Carolan, M.C. [Illawarra Cancer Care Centre, Wollongong (Australia); Allen, B.J. [St George Cancer Care Centre, Kogarah (Australia)

    1996-12-31

    Full text: The poor prognosis of metastatic cancer to the liver calls for the investigation of alternative treatment modalities. This paper analyses the possible use of epithermal boron neutron capture therapy for the palliative treatment of these cancers. We examine possible treatment planning scenarios for selected tumour to liver boron ratios, and specifically for the epithermal beam at the HFR, Petten. It is required that a therapeutic ratio> 1 be achieved over the entire organ. Monte Carlo calculations were performed using the radiation transport code MCNP. The geometrical model used a `variable voxel` technique to reconstruct an anthropomorphic phantom from CT scans. Regions of interest such as the liver were modelled to a resolution of a few millimetres, whereas surrounding regions were modelled with lesser detail thereby facilitating faster computation time. Three dimensional dose distributions were calculated for a frontal beam directed at the liver, and found to be in satisfactory agreement with measurements using bare and cadmium covered gold foils, PIN and MOSFET dosimeters for fast neutron and gamma measurements respectively. Dose distributions were calculated for orthogonal epithermal neutron beams to the front and side, using the parameters of the epithermal beam at Petten, and assumed tumour and normal tissue boron-10 concentrations of 30 ppm and 7.5 ppm boron-10 respectively. The therapeutic ratio (i e the dose to the tumour relative to the maximum dose to normal tissue) was found to be about 1.8, reducing to unity for the limiting condition of a tumour in the posterior liver. This result opens up the possibility of palliative therapy for the management of primary and metastatic liver cancer.

  6. Dosimetric evaluation of neutron capture therapy for local advanced breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, H. [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)], E-mail: yanagie@n.t.u-tokyo.ac.jp; Kumada, H. [Japan Atomic Research Institute, Ibaraki (Japan); Sakurai, Y. [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakamura, T. [Japan Atomic Research Institute, Ibaraki (Japan); Department of Nuclear Physics, Ibaraki University, Ibaraki (Japan); Furuya, Y. [Department of Surgery, Satukidai Hospital, Chiba (Japan); Sugiyama, H. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Ono, K. [Research Reactor Institute, Kyoto University, Osaka (Japan); Takamoto, S. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Cardiac Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, M. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Microbiology, Syowa University School of Pharmaceutical Sciences, Tokyo (Japan); Takahashi, H. [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2009-07-15

    Local recurrence breast cancer is one of the most difficult conditions to cure and there is a need for new therapy. If sufficient boron compound can be targeted to the tumor, boron neutron capture therapy (BNCT) can be applied to local recurrent breast cancer. In this study, we performed a preliminary dosimetry with a phantom model of the mammary gland at Kyoto University Research Reactor (KUR), and a feasibility dosimetry with JAERI Computational Dosimetry System (JCDS) at JRR4 reactor of Japan Atomic Research Institute. We performed preliminary dosimetry of a phantom model of the mammary gland with thermal neutron irradiation (OO-0011 mode) on LiF collimation at KUR. The thermal neutron flux was 5.16 E+08 cm{sup -2} s{sup -1} at the surface of phantom. The blood boron concentration is estimated to be 30 ppm; tumor boron concentration is also estimated to be 90 ppm according to tumor/blood ratio 3 and skin/blood ratio 1.2. Tumor RBE dose is estimated to be 47 Gy/h, and skin RBE dose is 12.4 Gy/h. In case of advanced breast cancer, we performed the feasibility estimation of 3D construction of tumor according to the MRI imaging of a patient with epithermal neutron mode at JRR4. The blood boron concentration (ppm) and tumor/normal tissue ratio are estimated to be 24 and 3.5, respectively. Skin RBE dose is restricted to 10 Gy/h, the maximum tumor RBE dose, minimum tumor RBE dose, and mean tumor RBE dose are 42.2, 11.3, and 28.9 Gy-Eq, respectively, in half hour irradiation. In this study, we showed the possibility to apply BNCT to local recurrent breast cancer. We can irradiate tumors selectively and as safely as possible, reducing the effects on neighboring healthy tissues.

  7. Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications.

    Science.gov (United States)

    Deagostino, Annamaria; Protti, Nicoletta; Alberti, Diego; Boggio, Paolo; Bortolussi, Silva; Altieri, Saverio; Crich, Simonetta Geninatti

    2016-05-01

    Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome. PMID:27195428

  8. FiR 1 reactor in service for boron neutron capture therapy (BNCT) and isotope production

    International Nuclear Information System (INIS)

    The FiR 1 reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose for the existence of the reactor is now the Boron Neutron Capture Therapy (BNCT), but FiR 1 has also an important national role in providing local enterprises and research institutions in the fields of industrial measurements, pharmaceuticals, electronics etc. with isotope production and activation analysis services. In the 1990's a BNCT treatment facility was built at the FiR 1 reactor located at Technical Research Centre of Finland. A special new neutron moderator material FluentalTM (Al+AlF3+Li) developed at VTT ensures the superior quality of the neutron beam. Also the treatment environment is of world top quality after a major renovation of the whole reactor building in 1997. Recently the lithiated polyethylene neutron shielding of the beam aperture was modified to ease the positioning of the patient close to the beam aperture. Increasing the reactor power to 500 kW would allow positioning of the patient further away from the beam aperture. Possibilities to accomplish a safety analysis for this is currently under considerations. Over thirty patients have been treated at FiR 1 since May 1999, when the license for patient treatment was granted to the responsible BNCT treatment organization, Boneca Corporation. Currently three clinical trial protocols for tumours in the brain as well as in the head and neck region are recruiting patients. (author)

  9. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  10. Role of the Tapiro Fast Research Reactor in Neutron Capture Therapy in Italy Calculations and Measurements

    International Nuclear Information System (INIS)

    Thermal-neutron research reactors are currently the most common source of neutron beams for both research and clinical trials of neutron capture therapy (NCT). Neutron spectra suitable for NCT are typically produced either by beam filtering or spectrum shifting techniques. However, fast-neutron reactors are also being considered for NCT application as it is recognized that they may allow for improved beam quality. TAPIRO is a low power, high flux, highly enriched (93.5% 235U) fast reactor. The power is 5 kW and the maximum neutron flux in the core is 3x1012 cm-2.s-1. Both a thermal and an epithermal column have been designed and constructed, aimed at dosimetry and animal experiments. The configurations of the columns have been designed by means of Monte Carlo calculations. The columns have been characterized by means of measurements performed with activation techniques and thermoluminescence and gel dosimeters. Experimental results have shown good consistency with calculations. Moreover, they have confirmed the good quality of the beams obtainable with such a reactor. An epithermal column for clinical trials of patients with brain gliomas has been designed and is under construction. The treatment planning figures-of-merit in an anthropomorphic phantom look very satisfactory. (author)

  11. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan)], E-mail: fujitaku@hp.pref.hyogo.jp; Ichikawa, H. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Fujita, I. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Kishimoto, K.; Hara, H. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Kawamitsu, H. [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Sharma, P.; Brown, S.C.; Moudgil, B.M. [Particle Engineering Research Center, University of Florida, Gainesville, FL32611 (United States); Fujii, M. [Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yamamoto, T. [Department of Orthopaedic Surgery, Kagawa University, Kagawa 761-0793 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Fukumori, Y. [Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2009-07-15

    Neutron-capture therapy with gadolinium (Gd-NCT) has therapeutic potential, especially that gadolinium is generally used as a contrast medium in magnetic resonance imaging (MRI). The accumulation of gadolinium in a human sarcoma cell line, malignant fibrosis histiocytoma (MFH) Nara-H, was visualized by the MRI system. The commercially available MRI contrast medium Gd-DTPA (Magnevist, dimeglumine gadopentetate aqueous solution) and the biodegradable and highly gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles (Gd-nanoCPs) were prepared as MRI contrast agents. The MFH cells were cultured and collected into three falcon tubes that were set into the 3-tesra MRI system to acquire signal intensities from each pellet by the spin echo method, and the longitudinal relaxation time (T1) was calculated. The amount of Gd in the sample was measured by inductively coupled plasma atomic emission spectrography (ICP-AES). The accumulation of gadolinium in cells treated with Gd-nanoCPs was larger than that in cells treated with Gd-DTPA. In contrast, and compared with the control, Gd-DTPA was more effective than Gd-nanoCPs in reducing T1, suggesting that the larger accumulation exerted the adverse effect of lowering the enhancement of MRI. Further studies are warranted to gain insight into the therapeutic potential of Gd-NCT.

  12. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations. PMID:18196797

  13. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  14. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  15. Basic study for development of new tumor specific agents for neutron capture therapy

    International Nuclear Information System (INIS)

    New tissue specific agents for neutron capture therapy was studied. Monoclonal labeled gadolinium-DTPA (Gd-MoAb) and porphyrin (ATN-10)-Gd-DTPA (Gd-ATN10) were studied as possible agents by using 9-L experimental brain tumor model. The tissue concentration were analyzed with magnetic resonance imaging (MRI) and inductively coupled plasma (ICP) analyzer. Gd-MoAb showed persistent retention in the tumor on MRI, but tissue gadolinium concentration was not detectable in the tumor by ICP analyzer, while there was high accumulation of Gd-MoAb in the liver. Gd-ATN10 showed prolonged and high accumulation in the tumor up to 48 hours on MRI. Gadolinium concentration reached up to 9 ppm in the tumor by 0.02 mmol/kg administration, but it disappeared within 6 hours after administration. This dissociation between MRI and ICP analysis was due to separation of ATN-10 and Gd-DTPA. As conclusions, the porphyrin compounds are potential agents for delivering gadolinium or boron specific to the tumor tissue, thus further improvement such as more stable conjugation between porphyrinfic to the tumor tissue, thus further improvement such as more stable conjugation between porphyrin and Gd-DTPA is needed. (author)

  16. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  17. Design of an accelerator-based neutron source for neutron capture therapy

    International Nuclear Information System (INIS)

    The boron neutron capture therapy is mainly suited in the treatment of some tumor kinds which revealed ineffective to the traditional radiotherapy. In order to take advantage of such a therapeutic modality in hospital environments, neutron beams of suitable energy and flux levels provided by compact size facilities are needed. The advantages and drawbacks of several neutron beams are here analysed in terms of therapeutic gains. In detail the GEANT-3/MICAP simulations show that high tumor control probability, with sub-lethal dose at healthy tissues, can be achieved by using neutron beams of few keV energy having a flux of about 109 neutrons/(cm2 s). To produce such a neutron beam, the feasibility of a proton accelerator is investigated. In particular an appropriate choice of the radiofrequency parameters (modulation, efficiency of acceleration, phase shift, etc.) allows the development of relatively compact accelerators, having a proton beam current of 30 mA and an energy of 2 MeV, which could eventually lead to setting up of hospital-based neutron facilities.

  18. Boron neutron capture therapy outcomes for advanced or recurrent head and neck cancer

    International Nuclear Information System (INIS)

    We retrospectively review outcomes of applying boron neutron capture therapy (BNCT) to unresectable advanced or recurrent head and neck cancers. Patients who were treated with BNCT for either local recurrent or newly diagnosed unresectable head or neck cancers between December 2001 and September 2007 were included. Clinicopathological characteristics and clinical outcomes were retrieved from hospital records. Either a combination of borocaptate sodium and boronophenylalanine (BPA) or BPA alone were used as boron compounds. In all the treatment cases, the dose constraint was set to deliver a dose <10–12 Gy-eq to the skin or oral mucosa. There was a patient cohort of 62, with a median follow-up of 18.7 months (range, 0.7–40.8). A total of 87 BNCT procedures were performed. The overall response rate was 58% within 6 months after BNCT. The median survival time was 10.1 months from the time of BNCT. The 1- and 2-year overall survival (OS) rates were 43.1% and 24.2%, respectively. The major acute Grade 3 or 4 toxicities were hyperamylasemia (38.6%), fatigue (6.5%), mucositis/stomatitis (9.7%) and pain (9.7%), all of which were manageable. Three patients died of treatment-related toxicity. Three patients experienced carotid artery hemorrhage, two of whom had coexistent infection of the carotid artery. This study confirmed the feasibility of our dose-estimation method and that controlled trials are warranted. (author)

  19. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  20. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  1. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  2. Sonoporation as an enhancing method for boron neutron capture therapy for squamous cell carcinomas

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a selective radiotherapy that is dependent on the accumulation of 10B compound in tumors. Low-intensity ultrasound produces a transient pore on cell membranes, sonoporation, which enables extracellular materials to enter cells. The effect of sonoporation on BNCT was examined in oral squamous cell carcinoma (SCC) xenografts in nude mice. Tumor-bearing mice were administrated boronophenylalanine (BPA) or boronocaptate sodium (BSH) intraperitoneally. Two hours later, tumors were subjected to sonoporation using microbubbles followed by neutron irradiation. The 10B concentration was higher in tumors treated with sonoporation than in untreated tumors, although the difference was not significant in BPA. When tumors in mice that received BPA intraperitoneally were treated with sonoporation followed by exposure to thermal neutrons, tumor volume was markedly reduced and the survival rate was prolonged. Such enhancements by sonoporation were not observed in mice treated with BSH-mediated BNCT. These results indicate that sonoporation enhances the efficiency of BPA-mediated BNCT for oral SCC. Sonoporation may modulate the microlocalization of BPA and BSH in tumors and increase their intracellular levels

  3. A novel reactor concept for boron neutron capture therapy: annular low-low power reactor (ALLPR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, B.; Levine, S.H. [Department of Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States)

    1998-07-01

    Boron Neutron Capture Therapy (BNC), originally proposed in 50's, has been getting renewed attention over the last {approx}10 years. This is in particular due to its potential for treating deep-seated brain tumors by employing epithermal neutron beams. Large (several MW) research reactors are currently used to obtain epithermal beams for BNCT, but because of cost and licensing issues it is not likely that such high-power reactors can be placed in regular medical centers. This paper describes a novel reactor concept for BNCT devised to overcome this obstacle. The design objective was to produce a beam of epithermal neutrons of sufficient intensity for BNCT at <50 kW using low enriched uranium. It is achieved by the annular reactor design, which is called Annular Low-Low Power Reactor (ALLPR). Preliminary studies using Monte Carlo simulations are summarized in this paper. The ALLPR should be relatively economical to build, and safe and easy to operate. This novel concept may increase the viability of using BNCT in medical centers worldwide. (author)

  4. Modelling collimator of radial beam port Kartini reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    One of the cancer therapy methods is BNCT (Boron Neutron Capture Therapy). BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the radiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte Carlo N-Particle version 5 (MCNP 5). MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (ϕepi) > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Df/ϕepi) < 2.0 x 10-13 Gy.cm2.n-1, the ratio of gamma dose rate and epithermal neutron flux (Dγ/ϕepi) < 2.0 X10-13 Gy.cm2.n-1, the ratio between the thermal and epithermal neutron flux (ϕTh/ϕepi)< 0.05 and the ratio between the current and flux of the epithermal neutron (J/ϕepi) > 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were ϕepi = 5.25 x 106 n.cm-2.s-1, Df/ϕepi = 1.17 x 10-13Gy.cm2.n-1, Dγ/ϕepi = 1.70 x 10-12 Gy.cm2.n-1, ϕTh/ϕepi = 1.51 and J/ϕepi = 0.731. Based on this study, the result of the beam radiation coming out of the radial beam port dis not fully meet the criteria recommended by IAEA so need to continue this study to get the criteria of IAEA

  5. Accelerator based-boron neutron capture therapy (BNCT)-clinical QA and QC

    International Nuclear Information System (INIS)

    Alpha-particle and recoil Li atom yielded by the reaction (10B, n), due to their high LET properties, efficiently and specifically kill the cancer cell that has incorporated the boron. Efficacy of this boron neutron capture therapy (BNCT) has been demonstrated mainly in the treatment of recurrent head/neck and malignant brain cancers in Kyoto University Research Reactor Institute (KUR). As the clinical trial of BNCT is to start from 2009 based on an accelerator (not on the Reactor), this paper describes the tentative outline of the standard operation procedure of BNCT for its quality assurance (QA) and quality control (QC) along the flow of its clinical practice. Personnel concerned in the practice involve the attending physician, multiple physicians in charge of BNCT, medical physicists, nurses and reactor stuff. The flow order of the actual BNCT is as follows: Pre-therapeutic evaluation mainly including informed consent and confirmation of the prescription; Therapeutic planning including setting of therapy volume, and of irradiation axes followed by meeting for stuffs' agreement, decision of irradiating field in the irradiation room leading to final decision of the axis, CT for the planning, decision of the final therapeutic plan according to Japan Atomic Energy Agency-Computational Dosimetry System (JCDS) and meeting of all related personnel for the final confirmation of therapeutic plan; and BNCT including the transport of patient to KUR, dripping of boronophenylalanine, setting up of the patient on the machine, blood sampling for pharmacokinetics, boron level measurement for decision of irradiating time, switch on/off of the accelerator, confirmation of patient's movement in the irradiated field after the neutron irradiation, blood sampling for confirmation of the boron level, and patient's leave from the room. The QA/QC check is principally to be conducted with the two-person rule. The purpose of the clinical trial is to establish the usefulness of BNCT, and

  6. Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases in BDIX rats Introduction: Boron Neutron Capture Therapy (BNCT) is based on selective tumor uptake of boron compounds, followed by neutron irradiation. BNCT was proposed for the treatment of unresectable, diffuse lung metastases. The aim of the present study was to perform BNCT studies in an experimental model of lung metastases. Materials and Methods: 3 x 106/0.5 ml colon carcinoma cells (DHD/K12/TRb) were injected iv in syngeneic BDIX rats. Three weeks post-inoculation, rats with diffuse lung metastases were used for in vivo BNCT studies in the RA-3 Nuclear Reactor. Based on previous biodistribution studies and computational dosimetry with Monte Carlo simulation, 2 doses were prescribed, i.e. 4 Gy and 8 Gy minimum absorbed dose to tumor. The animals were assigned to 5 experimental groups (n= 4 to 8) at each dose level: T0 (euthanized pre-treatment), BPA-BNCT, Comb-BNCT (BPA+GB-10), Beam only (background dose) and Sham (same manipulation, no treatment). Boron concentration was measured in a blood sample taken pre-irradiation to verify that the value was in the range established in previous biodistribution studies. The animals were followed clinically for 2 weeks after neutron irradiation and then euthanized to assess the response of tumor and normal lung, macroscopically and histologically. To date we have evaluated the end-point weight of lung (normal lung + metastases) and % lung weight/body weight as an indicator of tumor growth. Results: The statistical analysis (ANOVA) of % lung weight/body weight showed statistically significant differences (p<0.05) between groups T0 (0.79 ± 0.38) and Sham (1.87 ± 0.91). No statistically significant differences were observed between the Beam only groups (at both dose levels) and Sham. Similar and statistically significant tumor control was induced in the groups BPA-BNCT Low dose (LD) (0.56 ± 0.11), BPA-BNCT High dose (HD) (0.80 ± 0.16), Comb

  7. The combined effect of electroporation and borocaptate in boron neutron capture therapy for murine solid tumors

    International Nuclear Information System (INIS)

    10B-Enriched borocaptate (BSH) was administered intraperitoneally to SCCVII tumor-bearing C3H/He mice. Electroporation (EP) was conducted by using a tweezers-type electrode. The 10B contents in tumors were measured by prompt γ-ray spectrometry. The colony formation assay was applied to investigate the antitumor effects of boron neutron capture therapy (BNCT) and thereby to estimate the intratumor localization of BSH. The 10B concentrations in tumors decreased with time following BSH administration, falling to 5.4(±0.1) ppm at 3 h, whereas EP treatment (3 repetitions) 15 min after BSH injection delayed the clearance of BSH from tumors, and the 10B level remained at 19.4(±0.9) ppm at 3 h. The effect of BNCT increased with the 10B concentration in tumors, and the combination with EP showed a remarkably large cell killing effect even at 3 h after BSH injection. The effect of BNCT, i.e., slope coefficient of the cell survival curve of tumors, without EP was proportional to tumor 10B level (r=0.982), and that of BSH-BNCT combined with EP lay close to the same correlation line. However, tumors subjected to EP after BSH injection did not show high radiosensitivity when irradiated after conversion to a single cell suspension by enzymatic digestion. This indicates that the increase of the BNCT effect by EP was a consequence of enclosure of BSH in the interstitial space of tumor tissue and not within tumor cells. This is different from a previous in vitro study. The combination of EP and BNCT may be clinically useful, if a procedure to limit EP to the tumor region becomes available or if an alternative similar method is employed. (author)

  8. Antiproliferative effect and apoptosis induction in melanoma treatment by boron neutron capture therapy (BCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, Fernanda; Coelho, Paulo; Arruda-Neto, Joao; Maria, Durvanei [University of Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Full text: Introduction: Boron neutron capture therapy (BNCT) is an experimental radiotherapy where a compound having {sup 10}B is administered to cancer patients and is accumulated in tumor tissues. Thus, the tumor is irradiated with thermal neutrons, {sup 10}B absorbs and destroys them, producing alpha radiation. Boronophenylalanine (BPA) is the agent responsible for delivering boron to the tumor tissue. After BPA administration, BNCT is used as a localized radiotherapy for many tumors treatment, mainly melanoma, which has a high mortality rate among all types of tumors. The aim of this study was to evaluate in vitro antiproliferative and antitumor effects of BNCT application in human melanoma treatment. Materials and Methods: MEWO cells (human melanoma) were cultured and treated with different concentrations of BPA (8.36 to 0.52 mg/ml). After 90 minutes, they were irradiated with thermal neutron flux up to a dose of 8.4 Gy. The parameters analyzed were free radical production, cell cycle progression, cell death signaling pathways, cycling D1, caspase-3 and extracellular matrix synthesis produced, beyond the mitochondrial electric potential analysis. Results: After BNCT treatment, MEWO cells showed an amount of free radical increase about 10 times. Still, there was a significant decrease of cyclin D1, G0/G1 proliferation, synthesis and G2/M cell cycle phases. BNCT induced a mitochondrial electrical potential decrease, as well as fibrillar proteins of extracellular matrix. BNCT had a significant number of dead cell increase, mainly by necrosis. However, BNCT induced phosphorylated caspase 3 increase. Discussion/Conclusion: BNCT induced cell death increase by necrosis, mitochondrial electric potential decrease and free radical production increase. BNCT is cytotoxic to melanoma cells. Besides necrosis, phosphorylated caspase 3 increase was observed, accompanied by a proliferative response decrease regulated by the G1/S checkpoint and matrix extracellular synthesis

  9. Growth inhibition of human pancreatic cancer grafts in nude mice by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cell destruction in boron neutron capture therapy (BNCT) is due to the nuclear reaction between 10B and thermal neutrons to release alpha-particles (4He) and lithium-7 ions (7Li). The 4He kills cells in the range of 10 μm from the site of 4He generation. Therefore, it is theoretically possible to kill tumor cells without affecting adjacent healthy tissues, if 10B-compounds could be selectively delivered. We have described that 10B atoms delivered by immunoliposomes exerted cytotoxic effect on human pancreatic carcinoma cells (AsPC-1) in a dose-dependent manner by thermal neutron irradiation in vitro as reported previously. In the present study, the cytotoxic effect of a locally injected 10B compound solution or multilamellar liposomes containing a 10B compound to human pancreatic carcinoma xenograft in nude mice was evaluated after thermal neutron irradiation. AsPC-1 cells (1 x 107) injected subcutaneously into a nude mouse grew to a tumor weighing 100-300 mg after 2 weeks. At this time 200 μg 10B compounds was locally injected in the tumor and irradiated with 2 x 1012 n/cm2 thermal neutron. Tumor growth of 10B-treated groups was suppressed as compared with control group. Histopathologically, hyalinization and necrosis were found in the tumor tissues. For effective tumor destruction, 10B dose more than 60 μg was necessary. The tumor tissue injected with saline only and irradiated showed neither destruction nor necrosis. These data indicate that the accumulation of 10B atoms to the tumor site is mandatory for the cytotoxic effect by thermal neutron irradiation. (author)

  10. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    International Nuclear Information System (INIS)

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to γ-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x108 n/cm-2/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for 10B(n, α) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  11. Epithermal neutron beam adoption for liver cancer treatment by boron and gadolinium neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tetsuo [Musashi Inst. of Tech., Kawasaki, Kanagawa (Japan). Atomic Energy Research Lab

    2001-06-01

    Comparative evaluation was made on depth-dose distribution in boron neutron capture therapy (B-NCT) and gadolinium one (Gd-NCT) for the treatments of liver cancers. At present, epithermal neutron beam is expected to be applicable to the treatment of deep and widespread tumors. ICRU computational model of ADAM and EVA was used as a liver phantom loading a tumor at depth of 6 cm in its central region. Epithermal neutron beam of Musashi reactor was used as the primary neutron beam for the depth-dose calculation. Calculation was conducted using the three-dimensional continuous-energy Monte Carlo code MCNP4A. The doses observed in both NCTs were bumped over the tumor region but the dose for Gd-NCT was not so tumor-specific compared with that for BNCT because radiation in Gd-NCT was due to {gamma}-ray. The mean physical dose was 4 Gy/h for boron 30 ppm and 5 Gy/h for Gd 1000 ppm when exposed to an epithermal neutron flux of 5x10{sup 8} n/cm{sup -2}/sec and the dose ratio of tumor-to normal tissue was 2.7 for boron and 2.5 for Gd. The lethal dose of 50 Gy for the liver can be accomplished under conditions where the dose has not reached 25 Gy, the tolerance dose of the normal tissue. This seems very encouraging and indicating that both B-NCT and Gd-NCT are applicable for the treatment for liver cancer. However, if normal tissue contain 1/4 of the tumor concentration of boron or Gd, the BNCT would still possible when considering a large RBE value for {sup 10}B(n, {alpha}) reaction but the Gd-NCT would impossible for deep liver treatment. (M.N.)

  12. Dosimetric analysis of BNCT - Boron Neutron Capture Therapy - coupled to 252Cf brachytherapy

    International Nuclear Information System (INIS)

    The incidence of brain tumors is increasing in world population; however, the treatments employed in this type of tumor have a high rate of failure and in some cases have been considered palliative, depending on histology and staging of tumor. Its necessary to achieve the control tumor dose without the spread irradiation cause damage in the brain, affecting patient neurological function. Stereotactic radiosurgery is a technique that achieves this; nevertheless, other techniques that can be used on the brain tumor control must be developed, in order to guarantee lower dose on health surroundings tissues other techniques must be developing. The 252Cf brachytherapy applied to brain tumors has already been suggested, showing promising results in comparison to photon source, since the active source is placed into the tumor, providing greater dose deposition, while more distant regions are spared. BNCT - Boron Neutron Capture Therapy - is another technique that is in developing to brain tumors control, showing theoretical superiority on the rules of conventional treatments, due to a selective irradiation of neoplasics cells, after the patient receives a borate compound infusion and be subjected to a epithermal neutrons beam. This work presents dosimetric studies of the coupling techniques: BNCT with 252Cf brachytherapy, conducted through computer simulation in MCNP5 code, using a precise and well discretized voxel model of human head, which was incorporated a representative Glioblastoma Multiform tumor. The dosimetric results from MCNP5 code were exported to SISCODES program, which generated isodose curves representing absorbed dose rate in the brain. Isodose curves, neutron fluency, and dose components from BNCT and 252Cf brachytherapy are presented in this paper. (author)

  13. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    Science.gov (United States)

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  14. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  15. Three-dimensional radiation dose distribution analysis for boron neutron capture therapy

    International Nuclear Information System (INIS)

    This paper reports that calculation of physically realistic radiation dose distributions for boron neutron capture therapy (BNCT) is a complex, three-dimensional problem. Traditional one-dimensional (slab) and two-dimensional (cylindrical) models, while useful for neutron beam design and performance analysis, do not provide sufficient accuracy for actual clinical use because the assumed symmetries inherent in such models do not ordinarily exist in the real world. Fortunately, however, it is no longer necessary to make these types of simplifying assumptions. Recent dramatic advances in computing technology have brought full three-dimensional dose distribution calculations for BNCT into the realm of practicality for a wide variety of routine applications. Once a geometric model and the appropriate material compositions have been determined, either stochastic (Monte Carlo) or deterministic calculations of all dose components of interest can now be performed more rapidly and inexpensively for the true three-dimensional geometries typical of actual clinical applications of BNCT. Demonstrations of both Monte Carlo and Deterministic techniques for performing three-dimensional dose distribution analysis for BNCT are provided. Calculated results are presented for a three-dimensional Lucite canine-head phantom irradiated in the epithermal neutron beam available at the Brookhaven Medical Research Reactor. The deterministic calculations are performed using the three-dimensional discrete ordinates method. The Monte Carlo calculations employ a novel method for obtaining spatially detailed radiation flux and dose distributions without the use of flux-at-a-point estimators. The calculated results are in good agreement with each other and with thermal neutron flux measurements taken using copper-gold flux wires placed at various locations in the phantom

  16. Application of HVJ envelope system to boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) has been used clinically for the treatment of malignant tumors. Two drugs, p-boronophenylalanine (BPA) and sulfhydral borane (BSH), have been used as boron delivery agents. These drugs seem to be taken up preferentially in solid tumors, but it is uncertain whether therapeutic quantities of boron atoms are taken up by micro-invasive or distant tumor cells. High accumulation and high selective delivery of boron into tumor tissues are the most important requirements to achieve efficient BNCT for malignant tumor. The HVJ envelope (HVJ-E) vector system is a novel fusion-mediated gene delivery system based on inactivated hemagglutinating virus of Japan (HVJ; Sendai virus). Although we developed this vector system for gene transfer, it can also deliver proteins, synthetic oligonucleotides, and drugs. HVJ-liposome, which is liposome fused with HVJ-E, has higher boron trapping efficiency than HVJ-E alone. We report the boron delivery into cultured cells with HVJ-liposome systems. The cellular 10B concentration after 60 min incubation with HVJ-E containing BSH was 24.9 μg/g cell pellet for BHK-21 cells (baby hamster kidney cells) and 19.4 μg/g cell pellet for SCC VII cells (murine squamous cell carcinoma). These concentrations are higher than that of 60 min incubated cells with BSH containing (100μg 10B/ml) medium. These results indicate the HVJ-E fused with tumor cell membrane and rapidly delivered boron agents, and that the HVJ-E-mediated delivery system could be applicable to BNCT. Plans are underway to begin neutron radiation experiments in vivo and in vitro. (author)

  17. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    International Nuclear Information System (INIS)

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models

  18. The radiobiology of boron neutron capture therapy: Are ''photon-equivalent'' doses really photon-equivalent?

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) produces a mixture of radiation dose components. The high-linear energy transfer (LET) particles are more damaging in tissue than equal doses of low-LET radiation. Each of the high-LET components can multiplied by an experimentally determined factor to adjust for the increased biological effectiveness and the resulting sum expressed in photon-equivalent units (Gy-Eq). BNCT doses in photon-equivalent units are based on a number of assumptions. It may be possible to test the validity of these assumptions and the accuracy of the calculated BNCT doses by 1) comparing the effects of BNCT in other animal or biological models where the effects of photon radiation are known, or 2) if there are endpoints reached in the BNCT dose escalation clinical trials that can be related to the known response to photons of the tissue in question. The calculated Gy-Eq BNCT doses delivered to dogs and to humans with BPA and the epithermal neutron beam of the Brookhaven Medical Research Reactor were compared to expected responses to photon irradiation. The data indicate that Gy-Eq doses in brain may be underestimated. Doses to skin are consistent with the expected response to photons. Gy-Eq doses to tumor are significantly overestimated. A model system of cells in culture irradiated at various depths in a lucite phantom using the epithermal beam is under development. Preliminary data indicate that this approach can be used to detect differences in the relative biological effectiveness of the beam. The rat 9L gliosarcoma cell survival data was converted to photon-equivalent doses using the same factors assumed in the clinical studies. The results superimposed on the survival curve derived from irradiation with Cs-137 photons indicating the potential utility of this model system. (author)

  19. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be u...

  20. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    OpenAIRE

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector ...

  1. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    OpenAIRE

    Zuo, C. S.; Prasad, P V; Busse, Paul; L. Tang; Zamenhof, R. G.

    1999-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo n...

  2. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  3. Comparison of the radiobiological effects of Boron neutron capture therapy (BNCT) and conventional Gamma Radiation

    International Nuclear Information System (INIS)

    BNCT is an experimental radiotherapeutic modality that uses the capacity of the isotope 10B to capture thermal neutrons leading to the production of 4He and 7Li, particles with high linear energy transfer (LET). The aim was to evaluate and compare in vitro the mechanisms of response to the radiation arising of BNCT and conventional gamma therapy. We measured the survival cell fraction as a function of the total physical dose and analyzed the expression of p27/Kip1 and p53 by Western blotting in cells of colon cancer (ARO81-1). Exponentially growing cells were distributed into the following groups: 1) BPA (10 ppm 10B) + neutrons; 2) BOPP (10 ppm 10B) + neutrons; 3) neutrons alone; 4) gamma-rays. A control group without irradiation for each treatment was added. The cells were irradiated in the thermal neutron beam of the RA-3 (flux= 7.5 109 n/cm2 sec) or with 60Co (1Gy/min) during different times in order to obtain total physical dose between 1-5 Gy (±10 %). A decrease in the survival fraction as a function of the physical dose was observed for all the treatments. We also observed that neutrons and neutrons + BOPP did not differ significantly and that BPA was the more effective compound. Protein extracts of irradiated cells (3Gy) were isolated to 24 h and 48 h post radiation exposure. The irradiation with neutrons in presence of 10BPA or 10BOPP produced an increase of p53 at 24 h maintain until 48 h. On the contrary, in the groups irradiated with neutrons alone or gamma the peak was observed at 48 hr. The level of expression of p27/Kip1 showed a reduction of this protein in all the groups irradiated with neutrons (neutrons alone or neutrons plus boron compound), being more marked at 24 h. These preliminary results suggest different radiobiological response for high and low let radiation. Future studies will permit establish the role of cell cycle in the tumor radio sensibility to BNCT. (author)

  4. Dynamic infrared imaging of the skin reaction in melanoma patients treated with boron neutron capture therapy

    International Nuclear Information System (INIS)

    As part of the Boron Neutron Capture Therapy (BNCT) project conducted jointly by the Comision Nacional de Energia Atomica and the oncology institute A. Roffo, Argentina, we have recently started a program designed to investigate the ability of dynamic infrared imaging for following-up our cutaneous melanoma patients. BNCT offers a unique opportunity to study the response of the integumentary system to single fractions and high doses of neutrons and heavy ions, providing information that could be potentially important in radiation accidents for people exposed to these kinds of radiation fields. Medical infrared thermography is a non-invasive and functional imaging method, that provides information on the normal and abnormal status and response of the nervous and vascular systems, as well as the local metabolic rate and inflammatory processes that appear as differences in the skin infrared emission. Although it is highly sensitive, it is unspecific, like other conventional imaging techniques. For this reason, infrared thermography must be employed as an adjunct method to other diagnostic procedures and the clinical observation. An infrared camera is employed, with an uncooled ferroelectric focal plane array of 320x240 detector elements, providing a video signal of the infrared emission in the 8-14 μm wavelength band. After patient preparation and acclimation, a basal study of the irradiated region is performed, including high and low dose areas, as well as normal and tumor tissues, and eventually other detectable structures (e.g. scars and veins). Thereafter, a provocation test (a cold stimulus) is applied and the temperature recovery is registered as a function of time. In addition, a 3D computational dosimetry of the irradiated region is performed, which allows a complete representation of the isodose contours mapped onto the 3D reconstruction representing the skin. This reconstruction permits selecting regions of different doses for studying the local response

  5. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models.

    Science.gov (United States)

    Goorley, J T; Kiger, W S; Zamenhof, R G

    2002-02-01

    As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data, Monte Carlo code input, kerma factors, and model construction files are available

  6. Design of a plate type fuel based - low power medical reactor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The interest in the boron neutron capture therapy (BNCT) has been renewed for cancer therapy with some indication of its potential efficacy in recent years. To solve the most important problem that thermal neutrons are attenuated rapidly in tissue due to absorption and scattering, thermal neutron beams are replaced by epithermal neutron beams. Thus, epithermal neutron beams are directed towards a patient's head, during their passage through tissue these neutrons rapidly lose energy by elastic scattering until they end up as thermal neutrons in target tumor volume. The thermal neutrons thus formed, are captured by the 10B atoms which become 11B atoms in the excited state for a very short time 10-12 sec. The 11B atoms then decay producing alpha particles, 7Li recoil nuclei and gamma rays. Tumor cells are killed selectively by the energetic alpha particles and 7Li fission products. We propose a 300kW slab type reactor core having thin and large surface areas so that most of the neutrons emerging from the faces and entering moderator region are fission spectrum neutrons to acquire high intense epithermal neutron beam with high quality. All faces of the slab core, East-West region and North-South region, were considered for epithermal neutron beam collimators. Plate-type U3Si2-Al dispersion fuel having high uranium density is very compatible with composing of a slab type core. The reactor core is loaded with 3.89kg U235 and has the dimension of about 23.46cm width, 31.28cm length and 64.8cm height, with 216 locations to place 204 fuel elements, eight control plates and four safety plates. The general-purpose MCNP 4B code was used to carry out the neutron and photon transport computations. Both keff criticality and fixed source problems were computed. We could reduce at least 7 times long computer time (105 to 140 h in a run) needed to initiate enough neutrons in a run ( 6000 to 8000 cycles in a run with 3000 neutrons per cycle) using the PVM (Parallel Virtual

  7. Tumor growth suppression by gadolinium-neutron capture therapy using gadolinium-entrapped liposome as gadolinium delivery agent.

    Science.gov (United States)

    Dewi, Novriana; Yanagie, Hironobu; Zhu, Haito; Demachi, Kazuyuki; Shinohara, Atsuko; Yokoyama, Kazuhito; Sekino, Masaki; Sakurai, Yuriko; Morishita, Yasuyuki; Iyomoto, Naoko; Nagasaki, Takeshi; Horiguchi, Yukichi; Nagasaki, Yukio; Nakajima, Jun; Ono, Minoru; Kakimi, Kazuhiro; Takahashi, Hiroyuki

    2013-07-01

    Neutron capture therapy (NCT) is a promising non-invasive cancer therapy approach and some recent NCT research has focused on using compounds containing gadolinium as an alternative to currently used boron-10 considering several advantages that gadolinium offers compared to those of boron. In this study, we evaluated gadolinium-entrapped liposome compound as neutron capture therapy agent by in vivo experiment on colon-26 tumor-bearing mice. Gadolinium compound were injected intravenously via tail vein and allowed to accumulate into tumor site. Tumor samples were taken for quantitative analysis by ICP-MS at 2, 12, and 24 h after gadolinium compound injection. Highest gadolinium concentration was observed at about 2 h after gadolinium compound injection with an average of 40.3 μg/g of wet tumor tissue. We performed neutron irradiation at JRR-4 reactor facility of Japan Atomic Energy Research Institute in Tokaimura with average neutron fluence of 2×10¹² n/cm². The experimental results showed that the tumor growth suppression of gadolinium-injected irradiated group was revealed until about four times higher compared to the control group, and no significant weight loss were observed after treatment suggesting low systemic toxicity of this compound. The gadolinium-entrapped liposome will become one of the candidates for Gd delivery system on NCT.

  8. For boron neutron capture therapy,synthesizing boron-polymer compounds and testing in laboratory conditions

    International Nuclear Information System (INIS)

    The aim of this project is to establish a focus point at Turkish Atomic Energy Authority (TAEA) in the field of Boron Neutron Capture Therapy which is a binary radiotherapy method for brain tumours. Moreover in the scope of the project, a new alternative of 10B-carrier compounds will be synthesized, the neutron source will be determined and the infrastructure to start the clinical trials of BNCT in our country will be established. BNCT is a binary radiotherapy method and the successful of this method is depend on the synthesized boron compounds which have the selective targeting property with tumour cells and neutron optimization. The water-soluble polymer based boron compounds having biochemical and physiological properties will be synthesized and cell culture experiment will be done. In addition, after the neutron source is set up in our country, the infrastructure studies will be started in order to start the clinical trials of BNCT. In this project, there are three different groups as boron compounds, neutron physics and medical group. Neutron physics group is starting the calculations of neutron beam parameters using in BNCT application. But, medical group has no active studies yet. Boron compounds group has been carried out two different experimental studies. In the first experimental study, functional groups have been bound to boron containing polymers to enhance the selectively targeting property and characterized by various analysis methods. Later, cell culture experiment will be done. The first study has been carried out with Hacettepe University. Up to present, completed studies are listed as: -Maleic anhydride oligomer was synthesized and then 2-aminoethyl diphenyl borate (2-AEPB) and monomethoxy poly(ethylene glycol) (PEG) was bound to this oligomer, respectively. Thus, [MAH]n-g1-2-AEPB-g2-PEG was synthesized. -2-AEPB compound were bound to poly(acrylic acid) polymer at different three mole ratio.Then, the selected Poli(Ac)-g1-2-AEPB polymer was

  9. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  10. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  11. Dosimetry and dose planning in boron neutron capture therapy : Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H.

    2012-07-01

    Boron neutron capture therapy (BNCT) is a biologically targeted radiotherapy modality. So far, 249 cancer patients have received BNCT at the Finnish Research Reactor 1 (FiR 1) in Finland. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues, and on the accuracy of the doses. At FiR 1, patient dose calculations are performed with the Monte Carlo (MC) -based treatmentplanning system (TPS), Simulation Environment for Radiotherapy Applications (SERA). Initially, BNCT was applied to head and neck cancer, brain tumors, and malignant melanoma. To evaluate the applicability of the new target tumors for BNCT, calculation dosimetry studies are needed. So far, clinical BNCT has been performed with the neutrons from a nuclear reactor, while an accelerator based neutron sources applicable for hospital operation would be preferable. In this thesis, BNCT patient dose calculation practice in Finland was evaluated against reference calculations and experimental data in several cases. Calculations with two TPSs applied in clinical BNCT were compared. The suitability of the deuterium-deuterium (DD) and deuterium-tritium (D-T) fusion reaction-based compact neutron sources for BNCT were evaluated. In addition, feasibility of BNCT for noninvasive liver tumor treatments was examined. The deviation between SERA and the reference calculations was within 4% in the phantoms studied and in a brain cancer patient model elsewhere, except on the phantom or skin surface, for the boron, nitrogen, and photon dose components. These dose components produce 99% of the tumor dose and > 90% of the healthy tissue dose at points of relevance for treatment at the FiR 1 facility. The reduced voxel cell size ({<=} 0.5 cm) in the SERA edit mesh improved calculation accuracy on the surface. The erratic biased fastneutron run option in SERA led to significant underestimation (up to 30-60%) of the fastneutron dose, while more accurate fast

  12. A theoretical model for the production of Ac-225 for cancer therapy by neutron capture transmutation of Ra-226.

    Science.gov (United States)

    Melville, G; Melville, P

    2013-02-01

    Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226.

  13. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.

  14. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  15. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    The use of the 13 C(d,n)14 N reaction at Ed =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n)14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  16. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  17. Does Quality of Radiation Therapy Predict Outcomes of Multicenter Cooperative Group Trials? A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, Alysa, E-mail: alysa.fairchild@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Straube, William [Advanced Technology Consortium, Imaged-Guided Therapy QA Center, St. Louis, Missouri (United States); Laurie, Fran [Quality Assurance Review Center, Lincoln, Rhode Island (United States); Followill, David [Radiological Physics Center, University of Texas MD Anderson Cancer Centre, Houston, Texas (United States)

    2013-10-01

    Central review of radiation therapy (RT) delivery within multicenter clinical trials was initiated in the early 1970s in the United States. Early quality assurance publications often focused on metrics related to process, logistics, and timing. Our objective was to review the available evidence supporting correlation of RT quality with clinical outcomes within cooperative group trials. A MEDLINE search was performed to identify multicenter studies that described central subjective assessment of RT protocol compliance (quality). Data abstracted included method of central review, definition of deviations, and clinical outcomes. Seventeen multicenter studies (1980-2012) were identified, plus one Patterns of Care Study. Disease sites were hematologic, head and neck, lung, breast, and pancreas. Between 0 and 97% of treatment plans received an overall grade of acceptable. In 7 trials, failure rates were significantly higher after inadequate versus adequate RT. Five of 9 and 2 of 5 trials reported significantly worse overall and progression-free survival after poor-quality RT, respectively. One reported a significant correlation, and 2 reported nonsignificant trends toward increased toxicity with noncompliant RT. Although more data are required, protocol-compliant RT may decrease failure rates and increase overall survival and likely contributes to the ability of collected data to answer the central trial question.

  18. The relationship between boron neutron capture therapy (BNCT) and positron emission tomography (PET) for malignant brain tumors

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a particle irradiation therapy that is theoretically available for selective radiation of tumor cells. Boronophenylalanine-positron emission tomography (18F-BPA-PET) was used in this study. Boron is used as a tracer compound for the neutron capture reaction and has been particularly useful for the recent noncraniotomy BNCT. In this report, we introduce this type of PET as a principal axis in BNCT and relationship with PET. We calculated the drug accumulation to the tumor before neutron irradiation to individualize the treatment. We decided the indication for BNCT on the basis of a PET study and are now expanding the indications to other systemic cancers, including head and neck, lung, and liver cancers. In addition, other irradiation modalities have developed a radiation plan on the basis of a PET study, and several studies attempted improving the results; however, the lesion is exposed to high radiation doses and appear as high accumulation on BPA-PET during BNCT. We determined the neutron exposure time from the dosage for normal tissue in the actual treatment, but the lesion/normal tissue ratio obtained from BPA-PET is for evaluating the tumor dose and following the treatment plan. We also found that a PET study was useful in the follow-up stage to aid in diagnosis of pathologic conditions such as increase in tumor volume, recurrence, or radiation necrosis and for patients who had already been treated for malignant brain tumor. (author)

  19. Design and preparation of ethyl cellulose microcapsules of gadopentetate dimeglumine for neutron-capture therapy using the Wurster process.

    Science.gov (United States)

    Fukumori, Y; Ichikawa, H; Tokumitsu, H; Miyamoto, M; Jono, K; Kanamori, R; Akine, Y; Tokita, N

    1993-06-01

    Microcapsules of hygroscopic, highly water-soluble gadopentetate dimeglumine (Gd-DTPA-DM) for use in preliminary in vivo experiments for neutron-capture therapy were designed. They were prepared with such properties as a particle size small enough to be suspended and injected through a syringe, a negligible release of Gd-DTPA-DM, and a high drug content by means of the Wurster process, a spray coating method using a spouted bed with a draft tube. They were composed of lactose cores of 53-63 microm, an undercoat of ethyl cellulose (EC) and polyvinylpyrrolidone (PVP), a drug-layer of Gd-DTPA-DM, EC and PVP, a waterproof coat and a release-sustaining overcoat of EC and cholesterol (1:1), and a surface treated with hydrogenated egg lecithin. By curing at 110 degrees C for 30 min after mixing with 20% pulverized mannitol powder, the 20% overcoating suppressed the release of Gd-DTPA-DM from 75-106 microm microcapsules to less than 10% for the first 20 min, which was the period required to prepare a suspension, inject it and irradiate the neutron. The microcapsules could be used to confirm that the intracellular presence of Gd is not critical in gadolinium neutron-capture therapy. PMID:8370113

  20. Conceptual study of a compact accelerator-driven neutron source for radioisotope production, boron neutron capture therapy and fast neutron therapy

    CERN Document Server

    Angelone, M; Rollet, S

    2002-01-01

    The feasibility of a compact accelerator-driven device for the generation of neutron spectra suitable for isotope production by neutron capture, boron neutron capture therapy and fast neutron therapy, is analyzed by Monte Carlo simulations. The device is essentially an extension of the activator proposed by Rubbia left bracket CERN/LHC/97-04(EET) right bracket , in which fast neutrons are diffused and moderated within a properly sized lead block. It is shown that by suitable design of the lead block, as well as of additional elements of moderating and shielding materials, one can generate and exploit neutron fluxes with the spectral features required for the above applications. The linear dimensions of the diffusing-moderating device can be limited to about 1 m. A full-scale device for all the above applications would require a fast neutron source of about 10**1**4 s**-**1, which could be produced by a 1 mA, 30 MeV proton beam impinging on a Be target. The concept could be tested at the Frascati Neutron Gener...

  1. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile

  2. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk [College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of)

    2015-05-15

    This reaction can be applied to the therapy and diagnosis about the tumor simultaneously. After the compound labeled with the boron is accumulated at the tumor site, the alpha particle induced by the reaction between the thermal neutron and the boron induces tumor cell death. Also, the 478 keV prompt gamma ray is emitted from the same reaction point. If this single prompt photon is detected by single photon emission computed tomography (SPECT), the tomographic image of the therapy region can be monitored during the radiation treatment. However, in order to confirm the therapy region using the image during the treatment, the image needs to be provided promptly. Due to a relatively long acquisition time required to get SPECT images, both reduced number of projections and the fast image reconstruction schemes are needed to provide the images during radiation treatment. The computation time for image reconstruction using the GPU with the modified OSEM algorithm was measured and compared with the computation time using CPU. Through the results, we confirmed the feasibility of the image reconstruction for prompt gamma ray image using GPU for the BNCT. In the further study, the development of the algorithm for faster reconstruction of the prompt gamma ray image during the BNCT using the GPU computation will be conducted. Also, the analysis of the target to background level about the reconstructed image will be performed using the extracted image profile.

  3. 甲亢患者的内科治疗配合舆护理%Medical Therapy's Cooperation and Nursing of Hyperthyroidism

    Institute of Scientific and Technical Information of China (English)

    李柳芳; 陈彦茹; 戈兰; 陈琳玲

    2002-01-01

    To retrospect 46 cases of treating and nursing hyperthyroidism to sum up key point of therapy' s cooperation and nursing.The results suggests that strengthen the attention to antithyrotropic drugs. Psychological nursing and health education contribute to convalesce.

  4. Determination of boron in biological samples for the needs of neutron capture therapy

    International Nuclear Information System (INIS)

    Monitoring the actual concentration of 10B in a patient's blood is a prerequisite for determining the start and length of patient irradiation. The Prompt Gamma Ray Analysis (PGRA) method enables this nuclide to be determined rapidly and reliably within the region of 1 to 100 ppm. In this method, the characteristic line at 478 keV from the nuclear reaction 10B+n → 7Li+α+γ during sample exposure to thermal neutrons is used to determine boron. The facility which has been built up for this purpose comprises, in particular, a large-volume semiconductor detector for recording gamma rays emerging from the radiative neutron capture on the target

  5. Self-shielding effects in neutron spectra measurements for neutron capture therapy by means of activation foils.

    Science.gov (United States)

    Pytel, Krzysztof; Józefowicz, Krystyna; Pytel, Beatrycze; Koziel, Alina

    2004-01-01

    The design and optimisation of a neutron beam for neutron capture therapy (NCT) is accompanied by the neutron spectra measurements at the target position. The method of activation detectors was applied for the neutron spectra measurements. Epithermal neutron energy region imposes the resonance structure of activation cross sections resulting in strong self-shielding effects. The neutron self-shielding correction factor was calculated using a simple analytical model of a single absorption event. Such a procedure has been applied to individual cross sections from pointwise ENDF/B-VI library and new corrected activation cross sections were introduced to a spectra unfolding algorithm. The method has been verified experimentally both for isotropic and for parallel neutron beams. Two sets of diluted and non-diluted activation foils covered with cadmium were irradiated in the neutron field. The comparison of activation rates of diluted and non-diluted foils has demonstrated the correctness of the applied self-shielding model.

  6. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  7. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  8. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT)

    International Nuclear Information System (INIS)

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68 Gy(w) and 44 Gy(w), respectively. - Highlights: • It is very important to determine the curable BNCT radiation dose on histopathological aspect in BNCT. • Of 23 patients with GBM treated with BNCT, autopsy was performed in 5, salvage surgery in 3, and histopathological study in 8. • To achieve the histopathological cure of GBM at the primary site, the optimal minimal dose to the GTV and CTV was 68 Gy(w) and 44 Gy(w), respectively

  9. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    International Nuclear Information System (INIS)

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated

  10. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    International Nuclear Information System (INIS)

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  11. Dosimetry and stability studies of the boron neutron capture therapy agent F-BPA-Fr using PET and MRI

    Science.gov (United States)

    Dyke, Jonathan Paul

    The treatment of deep seated brain tumors such as glioblastoma Multiforme has been unsuccessful for many patients. Surgical debulking, chemotherapy and standard radiotherapy have met with limited success. Boron neutron capture therapy offers a binary mode brachytherapy based on the following capture reaction that may provide an innovative alternative to standard forms of treatment:10B + n /to/ 11B /to 7Li + 4He + 2.31 MeVBoron is chemically attached to a tumor binding compound creating a non-toxic neutron absorber. A dose of epithermal neutrons provides the catalyst to produce the lithium and alpha particles which destroy any tissue within a length of one cell diameter from the boron compound. This dissertation uses 19F-MRI and 18F-PET to provide answers to the localization and biodistribution questions that arise in such a treatment modality. Practical patient dosimetry and actual treatment planning using the PET data is also examined. Finally, theoretical work done in the areas of compartmental modelling dealing with pharmacokinetic uptake of the PET radiotracer and dose analysis in microdosimetry is also presented.

  12. Development and in vitro testing of liposomal gadolinium-formulations for neutron capture therapy of glioblastoma multiforme

    International Nuclear Information System (INIS)

    For the improvement of current neutron capture therapy, several liposomal formulations of neutron capture agent gadolinium were developed and tested in a glioma cell model. Formulations were analyzed regarding physicochemical and biological parameters, such as size, zeta potential, uptake into cancer cells and performance under neutron irradiation. The neutron and photon dose derived from intracellular as well as extracellular Gd was calculated via Monte Carlo simulations and set in correlation with the reduction of cell survival after irradiation. To investigate the suitability of Gd as a radiosensitizer for photon radiation, cells were also irradiated with synchrotron radiation in addition to clinically used photons generated by linear accelerator. Irradiation with neutrons led to significantly lower survival for Gd-liposome-treated F98 and LN229 cells, compared to irradiated control cells and cells treated with non-liposomal Gd-DTPA. Correlation between Gd-content and -dose and respective cell survival displayed proportional relationship for most of the applied formulations. Photon irradiation experiments showed the proof-of-principle for the radiosensitizer approach, although the photon spectra currently used have to be optimized for higher efficiency of the radiosensitizer. In conclusion, the newly developed Gd-liposomes show great potential for the improvement of radiation treatment options for highly malignant glioblastoma.

  13. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  14. Investigation of current status in Europe and USA on boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  15. Investigation of current status in Europe and USA on boron neutron capture therapy

    International Nuclear Information System (INIS)

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  16. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    International Nuclear Information System (INIS)

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  17. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    Science.gov (United States)

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  18. Boron determination in biological samples - Intercomparison of three analytical methods to assist development of a treatment protocol for neoplastic diseases of the liver with Boron Neutron Capture Therapy

    OpenAIRE

    Schütz, Christian L.

    2012-01-01

    Die Bor-Neuroneneinfang-Therapie (engl.: Boron Neutron Capture Therapy, BNCT) ist eine indirekte Strahlentherapie, welche durch die gezielte Freisetzung von dicht ionisierender Strahlung Tumorzellen zerstört. Die freigesetzten Ionen sind Spaltfragmente einer Kernreaktion, bei welcher das Isotop 10B ein niederenergetisches (thermisches) Neutron einfängt. Das 10B wird durch ein spezielles Borpräparat in den Tumorzellen angereichert, welches selbst nicht radioaktiv ist. rnAn der Johannes Gutenbe...

  19. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thatar Vento, V., E-mail: Vladimir.ThatarVento@gmail.com [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Bergueiro, J.; Cartelli, D. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral. Paz 1499 (1650), San Martin, Buenos Aires (Argentina)] [CONICET, Av. Rivadavia 1917 (1033), Ciudad Autonoma de Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. Irigoyen 3100 (1650), San Martin, Buenos Aires (Argentina)

    2011-12-15

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam.

  20. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  1. Potential of para-boronophenylalaninol as a boron carrier in boron neutron capture therapy, referring to that of its enantiomers

    International Nuclear Information System (INIS)

    We evaluated the potential of a newly developed 10B-containing alpha-amino alcohol of para-boronophenylalanine-10B (BPA), para-boronophenylalaninol (BPAol), as a boron carrier in boron neutron capture therapy. C57BL mice bearing EL4 tumors and C3H/He mice bearing SCC VII tumors received 5-bromo-2'-deoxyuridine (BrdU) continuously via implanted mini-osmotic pumps to label all proliferating (P) cells. After oral administration of L-BPA or D-BPA, or intraperitoneal injection of L-BPAol or D-BPAol, the tumors were irradiated with reactor thermal neutron beams. For the combination with mild temperature hyperthermia (MTH) and/or tirapazamine (TPZ), the tumors were heated at 40 degrees centigrade for 30 minutes right before neutron exposure, and/or TPZ was intraperitoneally injected 30 minutes before irradiation. The tumors were then excised, minced and trypsinized. The tumor cell suspensions thus obtained were incubated with cytochalasin-B (a cytokinesis blocker), and the micronucleus (MN) frequency in cells without BrdU labeling ( = quiescent (Q) cells) was determined using immunofluorescence staining for BrdU. Meanwhile, 6 hours after irradiation, tumor cell suspensions obtained in the same manner were used for determining the apoptosis frequency in Q cells. The apoptosis and MN frequency in total (P + Q) tumor cells were determined from the tumors that were not pretreated with BrdU. Without TPZ or MTH, L- and D-BPAol increased both frequencies markedly, especially for total cells. Although not significantly, L-BPA and D-BPAol increased both frequencies slightly more remarkably than D-BPA and L-BPAol, respectively. On combined treatment with both MTH and TPZ, the sensitivity difference between total and Q cells was markedly reduced. MTH increased the 10B uptake of all 10B-carriers into both tumor cells to some degree. Both L- and D-BPAol have potential as 10B-carriers in neutron capture therapy, especially when combined with both MTH and TPZ

  2. Boron neutron capture therapy for undifferentiated thyroid carcinoma: preliminary results with the combined use of BPA and BOPP

    Energy Technology Data Exchange (ETDEWEB)

    Viaggi, M. E-mail: viaggi@cnea.gov.ar; Dagrosa, M.A.; Longhino, J.; Blaumann, H.; Calzetta, O.; Kahl, S.B.; Juvenal, G.J.; Pisarev, M.A

    2004-11-01

    We have shown the selective uptake of borophenylalanine (BPA) by undifferentiated human thyroid cancer (UTC) ARO cells both in vitro and in vivo. Moreover, a 50% histologic cure of mice bearing the tumor was observed when the complete boron neutron capture therapy was applied. More recently we have analyzed the biodistribution of BOPP (tetrakis-carborane carboxylate ester of 2,4-bis-({alpha},{beta}-dihydroxyethyl)-deutero-porphyrin IX) and showed that when BOPP was injected 5 days before BPA, and the animals were sacrificed 60 min after the i.p. injection of BPA, a significant increase in boron uptake by the tumor was found (38-45 ppm with both compounds vs. 20 ppm with BPA alone). Five days post the i.p BOPP injection and 1 h after BPA the ratios were: tumor/blood 3.75; tumor/distal skin 2. Other important ratios were tumor/thyroid 6.65 and tumor/lung 3.8. The present studies were performed in mice transplanted with ARO cells and injected with BOPP and BPA. Only in mice treated with the neutron beam and injected with the boronated compounds we observed a 100% control of tumor growth. Two groups of mice received different total absorbed doses: 3.00 and 6.01 Gy, but no further improvement in the outcome was found compared to the previous results using BPA alone (4.3 Gy)

  3. Stability of high-speed lithium sheet jets for the neutron source in Boron Neutron Capture Therapy (BNCT)

    International Nuclear Information System (INIS)

    The stability of high-speed liquid lithium sheet jets was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to realize the thin and high-speed plane sheet jets of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin plane sheet jets of liquid lithium in a high-vacuum, and then our analytical results were compared with the previous experimental ones. We proved that the waves of surface tension on thin lithium sheet jets in a high-vacuum are of supercritical flows and neutral stable under about 17.4 m/s in flow velocity and that the fast non-dispersive anti-symmetric waves are more significant than the very slow dispersive symmetric waves. We also formulated the equation of shrinking angle in isosceles-triangularly or isosceles-trapezoidal shrinking sheet jets corresponding to the Mach angle of supersonic gas flows. This formula states universally the physical meaning of Weber number of sheet jets on the wave of surface tension in supercritical flows. We obtained satisfactory prospects (making choice of larger flow velocity U and larger thickness of sheet a) to materialize a liquid target of accelerator in BNCT. (author)

  4. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours

    International Nuclear Information System (INIS)

    The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours. (author)

  5. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  6. Design and preparation of gadolinium-reservoir microcapsules for neutron-capture therapy by means of the Wurster process.

    Science.gov (United States)

    Miyamoto, M; Ichikawa, H; Fukumori, Y; Akine, Y; Tokuuye, K

    1997-12-01

    Gadolinium (Gd)-containing microcapsules designed for neutron-capture therapy (NCT) were prepared by a spouted bed coating process. Microcapsules were designed as a Gd-reservoir. They were prepared with the following properties: particle size was smaller than 50 microns, Gd-content was as high as possible, and release of Gd was suppressed as long as possible. Calcium carbonate (20-32 microns) was selected as a speed particle. As a Gd-source, gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) or a synthesized water-insoluble Gd-DTPA derivative, Gd-DTPA-distearylamide (Gd-DTPA-SA), was layered onto the seed particles. The release-suppressing layer was composed of aqueous acrylic latex of 9:9:4 poly(ethyl acrylate/methyl methacrylate/2-hydroxyethyl methacrylate). In preliminary studies, Gd-DTPA microcapsules with 41-45 microns (mass median diameter) were prepared; they released Gd with a short lag-time and 3h-prolongation. Complete release suppression was, however, difficult to achieve because of high water-solubility of Gd-DTPA. Hence, a hydrophobic derivative, Gd-DTPA-SA, was next used as a Gd source. Gd-DTPA-SA microcapsules could be prepared with a mass median diameter of 52 microns. Gd-DTPA-SA content of the microcapsules was 38% and release of Gd was suppressed to less than 0.2% over 60 d. PMID:9433776

  7. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer.

    Science.gov (United States)

    Agarwal, Hitesh K; Khalil, Ahmed; Ishita, Keisuke; Yang, Weilian; Nakkula, Robin J; Wu, Lai-Chu; Ali, Tehane; Tiwari, Rohit; Byun, Youngjoo; Barth, Rolf F; Tjarks, Werner

    2015-07-15

    A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents. PMID:26087030

  8. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  9. Gamma/neutron dose evaluation using Fricke gel and alanine gel dosimeters to be applied in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Full text: Radiosurgery is a non-invasive surgery carried out by means of directed beams of ionizing radiation. This procedure was developed since there are many diseases for which conventional surgical treatment can not be applied, due to difficult or vital structures being damaged. Neutron radiation from nuclear reactors is used in a kind of radiosurgery called Boron Neutron Capture Therapy (BNCT) for the treatment of brain tumours which depends on the interaction of slow neutrons with 10B isotope injected in the tumour to produce alpha particles. Gel Dosimetry allows three-dimensional (3D) measurement of absorbed dose in tissueequivalent dosimeter phantoms. The measure technique is based on the transformation of ferrous ions (Fe2+) and ferric ions (Fe3+). The ferric ions concentration can be measured by spectrophotometry technique comparing the two wavelengths, 457 nm band that corresponds to ferrous ions concentration and 588 nm band that corresponds to ferric ions concentration. This work aims to study the gamma/neutron reactor dose relationship to be applied in BNCT using gel dosimeters. The Fricke Xylenol Gel (FXG) and Alanine Gel (AG) gel solutions produced at IPEN using gelatine 300 bloom were mixed with Na2B4O7 salt containing 19,9% of 10B isotope. This solutions were used to evaluate thermal and epithermal neutrons and gamma doses at an irradiation cell on BH3 of the IEA-R1 research reactor of IPEN

  10. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  11. Feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma from a viewpoint of dose distribution analysis

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility of boron neutron capture therapy (BNCT) for malignant pleural mesothelioma (MPM) from a viewpoint of dose distribution analysis using Simulation Environment for Radiotherapy Applications (SERA), a currently available BNCT treatment planning system. Methods and Materials: The BNCT treatment plans were constructed for 3 patients with MPM using the SERA system, with 2 opposed anterior-posterior beams. The 1B concentrations in the tumor and normal lung in this study were assumed to be 84 and 24 ppm, respectively, and were derived from data observed in clinical trials. The maximum, mean, and minimum doses to the tumors and the normal lung were assessed for each plan. The doses delivered to 5% and 95% of the tumor volume, D05 and D95, were adopted as the representative dose for the maximum and minimum dose, respectively. Results: When the D05 to the normal ipsilateral lung was 5 Gy-Eq, the D95 and mean doses delivered to the normal lung were 2.2-3.6 and 3.5-4.2 Gy-Eq, respectively. The mean doses delivered to the tumors were 22.4-27.2 Gy-Eq. The D05 and D95 doses to the tumors were 9.6-15.0 and 31.5-39.5 Gy-Eq, respectively. Conclusions: From a viewpoint of the dose-distribution analysis, BNCT has the possibility to be a promising treatment for MPM patients who are inoperable because of age and other medical illnesses

  12. Capture and Transport of Laser Accelerated Protons by Pulsed Magnetic Fields: Advancements Toward Laser-Based Proton Therapy

    Science.gov (United States)

    Burris-Mog, Trevor J.

    The interaction of intense laser light (I > 10 18 W/cm2) with a thin target foil leads to the Target Normal Sheath Acceleration mechanism (TNSA). TNSA is responsible for the generation of high current, ultra-low emittance proton beams, which may allow for the development of a compact and cost effective proton therapy system for the treatment of cancer. Before this application can be realized, control is needed over the large divergence and the 100% kinetic energy spread that are characteristic of TNSA proton beams. The work presented here demonstrates control over the divergence and energy spread using strong magnetic fields generated by a pulse power solenoid. The solenoidal field results in a parallel proton beam with a kinetic energy spread DeltaE/E = 10%. Assuming that next generation lasers will be able to operate at 10 Hz, the 10% spread in the kinetic energy along with the 23% capture efficiency of the solenoid yield enough protons per laser pulse to, for the first time, consider applications in Radiation Oncology. Current lasers can generate proton beams with kinetic energies up to 67.5 MeV, but for therapy applications, the proton kinetic energy must reach 250 MeV. Since the maximum kinetic energy Emax of the proton scales with laser light intensity as Emax ∝ I0.5, next generation lasers may very well accelerate 250 MeV protons. As the kinetic energy of the protons is increased, the magnetic field strength of the solenoid will need to increase. The scaling of the magnetic field B with the kinetic energy of the protons follows B ∝ E1/2. Therefor, the field strength of the solenoid presented in this work will need to be increased by a factor of 2.4 in order to accommodate 250 MeV protons. This scaling factor seems reasonable, even with present technology. This work not only demonstrates control over beam divergence and energy spread, it also allows for us to now perform feasibility studies to further research what a laser-based proton therapy system

  13. Creative Problem Solving and Social Cooperation of Effective Physical Therapy Practice: A Pioneer Study and Overview

    Directory of Open Access Journals (Sweden)

    Eli Carmeli

    2003-01-01

    Full Text Available Action research (AR has an important role to play in educating physical therapists. Increasing efforts should be encouraged to instigate AR programs in physical therapy practice and clinical education. Such programs commonly require considerable effort and understanding by clinical instructors, and require adoption of new educational methods. AR programs can lead physical therapists and clinicians to be more questioning and reflective in evaluating practical questions regarding patient therapy and education. The purpose of this article is to educate the readers on the importance of AR and to provide a few relevant references on that topic. A specific study is described in this paper in which physical therapy clinical instructors participated in a structured workshop designed to demonstrate the values of AR and how such values can be incorporated in teaching their students. AR can lead to improved therapist-patient interaction and help solve specific practical problems arising during therapy sessions.

  14. Cooperative response of keratinocytes and melanocytes to UV radiation during PUVA therapy

    Science.gov (United States)

    Stolnitz, Mikhail M.; Baskakov, Pavel V.; Peshkova, Anna Y.

    1999-03-01

    The mathematical model of processes in UV-irradiated furocoumarin-sensitized epidermis is presented taking into account the mutual influence of keratinocytes and melanocytes populations. The model describes epidermis as a hierarchical structure on tissue (keratinocytes-melanocytes cooperation, melanin screen formation), cellular (proliferation and differentiation, transitions between subpopulations), subcellular (cell movement on mitotic cycle, generation, maturing and migration of melanosomes), and molecular (melanin synthesis, processes of DNA damage and repair, molecular signal transduction) levels.

  15. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer.

    Science.gov (United States)

    Barth, Rolf F; Vicente, M Graca H; Harling, Otto K; Kiger, W S; Riley, Kent J; Binns, Peter J; Wagner, Franz M; Suzuki, Minoru; Aihara, Teruhito; Kato, Itsuro; Kawabata, Shinji

    2012-08-29

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or "BPA", and sodium borocaptate or "BSH" (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials

  16. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  17. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical

  18. Use of fluorine-18-BPA PET images and image registration to enhance radiation treatment planning for boron neutron capture therapy

    Science.gov (United States)

    Khan, Mohammad Khurram

    The Monte-Carlo based simulation environment for radiation therapy (SERA) software is used to simulate the dose administered to a patient undergoing boron neutron capture therapy (BNCT). Point sampling of tumor tissue results in an estimate of a uniform boron concentration scaling factor of 3.5. Under conventional treatment protocols, this factor is used to scale the boron component of the dose linearly and homogenously within the tumor and target volumes. The average dose to the tumor cells by such a method could be improved by better methods of quantifying the in-vivo 10B biodistribution. A better method includes radiolabeling para-Boronophenylalanine (p-BPA) with 18F and imaging the pharmaceutical using positron emission tomography (PET). This biodistribution of 18F-BPA can then be used to better predict the average dose delivered to the tumor regions. This work uses registered 18F-BPA PET images to incorporate the in-vivo boron biodistribution within current treatment planning. The registered 18F-BPA PET images are then coupled in a new computer software, PET2MRI.m, to linearly scale the boron component of the dose. A qualititative and quantitative assessment of the dose contours is presented using the two approaches. Tumor volume, tumor axial extent, and target locations are compared between using MRI or PET images to define the tumor volume. In addition, peak-to-normal brain value at tumor axial center is determined for pre and post surgery patients using 18F-BPA PET images. The differences noted between the registered GBM tumor volumes (range: 34.04--136.36%), tumor axial extent (range: 20--150%), and the beam target location (1.27--4.29 cm) are significantly different. The peak-to-normal brain values are also determined at the tumor axial center using the 18F-BPA PET images. The peak-to-normal brain values using the last frame of the pre-surgery study for the GBM patients ranged from 2.05--3.4. For post surgery time weighted PET data, the peak

  19. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    Science.gov (United States)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  20. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    International Nuclear Information System (INIS)

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin (∼ 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs

  1. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy

    Science.gov (United States)

    Tanaka, H.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Kinashi, Y.; Kashino, G.; Liu, Y.; Mitsumoto, T.; Yajima, S.; Tsutsui, H.; Maruhashi, A.; Ono, K.

    2009-06-01

    At Kyoto University Research Reactor Institute (KURRI), 275 clinical trials of boron neutron capture therapy (BNCT) have been performed as of March 2006, and the effectiveness of BNCT has been revealed. In order to further develop BNCT, it is desirable to supply accelerator-based epithermal-neutron sources that can be installed near the hospital. We proposed the method of filtering and moderating fast neutrons, which are emitted from the reaction between a beryllium target and 30-MeV protons accelerated by a cyclotron accelerator, using an optimum moderator system composed of iron, lead, aluminum and calcium fluoride. At present, an epithermal-neutron source is under construction from June 2008. This system consists of a cyclotron accelerator, beam transport system, neutron-yielding target, filter, moderator and irradiation bed. In this article, an overview of this system and the properties of the treatment neutron beam optimized by the MCNPX Monte Carlo neutron transport code are presented. The distribution of biological effect weighted dose in a head phantom compared with that of Kyoto University Research Reactor (KUR) is shown. It is confirmed that for the accelerator, the biological effect weighted dose for a deeply situated tumor in the phantom is 18% larger than that for KUR, when the limit dose of the normal brain is 10 Gy-eq. The therapeutic time of the cyclotron-based neutron sources are nearly one-quarter of that of KUR. The cyclotron-based epithermal-neutron source is a promising alternative to reactor-based neutron sources for treatments by BNCT.

  2. Tumor cell killing effect of boronated dipeptide. Boromethylglycylphenylalanine on boron neutron capture therapy for malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takagaki, Masao; Ono, Koji; Masunaga, Shinichiro; Kinashi, Yuko; Kobayashi, Toru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Oda, Yoshifumi; Kikuchi, Haruhiko; Spielvogel, B.F.

    1994-03-01

    The killing effect of Boron Neutron Capture Therapy; BNCT, is dependant on the boron concentration ratio of tumor to normal brain (T/N ratio), and also that of tumor to blood (T/B ratio). The clinical boron carrier of boro-captate (BSH) showed the large T/N ratio of ca. 8, however the T/B ratio was around 1, which indicated nonselective accumulation into tumor. Indeed high boron concentration of blood restrict the neutron irradiation dose in order to circumvent the normal endothelial damage, especially in the case of deeply seated tumor. Phenylalanine analogue of para borono-phenylalanine (BPA) is an effective boron carrier on BNCT for malignant melanoma. For the BNCT on brain tumors, however, BPA concentration in normal brain was reported to be intolerably high. In order to improve the T/N ratio of BPA in brain, therefore, a dipeptide of boromethylglycylphenylalanine (BMGP) was synthesized deriving from trimethylglycine conjugated with BPA. It is expected to be selectively accumulated into tumor with little uptake into normal brain. Because a dipeptide might not pass through the normal blood brain barrier (BBB). Its killing effect on cultured glioma cell, T98G, and its distribution in rat brain bearing 9L glioma have been investigated in this paper. The BNCT effect of BMGP on cultured cells was nearly triple in comparison with DL-BPA. The neutron dose yielding 1% survival ratio were 7x10{sup 12}nvt for BMGP and 2x10{sup 13}nvt for BPA respectively on BNCT after boron loading for 16 hrs in the same B-10 concentration of 20ppm. Quantitative study of boron concentration via the {alpha}-auto radiography and the prompt gamma ray assay on 9L brain tumor rats revealed that T/N ratio and T/B ratio are 12.0 and 3.0 respectively. Those values are excellent for BNCT use. (author).

  3. Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ohnishi Ken

    2009-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a selective radiotherapy, being effective for the treatment of even advanced malignancies in head and neck regions as well as brain tumors and skin melanomas. To clarify the role of p53 gene, the effect of BNCT on oral squamous cell carcinoma (SCC cells showing either wild- (SAS/neo or mutant-type (SAS/mp53 p53 was examined. Methods Cells were exposed to neutron beams in the presence of boronophenylalanine (BPA at Kyoto University Research Reactor. Treated cells were monitored for modulations in colony formation, proliferation, cell cycle, and expression of cell cycle-associated proteins. Results When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo compared with SAS/mp53 cells. Cell cycle arrest at the G1 checkpoint was observed in SAS/neo, but not in SAS/mp53. Apoptotic cells increased from 6 h after BNCT in SAS/neo and 48 h in SAS/mp53 cells. The expression of p21 was induced in SAS/neo only, but G2 arrest-associated proteins including Wee1, cdc2, and cyclin B1 were altered in both cell lines. Conclusion These results indicate that oral SCC cells with mutant-type are more resistant to BNCT than those with wild-type p53, and that the lack of G1 arrest and related apoptosis may contribute to the resistance. At a physical dose affecting the cell cycle, BNCT inhibits oral SCC cells in p53-dependent and -independent manners.

  4. Demonstration of three-dimensional deterministic radiation transport theory dose distribution analysis for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The Monte Carlo stochastic simulation technique has traditionally been the only well-recognized method for computing three-dimensional radiation dose distributions in connection with boron neutron capture therapy (BNCT) research. A deterministic approach to this problem would offer some advantages over the Monte Carlo method. This paper describes an application of a deterministic method to analytically simulate BNCT treatment of a canine head phantom using the epithermal neutron beam at the Brookhaven medical research reactor (BMRR). Calculations were performed with the TORT code from Oak Ridge National Laboratory (ORNL), an implementation of the discrete ordinates, or Sn method. Calculations were from first principles and used no empirical correction factors. The phantom surface was modeled by flat facets of approximately 1 cm2. The phantom interior was homogeneous. Energy-dependent neutron and photon scalar fluxes were calculated on a 32x16x22 mesh structure with 96 discrete directions in angular phase space. The calculation took 670 min on an Apollo DN10000 workstation. The results were subsequently integrated over energy to obtain full three-dimensional dose distributions. Isodose contours and depth-dose curves were plotted for several separate dose components of interest. Phantom measurements were made by measuring neutron activation (and therefore neutron flux) as a function of depth in copper--gold alloy wires that were inserted through catheters placed in holes drilled in the phantom. Measurements agreed with calculations to within about 15%. The calculations took about an order of magnitude longer than comparable Monte Carlo calculations but provided various conveniences, as well as a useful check

  5. Comparing Two Cooperative Small Group Formats Used with Physical Therapy and Medical Students

    Science.gov (United States)

    D'Eon, Marcel; Proctor, Peggy; Reeder, Bruce

    2007-01-01

    This study compared "Structured Controversy" (a semi-formal debate like small group activity) with a traditional open discussion format for medical and physical therapy students. We found that those students who had participated in Structured Controversy changed their personal opinion on the topic more than those who were in the Open Discussion…

  6. Cooperation project: medical physics in cancer diagnosis and therapy in Bangladesh

    International Nuclear Information System (INIS)

    Bangladesh requires 200 radiotherapy facilities, 4 are in use; 400 medical physicists are needed, 3 are employed. On a private basis, a DGMP working group started in 1996, annual workshops on medical physics in cancer diagnosis and treatment, joined by many working physicists interested to become medical physicists. Basic topics were the principles, applications, acceptance, dosimetry and planning of 60Co radiotherapy. In 1998, the Bangladesh association of physicists in medicine (BMPA) was founded, a young scientific society requiring international co-operation. The long experience in Medical Physics in India, its neighbouring country, could be very helpful in providing excellent medical physics courses. To absorb new technology and science, it is necessary to change the education policy; creativity and innovativeness must be valued more than the old knowledge, being replaced quickly by new knowledge and new technologies. (author)

  7. Proton magnetic resonance spectroscopy of a boron neutron capture therapy 10B-carrier, L-p-boronophenylalanine-fructose complex

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, M.

    2010-07-01

    Boron neutron capture therapy (BNCT) is a radiotherapy that has mainly been used to treat malignant brain tumours, melanomas, and head and neck cancer. In BNCT, the patient receives an intravenous infusion of a 10B-carrier, which accumulates in the tumour area. The tumour is irradiated with epithermal or thermal neutrons, which result in a boron neutron capture reaction that generates heavy particles to damage tumour cells. In Finland, boronophenylalanine fructose (BPA-F) is used as the 10B-carrier. Currently, the drifting of boron from blood to tumour as well as the spatial and temporal accumulation of boron in the brain, are not precisely known. Proton magnetic resonance spectroscopy (1H MRS) could be used for selective BPA-F detection and quantification as aromatic protons of BPA resonate in the spectrum region, which is clear of brain metabolite signals. This study, which included both phantom and in vivo studies, examined the validity of 1H MRS as a tool for BPA detection. In the phantom study, BPA quantification was studied at 1.5 and 3.0 T with single voxel 1H MRS, and at 1.5 T with magnetic resonance imaging (MRSI). The detection limit of BPA was determined in phantom conditions at 1.5 T and 3.0 T using single voxel 1H MRS, and at 1.5 T using MRSI. In phantom conditions, BPA quantification accuracy of +- 5% and +- 15% were achieved with single voxel MRS using external or internal (internal water signal) concentration references, respectively. For MRSI, a quantification accuracy of <5% was obtained using an internal concentration reference (creatine). The detection limits of BPA in phantom conditions for the PRESS sequence were 0.7 (3.0 T) and 1.4 mM (1.5 T) mM with 20 x 20 single voxel MRS, and 1.0 mM with acquisition-weighted MRSI, respectively. In the in vivo study, an MRSI or single voxel MRS or both was performed for ten patients (patients 1-10) on the day of BNCT. Three patients had glioblastoma multiforme (GBM), and five patients had a recurrent or

  8. Causes of death after therapy for early stage Hodgkin's disease entered on EORTC protocols. EORTC Lymphoma Cooperative Group.

    Science.gov (United States)

    Henry-Amar, M; Hayat, M; Meerwaldt, J H; Burgers, M; Carde, P; Somers, R; Noordijk, E M; Monconduit, M; Thomas, J; Cosset, J M

    1990-11-01

    The risk of dying from different causes after Hodgkin's disease (HD) therapy has been quantified from a series of 1,449 patients with early stages included in four successive clinical trials conducted by the European Organization for Research and Treatment of Cancer (EORTC) Lymphoma Cooperative Group since 1963. Overall, 240 patients died and the 15-year survival rate was 69% whereas the expected rate was 95%. The standardized mortality ratio (SMR) technique was used to quantify excess deaths as a function of time since first therapy. At each interval, SMR was significantly increased, giving: 0-3 year, 8.86 (p less than 0.001); 4-6 year, 9.25 (p less than 0.001); 7-9 year, 7.08 (p less than 0.001); 10-12 year, 9.53 (p less than 0.001); 13-15 year, 4.37 (p less than 0.01); and 16+ years, 3.80 (p less than 0.05). While the proportion of deaths as a consequence of HD progression, treatment side-effect, and intercurrent disease decreased with time, that of second cancer and cardiac failure peaked during the 10-12 year post-treatment interval. After 15 years of follow-up, the risk of dying from causes other than HD continued to increase. These findings indicate that although probably cured from HD, patients are at higher risk for death than expected, a risk that might be a consequence of therapy.

  9. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  10. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  11. Development of high intensity ion sources for a Tandem-Electrostatic-Quadrupole facility for Accelerator-Based Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bergueiro, J. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Igarzabal, M.; Suarez Sandin, J.C. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina); Somacal, H.R. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Thatar Vento, V. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [CONICET, Buenos Aires (Argentina); Huck, H.; Valda, A.A. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)] [Escuela de Ciencia y Tecnologia, Universidad Nacional de San Martin (Argentina); Repetto, M. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica (Argentina)

    2011-12-15

    Several ion sources have been developed and an ion source test stand has been mounted for the first stage of a Tandem-Electrostatic-Quadrupole facility For Accelerator-Based Boron Neutron Capture Therapy. A first source, designed, fabricated and tested is a dual chamber, filament driven and magnetically compressed volume plasma proton ion source. A 4 mA beam has been accelerated and transported into the suppressed Faraday cup. Extensive simulations of the sources have been performed using both 2D and 3D self-consistent codes.

  12. Boron neutron capture therapy for clear cell sarcoma (CCS): Biodistribution study of p-borono-L-phenylalanine in CCS-bearing animal models

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, T. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Fujimoto, T. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Sudo, T. [Section of Translational Research, Hyogo Cancer Center, Akashi 673-0021 (Japan); Fujita, I.; Imabori, M. [Department of Orthopaedic Surgery, Hyogo Cancer Center, Akashi 673-0021 (Japan); Moritake, H. [Department of Pediatrics, Miyazaki University, Kiyotake 889-1692 (Japan); Sugimoto, T. [Department of Pediatrics, Saiseikai Shigaken Hospital, Ritto 520-3046 (Japan); Sakuma, Y. [Department of Pathology, Hyogo Cancer Center, Akashi 673-0021 (Japan); Takeuchi, T. [Department of Pathology, Kochi University, Nangoku 783-8505 (Japan); Kawabata, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Kirihata, M. [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531 (Japan); Akisue, T. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Yayama, K. [Laboratory of Cardiovascular Pharmacology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Kurosaka, M. [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Miyatake, S. [Department of Neurosurgery, Osaka Medical College, Osaka 569-8686 (Japan); Fukumori, Y. [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan); Ichikawa, H., E-mail: ichikawa@pharm.kobegakuin.ac.jp [Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe 650-8586 (Japan)

    2011-12-15

    Clear cell sarcoma (CCS) is a rare melanocytic malignant tumor with a poor prognosis. Our previous study demonstrated that in vitro cultured CCS cells have the ability to highly uptake L-BPA and thus boron neutron capture therapy could be a new option for CCS treatment. This paper proved that a remarkably high accumulation of {sup 10}B (45-74 ppm) in tumor was obtained even in a CCS-bearing animal with a well-controlled biodistribution followed by intravenous administration of L-BPA-fructose complex (500 mg BPA/kg).

  13. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  14. Study of the interaction of boron-containing amino acids for the neutron capture therapy with biologically interesting compounds by using 'three-spot zone electrophoresis'

    International Nuclear Information System (INIS)

    As the boron carriers for boron neutron capture therapy, p-borono phenylalanine (BPA) is the boron compound which has been clinically used together with sodium borocaptate. It was found by the electrophoresis behavior that the BPA interacted with organic carboxylic acids in its dissolved state. In this paper, the electrophoresis behavior of general amino acids as seen in three-spot zone electrophoresis and the peculiar interaction of the amino acids having dihydroxyboryl radical are described. Zone electrophoresis has been developed as separation means, and three-spot process excludes the errors due to accidental factors as far as possible. The behaviors of zone electrophoresis of ordinary neutral amino acids, orthoboric acid and p-BPA are reported. For utilizing the features of boron neutron capture therapy, it is necessary to develop the carrier which is singularly taken into cancer cells. There is not a good method for discriminating normal cells and cancer cells. As for the administration of BPA to patients, its solubility is insufficient, therefore, its fructose complex has been used. The research on the biochemical peculiarity of boron is important. (K.I.)

  15. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.K.C.; Sutton, M.; Evans, T.M. [Georgia Inst. of Tech., Atlanta, GA (United States); Laster, B.H. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  16. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    International Nuclear Information System (INIS)

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report

  17. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, R.H.; Kerobyan, I.A.

    2015-07-15

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15–1.5 MeV/u) and LINAC2 (1.5–10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  18. Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@chemistry.uoc.g [University of Crete, Department of Chemistry (Greece)

    2010-05-15

    Two Gadolinium nanostructured materials, Gd{sub 2}(OH){sub 5}NO{sub 3} nanoparticles and Gd(OH){sub 3} nanorods, were synthesized and extensively characterized by various techniques. In addition to the potential use of Gd{sub 2}(OH){sub 5}NO{sub 3} in magnetic resonance imaging (MRI) and Neutron-capture therapy (NCT) application, it could also be used in targeted drug delivery. An antibiotic (nalidixic acid), two amino acids (aspartic and glutamic acid), a fatty acid and a surfactant (SDS) were intercalated in the nanoparticles. The surface of the nanoparticles was modified with folic acid in order to be capable of targeted delivery to folate receptor expressing sites, such as tumor human cells.

  19. Biodistribution of nanoparticles of hydrophobic gadopentetic-acid derivative prepared with a planetary ball mill for neutron-capture therapy of cancer

    International Nuclear Information System (INIS)

    Nanoparticles of hydrophobic gadopentetic-acid derivatives (Gd-nanoGR) were prepared with a wet ball-milling process for gadolinium neutron-capture therapy. Ball-milling of solid mass of gadopentetic acid distearylamide with soybean lecithin as a dispersant in the presence of water and subsequent sonication at 70degC resulted in the Gd-nanoGR with the particle size of 63 nm. Biodistribution study using melanoma-bearing hamsters demonstrated that the i.v. injection of the Gd-nanoGR made a higher gadolinium accumulation in tumor (109 μg Gd/g wet tumor at 6h after administration), when compared with the gadolinium-loaded micellar-like nanoparticles previously reported. (author)

  20. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    Science.gov (United States)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  1. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    International Nuclear Information System (INIS)

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain-this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ∼10% in the presence of a 9% water volume increase (oedema)

  2. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  3. Identification of early and distinct glioblastoma response patterns treated by boron neutron capture therapy not predicted by standard radiographic assessment using functional diffusion map

    International Nuclear Information System (INIS)

    Radiologic response of brain tumors is traditionally assessed according to the Macdonald criteria 10 weeks from the start of therapy. Because glioblastoma (GB) responds in days rather than weeks after boron neutron capture therapy (BNCT) that is a form of tumor-selective particle radiation, it is inconvenient to use the Macdonald criteria to assess the therapeutic efficacy of BNCT by gadolinium-magnetic resonance imaging (Gd-MRI). Our study assessed the utility of functional diffusion map (fDM) for evaluating response patterns in GB treated by BNCT. The fDM is an image assessment using time-dependent changes of apparent diffusion coefficient (ADC) in tumors on a voxel-by-voxel approach. Other than time-dependent changes of ADC, fDM can automatically assess minimum/maximum ADC, Response Evaluation Criteria In Solid Tumors (RECIST), and the volume of enhanced lesions on Gd-MRI over time. We assessed 17 GB patients treated by BNCT using fDM. Additionally, in order to verify our results, we performed a histopathological examination using F98 rat glioma models. Only the volume of tumor with decreased ADC by fDM at 2 days after BNCT was a good predictor for GB patients treated by BNCT (P value = 0.022 by log-rank test and 0.033 by wilcoxon test). In a histopathological examination, brain sections of F98 rat glioma models treated by BNCT showed cell swelling of both the nuclei and the cytoplasm compared with untreated rat glioma models. The fDM could identify response patterns in BNCT-treated GB earlier than a standard radiographic assessment. Early detection of treatment failure can allow a change or supplementation before tumor progression and might lead to an improvement of GB patients’ prognosis

  4. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects.

    Science.gov (United States)

    Gao, Zhenyu; Horiguchi, Yukichi; Nakai, Kei; Matsumura, Akira; Suzuki, Minoru; Ono, Koji; Nagasaki, Yukio

    2016-10-01

    A boron delivery system with high therapeutic efficiency and low adverse effects is crucial for a successful boron neutron capture therapy (BNCT). In this study, we developed boron cluster-containing redox nanoparticles (BNPs) via polyion complex (PIC) formation, using a newly synthesized poly(ethylene glycol)-polyanion (PEG-polyanion, possessing a (10)B-enriched boron cluster as a side chain of one of its segments) and PEG-polycation (possessing a reactive oxygen species (ROS) scavenger as a side chain of one of its segments). The BNPs exhibited high colloidal stability, selective uptake in tumor cells, specific accumulation, and long retention in tumor tissue and ROS scavenging ability. After thermal neutron irradiation, significant suppression of tumor growth was observed in the BNP-treated group, with only 5-ppm (10)B in tumor tissues, whereas at least 20-ppm (10)B is generally required for low molecular weight (LMW) (10)B agents. In addition, increased leukocyte levels were observed in the LMW (10)B agent-treated group after thermal neutron irradiation, and not in BNP-treated group, which might be attributed to its ROS scavenging ability. No visual metastasis of tumor cells to other organs was observed 1 month after irradiation in the BNP-treated group. These results suggest that BNPs are promising for enhancing the BNCT performance. PMID:27467416

  5. Neutron capture therapy clinical development in the world%中子俘获疗法临床应用国际进展

    Institute of Scientific and Technical Information of China (English)

    张紫竹; 金从军; 刘凯; 张国珍; 杨立军

    2012-01-01

    硼中子俘获疗法(BNCT)目前在国际上已经临床应用于千余例患者,并取得了较好的治疗效果.主要对BNCT的原理、发展历史及国际BNCT临床进展情况作了主要介绍.对脑胶质瘤、恶性黑色素瘤、复发性头颈部肿瘤及转移性肝癌BNCT临床治疗情况及治疗效果作了较详细的讨论.%Boron neutron capture therapy (BNCT) method was applied to about one thousand clinical patients and achieved good results internationally. In this paper, the principle of BNCT, the development history and international BNCT clinical progress were mainly introduced. The BNCT clinical treatment situation and evaluation in glioblastoma (GBM) , malignant melanoma, recurrent head and neck cancer and metastatic liver cancer were discussed in detail.

  6. Design calculations of an epithermal neutron beam and development of a treatment planning system for the renovation of thor for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Tsing Hua University was recently granted by National Science Council a five-year project to renovate its Open-Pool reactor (THOR) for boron neutron capture therapy. With this support, the whole graphite blocks in the original thermal column region can be removed for redesigning and constructing a better epithermal neutron beam. THOR is a 1 MW research reactor. The cross section area of the core facing the thermal column is 60 cm x 50 cm. By using 60 cm FLUENTAL plus 10 cm Pb, with cross section area of 70 cm x 60 cm and surrounded by 6 cm thick PbF2 reflector, the epithermal neutron flux at the filter/moderator exit can reach ∼8.5 x 109 n/cm2/s. When the collimator is added, the epithermal neutron beam intensity at the beam exit is reduced to 3 x 109 n/cm2/sec, but is still six times higher than the previous beam. Facing the clinical trials scheduled 3 and half years from now, a preliminary version of treatment planning system is developed. It includes a pre-processor to read CT scan and post-processors to display dose distributions. (author)

  7. Development and characteristics of the HANARO ex-core neutron irradiation facility for applications in the boron neutron capture therapy field

    CERN Document Server

    Kim, M S; Jun, B J; Kim, H; Lee, B C; Hwang, Sung-Yul; Jun, Byung-Jin; Kim, Heonil; Kim, Myong-Seop; Lee, Byung-Chul

    2006-01-01

    The HANARO ex-core neutron irradiation facility was developed for various applications in the boron neutron capture therapy (BNCT) field, and its characteristics have been investigated. In order to obtain a sufficient thermal neutron flux with a low level contamination of fast neutrons and gamma-rays, a radiation filtering method is adopted. The radiation filter has been designed by using a silicon single crystal cooled by liquid nitrogen and a bismuth crystal. The installation of the main components of the irradiation facility and the irradiation room are finished. Experimental measurements of the neutron beam characteristics have been performed by using bare and cadmium covered gold foils and wires. The in-phantom neutron flux distribution was measured for a flux mapping inside the phantom. The gamma-ray dose was determined by using TLD-700 thermoluminescence dosimeters. The thermal and fast neutron fluxes and the gamma-ray dose were calculated by using the MCNP code, and they were compared with experimenta...

  8. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rolf F., E-mail: rolf.barth@osumc.edu [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Yang Weilian; Huo Tianyao [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Riley, Kent J.; Binns, Peter J. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Grecula, John C., E-mail: john.grecula@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Gupta, Nilendu, E-mail: nilendu.gupta@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Rousseau, Julia, E-mail: julia.rousseau@yahoo.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France); Elleaume, Helene, E-mail: h.elleaume@esrf.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France)

    2011-12-15

    In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood-brain barrier disruption (BBB-D). This treatment resulted in a mean survival time (MST) of 140 d with a 25% cure rate. The other approach combined intracerebral administration of carboplatin by either convection enhanced delivery (CED) or Alzet pump infusion, followed by external beam photon irradiation. This resulted in MSTs of 83 d and 112 d, respectively, with a cure rate of 40% for the latter. However, a significant problem that must be solved for both BNCT and this new chemoradiotherapeutic approach is how to improve drug uptake and microdistribution within the tumor.

  9. Effect of the p53 gene status on the sensitivity of oral squamous cell carcinoma cells to boron neutron capture therapy

    International Nuclear Information System (INIS)

    The role of the p53 gene in the sensitivity of oral squamous cell carcinoma (SCC) to boron neutron capture therapy (BNCT) had not been studied. We examined the effect of boronophenylalanine (BPA)-mediated BNCT on oral SCC cells showing either wild-type p53 (SAS/neo) or mutated-type p53 (SAS/mp53). Survival ratio of cells was determined by colony formation. Cell viability was measured by MTT assay. Apoptotic cells were evaluated by flow cytometric analysis and nuclear DNA staining. When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo cells as compared with SAS/mp53. The proportion of apoptotic cells with DNA fragmentation was also increased in the cells with functional p53. These results suggest that oral SCC cells with mutated p53 cells are more resistant to BNCT than those with wild-type p53. BNCT must inhibit oral SCC cells in p53-dependent and p53-independent mechanisms. (author)

  10. Boron labeled rabbit anti-rat fibrin and goat anti-rabbit gamma globulin antibodies and their potential for slow neutron capture therapy of tumors

    International Nuclear Information System (INIS)

    The therapeutic effectiveness of slow neutron capture therapy is currently dependent upon achieving a high concentration gradient of boron between tumor and normal tissue. Labeling of anti-tumor or anti-tumor site antibodies with boron containing compounds could provide this high therapeutic value. Anti-rat fibrin antibodies, which show considerable localization at the site of several transplantable rat tumors, were labeled with 4-boronophenylalanine (4-BPA) using the N-carboxy anhydride procedure. Activity of these labeled antibodies was studied by modifying the test for fibrinogen concentration of hemophiliac blood. The number of 4-BPAs bound to each active antibody was determined indirectly using the fluorimetric test for phenylalanine concentration in serum. These tests showed that labeled antibodies retained their activity, and it was possible to add up to fifty 4-BPAs per active antibody. The indirect approach to achieving a high therapeutic value of boron was also investigated. This procedure involves labeling anti-immunoglobulin antibodies that bind to anti-tumor antibodies which are already bound to their respective antigens. Indirect labeling has the potential of increasing the therapeutic value by a factor of ten over the direct approach. Activity of labeled goat anti-rabbit gamma globulin (RGG) antibodies was studied by radial immunodiffusion and passive hemagglutination. The number of 4-BPAs bound to each active antibody was determined indirectly by fluorimetry. These labeled antibodies also retained their activity, and it was possible to add upwards of forty 4-BPAs per active antibody

  11. Monte-Carlo simulation of primary stochastic effects induced at the cellular level in boron neutron capture therapy; Simulation Monte-Carlo des effets stochastiques primaires induits au niveau cellulaire lors de la therapie par capture de neutrons sur le {sup 10}B

    Energy Technology Data Exchange (ETDEWEB)

    Cirioni, L.; Patau, J.P.; Nepveu, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1998-04-01

    A Monte Carlo code is developed to study the action of particles in Boron Neutron Capture Therapy (BNCT). Our aim is to calculate the probability of dissipating a lethal dose in cell nuclei. Cytoplasmic and nuclear membranes are considered as non-concentric ellipsoids. All geometrical parameters may be adjusted to fit actual configurations. The reactions {sup 10}B(n,{gamma} {alpha}){sup 7}Li and {sup 14}N(n,p) {sup 14}C create heavy ions which slow clown losing their energy. Their trajectories can be simulated taking into account path length straggling. The contribution of each reaction to the deposited dose in different cellular compartments can be studied and analysed for any distribution of {sup 10}B. (authors)

  12. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, Leena [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Seppaelae, Tiina; Koivunoro, Hanna [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Atula, Timo [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Collan, Juhani [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Salli, Eero; Kortesniemi, Mika [Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Uusi-Simola, Jouni [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Vaelimaeki, Petteri [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Maekitie, Antti [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Seppaenen, Marko [Turku PET Centre, Turku University Hospital, Turku (Finland); Minn, Heikki [Department of Oncology, Turku University Central Hospital, Turku (Finland); Revitzer, Hannu [Aalto University School of Science and Technology, Esopo (Finland); Kouri, Mauri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, Sauli [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Joensuu, Heikki, E-mail: heikki.joensuu@hus.fi [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland)

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  13. Boron Neutron Capture Therapy (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    International Nuclear Information System (INIS)

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA ((GB-10 + BPA)-BNCT) or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  14. The potential of transferrin-pendant-type polyethyleneglycol liposomes encapsulating decahydrodecaborate-1B (GB-10) as 1B-carriers for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Purpose: To evaluate GB-10-encapsulating transferrin (TF)-pendant-type polyethyleneglycol (PEG) liposomes as tumor-targeting 1B-carriers for boron neutron capture therapy. Methods and Materials: A free mercaptoundecahydrododecaborate-1B (BSH) or decahydrodecaborate-1B (GB-10) solution, bare liposomes, PEG liposomes, or TF-PEG liposomes were injected into SCC VII tumor-bearing mice, and 1B concentrations in the tumors and normal tissues were measured by γ-ray spectrometry. Meanwhile, tumor-bearing mice were continuously given 5-bromo-2'-deoxyuridine (BrdU) to label all intratumor proliferating cells, then injected with these 1B-carriers containing BSH or GB-10 in the same manner. Right after thermal neutron irradiation, the response of quiescent (Q) cells was assessed in terms of the micronucleus frequency using immunofluorescence staining for BrdU. The frequency in the total tumor cells was determined from the BrdU nontreated tumors. Results: Transferrin-PEG liposomes showed a prolonged retention in blood circulation, low uptake by reticuloendothelial system, and the most enhanced accumulation of 1B in solid tumors. In general, the enhancing effects were significantly greater in total cells than Q cells. In both cells, the enhancing effects of GB-10-containing 1B-carriers were significantly greater than BSH-containing 1B-carriers, whether loaded in free solution or liposomes. In both cells, whether BSH or GB-10 was employed, the greatest enhancing effect was observed with TF-PEG liposomes followed in decreasing order by PEG liposomes, bare liposomes, and free BSH or GB-10 solution. In Q cells, the decrease was remarkable between PEG and bare liposomes. Conclusions: In terms of biodistribution characteristics and tumor cell-killing effect as a whole, including Q cells, GB-10 TF-PEG liposomes were regarded as promising 1B-carriers

  15. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  16. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme-Study design and current status report

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shinji, E-mail: neu046@poh.osaka-med.ac.jp [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Miyatake, Shin-Ichi; Hiramatsu, Ryo; Hirota, Yuki; Miyata, Shiro; Takekita, Yoko; Kuroiwa, Toshihiko [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Kirihata, Mitsunori [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8931 (Japan); Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji [Kyoto University Research Reactor Institute, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-12-15

    Recently, we reported our clinical experiences of boron neutron capture therapy (BNCT) for the newly diagnosed glioblastoma. The major differences of our protocol from the other past studies were simultaneous use of both sodium borocapate and boronophenylalanine, and combination with fractionated X-ray irradiation. These results showed the efficacy of combination therapy with external beam X-ray irradiation and BNCT. For our future study, we planned the multi-centric phase II clinical study for newly diagnosed glioblastoma patients in Japan (OSAKA-TRIBRAIN0902, NCT00974987).

  17. Cooperative Clinical Trial of Photodynamic Therapy for Early Gastric Cancer With Photofrin Injection® and YAG-OPO Laser

    OpenAIRE

    Seishiro Mimura; Hiroyuki Narahara; Toshio Hirashima; Hisayuki Fukutomi; Akira Nakahara; Hiromasa Kashimura; Hirofumi Matsui; Hiroshi Tanimura; Yugo Nagai; Shigeru Suzuki; Yoko Murata; Kazunari Yoshida; Kaichi Isono; Teruo Kozu; Hiroko Ide

    1998-01-01

    Background and Objective: Photodynamic therapy (PDT) treats malignant tumors using photosensitizers and light. We employed a new pulse laser as the excitation light source for PDT, i.e. an optical parametric oscillator (OPO) system pumped by a Q-switched Nd:YAG laser, because it provides extremely high peak power. Study Design/Materials and Methods: The effects of PDT using the photosensitizer Photofrin® and the new laser were evaluated in 12 patients with early gastric cancer. Results: Compl...

  18. A novel peptide (GX1 homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy

    Directory of Open Access Journals (Sweden)

    Wang Li

    2009-09-01

    Full Text Available Abstract Background The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα, in gastric cancer therapy. Results Tetrazolium salt (MTT assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC (44% and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC (62%. Flow-cytometry (FCM and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p in vivo, with the microvessel count decreasing from 21 to 11 (p In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p p 3 vs. 134 mm3, p p Conclusion GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.

  19. Tumor development in field-cancerized tissue is inhibited by a double application of Boron neutron capture therapy (BNCT) without exceeding radio-tolerance

    International Nuclear Information System (INIS)

    Introduction: BNCT is based on the capture reaction between boron, selectively targeted to tumor tissue, and thermal neutrons which gives rise to lethal, short-range high linear energy transfer particles that selectively damage tumor tissue, sparing normal tissue. We previously evidenced a remarkable therapeutic success of a 'single' application of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-1(Na210B10H10) or (GB-10+BPA) to treat hamster cheek pouch tumors with no normal tissue radiotoxicity. Based on these results, we developed a model of precancerous tissue in the hamster cheek pouch for long-term studies. Employing this model we evaluated the long-term potential inhibitory effect on the development of second primary tumors from precancerous tissue and eventual radiotoxicity of a single application of BNCT mediated by BPA, GB-10 or (GB-10+BPA), in the RA-6. The clinical rationale of this study was to search for a BNCT protocol that is therapeutic for tumor, not radio-toxic for the normal tissue that lies in the neutron beam path, and exerts the desired inhibitory effect on the development of second primary tumors, without exceeding the radio-tolerance of precancerous tissue, the dose limiting tissue in this case. Second primary tumors that arise in precancerous tissue (also called locoregional recurrences) are a frequent cause of therapeutic failure in head and neck tumors. Aim: Evaluate the radiotoxicity and inhibitory effect of a 'double' application of the same BNCT protocols that were proved therapeutically successful for tumor and precancerous tissue, with a long term follow up (8 months). A 'double' application of BNCT is a potentially useful strategy for the treatment of tumors, in particular the larger ones, but the cost in terms of side-effects in dose-limiting tissues might preclude its application and requires cautious evaluation. Materials and methods: We performed a double application of 1) BPA-BNCT; 2) (GB- 10+BPA

  20. A brief, multidimensional measure of clients’ therapy preferences: The Cooper-Norcross Inventory of Preferences (C-NIP

    Directory of Open Access Journals (Sweden)

    Mick Cooper

    2016-01-01

    Full Text Available Abordar y acomodar las preferencias del cliente en psicoterapia se asoció consistentementecon mejoras en los resultados del tratamiento; sin embargo, pocas medidasclínicamente útiles y psicométricamente aceptables están disponibles para este propósito. Elobjetivo fue desarrollar una herramienta clínica multidimensional breve para ayudar a que losclientes articulen el estilo terapéutico que desean en la psicoterapia o consejería. Una encuestaonline compuesta por 40 ítems de preferencias de terapia fue completada por 860 sujetos, principalmentemujeres (n = 699, británicos (n = 650, blancos (n = 761 y profesionales de la saludmental (n = 615. Un análisis de componentes principales aisló cuatro escalas que representanel 39% de la varianza total: Directividad del terapeuta vs. Directividad del cliente, Intensidademocional vs. Reserva emocional, Orientación pasada vs. Orientación presente y Apoyo calurosovs. Cambio focalizado. Estas escalas recogen las dimensiones de la actividad del terapeuta ycubren la mayoría de las principales dimensiones de preferencias identificadas en la literatura.Los coeficientes de consistencia interna oscilaron entre 0,60 y 0,85 (M = 0,71. Se establecieronpuntos de corte provisionales para fuertes preferencias en cada dimensión. El Inventario dePreferencias Cooper-Norcross-18 ítems (C-NIP es una medida multidimensional con utilidadclínica, pero se necesitan datos adicionales de validez.

  1. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  2. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  3. Sodium borocaptate (BSH) for Boron Neutron Capture Therapy (BNCT) in the hamster cheek pouch oral cancer model: boron biodistribution at 9 post administration time-points

    International Nuclear Information System (INIS)

    The therapeutic success of Boron Neutron Capture Therapy (BNCT) depends centrally on boron concentration in tumor and healthy tissue. We previously demonstrated the therapeutic efficacy of boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) as boron carriers for BNCT in the hamster cheek pouch oral cancer model. Given the clinical relevance of sodium mercaptoundecahydro-closo-dodecaborate (BSH) as a boron carrier, the aim of the present study was to expand the ongoing BSH biodistribution studies in the hamster cheek pouch oral cancer model. In particular, we studied 3 additional post-administration time-points and increased the sample size corresponding to the time-points evaluated previously, to select more accurately the post-administration time at which neutron irradiation would potentially confer the greatest therapeutic advantage. BSH was dissolved in saline solution in anaerobic conditions to avoid the formation of the dimer BSSB and its oxides which are toxic. The solution was injected intravenously at a dose of 50 mg 10 B/kg (88 mg BSH / kg). Different groups of animals were killed humanely at 7, 8, and 10 h after administration of BSH. The sample size corresponding to the time-points 3, 4, 6, 9 and 12 h was increased. Samples of blood, tumor, precancerous tissue, normal pouch tissue, cheek mucosa, parotid gland, palate, skin, tongue, spinal cord marrow, brain, liver, kidney, spleen and lung were processed for boron measurement by Optic Emission Spectroscopy (ICP-OES). Boron concentration in tumor peaked to 24-34 ppm, 3-10 h post-administration of BSH, with a spread in values that resembled that previously reported in other experimental models and human subjects. The boron concentration ratios tumor/normal pouch tissue and tumor/blood ranged from 1.3 to 1.8. No selective tumor uptake was observed at any of the time points evaluated. The times post-administration of BSH that would be therapeutically most useful would be 5, 7 and 9 h. The

  4. Experimental Studies of Boronophenylalanine (10BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    International Nuclear Information System (INIS)

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina (10BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 106 MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of 10B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R2 = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R2 = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT treatment for each individual

  5. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    International Nuclear Information System (INIS)

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  6. Laser capture.

    Science.gov (United States)

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  7. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  8. Apoptosis of human melanoma cells induced by boron neutron capture therapy%硼中子俘获疗法促人黑色素瘤细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    孙婷; 丁大冬; 李斌; 陈桂林; 韦永新; 谢学顺; 杨天权; 吴庭枫; 周幽心

    2013-01-01

    目的 研究硼中子俘获疗法(BNCT)体外杀伤人黑色素瘤细胞的效应及机制.方法 首先检测黑色素瘤细胞A375吸收含硼化合物二羟基苯丙氨酸硼(BPA)的情况,然后采用医院中子照射器(IHNI-1)对含硼(10B)细胞进行照射.克隆存活实验检测细胞的放射敏感性,MTT法检测细胞增殖率,流式细胞术检测凋亡,Western blot检测胞质内细胞色素C表达和caspase-9的激活.结果 BPA孵育24 h,A375细胞10B浓度为(2.884±0.148)μg/107个细胞,达到了BNCT杀伤细胞的要求.富含10B的细胞经中子照射2.1 min后存活分数降低为对照组的58%(t=2.964,P<0.05),细胞经中子照射后24 h增殖率下降为对照组的83%(t=3.286,P<0.05),BNCT组细胞凋亡率达(55.2±7.9)%,明显高于对照组(t =9.754,P<0.05),胞质内细胞色素C水平上升且caspase-9激活程度增加(t=7.625、8.307,P<0.05).结论 BNCT能够杀伤黑色素瘤细胞,其机制可能通过线粒体途径诱导细胞凋亡.%Objective To study the effect and underlying mechanism of boron neutron capture therapy (BNCT) on human melanoma cells.Methods The situation of boronophenylalanine (BPA) uptake of human melanoma cells A375 was detected and then the boron-10 (10B) enriched cells were irradiated by an in-hospital neutron irradiator (IHNI-1).The radiation sensitivity was measured using clonogenic survival assay,the proliferation was examined by MTT assay,apoptosis was determined using flow cytometry,and the protein expression of cytochrome C in cytosol and activation of caspase-9 was detected by Western blot.Results 10B concentration in A375 cells approached to (2.884 ± 0.148)μg/107 cells after 24 h culture with BPA,which met the requirement of BNCT.At 2.1 min after neutron radiation,the survival fraction of BNCT group was decreased to 58% of control (t =2.964,P < 0.05).At 24 h after BNCT,the cell viability was decreased to 83% of control (t =3.286,P < 0.05),the apoptosis ratio was (55.2 ± 7

  9. Performance Consequences of the Agricultural Cooperative Exemption

    OpenAIRE

    Ronald W. Cotterill

    1993-01-01

    The Capper-Volstead Act, passed in 1922, is the magna carta of agricultural cooperatives. The act has two sections. The first section generally defines what a Capper-Volstead cooperative is and the second section prohibits under price enhancement. Congress clearly intended that farmers be able to organize cooperatives and capture a share of market sufficient to raise price. However, Congress did not want to allow cooperatives with large market shares to unduly enhance the prices in the market...

  10. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source.

    Science.gov (United States)

    Hashimoto, Y; Hiraga, F; Kiyanagi, Y

    2015-12-01

    We evaluated the accelerator beam power and the neutron-induced radioactivity of (9)Be(p, n) boron neutron capture therapy (BNCT) neutron sources having a MgF2, CaF2, or AlF3 moderator and driven by protons with energy from 8 MeV to 30 MeV. The optimal moderator materials were found to be MgF2 for proton energies less than 10 MeV because of lower required accelerator beam power and CaF2 for higher proton energies because of lower photon dose rate at the treatment position after neutron irradiation.

  11. Cooperative Learning

    Institute of Scientific and Technical Information of China (English)

    桑莹莹

    2015-01-01

    This paper is about the cooperative learning as a teaching method in a second language learning class. It mainly talks about the background, foundation, features, definitions, components, goals, advantages and disadvantages of cooperative learning. And as the encounter of the disadvantages in cooperative learning, this paper also proposes some strategies.

  12. ON THE PRO-METASTATIC STRESS RESPONSE TO CANCER THERAPIES: EVIDENCE FOR A POSITIVE CO-OPERATION BETWEEN TIMP-1, HIF-1α, AND miR-210

    Directory of Open Access Journals (Sweden)

    Haissi eCui

    2012-07-01

    Full Text Available In contrast to expectations in the past that tumor starvation or unselective inhibition of proteolytic activity would cure cancer, there is accumulating evidence that microenvironmental stress, such as hypoxia or broad spectrum inhibition of metalloproteinases can promote metastasis. In fact, malignant tumor cells, due to their genetic and epigenetic instability, are predisposed to react to stress by adaptation and, if the stress persists, by escape and formation of metastasis. Recent recognition of the concepts of dynamic evolution as well as population and systems biology is extremely helpful to understand the disappointments of clinical trials with new drugs and may lead to paradigm-shifts in therapy strategies. This must be complemented by an increased understanding of molecular mechanism involved in stress response. Here, we review new roles of Hypoxia-inducible factor-1 (HIF-1, one transcription factor regulating stress response-related gene expression: HIF-1 is crucial for invasion and metastasis, independent from its pro-survival function. In addition, HIF-1 mediates pro-metastatic microenvironmental changes of the proteolytic balance as triggered by high systemic levels of tissue inhibitor of metalloproteinases-1 (TIMP-1, typical for many aggressive cancers, and regulates the metabolic switch to glycolysis, notably via activation of the microRNA miR-210. There is preliminary evidence that TIMP-1 also induces miR-210. Such positive-regulatory co-operation of HIF-1α, miR-210, and TIMP-1, all described to correlate with bad prognosis of cancer patients, opens new perspectives of gaining insight into molecular mechanisms of metastasis-inducing evasion of tumor cells from stress.

  13. L-Phenylalanine preloading reduces the (10)B(n, α)(7)Li dose to the normal brain by inhibiting the uptake of boronophenylalanine in boron neutron capture therapy for brain tumours.

    Science.gov (United States)

    Watanabe, Tsubasa; Tanaka, Hiroki; Fukutani, Satoshi; Suzuki, Minoru; Hiraoka, Masahiro; Ono, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. Previously, high doses of one of the boron compounds used for BNCT, L-BPA, were found to reduce the boron-derived irradiation dose to the central nervous system. However, injection with a high dose of L-BPA is not feasible in clinical settings. We aimed to find an alternative method to improve the therapeutic efficacy of this therapy. We examined the effects of oral preloading with various analogues of L-BPA in a xenograft tumour model and found that high-dose L-phenylalanine reduced the accumulation of L-BPA in the normal brain relative to tumour tissue. As a result, the maximum irradiation dose in the normal brain was 19.2% lower in the L-phenylalanine group relative to the control group. This study provides a simple strategy to improve the therapeutic efficacy of conventional boron compounds for BNCT for brain tumours and the possibility to widen the indication of BNCT to various kinds of other tumours.

  14. Conflictual cooperation

    DEFF Research Database (Denmark)

    Axel, Erik

    2011-01-01

    This paper explores cooperation as contradictory and therefore with a constant possibility for conflict. Consequently it is called conflictual cooperation. The notion is presented on the basis of a participatory observation in a control room of a district heating system. In the investigation......, cooperation appeared as the continuous reworking of contradictions in the local arrangement of societal con- ditions. Subjects were distributed and distributed themselves according to social privileges, resources, and dilemmas in cooperation. Here, the subjects’ activities and understandings took form from...... on regulating who can use what in what way. Contradictions in the observed activity are discussed. It is argued that for the participants the connec- tions of acts appear in such contradictions in cooperation. This conception is dis- cussed in relationship to the notions of practice, as expounded by Bourdieu...

  15. Modelling cooperative agents in infrastructure networks

    NARCIS (Netherlands)

    Ligtvoet, A.; Chappin, E.J.L.; Stikkelman, R.M.

    2010-01-01

    This paper describes the translation of concepts of cooperation into an agent-based model of an industrial network. It first addresses the concept of cooperation and how this could be captured as heuristical rules within agents. Then it describes tests using these heuristics in an abstract model of

  16. Computerized axial tomographic and magnetic resonance imaging scan follow-up of two patients after boron neutron capture therapy for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.R.; Spickard, J.H.; Griebenow, M.L.

    1988-01-01

    Using computer tomography (CT) and magnetic resonance imaging (MRI), we are following a 30-year old, white female and a 64-year old, white female and a 64-year old, white male, both with biopsy-proven Glioblastoma Multiforme, from their preoperative through post-operative stages and pre- and post-BNCT treatment. The images visually demonstrate the evolving changes in the tumor and surrounding cortex. These patients were treated by Hiroshi Hatanaka of Teikyo University, at the Musashi Institute of Technology (MIT) reactor which is a 100 kW Triga-II facility that has been used by Hatanaka for many years for BNCT therapy. 10 figs.

  17. Computerized axial tomographic and magnetic resonance imaging scan follow-up of two patients after boron neutron capture therapy for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Marano, S.R.; Spickard, J.H.; Griebenow, M.L.

    1988-01-01

    Using computed tomography (CT) and magnetic resonance imaging (MRI), we are following a 30-year old, white female and a 64-year old, white female and a 64-year old, white male, both with biopsy-proven Glioblastoma Multiforme, from their preoperative through post-operative stages and pre- and post-BNCT treatment. The images visually demonstrate the evolving changes in the tumor and surrounding cortex. These patients were treated by Hiroshi Hatanaka of Teikyo University, at the Musashi Institute of Technology (MIT) reactor is a 100 kW Triga-II facility that has been used by Hatanaka for many years for BNCT therapy. 7 figs.

  18. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  19. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    International Nuclear Information System (INIS)

    The cytotoxic effects of locally injected 10B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in 10B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of 10B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin (10B-PEG-BSA). 10B concentrations in AsPC-1, human pancreatic cancer cells (2 x 105 /well) obtained 24 hrs after incubation with 10B-PEG-BSA was 13.01 ± 1.74 ppm. The number of 10B atoms delivered to the tumor cells was calculated to be 7.83 x 1011 at 24 hrs after incubation with 10B-PEG-BSA. These data indicated that the 10B-PEG-BSA could deliver a sufficient amount of 10B atoms (more than 109 atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of 10B-PEG BSA or 10B-cationic liposome. We had demonstrated the 10B-PEG BSA or 10B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  20. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  1. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    International Nuclear Information System (INIS)

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single 7LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 (6LiF:Mg,Ti with 95.6% 6Li) and TLD-700 (7LiF:Mg,Ti with 99.9% 7LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom, with representative

  2. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  3. Cooper pairs in atomic nuclei

    CERN Document Server

    Dussel, G G; Dukelsky, J; Sarriguren, P

    2007-01-01

    We consider the development of Cooper pairs in a self-consistent Hartree Fock mean field for the even Sm isotopes. Results are presented at the level of a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson ansatz. While projected BCS captures much of the pairing correlation energy that is absent from BCS, it still misses a sizable correlation energy, typically of order $1 MeV$. Furthermore, because it does not average over the properties of the fermion pairs, the exact Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective.

  4. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas.

    Directory of Open Access Journals (Sweden)

    Subhash Chandra

    Full Text Available The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC as a mixture of its L- and D-enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT, it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas.

  5. ENHANCING COOPERATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China and Japan can cooperate on a wide scope of issues, such as the organization of the Beijing Olympic Games next year and aid to Africa,said Ide Keiji, Minister of Public Relations, Press, Culture, Education and Sports and Spokesperson of the Embassy

  6. Cooperative design

    DEFF Research Database (Denmark)

    Schmidt, Kjeld

    1998-01-01

    In the contemporary world, engineers and designers face huge challenges as they shift towards novel organizational concepts such as ‘concurrent engineering’ in order to manage increasing product diversity so as to satisfy customer demands while trying to accelerate the design process to deal...... with the competitive realities of a global market and decreasing product life cycles. In this environment, the coordination and integration of the myriads of interdependent and yet distributed and concurrent design activities becomes enormously complex. It thus seems as if CSCW technologies may be indispensable...... if concurrent engineering is to succeed. On the basis of ethnographic studies of cooperative design, the paper attempts to characterize cooperative work in the domain of design and to outline a set of crucial research problems to be addressed if CSCW is to help engineers and de-signers meet the challenges...

  7. Cooperative Innovation

    OpenAIRE

    Mingzhuan, Huang

    2013-01-01

    The current companies increasingly expect to involve more external sources to achieve more open innovation for value-added. However, the cooperation problem between internal organization and external parties still challenges the top management. This paper aims to find out the solution. The fast spring up Chinese IT market impacts the world market, especially mobile Internet. Therefore, this paper employ the fast growing Chinese Mobile Internet company--- Xiao Mi as the study case. By applying...

  8. Video Screen Capture Basics

    Science.gov (United States)

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  9. Radiative electron capture

    International Nuclear Information System (INIS)

    Some data are presented for radiative electron capture by fast moving ions. The radiative electron capture spectrum is shown for O8+ in Ag, along with the energy dependence of the capture cross-section. A discrepancy between earlier data, theoretical prediction, and the present data is pointed out. (3 figs) (U.S.)

  10. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  11. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  12. Dosimetry methods in boron neutron capture therapy

    International Nuclear Information System (INIS)

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  13. Capture Their Attention: Capturing Lessons Using Screen Capture Software

    Science.gov (United States)

    Drumheller, Kristina; Lawler, Gregg

    2011-01-01

    When students miss classes for university activities such as athletic and academic events, they inevitably miss important class material. Students can get notes from their peers or visit professors to find out what they missed, but when students miss new and challenging material these steps are sometimes not enough. Screen capture and recording…

  14. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats

    Energy Technology Data Exchange (ETDEWEB)

    Emiliano C. C. Pozzi; Veronica A. Trivilin; Lucas L. Colombo; Andrea Monti Hughes; Silvia I. Thorp; Jorge E. Cardoso; Marcel A. Garabalino; Ana J. Molinari; Elisa M. Heber; Paula Curotto; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Amanda E. Schwint

    2013-11-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- 6.6 for Sham, 7.8 +/- 4.1 for Beam only, 4.4 +/- 5.6 for BPA-BNCT I and 0.45 +/- 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- 480 mg for Sham, 960 +/- 620 mg for Beam only, 380 +/- 720 mg for BPA-BNCT I and 7.3 +/- 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.

  15. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors. PMID:24387907

  16. Blood-brain barrier (BBB) toxicity and permeability assessment after L-(4-¹⁰Boronophenyl)alanine, a conventional B-containing drug for boron neutron capture therapy, using an in vitro BBB model.

    Science.gov (United States)

    Roda, E; Nion, S; Bernocchi, G; Coccini, T

    2014-10-01

    Since brain tumours are the primary candidates for treatment by Boron Neutron Capture Therapy, one major challenge in the selective drug delivery to CNS is the crossing of the blood-brain barrier (BBB). The present pilot study investigated (i) the transport of a conventional B-containing product (i.e., L-(4-(10)Boronophenyl)alanine, L-(10)BPA), already used in medicine but still not fully characterized regarding its CNS interactions, as well as (ii) the effects of the L-(10)BPA on the BBB integrity using an in vitro model, consisting of brain capillary endothelial cells co-cultured with glial cells, closely mimicking the in vivo conditions. The multi-step experimental strategy (i.e. Integrity test, Filter study, Transport assay) checked L-(10)BPA toxicity at 80 µg Boron equivalent/ml, and its ability to cross the BBB, additionally by characterizing the cytoskeletal and TJ's proteins by immunocytochemistry and immunoblotting. In conclusion, a lack of toxic effects of L-(10)BPA was demonstrated, nevertheless accompanied by cellular stress phenomena (e.g. vimentin expression modification), paralleled by a low permeability coefficient (0.39 ± 0.01 × 10(-3)cm min(-1)), corroborating the scarce probability that L-(10)BPA would reach therapeutically effective cerebral concentration. These findings emphasized the need for novel strategies aimed at optimizing boron delivery to brain tumours, trying to ameliorate the compound uptake or developing new targeted products suitable to safely and effectively treat head cancer. Thus, the use of in vitro BBB model for screening studies may provide a useful early safety assessment for new effective compounds.

  17. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  18. Radiation therapy and concurrent cisplatin administration in locally advanced head and neck cancer. A Hellenic co-operative oncology group study

    International Nuclear Information System (INIS)

    In an attempt to improve local control of locally advanced head and neck cancer, radiation therapy was combined with cisplatin. Forty-eight patients entered into this study. All patients were irradiated with a 60Co unit and according to the protocol they should receive 70 Gy in the tumor area and 45 Gy in the rest of neck. Cisplatin was administered at a dose of 100 mg/m2 on days 2, 22 and 42. Thirty-seven (80%) patients received the total radiation dose as initially planned. Thirty-four (72%) patients achieved complete and 5 (10%) partial response. Grade 3-4 toxicities included vomiting (14%) stomatitis (4%), diarrhea (2%), myelotoxicity (14%), hoarseness (4%), dysphagia (30%), weight loss (32%), nephrotoxicity (4%) and dermatitis (2%). After a median follow-up of 26 (range, 18-33) months, 16 patients have died. Among the 35 complete responders 6 later on relapsed. Median relapse-free survival has not yet been reached. Combined radiation therapy and cisplatin appears to be a highly active treatment in patients with advanced head and neck cancer as far as primary locoregional response is concerned. (orig.)

  19. Real-Time Pretreatment Review Limits Unacceptable Deviations on a Cooperative Group Radiation Therapy Technique Trial: Quality Assurance Results of RTOG 0933

    Energy Technology Data Exchange (ETDEWEB)

    Gondi, Vinai, E-mail: vgondi@chicagocancer.org [Cadence Brain Tumor Center and CDH Proton Center, Warrenville, Illinois (United States); University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin (United States); Cui, Yunfeng [Duke University School of Medicine, Durham, North Carolina (United States); Mehta, Minesh P. [University of Maryland School of Medicine, Baltimore, Maryland (United States); Manfredi, Denise [Radiation Therapy Oncology Group—RTQA, Philadelphia, Pennsylvania (United States); Xiao, Ying; Galvin, James M. [Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Rowley, Howard [University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin (United States); Tome, Wolfgang A. [Montefiore Medical Center and Institute for Onco-Physics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York (United States)

    2015-03-01

    Purpose: RTOG 0933 was a phase II trial of hippocampal avoidance during whole brain radiation therapy for patients with brain metastases. The results demonstrated improvement in short-term memory decline, as compared with historical control individuals, and preservation of quality of life. Integral to the conduct of this trial were quality assurance processes inclusive of pre-enrollment credentialing and pretreatment centralized review of enrolled patients. Methods and Materials: Before enrolling patients, all treating physicians and sites were required to successfully complete a “dry-run” credentialing test. The treating physicians were credentialed based on accuracy of magnetic resonance imaging–computed tomography image fusion and hippocampal and normal tissue contouring, and the sites were credentialed based on protocol-specified dosimetric criteria. Using the same criteria, pretreatment centralized review of enrolled patients was conducted. Physicians enrolling 3 consecutive patients without unacceptable deviations were permitted to enroll further patients without pretreatment review, although their cases were reviewed after treatment. Results: In all, 113 physicians and 84 sites were credentialed. Eight physicians (6.8%) failed hippocampal contouring on the first attempt; 3 were approved on the second attempt. Eight sites (9.5%) failed intensity modulated radiation therapy planning on the first attempt; all were approved on the second attempt. One hundred thirteen patients were enrolled in RTOG 0933; 100 were analyzable. Eighty-seven cases were reviewed before treatment; 5 (5.7%) violated the eligibility criteria, and 21 (24%) had unacceptable deviations. With feedback, 18 cases were approved on the second attempt and 2 cases on the third attempt. One patient was treated off protocol. Twenty-two cases were reviewed after treatment; 1 (4.5%) violated the eligibility criteria, and 5 (23%) had unacceptable deviations. Conclusions: Although >95% of the

  20. Neutron Capture Nucleosynthesis

    OpenAIRE

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these resu...

  1. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  2. Impact Effect Analysis of Dual-arm Space Robot Capturing a Non-cooperative Target and Force/Position Robust Stabilization Control for Closed-chain Hybrid System%双臂空间机器人捕获非合作目标冲击效应分析及闭链混合系统力/位形鲁棒镇定控制

    Institute of Scientific and Technical Information of China (English)

    董楸煌; 陈力

    2015-01-01

    分析漂浮基双臂空间机器人捕获非合作目标所受的冲击影响效应,及捕获后空间机器人和目标组成的闭链混合系统对目标夹持内力和位形的鲁棒镇定控制。将捕获目标过程视为两机械臂末端与目标碰撞前、碰撞过程和碰撞后三个阶段。在碰撞前空间机器人和目标是分离的两分体系统,利用第二类拉格朗日方程建立漂浮基双臂空间机器人系统的动力学模型。在机械臂末端与目标碰撞阶段,基于空间机器人与目标总动量守恒,利用动量定理计算翻滚目标对空间机器人运动状态的冲击影响效应。在碰撞后,双臂空间机器人已捕获翻滚目标并组成闭链混合系统,针对混合系统在碰撞阶段受冲击影响而产生不稳定运动,提出一种鲁棒控制算法对其进行镇定控制,以实现双臂对目标夹持内力和空间机器人位形的协调控制,并达到期望的稳定状态。数值仿真验证了上述控制算法的有效性。%The impact effect of a free-floating dual-arm space robot to capture a non-cooperative target is analyzed, and during the post-capture the space robot and the target compose a closed-chaln hybrid system, then a clamp force and position robust stabilization control is discussed. The target capture process is considered as pre-impact phase,impact phase and post-impact phase. The space robot and target are separated subsystem in the pre-impact phase, and the dynamics model of free-floating space robot is derived by the second Lagrange equation. In the impact phase, base on the total momentum conservation of space robot and target, the impact effect for the space robot motion is calculated by momentum theorem. In the post-impact phase, the dual-arm space robot has captured the target and formed a closed-chaln hybrid system, considering the unstable motion which is caused by the impact effect in the impact phase, a robust control algorithm is proposed

  3. Cooperative CEO Identity and Efficient Governance: Member or Outside CEO?

    NARCIS (Netherlands)

    Q.X. Liang (Qiao Xin); G.W.J. Hendrikse (George)

    2012-01-01

    textabstractA principal-agent model is formulated to capture the efficiency of cooperatives with a member CEO and cooperatives with an employed outsider as CEO. Results of the model show that the incentive strength regarding the member CEO is stronger compared to that of the outside CEO in order to

  4. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  5. 用于硼中子俘获治疗的超热中子束理论设计%Theoretical design of an epithermal neutron beam for boron neutron capture therapy

    Institute of Scientific and Technical Information of China (English)

    张晓敏; 潘洁; 宁静; 谢向东; 杨国山

    2010-01-01

    Objective To design a scheme of epithermal neutron beam used for boron neutron capture therapy (BNCT).Methods Based on Tsinghua University experimental reactor and its No.1 passage,five schemes comprised of moderate materials,absorbing materials of thermal neutron and γ shielding materials were designed according to different locations of materials placed in No.1 passage.To select a proper scheme from five schemes,the neutron fluence rate,the neutron dose rate and γ dose rate at exit of beam in each scheme were calculated with Monte Carlo simulating methods and then contrasted with BNCT technique criterion.Results The scheme of epithermal neutron beam meeting technical requirements of BNCT was obtained,in which the thickness of moderate material,absorbing materials of thermal neutron and γ shielding materials are 53.5 cm,2 mm and 9 cm,respectively.Conclusions The theoretical scheme could provide some reference to realize BNCT on reactor.%目的 设计用于硼中子俘获治疗(BNCT)的超热中子束理论方案.方法 基于清华大学试验核反应堆,以其1号孔道为材料布放孔道,设计了由慢化材料、热中子吸收材料、γ屏蔽材料组成,但材料布放位置具有差异的5种理论方案;利用蒙特卡罗(MC)模拟方法,分别计算5种方案束出口处的中子注量率、剂量率及γ剂量率值,通过与BNCT技术指标对比,从5种方案中选择一种合适的方案.结果 得到了一个符合BNCT各项技术指标的超热中子束理论方案,其慢化材料厚度为53.5 cm、热中子吸收材料厚度为2 mm、γ屏蔽材料厚度为9 cm.结论 本研究给出的超热中子束理论方案为基于反应堆实现BNCT提供一定的理论参考.

  6. CAPTURED Ghana Country Evaluation

    NARCIS (Netherlands)

    Sefa Dei, G.J.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Ghana Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the University of Development Studies has been able to achieve commendable results. It can be confirmed that the conte

  7. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health fol

  8. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  9. Direct thermal neutron capture

    International Nuclear Information System (INIS)

    We discuss the direct-capture theory pertaining to primary electric dipole (E1) transitions following slow-neutron capture. For light nuclides that we have studied (including 9Be, 12C, 13C, 24Mg, 25Mg, 26Mg, 32S, 33S, 34S, 40Ca, and 44Ca), estimates of direct-capture cross sections using optical-model potentials with physically realistic parameters, are in reasonable agreement with the data. Minor disagreements that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. We also discuss the channel-capture approximation which is, in general, a good representation of these cross sections in heavier nuclei particularly if the scattering lengths are not different from the corresponding potential radii. We also draw attention to cases where the use of this formula leads to inaccurate predictions. 9 refs., 1 fig., 2 tab

  10. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    International Nuclear Information System (INIS)

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of 10B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared 10BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), 10BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The 10B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that 10B entrapped WOW emulsion could be

  11. Feasibility evaluation of neutron capture therapy for hepatocellular carcinoma using selective enhancement of boron accumulation in tumour with intra-arterial administration of boron-entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu, E-mail: yanagie@n.t.u-tokyo.ac.jp [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kumada, Hiroaki [Proton Medical Research Center, University of Tsukuba, Ibaraki (Japan); Nakamura, Takemi [Japan Atomic Energy Research Institute, Ibaraki (Japan); Higashi, Syushi [Dept of Surgery, Ebihara Memorial Hospital, Miyazaki (Japan)] [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Ikushima, Ichiro [Dept of Radiology, Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Morishita, Yasuyuki [Dept of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Shinohara, Atsuko [Dept of Humanities, Graduate School of Seisen University, Tokyo (Japan); Fijihara, Mitsuteru [SPG Techno Ltd. Co., Miyazaki (Japan); Suzuki, Minoru; Sakurai, Yoshinori [Research Reactor Institute, Kyoto University, Osaka (Japan); Sugiyama, Hirotaka [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kajiyama, Tetsuya [Kyushu Industrial Sources Foundation, Miyazaki (Japan); Nishimura, Ryohei [Dept of Veternary Surgery, University of Tokyo Veternary Hospital, Tokyo (Japan); Ono, Koji [Research Reactor Institute, Kyoto University, Osaka (Japan); Nakajima, Jun; Ono, Minoru [Dept of Cardiothracic Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, Masazumi [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)] [Department of Surgery, Shin-Yamanote Hospital, Saitama (Japan); Takahashi, Hiroyuki [Dept of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)] [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan)

    2011-12-15

    Introduction: Hepatocellular carcinoma (HCC) is one of the most difficult to cure with surgery, chemotherapy, or other combinational therapies. In the treatment of HCC, only 30% patients can be operated due to complication of liver cirrhosis or multiple intrahepatic tumours. Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between {sup 10}B atoms and thermal neutrons, so it is necessary to accumulate a sufficient quantity of {sup 10}B atoms in tumour cells for effective tumour cell destruction by BNCT. Water-in-oil-in-water (WOW) emulsion has been used as the carrier of anti-cancer agents on intra-arterial injections in clinical. In this study, we prepared {sup 10}BSH entrapped WOW emulsion by double emulsifying technique using iodized poppy-seed oil (IPSO), {sup 10}BSH and surfactant, for selective intra-arterial infusion to HCC, and performed simulations of the irradiation in order to calculate the dose delivered to the patients. Materials and methods: WOW emulsion was administrated with intra-arterial injections via proper hepatic artery on VX-2 rabbit hepatic tumour models. We simulated the irradiation of epithermal neutron and calculated the dose delivered to the tissues with JAEA computational dosimetry system (JCDS) at JRR4 reactor of Japan Atomic Research Institute, using the CT scans of a HCC patient. Results and discussions: The {sup 10}B concentrations in VX-2 tumour obtained by delivery with WOW emulsion were superior to those by conventional IPSO mix emulsion. According to the rabbit model, the boron concentrations (ppm) in tumour, normal liver tissue, and blood are 61.7, 4.3, and 0.1, respectively. The results of the simulations show that normal liver biologically weighted dose is restricted to 4.9 Gy-Eq (CBE; liver tumour: 2.5, normal liver: 0.94); the maximum, minimum, and mean tumour weighted dose are 43.1, 7.3, and 21.8 Gy-Eq, respectively, in 40 min irradiation. In this study, we show that {sup 10}B

  12. Fashion, cooperation, and social interactions.

    Science.gov (United States)

    Cao, Zhigang; Gao, Haoyu; Qu, Xinglong; Yang, Mingmin; Yang, Xiaoguang

    2013-01-01

    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people's cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.

  13. Fashion, cooperation, and social interactions.

    Directory of Open Access Journals (Sweden)

    Zhigang Cao

    Full Text Available Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks. This model captures two fundamental kinds of social interactions (coordination and anti-coordination simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels meet, they play the (anti- coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic. We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people's cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed.

  14. Capturing Nursing's Future Leaders.

    Science.gov (United States)

    Ellis, Linda A.

    1989-01-01

    Strategies for recruiting students into undergraduate nursing programs are discussed, including high school honors programs, high school independent study with nurse researchers, direct admission into a nursing major, more flexible curricula, and cooperative and evening programs. (MSE)

  15. Marine turtle capture data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...

  16. Neutrinoless double electron capture

    CERN Document Server

    Kotila, J; Iachello, F

    2015-01-01

    Direct determination of the neutrino mass is at the present time one of the most important aims of experimental and theoretical research in nuclear and particle physics. A possible way of detection is through neutrinoless double electron capture, $0\

  17. PREFACE: Cooperative dynamics Cooperative dynamics

    Science.gov (United States)

    Gov, Nir

    2011-09-01

    The dynamics within living cells are dominated by non-equilibrium processes that consume chemical energy (usually in the form of ATP, adenosine triphosphate) and convert it into mechanical forces and motion. The mechanisms that allow this conversion process are mostly driven by the components of the cytoskeleton: (i) directed (polar) polymerization of filaments (either actin or microtubules) and (ii) molecular motors. The forces and motions produced by these two components of the cytoskeleton give rise to the formation of cellular shapes, and drive the intracellular transport and organization. It is clear that these systems present a multi-scale challenge, from the physics of the molecular processes to the organization of many interacting units. Understanding the physical nature of these systems will have a large impact on many fundamental problems in biology and break new grounds in the field of non-equilibrium physics. This field of research has seen a rapid development over the last ten years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics at the single-molecule level, to investigations (in vivo and in vitro) of the dynamics and patterns of macroscopic pieces of 'living matter'. In this special issue we have gathered contributions that span the whole spectrum of length- and complexity-scales in this field. Some of the works demonstrate how active forces self-organize within the polymerizing cytoskeleton, on the level of cooperative cargo transport via motors or due to active fluxes at the cell membrane. On a larger scale, it is shown that polar filaments coupled to molecular motors give rise to a huge variety of surprising dynamics and patterns: spontaneously looping rings of gliding microtubules, and emergent phases of self-organized filaments and motors in different geometries. All of these articles share the common feature of being out-of-equilibrium, driven by metabolism. As demonstrated here

  18. New Cooperative Development Issues

    OpenAIRE

    Henehan, Brian M.; Hardesty, Shermain D.; Shultz, Madeline; Wells, John

    2011-01-01

    This article briefly reviews the increased interest in new cooperative development, factors for successful cooperative development, and strategies to improve the performance of new and emerging cooperatives. The article highlights issues identified by a panel of cooperative leaders, USDA specialists and academic experts

  19. Sorting and sustaining cooperation

    DEFF Research Database (Denmark)

    Vikander, Nick

    2013-01-01

    This paper looks at cooperation in teams where some people are selfish and others are conditional cooperators, and where lay-offs will occur at a fixed future date. I show that the best way to sustain cooperation prior to the lay-offs is often in a sorting equilibrium, where conditional cooperators...... can identify and then work with one another. Changes to parameters that would seem to make cooperation more attractive, such as an increase in the discount factor or the fraction of conditional cooperators, can reduce equilibrium cooperation if they decrease a selfish player's incentive to sort....

  20. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    Science.gov (United States)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  1. Tratamiento del cáncer por captura neutrónica de boro: Su aplicación al carcinoma indiferenciado de tiroides Boron neutron capture therapy applied to undifferentiated thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Mario A. Pisarev

    2006-12-01

    Full Text Available El cáncer indiferenciado de tiroides es un tumor muy agresivo, de muy mal pronóstico y sin tratamiento efectivo. La terapia por captura neutrónica de boro (BNCT podría ser una alternativa para el tratamiento de esta enfermedad. Se basa en la captación selectiva de boro por el tumor y su activación por un haz de neutrones. El boro activado libera un núcleo de litio-7 y una partícula alfa, las cuales tienen una alta transmisión linear de energía (linear energy transfer, LET y un alcance de 5-9 µm, destruyendo el tumor. En estudios previos hemos mostrado que la línea celular humana de cáncer indiferenciado de tiroides (ARO tiene una captación selectiva de borofenilalanina (10BPA tanto in vitro como después de ser implantada en ratones NIH nude. También demostramos en estos animales inyectados con BPA e irradiados con un haz de neutrones térmicos, un 100% de control sobre el crecimiento tumoral y un 50% de cura histológica. En trabajos posteriores mostramos que la porfirina 10BOPP tetrakis-carborane carboxylate ester de 2,4-bis-(a,b-dihydroxyethyl-deutero-porphyrin IX cuando es inyectada 5-7 días antes que el BPA se obtiene una concentración tumoral de boro de aproximadamente el doble que el BPA solo (45-38 ppm vs. 20 ppm. La posterior irradiación con neutrones mostró un 100% de remisión completa en animales con tumores cuyo volumen pre-tratamiento era de 50 mm³ o menor. Los perros padecen CIT espontáneo, con un comportamiento biológico similar al humano, y una captación selectiva de BPA, abriendo la posibilidad de su tratamiento por BNCT.Undifferentiated thyroid carcinoma (UTC is an aggressive tumor with a poor prognosis due to the lack of an effective treatment. Boron neutron capture therapy (BNCT is based on the selective uptake of boron by the tumor and its activation by a neutron beam, releasing lithium-7 and an alpha particle that will kill the tumor cells by their high linear energy transfer (LET. In previous

  2. Supply and Marketing Cooperatives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China Supply and Marketing Cooperatives Council of CCPIT was established in March 1996. It is an institution under direct leadership of China Supply and Market-ing Cooperatives and at the same time a branch of China Council for Promotion of International Trade, with its major task to promoting and facilitating export-oriented economic trade and technological cooper-ation of the national supply and marketing cooperative system.

  3. Cooperation, structure, and hierarchy in multiadaptive games

    Science.gov (United States)

    Lee, Sungmin; Holme, Petter; Wu, Zhi-Xi

    2011-12-01

    Game-theoretical models where the rules of the game and the interaction structure both coevolve with the game dynamics—multiadaptive games—capture very flexible situations where cooperation among selfish agents can emerge. In this work, we will discuss a multiadaptive model presented in a recent Letter [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.028702 106, 028702 (2011)] as well as generalizations of it. The model captures a nonequilibrium situation where social unrest increases the incentive to cooperate and, simultaneously, agents are partly free to influence with whom they interact. First, we investigate the details of how feedback from the behavior of agents determines the emergence of cooperation and hierarchical contact structures. We also study the stability of the system to different types of noise, and find that different regions of parameter space show very different response. Some types of noise can destroy an all-cooperator (C) state. If, on the other hand, hubs are stable, then so is the all-C state. Finally, we investigate the dependence of the ratio between the time scales of strategy updates and the evolution of the interaction structure. We find that a comparatively fast strategy dynamics is a prerequisite for the emergence of cooperation.

  4. 土地入股合作社:交易成本、价值攫取与绩效增长--以吉林省F县双胜村为例%Rural Land Sharing Cooperatives:Transaction Costs, Capture Value and Performance Growth:Take Shuangsheng Village, Jilin Province for Example

    Institute of Scientific and Technical Information of China (English)

    周敏; 李菁

    2015-01-01

    研究目的:分析土地入股合作社从自愿组合到合作瓦解,再到村集体组织主导的合作社的强制性演化的内在机制,揭示合作社价值攫取及绩效增长的规律性问题。研究方法:博弈分析法、个案分析法和归纳总结法。研究结果:(1)合作社公共物品供给不足导致自愿合作瓦解,村集体组织为获得攫取土地价值的机会进而推行合作社的强制性演化;(2)当土地发展性价值尚未凸显时,农户愿意放弃土地发展性价值而获取农业绩效增长;(3)当土地发展性价值超过绩效增长量时,合作社强制性演化将瓦解。研究结论:(1)村集体组织与农户的价值攫取关系,即农户获取的绩效增长能够弥补其放弃的土地发展性价值是强制性演化的前提条件;(2)强制性演化一旦瓦解,村集体组织与农户会围绕土地发展性价值展开争夺,产生高昂的谈判成本,因此,需尽快界定土地剩余产权。%The purpose of this paper is to analyze the inner mechanism in the mandatory evolution process from the self-participation to collapse of cooperation, and then to the village collective’s domination mode. It further reveals the regularity of land share-holding corporation in terms of capturing value and performance growth. Methods employed include game theoretical model and case analysis. The results show that the shortage of public goods supply leads to the collapse of the share-holding corporation. The village collective promotes the mandatory evolution to capture land value. When the land development value is not transparent, farmers tend to pursue growth value. If land development value is over performance growth, the mandatory evolution will collapse. Based on the analysis above, we can conclude that the premise condition of mandatory evolution is that farmers can benefit more from performance growth than land development value. If the mandatory

  5. Telemedical work and cooperation.

    Science.gov (United States)

    Aas, I H

    2001-01-01

    In telemedicine, cooperation occurs via telecommunication. This represents a new situation for medical cooperation. Whether such cooperation works poorly or well will be important with an increasing volume of telemedicine. When personnel are involved in external cooperation, as in telemedicine, the question of cooperation within one's own organization also arises. To investigate these matters, qualitative interviews were performed with 30 persons working in teledermatology, telepsychiatry, a telepathology frozen-section service and tele-otolaryngology. The results showed that cooperating by telecommunication mainly worked well. The cooperation may be influenced by factors such as personality, knowing each other personally, preparation and experience. Telemedical teamwork may be improved by factors like experience and education. Working with telemedicine did not reduce the personnel's cooperation within their own organizations, but rather improved it, although this effect was slight and most commonly involved improved knowledge of others. In general, the findings concerning cooperation and telemedicine were positive. PMID:11506756

  6. US Spacesuit Knowledge Capture

    Science.gov (United States)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  7. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  8. CAPTURED End Evaluation Synthesis Report

    NARCIS (Netherlands)

    Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Synthesis Study of the CAPTURED Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the three CAPTURED partners have achieved commendable results. Ten lessons learned are formulated th

  9. Cooperative Tagging Center (CTC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cooperative Tagging Center (CTC) began as the Cooperative Game Fish Tagging Program (GTP) at Woods Hole Oceanographic Institute (WHOI) in 1954. The GTP was...

  10. Cooperative Online Education

    OpenAIRE

    Morten Flate Paulsen

    2008-01-01

    Cooperative learning seeks to develop virtual learning environments that allow students to have optimal individual freedom within online learning communities. The pedagogical and administrative challenges with regard to accommodating both individual freedom and cooperation are explained in the Theory of Cooperative Freedom. This article shows that cooperative learning can be implemented successfully through a set of instruments or means. To illustrate this with current examples, the article p...

  11. Extensive Dialogues and Cooperation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Chinese Taipei On March 23,Chairman Wan Jifei of the China Council for the Promotion of International Trade (CCPIT) and Board Chairman Wang Zhigang of the Taipei World Trade Center (TWTC) signed a cooperation agreement at the Taipei World Trade Tower,marking the new page of the development of cooperation and relations between the two organizations and the establishment of their cooperation mechanism.

  12. The Cooperative Brain

    NARCIS (Netherlands)

    Stallen, M.; Sanfey, A.G.

    2013-01-01

    Cooperation is essential for the functioning of human societies. To better understand how cooperation both succeeds and fails, recent research in cognitive neuroscience has begun to explore novel paradigms to examine how cooperative mechanisms may be encoded in the brain. By combining functional neu

  13. Learning to Learn Cooperatively

    Science.gov (United States)

    Byrd, Anne Hammond

    2009-01-01

    Cooperative learning, put quite simply, is a type of instruction whereby students work together in small groups to achieve a common goal. Cooperative learning has become increasingly popular as a feature of Communicative Language Teaching (CLT) with benefits that include increased student interest due to the quick pace of cooperative tasks,…

  14. Designing for cooperation - cooperating in design

    DEFF Research Database (Denmark)

    Kyng, Morten

    1991-01-01

    a specific "CSCW approach is not taken." Instead the focus is cooperation as an important aspect of work that should be integrated into most computer support efforts in order to develop successful computer support, however, other aspects such as power, conflict and control must also be considered.......This article will discuss how to design computer applications that enhance the quality of work and products, and will relate the discussion to current themes in the field of Computer-Supported Cooperative Work (CSCW). Cooperation is a key element of computer use and work practice, yet here...

  15. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    Energy Technology Data Exchange (ETDEWEB)

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  16. Presence capture cameras - a new challenge to the image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2016-04-01

    Commercial presence capture cameras are coming to the markets and a new era of visual entertainment starts to get its shape. Since the true presence capturing is still a very new technology, the real technical solutions are just passed a prototyping phase and they vary a lot. Presence capture cameras have still the same quality issues to tackle as previous phases of digital imaging but also numerous new ones. This work concentrates to the quality challenges of presence capture cameras. A camera system which can record 3D audio-visual reality as it is has to have several camera modules, several microphones and especially technology which can synchronize output of several sources to a seamless and smooth virtual reality experience. Several traditional quality features are still valid in presence capture cameras. Features like color fidelity, noise removal, resolution and dynamic range create the base of virtual reality stream quality. However, co-operation of several cameras brings a new dimension for these quality factors. Also new quality features can be validated. For example, how the camera streams should be stitched together with 3D experience without noticeable errors and how to validate the stitching? The work describes quality factors which are still valid in the presence capture cameras and defines the importance of those. Moreover, new challenges of presence capture cameras are investigated in image and video quality point of view. The work contains considerations how well current measurement methods can be used in presence capture cameras.

  17. Contract-Based Cooperative Spectrum Sharing

    CERN Document Server

    Duan, Lingjie; Huang, Jianwei

    2011-01-01

    Providing proper economic incentives is essential for the success of dynamic spectrum sharing. Cooperative spectrum sharing is one effective way to achieve this goal. In cooperative spectrum sharing, secondary users (SUs) relay traffics for primary users (PUs), in exchange for dedicated transmission time for the SUs' own communication needs. In this paper, we study the cooperative spectrum sharing under incomplete information, where SUs' types (capturing their heterogeneity in relay channel gains and evaluations of power consumptions) are private information and not known by PUs. Inspired by the contract theory, we model the network as a labor market. The single PU is the employer who offers a contract to the SUs. The contract consists of a set of contract items representing combinations of spectrum accessing time (i.e., reward) and relaying power (i.e., contribution). The SUs are employees, and each of them selects the best contract item to maximize his payoff. We study the optimal contract design for both w...

  18. Laser capture microscopy

    OpenAIRE

    Curran, S.; McKay, J A; McLeod, H L; Murray, G I

    2000-01-01

    Human tissues are composed of complex admixtures of different cell types and their biologically meaningful analysis necessitates the procurement of pure samples of the cells of interest. Many approaches have been used in attempts to overcome this difficulty, including a variety of microdissection methods. This review concerns a recent advance in microdissection techniques, namely laser capture microdissection (LCM). The principle underlying this technique is outlined, and practical issues per...

  19. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  20. 认知行为疗法对学龄前牙科焦虑症患儿就诊合作程度的干预评估%Intervention of cognitive behavioral therapy on the cooperation degree of preschool children with dental anxi-ety

    Institute of Scientific and Technical Information of China (English)

    宋宁; 王苏豫; 葛鑫; 张百泽; 王小竞; 丁桂聪

    2016-01-01

    目的:评估认知行为疗法应用于学龄前牙科焦虑症患儿口腔治疗的效果。方法收集3~6岁牙科焦虑症患儿86例,随机分为试验组和对照组。试验组采用认知行为疗法进行行为管理,对照组采用Tell-Show-Do技术进行行为管理。通过比较2组患儿的配合程度和Frankl治疗依从性评分来评估该方法对学龄前牙科焦虑症儿童就诊行为的干预效果。结果试验组中,38例能配合治疗,5例不能配合,对照组中24例配合,19例不配合,试验组配合程度优于对照组(χ2=11.328,P<0.01);Frankl治疗依从性评分结果,试验组为(2.61±0.82)分,对照组为(1.93±0.96)分,试验组优于对照组(F=1.956,P<0.01)。结论应用认知行为疗法对学龄前牙科焦虑症患儿治疗时,首先进行必要的情绪干预,而后再行无痛治疗,可纠正患儿的恐惧心理。%Objective To assess the clinical effect of cognitive behavior therapy on the oral treatment of preschool children with dental anxiety. Methods 86 children aged 3-6 years with dental anxiety were divided into experimental group and control group randomly. Children in experimental group were treated with cognitive behavioral therapy. Chil-dren in control group were treated with the Tell-Show-Do behavioral therapy. Through the observation of children 's coop-eration and evaluation of Frankl treatment index, treatment effect of cognitive behavioral therapy applied in preschool children with dental anxiety was evaluated. Results In experimental group, 38 children can cooperate with treatment, while 5 children can't cooperate. In control group, 24 children can cooperate with treatment, while 19 cases can't cooper-ate. Children in the experimental group is significantly more cooperative (χ2 = 11.328, P<0.01). Frankl index shows 2.61 ± 0.82 in experimental group and 1.93 ± 0.96 in the control group respectively. Treatment effect of the experimen

  1. To cooperate or not to cooperate

    DEFF Research Database (Denmark)

    Wessels, Josepha Ivanka

    To Cooperate or not to Cooperate...? discusses results of a research project to study the rehabilitation of 1500-year old water tunnels, so called "qanats", in Syria. Communities all over the world are using traditional technologies to extract drinkingwater, irrigate their lands and feed their li......To Cooperate or not to Cooperate...? discusses results of a research project to study the rehabilitation of 1500-year old water tunnels, so called "qanats", in Syria. Communities all over the world are using traditional technologies to extract drinkingwater, irrigate their lands and feed...... their livestock. But these often sustainable and ancient ways to make use of groundwater are in rapid decline worldwide. A research project started in 1999 to study the rehabilitation of 1500-year old water tunnels called "qanats"in Syria. To Cooperate or not to Cooperate...? discusses results and outcomes...... of this research project. The main objective of this research is to better understand the proces of collective maintenance of these ancient water tunnels. The study evaluates the social, cultural, political and environmental factors that have driven abandonment and decay of qanats in Syria. It tries to reconcile...

  2. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  3. Capturing lightness between contours.

    Science.gov (United States)

    Vergeer, Mark; van Lier, Rob

    2010-01-01

    Homogeneously coloured bars may exhibit lightness differences at the intersections. A well-known example is the Hermann grid illusion, where crossing white bars on a black background show dark patches at the crossings. Jung (1973, Handbook of Sensory Physiology volume VII/3, pp 1-152) found that the dark patches persist when thin outlines are drawn at the intersections, and are even visible in foveal vision. Recently, it has been shown that making distortions to the contours of a Hermann grid-like configuration results in the disappearance of the illusory dark spots (Geier et al, 2008 Perception 37 651 665). We show that thin outlines at the crossings of the distorted Hermann grid induce lightness differences in the same direction as in the original Hermann grid illusion, even in foveal vision and in displays consisting of two crossing bars. Our experiments reveal that the induced lightness differences are independent of the luminance polarity and shape of the contours at the intersection. We suggest that the effect results from lateral inhibition and an additional spreading and capturing of these differences between luminance contours. A similar capturing between collinear contours may play a role in peripheral vision in the original Hermann grid.

  4. Cooperative Cognitive Systems

    OpenAIRE

    Giupponi, Lorenza; Ibars, Christian

    2009-01-01

    In this chapter, we have described how cooperation can benefit the different phases of the so called cognitive radio cycle. In particular we have focused on physical layer cooperation, showing that benefits can be obtained for both the primary and the secondary system in terms of spatial diversity, increased range and increased availability. In addition, we have modeled the critical interference management problem in a cooperative and cognitive system through a game theoretical approach, as w...

  5. Cooperative wireless communications

    CERN Document Server

    Zhang, Yan

    2009-01-01

    Cooperative devices and mechanisms are increasingly important to enhance the performance of wireless communications and networks, with their ability to decrease power consumption and packet loss rate and increase system capacity, computation, and network resilience. Considering the wide range of applications, strategies, and benefits associated with cooperative wireless communications, researchers and product developers need a succinct understanding of relevant theory, fundamentals, and techniques to navigate this challenging field. ""Cooperative Wireless Communications"" provides just that. I

  6. Futures for energy cooperatives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    A listing of Federal agencies and programs with potential funding for community-scale cooperatives using conservation measures and solar technologies is presented in Section 1. Section 2 presents profiles of existing community energy cooperatives describing their location, history, membership, services, sources of finance and technical assistance. A condensed summary from a recent conference on Energy Cooperatives featuring notes on co-op members' experiences, problems, and opportunities is presented in Section 3. Section 4 lists contacts for additional information. A National Consumer Cooperative Bank Load Application is shown in the appendix.

  7. Cooperative Station History Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various forms, photographs and correspondence documenting the history of Cooperative station instrumentation, location changes, inspections, and...

  8. Radiation therapy compared with chemotherapy for consolidation of chemotherapy-induced remission of advanced Hodgkin lymphoma: a study by the Eastern Co-operative Oncology Group (E1476) with > 20 years follow-up

    OpenAIRE

    Wiernik, Peter H.; Hong, Fangxin; GLICK, JOHN H.; Bennett, John M

    2009-01-01

    MOPP-Bleo (nitrogen mustard, vincristine, procarbazine, prednisone and bleomycin) induction therapy was given to 253 evaluable patients with Hodgkin lymphoma, stages IIIB, IIIs, or IV. Complete response (CR) occurred in 145 patients (57%) and partial response (PR) in 93 (37%). Of those 238 responders, 178 were randomized to consolidation therapy, and 164 were eligible and analyzable, including 114 CRs [55 patients randomized to ABVD and 59 to radiation therapy (RT)] and 50 partial responders ...

  9. Cooperate without Looking in a Non-Repeated Game

    Directory of Open Access Journals (Sweden)

    Christian Hilbe

    2015-09-01

    Full Text Available We propose a simple model for why we have more trust in people who cooperate without calculating the associated costs. Intuitively, by not looking at the payoffs, people indicate that they will not be swayed by high temptations to defect, which makes them more attractive as interaction partners. We capture this intuition using a simple four-stage game. In the first stage, nature draws the costs and benefits of cooperation according to a commonly-known distribution. In the second stage, Player 1 chooses whether or not to look at the realized payoffs. In the third stage, Player 2 decides whether to exit or let Player 1 choose whether or not to cooperate in the fourth stage. Using backward induction, we provide a complete characterization for when we expect Player 1 to cooperate without looking. Moreover, we show with numerical simulations how cooperating without looking can emerge through simple evolutionary processes.

  10. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  11. Capturing the Daylight Dividend

    Energy Technology Data Exchange (ETDEWEB)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  12. Particle capture device

    Energy Technology Data Exchange (ETDEWEB)

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  13. Cooperation, compensation and transition

    NARCIS (Netherlands)

    Ju, Y.

    2004-01-01

    Cooperation and compensation are two important and well-linked issues in economics. The central question in cooperation is how to share the joint gains among participating players. Compensation is a specific aspect of surplus sharing problems providing incentives for agents to sacrifice their own di

  14. Cooperative Wideband OFDM Communication

    NARCIS (Netherlands)

    Lu, H.

    2013-01-01

    In this thesis, major attention is paid to cooperative diversity as an alternative way to achieve spatial diversity when the multiple antenna structure is not an option. By adopting the cooperative relay nodes to forward information, we can mitigate the fading effects, increase the capacity, lower t

  15. Non-cooperative Games

    NARCIS (Netherlands)

    van Damme, E.E.C.

    2000-01-01

    Non-cooperative games are mathematical models of interactive strategic decision situations.In contrast to cooperative models, they build on the assumption that all possibilities for commitment and contract have been incorporated in the rules of the game.This contribution describes the main models (g

  16. International Cooperation Advances Internationalization

    Institute of Scientific and Technical Information of China (English)

    Ge Mingyi

    2004-01-01

    @@ Intemational scientific cooperation continues to successfully promote the development of research and the quality of researchers in China, and also the internationalization of China's research system and research organizations. An outstanding example of this is the 30 years of fruitful cooperation between the Chinese Academy of Sciences and the Max Planck Society.

  17. Making Cooperative Learning Powerful

    Science.gov (United States)

    Slavin, Robert E.

    2014-01-01

    Just about everyone loves the "idea" of cooperative learning, children working productively and excitedly in groups, everyone getting along and enthusiastically helping one another learn. This article presents five strategies that teachers can use to get the greatest benefit possible from cooperative learning and ensure that…

  18. Cooperation or Silent Rivalry?

    DEFF Research Database (Denmark)

    Zank, Wolfgang

    2010-01-01

    on an increasingly institutionalized basis. In terms of military cooperation the US is still the partner for Egypt. But outside the military sphere institutionalized cooperation is comparatively week. In particular the failure of the US to conclude a free-trade agreement has been crucial. But it...

  19. Readings in Cooperative Education.

    Science.gov (United States)

    Leventhal, Jerome I.

    Twenty-three journal articles on cooperative education were selected in a review of the literature by two Temple University graduate classes in the fall of 1975 and the spring of 1976 for those interested in the role of coordinating cooperative education programs. The journal readings consist of articles on theory/planning (6), implementation…

  20. Scandinavian Cooperative Advantage

    DEFF Research Database (Denmark)

    Strand, Robert; Freeman, R. Edward

    2015-01-01

    . We conclude by endorsing the expression “Scandinavian cooperative advantage” in an effort to draw attention to the Scandinavian context and encourage the field of strategic management to shift its focus from achieving a competitive advantage toward achieving a cooperative advantage....

  1. Efficiency in Microfinance Cooperatives

    Directory of Open Access Journals (Sweden)

    HARTARSKA, Valentina

    2012-12-01

    Full Text Available In recognition of cooperatives’ contribution to the socio-economic well-being of their participants, the United Nations has declared 2012 as the International Year of Cooperatives. Microfinance cooperatives make a large part of the microfinance industry. We study efficiency of microfinance cooperatives and provide estimates of the optimal size of such organizations. We employ the classical efficiency analysis consisting of estimating a system of equations and identify the optimal size of microfinance cooperatives in terms of their number of clients (outreach efficiency, as well as dollar value of lending and deposits (sustainability. We find that microfinance cooperatives have increasing returns to scale which means that the vast majority can lower cost if they become larger. We calculate that the optimal size is around $100 million in lending and half of that in deposits. We find less robust estimates in terms of reaching many clients with a range from 40,000 to 180,000 borrowers.

  2. Nordic Energy Policy Cooperation

    DEFF Research Database (Denmark)

    Jørgensen, Birte Holst

    2016-01-01

    , not least in the power sector. Over the years, five focus areas have been addressed. Energy security of supply triggered the Nordic cooperation with the need to develop a long-term energy policy. This required decision-making support and energy systems analyses based on reliable and valid data, modelling...... and policy scenarios. Energy markets developed from a political wish to make the important oil and gas sector an area of cooperation that led finally to the recognition that there was no common ground for closer cooperation in this field. However, power utilities and grid companies cooperated across...... the borders long before the politicians supported and pushed for further cooperation. Energy efficiency was addressed by a portfolio of activities ranging from knowledge-sharing, public campaigns, labelling and standardisation of products. The need to address environmental degradation was inspired by the UN...

  3. Lunar Sulfur Capture System

    Science.gov (United States)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  4. Development of cooperative system bridges

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; WAN Qi-bai; SHI Lei

    2008-01-01

    Cooperative system bridges comprise several basic structures that act jointly to improve structural characteristics. We delved into the historical development of cooperative system bridges. Cooperative systems are classified as different-load cooperative systems and same-load cooperative systems by distinguishing the modes of load distribution. For different-load cooperation, individual basic structures are at different positions in the direction along bridge axis and carry the loads separately. While for same-load cooperation, all basic structures overlap in geometrical locations and support the entire loads conjointly. The choosing of span ratios between basic structures, the design of connections of different-load cooperative systems were discussed as well as optimizations of relative rigidity for same-load cooperative systems which greatly influence structural characteristics. The general situation and several structural measurements of several cooperative bridges were demonstrated. This information can assist engineers in developing their concepts in cooperative systems and can lead to more efficient and economical cooperative bridges.

  5. Photoresponsive Capture and Release of Lectins in Multilamellar Complexes

    NARCIS (Netherlands)

    Samanta, Avik; Stuart, Marc C. A.; Ravoo, Bart Jan

    2012-01-01

    The development of triggered release systems for delivery of peptides and proteins is critical to the success of biological drug therapies. In this paper we describe a dynamic supramolecular system able to capture and release proteins in response to light. The ternary system self-assembles in a dilu

  6. Neutron Capture and Neutron Halos

    OpenAIRE

    A.Mengoni; Otsuka, T; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Ishihara, M.

    1996-01-01

    The connection between the neutron halo observed in light neutron rich nuclei and the neutron radiative capture process is outlined. We show how nuclear structure information such as spectroscopic factors and external components of the radial wave function of loosely bound states can be derived from the neutron capture cross section. The link between the direct radiative capture and the Coulomb dissociation process is elucidated.

  7. The Generic Data Capture Facility

    Science.gov (United States)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  8. Inland capture fisheries.

    Science.gov (United States)

    Welcomme, Robin L; Cowx, Ian G; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-09-27

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production.

  9. Network modularity promotes cooperation.

    Science.gov (United States)

    Marcoux, Marianne; Lusseau, David

    2013-05-01

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported.

  10. Resource capture by single leaves

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  11. Evolutionary Games of Multiplayer Cooperation on Graphs.

    Science.gov (United States)

    Peña, Jorge; Wu, Bin; Arranz, Jordi; Traulsen, Arne

    2016-08-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering.

  12. International cooperation and exchanges

    International Nuclear Information System (INIS)

    The NNSA continued and enlarged bilateral cooperation with the nuclear energy developing countries and enhanced visiting for high rank leaders of regulatory authorities. Besides, the domestic units for implementing the Convention on Nuclear Safety were settled by coordination

  13. Globalization and economic cooperation

    Directory of Open Access Journals (Sweden)

    Javier Divar

    2006-12-01

    Full Text Available Economic globalization is nothing, really, that the universality of capitalism. Not globalized culture, and economic participation, and human rights, ... has only globalized market. We must react by substituting those materialistic values with cooperative economy.

  14. Cooperative Hurricane Network Obs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observations from the Cooperative Hurricane Reporting Network (CHURN), a special network of stations that provided observations when tropical cyclones approached...

  15. Cooperative processing data bases

    Science.gov (United States)

    Hasta, Juzar

    1991-01-01

    Cooperative processing for the 1990's using client-server technology is addressed. The main theme is concepts of downsizing from mainframes and minicomputers to workstations on a local area network (LAN). This document is presented in view graph form.

  16. Solar cooperatives; Genosse Sonne

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Dierk

    2010-06-15

    Not a boom but a trend: Increasingly, solar power plants and other renewables-based systems are financed by cooperatives. This organizational structure requires long-term strategies and some idealism. (orig.)

  17. Cooperating and Prospering

    Institute of Scientific and Technical Information of China (English)

    ZHAO MINGWEN

    2010-01-01

    @@ Since its establish-ment in 2001, the Shanghai Cooperation Organization (SCO)-a re-gional organization grouping China, Russia, Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan-has grown at a notable pace.

  18. Regional National Cooperative Observer

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA publication dedicated to issues, news and recognition of observers in the National Weather Service Cooperative Observer program. Issues published regionally...

  19. Fruitful International Cooperation

    Institute of Scientific and Technical Information of China (English)

    Liu Mingfa; Wang Zhongqiao

    1997-01-01

    @@ Dagang Oilfield Group Ltd.Company, one of the 100 enterprises under the pilot reform test on modern enterprise system in China, has made great achievements in foreign cooperation, technical exchange, and project contracting abroad.

  20. Landscape Conservation Cooperatives

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Landscape Conservation Cooperatives (LCCs) are public-private partnerships composed of states, tribes, federal agencies, non-governmental organizations,...

  1. Cooperative Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly logs include a daily account of temperature extremes and precipitation, along with snow data at some locations. U.S. Cooperative Observer Program (COOP)...

  2. Cooperation Beats Conflict

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    China and the Philippines agree to strengthen economic and trade cooperation while minimizing disputes Philippine President Benigno Aquino III recently completed a five-day visit to China, his first state visit to China since he took office last year.

  3. On neutrinoless double electron capture

    CERN Document Server

    Drukarev, E G

    2016-01-01

    We found the probability for the neutrinoless double electron capture in the case of $KK$ capture. We clarified the mechanism of the energy transfer from the nucleus to the bound electrons. This enabled us to obtain the equations for the probability of the $2EC0\

  4. Non-cooperative Games

    OpenAIRE

    Damme, E.E.C. van

    2000-01-01

    Non-cooperative games are mathematical models of interactive strategic decision situations.In contrast to cooperative models, they build on the assumption that all possibilities for commitment and contract have been incorporated in the rules of the game.This contribution describes the main models (games in normal form, and games in extensive form), as well as the main concepts that have been proposed to solve these games.Solution concepts predict the outcomes that might arise when the game is...

  5. Cooperation Without Intervention

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In January, China announced its desire to increase cooperation with African countries by issuing China's African Policy, a paper intended to guide relations with the continent by continuing a non-interventionist and non-ideological strategy. Christopher Mutsvangwa, Zimbabwean Ambassador to China, shared his views of the policy with Beijing Review reporter Ni Yanshuo and answered criticisms of the China-Africa relationship by Western countries that tie cooperation to democracy and human rights.

  6. Cooperative quantum Parrondo's games

    OpenAIRE

    Pawela, Łukasz; Sładkowski, Jan

    2012-01-01

    Coordination and cooperation are among the most important issues of game theory. Recently, the attention turned to game theory on graphs and social networks. Encouraged by interesting results obtained in quantum evolutionary game analysis, we study cooperative Parrondo's games in a quantum setup. The game is modeled using multidimensional quantum random walks with biased coins. We use the GHZ and W entangled states as the initial state of the coins. Our analysis shows than an apparent paradox...

  7. Extending Eurasia Security Cooperation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    After 14 years of development, the Shanghai Cooperation Organization (SCO) , has set its sights on goals for the next de-cade at the 15th meeting of the Council of SCO Heads of State that was held in Ufa, the capital of Russia's Bashkortostan Republic, on July 9-10. The SCO, established in Shanghai in 2001, is committed to building fdendly neighbor rela- tions and maintaining security and stability in the Central Asian region through multilateral cooperation.

  8. Cooperating mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, John J.; Eskridge, Steven E.; Hurtado, John E.; Byrne, Raymond H.

    2004-02-03

    A miniature mobile robot provides a relatively inexpensive mobile robot. A mobile robot for searching an area provides a way for multiple mobile robots in cooperating teams. A robotic system with a team of mobile robots communicating information among each other provides a way to locate a source in cooperation. A mobile robot with a sensor, a communication system, and a processor, provides a way to execute a strategy for searching an area.

  9. Neutron capture reactions at DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 μg) and/or radioactive (241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data

  10. Considering Cooperation: A Guide For New Cooperative Development

    OpenAIRE

    Henehan, Brian M.; Anderson, Bruce L.

    2001-01-01

    This publication reviews the key elements needed for successful formation and development of new cooperative businesses. The motivation for and process of forming cooperatives are discussed. Six phases of cooperative formation are presented including: 1) identifying the opportunity, 2) building consensus on the potential for a cooperative, 3) developing trust among potential members, 4) securing member commitment, 5) involving other stakeholders, and 6) starting up the cooperative enterprise....

  11. The role of emotions in the maintenance of cooperative behaviors

    Science.gov (United States)

    Zhang, Chunyan; Zhang, Jianlei; Weissing, Franz J.

    2014-04-01

    Our attention is focused on how individual emotions influence collective behaviors, which captures an aspect of reality missing from past studies: free riders may suffer some stress, which could adapt jointly with the individual stress intensity and size of the gaming group. With an evolutionary game theoretical approach, we gain the fixation probability for one mutant cooperator to invade and dominate the whole defecting population. When the stress intensity exceeds a threshold, natural selection favors cooperators replacing defectors in a finite population. We further infer that lower stress intensity is sufficient for one mutant cooperator to become fixed with an advantageous probability in a larger population. Moreover, when the gaming group is smaller than the population size, the more the return from the public goods, the lower the threshold of stress intensity required to facilitate the full dominance of cooperators. We hope our studies may show that individual sentiments or psychological activities will open up novel explanations for the puzzle of collective actions.

  12. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek

    2013-06-20

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making materials, methods of capturing gas (e.g., CO.sub.2), and the like, and the like.

  13. Dendritic Cells from HIV Controllers Have Low Susceptibility to HIV-1 Infection In Vitro but High Capacity to Capture HIV-1 Particles.

    Science.gov (United States)

    Hamimi, Chiraz; David, Annie; Versmisse, Pierre; Weiss, Laurence; Bruel, Timothée; Zucman, David; Appay, Victor; Moris, Arnaud; Ungeheuer, Marie-Noëlle; Lascoux-Combe, Caroline; Barré-Sinoussi, Françoise; Muller-Trutwin, Michaela; Boufassa, Faroudy; Lambotte, Olivier; Pancino, Gianfranco; Sáez-Cirión, Asier

    2016-01-01

    HIV controllers (HICs), rare HIV-1 infected individuals able to control viral replication without antiretroviral therapy, are characterized by an efficient polyfunctional and cytolytic HIV-specific CD8+ T cell response. The mechanisms underlying the induction and maintenance of such response in many HICs despite controlled viremia are not clear. Dendritic cells play a crucial role in the generation and reactivation of T cell responses but scarce information is available on those cells in HICs. We found that monocyte derived dendritic cells (MDDCs) from HICs are less permissive to HIV-1 infection than cells from healthy donors. In contrast MDDCs from HICs are particularly efficient at capturing HIV-1 particles when compared to cells from healthy donors or HIV-1 patients with suppressed viral load on antiretroviral treatment. MDDCs from HICs expressed on their surface high levels of syndecan-3, DC-SIGN and MMR, which could cooperate to facilitate HIV-1 capture. The combination of low susceptibility to HIV-1 infection but enhanced capacity to capture particles might allow MDDCs from HICs to preserve their function from the deleterious effect of infection while facilitating induction of HIV-specific CD8+ T cells by cross-presentation in a context of low viremia. PMID:27505169

  14. Electron capture and stellar collapse

    International Nuclear Information System (INIS)

    In order, to investigate the function of electron capture in the phenomenon of pre-supernovae gravitacional collapse, an hydrodynamic caculation was carried out, coupling capture, decay and nuclear reaction equation system. A star simplified model (homogeneous model) was adopted using fermi ideal gas approximation for tthe sea of free electrons and neutrons. The non simplified treatment from quasi-static evolution to collapse is presented. The capture and beta decay rates, as wellas neutron delayed emission, were calculated by beta decay crude theory, while the other reaction rates were determined by usual theories. The preliminary results are presented. (M.C.K.)

  15. International Cooperation at NASA

    Science.gov (United States)

    Tawney, Timothy; Feldstein, Karen

    International cooperation is a cornerstone principle of NASA’s activities, especially within the activities of the Science Mission Directorate. Nearly two thirds of the flight missions in which NASA leads or participates involve international cooperation. Numerous ground based activities also rely on international cooperation, whether because of unique expertise, unique geography, or the need for a global response. Going forward, in an era of tighter budgets and a more integrated global perspective, NASA and the rest of the space agencies around the world will be forced to work more closely together, in a broader array of activities than ever before, in order to be able to afford to push the boundaries of space exploration. The goal of this presentation is to provide an overview of NASA’s current international science cooperative activities. It will include a discussion of why NASA conducts international cooperation and look at the mechanisms through which international cooperation can occur at NASA, including peer-to-peer development of relationships. It will also discuss some of the limiting factors of international cooperation, such as export control, and ways in which to manage those constraints. Finally, the presentation would look at some of the present examples where NASA is working to increase international cooperation and improve coordination. Case studies will be used to demonstrate these mechanisms and concepts. For example, NASA continues to participate in international coordination groups such as the International Mars Exploration Working Group (IMEWG) and International Space Exploration Coordination Group (ISECG), but is expanding into new areas as well. NASA is one of the leaders in expanding and improving international coordination in the area of Near-Earth Object detection, characterization, and mitigation. Having participated in the first meetings of such groups as the International Asteroid Warning Network (IAWN) and Space Missions Planning

  16. Vinorelbine as first-line or second-line therapy for advanced breast cancer: a Phase I-II trial by the Danish Breast Cancer Co-operative Group

    DEFF Research Database (Denmark)

    Langkjer, S.T.; Ejlertsen, B.; Mouridsen, H.;

    2008-01-01

    proven breast cancer and had received a prior epirubicin based regimen either adjuvant or as first line therapy for advanced disease. Vinorelbine was administered intravenously day 1 and 8 in a 3 weeks' schedule. Subsequently 48 additional patients were treated at one dose-level below MTD. RESULTS: Fifty...

  17. Benefits of cooperation with genetic kin in a subsocial spider.

    Science.gov (United States)

    Schneider, J M; Bilde, T

    2008-08-01

    Interaction within groups exploiting a common resource may be prone to cheating by selfish actions that result in disadvantages for all members of the group, including the selfish individuals. Kin selection is one mechanism by which such dilemmas can be resolved. This is because selfish acts toward relatives include the cost of lowering indirect fitness benefits that could otherwise be achieved through the propagation of shared genes. Kin selection theory has been proved to be of general importance for the origin of cooperative behaviors, but other driving forces, such as direct fitness benefits, can also promote helping behavior in many cooperatively breeding taxa. Investigating transitional systems is therefore particularly suitable for understanding the influence of kin selection on the initial spread of cooperative behaviors. Here we investigated the role of kinship in cooperative feeding. We used a cross-fostering design to control for genetic relatedness and group membership. Our study animal was the periodic social spider Stegodyphus lineatus, a transitional species that belongs to a genus containing both permanent social and periodic social species. In S. lineatus, the young cooperate in prey capture and feed communally. We provide clear experimental evidence for net benefits of cooperating with kin. Genetic relatedness within groups and not association with familiar individuals directly improved feeding efficiency and growth rates, demonstrating a positive effect of kin cooperation. Hence, in communally feeding spiders, nepotism favors group retention and reduces the conflict between selfish interests and the interests of the group. PMID:18658236

  18. Gadolinium-neutron capture reactions: A radiobiological assay

    International Nuclear Information System (INIS)

    Gadolinium neutron capture(GNC) takes advantage of its extraordinarily large cross section to thermal neutrons. In GNC reactions, prompt high energy gamma rays, x-rays and electrons are released. Because of the photons and electrons, the intracellular presence of gadolinium is not considered critical. This is an advantage over boron-neutron capture therapy where the intracellular presence of boron is required because of the short flight tracks of 2.4 MeV alpha particles. In this study, the radiation effect of GNC reactions was measured using Chinese hamster cells in an attempt to evaluate the contributions of neutrons, gamma rays and electrons on cell inactivation

  19. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  20. Methane capture from livestock manure.

    Science.gov (United States)

    Tauseef, S M; Premalatha, M; Abbasi, Tasneem; Abbasi, S A

    2013-03-15

    It has been estimated that livestock manure contributes about 240 million metric tons of carbon dioxide equivalent of methane to the atmosphere and represents one of the biggest anthropogenic sources of methane. Considering that methane is the second biggest contributor to global warming after carbon dioxide, it is imperative that ways and means are developed to capture as much of the anthropogenic methane as possible. There is a major associated advantage of methane capture: its use as a source of energy which is comparable in 'cleanness' to natural gas. The present review dwells upon the traditional ways of methane capture used in India, China, and other developing countries for providing energy to the rural poor. It then reviews the present status of methane capture from livestock manure in developed countries and touches upon the prevalent trends.

  1. Cooperative Prototyping Experiments

    DEFF Research Database (Denmark)

    Bødker, Susanne; Grønbæk, Kaj

    1989-01-01

    This paper describes experiments with a design technique that we denote cooperative prototyping. The experiments consider design of a patient case record system for municipal dental clinics in which we used HyperCard, an off the shelf programming environment for the Macintosh. In the ecperiments we...... tried to achieve a fluent work-like evaluation of prototypes where users envisioned future work with a computer tool, at the same time as we made on-line modifications of prototypes in cooperation with the users when breakdown occur in their work-like evaluation. The experiments showed...... these experiences we discuss problems in the process, requirements for design tools, and issues involved in getting going with cooperative prototyping with active user involvement....

  2. Synchrony and cooperation.

    Science.gov (United States)

    Wiltermuth, Scott S; Heath, Chip

    2009-01-01

    Armies, churches, organizations, and communities often engage in activities-for example, marching, singing, and dancing-that lead group members to act in synchrony with each other. Anthropologists and sociologists have speculated that rituals involving synchronous activity may produce positive emotions that weaken the psychological boundaries between the self and the group. This article explores whether synchronous activity may serve as a partial solution to the free-rider problem facing groups that need to motivate their members to contribute toward the collective good. Across three experiments, people acting in synchrony with others cooperated more in subsequent group economic exercises, even in situations requiring personal sacrifice. Our results also showed that positive emotions need not be generated for synchrony to foster cooperation. In total, the results suggest that acting in synchrony with others can increase cooperation by strengthening social attachment among group members. PMID:19152536

  3. Evolution, epigenetics and cooperation

    Indian Academy of Sciences (India)

    Patrick Bateson

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  4. Value Capture for Transportation Finance

    OpenAIRE

    Zhirong (Jerry) Zhao; Michael Iacono; David Levinson

    2009-01-01

    As vehicles become more fuel-efficient and overall levels of travel stagnate in response to increases in fuel prices, conventional sources of revenue for transportation finance such as taxes on motor fuels have been put under increasing pressure. One potential replacement as a source of revenue is a set of policies collectively referred to as value capture policies. In contrast to fuel taxes and other instruments that impose charges on users of transportation networks, value capture policies ...

  5. Direct Capture at Low Energies

    OpenAIRE

    Balogh, W.; Bieber, R.; Oberhummer, H.; Rauscher, T.; Kratz, K.-L.; Mohr, P; Staudt, G.; Sharma, M. M.

    1994-01-01

    The importance of direct capture for (n,$\\gamma$)--reactions on intermediate-- and heavy--mass target nuclei occuring in the s-- and r--process is investigated. It is shown that the direct mechanism is non--negligible for magic and neutron rich target nuclei. For some double magic and neutron rich nuclei in the r--process direct capture is even the dominant reaction mechanism.

  6. Toward transformational carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Litynski, John T. [Office of Fossil Energy, U.S. Dept. of Energy, Washington DC (United States); Brickett, Lynn A. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Morreale, Bryan D. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States)

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  7. Cooperative internal conversion process

    CERN Document Server

    Kálmán, Péter

    2015-01-01

    A new phenomenon, called cooperative internal conversion process, in which the coupling of bound-free electron and neutron transitions due to the dipole term of their Coulomb interaction permits cooperation of two nuclei leading to neutron exchange if it is allowed by energy conservation, is discussed theoretically. General expression of the cross section of the process is reported in one particle nuclear and spherical shell models as well in the case of free atoms (e.g. noble gases). A half-life characteristic of the process is also determined. The case of $Ne$ is investigated numerically. The process may have significance in fields of nuclear waste disposal and nuclear energy production.

  8. Cooperative strategies in innovation

    Directory of Open Access Journals (Sweden)

    Ratner Svetlana Valerevna

    2013-12-01

    Full Text Available In the knowledge economy one of the conventional ways to obtain economic agents access to new knowledge and technology is the creation and implementation of specific cooperative strategies, such as the formation of alliances with other economic agents. Combining competencies partners in joint research and development has a positive impact on innovation, but it is a partial convergence of competences partners that in the long term can lead to the unification of competences agents economic system and reduce their innovative activity. In this paper, we propose an effective method of information management in the implementation of a cooperative strategy of innovation.

  9. Subradiant split Cooper pairs

    OpenAIRE

    Cottet, Audrey; Kontos, Takis; Yeyati, Alfredo Levy

    2011-01-01

    We suggest a way to characterize the coherence of the split Cooper pairs emitted by a double-quantum-dot based Cooper pair splitter (CPS), by studying the radiative response of such a CPS inside a microwave cavity. The coherence of the split pairs manifests in a strongly nonmonotonic variation of the emitted radiation as a function of the parameters controlling the coupling of the CPS to the cavity. The idea to probe the coherence of the electronic states using the tools of Cavity Quantum Ele...

  10. Introduction: cooperative learning

    Directory of Open Access Journals (Sweden)

    José-Manuel Serrano

    2014-10-01

    Full Text Available The principal objective of this revision is the recognition of cooperative learning as a highly effective strategy for the accomplishment of the general goals in learning. The different investigations assessed validate the potential that a cooperative organization of the classroom could entail for academic achievement, self-esteem, interpersonal attraction or social support. The solidity of the existing research contributes to its external and internal validity and, thus, to conclude that the results are consistent and can be extrapolated to different cultures, ethnic groups or countries.

  11. Cooperatives between truth and validity

    Directory of Open Access Journals (Sweden)

    Guilherme Krueger

    2014-12-01

    Full Text Available The current declaration of the International Cooperative Alliance on cooperative identity since its 1995 Centennial Conference (which was held in Manchester makes no distinction between cooperation and cooperative. The lack of distinction between cooperation and cooperative has caused the Decennial Cooperative Action Plan to define cooperatives as a form, while their materiality is regarded as managerial: a business (activity under a cooperative form. An identity that is close to us cannot be reduced to form, without this being a problem. Therefore, the value underlying this identity —cooperation— must have a substantial basis, even if it is idealised, if it is to affect us.Received: 27.03.2014Accepted: 12.05.2014

  12. Social penalty promotes cooperation in a cooperative society.

    Science.gov (United States)

    Ito, Hiromu; Yoshimura, Jin

    2015-08-04

    Why cooperation is well developed in human society is an unsolved question in biological and human sciences. Vast studies in game theory have revealed that in non-cooperative games selfish behavior generally dominates over cooperation and cooperation can be evolved only under very limited conditions. These studies ask the origin of cooperation; whether cooperation can evolve in a group of selfish individuals. In this paper, instead of asking the origin of cooperation, we consider the enhancement of cooperation in a small already cooperative society. We ask whether cooperative behavior is further promoted in a small cooperative society in which social penalty is devised. We analyze hawk-dove game and prisoner's dilemma introducing social penalty. We then expand it for non-cooperative games in general. The results indicate that cooperation is universally favored if penalty is further imposed. We discuss the current result in terms of the moral, laws, rules and regulations in a society, e.g., criminology and traffic violation.

  13. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  14. Review and comparison of active space debris capturing and removal methods

    Science.gov (United States)

    Shan, Minghe; Guo, Jian; Gill, Eberhard

    2016-01-01

    Space debris is considered as a serious problem for operational space missions. Many enabling space debris capturing and removal methods have been proposed in the past decade and several methods have been tested on ground and/or in parabolic flight experiments. However, not a single space debris has been removed yet. A space debris object is usually non-cooperative and thus different with targets of on-orbit servicing missions. Thus, capturing and removal of space debris is significantly more challenging. One of the greatest challenges is how to reliably capture and remove a non-cooperative target avoiding to generate even more space debris. To motivate this research area and facilitate the development of active space debris removal, this paper provides review and comparison of the existing technologies on active space debris capturing and removal. It also reviews research areas worth investigating under each capturing and removal method. Frameworks of methods for capturing and removing space debris are developed. The advantages and drawbacks of the most relevant capturing and removal methods are addressed as well. In addition, examples and existing projects related to these methods are discussed.

  15. Cooperative Learning and Teaching

    Science.gov (United States)

    Jacobs, G. M.; Kimura, H.

    2013-01-01

    In and out of the classroom, life would be unthinkable without interacting with fellow humans. This book urges more cooperative and group activities in the English language classroom for all the advantages: students use the target language more, help each other with comprehension, receive attention from peers as well as the teacher, are motivated…

  16. Cooperative Mobile Sensing Networks

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Kent, C A; Jones, E D; Cunningham, C T; Armstrong, G W

    2003-02-10

    A cooperative control architecture is presented that allows a fleet of Unmanned Air Vehicles (UAVs) to collect data in a parallel, coordinated and optimal manner. The architecture is designed to react to a set of unpredictable events thereby allowing data collection to continue in an optimal manner.

  17. Supranational Cooperation in Europe

    NARCIS (Netherlands)

    de Deugd, Nienke; Stamm, Katharina; Westerman, Wim

    2013-01-01

    The sovereign debt crisis and the euro crisis have prompted heads of state and government in Europe to intensify supranational cooperation. However, some political leaders and policy makers aim for more. They propose the introduction of a common European economic government that would prevent Europe

  18. Indian Ocean Rim Cooperation

    DEFF Research Database (Denmark)

    Wippel, Steffen

    Since the mid-1990s, the Indian Ocean has been experiencing increasing economic cooperation among its rim states. Middle Eastern countries, too, participate in the work of the Indian Ocean Rim Association, which received new impetus in the course of the current decade. Notably Oman is a very active...

  19. Quantum Cooperative Games

    CERN Document Server

    Iqbal, A

    2002-01-01

    We study two forms of a symmetric cooperative game played by three players, one classical and other quantum. In its classical form making a coalition gives advantage to players and they are motivated to do so. However in its quantum form the advantage is lost and players are left with no motivation to make coalition.

  20. Cooperating with the future

    Science.gov (United States)

    Hauser, Oliver P.; Rand, David G.; Peysakhovich, Alexander; Nowak, Martin A.

    2014-07-01

    Overexploitation of renewable resources today has a high cost on the welfare of future generations. Unlike in other public goods games, however, future generations cannot reciprocate actions made today. What mechanisms can maintain cooperation with the future? To answer this question, we devise a new experimental paradigm, the `Intergenerational Goods Game'. A line-up of successive groups (generations) can each either extract a resource to exhaustion or leave something for the next group. Exhausting the resource maximizes the payoff for the present generation, but leaves all future generations empty-handed. Here we show that the resource is almost always destroyed if extraction decisions are made individually. This failure to cooperate with the future is driven primarily by a minority of individuals who extract far more than what is sustainable. In contrast, when extractions are democratically decided by vote, the resource is consistently sustained. Voting is effective for two reasons. First, it allows a majority of cooperators to restrain defectors. Second, it reassures conditional cooperators that their efforts are not futile. Voting, however, only promotes sustainability if it is binding for all involved. Our results have implications for policy interventions designed to sustain intergenerational public goods.

  1. Cooperation Or Conflict?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Iran’s recent actions have created confusion and heightened doubt about the future of the nuclear issue Recent events involving Iran have produced high drama. First, the country said it would cooperate with the International Atomic Energy Agency (IAEA) on the

  2. Cooperation Beats Conflict

    Institute of Scientific and Technical Information of China (English)

    DING YING

    2011-01-01

    Philippine President Benigno Aquino Ⅲ recently completed a five-day visit to China,his first state visit to China since he took office last year.The two countries reached consensus on promoting all-round cooperation,especially in trade and the economy,and downplayed disputes in the South China Sea.

  3. A User Cooperation Stimulating Strategy Based on Cooperative Game Theory in Cooperative Relay Networks

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2009-01-01

    Full Text Available This paper proposes a user cooperation stimulating strategy among rational users. The strategy is based on cooperative game theory and enacted in the context of cooperative relay networks. Using the pricing-based mechanism, the system is modeled initially with two nodes and a Base Station (BS. Within this framework, each node is treated as a rational decision maker. To this end, each node can decide whether to cooperate and how to cooperate. Cooperative game theory assists in providing an optimal system utility and provides fairness among users. Under different cooperative forwarding modes, certain questions are carefully investigated, including “what is each node's best reaction to maximize its utility?” and “what is the optimal reimbursement to encourage cooperation?” Simulation results show that the nodes benefit from the proposed cooperation stimulating strategy in terms of utility and thus justify the fairness between each user.

  4. CHAOTIC CAPTURE OF NEPTUNE TROJANS

    International Nuclear Information System (INIS)

    Neptune Trojans (NTs) are swarms of outer solar system objects that lead/trail planet Neptune during its revolutions around the Sun. Observations indicate that NTs form a thick cloud of objects with a population perhaps ∼10 times more numerous than that of Jupiter Trojans and orbital inclinations reaching ∼25 deg. The high inclinations of NTs are indicative of capture instead of in situ formation. Here we study a model in which NTs were captured by Neptune during planetary migration when secondary resonances associated with the mean-motion commensurabilities between Uranus and Neptune swept over Neptune's Lagrangian points. This process, known as chaotic capture, is similar to that previously proposed to explain the origin of Jupiter's Trojans. We show that chaotic capture of planetesimals from an ∼35 Earth-mass planetesimal disk can produce a population of NTs that is at least comparable in number to that inferred from current observations. The large orbital inclinations of NTs are a natural outcome of chaotic capture. To obtain the ∼4:1 ratio between high- and low-inclination populations suggested by observations, planetary migration into a dynamically excited planetesimal disk may be required. The required stirring could have been induced by Pluto-sized and larger objects that have formed in the disk.

  5. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  6. Novel dodecaborate cluster lipids for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Lipids containing the closo-dodecaborate cluster have been developed. Two examples, S-(N,N-(2-dimyristoyloxyethyl) -acetamido)-thioundecahydro-closo-dodecaborate (2-) (B-6-14) and S-(N,N-(2-dipalmitoyloxyethyl) -acetamido)-thioundecahydro-closo-dodecaborate (2-) (B-6-16) have been prepared. With helper lipids, stable liposomes were obtained. (author)

  7. Accelerator Based Neutron Beams for Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C.

    2003-04-11

    The DOE-funded accelerator BNCT program at the Massachusetts Institute of Technology has resulted in the only operating accelerator-based epithermal neutron beam facility capable of generating significant dose rates in the world. With five separate beamlines and two different epithermal neutron beam assemblies installed, we are currently capable of treating patients with rheumatoid arthritis in less than 15 minutes (knee joints) or 4 minutes (finger joints) or irradiating patients with shallow brain tumors to a healthy tissue dose of 12.6 Gy in 3.6 hours. The accelerator, designed by Newton scientific Incorporated, is located in dedicated laboratory space that MIT renovated specifically for this project. The Laboratory for Accelerator Beam Applications consists of an accelerator room, a control room, a shielded radiation vault, and additional laboratory space nearby. In addition to the design, construction and characterization of the tandem electrostatic accelerator, this program also resulted in other significant accomplishments. Assemblies for generating epithermal neutron beams were designed, constructed and experimentally evaluated using mixed-field dosimetry techniques. Strategies for target construction and target cooling were implemented and tested. We demonstrated that the method of submerged jet impingement using water as the coolant is capable of handling power densities of up to 6 x 10(sup 7) W/m(sup 2) with heat transfer coefficients of 10(sup 6)W/m(sup 2)-K. Experiments with the liquid metal gallium demonstrated its superiority compared with water with little effect on the neutronic properties of the epithermal beam. Monoenergetic proton beams generated using the accelerator were used to evaluate proton RBE as a function of LET and demonstrated a maximum RBE at approximately 30-40 keV/um, a finding consistent with results published by other researchers. We also developed an experimental approach to biological intercomparison of epithermal beams and compared the RBE characteristics of the MIT Reactor M67 clinical beam, The Brookhaven Medical Research Reactor clinical beam (both of which were used in Phase I/II clinical trials of BNCT) and the MIT LABA BNCS beam. Additional research initiated under this program involved an investigation of the potential of BNCT for the prevention of restenosis and the development of accelerator-based fast neutron brachytherapy. A total of 10 student research theses (2 Undergraduate, 4 Masters, and 4 Doctoral) were completed as part of this research program.

  8. [A clinical trial of neutron capture therapy for brain tumors

    International Nuclear Information System (INIS)

    This report describes accomplishments by this laboratory concerning development of high-resolution alpha-autoradiography design of an optimized epithermal neutron beam dosimetry and treatment planning Using Monte Carlo techniques development of a prompt-gamma 10B analysis facility

  9. Insufficiency Fractures After Pelvic Radiation Therapy for Uterine Cervical Cancer: An Analysis of Subjects in a Prospective Multi-institutional Trial, and Cooperative Study of the Japan Radiation Oncology Group (JAROG) and Japanese Radiation Oncology Study Group (JROSG)

    Energy Technology Data Exchange (ETDEWEB)

    Tokumaru, Sunao, E-mail: tokumaru@cc.saga-u.ac.jp [Department of Heavy Particle Therapy and Radiation Oncology, Saga University, Saga (Japan); Toita, Takafumi [Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Okinawa (Japan); Oguchi, Masahiko [Radiation Oncology Department, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo (Japan); Ohno, Tatsuya [Gunma University Heavy Ion Medical Center, Maebashi (Japan); Kato, Shingo [Department of Radiation Oncology, Saitama Medical University, International Medical Center, Saitama (Japan); Niibe, Yuzuru [Department of Radiology, School of Medicine, Kitasato University, Sagamihara (Japan); Kazumoto, Tomoko [Department of Radiology, Saitama Cancer Center, Saitama (Japan); Kodaira, Takeshi [Department of Radiation Oncology, Aichi Cancer Center, Nagoya (Japan); Kataoka, Masaaki [Department of Radiology, National Shikoku Cancer Center, Matsuyama (Japan); Shikama, Naoto [Department of Radiation Oncology, Saitama Medical University, International Medical Center, Saitama (Japan); Kenjo, Masahiro [Department of Radiation Oncology, Graduate School of Medical Science, Hiroshima University, Hiroshima (Japan); Yamauchi, Chikako [Department of Radiation Oncology, Shiga Medical Center for Adults, Moriyama (Japan); Suzuki, Osamu [Department of Radiation Oncology, Osaka Medical Center for Cancer, Osaka (Japan); Sakurai, Hideyuki [Proton Medical Research Center and Tsukuba University, Tuskuba (Japan); Teshima, Teruki [Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita (Japan); Kagami, Yoshikazu [Department of Radiology, Showa University School of Medicine, Tokyo (Japan); Nakano, Takashi [Department of Radiation Oncology, Gunma University, Graduate School of Medicine, Maebashi (Japan); Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, Graduate School of Medicine, Kyoto (Japan); and others

    2012-10-01

    Purpose: To investigate pelvic insufficiency fractures (IF) after definitive pelvic radiation therapy for early-stage uterine cervical cancer, by analyzing subjects of a prospective, multi-institutional study. Materials and Methods: Between September 2004 and July 2007, 59 eligible patients were analyzed. The median age was 73 years (range, 37-84 years). The International Federation of Gynecologic Oncology and Obstetrics stages were Ib1 in 35, IIa in 12, and IIb in 12 patients. Patients were treated with the constant method, which consisted of whole-pelvic external-beam radiation therapy of 50 Gy/25 fractions and high-dose-rate intracavitary brachytherapy of 24 Gy/4 fractions without chemotherapy. After radiation therapy the patients were evaluated by both pelvic CT and pelvic MRI at 3, 6, 12, 18, and 24 months. Diagnosis of IF was made when the patients had both CT and MRI findings, neither recurrent tumor lesions nor traumatic histories. The CT findings of IF were defined as fracture lines or sclerotic linear changes in the bones, and MRI findings of IF were defined as signal intensity changes in the bones, both on T1- and T2-weighted images. Results: The median follow-up was 24 months. The 2-year pelvic IF cumulative occurrence rate was 36.9% (21 patients). Using Common Terminology Criteria for Adverse Events version 3.0, grade 1, 2, and 3 IF were seen in 12 (21%), 6 (10%), and 3 patients (5%), respectively. Sixteen patients had multiple fractures, so IF were identified at 44 sites. The pelvic IF were frequently seen at the sacroileal joints (32 sites, 72%). Nine patients complained of pain. All patients' pains were palliated by rest or non-narcotic analgesic drugs. Higher age (>70 years) and low body weight (<50 kg) were thought to be risk factors for pelvic IF (P=.007 and P=.013, Cox hazard test). Conclusions: Cervical cancer patients with higher age and low body weight may be at some risk for the development of pelvic IF after pelvic radiation therapy.

  10. Cooperating for assisting intelligently operators

    International Nuclear Information System (INIS)

    We are in the process of an intelligent cooperative system in a nuclear plant application. The system must cooperate with an operator who accomplishes a task of supervision of a real-world process. We point out in the paper that a cooperation between a cooperative system and an operator has two modes: a waking state and a participating state. During the waking state, the system observes the operator's behavior and the consequences on the process. During the participation state, the cooperative system builds jointly with the user a solution to the problem. In our approach, the cooperation depends on the system capabilities to explain, to incrementally acquire knowledge and to make explicit the context of the cooperation. We develop these ideas in the framework of the design of the cooperative system in the nuclear plant. (authors). 22 refs., 1 fig

  11. Basic Research Needs for Carbon Capture: Beyond 2020

    Energy Technology Data Exchange (ETDEWEB)

    Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buchanan, Michelle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2010-03-04

    that contains many other gaseous components. The related processes of precombustion capture and oxycombustion pose similar challenges. It is this nexus of high-speed capture with high selectivity and minimal energy loss that makes this a true grand challenge problem, far beyond any of today’s artificial molecular manipulation technologies, and one whose solution will drive the advancement of molecular science to a new level of sophistication. We have only to look to nature, where such chemical separations are performed routinely, to imagine what may be achieved. The hemoglobin molecule transports oxygen in the blood rapidly and selectively and releases it with minimal energy penalty. Despite our improved understanding of how this biological system works, we have yet to engineer a molecular capture system that uses the fundamental cooperativity process that lies at the heart of the functionality of hemoglobin. While such biological examples provide inspiration, we also note that newly developed theoretical and computational capabilities; the synthesis of new molecules, materials, and membranes; and the remarkable advances in characterization techniques enabled by the Department of Energy’s measurement facilities all create a favorable environment for a major new basic research push to solve the carbon capture problem within the next decade. The Department of Energy has established a comprehensive strategy to meet the nation’s needs in the carbon capture arena. This framework has been developed following a series of workshops that have engaged all the critical stakeholder communities. The strategy that has emerged is based upon a tiered approach, with Fossil Energy taking the lead in a series of applied research programs that will test and extend our current systems. ARPA-E (Advanced Research Projects Agency–Energy) is supporting potential breakthroughs based upon innovative proposals to rapidly harness today’s technical capabilities in ways not previously

  12. Proton capture by magnetic monopoles

    International Nuclear Information System (INIS)

    In the Kazama-Yang approximation, the lowest monopole-proton bound states have binding energies of 938 MeV, 263 keV, 105 eV, and 0.04 eV. The cross section for radiative capture to these states is for velocities β = 10-5 - 10-3 found to be of the order of 10-28 - 10-26 cm2. For the state that has a binding energy of 263 keV, the capture length in water is 171 x (β/10-4)sup(0.48) m. Observation of photons from the capture process would indicate the presence of monopoles. (orig.)

  13. Prospects of ASEAN Legal Cooperation

    OpenAIRE

    Agus Riyanto

    2016-01-01

    Association of Southeast Asian Nations (ASEAN) is a regional organization in the countries of Southeast Asia established in Bangkok, Thailand, on August 8, 1967 (the Bangkok Declaration) by Indonesia, Malaysia, Philippines, Singapore, and Thailand. One form of cooperation that could further encourage the establishment of ASEAN's goal was legal cooperation. This was because, this cooperation could further strengthen cooperation in politics, economy, social and culture in Southeast Asia. ...

  14. International cooperation for operating safety

    International Nuclear Information System (INIS)

    The international-cooperation organization in nuclear safety domain is discussed. The nuclear energy Direction Committee is helped by the Security Committee for Nuclear Power Plants in the cooperation between security organizations of member countries and in the safety and nuclear activity regulations. The importance of the cooperation between experts in human being and engine problems is underlined. The applied methods, exchange activities and activity analysis, and the cooperation of the Nuclear Energy Agency and international organizations is analysed

  15. CTBTO international cooperation workshop

    International Nuclear Information System (INIS)

    The International Cooperation Workshop took place in Vienna, Austria, on 16 and 17 November 1998, with the participation of 104 policy/decision makers, Research and Development managers and diplomatic representatives from 58 States Signatories to the Comprehensive Nuclear-Test Ban Treaty (CTBT). The Workshop attempted to develop Treaty stipulations to: promote cooperation to facilitate and participate in the fullest possible exchange relating to technologies used in the verification of the Treaty; enable member states to strengthen national implementation of verification measures, and to benefit from the application of such technologies for peaceful purposes. The potential benefits arising from the CTBT monitoring, analysis and data communication systems are multifaceted, and as yet unknown. This Workshop provided the opportunity to examine some of these possibilities. An overview of the CTBT verification regime on the general aspects of the four monitoring technologies (seismic, hydro-acoustic, infrasound and radionuclides), including some of the elements that are the subject of international cooperation, were presented and discussed. Questions were raised on the potential benefits that can be derived by participating in the CTBT regime and broad-based discussions took place. Several concrete proposals on ways and means to facilitate and promote cooperation among States Signatories were suggested. The main points discussed by the participants can be summarized as follows: the purpose of the CTBT Organization is to assist member states to monitor Treaty compliance; the CTBT can be a highly effective technological tool which can generate wide-ranging data, which can be used for peaceful purposes; there are differences in the levels of technology development in the member states that is why peaceful applications should be supported by the Prep Com for the benefit of all member states, whether developed or developing, training being a key element to optimize the CTBT

  16. COOPERATIVE LEARNING IN LARGE CLASSES

    Institute of Scientific and Technical Information of China (English)

    GuoXiangju

    2004-01-01

    Teaching college English in large classes is a new challenge to teachers. To meet this challenge, the strategy of cooperative learning is practicable. This paper introduces cooperative learning and describes the experiment results, which prove the advantages of cooperative learning over competitive learning or individualistic learning.

  17. Gender and Cooperation in Children

    DEFF Research Database (Denmark)

    Cardenas, Juan-Camilo; Dreber, Anna; Essen, Emma von;

    2014-01-01

    between Colombia and Sweden overall. However, Colombian girls cooperate less than Swedish girls. We also find indications that girls in Colombia are less cooperative than boys. Finally, there is also a tendency for children to be more cooperative with boys than with girls on average....

  18. Cooperative Learning in Elementary Schools

    Science.gov (United States)

    Slavin, Robert E.

    2015-01-01

    Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…

  19. Enlightening Advantages of Cooperative Learning

    Science.gov (United States)

    Faryadi, Qais

    2007-01-01

    This appraisal discusses the notion that cooperative learning enhances learners' emotional and social performance. It also observes the perception that cooperative learning dramatically improves students' academic accomplishment. This review also examines the definition of cooperative learning and attempts to define it through the lens of renowned…

  20. Forecasting Demand for Rural Electric Cooperative Call Center

    OpenAIRE

    Kim, Taeyoon; Kenkel, Philip L.; Brorsen, B. Wade

    2009-01-01

    This research forecasts peak call volume to allow a centralized call center to minimize staffing costs. A Gaussian copula is used to capture the dependence among nonnormal distributions. Peak call volume can be easily and more accurately predicted using the marginal probability distribution with the copula function than without using a copula. The modeling approach allows simulating adding another cooperative. Ignoring the dependence that the copula includes, causes peak values to be underest...

  1. Extending Record and Playback Technologies to Support Cooperative Learning

    OpenAIRE

    Sahai, Esha; Watts, Ken; Adrion, Rick

    2013-01-01

    We have long-term experience with developing and employing multimedia materials for on-campus and distance education. We also are assessing the efficacy of cooperative learning where groups of learners explore, with guidance from an instructor, the learning environment and construct models of meaning based on their shared learning experiences. Our core technologies capture and store classroom events, but are record-and-playback technologies focused on delivering content to individual learners...

  2. Metal-ligand cooperation.

    Science.gov (United States)

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  3. Cooperative Learning i voksenundervisningen

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne

    Nationalt Center for Kompetenceudvikling har evalueret undervisningsmetoden Cooperative Learning i voksenundervisningen og dokumenteret positive effekter på oplevelsen af samarbejde og på lærere og kursisters engagement - men har ikke kunnet påvise systematiske positive effekter af metoden på...... kursisters frafald, fravær og karakterer. Projektet har afprøvet og videreudviklet den pædagogiske metode Cooperative Learning (CL) i en dansk virkelighed og mere specifikt i forhold til VUC'ernes nye kursistgrupper med det overordnede mål at øge gennemførslen markant og målbart ved at anvende og udvikle en...

  4. Cooperative method development

    DEFF Research Database (Denmark)

    Dittrich, Yvonne; Rönkkö, Kari; Eriksson, Jeanette;

    2008-01-01

    The development of methods tools and process improvements is best to be based on the understanding of the development practice to be supported. Qualitative research has been proposed as a method for understanding the social and cooperative aspects of software development. However, qualitative...... research is not easily combined with the improvement orientation of an engineering discipline. During the last 6 years, we have applied an approach we call `cooperative method development', which combines qualitative social science fieldwork, with problem-oriented method, technique and process improvement....... The action research based approach focusing on shop floor software development practices allows an understanding of how contextual contingencies influence the deployment and applicability of methods, processes and techniques. This article summarizes the experiences and discusses the further development...

  5. International cooperative information systems

    International Nuclear Information System (INIS)

    Developing countries need mechanisms by which the information they generate themselves and development information from the rest of the world can be retrieved. The international cooperative information system is such a mechanism. Delegates to the Seminar on International Cooperative Information Systems were informed about various existing systems (INIS, AGRIS, INFOTERRA, TCDC/INRES, POPIN, DEVSIS, and INPADROC), some specialized information systems and services (CDS/ISIS and the Cassava Information Centre), and computer programs for information processing (INIS/AGRIS, CDS/ISIS, and MINISIS). The participants suggested some changes that should be made on both the national and the international levels to ensure that these systems meet the needs of developing countries more effectively. (LL)

  6. Cooperative photoredox catalysis.

    Science.gov (United States)

    Lang, Xianjun; Zhao, Jincai; Chen, Xiaodong

    2016-05-31

    Visible-light photoredox catalysis has been experiencing a renaissance in response to topical interest in renewable energy and green chemistry. The latest progress in this area indicates that cooperation between photoredox catalysis and other domains of catalysis could provide effective results. Thus, we advance the concept of cooperative photoredox catalysis for organic transformations. It is important to note that this concept can bridge the gap between visible-light photoredox catalysis and other types of redox catalysis such as transition-metal catalysis, biocatalysis or electrocatalysis. In doing so, one can take advantage of the best of both worlds in establishing organic synthesis with visible-light-induced redox reaction as a crucial step. PMID:27094803

  7. Crisis-Driven Cooperation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Not hit as badly as the West, East Asian and Southeast Asian countries grapple with the financial crisis from a long-term perspective Although Thailand postponed at the last minute the annual summits of East Asian and Southeast Asian leaders scheduled on April 11-12, regional cooperation will continue to forge ahead with full vigor, even more so in the context of the global financial crisis, said Chinese international studies experts.

  8. Pioneers in Cooperation (selection)

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Project-oriented cooperation within the framework of the CAS-MPSagreement began in the early 1980s. Its methods differed according to scientific needs and included workshops and seminars, field research, overland expeditions, exchanges of materials and samples, and the training of young scientists and engineers. The German Research Foundation and the National Natural Science Foundation of China provided special funding for many of these projects.

  9. Le banche popolari cooperative

    OpenAIRE

    Schilirò, Daniele

    2011-01-01

    Co-operative banks are an important reality of the credit system and they are spread in Italy and in Europe. These banks are a category different from other banks, as are characterized by a legal form which has some very specific characteristics. These banks may contribute to the development of human capital and the strengthening of social capital, but also to the development of the knowledge economy that thrives on knowledge and tacit knowledge passed down through the local culture. This ess...

  10. Growth, Cooperation And Prosperity

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ Chinese Vice President Xi Jinping called for strengthened cconomic,political and cultural ties with Bangladesh,Laos,New Zealand and Australia during his visits to these countries from June 14-24. In a speech at a trade forum in Canberra,Xi suggested China and Australia deepen cooperation in energy and resources.The two countries' governments and companies should work together to build "'long-term and stable"relations for trade and investment in these fields.

  11. Quantized Cooperative Control

    OpenAIRE

    Guo, Meng

    2011-01-01

    In this thesis project, we consider the cooperative control of multi-agent systems under limited communication between the individual agents. In particular, quantized values of the relatives states between neighboring agents are used as the control parameters for each agent. As an introductory part, the theoretical framework for the distributed consensus problem under perfect communication is reviewed with the focus on the system stability and convergence. We start from the common problem set...

  12. Cooperative Mobile Web Browsing

    Directory of Open Access Journals (Sweden)

    G. P. Perrucci

    2009-01-01

    Full Text Available This paper advocates a novel approach for mobile web browsing based on cooperation among wireless devices within close proximity operating in a cellular environment. In the actual state of the art, mobile phones can access the web using different cellular technologies. However, the supported data rates are not sufficient to cope with the ever increasing traffic requirements resulting from advanced and rich content services. Extending the state of the art, higher data rates can only be achieved by increasing complexity, cost, and energy consumption of mobile phones. In contrast to the linear extension of current technology, we propose a novel architecture where mobile phones are grouped together in clusters, using a short-range communication such as Bluetooth, sharing, and accumulating their cellular capacity. The accumulated data rate resulting from collaborative interactions over short-range links can then be used for cooperative mobile web browsing. By implementing the cooperative web browsing on commercial mobile phones, it will be shown that better performance is achieved in terms of increased data rate and therefore reduced access times, resulting in a significantly enhanced web browsing user experience on mobile phones.

  13. Cooperatively active sensing system

    International Nuclear Information System (INIS)

    Aiming at development of a strong and flexible sensing system, a study on a sensing technology prepared with cooperativity, activity, and real time workability has been promoted. In the former period, together with preparation of plural moving robot group with real time processing capacity of a lot of sensor informations composing of platform, a parallel object direction language Eus Lisp effectively capable of describing and executing cooperative processing and action therewith was developed. And, it was also shown that capacity to adaptively act even at dynamic environment could be learnt experientially. And, on processing of individual sensor information, application of a photographing system with multiple resolution property similar to human visual sense property was attempted. In the latter period, together with intending of upgrading on adaptability of sensing function, by using moving robot group in center of a moving robot loaded with active visual sense, a cooperative active sensing prototype system was constructed to show effectiveness of this study through evaluation experiment of patrolling inspection at plant simulating environment. (G.K.)

  14. Uncovering the dynamics of interaction in development cooperation

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe; Lundsgaarde, Erik; Cold-Ravnkilde, Signe

    The rising prominence of new state and non-state actors in international politics has stimulated extensive discussion in the social sciences over the last decade and development cooperation has been a central arena for conceptualising the encounter between old and new powers. This working paper...... critically reflects on the substantial body of scholarship that seeks to document the characteristics of new actors in international development and chart the consequences of their engagement for global development governance. This review underlines the importance of questioning the homogeneity of actor...... constellations, relationships and ideas. Specifically, it addresses the extent to which the commonly-used binary concepts of development cooperation provider groups adequately capture relevant distinctions among the actors and add analytical value to research on development cooperation. The paper advocates...

  15. Uncovering the dynamics of interaction in development cooperation

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe; Lundsgaarde, Erik; Cold-Ravnkilde, Signe

    critically reflects on the substantial body of scholarship that seeks to document the characteristics of new actors in international development and chart the consequences of their engagement for global development governance. This review underlines the importance of questioning the homogeneity of actor......The rising prominence of new state and non-state actors in international politics has stimulated extensive discussion in the social sciences over the last decade and development cooperation has been a central arena for conceptualising the encounter between old and new powers. This working paper...... constellations, relationships and ideas. Specifically, it addresses the extent to which the commonly-used binary concepts of development cooperation provider groups adequately capture relevant distinctions among the actors and add analytical value to research on development cooperation. The paper advocates...

  16. 75 FR 10319 - Cooper Tools-Sumter, Cooper Tools Divisions, a Subsidiary of Cooper Industries, Inc., Including...

    Science.gov (United States)

    2010-03-05

    ... published in the Federal Register on September 21, 2006 (71 FR 55216). In order to avoid an overlap in... Employment and Training Administration Cooper Tools--Sumter, Cooper Tools Divisions, a Subsidiary of Cooper... workers of Cooper Tools--Sumter, Cooper Tools Division, a subsidiary of Cooper Industries, Inc.,...

  17. Games people play - towards an enactive view of cooperation in social neuroscience

    Directory of Open Access Journals (Sweden)

    Denis Alexander Engemann

    2012-06-01

    Full Text Available The field of social neuroscience has made considerable progress in unraveling the neural correlates of human cooperation by making use of brain imaging methods. Within this field, neuroeconomic research has drawn on paradigms from experimental economics, such as the Prisoner’s Dilemma and the Trust Game. These paradigms capture the topic of conflict in cooperation, while focusing strongly on outcome-related decision processes. Cooperation, however, does not equate with that perspective, but relies on additional psychological processes and events, including shared intentions and mutually coordinated joint action. These additional facets of cooperation have been successfully addressed by research in developmental psychology, cognitive science, and social philosophy. Corresponding neuroimaging data, however, is still sparse. Therefore, in this paper, we present a juxtaposition of these mutually related but mostly independent trends in cooperation research. We propose that the neuroscientific study of cooperation could benefit from paradigms and concepts employed in developmental psychology and social philosophy. Bringing both to a neuroimaging environment might allow studying the neural correlates of cooperation by using formal models of decision-making as well as capturing the neural responses that underlie joint action scenarios, thus, promising to advance our understanding of the nature of human cooperation.

  18. Coalitions in Cooperative Wireless Networks

    CERN Document Server

    Mathur, Suhas; Mandayam, Narayan B

    2008-01-01

    Cooperation between rational users in wireless networks is studied using coalitional game theory. Using the rate achieved by a user as its utility, it is shown that the stable coalition structure, i.e., set of coalitions from which users have no incentives to defect, depends on the manner in which the rate gains are apportioned among the cooperating users. Specifically, the stability of the grand coalition (GC), i.e., the coalition of all users, is studied. Transmitter and receiver cooperation in an interference channel (IC) are studied as illustrative cooperative models to determine the stable coalitions for both flexible (transferable) and fixed (non-transferable) apportioning schemes. It is shown that the stable sum-rate optimal coalition when only receivers cooperate by jointly decoding (transferable) is the GC. The stability of the GC depends on the detector when receivers cooperate using linear multiuser detectors (non-transferable). Transmitter cooperation is studied assuming that all receivers coopera...

  19. Earth--Mars Transfers with Ballistic Capture

    OpenAIRE

    Topputo, Francesco; Belbruno, Edward

    2014-01-01

    We construct a new type of transfer from the Earth to Mars, which ends in ballistic capture. This results in a substantial savings in capture $\\Delta v$ from that of a classical Hohmann transfer under certain conditions. This is accomplished by first becoming captured at Mars, very distant from the planet, and then from there, following a ballistic capture transfer to a desired altitude within a ballistic capture set. This is achieved by manipulating the stable sets, or sets of initial condit...

  20. The Good, The Bad and The Cautious: Safety Level Cooperative Games

    OpenAIRE

    Bachrach, Yoram; Polukarov, Maria; Jennings, Nick

    2010-01-01

    We study safety level coalitions in competitive games. Given a normal form game, we define a corresponding cooperative game with transferable utility, where the value of each coalition is determined by the safety level payoff it derives in the original---non-cooperative---game. We thus capture several key features of agents' behavior: (i) the possible monetary transfer among the coalition members; (ii) the solidarity of the outsiders against the collaborators; (iii) the need for the coalition...

  1. Cooperative Mobile Web Browsing

    DEFF Research Database (Denmark)

    Perrucci, GP; Fitzek, FHP; Zhang, Qi;

    2009-01-01

    This paper advocates a novel approach for mobile web browsing based on cooperation among wireless devices within close proximity operating in a cellular environment. In the actual state of the art, mobile phones can access the web using different cellular technologies. However, the supported data...... extension of current technology, we propose a novel architecture where mobile phones are grouped together in clusters, using a short-range communication such as Bluetooth, sharing, and accumulating their cellular capacity. The accumulated data rate resulting from collaborative interactions over short...

  2. AFRA: Supporting regional cooperation

    International Nuclear Information System (INIS)

    The African Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) provides a framework for African Member States to intensify their collaboration through programmes and projects focused on the specific shared needs of its members. It is a formal intergovernmental agreement which entered into force in 1990. In the context of AFRA, Regional Designated Centres for training and education in radiation protection (RDCs) are established African institutions able to provide services, such as training of highly qualified specialists or instructors needed at the national level and also to facilitate exchange of experience and information through networks of services operating in the field

  3. Cooperation Between Equals

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011 MARKS the 55th anniversary of the start of contemporary friendly relations between the People’s Republic of China and African countries. Chinese Vice Premier Hui Liangyu’s recent African trip gave another boost to the burgeoning China-Africa ties,said Chinese Vice Foreign Minister Zhai Jun.Hui visited five African countries - Mauritius, Zambia,the Democratic Republic of the Congo,Cameroon and Senegal -from January 6 to 19.Agriculture and trade were some of the most promising areas of cooperation between China and these countries,said Zhai in a recent interview with ChinAfrica.Excerpts follow:

  4. Cooperative problem solving in a cooperatively breeding primate

    OpenAIRE

    Cronin, K.; Kurian, A; Snowdon, C

    2005-01-01

    We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards...

  5. Cooperative problem solving in a cooperatively breeding primate (Saguinus oedipus)

    OpenAIRE

    Cronin, Katherine A.; KURIAN, AIMEE V.; Snowdon, Charles T.

    2005-01-01

    We investigated cooperative problem solving in unrelated pairs of the cooperatively breeding cottontop tamarin, Saguinus oedipus, to assess the cognitive basis of cooperative behaviour in this species and to compare abilities with other apes and monkeys. A transparent apparatus was used that required extension of two handles at opposite ends of the apparatus for access to rewards. Resistance was applied to both handles so that two tamarins had to act simultaneously in order to receive rewards...

  6. Muon capture on 3H

    CERN Document Server

    Golak, J; Witala, H; Topolnicki, K; Kamada, H; Nogga, A; Marcucci, L E

    2016-01-01

    The muon capture on 3H leading to muonic neutrino and three neutrons in the final state is studied under full inclusion of final state interactions. Predictions for the three-body break-up of 3H are calculated with the AV18 potential, augmented by the Urbana IX three-nucleon force. Our results are based on the single nucleon weak current operator comprising the dominant relativistic corrections. This work is a natural extension of our investigations of the muon capture on 3He leading to 3H or n+d or n+n+p and muonic neutrino in the final state, presented in Phys. Rev. C90, 024001 (2014).

  7. Experimental studies of electron capture

    International Nuclear Information System (INIS)

    This thesis discusses the main results of recent experimental studies of electron capture in asymmetric collisions. Most of the results have been published, but the thesis also contains yet unpublished data, or data presented only in unrefereed conference proceedings. The thesis aims at giving a coherent discussion of the understanding of the experimental results, based first on simple qualitative considerations and subsequently on quantitative comparisons with the best theoretical calculations currently available. (Auth.)

  8. Algae Based Carbon Capture and Utilization feasibility study : - initial analysis of carbon capture effect based on Zhoushan case pre-study in China

    OpenAIRE

    Sen, Cong

    2012-01-01

    This pre-feasibility study was taken out by the co-operation with Zhejiang University, the CEU lab in Zhejiang University is taking researches of the algae based carbon dioxide capture technology, this report mainly aims to evaluate the GHG mitigation effect of this technology and give suggestions.   This study was carried out at Zhejiang University based on the Zhoushan islands waste incineration power plant project, the report presents the initial feasibility study for the algae based carbo...

  9. Proton Therapy

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Proton Therapy Proton therapy delivers radiation to tumor tissue ... feel during and after the procedure? What is proton therapy and how is it used? Protons are ...

  10. Oxygen Therapy

    Science.gov (United States)

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body ... machine in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  11. Opening and construction of facilities in succession for particle beam therapy of cancer

    International Nuclear Information System (INIS)

    This feature article describes the current state of practical particle beam therapy of cancer, its future prospect, recent opening/construction of its facilities and manufacturers' view with following 9 topics presented by relevant experts. Gunma University (topic 1) started the carbon ion therapy from Mar., 2010, and has treated more than 100 cancer patients to aim the treatment of about 600 patients/year after several years. Fukui Prefectural Hospital Proton Therapy Center (topic 2) started from this March with proton beams for patients with its therapeutic standard, in cooperation with insurance companies and hotels for patients' convenience. Medipolis Proton Therapy and Research Center (Kagoshima Pref.) (topic 3) started this year with proton beams for 13 patients hitherto with reference protocol of Hyogo Ion Beam Medical Center. A new stereotactic irradiation system of proton beams for breast cancer has been developed. Construction of Saga Heavy Ion Medical Accelerator in Tosu (Saga Pref.) (topic 4) began this year to be completed in 2013. Aizawa Hospital (Nagano Pref.) (topic 5) plans to introduce the small-sized proton accelerator-gantry system (Sumitomo Heavy Ind., Ltd.) aiming the practice in 2013. Association for Nuclear Technology in Medicine (topic 6) reports the trends of current and future construction inside/outside Japan. Manufacturers comment their respective business: high-speed scanning irradiation system, next generation handling system of patient and particle beam therapy information system by Toshiba (topic 7); designation of the whole heavy ion beam therapy system (with NIRS), proton beam (as in topic 5) and system of BNCT (boron neutron-capture therapy) (Kyoto Univ.) by Sumitomo Heavy Ind., Ltd. (topic 8); and small-size proton therapeutic machine with 4D tracing capability for patient's movement (Hokkaido Univ.) and with spot-scanning irradiation technique by Hitachi (topic 9). (author)

  12. Teleworking through cooperation

    Directory of Open Access Journals (Sweden)

    Dario Minervini

    2006-07-01

    scheme is strictly connected to new technologies and cooperation is an important dimension of teleworking. In our study, cooperation is found performed both in social relations between employers and employees and in institutionalized relations between managers and unions. Although the two forms of cooperation, here called “social trustee cooperation” and “institutional cooperation”, are often thought as prerequisites of “best practices” of new working arrangements, our case studies demonstrate that cooperation has not always arisen that make possible to implement practices of teleworking. By focusing on cooperative relations, the results of different case studies in industry and in the service sector are discussed, thus intending to contribute to the development of sociological debate on telework.

  13. Social learning in cooperative dilemmas

    OpenAIRE

    Lamba, Shakti

    2014-01-01

    Helping is a cornerstone of social organization and commonplace in human societies. A major challenge for the evolutionary sciences is to explain how cooperation is maintained in large populations with high levels of migration, conditions under which cooperators can be exploited by selfish individuals. Cultural group selection models posit that such large-scale cooperation evolves via selection acting on populations among which behavioural variation is maintained by the cultural transmission ...

  14. The Professionalization of Intelligence Cooperation

    DEFF Research Database (Denmark)

    Svendsen, Adam David Morgan

    "Providing an in-depth insight into the subject of intelligence cooperation (officially known as liason), this book explores the complexities of this process. Towards facilitating a general understanding of the professionalization of intelligence cooperation, Svendsen's analysis includes risk...... management and encourages the realisation of greater resilience. Svendsen discusses the controversial, mixed and uneven characterisations of the process of the professionalization of intelligence cooperation and argues for a degree of 'fashioning method out of mayhem' through greater operational...

  15. Cooperation bibliogram of bird flu

    OpenAIRE

    Stegmann, Johannes; Grohmann, Guenter

    2006-01-01

    The published literature on Bird Flu, now a pandemic animal disease with a possible potential of evolving into a devastating human disease, was analysed primarily with respect of national and international cooperations and networks of authors and countries. The output of research-relevant papers is now around 150 per year and was less than 100 papers per year before 2003. The field is highly cooperative; nearly 90% of the articles have two or more authors. National extramural cooperation is ...

  16. Outage Analysis of Opportunistic Cooperative Ad Hoc Networks with Randomly Located Nodes

    Institute of Scientific and Technical Information of China (English)

    Cheng-Wen Xing; Hai-Chuan Ding; Guang-Hua Yang; Shao-Dan Ma; Ze-Song Fei

    2013-01-01

    In this paper,an opportunistic cooperative ad hoc sensor network with randomly located nodes is analyzed.The randomness of nodes' locations is captured by a homogeneous Poisson point process.The effect of imperfect interference cancellation is also taken into account in the analysis.Based on the theory of stochastic geometry,outage probability and cooperative gain are derived.It is demonstrated that explicit performance gain can be achieved through cooperation.The analyses are corroborated by extensive simulation results and the analytical results can thus serve as a guideline for wireless sensor network design.

  17. Mechanisms for similarity based cooperation

    Science.gov (United States)

    Traulsen, A.

    2008-06-01

    Cooperation based on similarity has been discussed since Richard Dawkins introduced the term “green beard” effect. In these models, individuals cooperate based on an aribtrary signal (or tag) such as the famous green beard. Here, two different models for such tag based cooperation are analysed. As neutral drift is important in both models, a finite population framework is applied. The first model, which we term “cooperative tags” considers a situation in which groups of cooperators are formed by some joint signal. Defectors adopting the signal and exploiting the group can lead to a breakdown of cooperation. In this case, conditions are derived under which the average abundance of the more cooperative strategy exceeds 50%. The second model considers a situation in which individuals start defecting towards others that are not similar to them. This situation is termed “defective tags”. It is shown that in this case, individuals using tags to cooperate exclusively with their own kind dominate over unconditional cooperators.

  18. Financing Capture Ready Coal-Fired Power Plants In China By Issuing Capture Options

    OpenAIRE

    Liang, Xi; Reiner, David; Gibbons, Jon; Jia LI

    2007-01-01

    ?Capture Ready? is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially in the developing world. We propose that fossil fuel plants issue tradable Capture Options to acquire financing. The Capture Option concept could move CCS forward politically in countries such as China, speed up CCS technology development, help Capture Ready inv...

  19. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  20. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  1. International cooperation and exchange

    International Nuclear Information System (INIS)

    For improve the nuclear safety regulatory level of China, it is an important way to absorb international experience widely and use them. In 1998, the NNSA dispatched abroad 34 delegations/90 person-time, and invited to China 9 delegations/73 person-time. The contents of dispatched delegations mainly included the international meetings and personnel training on nuclear safety, and the foreign review consultation and the components' manufacturing inspections related to Chinese nuclear power construction. The contents of invited delegations mainly included the lectures on surveillance technology, and the review consultation about the QSNPP's component purchase from several countries, JLNPP and CEFR. After reformed, the NNSA continues to bear the function on the international cooperation about nuclear safety

  2. Enhanced image capture through fusion

    Science.gov (United States)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  3. Radiative kaon capture in hydrogen

    International Nuclear Information System (INIS)

    Negative kaons were stopped in liquid hydrogen to measure the radiative capture rates to Yγ final states. Branching ratios for the reactions K-p → Λγ and K-p → Σoγ provide information about the quark structure of the Λ(1404). Superior photon resolution is needed to distinguish the signal photons from the background of πo decay photons. Such resolution was provided by a NaI detector, which has a resolution of 1.3% (FWHM) near 300 MeV. A description of the experimental technique and data reduction is presented, along with preliminary branching ratio results

  4. Capturing and storing CO2

    International Nuclear Information System (INIS)

    A promising way to combat global warming is to capture CO2 produced by industry and bury it in deep geologic formations. The processes are technically complex and still expensive. Before it can be captured, CO2 must be separated from other components produced by industrial processes that burn oil, gas, coal or biomass, such as nitrogen and sulfur. The CO2 is then piped down vertically from the storage facility and injected at depths of at least 800 meters. There, it reaches a 'supercritical' state in which it becomes denser and less voluminous. Three types of underground reservoirs have been tested so far: 1 - Deep onshore or offshore saline aquifers: These brackish water-bearing layers constitute the biggest reservoir, with 10,000 billion metric tons of storage capacity. They are also the most evenly distributed geographically, making it easier to find one near the source of emission. 2 - Depleted oil and gas reservoirs: injecting pressurized CO2 helps to dissolve remaining oil and reduce its viscosity. This facilitates the enhanced recovery of oil or gas from nearly depleted reservoirs, adding a potential economic advantage to the operation. The disadvantage of these reservoirs is their distance from CO2-emitting industrial sites. 3 - Unexploited coal seams: the CO2 replaces the methane that is naturally present in the coal bed. The methane can be extracted and marketed by gas companies. There are two additional solutions. The first involves storing the CO2 in carbon 'lakes' in the ocean at a minimum depth of 1,500 meters, but this has been rejected due to concerns about the impacts on the marine ecosystem and how long the CO2 would be contained. The second solution, carbon sequestration by mineral carbonation, is of more interest. Here, CO2 reacts with naturally occurring subsurface calcium and magnesium to become a carbonated rock similar to limestone, which is insoluble and therefore perfectly stable over the long term. The entire CO2 capture, compression

  5. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  6. Molecular dynamics study of ion capture from water by a model ionophore, tetraprotonated cryptand SC24

    Science.gov (United States)

    Owenson, Brian; Macelroy, Robert D.; Pohorille, Andrew

    1988-01-01

    The molecular dynamics of chloride capture from water by the tetraprotonated cryptand SC24 has been studied for the cases of 19 distances between the criptand and the chloride. The chloride capture is found to be characterized by a rapid cooperative change in the conformation of the cryptand when the Cl(-) begins to enter the ligand and just as it encounters the energy barrier. The conformational transition is associated with a shift of three N-H bonds from the pure endo orientation, such that they point toward the chloride.

  7. Progress of international evaluation cooperation

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Keiichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The international evaluation cooperation started to remove the differences among major nuclear data libraries such as JENDL, ENDF, and JEF. The results obtained from the cooperation have been used to improve the quality of the libraries. This paper describes the status of the ongoing projects and several remarkable results so far obtained from the projects already finished. (author)

  8. Cooperation between CERN and ITER

    CERN Multimedia

    CERN Audiovisual Service

    2008-01-01

    CERN and the International Fusion Organisation ITER have just signed a first cooperation agreeement. The Director-General of the International Fusion Energy Organization, Mr Kaname Ikeda, and CERN Director-General, Robert Aymar, signed a cooperation agreement at a meeting on the Meyrin site on Thursday 6 March.

  9. Cooperative answers in database systems

    Science.gov (United States)

    Gaasterland, Terry; Godfrey, Parke; Minker, Jack; Novik, Lev

    1993-01-01

    A major concern of researchers who seek to improve human-computer communication involves how to move beyond literal interpretations of queries to a level of responsiveness that takes the user's misconceptions, expectations, desires, and interests into consideration. At Maryland, we are investigating how to better meet a user's needs within the framework of the cooperative answering system of Gal and Minker. We have been exploring how to use semantic information about the database to formulate coherent and informative answers. The work has two main thrusts: (1) the construction of a logic formula which embodies the content of a cooperative answer; and (2) the presentation of the logic formula to the user in a natural language form. The information that is available in a deductive database system for building cooperative answers includes integrity constraints, user constraints, the search tree for answers to the query, and false presuppositions that are present in the query. The basic cooperative answering theory of Gal and Minker forms the foundation of a cooperative answering system that integrates the new construction and presentation methods. This paper provides an overview of the cooperative answering strategies used in the CARMIN cooperative answering system, an ongoing research effort at Maryland. Section 2 gives some useful background definitions. Section 3 describes techniques for collecting cooperative logical formulae. Section 4 discusses which natural language generation techniques are useful for presenting the logic formula in natural language text. Section 5 presents a diagram of the system.

  10. Does facial resemblance enhance cooperation?

    Directory of Open Access Journals (Sweden)

    Trang Giang

    Full Text Available Facial self-resemblance has been proposed to serve as a kinship cue that facilitates cooperation between kin. In the present study, facial resemblance was manipulated by morphing stimulus faces with the participants' own faces or control faces (resulting in self-resemblant or other-resemblant composite faces. A norming study showed that the perceived degree of kinship was higher for the participants and the self-resemblant composite faces than for actual first-degree relatives. Effects of facial self-resemblance on trust and cooperation were tested in a paradigm that has proven to be sensitive to facial trustworthiness, facial likability, and facial expression. First, participants played a cooperation game in which the composite faces were shown. Then, likability ratings were assessed. In a source memory test, participants were required to identify old and new faces, and were asked to remember whether the faces belonged to cooperators or cheaters in the cooperation game. Old-new recognition was enhanced for self-resemblant faces in comparison to other-resemblant faces. However, facial self-resemblance had no effects on the degree of cooperation in the cooperation game, on the emotional evaluation of the faces as reflected in the likability judgments, and on the expectation that a face belonged to a cooperator rather than to a cheater. Therefore, the present results are clearly inconsistent with the assumption of an evolved kin recognition module built into the human face recognition system.

  11. Cooperative Education in Outdoor Education

    Science.gov (United States)

    Martin, Andy; Flemming, Jenny

    2010-01-01

    Cooperative education is a structured experiential education strategy integrating classroom studies with work place learning. The purpose of this paper is to evaluate how a cooperative education model can be included within an outdoor education undergraduate degree to develop reflective practitioners and to enhance graduate capabilities. Document…

  12. Generation Z, Meet Cooperative Learning

    Science.gov (United States)

    Igel, Charles; Urquhart, Vicki

    2012-01-01

    Today's Generation Z teens need to develop teamwork and social learning skills to be successful in the 21st century workplace. Teachers can help students develop these skills and enhance academic achievement by implementing cooperative learning strategies. Three key principles for successful cooperative learning are discussed. (Contains 1 figure.)

  13. Teaching Cooperative Skills through Games.

    Science.gov (United States)

    Glakas, Barbara A.

    1991-01-01

    Through cooperative games and play, children learn to share, empathize with others' feelings, and get along better. The article makes suggestions to physical educators on how to design games to teach students cooperative behaviors and how to incorporate them into class, noting four important game-design principles. (SM)

  14. Making Cooperative Learning Groups Work.

    Science.gov (United States)

    Hawley, James; De Jong, Cherie

    1995-01-01

    Discusses the use of cooperative-learning groups with middle school students. Describes cooperative-learning techniques, including group roles, peer evaluation, and observation and monitoring. Considers grouping options, including group size and configuration, dyads, the think-pair-share lecture, student teams achievement divisions, jigsaw groups,…

  15. Marketing Cooperatives and Financial Structure

    NARCIS (Netherlands)

    Hendrikse, G.W.J.; Veerman, C.P.

    1995-01-01

    The relationship between the financial structure of marketing cooperatives and the requirement of the domination of control by the members of the cooperative is analysed with an emphasis on incomplete contracts and system complementarities. It is argued that the disappearance of shortage markets in

  16. Subsidizing R&D cooperatives

    NARCIS (Netherlands)

    J. Hinloopen

    2001-01-01

    A framework is developed with which the implementation of two commonly used R&D-stimulating policies can be evaluated: providing R&D subsidies and sustaining the formation of R&D cooperatives. Subsidized R&D cooperatives can also be analyzed. The analysis shows that providing R&D subsidies is more e

  17. Cross-border innovation cooperation

    DEFF Research Database (Denmark)

    Hjaltadóttir, Rannveig Edda; Makkonen, Teemu; Sørensen, Nils Karl

    2014-01-01

    Finding a suitable partner is paramount for the success of innovation cooperation. Thus, this paper sets out to analyse the determinants of cross-border innovation cooperation in Denmark focusing on partner selection. The aim of the article is to investigate determinants of partner selection taki...

  18. Cooperative Learning for Better Performance.

    Science.gov (United States)

    Di Natale, John J.; Russell, Gordon

    1995-01-01

    Asserts that linking music ensemble programs and cooperative learning strategies often has been overlooked. Describes the benefits of cooperative learning techniques for music performance preparation. Concludes that the small-group approach can enhance traditional music programs by offering students the chance to make their own decisions. (CFR)

  19. Adaptive capture of expert knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, C.L.; Jones, R.D. [Los Alamos National Lab., NM (United States); Hand, Un Kyong [Los Alamos National Lab., NM (United States)]|[US Navy (United States)

    1995-05-01

    A method is introduced that can directly acquire knowledge-engineered, rule-based logic in an adaptive network. This adaptive representation of the rule system can then replace the rule system in simulated intelligent agents and thereby permit further performance-based adaptation of the rule system. The approach described provides both weight-fitting network adaptation and potentially powerful rule mutation and selection mechanisms. Nonlinear terms are generated implicitly in the mutation process through the emergent interaction of multiple linear terms. By this method it is possible to acquire nonlinear relations that exist in the training data without addition of hidden layers or imposition of explicit nonlinear terms in the network. We smoothed and captured a set of expert rules with an adaptive network. The motivation for this was to (1) realize a speed advantage over traditional rule-based simulations; (2) have variability in the intelligent objects not possible by rule-based systems but provided by adaptive systems: and (3) maintain the understandability of rule-based simulations. A set of binary rules was smoothed and converted into a simple set of arithmetic statements, where continuous, non-binary rules are permitted. A neural network, called the expert network, was developed to capture this rule set, which it was able to do with zero error. The expert network is also capable of learning a nonmonotonic term without a hidden layer. The trained network in feedforward operation is fast running, compact, and traceable to the rule base.

  20. Non-cooperative game theory

    CERN Document Server

    Fujiwara-Greve, Takako

    2015-01-01

    This is a textbook for university juniors, seniors, and graduate students majoring in economics, applied mathematics, and related fields. Each chapter is structured so that a core concept of that chapter is presented with motivations, useful applications are given, and related advanced topics are discussed for future study. Many helpful exercises at various levels are provided at the end of each chapter. Therefore, this book is most suitable for readers who intend to study non-cooperative game theory rigorously for both theoretical studies and applications. Game theory consists of non-cooperative games and cooperative games. This book covers only non-cooperative games, which are major tools used in current economics and related areas. Non-cooperative game theory aims to provide a mathematical prediction of strategic choices by decision makers (players) in situations of conflicting interest. Through the logical analyses of strategic choices, we obtain a better understanding of social (economic, business) probl...