WorldWideScience

Sample records for capture delayed fission

  1. Electron-capture delayed fission properties of 242Es

    International Nuclear Information System (INIS)

    Electron-capture delayed fission of 242Es produced via the 233U(14N,5n)242Es reaction at 87 MeV (on target) was observed to decay with a half-life of 11±3 s, consistent with the reported α-decay half-life of 242Es of 16-4+6 s. The mass-yield distribution of the fission fragments is highly asymmetric. The average pre-neutron emission total kinetic energy of the fragments was measured to be 183±18 MeV. Based on the ratio of the measured number of fission events to the measured number of α decays from the electron-capture daughter 242Cf (100% α branch), the probability of delayed fission was determined to be 0.006±0.002. This value for the delayed fission probability fits the experimental trend of increasing delayed fission probability with increasing Q value for electron capture. (c) 2000 The American Physical Society

  2. Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region

    CERN Multimedia

    Pauwels, D B; Lane, J

    2008-01-01

    In our recent experiment (March 2007) at the velocity filter SHIP(GSI) we observed the electron-capture delayed fission of the odd-odd isotope $^{194}$At. This is the first unambiguous identification of this phenomenon in the very neutron-deficient nuclei in the vicinity of the proton shell closure at Z=82. In addition, the total kinetic energy (TKE) for the daughter nuclide $^{194}$Po was measured, despite the fact that this isotope does not decay via spontaneous fission. Semi-empirical analysis of the electron-capture Q$_{EC}$ values and fission barriers B$_{f}$ shows that a relatively broad island of ECDF must exist in this region of the Nuclide Chart, with some of the nuclei having unusually high ECDF probabilities. Therefore, this Proposal is intended to initiate the systematic identification and study of $\\beta$-delayed fission at ISOLDE in the very neutron-deficient lead region. Our aim is to provide unique low-energy fission data (e.g. probabilities, TKE release, fission barriers and their isospin dep...

  3. Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei

    International Nuclear Information System (INIS)

    Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. 242Es was produced via the 233U(14N,5n)242Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 ± 3 seconds. The ECDF of 242Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 ± 18 MeV. The probability of delayed fission (PDF) was measured to be 0.006 ± 0.002. In conjunction with this experiment, the excitation functions of the 233U(14N,xn)247-xEs and 233U(15N,xn)248-xEs reactions were measured for 243Es, 244Es and 245Es at projectile energies between 80 MeV and 100 MeV

  4. Capture and fission with DANCE and NEUANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T.A.; Chadwick, M.B.; Couture, A.; Fowler, M.M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T.N.; Talou, P.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

    2015-12-15

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on {sup 235}U are focused on quantifying the population of short-lived isomeric states in {sup 236}U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  5. Capture and fission with DANCE and NEUANCE

    Science.gov (United States)

    Jandel, M.; Baramsai, B.; Bond, E.; Rusev, G.; Walker, C.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Hayes, A.; Kawano, T.; Mosby, S.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.

    2015-12-01

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables.

  6. Capture and fission with DANCE and NEUANCE

    International Nuclear Information System (INIS)

    A summary of the current and future experimental program at DANCE is presented. Measurements of neutron capture cross sections are planned for many actinide isotopes with the goal to reduce the present uncertainties in nuclear data libraries. Detailed studies of capture gamma rays in the neutron resonance region will be performed in order to derive correlated data on the de-excitation of the compound nucleus. New approaches on how to remove the DANCE detector response from experimental data and retain the correlations between the cascade gamma rays are presented. Studies on 235U are focused on quantifying the population of short-lived isomeric states in 236U after neutron capture. For this purpose, a new neutron detector array NEUANCE is under construction. It will be installed in the central cavity of the DANCE array and enable the highly efficient tagging of fission and capture events. In addition, developments of fission fragment detectors are also underway to expand DANCE capabilities to measurements of fully correlated data on fission observables. (orig.)

  7. Delayed Fission Neutrons. Proceedings of a Panel

    International Nuclear Information System (INIS)

    Proceedings of a panel organized by the IAEA and held in Vienna, 24-27 April 1967. The increasing sophistication in reactor design and, in particular, the advent of fast reactors have shown that delayed fission neutrons play a major role in considerations of operational stability and safety. Fourteen leading scientists from nine Member States made vital new data available and defined areas of investigation for future experimental and theoretical work. The data are summarized in an Annex at the end of the Proceedings. The contents include papers on the importance of delayed neutron data in reactor design, on which fission products should be considered as precursors, and on experimental methods for separating and determining the precursors. Each paper is in its original language (11 English, 1 French, 2 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. The summarized discussions, summary and Annex are in English. (author)

  8. Delayed fission of the 238U muonic atom

    International Nuclear Information System (INIS)

    The time distributions of fission and muon free decay events with respect to the moment of the muon-stop event have been measured for double and triple coincidences between these three events. The triple-coincidence time distributions give an indication of the o-curence of two new effects: the delayed fission of muonic 238U atom and conversion of muons from the fission fragments

  9. Neutron Capture and Fission Measurement on ^238Pu at DANCE

    Science.gov (United States)

    Chyzh, Andrii; Wu, Ching-Yen; Kwan, Elaine; Henderson, Roger; Gostic, Jolie; Couture, Aaron; Young, Hye; Ullmann, John; O'Donnell, John; Jandel, Marian; Haight, Robert; Bredeweg, Todd

    2012-10-01

    Neutron capture and fission reactions on actinides are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study the neutron capture reactions in ^238Pu. Because of extreme spontaneous α-radioactivity in ^238Pu and associated safety issues, 3 separate experiments were performed in 2010-2012. The 1st measurement was done without fission tagging on a 396-μg thick target. The 2nd one was with PPAC on the same target. The 3rd final measurement was done on a thin target with a mass of 40 μg in order to reduce α-background load on PPAC. This was the first such measurement in a laboratory environment. The absolute ^238Pu(n,γ) cross section is presented together with the prompt γ-ray multiplicity in the ^238Pu(n,f) reaction.

  10. Determination for β-delayed fission probability of 230Ac

    Institute of Scientific and Technical Information of China (English)

    袁双贵; 杨维凡; 徐岩冰; 肖永厚; 罗亦孝

    2002-01-01

    The 230Ra has been produced via 232Th-2p reaction induced by 60 MeV/u 18O ion irradia-tion of natural thorium. The radium was radiochemically separated from the mixture of thorium andreaction products. Thin Ra sources in which 230Ac was got through 230Ra β- → 230Ac were pre-pared for observing fission fragments from β-delayed fission of 230Ac. The sources were exposedto the mica fission track detectors and measured by the HPGe γ detector. The precursor 230Ac wasidentified by means of observed two fission events as well as γ spectra, and the β-delayed fissionprobability of 230Ac was obtained to be (1.19±0.85) × 10-8.

  11. Spectroscopy of fission fragments using prompt-delayed coincidence technique

    Indian Academy of Sciences (India)

    R Palit; S Biswas

    2015-09-01

    The time-stamp structure of the digital data acquisition system of the Indian National Gamma Array (INGA) has been utilized to carry out prompt-delayed coincidence technique for the spectroscopic study of fission fragments. This technique was found to be useful to determine the states above the long-lived isomer (with half-life up to ∼5 s), present in the fission fragments. The angular correlation of -rays, emitted by the fission fragments, has also been used in the present INGA geometry to determine the spins of the de-exciting states.

  12. A precursor of β-delayed fission:230Ac

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 230Ra has been produced via multinucleon transfer and dissipativefragmentation of heavy target in the 60 MeV/u 18O ion reaction with natural thorium.The radium was radiochemically separated from irradiated thorium targets. 230Acwas obtained by 230Ra β-→ 230Ac. Thin Ra sources were prepared for observing fissionfragments from β-delayed fission of 230Ac. The sources were exposed to the micafission track detectors and measured by a HPGe γ detector. The two fission eventswere obtained and could been assigned to theβ-delayed fission of 230Ac. The β-delayedfission probability of 230Ac was determined to be (1.19+0.85) × 10-8.

  13. β -delayed fission and α decay of 196At

    Science.gov (United States)

    Truesdale, V. L.; Andreyev, A. N.; Ghys, L.; Huyse, M.; Van Duppen, P.; Sels, S.; Andel, B.; Antalic, S.; Barzakh, A.; Capponi, L.; Cocolios, T. E.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Heßberger, F. P.; Kalaninová, Z.; Köster, U.; Lane, J. F. W.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Mitsuoka, S.; Nagame, Y.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rothe, S.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.

    2016-09-01

    A nuclear-decay spectroscopy study of the neutron-deficient isotope 196At is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of 196At allowed the low-energy excited states in the daughter nucleus 192Bi to be investigated. A β -delayed fission study of 196At was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope 196Po (populated by β decay of 196At) was deduced based on the measured fission-fragment energies. A β DF probability Pβ DF(196At) =9 (1 ) ×10-5 was determined.

  14. Neutron Induced Capture and Fission Processes on 238U

    OpenAIRE

    Oprea Cristiana; Oprea Alexandru

    2016-01-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present...

  15. Composite delayed neutron energy spectra of fissionable isotopes

    International Nuclear Information System (INIS)

    Delayed neutron (DN) energy spectra spanning a range of 0.01-4.00 MeV have been measured for 235U, 238U and 239Pu. DN equilibrium spectra were also measured for all three nuclides. A helium jet transfer system was used to transport fission products to a low-background counting area. Beta-neutron correlations were used for background suppression and for energy determination by the neutron time-of-flight method. The 235U and 239Pu spectra show marked similarity, while those from the fast fission of 238U are considerably more energetic. DN six-group spectra for 235U, 238U and 239Pu have been deduced from these measurements using a constrained least-squares iterative method

  16. Neutron Induced Capture and Fission Processes on 238U

    Directory of Open Access Journals (Sweden)

    Oprea Cristiana

    2016-01-01

    Full Text Available Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit – Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn processes.

  17. Neutron Induced Capture and Fission Processes on 238U

    Science.gov (United States)

    Oprea, Cristiana; Oprea, Alexandru

    2016-03-01

    Nuclear data on Uranium isotopes are of crucial interest for new generation of nuclear reactors. Processes of interest are the nuclear reactions induced by neutrons and in this work mainly the capture and the fission process on 238U will be analyzed in a wide energy interval. For slow and resonant neutrons the many levels Breit - Wigner formalism is necessary. In the case of fast and very fast neutrons up to 200 MeV the nuclear reaction mechanism implemented in Talys will be used. The present evaluations are necessary in order to obtain the field of neutrons in the design of nuclear reactors and they are compared with experimental data from literature obtained from capture and (n,xn) processes.

  18. Neutron Capture and Fission Measurements on Actinides at Dance

    Science.gov (United States)

    Chyzh, A.; Wu, C. Y.; Kwan, E.; Henderson, R. A.; Gostic, J. M.; Ullmann, J. L.; Bredeweg, T. A.; Jandel, M.; Couture, A. J.; O'Donnell, J. M.; Haight, R. C.; Lee, H. Y.

    2013-03-01

    The prompt γ-ray energy and multiplicity distributions in the spontaneous fission of 252Cf have been measured using a highly granular 4π γ-ray calorimeter. Corrections were made for both energy and multiplicity distributions according to the detector response, which is simulated numerically using a model validated with the γ-ray calibration sources. A comparison of the total γray energy distribution was made between the measurement and a simulation by random sampling of the corrected γ-ray energy and multiplicity distributions through the detector response. A reasonable agreement is achieved between the measurement and simulation, indicating weak correlations between γ-ray energy and multiplicity. Moreover, the increasing agreement with increasing multiplicity manifests the stochastic aspect of the prompt γ decay in spontaneous fission. This calorimeter was designed for the study of neutron capture reactions and an example is given, where the238Pu(n, γ) measurement was carried out in the laboratory environment for the first time.

  19. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  20. Simulation and measurement of delayed γ-rays after photon-induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xianfei; Kavouras, John G. [Nuclear Engineering Program, University of Utah, Salt Lake City, UT 84112 (United States); Nakazawa, Dante R. [Canberra Industries, Meriden, CT 06450 (United States); Yang, Haori, E-mail: haori.yang@utah.edu [Nuclear Engineering Program, University of Utah, Salt Lake City, UT 84112 (United States)

    2013-11-21

    Photon-induced fission has been investigated as a method to detect and identify nuclear materials. Although high-energy delayed-fission γ-rays have been considered as a reliable signature for detection of fissionable materials, interference from γ-rays produced as secondary effects from other photonuclear reactions is inevitable. This effect has been studied in distinguishing fissionable materials from non-fissionable materials based on differential delayed γ-ray yields via both simulation and measurements. The energy spectra of delayed-photofission γ-rays carry isotopic information of the target materials. The feasibility of accurate spectrometry measurements in between intense linear accelerator pulses has been demonstrated using three independent spectroscopy systems. The measured delayed γ-rays spectra were then compared with MCNPX simulation results. Through the comparison, this article intends to show the capabilities of the current version of MCNPX in applications of simulating the photofission process.

  1. Simultaneous measurement of the neutron capture and fission yields of {sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Berthoumieux, E.; Abbondanno, U.; Aerts, G.; Alvarez, H.A.; Alvarez-Velarde, F.A.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Calvino, F.; Calviani, M.; Cano Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    We have measured the neutron capture and fission cross section of {sup 233}U at the neutron time-of-flight facility n-TOF at CERN in the energy range from 1 eV to 1 MeV with high accuracy by using a high performance 4{pi} BaF{sub 2} Total Absorption Calorimeter (TAC) as a detection device. The method, based on the shape analysis of the TAC energy response, allowing to disentangle between {gamma}'s originating from fission and capture will be presented as well as the first very preliminary results. (authors)

  2. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  3. $\\beta$-delayed fission in proton-rich nuclei in the lead region

    CERN Document Server

    AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia

    Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...

  4. Experimental study of delayed neutron emission from photo-fission of actinides

    International Nuclear Information System (INIS)

    Recently there has been a strong interest in a number of applications using the detection of delayed neutrons. Some ongoing projects, as non-destructive characterization of nuclear waste, have shown an urgent need of associated nuclear data. In this context, an experimental program has been launched to measure the delayed neutron yields and their time spectra from photo-fission of actinides. The very first measurements had been performed earlier in our laboratory with the uranium-238 and thorium-232 targets. In this thesis work the follow-up experiments, data analysis and results are reported for uranium-235 and neptunium-237. The high efficiency delayed neutron detector was designed, optimised, constructed and employed for these experiments with the endpoint Bremsstrahlung photons from 15 to 18 MeV. The photo-fission delayed neutron group parameters (ai, λi) were obtained and compared both with earlier work found in the literature and our own modelling results. The energy dependence of the total delayed neutron yield (νd) was also experimentally studied with the endpoint Bremsstrahlung photons in the energy range from 12 to 18 MeV for the uranium-235, 238, thorium-232, and neptunium-237 targets. Finally, some feasibility experiments were successfully performed with mixed samples in order to quantify the different actinide presence in the target. In parallel, the energy dependence of the total delayed neutron yield (νd) was also experimentally studied for thorium-232 but from neutron induced fission. (author)

  5. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  6. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, Marian [Los Alamos National Laboratory

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  7. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    International Nuclear Information System (INIS)

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) from (n,f) events. The first evidence of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  8. Calculation of the decay power of fission products considering neutron capture transformation

    International Nuclear Information System (INIS)

    The decay power of fission products has been calculated taking into consideration the neutron capture transformation of each nuclide and its beta decay. The nuclear data library contains 1114 nuclides of which 144 are stable. Neutron capture transformation is considered for 59 nuclides, 31 of which are stable. The atom number of each nuclide is calculated analytically with code DCHAIN. The effect of neutron capture transformation in the decay power of fission products was examined by varying the neutron spectrum, neutron flux, fissioning nuclide, and irradiation and cooling time. From the results obtained the following were revealed: The effect of neutron capture increases with neutron flux and irradiation time, and it becomes salient beyond 105 sec in cooling time. It is small for less than the 104 sec which is important in the design of ECCS (emergency core cooling system) of a light-water reactor. In this region the decay power changes are small, less than 0.2%, by the neutron capture for the thermal fission of 235U irradiated for one year to thermal neutron flux 3 x 1013 n/cm2/sec. The effect of neutron capture has peaks around cooling time 106 sec and 108 sec; it is negligible beyond 109 sec. The changes in decay power are 2.4%, 10.5% and 0.2% at cooling time 106 sec, 108 sec and 109 sec, respectively, in the above irradiation. Around 106 sec, the change in decay power is mainly from the contributions of 134Cs (17%), sup(148m)Pm(60%) and 148Pm(14%). Around 108 sec 134Cs(98%) alone contributes to the change in decay power. (author)

  9. Empirical description of beta-delayed fission partial half-lives

    CERN Document Server

    Ghys, L; Antalic, S; Huyse, M; Van Duppen, P

    2015-01-01

    Background: The process of beta-delayed fission (bDF) provides a versatile tool to study low-energy fission in nuclei far away from the beta-stability line, especially for nuclei which do not fission spontaneously. Purpose: The aim of this paper is to investigate systematic trends in bDF partial half-lives. Method: A semi-phenomenological framework was developed to systematically account for the behavior of bDF partial half-lives. Results: The bDF partial half-life appears to exponentially depend on the difference between the Q value for beta decay of the parent nucleus and the fission-barrier energy of the daughter (after beta decay) product. Such dependence was found to arise naturally from some simple theoretical considerations. Conclusions: This systematic trend was confirmed for experimental bDF partial half-lives spanning over 7 orders of magnitudes when using fission barriers calculated from either the Thomas-Fermi or the liquid-drop fission model. The same dependence was also observed, although less p...

  10. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  11. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    Science.gov (United States)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4π array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  12. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  13. Detection of SNM by delayed gamma rays from induced fission

    Science.gov (United States)

    Rennhofer, H.; Crochemore, J.-M.; Roesgen, E.; Pedersen, B.

    2011-10-01

    The Pulsed Neutron Interrogation Test Assembly (PUNITA) is an experimental device for research in NDA methods and field applicable instrumentation for nuclear safeguards and security applications. PUNITA incorporates a standard 14-MeV (D-T) pulsed neutron generator inside a large graphite mantle. The generator target is surrounded by a thick tungsten filter with the purpose to increase the neutron output and to tailor the neutron energy spectrum. In this configuration a sample may be exposed to a relatively high average thermal neutron flux of about (2.2±0.1)×10 3 s -1 cm -2 at only 10% of the maximum target neutron emission. The sample cavity is large enough to allow variation of the experimental setup including the fissile sample, neutron and gamma detectors, and shielding materials. The response from SNM samples of different fissile material content was investigated with various field-applicable scintillation gamma detectors such as the 3×2 in. LaBr 3 detector. Shielding in the form of tungsten and cadmium was applied to the detector to improve the signal to background ratio. Gamma and neutron shields surrounding the samples were also tested for the purpose of simulating clandestine conduct. The energy spectra of delayed gamma rays were recorded in the range 100 keV-9 MeV. In addition time spectra of delayed gamma rays in the range 3.3-8 MeV were recorded in the time period of 10 ms-120 s after the 14-MeV neutron burst. The goal of the experiment was to optimize the sample/detector configuration including the energy range and time period for SNM detection. The results show, for example, that a 170 g sample of depleted uranium can be detected with the given setup in less than 3 min of investigation. Samples of higher enrichment or higher mass are detected in much shorter time.

  14. Detecting fissionable materials in a variety of shielding matrices via delayed gamma and neutron photofission signatures—Part 2: Experimental results

    Science.gov (United States)

    Proctor, Alan; Gabriel, Tony A.; Hunt, Alan W.; Manges, JoAnn; Handler, Thomas

    2012-01-01

    Successful detection of fissionable material contained in a variety of matrices was demonstrated by photon active interrogation of fissionable and inert target materials. Samples were irradiated with pulsed 15 MeV photons generated by a LINAC and tungsten electron/photon converter, operating at 15 Hz. Matrix materials included air (no matrix), wood, water, and lead. A unique dual mode gamma/neutron detector was used to acquire data from both fission product gamma and fission product neutron emission. Neutron emission was recorded by detecting the 478 keV capture gamma from the 10B (n,α) 7Li reaction, generating a photopeak in the recorded gamma spectrum. Two signatures were found to correctly differentiate between the fissionable target ( 238U) and inert targets (lead, steel, air, and beryllium), with substantial differences in delayed gamma and neutron signatures for fissionable and inert materials in all cases. The signatures are simple to compute and are not significantly affected by system variations or interferences expected during cargo scanning.

  15. Fuel age impacts on gaseous fission product capture during separations

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    relatively short half-lives, 12.3 y and 10.7 y, respectively, the dose decreases with the time from when the fuel is removed from the reactor to the time it is processed (herein “fuel age”). One possible strategy for limiting the discharges of these short halflife radionuclides is to allow the fuel to age to take advantage of radioactive decay. Therefore, the doses and required DFs are calculated as a function of fuel age. Here we calculate, given the above constraints and assumptions, the minimum ages for each fuel type that would not require additional effluent controls for the shorter half-life volatile radionuclides based on dose considerations. With respect to 129I doses, we find that the highest dose is calculated with iodine as a fine particulate. The dose scales as the fraction of the total 129I that is particulate. Therefore, we assume for all of our calculations that 100% of the 129I is particulate and allow the user of the results given here to scale our calculated doses to their needs. To summarize the data given in the body and appendices of this report, we find that the principal isotopes of concern are 3H and 129I, the latter requiring the highest DFs. The maximum DF value for 129I is 8000 for the illustrated cases. The required DF for 3H could be as high as 720, depending on the age of the fuel processed. The DF for 85Kr could be up to ~60, depending on fuel age. The DF for 14C is in many cases 1 (no treatment required) but could be as high as 30. The DFs required are within the range of DFs that are reported for the capture technologies that are available for the volatile radionuclides. Achieving the required 129I and 3H DFs is more challenging. Variations in stack design and other design factors may also significantly impact the DF requirements.

  16. beta-delayed fission from sup 2 sup 3 sup 0 Ac

    CERN Document Server

    Yang Wei Fan; Xu Yan Bing; Xong Bing; Pan Qiang Yan; He Jian Jun; Xiao Yong Hou; Li Yi

    2002-01-01

    ThO sub 2 is irradiated with 60 MeV/u sup 1 sup 8 O beams. sup 2 sup 3 sup 0 Ra is produced via the multi-nucleon transfer and dissipative fragmentation reactions of the target. sup 2 sup 3 sup 0 Ra is radio-chemical separated from ThO sub 2 and the other reaction products. The thin Ra sources are prepared. The mica fission track detectors are exposed to the Ra sources. gamma-rays of Ra decay in the sources are measured by a HPGe detector. The mica foil is etched in HF solution. The etched mica foil is scanned with an optical microscope. The fission tracks that should come from beta-delayed fission of sup 2 sup 3 sup 0 Ac are observed. The beta-delayed fission probability of sup 2 sup 3 sup 0 Ac is determined to be (1.19 +- 0.85) x 10 sup - sup 8

  17. New Beta-delayed Neutron Measurements in the Light-mass Fission Group

    International Nuclear Information System (INIS)

    A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for 91Br, 86As, 85As, and 85Ge nuclei

  18. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  19. Neutron capture cross-section of fission products in the European activation file EAF-3

    Energy Technology Data Exchange (ETDEWEB)

    Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D. (Netherlands Energy Research Foundation (ECN), Petten (Netherlands))

    1992-05-01

    This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,[gamma]) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs.

  20. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  1. Research on the determination of 235U fission number by delayed γ-rays absorbed dose rates

    International Nuclear Information System (INIS)

    Background: The determination method of 235U fission number by detecting fission products using HPGe detector has been established before. But in some special cases, we need to get the fission number in-time in high intensity radiation environment. HPGe detector has its limitation due to the complex y spectrum accompany with high flux. Purpose: To get rid of the limitation mentioned above, a new method is introduced by detecting the delayed γ-rays absorbed dose rates. Methods: By using independent fission yield together with radioactive decay dates from CENDL 3.0 and ENDF BVII.1, dynamic calculation for total absorbed dose rate in air 1 meter from the source whose compositions were thermal neutron-induced fission products of 235U has been done. Results: A set of absorbed dose rate data of 235U fission products irradiated through fast rabbit irradiation system on Xi'an pulse reactor was recorded. The deviation of the fission neutron number between method by γ-rays absorbed dose rates and method by HPGe detector is 7%. Conclusion: It's feasible to determine the fission neutron number of 235U using delayed γ-rays absorbed dose rates in a high intensity radiated environment. (authors)

  2. Measurements of neutron induced capture and fission reactions on $^{233}$ U (EAR1)

    CERN Multimedia

    The $^{233}$U plays the essential role of ssile nucleus in the Th-U fuel cycle, which has been proposed as a safer and cleaner alternative to the U-Pu fuel cycle. Considered the scarce data available to assess the capture cross section, a measurement was proposed and successfully performed at the n_TOF facility at CERN using the 4$\\pi$ Total Absorp- tion Calorimeter (TAC). The measurement was extremely dicult due to the need to accurately distinguish between capture and fission $\\gamma$-rays without any additional discrim-ination tool and the measured capture cross section showed a signicant disagreement in magnitude when compared with the ENDF/B-VII.1 library despite the agreement in shape. We propose a new measurement that is aimed at providing a higher level of dis-crimination between competing nuclear reactions, to extend the neutron energy range and to obtain more precise and accurate data, thus fullling the demands of the "NEA High Priority Nuclear Data Request List". The setup is envisaged as a combin...

  3. Neutron capture and fission reactions on 235U: cross sections, α-ratios and prompt γ-ray emission from fission

    Directory of Open Access Journals (Sweden)

    González-Romero E.

    2013-03-01

    Full Text Available According to the international benchmarks, and as it is mentioned in the NEA High Priority Request List, the 235U(n,γ cross section is of utmost importance for the operation and design of current and advanced nuclear reactors. The required accuracy in this energy region (100 eV to 2.25 keV ranges between 5% and 7%, to be compared with the present differences of 20% between the α-ratios in different evaluations. At n_TOF we have measured this cross section during the summer of 2012 using a fission tagging capture set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4π Total Absorption Calorimeter with a series of MicroMegas fission detectors. The experiment has provided as well very valuable information on the distribution of energies and multiplicities of the γ-rays emitted prompt after capture and fission reactions. The very fresh data from this experiment will be presented for the first time, and their quality and expected results will be discussed in detail

  4. Measurements of Fission and Radioactive Capture Reaction Rates Inside the Fuel of the Ipen/MB-01

    Science.gov (United States)

    Mura, Luís Felipe L.; Bitelli, Ulysses d'Utra; Fanaro, Leda C. C. B.

    2011-05-01

    This work presents the measures of the nuclear reaction rates along the radial direction of the fuel pellet by irradiation and posterior gamma spectrometry of a thin slice of fuel pellet of UO2 at 4.3% enrichment. From its irradiation, the rate of radioactive capture and fission had been measured as a function of the radius of the pellet disk using a Ortec GMX HPGe detector. Lead collimators had been used for this purpose. Simulating the fuel pellet in the pin fuel of the IPEN/MB-01 reactor, a thin UO2 disk is used, being inserted in the interior of a dismountable fuel rod. This fuel rod is then placed in the central position of the IPEN/MB-01 reactor core and irradiated during 1 h under a neutron flux of 5 ×108 n/cm2 s. In gamma spectrometry, 10 collimators with different diameters have been used; consequently, the nuclear reactions of radioactive capture that occurs in atoms of 238U and the fission that occurs on both 235U and 238U are measured in function of 10 different regions (diameter of collimator) of the UO2 fuel pellet disk. Nuclear fission produces different fission products such as 143Ce with a yield fission of 5.9% which decay is monitored in this work. Corrections in geometric efficiency due to introduction of collimators on HPGe detection system were estimated using photon transport of MCNP-4C code. Some calculated values of nuclear reaction rate of radioactive capture and fission along the radial direction of the fuel pellet obtained by Monte Carlo methodology, using the MCNP-4C code, are presented and compared to the experimental data showing very good agreement.

  5. Monte Carlo Models for the Production of beta-delayed Gamma Rays Following Fission of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Prussin, S; Descalle, M; Hall, J

    2004-02-03

    A Monte Carlo method for the estimation of {beta}-delayed {gamma}-ray spectra following fission is described that can accommodate an arbitrary time-dependent fission rate and photon collection history. The method invokes direct sampling of the independent fission yield distributions of the fissioning system, the branching ratios for decay of individual fission products and the spectral distributions for photon emission for each decay mode. Though computationally intensive, the method can provide a detailed estimate of the spectrum that would be recorded by an arbitrary spectrometer, and can prove useful in assessing the quality of evaluated data libraries, for identifying gaps in these libraries, etc. The method is illustrated by a first comparison of calculated and experimental spectra from decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general purpose transport calculations, where detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may be unnecessary, it is shown that an accurate and simple parameterization of a {gamma}-ray source function can be obtained. These parametrizations should provide high-quality average spectral distributions that should prove useful in calculations describing photons escaping from thick attenuating media.

  6. Reaction 48Ca+208Pb: the capture-fission cross-sections and the mass-energy distributions of fragments above and deep below the Coulomb barrier

    OpenAIRE

    Prokhorova, E. V.; Cherepanov, E. A.; Itkis, M.G.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu.Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Rusanov, A. Ya.

    2003-01-01

    The capture-fission cross-sections in an energy range of 206-242 MeV of 48Ca-projectiles and mass-energy distributions (MEDs) of reaction products in an energy range of 211-242 MeV have been measured in the 48Ca+208Pb reaction using the double-arm time-of-flight spectrometer CORSET. The MEDs of fragments for heated fission were shown to consist of two components. One component, which is due to classical fusion-fission, is associated with the symmetric fission of the 256No compound nucleus. Th...

  7. Development of an experimental set-up for the measurement of neutron-induced fission and capture cross sections of highly radioactive fissile nuclei

    Directory of Open Access Journals (Sweden)

    Companis Iulia

    2014-04-01

    Full Text Available The measurement of neutron-capture cross sections of many actinides is complicated by the difficulty in separating capture γ-rays from the large fission-fragment prompt γ-ray background. For example, current estimates of the capture cross section of 233U show large discrepancies, with differences of more than 20%. To improve the accuracy of data, a new experimental set-up for the simultaneous measurement of the neutron-induced capture and fission cross sections was designed, assembled and optimized. The measurements will be performed at the GEel LINear Accelerator (GELINA neutron time-of-flight facility in Belgium, where neutron cross sections can be measured over a wide energy range with high energy resolution. The fission detector consists of a dedicated multi-plate high-efficiency ionization chamber (IC. The γ-rays produced in capture reaction are detected by an array of C6D6 scintillators. Fission γ–rays are distinguished from capture γ–rays by the anticoincidence signals from the IC and the C6D6 detectors. For the undetected fission events a correction has to be applied based on the efficiency of the IC that should be high and known with a high accuracy. The performance of the IC during dedicated test experiments is presented, focusing on the determination of the detection efficiency.

  8. Development of an experimental set-up for the measurement of neutron-induced fission and capture cross sections of radioactive fissile nuclei

    Directory of Open Access Journals (Sweden)

    Companis I.

    2013-12-01

    Full Text Available A new experimental set-up for a simultaneous measurement of neutron induced capture and fission cross sections was designed, assembled and optimized. The measurements will be performed at GEel LINear Accelerator (GELINA neutron time-of-flight facility in Belgium, where neutron cross sections can be measured over a wide energy range with high energy resolution. The fission events detector consists of a dedicated multi-plate high efficiency fission ionization chamber (IC. The γ-rays produced in capture reaction are detected by an efficient array of C6D6 scintillators. Fission γ-rays events are distinguished from capture events by the anticoincidence signals from the IC and the C6D6 detectors. For the undetected fission events a correction has to be applied with respect to the efficiency of the IC that should be high and known with a high precision. Another important issue is the good separation between fission-fragment (FF and the high alpha pile-up. The performances of the IC during test experiments are presented, focusing in particular on the detection efficiency.

  9. A brief history of the Delayed'' discovery of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.

    1989-08-01

    This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. 43 refs.

  10. Systematics Study on Thermal Capture Radiation Cross Section for Fission Nuclides

    Institute of Scientific and Technical Information of China (English)

    TAO; Xi; WU; Hai-cheng; WANG; Ji-min

    2012-01-01

    <正>The research of the neutron capture radiation cross section is surveyed. The systematics of capture radiation cross section contains single energy cross section systematics, excitation function, and spectra systematics. This work gathers the experimental cross sections of actinide nuclei at the thermal energy, and evaluated data. 382 nuclei of ENDF/BⅦ.0, 398 nuclei of JENDL-4.0, 232 nuclei of CENDL-3.1, and the evaluation data of BNL are surveyed. Based on the evaluation, a set of capture cross sections for actinide nuclei at thermal energy is recommended.

  11. Delayed Fission Product Gamma-Ray Transmission Through Low Enriched UO2 Fuel Pin Lattices in Air

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, TH [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2004-10-18

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called “channeling” effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute’s Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice.Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins

  12. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  13. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  14. Recent measurements of neutron capture cross sections in the fission product mass region

    International Nuclear Information System (INIS)

    The radiative capture cross sections for the separated isotopes of Sr, Y, Zr, Mo, Pd, Cd, Ba, La, Ce, Pr and Nd in the energy range 3 to 200 keV were measured with high energy resolution at the 40 m station of the Oak Ridge Electron Linear Accelerator. Maxwellian averaged 30 keV cross sections and average resonance parameters derived from the analysis are tabulated. A strong dependence of the average radiative widths on neutron binding energy is noted. This leads to a pronounced even-odd disparity. Neutron strength functions reduce with decreasing binding energy along an isotopic chain owing to the decreasing density of doorway states at the binding energy. 16 references

  15. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Directory of Open Access Journals (Sweden)

    Minato Futoshi

    2016-01-01

    Full Text Available Nuclear β-decay and delayed neutron (DN emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA and the Hauser-Feshbach statistical model (HFSM. In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  16. Calculation of Beta Decay Half-Lives and Delayed Neutron Branching Ratio of Fission Fragments with Skyrme-QRPA

    Science.gov (United States)

    Minato, Futoshi

    2016-06-01

    Nuclear β-decay and delayed neutron (DN) emission is important for the r-process nucleosynthesis after the freeze-out, and stable and safe operation of nuclear reactors. Even though radioactive beam facilities have enabled us to measure β-decay and branching ratio of neutron-rich nuclei apart from the stability line in the nuclear chart, there are still a lot of nuclei which one cannot investigate experimentally. In particular, information on DN is rather scarce than that of T1/2. To predict T1/2 and the branching ratios of DN for next JENDL decay data, we have developed a method which comprises the quasiparticle-random-phase-approximation (QRPA) and the Hauser-Feshbach statistical model (HFSM). In this work, we calculate fission fragments with T1/2 ≤ 50 sec. We obtain the rms deviation from experimental half-life of 3:71. Although the result is still worse than GT2 which has been adopted in JENDL decay data, DN spectra are newly calculated. We also discuss further subjects to be done in future for improving the present approach and making next generation of JENDL decay data.

  17. Fission product data library

    International Nuclear Information System (INIS)

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  18. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  19. Determination of the 238U capture to total fission ratio in alternate depleted uranium/polyethylene shells with D-T neutrons

    International Nuclear Information System (INIS)

    Aiming at checking the conceptual design of the subcritical blanket in the fusion–fission hybrid reactor, an integral experiment was carried out on an alternate depleted uranium/polyethylene-shell setup with D-T neutrons using activation technique. 18 depleted uranium foils were placed at 90° direction to the incident D beam, and the distribution of the 238U capture to total fission ratio was determined by measuring the 277.6 keV γ ray generated by neutron capture of 238U and the 293.3 keV γ ray generated by fission of 235U and 238U. The ratios were generally between 1 and 2 in the depleted uranium shells, with relative uncertainties between 3.0% and 5.5%. The ratios were calculated by the MCNP4B code employing ENDF/B-VI nuclear data library, the discrepancies between calculations and experiments were all within 6%, and the average calculation to experiment(C/E) ratio was 0.998.

  20. Neutron capture cross-section of fission products in the European activation file EAF-3. Presented at the NEA Specialists` Meeting on Fission Product Nuclear Data, JAERI, Japan, 25-27 May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands)

    1992-05-01

    This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,{gamma}) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs.

  1. New measurements of (n,γ) and (n,fission) cross sections and capture-to-fission ratios for ^233,235U and ^239Pu using the DANCE 4π BaF2 array

    Science.gov (United States)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Becker, J. A.; Parker, W. E.; Wu, C. Y.; Baker, J. D.; McGrath, C. A.

    2009-10-01

    Accurate neutron nuclear data are important to many issues in stockpile stewardship, nuclear reactor design and re-certification, nuclear non-proliferation and nuclear forensics. Of particular interest are the production and destruction reactions for all of the major and most of the minor actinides. The competition between capture and fission in many of the actinides presents both an obstacle and an opportunity for large γ detector arrays such as DANCE. Additional instrumentation is required to deconvolve the two contributions to the total observed γ-ray spectrum. However, conducting a simultaneous measurement can simplify background treatment and other sources of systematic uncertainty. An outline of the current experimental program will be presented along with results from neutron capture measurements on ^233,235U and ^239Pu.

  2. Feasibility study of 235U and 239Pu characterization in radioactive waste drums using neutron-induced fission delayed gamma rays

    Science.gov (United States)

    Nicol, T.; Pérot, B.; Carasco, C.; Brackx, E.; Mariani, A.; Passard, C.; Mauerhofer, E.; Collot, J.

    2016-10-01

    This paper reports a feasibility study of 235U and 239Pu characterization in 225 L bituminized waste drums or 200 L concrete waste drums, by detecting delayed fission gamma rays between the pulses of a deuterium-tritium neutron generator. The delayed gamma yields were first measured with bare samples of 235U and 239Pu in REGAIN, a facility dedicated to the assay of 118 L waste drums by Prompt Gamma Neutron Activation Analysis (PGNAA) at CEA Cadarache, France. Detectability in the waste drums is then assessed using the MCNPX model of MEDINA (Multi Element Detection based on Instrumental Neutron Activation), another PGNAA cell dedicated to 200 L drums at FZJ, Germany. For the bituminized waste drum, performances are severely hampered by the high gamma background due to 137Cs, which requires the use of collimator and shield to avoid electronics saturation, these elements being very penalizing for the detection of the weak delayed gamma signal. However, for lower activity concrete drums, detection limits range from 10 to 290 g of 235U or 239Pu, depending on the delayed gamma rays of interest. These detection limits have been determined by using MCNPX to calculate the delayed gamma useful signal, and by measuring the experimental gamma background in MEDINA with a 200 L concrete drum mock-up. The performances could be significantly improved by using a higher interrogating neutron emission and an optimized experimental setup, which would allow characterizing nuclear materials in a wide range of low and medium activity waste packages.

  3. Capture and Fission rate of 232-Th, 238-U, 237-Np and 239-Pu from spallation neutrons in a huge block of lead.

    CERN Document Server

    Vlachoudis, Vasilis

    2000-01-01

    The study is centered on the research of the incineration possibility of nuclear waste, by the association of a particle accelerator with a multiplying medium of neutrons, in the project "Energy Amplifier" of C. Rubbia. It consists of the experimental determination of the rates of capture and fission of certain elements (232-Th, 238-U, 237-Np and 239-Pu) subjected to a fluence of fast spallation neutrons. These neutrons are produced by the interaction of high kinetic energy protons (several GeV) provided by the CERN-PS accelerator, on a large lead solid volume. The measurement techniques used in this work, are based on the activation of elements in the lead volume and the subsequent gamma spectroscopy of the activated elements, and also by the detection of fission fragment traces. The development, of a Monte Carlo code makes it possible, on one hand, to better understand the relevant processes, and on the other hand, to validate the code, by comparison with measurements, for the design and the construction of...

  4. Measurements of periods, relative abundances and absolute yields of delayed neutrons from fast neutron induced fission of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Piksaikine, V. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The experimental method for measurements of the delayed neutron yields and period is presented. The preliminary results of the total yield, relative abundances and periods are shown comparing with the previously reported values. (J.P.N.)

  5. 瞬发和缓发γ射线对堆内构件释热率影响的研究%Study on the influence of prompt fission γ-ray and delayed γ-ray on reactor internals heating rate

    Institute of Scientific and Technical Information of China (English)

    苏耿华; 石秀安; 蔡德昌; 李雷

    2012-01-01

    To improve the accuracy of the calculated reactor internals heating rate in the design of nuclear power plants, this paper studied the contribution of prompt fission γ to the reactor internals heating rate based on the original method of MCNP external neutron source model. The results revealed that the reactor internals heating rate increased by 9% ~38% with prompt fission γ taken into account and the internals nearer to the core had a lager increment. In addition, it is believed after analysis that the contribution of the delayed γ on reactor internals heating rate is similar to the prompt fission γ. Therefore, when calculating reactor internals heating rate, in addition to the neutron source and neutron capture γ, prompt fission γ and delayed γ should also be considered.%为提高核电设计中反应堆堆内构件释热率计算的准确性,本文在原来MCNP外中子源模型计算方法的基础上,计算分析瞬发裂变γ对堆内构件释热率的贡献.计算结果显示,考虑瞬发裂变γ使得堆内构件的释热率增加9%~38%,离堆芯越近的堆内构件的增加值越大.另外,分析认为缓发γ对堆内构件释热率的贡献与瞬发裂变γ相当.因而反应堆堆内构件释热率计算中除了考虑中子及中子俘获所生γ的贡献,还应该考虑瞬发裂变γ和缓发γ的贡献.

  6. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  7. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  8. First Measurement of \\theta_13 from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodenough, L; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2013-01-01

    The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\\sin^2 2\\theta_{13}=0.097\\pm 0.034(stat.) \\pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \\sigma. This result is consistent with previous measurements of $\\sin^2 2\\theta_{13}$.

  9. Enhancing the Detector for Advanced Neutron Capture Experiments

    OpenAIRE

    Couture A.; Mosby S.; Baramsai B.; Bredeweg T. A.; Jandel M.; Macon K.; O’Donnell J.M.; Rusev G.; Taddeucci T. N; Ullmann J.L.; Walker C.L.

    2015-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detec...

  10. Realtime or Delayed Tele-Echography Using (A) a Robotic Arm, ISDN or Satellite Lines, (B) a Volumic Echographic Capture Mode and Internet (Application to Abdomen and Fetus)

    Science.gov (United States)

    Arbeille, Ph.; Cloppet, F.; Boucher, A.; Capri, A.; Vincent, N.

    2008-06-01

    Objective: to test (a) the tele-echography in realtime based on the use of a robotic arm, (b) the delayed tele echography using a volumic echographic capture and delayed processing. Method: A dedicated robotic arm (ESTELE) holding a real ultrasound probe is remotely controlled from the expert site with a fictive probe, and reproduces on the real probe all the movements of the expert hand. A dedicated motorized probe holder (TILTER) was used for tilting a 2D probe from -45 to +45°. Results: During fetal robotized Tele-echography (n=50) the expert was able to visualize and measure the fetal structures in 95% of the cases, while during abdomen echography (n=87) the expert visualized the main organs and lesions in 87% of the cases. The mean duration of the robotized tele echography session for one patient was 20+/-10 min. The delayed echography using the TILTER was tested on 40 patients. The organs were adequately visualized in 85% of the cases after 3 capture per organ. The average time from the first capture until the diagnostic was delivered was 40+/-10 minutes. Conclusion: Realtime or delayed Tele-echography provide similar information as direct examination in at least 85% of the cases. No false diagnostic was reported.

  11. Calculations of fission rates for r-process nucleosynthesis

    OpenAIRE

    Panov, I. V.; Kolbe, E.; Pfeiffer, B.; Rauscher, T.; Kratz, K.-L.; Thielemann, F. -K.

    2004-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that neverthe...

  12. Preliminary study of the α ratio measurement, ratio of the neutron capture cross section to the fission one for 233U, on the PEREN platform. Development and study of the experimental setup

    International Nuclear Information System (INIS)

    Producing nuclear energy in order to reduce anthropic CO2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233U, ratio of the neutron capture cross section to fission one for 233U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the

  13. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M.A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  14. Comparative studies of the relation costs/benefits of the production methods of 99Mo: fission of 235U and neutron capture reaction on 98Mo

    International Nuclear Information System (INIS)

    This work analyses the benefits and costs that are the results of the production of Technetium generators, using 99Mo produced by two different ways. For this analysis, the production process of 99Mo, nowadays imported, obtained through the fission of uranium. The second process is the gel generator that is totally national, developed by researcher at IPEN. The self-sustained costs were evaluated for both production processes. The conclusion was that although positive and negative aspects appear in both processes, they must remain: Fission Mo will supply the generators with activities higher than 1.85x1010 Bq and the gel generator will supply activities up to 1.85x1010 Bq. This limitation can be overcome if the power of the Reactor is upgraded and if the irradiation time covers the 3 shifts. (author)

  15. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  16. Calculations of fission rates for r-process nucleosynthesis

    CERN Document Server

    Panov, I V; Pfeiffer, B; Rauscher, T; Kratz, K L; Thielemann, F K

    2005-01-01

    Fission plays an important role in the r-process which is responsible not only for the yields of transuranium isotopes, but may have a strong influence on the formation of the majority of heavy nuclei due to fission recycling. We present calculations of beta-delayed and neutron-induced fission rates, taking into account different fission barriers predictions and mass formulae. It is shown that an increase of fission barriers results naturally in a reduction of fission rates, but that nevertheless fission leads to the termination of the r-process. Furthermore, it is discussed that the probability of triple fission could be high for $A>260$ and have an effect on the formation of the abundances of heavy nuclei. Fission after beta-delayed neutron emission is discussed as well as different aspects of the influence of fission upon r-process calculations.

  17. Background radiation from fission pulses

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Arthur, E.D.; Brady, M.C.; LaBauve, R.J.

    1988-05-01

    Extensive source terms for beta, gamma, and neutrons following fission pulses are presented in various tabular and graphical forms. Neutron results from a wide range of fissioning nuclides (42) are examined and detailed information is provided for four fuels: /sup 235/U, /sup 238/U, /sup 232/Th, and /sup 239/Pu; these bracket the range of the delayed spectra. Results at several cooling (decay) times are presented. For ..beta../sup -/ and ..gamma.. spectra, only /sup 235/U and /sup 239/Pu results are given; fission-product data are currently inadequate for other fuels. The data base consists of all known measured data for individual fission products extensively supplemented with nuclear model results. The process is evolutionary, and therefore, the current base is summarized in sufficient detail for users to judge its quality. Comparisons with recent delayed neutron experiments and total ..beta../sup -/ and ..gamma.. decay energies are included. 27 refs., 47 figs., 9 tabs.

  18. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  19. Singlet exciton fission photovoltaics.

    Science.gov (United States)

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  20. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  1. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  2. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  3. Enhancing the detector for advanced neutron capture experiments

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons

  4. Multilevel analysis of the 233U and 235U capture and fission cross-sections and statistical properties of the Kapur-Peierls-type resonance parameters for the S-wave cross-sections of the fissile isotopes

    International Nuclear Information System (INIS)

    At the 1966 Conference on Nuclear Data for Reactors, simultaneous measurements of the capture and fission cross-sections of 233U and 235U were presented. Those measurements have now been analysed with the multilevel formalism developed by Adler and Adler. To obtain consistent sets of resonance parameters the capture and fission data were least-square fitted simultaneously. This analysis was carried out to 60 eV for 233U and to 100 eV for 235U. The main purpose of this analysis was to provide a simple and precise analytical description of the very complex structure of the fission and capture cross-sections of 233U and 235U at low energy. Such an analytical description should be useful to calculate reaction rates in nuclear reactors and to compare experimental data taken with different energy resolutions or at different sample temperatures. For the low-energy resonances of 233U and 235U, the neutron width is always smaller, by at least two orders of magnitude, than the total width. Thus, the total cross-section, for those isotopes, can be approximated as the sum of the absorption cross-section and the potential scattering cross-section. Hence it is possible to compute the total cross-section from the resonance parameters obtained by fitting the fission and capture cross-sections. The total cross-section of 235U computed by this method is compared to the data from a transmission measurement done at Saclay, with the sample at 77 deg. K. The computed total cross-section of 233U is compared with transmission data obtained at Oak Ridge National Laboratory and at the Material Testing Reactor. Such comparisons between data obtained by different experimental techniques illustrate the internal consistency of the low-energy cross-sections of the two main uranium fissile isotopes. The physical interpretation of the resonance parameters is somewhat ambiguous, because such multilevel fits are by no means unique. This is particularly true for 233U since, for this nucleus, the

  5. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the eleventh issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS

  6. Decay characteristics of fission products and summation calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Faculty of Engineering, Musashi Institute of Technology, Tokyo (Japan)

    1999-02-01

    This paper reviews the decay characteristics of fission products on the viewpoint of summation calculation. The fission products (FPs) are accumulated in the operating power reactors. As they are neutron-rich at the time of scission, they undergo successive beta decays toward stable nuclides. To grasp the quantity of an arbitrary nuclide, fission yields, decay constants and blanching ratios of the nuclide in the same decay chain ( a mass chain of the fixed mass is sufficient) must be known. As a neutron capture increases the mass, and release of a delayed neutron decreases the mass, capture cross sections and delayed neutron emitting ratios are also required. If these values of all FP are known, the quantities such as time dependent decay heat and the delayed neutron fraction can be calculated by summation of the contribution of the nuclides. A computer code ORIGEN-2 is a typical example to compute these quantities. The more important than computer code is the data library for summation calculation which includes physical constants such as fission yields, decay constants, blanching ratio, beta and gamma energy emitted at a beta decay, delayed neutron emitting ratios, and neutron capture cross sections for more than 1000 FP nuclides. They are realized in JNDC FP Decay Data Library-Version 2 of Japan, JEF-2 by western European countries, and ENDF/B-VI of USA. The early versions (until early 80's) of these full-scale libraries showed worse agreement with experiment than the old libraries based on approximations and estimates. The application of the gross theory to beta-decay' to short-lived FPs could solve the problem. The above disagreement is explained by having dropped of high excitation levels of short lived daughter nuclides. This is called as Pandemonium Problem. The summation calculation for the gamma ray spectrum succeeded to predict the experimental value by correcting theoretical spectrum. However, there remains still an underestimate for cooling

  7. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  8. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  9. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  10. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  11. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  12. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  13. NEANDC specialists meeting on yields and decay data of fission product nuclides

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information

  14. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  15. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  16. Neutron capture reactions at DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 μg) and/or radioactive (241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data

  17. Progress in fission product nuclear data

    International Nuclear Information System (INIS)

    This is the ninth issue of a report series on Fission Product Nuclear Data (FPND) which is published by the Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA). The purpose of this series is to inform scientists working on FPND, or using such data, about all activities in this field which are planned, ongoing, or have recently been completed. The main part of this report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The present issue contains also a section with some recent references relative to fission product nuclear data, which were not covered by the contributions submitted. The types of activities being included in this report are measurements, compilations and evaluations of: Fission product yields (neutron induced and spontaneous fission); Neutron reaction cross sections of fission products; Data related to the radioactive decay of fission products; Delayed neutron data of fission products; and lumped fission product data (decay heat, absorption etc.). The eighth issue of this series has been published in July 1982 as INDC(NDS)-130. The present issue includes contributions which were received by NDS between 1 August 1982 and 25 June 1983

  18. Fission investigations and evaluation activities at IRMM

    International Nuclear Information System (INIS)

    The IRMM has a longstanding tradition in the field of neutron induced fission physics studies. It is especially well equipped with world-class facilities as the high resolution neutron time-of-flight spectrometer GELINA and the 7 MV Van de Graaff accelerator for the quasi-monoenergetic neutron production. During the past decade several neutron induced fission reactions have been studied in the energy range from eV up to 6 MeV and spontaneous fission. The isotopes under investigation were 235,238 U(n,f), 239 Pu(n,f), 237 Np(n,f), 252 Cf(SF) and 233 Pa(n,f). For all isotopes but 233 Pa, the fission fragment mass-yield and total kinetic energy distributions were measured. 233 Pa was only investigated for the fission cross-section. The results have been described within the multi-modal fission model. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) as well as the the symmetric superlong mode were used for all the isotopes but 252 Cf. For this isotope at least one other fission mode had to be taken into account, the so--called standard III (S3) mode. Since the theoretical interpretation of experimental results was rather successful also an attempt was made to improve the evaluation of the respective fission cross-section as well as their neutron multiplicities and spectra. Here, the statistical model for fission cross-section evaluation was extended by including the multi-modality concept for fission. Based on the underlying model, separate outer fission barriers have been considered for each mode, while the inner barriers and isomeric wells are assumed to be the same. The self-consistent calculations of the fission cross-section as well as total, capture, elastic and inelastic cross-sections were in good agreement with the experimental data and evaluated nuclear data libraries. As a side product, also fission fragment mass yield distributions have been deduced at incident neutron energies hitherto unaccessible. Very

  19. Revision of the JENDL FP Fission Yield Data

    Directory of Open Access Journals (Sweden)

    Katakura Jun-ichi

    2016-01-01

    Full Text Available Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011 revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  20. Revision of the JENDL FP Fission Yield Data

    Science.gov (United States)

    Katakura, Jun-ichi; Minato, Futoshi; Ohgama, Kazuya

    2016-03-01

    Some fission yields data of JENDL FP Fission Yields Data File 2011 (JENDL/FPY-2011) revealed inadequacies when applied to delayed neutron related subjects. The sensitivity analyses of decay heat summation calculations also showed some problems. From these results the fission yields of JENDL/FPY-2011 have been revised. The present report describes the revision of the yield data by emphasizing the sensitivity analyses.

  1. Progress in fission product nuclear data. No. 14

    International Nuclear Information System (INIS)

    This is the 14th issue of a report series on Fission Product Nuclear Data published by the Nuclear Data Section of the IAEA. The types of activities included are measurements, compilations and evaluations of fission product yields, neutron reaction cross sections of fission products, data related to the radioactive decay of fission products, delayed neutron data from neutron induced and spontaneous fission, lumped fission product data. The first part of the report consists of unaltered original contributions which the authors have sent to IAEA/NDS. The second part contains some recent references relative to fission product nuclear data, which were not covered by the contributions submitted, and selected papers from conferences. The third part contains requirements for further measurements

  2. Seminar on Fission VI

    Science.gov (United States)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  3. Decay Chain Deduction of Uranium Fission Products.

    Science.gov (United States)

    Guo, Huiping; Tian, Chenyang; Wang, Xiaotian; Lv, Ning; Ma, Meng; Wei, Yingguang

    2016-07-01

    Delayed gamma spectrum is the fingerprint of uranium materials in arms control verification technology. The decay chain is simplified into basic state linear chain and excitation state linear chain to calculate and analyze the delayed gamma spectra of fission products. Formulas of the changing rule for nuclide number before and after zero-time are deduced. The C program for calculating the delayed gamma ray spectra data is constructed, and related experiments are conducted to verify this theory. Through analysis of the delayed gamma counts of several nuclides, the calculated results are found to be consistent with experimental values. PMID:27218290

  4. Activation Energy for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1952-08-29

    The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.

  5. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  6. Neutrino-Induced Fission and r-Process Nucleosynthesis

    OpenAIRE

    Qian, Y. -Z.

    2002-01-01

    An r-process scenario with fission but no fission cycling is considered to account for the observed abundance patterns of neutron-capture elements in ultra-metal-poor stars. It is proposed that neutrino reactions play a crucial role in inducing the fission of the progenitor nuclei after the r-process freezes out in Type II Supernovae. To facilitate neutrino-induced fission, the proposed r-process scenario is restricted to occur in a low-density environment such as the neutrino-driven wind fro...

  7. Measurement of the Neutron Capture Cross Section of the Fissile Isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a Fission Tagging Based on Micromegas Detectors

    CERN Document Server

    Balibrea, J; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lampoudis, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.

  8. Measurement of the neutron capture cross section of the fissile isotope $^{235}$U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors

    CERN Document Server

    Mendoza, E; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Lampoudis, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P

    2014-01-01

    Actual and future nuclear technologies require more accurate nuclear data on the (n, $\\gamma$) cross sections and $\\alpha$-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission $\\gamma$-ray background competing with the weaker $\\gamma$-ray cascades used as the experimental signature of the (n, $\\gamma$) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,$\\gamma$ ) cross section and $\\alpha$- ratios of fissile isotopes and used for the case of the $^{235}$U isotope. The setup consists in a set of micromegas fission detectors surrounding $^{235}$U samples and placed inside the segmented BaF$_2$ Total Absorption Calorimeter.

  9. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  10. Prompt Fission Gamma-ray Studies at DANCE

    Science.gov (United States)

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M. M.; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O'Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on 252Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and 239Pu. Correlated PFG data from 252Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  11. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  12. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    Science.gov (United States)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  13. Experimental studies of fission properties utilized in reactor design

    International Nuclear Information System (INIS)

    Experimental studies of fission properties utilized in reactor design. A programme of experimental studies of fission parameters useful in reactor design is described including the following: (a) The periods and yields of delayed-neutron groups emitted following the neutron-induced fission of Pu241 are measured. Evidence for systematic isotopic dependence of delayed-neutron yields is presented. An experimental investigation of the relation between the time behaviour of delayed-neutron emission and the energy of the incident neutron inducing fission is described. (b) The cross-section for the inducing, of fission in Am243, Pu242 and Pu241 with neutrons in the energy range 0.030 to 1.8 MeV is measured. Emphasis is placed upon the detailed dependence of the fission cross-section on the incident-neutron energy. The absolute values of the cross-sections are given to a precision of ∼25%. (c) Detailed results of a measurement of the Pu241 fission-neutron spectrum are given, including the spectral shape and average fission-neutron energy. Techniques and methods of measuring prompt-fission-neutron spectra are described. (d) The dependence of #-v# (the average number of neutrons emitted per fission) of U235 on the incident neutron energy is measured from 100 keV to 1.6 MeV. #-v# of U238 and other fissile isotopes is compared to #-v# of U235 (thermal). The relative precision of the measurements is #>approx#1.2%. (author)

  14. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  15. Fission product yields

    International Nuclear Information System (INIS)

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  16. Thermal fission rates with temperature dependent fission barriers

    OpenAIRE

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  17. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  18. Early results utilizing high-energy fission product gamma rays to detect fissionable material in cargo

    International Nuclear Information System (INIS)

    Full text: A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in inter modal cargo containers is described. It is based on interrogation with a pulsed beam of 6-8 MeV neutrons and fission events are identified between beam pulses by their β-delayed neutron emission or β -delayed high-energy γ-radiation. The high-energy γ-ray signature is being employed for the first time. Fission product γ-rays above 3 MeV are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. High-energy γ-radiation is nearly 10X more abundant than the delayed neutrons and penetrates even thick cargo's readily. The concept employs two large (8x20 ft) arrays of liquid scintillation detectors that have high efficiency for the detection of both delayed neutrons and delayed γ-radiation. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. This information, together with predicted signature strength, has been applied to the estimation of detection probability for the nuclear material and estimation of false alarm rates. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  19. Muon-induced fission

    International Nuclear Information System (INIS)

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  20. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  1. Neutron Induced Fission Measurements of ^242mAm at DANCE

    Science.gov (United States)

    Chyzh, A.; Wu, C. Y.; Macri, R. A.; Agvaanlusan, U.; Parker, W. E.; Wilk, P. A.; Becker, J. A.; Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D.; Wilhelmy, J. B.; Wouters, J. M.

    2010-11-01

    Neutron capture and fission reactions on actinieds often present challenges in measuring each of the reaction. Fission tagging detector used along with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a way to measure (n,f) and (n,γ) reactions simultaneously. DANCE was used to measure ^242mAm(n,f) reaction along with a custom made fission-tagging parallel plate avalanche counter (PPAC). The results on fission related γ-ray multiplicity distribution, the ^242mAm(n,f) cross section, and the average γ-ray energy distribution are presented.

  2. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  3. Measurement of Neutron Induced and Spontaneous Fission in Pu-242 at DANCE

    Science.gov (United States)

    Chyzh, Andrii; Wu, C. Y.; Henderson, R.; Couture, A.; Lee, H. Y.; Ullmann, J.; O'Donnell, J. M.; Jandel, M.; Haight, R. C.; Bredeweg, T. A.; Dance Collaboration

    2013-10-01

    Neutron capture and fission reactions are important in nuclear engineering and physics. DANCE (Detector for Advanced Neutron Capture Measurement, LANL) combined with PPAC (avalanche technique based fission tagging detector, LLNL) were used to study neutron induced and spontaneous fission in 242Pu. 2 measurements were performed in 2013. The first experiment was done without the incident neutron beam with the fission tagging ability to study γ-rays emitted in the spontaneous fission of 242Pu. The second one - with the neutron beam to measure both the neutron capture and fission reactions. This is the first direct measurement of prompt fission γ-rays in 242Pu. The γ-ray multiplicity, γ-ray energy, and total energy of γ-rays per fission in 242Pu will be presented. These distributions of the 242Pu spontaneous fission will be compared to those in the 241Pu neutron induced fission. This work was performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract DE-AC52-06NA25396 and Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments

    Science.gov (United States)

    Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.

    2014-04-01

    The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

  5. Measurement of 235U fission reaction-rates in combined device

    International Nuclear Information System (INIS)

    Fission reaction-rates of 235U (wrapped with Cd of 0.8 mm) in the combined setup were measured, using the enriched uranium fission chamber and capturing detector. The method of detecting the low-energy scattering, neutron background was studied. The experimental error is ±6.0%-±10.2%. The results was compared with the ones of 238U the fission reaction-rates. (authors)

  6. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  7. Dynamics of fission and heavy ion reactions

    International Nuclear Information System (INIS)

    Recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear motion such as occurs in fission and heavy ion reactions are discussed. With the goal of finding observable quantities that depend upon the magnitude and mechanism of nuclear dissipation, one-body dissipation and two-body viscosity within the framework of a generalized Fokker-Planck equation for the time dependence of the distribution function in phase space of collective coordinates and momenta are considered. Proceeding in two separate directions, the generalized Hamilton equations of motion for the first moments of the distribution function with a new shape parametrization and other technical innovations are first solved. This yields the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as the energy required for fusion in symmetric heavy-ion reactions and the mass transfer and capture cross section in asymmetric heavy-ion reactions. In a second direction, we specialize to an inverted-oscillator fission barrier and use Kramers' stationary solution to calculate the mean time from the saddle point to scission for a heavy-ion-induced fission reaction for which experimental information is becoming available. 25 references

  8. Model for fission-product calculations

    International Nuclear Information System (INIS)

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and extrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional optical-statistical model. The applied goals generally are: capture cross sections to 7 to 10% accuracies and inelastic-scattering cross sections to 25 to 50%. Comparisons of recent evaluations and experimental results indicate that these goals too often are far from being met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. In order to alleviate the above unfortunate situations, a regional optical-statistical (OM) model was sought with the goal of quantitative prediction of the cross sections of the lighter-mass (Z = 30-51) fission products. The first step toward that goal was the establishment of a reliable experimental data base consisting of energy-averaged neutron total and differential-scattering cross sections. The second step was the deduction of a regional model from the experimental data. It was assumed that a spherical OM is appropriate: a reasonable and practical assumption. The resulting OM then was verified against the measured data base. Finally, the physical character of the regional model is examined

  9. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  10. Simulating an Exploding Fission-Bomb Core

    Science.gov (United States)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  11. Multiple-Coincidence Active Neutron Interrogation of Fissionable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Tinsley, J.R., Hurley, J.P., Trainham, R., Keegan, R.P.

    2008-11-14

    In an extension of the Associated Particle Imaging technique that is used for the detection and imaging of hidden explosives, the present measurements use a beam of tagged 14.1 MeV neutrons in coincidence with two or more gammas to probe for the presence of fissionable materials. We have measured neutron-gamma-gamma coincidences with targets of depleted uranium, tungsten, lead, iron, and carbon and will present results that show the multiple-coincidence counting rate for the depleted uranium is substantially higher than any of the non-fissionable materials. In addition, the presence of coincidences involving delayed particle spectra provides a signature for fissionable materials that is distinct from that for non-fissionable ones. Information from the tagged neutron involved in the coincidence event is used to compute the position of the fissionable material in all three dimensions. The result is an imaging probe for fissionable materials that is compact and portable, and produces relatively low levels of background radiation. Simultaneous measurements on packages of interest for both explosives and fissionable materials are now feasible.

  12. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions

    Science.gov (United States)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.

    1999-01-01

    PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.

  13. Improving Nuclear Safety of Fast Reactors by Slowing Down Fission Chain Reaction

    Directory of Open Access Journals (Sweden)

    G. G. Kulikov

    2014-01-01

    Full Text Available Light materials with small atomic mass (light or heavy water, graphite, and so on are usually used as a neutron reflector and moderator. The present paper proposes using a new, heavy element as neutron moderator and reflector, namely, “radiogenic lead” with dominant content of isotope 208Pb. Radiogenic lead is a stable natural lead. This isotope is characterized by extremely low micro cross-section of radiative neutron capture (~0.23 mb for thermal neutrons, which is smaller than graphite and deuterium cross-sections. The reflector-converter for a fast reactor core is the structure capable of transforming some part of prompt neutrons leaked from the core into the reflected neutrons with properties similar to those of delayed neutrons, that is, sufficiently large contribution to reactivity at the level of effective fraction of delayed neutrons and relatively long lifetime, comparable with lifetimes of radionuclides-emitters of delayed neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in the fast reactor. This can improve the fast reactor safety and reduce some requirements to the technologies used to fabricate fuel for the fast reactor.

  14. Nuclear fission: What have we learned in 50 years?

    International Nuclear Information System (INIS)

    Nuclear fission has captured the imagination of chemists and physicists for half a century now. There are several reasons for this. One of course is that it represents the most drastic rearrangement of nuclear matter known, challenged only recently by collisions induced by very heavy ions. Another is that both statistical and dynamical features come into play. Perhaps one of the most compelling reasons is its never-ending capacity to surprise us: asymmetric mass distributions, the sawtooth dependence of neutron yields in fragment mass, spontaneously fissioning isomers and intermediate structure resonances. Finally, and perhaps most importantly, fission is a rich laboratory within which one can explore the delicate interplay between the macroscopic aspects of bulk nuclear matter and the quantal effects of a finite number of Fermions. It will of course be impossible for me to cover all aspects of fission. I have chosen a limited number of topics to cover, with particular topics being chosen either because the have been associated with persistent puzzles in fission or because they have, or hopefully will, tell us something special about how nuclei behave. After a brief historical note, I organize these topics sequentially according to the various stages of the fission process, starting first with the probability for fission to occur and ending with scission phenomena. 56 refs., 11 figs

  15. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  16. Isotopic studies relative to the Oklo natural fission reactors

    International Nuclear Information System (INIS)

    It has been clearly demonstrated that natural fission reactors operated about 2 109 years ago, in rich uranium one deposits of the Oklo mine in the Republique of Gabon. Six reactions zones have been identified in which approximately six tons of 235U were consumed and the same amount of fission products deposited in the ground. These fission products, their filiation isotopes and nuclei formed from neutron captures are precious tracers, which now can be analysed on well localized samples, to obtain informations on the stability in soil of such elements and data on the nuclear parameters and characteristics of the nuclear reactors. The studies which have been developed at Saclay concern several aspects of this phenomenon: the migrations of fission products, the age of the nuclear reaction, the date of the uranium deposit and the temperature of the reaction zones during the operation of the reactors

  17. Current position on fission product behavior

    International Nuclear Information System (INIS)

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  18. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  19. Revised delayed neutron data for Pickering NGS B

    International Nuclear Information System (INIS)

    Revised delayed neutron fractions and constants were calculated specifically for Pickering NGS B using the latest available delayed neutron data for fissionable isotopes, the currently recommended CANDU delayed photoneutron data, and the formulae provided by Laughton. Burnup-dependent number densities of the fissionable isotopes were computed with WIMS-AECL-IST. Validation and assessment of the new fractions and constants was performed by comparison of historical operating data with point kinetics simulation using the new values. Recommendations are made regarding possible improvements to the delayed neutron data. (author)

  20. Measurement and calculation of 238U fission reaction rates induced by neutrons reflected by carbon material

    International Nuclear Information System (INIS)

    To check the data of carbon material reflecting neutrons, the distribution of 238U fission reaction rates induced by D-T fusion neutrons reflected by carbon material was measured by using the small depleted uranium fission chamber and the capturing detector. For comparison, 238U fission rates without carbon material was measured too. The combined standard uncertainty of 238U fission reaction rate is 5.1%-6.4%. The measured results are consistent with the calculated ones with MCNP/4A code and ENDF/B-IV library data in the range of the error

  1. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S. [Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2003-07-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- {epsilon} turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential.

  2. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  3. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  4. Modelling delay propagation within an airport network

    NARCIS (Netherlands)

    Pyrgiotis, N.; Malone, K.M.; Odoni, A.

    2013-01-01

    We describe an analytical queuing and network decomposition model developed to study the complex phenomenon of the propagation of delays within a large network of major airports. The Approximate Network Delays (AND) model computes the delays due to local congestion at individual airports and capture

  5. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  6. Improvement of Delayed Neutron Counting System

    Institute of Scientific and Technical Information of China (English)

    YUAN; Guo-jun; XIAO; Cai-jin; YANG; Wei; ZHANG; Gui-ying; JIN; Xiang-chun; WANG; Ping-sheng; NI; Bang-fa

    2012-01-01

    <正>A new delayed neutron counting system, which is good at qualitative and quantitative analysis of fissionable nuclide mixture, will be established at China Advanced Research Reactor (CARR). We use 3 He proportional counters to count the delayed neutrons after the samples irradiated by reactor neutrons, including U3O8-stantard, uranium ore and enriched uranium. Then, the counting efficiency and limit of this system were calculated.

  7. The fusion fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    Science.gov (United States)

    Prokhorova, E. V.; Bogachev, A. A.; Itkis, M. G.; Itkis, I. M.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Pashkevich, V. V.; Rusanov, A. Ya.

    2008-04-01

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb → 256No at the energies E=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission "shoulders" corresponding to the light fragment masses ˜60-90 u and complimentary heavy fragment masses. The quasi-fission "shoulders" have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses M=130-135 u and the TKE of ≈233 MeV.

  8. The fusion-fission and quasi-fission processes in the reaction 48Ca + 208Pb at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Mass-energy distributions (MEDs) and capture-fission cross sections have been measured in the reaction 48Ca + 208Pb →256No at the energies Elab=206-242 MeV using a double-arm time-of-flight spectrometer CORSET. It has been observed that MED of the fragments consists of two parts, namely, the classical fusion-fission process corresponding to the symmetric fission of 256No and quasi-fission 'shoulders' corresponding to the light fragment masses ∼60-90 u and complimentary heavy fragment masses. The quasi-fission 'shoulders' have a higher total kinetic energy (TKE) as compared with that expected for the classical fission. A mathematical formalism was employed for the MEDs fragment decomposition into fusion-fission and quasi-fission components. In the fusion-fission process a high-energy Super-Short mode has been discovered for the masses MH=130-135 u and the TKE of ∼233 MeV

  9. General Description of Fission Observables: GEF Model Code

    Science.gov (United States)

    Schmidt, K.-H.; Jurado, B.; Amouroux, C.; Schmitt, C.

    2016-01-01

    The GEF ("GEneral description of Fission observables") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energy spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy that is

  10. The Impact of Fission on R-Process Calculations

    Science.gov (United States)

    Eichler, M.; Arcones, A.; Käppeli, R.; Korobkin, O.; Liebendörfer, M.; Martinez-Pinedo, G.; Panov, I. V.; Rauscher, T.; Rosswog, S.; Thielemann, F.-K.; Winteler, C.

    2016-01-01

    We have performed r-process calculations in neutron star mergers (NSM) and jets of magnetohydrodynamically driven (MHD) supernovae. In these very neutron-rich environments the fission model of heavy nuclei has an impact on the shape of the final abundance distribution and the second r-process peak in particular. We have studied the effect of different fission fragment mass distribution models in calculations of low-Ye ejecta, ranging from a simple parametrization to extensive statistical treatments (ABLA07). The r-process path ends when it reaches an area in the nuclear chart where fission dominates over further neutron captures. The position of this point is determined by the fission barriers and the neutron separation energies of the nuclei involved. As these values both depend on the choice of the nuclear mass model, so does the r-process path. Here we present calculations using the FRDM (Finite Range Droplet Model) and the ETFSI (Extended Thomas Fermi with Strutinsky Integral) mass model with the related TF and ETFSI fission barrier predictions. Utilizing sophisticated fission fragment distribution leads to a highly improved abundance distribution.

  11. Fission of Oriented Nuclei by Low Energy Neutrons. RCN Report

    International Nuclear Information System (INIS)

    This report describes the study of the angular distribution of α-particles and of fission fragments originating from neutron capture in heavy nuclei, which are aligned at low temperatures by the method of hyperfine interaction. The results of the measurements with the target nucleus 233U with neutrons in the energy range from 0 to 2000 eV can be interpreted with the Bohr-theory of transition states at the deformation barrier for nuclear fission. The relatively invariant behaviour of the anisotropy in the angular distribution of fission fragments as a function of neutron energy indicates that the available fission channels are strongly mixed. For neutron resonances with spin and parity 2+ 2 to 3 channels are open and for 3+ resonances 1 to 2. The group structure in the subthreshold fission cross section of 237Np has been explained by the double-humped deformation barrier proposed by Strutinsky. The implication of this interpretation is that all the resonances in one group have the same spin. The resonances in the first group at 40 eV agree consistently with the fission channel (2+,2). The groups at higher neutron energies up to 2000 eV correspond mainly with the channels (2+,2) and (3+,2). (author)

  12. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  13. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  14. Electron capture and stellar collapse

    International Nuclear Information System (INIS)

    In order, to investigate the function of electron capture in the phenomenon of pre-supernovae gravitacional collapse, an hydrodynamic caculation was carried out, coupling capture, decay and nuclear reaction equation system. A star simplified model (homogeneous model) was adopted using fermi ideal gas approximation for tthe sea of free electrons and neutrons. The non simplified treatment from quasi-static evolution to collapse is presented. The capture and beta decay rates, as wellas neutron delayed emission, were calculated by beta decay crude theory, while the other reaction rates were determined by usual theories. The preliminary results are presented. (M.C.K.)

  15. Fission in Rapidly Rotating Nuclei

    Directory of Open Access Journals (Sweden)

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  16. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  17. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  18. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  19. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  20. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  1. Fast fission phenomenon

    Science.gov (United States)

    In these lectures we have described two different phenomena occuring in dissipative heavy ion collisions : neutron-proton asymmetry and fast fission. Neutron-proton asymmetry has provided us with an example of a fast collective motion. As a consequence quantum fluctuations can be observed. The observation of quantum or statistical fluctuations is directly connected to the comparison between the phonon energy and the temperature of the intrinsic system. This means that this mode might also provide a good example for the investigation of the transition between quantum and statistical fluctuations which might occur when the bombarding energy is raised above 10 MeV/A. However it is by no means sure that in this energy domain enough excitation energy can be put into the system in order to reach such high temperatures over the all system. The other interest in investigating neutron-proton asymmetry above 10 MeV/A is that the interaction time between the two incident nuclei will decrease. Consequently, if some collective motion should still be observed, it will be one of the last which can be seen. Fast fission corresponds on the contrary to long interaction times. The experimental indications are still rather weak and mainly consist of experimental data which cannot be understood in the framework of standard dissipative models. We have seen that a model which can describe both the entrance and the exit configuration gives this mechanism in a natural way and that the experimental data can, to a good extend, be explained. The nicest thing is probably that our old understanding of dissipative heavy ion collisions is not changed at all except for the problems that can now be understood in terms of fast fission. Nevertheless this area desserve further studies, especially on the experimental side to be sure that the consistent picture which we have on dissipative heavy ion collisions still remain coherent in the future.

  2. Measurement of Fission Product Yields from Fast-Neutron Fission

    Science.gov (United States)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  3. The SPIDER fission fragment spectrometer for fission product yield measurements

    Energy Technology Data Exchange (ETDEWEB)

    Meierbachtol, K.; Tovesson, F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Arnold, C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blakeley, R. [University of New Mexico, Albuquerque, NM 87131 (United States); Bredeweg, T.; Devlin, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, A.A.; Heffern, L.E. [University of New Mexico, Albuquerque, NM 87131 (United States); Jorgenson, J.; Laptev, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mader, D. [University of New Mexico, Albuquerque, NM 87131 (United States); O' Donnell, J.M.; Sierk, A.; White, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-11

    The SPectrometer for Ion DEtermination in fission Research (SPIDER) has been developed for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). The SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using {sup 229}Th and {sup 252}Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of {sup 252}Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Mass yield results measured from {sup 252}Cf spontaneous fission products are reported from an E–v measurement.

  4. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  5. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  6. Observation of cold fission in 242Pu spontaneous fission

    International Nuclear Information System (INIS)

    Coincidence γ-ray data from the spontaneous fission of 242Pu were collected at the Lawrence Berkeley Laboratory high purity Ge (HPGe) array, GAMMASPHERE. Data from several cold-fission (0 neutron emission) isotopic pairs were observed and are presented. An interesting trend in the fractional population of cold-fission events was observed and is discussed. Relative yields of Zr-Xe, Sr-Ba, and Mo-Te pairs were measured. The Zr-Xe system has the most complete data set. Some speculations on the trend in the number of neutrons emitted as a function of the mass of the Xe isotope populated are presented. Comparisons between the yields from the spontaneous fission of 242Pu and the yields from thermal-neutron-induced fission of 241Pu are also presented. copyright 1996 The American Physical Society

  7. Laser capture.

    Science.gov (United States)

    Potter, S Steven; Brunskill, Eric W

    2012-01-01

    This chapter describes detailed methods used for laser capture microdissection (LCM) of discrete subpopulations of cells. Topics covered include preparing tissue blocks, cryostat sectioning, processing slides, performing the LCM, and purification of RNA from LCM samples. Notes describe the fine points of each operation, which can often mean the difference between success and failure. PMID:22639264

  8. Modeling of Fission Gas Release in UO2

    Energy Technology Data Exchange (ETDEWEB)

    MH Krohn

    2006-01-23

    A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].

  9. Determination of the Primary Nuclear Charge of Fission Fragments from their Characteristic K-X-Ray Emission in Spontaneous Fission of Cf252

    International Nuclear Information System (INIS)

    The distribution of nuclear charge in the spontaneous fission of Cf252 has been determined directly by simultaneous measurement of the masses and characteristic K-X-ray energies associated with the primary fission products. The X-rays were detected by a thin Nal (Tl) crystal (or by an argon-filled proportional counter) in coincidence with a pair of solid-state detectors for the complementary fission fragments. Preliminary to the three-parameter study of the charge-mass distribution the gross characteristics of the K-X-rays were examined in some detail. The average yield of K-X-rays is 0.55 ± 0.1 pet fission (the heavy group accounting fot 70% of the total). From delayed-coincidence and fragment time-of-flight experiments it was.found that about 30% of the X-rays are emitted within 0.1 ns after fission, another 30% between 0.1 and 1 ns, 25% between 1 and 10 ns, the remainder appearing as two delayed components of equal intensity with half-lives of ∼30 ns and ∼100 ns. These characteristics indicate that the X-rays arise from internal conversion during de-excitation of the primary fission fragments, an interpretation supported by the observed yield 1 per fission) of 50 - 300 - keV electrons emitted within 2 ps of fission. In the three-parameter experiments the yield and energy of K-X-rays emitted in the first centimeter (ns) of fragment flight were determined as a function of fragment mass. The yield of K-X-rays per fragment is a pronounced saw-tooth function of mass, rising from p) function in better agreement with the empirical rule of equal charge displacement (ECD) than with other postulates for charge division in nuclear fission. (author)

  10. Fission throughout the periodic table

    International Nuclear Information System (INIS)

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs

  11. Fission throughout the periodic table

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Wozniak, G.J.

    1989-04-01

    The dualistic view of fission and evaporation as two distinct compound nucleus processes is substituted with a unified view in which fission, complex fragment emission, and light particle evaporation are seen as different aspects of a single process. 47 refs., 22 figs.

  12. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  13. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE 4π BaF2 array

    International Nuclear Information System (INIS)

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total γ-ray energy and γ-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,γ)/(n,fission) cross section ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells

  14. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  15. Delayed discharge.

    Science.gov (United States)

    Allen, Daniel

    2016-07-01

    Essential facts Delays in discharging older peo ple from hospital cost the NHS £820 million a year, according to a report from the National Audit Office (NAO). Last year in acute hospitals, 1.15 million bed days were lost to delayed transfers of care, an increase of 31% since 2013. The NAO says rising demand for NHS services is compounded by reduced local authority spending on adult social care - down by 10% since 2009-10. PMID:27380673

  16. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  17. Proceedings of the specialists' meeting on delayed neutron nuclear data

    International Nuclear Information System (INIS)

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  18. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  19. The fundamental role of fission during r-process nucleosynthesis in neutron star mergers

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2015-02-01

    The rapid neutron-capture process, or r-process, is known to be of fundamental importance for explaining the origin of approximately half of the A > 60 stable nuclei observed in nature. Despite important efforts, the astrophysical site of the r-process remains unidentified. Here we study r-process nucleosynthesis in a material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. r-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. Due to the important role played by fission in such a scenario, the impact of fission is carefully analyzed. We consider different state-of-the-art global models for the determination of the fission paths, nuclear level densities at the fission saddle points and fission fragment distributions. Based on such models, the sensitivity of the calculated r-process abundance distribution is studied. The fission path is found to strongly affect the region of heavy nuclei responsible for the fission recycling, while the fission fragment distribution of nuclei along the A ≅ 278 isobars defines the abundance pattern of nuclei produced in the 110 capture of prompt fission neutrons is also shown to affect the abundance distribution, and in particular the shape of the third r-process peak around A ≅ 195. (orig.)

  20. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    Science.gov (United States)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  1. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF2 array

    International Nuclear Information System (INIS)

    We have recently begun a program of high precision measurements of Key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σ γ/σ f) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented

  2. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  3. Fission product data library

    International Nuclear Information System (INIS)

    Reprints of values from BIBFP for 39 isotopes for which either a mistake in the BIBFP Library or updated values in the literature have been found, are given. Most corrections concern the branching ratios for isotopes which are the precursors of delayed neutron emitters

  4. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    Science.gov (United States)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  5. Exciton Correlations in Intramolecular Singlet Fission.

    Science.gov (United States)

    Sanders, Samuel N; Kumarasamy, Elango; Pun, Andrew B; Appavoo, Kannatassen; Steigerwald, Michael L; Campos, Luis M; Sfeir, Matthew Y

    2016-06-15

    We have synthesized a series of asymmetric pentacene-tetracene heterodimers with a variable-length conjugated bridge that undergo fast and efficient intramolecular singlet fission (iSF). These compounds have distinct singlet and triplet energies, which allow us to study the spatial dynamics of excitons during the iSF process, including the significant role of exciton correlations in promoting triplet pair generation and recombination. We demonstrate that the primary photoexcitations in conjugated dimers are delocalized singlets that enable fast and efficient iSF. However, in these asymmetric dimers, the singlet becomes more localized on the lower energy unit as the length of the bridge is increased, slowing down iSF relative to analogous symmetric dimers. We resolve the recombination kinetics of the inequivalent triplets produced via iSF, and find that they primarily decay via concerted processes. By identifying different decay channels, including delayed fluorescence via triplet-triplet annihilation, we can separate transient species corresponding to both correlated triplet pairs and uncorrelated triplets. Recombination of the triplet pair proceeds rapidly despite our experimental and theoretical demonstration that individual triplets are highly localized and unable to be transported across the conjugated linker. In this class of compounds, the rate of formation and yield of uncorrelated triplets increases with bridge length. Overall, these constrained, asymmetric systems provide a unique platform to isolate and study transient species essential for singlet fission, which are otherwise difficult to observe in symmetric dimers or condensed phases. PMID:27183040

  6. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  7. Fission track studies of tektites

    International Nuclear Information System (INIS)

    The fission track analysis method was used for the age determination of tektites. The tektite samples were obtained from Hainan Island and Leizhou Peninsula. The method consists in cutting and polishing two sections of a sample, irradiating one of these with a known thermal neutron flux (5.90 x 1015/cm2), etching each section identically with hydrofluoric acid, and then comparing the fission track densities in two cases with a microscope. Their fission track age is found to be around 0.7 Ma

  8. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  9. Simultaneous Measurements of Flight Times and Energies of Fission Fragments

    International Nuclear Information System (INIS)

    In a companion paper the results of measuring the prompt neutron emission from individual fission fragments arising in thermal fission are reported. In that experiment a large volume liquid scintillation counter was .used to. record the fission neutrons, and fragment mass was identified by a gold silicon surface barrier counter.- arrangement. An alternative Way of measuring the prompt neutron emission is described here. Fragment time-of- flight apparatus is mounted in an evacuated tube that passes laterally through the thermal column of the 5-MW research reactor HERALD. A centrally positioned thin source produces 3 x 105 fissions s-1. Fragments travel distances of 180 cm and 300 cm respectively to the terminal detectors, and in passing through a VYNS film, positioned 180 cm from the source along the longer flight path, eject electrons that are used to form a reference time-signal. Essentially the times of flight of both fission fragments are measured simultaneously with the kinetic energy of one of the pair. This is achieved by using a surface barrier counter for the 300-cm detector. The difficulty of maintaining good timing and energy resolutions simultaneously is overcome by routing the pulse to the charge sensitive preamplifier through a delay line amplifier from which a fast timing pulse is derived. The collected data enables the fragment mass to be determined both before and after prompt neutrons have been emitted. Hence the experiment provides a means for studying the behaviour of neutron emission from individual fragments. The experimental uncertainties are those associated with the measurement of small differences, and an appraisal is made of the errors and calibrations that enter into the measurements. Of particular importance, the response of the surface barrier counter to fission fragments is obtained directly, from the collected data from events in which the neutron emission is low. These calibrations are used in the measurements of postneutron mass

  10. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  11. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  12. Velocity fluctuations of fission fragment.

    OpenAIRE

    Llanes Estrada, Felipe José; Martínez Carmona, Belén; Muñoz Martínez, José L.

    2016-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramers-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fr...

  13. Fission fragment angular distributions and fission cross section validation

    International Nuclear Information System (INIS)

    The present knowledge of angular distributions of neutron-induced fission is limited to a maximal energy of 15 MeV, with large discrepancies around 14 MeV. Only 238U and 232Th have been investigated up to 100 MeV in a single experiment. The n-TOF Collaboration performed the fission cross section measurement of several actinides (232Th, 235U, 238U, 234U, 237Np) at the n-TOF facility using an experimental set-up made of Parallel Plate Avalanche Counters (PPAC), extending the energy domain of the incident neutron above hundreds of MeV. The method based on the detection of the 2 fragments in coincidence allowed to clearly disentangle the fission reactions among other types of reactions occurring in the spallation domain. I will show the methods we used to reconstruct the full angular resolution by the tracking of fission fragments. Below 10 MeV our results are consistent with existing data. For example in the case of 232Th, below 10 MeV the results show clearly the variation occurring at the first (1 MeV) and second (7 MeV) chance fission, corresponding to transition states of given J and K (total spin and its projection on the fission axis), and a much more accurate energy dependence at the 3. chance threshold (14 MeV) has been obtained. In the spallation domain, above 30 MeV we confirm the high anisotropy revealed in 232Th by the single existing data set. I'll discuss the implications of this finding, related to the low anisotropy exhibited in proton-induced fission. I also explore the critical experiments which is valuable checks of nuclear data. The 237Np neutron-induced fission cross section has recently been measured in a large energy range (from eV to GeV) at the n-TOF facility at CERN. When compared to previous measurements, the n-TOF fission cross section appears to be higher by 5-7 % beyond the fission threshold. To check the relevance of n-TOF data, we simulate a criticality experiment performed at Los Alamos with a 6 kg sphere of 237Np. This sphere was

  14. Studies on the reaction mechanism of the muon induced nuclear fission

    International Nuclear Information System (INIS)

    The mass and energy distribution of the fission fragments after muon induced nuclear fission allows the determination of the mean excitation energy of the fissioning nucleus after muon capture. By the systematic comparison with a mass distribution of a corresponding reaction for the first time for this an accuracy of about 1 MeV could be reached. Theoretical calculations on the excitation probability in the muon capture allow in connection with the fission probability an estimating calculation of this energy. The experimental result represents by this a test criterium for the valuation of the theoretical calculation. The measured probabilities for the occurrence of radiationless transitions in the muonic γ cascade of 237Np permit an indirect experimental determination of the barrier enhancement which causes the muon present during the fission process. The value found for this extends to 0.75+-0.1 MeV. A change of the mass distribution by the muon cannot be detected in the nuclides 235U, 237Np, and 242Pu studied here. Only the mean total kinetic energy of the fission products is reduced in these three nuclides in the prompt μ- induced fission by 1 to 2 MeV. For this result the incomplete screening of the nuclear charge during the fission process is made responsible. A mass dependence of this reduction has not been stated. Because the muon has appearently no influence on the mass splitting it can be valied as nearly ideal particle in order to study the hitherto little studied dynamics of the fission process. (orig.)

  15. Neutron capture strategy and technique developments for GNEP

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Laboratory

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  16. Relative quantifying technique to measure mass of fission plate in a fission chamber

    International Nuclear Information System (INIS)

    Under the same neutron radiation conditions, fission counts are proportional to the number of fission nuclei. Based on this concept, a relative quantifying method has been developed to measure the mass of fission plate in fission chamber on a 14 MeV accelerator neutron source at the Neutron Physics Laboratory, INPC, CAEP. The experimental assembly was introduced and mass of the fission material in several fission chambers was measured. The results by this method agree well (within 1%) with the α-quantifying method. Therefore, it is absolutely feasible to quantify the fission plate mass in fission chambers. The measurement uncertainty is 2%-4%. (authors)

  17. Delayed privatization

    OpenAIRE

    Bernardo Bortolotti; Paolo Pinotti

    2008-01-01

    This paper studies the timing of privatization in 21 major developed economies in the 1977-2002 period. Duration analysis shows that political fragmentation plays a significant role in explaining government's decision to privatize: privatization is delayed longer in democracies characterized by a larger number of parties and operating under proportional electoral rules, as predicted by war of attrition models of economic reform. Results are robust to various assumptions on the underlying stat...

  18. A model for fission-product calculations, 1

    International Nuclear Information System (INIS)

    Many fission-product cross sections remain unmeasurable thus considerable reliance must be placed upon calculational interpolation and exstrapolation from the few available measured cross sections. The vehicle, particularly for the lighter fission products, is the conventional the optical-statistical model. The applied goals generally are: capture cross sections to 7 - 10 % accuracies and inelastic-scattering cross sections to 25 - 50 %. Comparisons of recent evaluations and experimental results indicate that these goals have too often are far from met, particularly in the area of inelastic scattering, and some of the evaluated fission-product cross sections are simply physically unreasonable. An example of these discrepancies is shown in a figure. The evaluated inelastic-scattering cross sections of palladium are nearly a 100 % discrepant with observation and the isotopes are prominent fission products with large inelastic-scattering cross sections at relatively low energies. It is difficult to avoid the conclusion that the models employed in many of the evaluations are inappropriate and/or inappropriately used. (author)

  19. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Science.gov (United States)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  20. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Herman, M.; Author(s): Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  1. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M. B. [Los Alamos National Laboratory (LANL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Oblozinsky, Pavel [Brookhaven National Laboratory (BNL); Dunn, Michael E [ORNL; Danon, Y. [Rensselaer Polytechnic Institute (RPI); Kahler, A. [Los Alamos National Laboratory (LANL); Smith, Donald L. [Argonne National Laboratory (ANL); Pritychenko, B [Brookhaven National Laboratory (BNL); Arbanas, Goran [ORNL; Arcilla, r [Brookhaven National Laboratory (BNL); Brewer, R [Los Alamos National Laboratory (LANL); Brown, D A [Brookhaven National Laboratory (BNL); Capote, R. [International Atomic Energy Agency (IAEA); Carlson, A. D. [National Institute of Standards and Technology (NIST); Cho, Y S [Korea Atomic Energy Research Institute; Derrien, Herve [ORNL; Guber, Klaus H [ORNL; Hale, G. M. [Los Alamos National Laboratory (LANL); Hoblit, S [Brookhaven National Laboratory (BNL); Holloway, Shannon T. [Los Alamos National Laboratory (LANL); Johnson, T D [Brookhaven National Laboratory (BNL); Kawano, T. [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Kim, H [Korea Atomic Energy Research Institute; Kunieda, S [Los Alamos National Laboratory (LANL); Larson, Nancy M [ORNL; Leal, Luiz C [ORNL; Lestone, J P [Los Alamos National Laboratory (LANL); Little, R C [Los Alamos National Laboratory (LANL); Mccutchan, E A [Brookhaven National Laboratory (BNL); Macfarlane, R E [Los Alamos National Laboratory (LANL); MacInnes, M [Los Alamos National Laboratory (LANL); Matton, C M [Lawrence Livermore National Laboratory (LLNL); Mcknight, R D [Argonne National Laboratory (ANL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Nobre, G P [Brookhaven National Laboratory (BNL); Palmiotti, G [Idaho National Laboratory (INL); Palumbo, A [Brookhaven National Laboratory (BNL); Pigni, Marco T [ORNL; Pronyaev, V. G. [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Sayer, Royce O [ORNL; Sonzogni, A A [Brookhaven National Laboratory (BNL); Summers, N C [Lawrence Livermore National Laboratory (LLNL); Talou, P [Los Alamos National Laboratory (LANL); Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Trkov, A. [Jozef Stefan Institute, Slovenia; Vogt, R L [Lawrence Livermore National Laboratory (LLNL); Van der Marck, S S [Nucl Res & Consultancy Grp, Petten, Netherlands; Wallner, A [University of Vienna, Austria; White, M C [Los Alamos National Laboratory (LANL); Wiarda, Dorothea [ORNL; Young, P C [Los Alamos National Laboratory (LANL)

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  2. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  3. Neutron cross section calculations for fission-product nuclei

    International Nuclear Information System (INIS)

    To satisfy nuclear data requirements for fission-product nuclei, Hauser-Feshbach statistical calculations with preequilibrium corrections for neutron-induced reactions on isotopes of Se, Kr, Sr, Zr, Mo, Sn, Xe, and Ba between 0.001 and 20 MeV. Spherical neutron optical parameters were determined by simultaneous fits to resonance data and total cross sections. Isospin coefficients appearing in the optical potentials were determined through analysis of the behavior of s- and p-wave strengths as a function of mass for a given Z. Gamma-ray strength functions, determined through fits to stable-isotope capture data, were used in the calculation of capture cross sections and gamma-ray competition to particle emission. The resulting (n,γ), (n,n'), (n,2n), and (n,3n) cross sections, the secondary neutron emission spectra, and angular distributions calculated for 19 fission products will be averaged to provide a resulting ENDF-type fission-product neutronics file. 11 references

  4. The latest progress of fission track analysis

    International Nuclear Information System (INIS)

    Fission track analysis as a new nuclear track technique is based on fission track annealing in mineral and is used for oil and gas exploration successfully. The west part of China is the main exploration for oil and gas. The oil and gas basins there experienced much more complicated thermal history and higher paleotemperature. In order to apply fission track analysis to these basins, following work was be carried out: 1. The decomposition of grain age distribution of zircon fission tracks. 2. Study on thermal history of Ordos basin using zircon fission track analysis. 3. The fission track study on the Qiang Tang basin in tibet

  5. Neutron emission prior to fission

    International Nuclear Information System (INIS)

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  6. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  7. Nuclear fission and neutron-induced fission cross-sections

    CERN Document Server

    James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E

    2013-01-01

    Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis

  8. Theory of fission detector signals in reactor measurements

    CERN Document Server

    Pál, L

    2015-01-01

    The Campbell theorem, relating the variance of the current of a fission chamber (a "filtered Poisson process") to the intensity of the detection events and to the detector pulse shape, becomes invalid when the neutrons generating the fission chamber current are not independent. Recently a formalism was developed by the present authors [1], by which the variance of the detector current could be calculated for detecting neutrons in a subcritical multiplying system, where the detection events are obviously not independent. In the present paper, the previous formalism, which only accounted for prompt neutrons, is generalised to account also for delayed neutrons. A rigorous probabilistic analysis of the detector current was performed by using the same simple, but realistic detector model as in the previous work. The results of the present analysis made it possible to determine the bias of the traditional Campbelling techniques both qualitatively and quantitatively. The results show that the variance still remains ...

  9. X-ray fluorescence applied to the fission time study of Z=120 element

    International Nuclear Information System (INIS)

    Characteristic X-rays of the element Z=120 have been identified in the reaction 238U+64Ni at 6,6 MeV per nucleon. They have been detected in coincidence with fission fragments arising from composite systems with 120 protons formed during the reaction. Pieces of information about the formation probability by fusion of Z=120 nuclei and on the fission time of this nucleus have been inferred from the X-ray multiplicity. From the maximal measured X-ray multiplicity and with the assumption of an exponential distribution of fission times, we have determined an inferior limit of 4.0*10-18 s for the mean fission time of Z=120 nuclei. This maximal measured X-ray has also allowed us to state that at best 38% of capture reactions (it means quasi-fission + fusion reactions) correspond to quasi-fission reactions associated with times below than 10-19 seconds. This relatively low percentage of quasi-fission reactions is not consistent with the very low fusion probabilities generally expected for our system. This work has shown that the X-ray fluorescence technique can be used successfully for studying the stability of super-heavy elements

  10. Competition between fusion-fission and quasifission processes in the 32S+184W reaction

    International Nuclear Information System (INIS)

    The angular distributions of fission fragments for the 32S+184W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (Aexp) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the 32S+182,184W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K02, 2>, and Aexp, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the 32S+184W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about Ec.m.≅160 MeV. The underestimation of the experimental data at high excitation energies Ec.m.>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  11. Status of fission yield data

    International Nuclear Information System (INIS)

    In this paper we summarize the current status of the recent US evaluation for 34 fissioning nuclides at one or more neutron incident energies and for spontaneous fission. Currently there are 50 yields sets, and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized the recommended data will become part of Version VI of the US ENDF/B. Other major evaluations in progress that are included in a recently formed IAEA Coordinated Research Program are also summarized. In a second part we review two empirical models in use to estimate independent yields. Comparison of model estimates with measured data is presented, including a comparison with some recent data obtained from Lohengrin (Cf-249 T). 18 refs., 13 figs., 3 tabs

  12. Report of fission study meeting

    International Nuclear Information System (INIS)

    This book is the report of fission Study Meeting held from September 19 to 21, 1985 in the Research Center for Nuclear Physics, Osaka University. The objective of this study meeting was to stimulate the research on nuclear physics in Japan, which began to show new development accompanying the advance of the research on heavy ion nuclear reaction, and to make this a new starting point. More than 50 participants from physical, chemical and engineering fields, who have interest in the theory and experiment related to nuclear fission, gathered, and the meeting was a success beyond expectation. The contents covered a wide range including nuclear smashing reaction as well as nuclear fission in a narrow sense. In this book, the gists of 28 papers are collected. (Kako, I.)

  13. Sampling ENDL Watt Fission Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D E

    2004-04-01

    All of the fission spectra in the Evaluated Nuclear Data Library, ENDL [1], are defined by a simple analytical function: a Watt spectrum [2], W(a,b,E') = C*Exp[-a*E']*Sinh[(b*E'){sup 1/2}]. Where the normalization, C, is given by, C = [{pi}b/4a]{sup 1/2} Exp[b/4a]/a. The coefficients a and b vary from one isotope to another and also vary weakly with the incident neutron energy. Here E' is the secondary energy, i.e., the energy at which the fission neutrons are emitted. In ENDL energy units of MeV for incident neutron energies between 0 and 20 MeV, in all cases b is very close to 1.0, and a varies over a rather small range near 1.0. Currently there are 38 fissionable isotopes in ENDL. For each of these isotopes I have parameterized a as a simple function of the incident neutron energy, and I treat b as always equal to unity. The values of these parameters are available to TART users as part of the TART CD package [3]. This parameterization coupled with the general Watt sampling method described below results in a very fast and accurate method of sampling all of the fission spectra in ENDL. In all cases I select the fissioning isotope, define a based on isotope and incident neutron energy, and then use the below described method to sample the energy E' of a neutron emitted due to fission.

  14. Angular anisotropy of the fusion-fission and quasifission fragments

    CERN Document Server

    Nasirov, A K; Utamuratov, R K; Fazio, G; Giardina, G; Hanappe, F; Mandaglio, G; Manganaro, M; Scheid, W

    2007-01-01

    The anisotropy in the angular distribution of the fusion-fission and quasifission fragments for the $^{16}$O+$^{238}$U, $^{19}$F+$^{208}$Pb and $^{32}$S+$^{208}$Pb reactions is studied by analyzing the angular momentum distributions of the dinuclear system and compound nucleus which are formed after capture and complete fusion, respectively. The orientation angles of axial symmetry axes of colliding nuclei to the beam direction are taken into account for the calculation of the variance of the projection of the total spin onto the fission axis. It is shown that the deviation of the experimental angular anisotropy from the statistical model picture is connected with the contribution of the quasifission fragments which is dominant in the $^{32}$S+$^{208}$Pb reaction. Enhancement of anisotropy at low energies in the $^{16}$O+$^{238}$U reaction is connected with quasifission of the dinuclear system having low temperature and effective moment of inertia.

  15. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  16. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  17. Velocity fluctuations of fission fragments

    CERN Document Server

    Llanes-Estrada, Felipe J; Martinez, Jose L Muñoz

    2015-01-01

    We propose event by event velocity fluctuations of nuclear fission fragments as an additional interesting observable that gives access to the nuclear temperature in an independent way from spectral measurements and relates the diffusion and friction coefficients for the relative fragment coordinate in Kramer-like models (in which some aspects of fission can be understood as the diffusion of a collective variable through a potential barrier). We point out that neutron emission by the heavy fragments can be treated in effective theory if corrections to the velocity distribution are needed.

  18. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  19. Neutron-Induced Fission Measurements at the Dance and Lsds Facilities at Lanl

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M. M.; Haight, R. C.; Hayes-Sterbenz, A. C.; Rundberg, R. S.; Rusev, G. Y.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Alexander, C. W.; Belier, G.

    2014-09-01

    New results from neutron-induced fission measurements performed at the Detector for Advanced Neutron Capture Experiments (DANCE) and Lead Slowing Down Spectrometer (LSDS) are presented. New correlated data on promptfission γ-ray (PFG) distributions were measured using the DANCE array for resonant neutron-induced fission of 233U, 235U and 239Pu. The deduced properties of PFG emission are presented using a simple parametrization. An accurate knowledge of fission γ-ray spectra enables us to analyze the isomeric states of 236U created after neutron capture on 235U. We briefly discuss these new results. Finally, we review details and preliminary results of the challenging 237U(n,f) cross section measurement at the LSDS facility.

  20. Absolute calibration technique for spontaneous fission sources

    International Nuclear Information System (INIS)

    An absolute calibration technique for a spontaneously fissioning nuclide (which involves no arbitrary parameters) allows unique determination of the detector efficiency for that nuclide, hence of the fission source strength

  1. Quasi fission - the mass drift mode in heavy ion reactions

    International Nuclear Information System (INIS)

    The binary and ternary products from reactions of 238U beams with targets of 16O, 27Al, 48Ca, 45Sc, 48Ti, 58Fe, 64Ni and 89Y have been recorded at 6.0 MeV/u bombarding energy with four position-sensitive avalanche detectors, operated in coincidence. A few runs at 5.4 MeV/u have also been performed. Accurate triple-differential cross sections, d3sigma/dA x dTHETAsub(cm) x dTKE, are obtained for the binary events within the full range of mass A and total kinetic energy TKE, and within almost full range of center-of-mass angle THETAsub(cm). Similar cross sections are obtained with somewhat less accuracy for triple events stemming from the sequential fission of uranium-like products. The distributions are discussed in terms of quasielastic and strongly damped scattering, where the products have partially relaxed energies and negligible average drift in mass, as opposed to capture where the products emerge with fully relaxed energies after a pronounced net mass flux towards symmetry. Apart from the reaction with oxygen, all the capture product distributions are dominated by the non-equilibrium quasi-fission (or fast fission) process. The central feature of this reaction mechanism is the evolution of the reaction complex towards mass symmetry. With the Al-target the evolution towards symmetry is almost complete whereas the heavier targets show very broad mass distributions with clear evidence of dissociation taking place before symmetry is reached. At the same time, the cross section for quasi-fission diminishes as the target Z-value increases. With the yttrium target the strongly damped scattering component completely dominates. The capture cross sections are discussed in terms of the extra push concept, and the mass and angular distributions in quasi fission are analyzed in terms of interaction time and mass rearrangement as functions of target Z-value and excess kinetic energy in the entrance channel. (orig.)

  2. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  3. Simultaneous measurement of (n, {gamma}) and (n, fission) cross sections with the DANCE 4{pi} BaF{sub 2} array

    Energy Technology Data Exchange (ETDEWEB)

    Bredeweg, T.A. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)]. E-mail: toddb@lanl.gov; Fowler, M.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Becker, J.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Bond, E.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Chadwick, M.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Clement, R.R.C. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Esch, E.-I. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ethvignot, T. [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France); Granier, T. [CEA-DAM, BP 12, 91680 Bruyeres-le-Chatel (France); Jandel, M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); O' Donnell, J.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Reifarth, R. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Rundberg, R.S. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Ullmann, J.L. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Vieira, D.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wilhelmy, J.B. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wouters, J.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Wu, C.Y. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2007-08-15

    We have recently begun a program of high precision measurements of Key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4{pi} BaF{sub 2} array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt {gamma}-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of {sup 235}U using the DANCE array have shown that we can partially resolve capture from fission events based on total {gamma}-ray calorimetry (i.e. total {gamma}-ray energy versus {gamma}-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio ({sigma} {sub {gamma}}/{sigma} {sub f}) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on {sup 235}U and {sup 252}Cf that utilized the fission-tag detector will be presented.

  4. Spontaneous fission. A many-body approach

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Akira; Bonasera, A. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    We propose new model to calculate the fission phenomena in tunnel region. By the Vlasov equation and the imaginary time method, we could calculate actinides nuclear fission. This method makes possible to describe unified the motion of fission inside and outside of potential wall. The potential energy and mass parameters can be calculated by no means of the special model. The freedom of internal motion are calculated automatically both collective and a particle motion. Accordingly, particle released during fission process can be calculated. The kinetic energy of fragment after fission was very agreeable with the calculation results. (S.Y.)

  5. Neutron Capture Cross Sections of 236U and 234U

    Science.gov (United States)

    Rundberg, R. S.; Bredeweg, T. A.; Bond, E. M.; Haight, R. C.; Hunt, L. F.; Kronenberg, A.; O'Donnell, J. M.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2006-03-01

    Accurate neutron capture cross sections of the actinide elements at neutron energies up to 1 MeV are needed to better interpret archived nuclear test data, for post-detonation nuclear attribution, and the Advanced Fuel Cycle Initiative. The Detector for Advance Neutron Capture Experiments, DANCE, has unique capabilities that allow the differentiation of capture gamma rays from fission gamma rays and background gamma rays from scattered neutrons captured by barium isotopes in the barium fluoride scintillators. The DANCE array has a high granularity, 160 scintillators, high efficiency, and nearly 4-π solid angle. Through the use of cuts in cluster multiplicity and calorimetric energy the capture gamma-rays are differentiated from other sources of gamma rays. The preliminary results for the capture cross sections of 236U are in agreement with the ENDF/B-VI evaluation. The preliminary results for 234U lower are than ENDF/B-VI evaluation and are closer to older evaluations.

  6. Two neutron correlations in photo-fission

    Science.gov (United States)

    Dale, D. S.; Kosinov, O.; Forest, T.; Burggraf, J.; Stave, S.; Warren, G.; Starovoitova, V.

    2016-09-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of two neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.

  7. Fission product behaviour in severe accidents

    International Nuclear Information System (INIS)

    The understanding of fission product (FP) behaviour in severe accidents is important for source term assessment and accident mitigation measures. For example in accident management the operator needs to know the effect of different actions on the behaviour and release of fission products. At VTT fission product behaviour have been studied in different national and international projects. In this presentation the results of projects in EU funded 4th framework programme Nuclear Fission Safety 1994-1998 are reported. The projects are: fission product vapour/aerosol chemistry in the primary circuit (FI4SCT960020), aerosol physics in containment (FI4SCT950016), revaporisation of test samples from Phebus fission products (FI4SCT960019) and assessment of models for fission product revaporisation (FI4SCT960044). Also results from the national project 'aerosol experiments in the Victoria facility' funded by IVO PE and VTT Energy are reported

  8. Fission yield studies at the IGISOL facility

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Elomaa, V.V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I.D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Weber, C.; Aeystoe, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); Rubchenya, V. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2012-04-15

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future. (orig.)

  9. Fission dynamics at low excitation energy

    CERN Document Server

    Aritomo, Y

    2013-01-01

    The origin of mass asymmetry in the fission of uranium at a low excitation energy is clarified by a trajectory analysis of the Langevin equation. The positions of the peaks in the mass distribution of fission fragments are mainly determined by fission saddle points originating from the shell correction energy. The widths of the peaks, on the other hand, result from a shape fluctuation around the scission point caused by the random force in the Langevin equation. We found that a random vibration in the oblate direction of fissioning fragments is essential for the fission process. According to this picture, fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup. This is expected to lead to a new viewpoint of fission dynamics and the splitting mechanism.

  10. Cluster fission from the standpoint of nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmoo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics

    1996-03-01

    Atomic nucleus belongs to a quantal finite many body system. Nucleus shows great resemblance to cluster, above all metal cluster, although the strength of interaction is different. The works of Brechignac group, Saunder, Martin and P. Froeblich are explained by the critical size Nc as the central term. The differences between cluster and nucleus are investigated and a future view of cluster fission is explained. (S.Y.)

  11. Competition between polaron pair formation and singlet fission observed in amorphous rubrene films

    Science.gov (United States)

    Jankus, Vygintas; Snedden, Edward W.; Bright, Daniel W.; Arac, Erhan; Dai, DeChang; Monkman, Andrew P.

    2013-06-01

    In this paper, we investigate excited state dynamics in amorphous rubrene vacuum sublimed films. We report the direct observation of singlet fission in amorphous rubrene films. We have determined the fission rate to be >2.5×1012 s-1. Simultaneously, we observe strong polaron pair absorption and propose that polaron pair formation could be competing with singlet fission. Another possible conclusion from our experiments could be that two triplets from singlet fission might arise via polaron pairs. In either case, polaron pairs play an important role in singlet fission in an amorphous rubrene film. We also observe that triplets created by singlet fission fuse to regenerate a singlet, giving delayed fluorescence (DF) scaling linearly with initial laser energy (i.e., one singlet gives two triplets and two triplets give back one singlet). This is a strong evidence of S1n→2T1. We did not observe substantial temperature dependence of DF decay curve shape, indicating that triplet migration in amorphous rubrene films is not hopping limited and that triplets undergo fusion before their migration.

  12. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

    Directory of Open Access Journals (Sweden)

    Marc Thilo Figge

    Full Text Available Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.

  13. Study of the Fission Decay of Heavy Hypernuclei

    CERN Multimedia

    2002-01-01

    The purpose of the original experiment PS177 was to produce heavy hypernuclei using the annihilation at rest of antiprotons in heavy targets, and to measure their lifetime. \\\\ \\\\ Lambda hyperons can be produced, within a nucleus, in a 2-step process: p@*~@A~K&bar.K~+~X; &bar.KN~@A~@L@p; or in a direct 3-body interaction: @*NN~@A~K|+@L. In the first case, the kinematical conditions favour recoilless lambda with, consequently, a higher probability of attachment to the nucleus. In a heavy nucleus the lambda-hyperon decays weakly according to: @LN~@A~NN, and the &prop.170~MeV energy released induces fission.\\\\ \\\\ The identification of the hypernuclei and their lifetime measurements were performed through the detection of delayed fission using the recoil-distance-method (suitable for lifetimes in the expected region @=10|-|1|0s). The fission fragments were detected by parallel-plate avalanche counters. \\\\ \\\\ The new proposal aims at i) increasing the accuracy of the measured lifetimes, ii) having a str...

  14. Nuclear fission and nuclear safeguards: Common technologies and challenges

    International Nuclear Information System (INIS)

    Nuclear fission and nuclear safeguards have much in common, including the basic physical phenomena and technologies involved as well as the commitments and challenges posed by expanding nuclear programs in many countries around the world. The unique characteristics of the fission process -- such as prompt and delayed neutron and gamma ray emission -- not only provide the means of sustaining and controlling the fission chain reaction, but also provide unique ''signatures'' that are essential to quantitative measurement and effective safeguarding of key nuclear materials (notably 239Pu and 235U) against theft, loss, or diversion. In this paper, we trace briefly the historical emergence of safeguards as an essential component of the expansion of the nuclear enterprise worldwide. We then survey the major categories of passive and active nondestructive assay techniques that are currently in use or under development for rapid, accurate measurement and verification of safe-guarded nuclear materials in the many forms in which they occur throughout the nuclear fuel cycle. 23 refs., 14 figs

  15. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    . The distributions show a saturation of E* for high spins. The saturation is attributed to the fact that, as E* increases above the saddle, Γ(fission) rapidly dominates. The resulting truncation of the entry distribution at high E* allows a determination of the fission barrier height. The experimental entry distributions are also compared with entry distributions calculated with decay cascade codes which take into account the full nucleus formation process, including the capture process and the subsequent survival probability as a function of E* and I. We used the KEWPIE2 and NRV codes to simulate the entry distribution. (author)

  16. Contributions of microtubule dynamic instability and rotational diffusion to kinetochore capture

    CERN Document Server

    Blackwell, Robert; Edelmaier, Christopher; Gergely, Zachary R; Flynn, Patrick J; Montes, Salvador; Crapo, Ammon; Doostan, Alireza; McIntosh, J Richard; Glaser, Matthew A; Betterton, Meredith D

    2016-01-01

    Microtubule dynamic instability allows search and capture of kinetochores during spindle formation, an important process for accurate chromosome segregation during cell division. Recent work has found that microtubule rotational diffusion about minus-end attachment points contributes to kinetochore capture in fission yeast, but the relative contributions of dynamic instability and rotational diffusion are not well understood. We have developed a biophysical model of kinetochore capture in small fission-yeast nuclei using hybrid Brownian dynamics/kinetic Monte Carlo simulation techniques. With this model, we have studied the importance of dynamic instability and microtubule rotational diffusion for kinetochore capture, both to the lateral surface of a microtubule and at or near its end. Over a range of biologically relevant parameters, microtubule rotational diffusion decreased capture time, but made a relatively small contribution compared to dynamic instability. At most, rotational diffusion reduced capture ...

  17. Total prompt γ-ray emission in fission

    Science.gov (United States)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henserson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2016-06-01

    The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity.

  18. Evaluation of fission gas release in Oskarshamn 2 fuel rods

    International Nuclear Information System (INIS)

    Data on fission gas release from 30 Oskarshamn 2 fuel rods is presented and analyzed. These rods were selected by gamma scanning screening measurements performed on 65 fuel rods. The rods experienced peak power levels 25-34 kW/m in the burnup range of 18.5 to 41 MWd/kg U, higher power and burnups than the previous experimental programs, the Oskarshamn 1 and Barsebeck 1 rods. As a result, a larger fraction of rods fall into the high fission gas release group. The STAV5 code is used for the analysis of fission gas release data. The code is capable in most instances to capture the experimental points. It takes as an input the fuel rod design dimensions data and power histories calculated by other ASEA-ATOM codes. With STAV5, one is enabled to treat each rod individually on the bases of its detailed power histories and its UO2 stability properties. The report includes manufacturing data, PIE data, and the description of the models used in STAV5 for gas release prediction. The results of STAV5 calculations for a number of rods are reported and several remarks for improvements have been proposed. (author)

  19. The Fission Programme at the CERN n_TOF Facility

    Science.gov (United States)

    Tsinganis, A.; Barbagallo, M.; Berthoumieux, E.; Calviani, M.; Chiaveri, E.; Colonna, N.; Diakaki, M.; Duran, I.; Guerrero, C.; Gunsing, F.; Leal-Cidoncha, E.; Leong, L.-S.; Paradela, C.; Tarrio, D.; Tassan-Got, L.; Vlastou, R.

    Since 2001, the scientific programme of the CERN n_TOF facility has focused mainly on the study of radiative neutron capture reactions, which are of great interest to nuclear astrophysics and on neutron-induced fission reactions, which are of relevance for nuclear technology, as well as essential for the development of theoretical models of fission. In particular, taking advantage of the high instantaneous neutron flux and high energy resolution of the facility, as well as of high-performance detection and acquisition systems, accurate new measurements on several long-lived major and minor actinides, from 232Th to 245Cm, have been performed so far. Data on these isotopes are needed in order to improve the safety and efficiency of conventional reactors, as well as to develop new systems for nuclear energy production and treatment of nuclear waste, such as Generation IV reactors, Accelerator Driven Systems and reactors based on innovative fuel cycles. A review of the most important results on fission cross-sections and fragment properties obtained at n_TOF for a variety of (radioactive) isotopes is presented along with the perspectives arising from the coming on line in the second half of 2014 of a new 19 m flight-path, which will allow n_TOF to expand its measurement capabilities to even more rare or short-lived isotopes, such as 230Th, 232U, 238,240Pu and 244Cm.

  20. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  1. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D;

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  2. Fission Data and Nuclear Technology

    International Nuclear Information System (INIS)

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  3. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  4. Fission fusion hybrids- recent progress

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  5. Status of fission yield evaluations

    International Nuclear Information System (INIS)

    Very few yield compilations are also evaluations, and very few contain an extensive global library of measured data and extensive models for unmeasured data. The earlier U.K. evaluations and US evaluations were comparable up to the retirements of the primary evaluators. Only the effort in the US has been continued and expanded. The previous U.K. evaluations have been published. In this paper we summarize the current status of the US evaluation, philosophy, and various integral yield tests for 34 fissioning nuclides at one or more neutron incident energies and/or for spontaneous fission. Currently there are 50 yield sets and for each we have independent and cumulative yields and uncertainties for approximately 1100 fission products. When finalized, the recommended data will become part of the next version of the US Evaluated Nuclear Data File (ENDF/B-VI). The complete set of data, including the basic input of measured yields, will be issued as a sequel to the General Electric evaluation reports (better known by the authors' names: Rider - or earlier - Meek and Rider). 16 references

  6. Status of pseudo-fission-product cross-sections for fast reactors

    International Nuclear Information System (INIS)

    Within the framework of the Subgroup 17 (SG17) benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (FR), a comparison of lumped or pseudo-fission-product cross-sections for fast reactors has been made. Several parameters have been compared: the one- group cross-sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross-sections, and the one-group cross sections of individual fission products. Graphs of the multi-group cross-sections and those of capture cross-sections for 27 nuclides have also been compared. (R.P.)

  7. Fission suppression and neutron slowing-down in fissile breeding blankets

    International Nuclear Information System (INIS)

    It is shown that the requirement of fission suppression cannot be effectively fulfilled in soft spectrum systems. The attenuated neutron capturing power of fertile media, due to the resonance self-shielding, cannot prevent neutrons from being thermalized and causing fissions in these conditions. The presence of slowing-down media in the system proves incompatible with high breeding efficiency. Consequently, the necessity of consideration of the resonance self-shielding and the resignation of moderators in fissile breeding systems has been postulated. (author)

  8. Characterization of a neutron–beta counting system with beta-delayed neutron emitters

    OpenAIRE

    Agramunt, J.; Tain, J.L.; Gómez-Hornillos, M. B.; GARCIA A. R.; Albiol, F; Algora, A.; Caballero-Folch, R.; CALVIÑO F.; Cano-Ott, D.; Cortés, G.; Domingo-Pardo, C.; Eronen, Tommi; Gelletly, W.; Gorelov, Dmitry; Gorlychev, V.

    2016-01-01

    A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a selftriggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emis...

  9. Characterization of a neutron-beta counting system with beta-delayed neutron emitters

    OpenAIRE

    Agramunt Ros, Jorge; Taín, J. L.; Gómez Hornillos, María Belén; Calviño Tavares, Francisco; Cortés Rossell, Guillem Pere; Pretel Sánchez, Carme; Riego Pérez, Albert; Tarifeño Saldivia, Ariel Esteban

    2016-01-01

    A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known ß-delayed neutron emission properties. The setup consists of BELEN-20, a 4p neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for ß counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission win...

  10. Fission multipliers for D-D/D-T neutron generators

    International Nuclear Information System (INIS)

    A compact D-D/D-T fusion based neutron generator is being designed at the Lawrence Berkeley National Laboratory to have a potential yield of 1012 D-D n/s and 1014 D-T n/s. Because of its high neutron yield and compact size (∼20 cm in diameter by 4 cm long), this neutron generator design will be suitable for many applications. However, some applications required higher flux available from nuclear reactors and spallation neutron sources operated with GeV proton beams. In this study, a subcritical fission multiplier with keff of 0.98 is coupled with the compact neutron generators in order to increase the neutron flux output. We have chosen two applications to show the gain in flux due to the use of fission multipliers--in-core irradiation and out-of-core irradiation. For the in-core irradiation, we have shown that a gain of ∼25 can be achieved in a positron production system using D-T generator. For the out-of-core irradiation, a gain of ∼17 times is obtained in Boron Neutron Capture Therapy (BNCT) using a D-D neutron generator. The total number of fission neutrons generated by a source neutron in a fission multiplier with keff is ∼50. For the out-of-core irradiation, the theoretical maximum net multiplication is ∼30 due to the absorption of neutrons in the fuel. A discussion of the achievable multiplication and the theoretical multiplication will be presented in this paper

  11. Proceedings of the specialists' meeting on delayed neutron nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Jun-ichi [ed.] [Japanese Nuclear Data Committee, Tokai, Ibaraki (Japan)

    1999-07-01

    This report is the Proceedings of the Specialists' Meeting on Delayed Neutron Nuclear Data. The meeting was held on January 28-29, 1999, at the Tokai Research Establishment of Japan Atomic Energy Research Institute with the participation of thirty specialists, who are evaluators, theorist, experimentalists. Although the fraction of the delayed neutron is no more than 1% in the total neutrons emitted in the fission process, it plays an important roll in the control of fission reactor. In the meeting, the following topics were reported: the present status of delayed neutron data in the major evaluated data libraries, measurements of effective delayed neutron fraction using FCA (Fast Critical Assembly) and TCA (Tank-type Critical Assembly) and their analyses, sensitivity analysis for fast reactor, measurements of delayed neutron emission from actinides and so on. As another topics, delayed neutron in transmutation system and fission yield data were also presented. Free discussion was held on the future activity of delayed neutron data evaluation. The discussion was helpful for the future activity of the delayed neutron working group of JNDC aiming to the evaluation of delayed neutron data for JENDL-3.3. The 15 of the presented papers are indexed individually. (J.P.N.)

  12. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  13. Collective spectra along the fission barrier

    Directory of Open Access Journals (Sweden)

    Pigni M. T.

    2012-12-01

    Full Text Available Discrete and continuous spectra of fissioning nuclei at the humps of fission barriers (Bohr transition states and in the intermediate wells (superdeformed and hyperdeformed states play a key role in the calculation of fission cross sections. A theoretical evaluation of the collective parts of the spectra is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two–cluster configurations in a dynamical way, permitting exchange of upper–shell nucleons between clusters. The impact of theoretical spectra on neutron–induced fission cross sections and, in combination with an improved version of the scission–point model, on angular distribution of fission fragments is evaluated for plutonium isotopes of interest to nuclear energy applications.

  14. International conference on fifty years research in nuclear fission

    International Nuclear Information System (INIS)

    These proceedings contain extended abstracts of the papers presented at the named conference. They deal with static properties of fission, instrumentation for fission studies, fission in compound-nucleus reactions, fission dynamics, fission-like heavy ion reactions, and fusion reactions. See hints under the relevant topics. (HSI)

  15. Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide $^{240}$Pu as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate non-adiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behaviour. Those beginning just beyond the ...

  16. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  17. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  18. Rapid Separation of Fission Product 141La

    Institute of Scientific and Technical Information of China (English)

    XIA; Wen; YE; Hong-sheng; LIN; Min; CHEN; Ke-sheng; XU; Li-jun; ZHANG; Wei-dong; CHEN; Yi-zhen

    2013-01-01

    141La was separated and purified from fission products in this work for physical measurements aimed at improving the accuracy of its decay parameters.As the impact of 142La and other fission products,cesium(141Cs,142Cs included)was rapid separated from the fission products,141Cs and 142Ba separation was prepared after a cooling time about 25 s when 142Cs decays to daughter 142Ba,141La purification then

  19. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  20. Fission product retention in HTGR fuels

    International Nuclear Information System (INIS)

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed

  1. Mechanisms of Mitochondrial Fission and Fusion

    OpenAIRE

    van der Bliek, Alexander M.; Shen, Qinfang; Kawajiri, Sumihiro

    2013-01-01

    Mitochondria continually change shape through the combined actions of fission, fusion, and movement along cytoskeletal tracks. The lengths of mitochondria and the degree to which they form closed networks are determined by the balance between fission and fusion rates. These rates are influenced by metabolic and pathogenic conditions inside mitochondria and by their cellular environment. Fission and fusion are important for growth, for mitochondrial redistribution, and for maintenance of a hea...

  2. Fission barriers and half-lives

    International Nuclear Information System (INIS)

    The authors briefly review the development of theoretical models for the calculation of fission barriers and half-lives. They focus on how results of actual calculations in a unified macroscopic-microscopic approach provide an interpretation of the mechanisms behind some of the large number of phenomena observed in fission. As instructive examples they choose studies of the rapidly varying fission properties of elements at the end of the periodic system

  3. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  4. Fission properties for r-process nuclei

    OpenAIRE

    Erler, J.; Langanke, K; Loens, H. P.; Martínez-Pinedo, G.; Reinhard, P.-G.

    2011-01-01

    We present a systematics of fission barriers and fission lifetimes for the whole landscape of super-heavy elements (SHE), i.e. nuclei with Z>100. The fission lifetimes are also compared with the alpha-decay half-lives. The survey is based on a self-consistent description in terms of the Skyrme-Hartree-Fock (SHF) approach. Results for various different SHF parameterizations are compared to explore the robustness of the predictions. The fission path is computed by quadrupole constrained SHF. Th...

  5. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  6. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    B B Back

    2015-08-01

    The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were described in a ground-breaking paper by Bohr and Wheeler only six months after the discovery, the fission process is very complex and it has been a challenge for both experimentalists and theorists to achieve a complete and satisfactory understanding of this phenomenon. Many aspects of nuclear physics are involved in fission and it continues to be a subject of intense study even three quarters of a century after its discovery. In this talk, I will review an incomplete subset of the major milestones in fission research, and briefly discuss some of the topics that I have been involved in during my career. These include studies of vibrational resonances and fission isomers that are caused by the second minimum in the fission barrier in actinide nuclei, studies of heavy-ion-induced fission in terms of the angular distributions and the mass–angle correlations of fission fragments. Some of these studies provided evidence for the importance of the quasifission process and the attendant suppression of the complete fusion process. Finally, some of the circumstances around the establishment of large-scale nuclear research in India will be discussed.

  7. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  8. Future Scenarios for Fission Based Reactors

    Science.gov (United States)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  9. Investigation of the fission yields of the fast neutron-induced fission of {sup 233}U; Mesure de la distribution en masse et en charge des produits de la fission rapide de l'{sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    1999-09-01

    As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)

  10. Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE

    International Nuclear Information System (INIS)

    Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmuter system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,γ) measurements using the recently commissioned DANCE array

  11. Fission physics experiments at the time-of-flight spectrometer GNEIS in Gatchina (PNPI)

    International Nuclear Information System (INIS)

    The outline of and fission physics experiments at the Gatchina neutron spectrometer GNEIS based on the 1 GeV PNPI proton synchrotron are presented. The prefission gamma-ray spectrum of the (n, gamma f) reaction were investigated. The capture gamma-ray spectra for 721.6 eV and 1211.4 eV resonances in U-238 were measured and the nature of the 721.6 eV resonance in U-238 were examined. The forward-backward asymmetry in slow neutron fission of U-235 and energy dependence of the forward-backward and instrumental asymmetry coefficients were obtained. Fission cross section ratios for Th-232 to U-235 and for U-238 to U-235 in the energy range up to 200 MeV were measured. The results of the cross section ratios agreed well with those of Behrens et al. and Difilippo et al. (T.H.)

  12. Reaction rates in blanket assemblies of a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor, experiments for measuring reaction rates inside two simulating assemblies are performed. Two benchmark assemblies were developed for the neutronics experiments. A D-T fusion neutron source is placed at the center of the setup. One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells, and these shells are arranged alternatively. The 238U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer. The fission reaction rates are measured using a fission chamber coated with depleted uranium. The other assembly consists of depleted uranium and LiH shells. The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly. The measured reaction rates are compared with the calculated ones predicted using MCNP code, and C/E values are obtained. (authors)

  13. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    [symbol]Ni and [symbol]Ni double shell closures - what next? / N. J. Stone, J. R. Stone and U. Köster -- Nuclear structure VI. Decay studies of nuclei near [symbol]Ni / R. Grzywacz. Weakening of the [symbol]Ni core for Z > 28, N > 50? / J. A. Winger ... [et al.]. Coulomb excitation of the odd-A [symbol]Cu isotopes with MINIBALL and REX-ISOLDE / I. Stefanescu ... [et al.]. Neutron single particle states and isomers in odd mass nickel isotopes near [symbol]Ni / M. M. Raiabali ... [et al.]. [symbol] and [symbol]-delayed neutron decay studies of [symbol]Ch at the HRIBF / S. V. Ilvushkin ... [et al.] -- Posters. Properties of Fe, Ni and Zn isotope chains near the drip-line / V. N. Tarasov ... [et al.]. Probing nuclear structure of [symbol]Xe / J. B. Gupta. Shape coexistence in [symbol]Zr and large deformation in [symbol]Zr / J. K. Hwang ... [et al.]. Digital electronics and their application to beta decay spectroscopy / S. N. Liddick, S. Padgett and R. Grzywacz. Nuclear shape and structure in neutron-rich [symbol]Tc / Y. X. Luo ... [et al.]. Speeding up the r-process. Investigation of first forbidden [symbol] decays in N > 50 isotopes near [symbol]Ni / S. Padgett ... [et al.]. Yields of fission products from various actinide targets / E. H. Sveiewski ... [et al.].

  14. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  15. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  16. Measurements of delayed neutron parameters for U-235 and Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Loaiza, D.

    1997-07-01

    Delayed neutrons are emitted by excited nuclei formed in beta decay of fission products called delayed neutron precursors. About 1% of the total neutrons released in fission are delayed neutrons; however, this small fraction plays an important role in nuclear reactor control. The delayed neutrons determine the time-dependent behavior of reactors, and knowledge of parameters used to predict neutron emission rate is essential for establishing reactivity worths. The delayed neutron yields, decay constants, and the absolute yield for the six-group delayed neutrons have been measured for U-235 and Np-237. This experiment has been called for in the forecast of experiments needed to support operations in the US. The bare U-235 metal assembly Godiva IV at the Los Alamos Critical Experiment Facility (LACEF) provided the source of neutrons. Godiva IV generated about 10{sup 7} total fissions in the samples for the infinite and instantaneous irradiation needed to accentuate the shorter and longer-lived groups of delayed neutrons. The detection system used in the experiment consisted of 20 He-3 tubes embedded in a polyethylene cylinder. The delayed neutron activity resulting from the fast neutron-induced fission has been measured. The measured absolute yield for U-235 was determined to be 0.0163 {+-} 0.009 neutrons/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The newly measured absolute yield value for Np-237 was 0.0126 {+-} 0.0007, which compares well to the recently reported value of 0.0129 {+-} 0.0004 by Saleh and Parish. The measured values for U-235 are corroborated with period (e-folding time) versus reactivity calculations.

  17. Isoscaling of the Fission Fragments with Langevin Equation

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; TIAN Wen-Dong; ZHONG Chen; ZHOU Xing-Fei; MA Yu-Gang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; FANG De-Qing; GUO Wei; MA Guo-Liang; SHEN Wen-Qing

    2005-01-01

    @@ The Langevin equation is used to simulate the fission process of 112Sn + 112Sn and 116Sn + 116Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. The isoscaling behaviour has been observed from the analysis of fission fragments of both the reactions, and the isoscaling parameter α seems to be sensitive to the width of fission probability and the beam energy.

  18. Isoscaling of the Fission Fragments with Langevin Equation

    OpenAIRE

    Wang, K.; Ma, Y. G.; Wei, Y. B.; Cai, X. Z.; Chen, J. G.; Fang, D Q; Guo, W; Ma, G. L.; Shen, W.Q.(Shanghai Institute of Applied Physics, Shanghai, 201800, China); Tian, W.D.; Zhong, C.; Zhou, X. F.

    2004-01-01

    Langevin equation is used to simulate the fission process of $^{112}$Sn + $^{112}$Sn and $^{116}$Sn + $^{116}$Sn. The mass distribution of the fission fragments are given by assuming the process of symmetric fission or asymmetric fission with the Gaussian probability sampling. Isoscaling behavior has been observed from the analysis of fission fragments of both reactions and the isoscaling parameter $\\alpha$ seems to be sensitive to the width of fission probability and the beam energy.

  19. Fission

    International Nuclear Information System (INIS)

    Progress is reported in the areas of radiation physics; radiation dosimetry and radiation biophysics; microdosimetry of internal sources; dosimetry of internal emitters; real-time measurement of Pu in air at below-MPC levels; analytical techniques for measurement of 99Tc in environmental samples; and radiation instrumentation--radiological chemistry

  20. Video Screen Capture Basics

    Science.gov (United States)

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  1. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  2. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  3. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  4. Spontaneous fission properties and lifetime systematics

    International Nuclear Information System (INIS)

    Half-lives for spontaneous fission of nuclides with even and odd numbers of particles are compared with recent theoretical calculations. A summary of odd particle hindrance factors is given. The most recent measurements of kinetic-energy and mass distributions and neutron emission for spontaneous fission of the heaviest nuclides are summarized and discussed. 51 refs., 9 figs

  5. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  6. Future research program on prompt γ-ray emission in nuclear fission

    Science.gov (United States)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  7. Future research program on prompt γ-ray emission in nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Oberstedt, S.; Hambsch, F.J. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Billnert, R. [Joint Research Centre IRMM, European Commission, Geel (Belgium); Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Lebois, M.; Wilson, J.N. [Institut de Physique Nucleaire Orsay, Orsay (France); Oberstedt, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Ossolution Consulting, Oerebro (Sweden)

    2015-12-15

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions {sup 235}U(n{sub th}, f), {sup 239}Pu(n{sub th},f) and {sup 252}Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of {sup 235}U and {sup 239}Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on {sup 235}U and {sup 241}Pu as well as for the spontaneous fission of {sup 252}Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on {sup 238}U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on {sup 235,238}U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies. (orig.)

  8. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  9. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  10. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  11. Physics of neutron emission in fission

    International Nuclear Information System (INIS)

    The document contains the proceedings of the IAEA Consultants' Meeting on the Physics of Neutron Emission in Fission, Mito City (Japan), 24-27 May 1988. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers cover the following topics: Energy dependence of the number of fission neutrons ν-bar (3 papers), multiplicity distribution of fission neutrons (3 papers), competition between neutron and γ-ray emission (4 papers), the fission neutron yield in resonances (2 papers) and the energy spectrum of fission neutrons in experiment (9 papers), theory (4 papers) and evaluation (1 paper). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  12. Microscopic Theory of Nuclear Fission: A Review

    CERN Document Server

    Schunck, N

    2015-01-01

    This article reviews how nuclear fission is described within nuclear density functional theory. In spontaneous fission, half-lives are the main observables and quantum tunnelling the essential concept, while in induced fission the focus is on fragment properties and explicitly time-dependent approaches are needed. The cornerstone of the current microscopic theory of fission is the energy density functional formalism. Its basic tenets, including tools such as the HFB theory, effective two-body effective nuclear potentials, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The EDF approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schr\\"odinger equation into a collective Schr\\"odinge...

  13. Fission dynamics at low excitation energy. 2

    CERN Document Server

    Aritomo, Y; Ivanyuk, F A

    2014-01-01

    The mass asymmetry in the fission of U-236 at low excitation energy is clarified by the analysis of the trajectories obtained by solving the Langevin equations for the shape degrees of freedom. It is demonstrated that the position of the peaks in the mass distribution of fission fragments is determined mainly by the saddle point configuration originating from the shell correction energy. The width of the peaks, on the other hand, results from the shape fluctuations close to the scission point caused by the random force in the Langevin equation. We have found out that the fluctuations between elongated and compact shapes are essential for the fission process. According to our results the fission does not occur with continuous stretching in the prolate direction, similarly to that observed in starch syrup, but is accompanied by the fluctuations between elongated and compact shapes. This picture presents a new viewpoint of fission dynamics and the splitting mechanism.

  14. Calculated medium energy fission cross sections

    International Nuclear Information System (INIS)

    An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission

  15. Theory of neutron emission in fission

    International Nuclear Information System (INIS)

    Following a summary of the observables in neutron emission in fission, a brief history is given of theoretical representations of the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity bar νp. This is followed by descriptions, together with examples, of modern approaches to the calculation of these quantities including recent advancements. Emphasis will be placed upon the predictability and accuracy of the modern approaches. In particular, the dependence of N(E) and bar νp on the fissioning nucleus and its excitation energy will be discussed, as will the effects of and competition between first-, second- and third-chance fission in circumstances of high excitation energy. Finally, properties of neutron-rich (fission-fragment) nuclei are discussed that must be better known to calculate N(E) and bar νp with higher accuracy than is currently possible

  16. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  17. Radiative electron capture

    International Nuclear Information System (INIS)

    Some data are presented for radiative electron capture by fast moving ions. The radiative electron capture spectrum is shown for O8+ in Ag, along with the energy dependence of the capture cross-section. A discrepancy between earlier data, theoretical prediction, and the present data is pointed out. (3 figs) (U.S.)

  18. Capture Their Attention: Capturing Lessons Using Screen Capture Software

    Science.gov (United States)

    Drumheller, Kristina; Lawler, Gregg

    2011-01-01

    When students miss classes for university activities such as athletic and academic events, they inevitably miss important class material. Students can get notes from their peers or visit professors to find out what they missed, but when students miss new and challenging material these steps are sometimes not enough. Screen capture and recording…

  19. Overview of fission yeast septation.

    Science.gov (United States)

    Pérez, Pilar; Cortés, Juan C G; Martín-García, Rebeca; Ribas, Juan C

    2016-09-01

    Cytokinesis is the final process of the vegetative cycle, which divides a cell into two independent daughter cells once mitosis is completed. In fungi, as in animal cells, cytokinesis requires the formation of a cleavage furrow originated by constriction of an actomyosin ring which is connected to the plasma membrane and causes its invagination. Additionally, because fungal cells have a polysaccharide cell wall outside the plasma membrane, cytokinesis requires the formation of a septum coincident with the membrane ingression. Fission yeast Schizosaccharomyces pombe is a unicellular, rod-shaped fungus that has become a popular model organism for the study of actomyosin ring formation and constriction during cell division. Here we review the current knowledge of the septation and separation processes in this fungus, as well as recent advances in understanding the functional interaction between the transmembrane enzymes that build the septum and the actomyosin ring proteins. PMID:27155541

  20. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  1. Production of fission 131I

    International Nuclear Information System (INIS)

    A method of iodine separation from other radionuclides generated by 235U fission has been developed in order to explore the possibilities to obtain 131I as by-product of the 99Mo routine production in the Ezeiza Atomic Centre. The experiments were designed to remove this element to gas phase, and the recoveries were investigated both with and without carrier addition. High volatilization percentages were achieved in the presence of iodine carrier. Some other alternatives to increase the iodine displacement to the gaseous phase, namely vacuum distillation, addition of hydrogen peroxide and use of a carrier gas, were also studied. The method developed, which employs a carrier gas stream, without carrier addition, allows the recovery of about 97% of the 131I, with high specific activity, in a simple and clean way. (author)

  2. Simultaneous measurement of (n,γ) and (n,fission) cross sections with the DANCE array

    Science.gov (United States)

    Bredeweg, T. A.; Jandel, M.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C. Y.; Becker, J. A.

    2006-10-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. Since neutron capture measurements on many of the actinides are complicated by the presence of γ-rays arising from low-energy neutron-induced fission, we are currently using a dual parallel-plate avalanche counter with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. An outline of the current experimental program will be presented as well as results from measurements on ^235U and ^252Cf that utilized the fission-tag detector.

  3. Study of calculated and measured time dependent delayed neutron yields. [TX, for calculating delayed neutron yields; MATINV, for matrix inversion; in FORTRAN for LSI-II minicomputer

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, R.W.

    1980-05-01

    Time-dependent delayed neutron emission is of interest in reactor design, reactor dynamics, and nuclear physics studies. The delayed neutrons from neutron-induced fission of /sup 232/U, /sup 237/Np, /sup 238/Pu, /sup 241/Am, /sup 242m/Am, /sup 245/Cm, and /sup 249/Cf were studied for the first time. The delayed neutron emission from /sup 232/Th, /sup 233/U, /sup 235/U, /sup 238/U, /sup 239/Pu, /sup 241/Pu, and /sup 242/Pu were measured as well. The data were used to develop an empirical expression for the total delayed neutron yield. The expression gives accurate results for a large variety of nuclides from /sup 232/Th to /sup 252/Cf. The data measuring the decay of delayed neutrons with time were used to derive another empirical expression predicting the delayed neutron emission with time. It was found that nuclides with similar mass-to-charge ratios have similar decay patterns. Thus the relative decay pattern of one nuclide can be established by any measured nuclide with a similar mass-to-charge ratio. A simple fission product yield model was developed and applied to delayed neutron precursors. It accurately predicts observed yield and decay characteristics. In conclusion, it is possible to not only estimate the total delayed neutron yield for a given nuclide but the time-dependent nature of the delayed neutrons as well. Reactors utilizing recycled fuel or burning actinides are likely to have inventories of fissioning nuclides that have not been studied until now. The delayed neutrons from these nuclides can now be incorporated so that their influence on the stability and control of reactors can be delineated. 8 figures, 39 tables.

  4. BIPAL - a data library for computing the burnup of fissionable isotopes and products of their decay

    International Nuclear Information System (INIS)

    The BIPAL databank contains data on 100 heavy metal isotopes starting with 206Tl and finishing with 253Es. Four are stable, the others are unstable. The following data are currently stored in the databank: the serial number and name of isotopes, decay modes and, for stable isotopes, the isotopic abundance (%), numbers of P decays and Q captures, numbers of corresponding final products, branching ratios, half-lives and their units, decay constants, thermal neutron captures, and fission cross sections, and other data (mainly alpha, beta and gamma intensities). The description of data and a printout of the BIPAL library are presented. (J.B.)

  5. The CO2 capture and sequestration plan

    International Nuclear Information System (INIS)

    The CO2 capture and sequestration plan is officially one of the most relevant solution in the world control against the greenhouse gas releases. In spite of the multiplication of the pilot plans, this technology delays however to run up. At the moment, it is always the petroleum and natural gas industries, with the enhanced oil recovery process, which highlight this technology. But, without a modification of the support mechanisms, the chances of succeed of the sector could be compromised. (O.M.)

  6. Rearrangement of cluster structure during fission processes

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Andrey V.;

    2004-01-01

    groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. The importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual......Results of molecular dynamics simulations of fission reactions $Na_10^2+ -->Na_7^++ Na_3^+ and Na_18^2+--> 2Na_9^+ are presented. The dependence of the fission barriers on the isomer structure of the parent cluster is analysed. It is demonstrated that the energy necessary for removing homothetic...

  7. The chemistry of the fission products

    International Nuclear Information System (INIS)

    This is a review of chemistry of some chemical elements in fission products. The elements mentioned are krypton, xenon, rubidium, caesium, silver, strontium, barium, cadmium, rare earth elements, zirconium, niobium, antimony, molybdenum, tellurium, technetium, bromine, iodine, ruthenium, rhodium and palladium. The chemistry of elements and their oxides is briefly given together with the chemical species in aqueous solution. The report also contains tables of the physical properties of the elements and their oxides, of fission products nuclides with their half-life and fission yields and of the permissible concentrations. (author)

  8. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  9. A quantum delayed choice experiment

    CERN Document Server

    Peruzzo, Alberto; Brunner, Nicolas; Popescu, Sandu; O'Brien, Jeremy L

    2012-01-01

    Quantum systems exhibit particle-like or wave-like behaviour depending on the experimental apparatus they are confronted by. This wave-particle duality is at the heart of quantum mechanics, and is fully captured in Wheeler's famous delayed choice gedanken experiment. In this variant of the double slit experiment, the observer chooses to test either the particle or wave nature of a photon after it has passed through the slits. Here we report on a quantum delayed choice experiment, based on a quantum controlled beam-splitter, in which both particle and wave behaviours can be investigated simultaneously. The genuinely quantum nature of the photon's behaviour is tested via a Bell inequality, which here replaces the delayed choice of the observer. We observe strong Bell inequality violations, thus showing that no model in which the photon knows in advance what type of experiment it will be confronted by, hence behaving either as a particle or as wave, can account for the experimental data.

  10. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  11. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  12. Fission dynamics within time-dependent Hartree-Fock: boost-induced fission

    CERN Document Server

    Goddard, P M; Rios, A

    2015-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus, and the daughter products. Purpose: To explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide $^{240}$Pu as an example. Methods: Quadrupole constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickl...

  13. Fission xenon in trinities from the first nuclear test

    Science.gov (United States)

    Meshik, Alexander; Pravdivtseva, Olga; Hohenberg, Charles

    2008-04-01

    Trinitites, greenish glassy remnants found in the crater of the first nuclear test, refer to the molten material of the desert where the Trinity test was conducted. Recently the Los Alamos Lab^1 suggested that the sand was first vaporized by the fireball and then precipitated onto a cooler desert surface forming trinitites. We measured the Xe mass-spectra during stepped pyrolysis of two trinitites and found an unusual Xe isotopic structure, dominated by ^132Xe and ^131Xe compared to the nominal fission yield spectra, which cannot be due to n-capture or any other nuclear processes. This structure is caused by the chemical separation of the immediate neutron-rich fission products, a process similar to CFF observed in the Oklo natural reactor^2. When quantitatively applied to our observations it suggests that 17 min after the test one of the samples had a temperature of 1390^oC, while 5 min after the test the other was at 1320^oC. These results contribute to a reconstruction of the cooling history of the trinities and a demonstration of which formation scenario is the more likely. ^1V. Montoya et al, Denver X-ray Conf. (2007), ^2A. Meshik, C. Hohenberg and O. Pravdivtseva, PRL 93, 182302 (2004).

  14. Dynamical calculations of nuclear fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    With the goal of determining the magnitude and mechanism of nuclear dissipation from comparisons of predictions with experimental data, we describe recent calculations in a unified macroscopic-microscopic approach to large-amplitude collective nuclear motion such as occurs in fission and heavy-ion reactions. We describe the time dependence of the distribution function in phase space of collective coordinates and momenta by a generalized Fokker-Planck equation. The nuclear potential energy of deformation is calculated as the sum of repulsive Coulomb and centrifugal energies and an attractive Yukawa-plus-exponential potential, the inertia tensor is calculated for a superposition of rigid-body rotation and incompressible, nearly irrotational flow by use of the Werner-Wheeler method, and the dissipation ensor that describes the conversion of collective energy into single-particle excitation energy is calculated for two prototype mechanisms that represent opposite extremes of large and small dissipation. We solve the generalized Hamilton equations of motion for the first moments of the distribution function to obtain the mean translational fission-fragment kinetic energy and mass of a third fragment that sometimes forms between the two end fragments, as well as dynamical thresholds, capture cross sections, and ternary events in heavy-ion reactions. 33 references

  15. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    Science.gov (United States)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  16. Fission fragment mass and angular distributions: Probes to study non-equilibrium fission

    Indian Academy of Sciences (India)

    R G Thomas

    2015-08-01

    Synthesis of heavy and superheavy elements is severely hindered by fission and fission-like processes. The probability of these fission-like, non-equilibrium processes strongly depends on the entrance channel parameters. This article attempts to summarize the recent experimental findings and classify the signatures of these non-equilibrium processes based on macroscopic variables. The importance of the sticking time of the dinuclear complex with respect to the equilibration times of various degrees of freedom is emphasized.

  17. Neutron Capture Nucleosynthesis

    OpenAIRE

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these resu...

  18. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  19. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  20. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Science.gov (United States)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (fission modality a realizable SNM detection technique.

  1. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Science.gov (United States)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  2. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    Science.gov (United States)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  3. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  4. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  5. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  6. Electron spectra from decay of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  7. "UCx fission targets oxidation test stand"

    CERN Document Server

    Lacroix, Rachel

    2014-01-01

    "Set up a rig dedicated to the oxidation of UCx and define a procedure for repeatable, reliable and safe method for converting UC2 fission targets into an acceptable uranium carbide oxide waste for subsequent disposal by the Swiss Authorities."

  8. Properties of fission fragments for Z =112 -116 superheavy nuclei

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC Nprocess such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculated fission cross sections find nice agreement with available data. The fission mass distribution shows a double humped structure where a symmetric peak observed around the Sn region appears to find its genesis in a symmetric quasifission component. On the other hand, the emergence of peaks around Pb in the decay of Z =112 , 114, and 116 nuclei signify the possible presence of asymmetric quasifission. Higher and broader asymmetric quasifission peaks are observed for *296116 and *292114 nuclei as compared to *286112 nucleus. Beside this, the total kinetic energy (TKE) distribution of the decay fragments is also explored by using different proximity potentials, such as Prox-77, Prox-88, and Prox-00. Prox-88 seems to perform better and the calculated TKE values find relatively better comparison at lower angular momentum states. The possible role of different radii of the decaying nuclei is also exercised to understand the TKE ¯ dynamics of 48Ca+238U,244Pu,248Cm reactions.

  9. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    OpenAIRE

    Lestone, J. P.

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and meas...

  10. General Description of Fission Observables: GEF Model Code

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz; Amouroux, Charlotte; Schmitt, C.

    2015-01-01

    The GEF (" GEneral description of Fission observables ") model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barrie...

  11. General view on the progress in nuclear fission : a review

    OpenAIRE

    Schmidt, Karl-Heinz; Jurado, Beatriz

    2016-01-01

    An overview is given on some of the main advances in experimental methods, experimental results and theoretical models and ideas of the last years in the field of nuclear fission. New approaches extended the availability of fissioning systems for experimental studies of nuclear fission considerably and provided a full identification of all fission products in A and Z for the first time. In particular, the transition from symmetric to asymmetric fission around 226 Th and some unexpected struct...

  12. Phebus FP: fission product behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lewi, J.; Schwarz, M. [Inst. de Protection et de Surete Nucleaire (IPSN), Dept. de Recherche en Securite, Saint Paul les Durance (France); Hardt, P. von der [European Commission, Joint Research Center, Inst. for Systems, Informatics and Safety (Isis), Saint Paul les Durance (France)

    1998-02-01

    The ongoing Phebus FP programme is the centrepiece of a wide international co-operation investigating, through a series of six integral in-pile experiments, key-phenomena involved in the progression of a postulated severe accident in a Light Wate Reactor (LWR). The Phebus facility offers the capability to study the degradation of real core material, from the early phase of cladding oxidation and hydrogen production up to the late phase of melt progression and molten pool formation. The subsequent release of fission products and structural materials is also experimentally studied, including their transport in the cooling system, and their deposition in the containment, under representative physicochemical conditions. The volatility of iodine in the containment is in particular receiving a special interest in the first experiments, as large uncertainties related to its modelling subsist. FPT-0 and FPT-1, performed respectively in December 1993 and July 1996, have reached very advanced states of degradation, comparable to what was observed in TMI-2, and generated a wealth of results on core degradation and fission product behaviour in particular, pool formation was obtained for a temperature well below the melting point of (U, Zr) O{sub 2} and volatile forms of iodine were detected in the containment much earlier than expected. The resulting database is used to develop and validate the computer codes used to assess the safety of the currently operating plants, to check the efficiency of accident management procedures and also support the design of future plants as EPR. (orig.) [Deutsch] Das laufende Phebus-FP-Programm ist das Herzstueck einer weiten internationalen Zusammenarbeit, durch eine Serie von sechs realitaetsnahen Experimenten die Schluesselphaenomene zu erforschen, die fuer die Ausbreitung eines unterstellten schweren Unfalls in einem Leichtwasserreaktor (LWR) verantwortlich sind. Die Phebus-Anlage in Cadarache ermoeglicht die Untersuchung der Veraenderung

  13. Detector instrumentation for nuclear fission studies

    Indian Academy of Sciences (India)

    Akhil Jhingan

    2015-09-01

    The study of heavy-ion-induced fusion–fission reactions require nuclear instrumentation that include particle detectors such as proportional counters, ionization chambers, silicon detectors, scintillation detectors, etc., and the front-end electronics for these detectors. Using the detectors mentioned above, experimental facilities have been developed for carrying out fusion–fission experiments. This paper reviews the development of detector instrumentation at IUAC.

  14. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    S S Kapoor

    2015-08-01

    Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also opened several new frontiers of research in nuclear physics. This article is a narrative giving an overview of the landmarks of the progress in the field.

  15. MCNP6 Fission Multiplicity with FMULT Card

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Trevor [Los Alamos National Laboratory; Fensin, Michael Lorne [Los Alamos National Laboratory; Hendricks, John S. [Los Alamos National Laboratory; James, Michael R. [Los Alamos National Laboratory; McKinney, Gregg W. [Los Alamos National Laboratory

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  16. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  17. Spontaneous fission of 256Rf, new data

    Science.gov (United States)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  18. Fission Barriers of Compound Superheavy Nuclei

    OpenAIRE

    Pei, J C; Nazarewicz, W.; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for $^{264}$Fm, $^{272}$Ds, $^{278}$112, $^{292}$114, and $^{312}$124. F...

  19. Our 50-year odyssey with fission: Summary

    International Nuclear Information System (INIS)

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs

  20. Intercomparison of delayed neutron summation calculations among JEF2.2, ENDF/B-VI and JNDC-V2

    Energy Technology Data Exchange (ETDEWEB)

    Sagisaka, Mitsuyuki [Nagoya Univ. (Japan); Oyamatsu, K.; Kukita, Y.

    1998-03-01

    We perform intercomparison of delayed neutron activities calculated with JEF2.2, ENDF/B-VI and JNDC-V2 with a simple new method. Significant differences are found at t < 20 (s) for major fissioning systems. The differences are found to stem from fission yields or decay data of several nuclides. The list of these nuclides are also given for the future experimental determination of these nuclear data. (author)

  1. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  2. An Analytical Delay Model

    Institute of Scientific and Technical Information of China (English)

    MIN Yinghua; LI Zhongcheng

    1999-01-01

    Delay consideration has been a majorissue in design and test of high performance digital circuits. Theassumption of input signal change occurring only when all internal nodesare stable restricts the increase of clock frequency. It is no longertrue for wave pipelining circuits. However, previous logical delaymodels are based on the assumption. In addition, the stable time of arobust delay test generally depends on the longest sensitizable pathdelay. Thus, a new delay model is desirable. This paper explores thenecessity first. Then, Boolean process to analytically describe thelogical and timing behavior of a digital circuit is reviewed. Theconcept of sensitization is redefined precisely in this paper. Based onthe new concept of sensitization, an analytical delay model isintroduced. As a result, many untestable delay faults under thelogical delay model can be tested if the output waveforms can be sampledat more time points. The longest sensitizable path length is computedfor circuit design and delay test.

  3. Dynamics in heavy ion fusion and fission

    International Nuclear Information System (INIS)

    Dynamical aspects of heavy ion fussion and fission, mainly the aspect of damping which is meant as the dissipation of kinetic energy and the aspect of the effective mass of the fission motion, are discussed. Two categories of evidence of damping effects are given. One relates to the damping of the fission motion for the ground state shape and for the isomeric more elongated shape. The other relates to the damping of the fission motion from the last barrier to the scission point. The dependence of the effective mass associated with the fission motion on the deormation of nucleus is shown. As the elongation of the nucleus increases the effective mass of the fission motion varies strongly from being about forty times greater than the reduced mass in the beta-vibrational state of the ground state shape to being equal to the reduced mass in the moment of scission. Damping effects are expected to be propartional to the difference between the effective mass and the reduced mass. It is concluded that the damping in fussion reactions is relatively weak for lighter products and quite strong for superheavy products like 236U or 252Cf. (S.B.)

  4. Biological effectiveness of fission neutrons

    International Nuclear Information System (INIS)

    Human peripheral blood lymphocytes were exposed to the uranium fission neutrons with different energy spectra, and the effects of changing pattern of energy spectrum on the relative biological effectiveness (RBE) were studied by analyzing dose-response relationship of chromosome aberrations. When the contribution of contaminated gamma-rays was subtracted, the efficiency of chromosomal response to the neutron dose was found to be refractory to the difference in the energy spectrum while the mean energy ranged from 2 MeV to 27 keV. This chromosomal refractoriness to energy spectrum may be explained by the similarity of energy spectrum for kerma contribution; most of the doses being given by neutrons with energy above 50 keV. Small doses given by short tracks may be less efficient. A comparison of these observations with chromosome aberration frequencies in lymphocytes of A-bomb survivors leads to somewhat higher estimate of neutron dose in Hiroshima than the estimate by the recently revised dosimetry system, DS86. (author)

  5. CAPTURED Ghana Country Evaluation

    NARCIS (Netherlands)

    Sefa Dei, G.J.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Ghana Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the University of Development Studies has been able to achieve commendable results. It can be confirmed that the conte

  6. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health fol

  7. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  8. Fusion and fission properties of rapidly rotating nuclei 40Ar + 238U → 278110 at E/sub cm/ = 291 MeV

    International Nuclear Information System (INIS)

    Coincident fission fragments were detected to study the complete capture reaction, 40Ar + 238U → 278110 → f, at E/sub cm/ = 291 MeV (E/sub lab/ = 340 MeV). The detection system had a high efficiency to detect and subsequently veto events showing evidence of incomplete momentum transfer. The angular distribution of fission fragments was obtained between the center-of-mass angles of 1190 and 1640. The mass distributions of the fission fragments were also obtained for these angles. One non-coincident measurement made at theta/sub cm/ = 43.70 confirmed the symmetry of the angular distribution about 900. This study is distinguished from other recent studies by the use of a novel veto technique. This is the first measurement which has not been compromised by contamination with incomplete momentum-transfer reactions due to either pre-equilibrium emission or fission following deeply inelastic scattering. This is also the first investigation which reports detailed angular distributions with a majority (approx. 90%) of the capture cross section leading to nuclei having vanishing fission barriers. The rotating liquid-drop-model parameters were extracted from the data. The RLDM shapes along with statistical fission models, when applied to all partial waves, fail to reproduce the angular distributions. We interpret the angular distributions by applying statistical-equilibrium models and RLDM shapes for the nonvanishing fission-barrier partial waves and by assuming that the vanishing fission-barrier partial-wave contribution is given by l/sin theta. A l/sin theta distribution is expected for a system which has not reached complete statistical equilibrium and maintains a memory of its entrance channel, with the fission fragments being emitted in the reaction plane defined by the initial contact

  9. Direct thermal neutron capture

    International Nuclear Information System (INIS)

    We discuss the direct-capture theory pertaining to primary electric dipole (E1) transitions following slow-neutron capture. For light nuclides that we have studied (including 9Be, 12C, 13C, 24Mg, 25Mg, 26Mg, 32S, 33S, 34S, 40Ca, and 44Ca), estimates of direct-capture cross sections using optical-model potentials with physically realistic parameters, are in reasonable agreement with the data. Minor disagreements that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. We also discuss the channel-capture approximation which is, in general, a good representation of these cross sections in heavier nuclei particularly if the scattering lengths are not different from the corresponding potential radii. We also draw attention to cases where the use of this formula leads to inaccurate predictions. 9 refs., 1 fig., 2 tab

  10. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  11. Neutron resonance parameters of dysprosium isotopes using neutron capture yields

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National University, Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2015-10-15

    Dysprosium is used in the field of nuclear reactor system because it has a very large thermal neutron absorption cross-section. The dysprosium alloyed with special stainless steels is attractive for control in nuclear reactor because of the ability to absorb neutrons readily without swelling or contracting over time and its high melting point. Dysprosium is also one of fission products from the thermal fission of {sup 234}U, {sup 233}U, and {sup 239}Pu. The fission products are accumulated in the reactor core by the burn-up of the nuclear fuel and the poison effect is increased. Therefore, it is required to understand how Dysprosium as both a poison and an absorbing material in the control rod has an effect on the neutron population in a nuclear reactor system over all energy regions. Neutron Capture experiments on Dy isotopes were performed at the electron linear accelerator (LINAC) facility of the Rensselear Polytechnic Institute (RPI) in the neutron energy region from 10 eV to 1 keV. Resonance parameters were extracted by fitting the neutron capture data using the SAMMY multilevel R-matrix Bayesian code.

  12. Easy-to-use application programs for decay heat and delayed neutron calculations on personal computers

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, Kazuhiro [Nagoya Univ. (Japan)

    1998-03-01

    Application programs for personal computers are developed to calculate the decay heat power and delayed neutron activity from fission products. The main programs can be used in any computers from personal computers to main frames because their sources are written in Fortran. These programs have user friendly interfaces to be used easily not only for research activities but also for educational purposes. (author)

  13. The meiotic recombination checkpoint is regulated by checkpoint rad+ genes in fission yeast.

    Science.gov (United States)

    Shimada, Midori; Nabeshima, Kentaro; Tougan, Takahiro; Nojima, Hiroshi

    2002-06-01

    During the course of meiotic prophase, intrinsic double-strand breaks (DSBs) must be repaired before the cell can engage in meiotic nuclear division. Here we investigate the mechanism that controls the meiotic progression in Schizosaccharomyces pombe that have accumulated excess meiotic DSBs. A meiotic recombination-defective mutant, meu13Delta, shows a delay in meiotic progression. This delay is dependent on rec12+, namely on DSB formation. Pulsed-field gel electrophoresis analysis revealed that meiotic DSB repair in meu13Delta was retarded. We also found that the delay in entering nuclear division was dependent on the checkpoint rad+, cds1+ and mek1+ (the meiotic paralog of Cds1/Chk2). This implies that these genes are involved in a checkpoint that provides time to repair DSBs. Consistently, the induction of an excess of extrinsic DSBs by ionizing radiation delayed meiotic progression in a rad17(+)-dependent manner. dmc1Delta also shows meiotic delay, however, this delay is independent of rec12+ and checkpoint rad+. We propose that checkpoint monitoring of the status of meiotic DSB repair exists in fission yeast and that defects other than DSB accumulation can cause delays in meiotic progression. PMID:12032093

  14. Fission product release and thermal behaviour

    International Nuclear Information System (INIS)

    Release of fission products from the fuel matrix is an important aspect in relation to performance and safety evaluations. Of particular importance amongst fission products are the isotopes of iodine for radiological considerations and the isotopes of xenon and krypton for fuel thermal behaviour. It is believed that the main mechanism for fission gas release is diffusion but the magnitudes of the relevant diffusion coefficients, which exhibit strong temperature dependences, are not well established. The conductivity of the main gaseous fission product, xenon, is much lower than that of the fill gas helium and hence fission gas release may lead to a deterioration of the fill gas conductivity resulting in higher fuel temperatures and consequently higher fission product release. The two effects, thermal response of fuel to fill gas composition and fission gas/product release are thus intimately connected and have been investigated in a number of instrumented fuel assemblies in the Halden reactor. In such an assembly, the instrumentation includes fuel centre thermocouples, pressure sensors and neutron detectors. In addition pins in the assembly may be swept, whilst at power, with various gases, for example Xe, He or Ar or mixtures thereof. A gamma spectrometer is incorporated into the gas circuit to facilitate the performance of on-line fission product release measurements. At various stages in the lifetime of the assembly thermal tests and fission product release measurements have been made. At low operating temperatures and up to moderate burn-ups, no major fuel restructuring phenomena have been observed and consequently the fission product release has remained at low level dictated by the exposed surfaces of the fuel. Axial gas flow measurements indicate that fuel cracking and irreversible relocation occurred as early as the first ramps to power. The processes have continued throughout life and an absence of any change in response pressurization tests indicates that

  15. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    CERN Document Server

    Arnold, C W; Meierbachtol, K; Bredeweg, T; Jandel, M; Jorgenson, H J; Laptev, A; Rusev, G; Shields, D W; White, M; Blakeley, R E; Mader, D M; Hecht, A A

    2014-01-01

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $\\alpha$-particles from $^{229}$Th and its decay chain and $\\alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for mode...

  16. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    International Nuclear Information System (INIS)

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  17. Near Real-Time Nondestructive Active Inspection Technologies Utilizing Delayed γ-Rays and Neutrons for Advanced Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, Alan [Idaho State Univ., Pocatello, ID (United States). Idaho Accelerator Center, Dept. of Physics; Reedy, E. T.E. [Idaho State Univ., Pocatello, ID (United States). Dept. of Phyics, Idaho Accelerator Center; Mozin, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, S. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Nonproliferation

    2015-02-12

    In this two year project, the research team investigated how delayed γ-rays from short-lived fission fragments detected in the short interval between irradiating pulses can be exploited for advanced safeguards technologies. This program contained experimental and modeling efforts. The experimental effort measured the emitted spectra, time histories and correlations of the delayed γ-rays from aqueous solutions and solid targets containing fissionable isotopes. The modeling effort first developed and benchmarked a hybrid Monte Carlo simulation technique based on these experiments. The benchmarked simulations were then extended to other safeguards scenarios, allowing comparisons to other advanced safeguards technologies and to investigate combined techniques. Ultimately, the experiments demonstrated the possible utility of actively induced delayed γ-ray spectroscopy for fissionable material assay.

  18. Delayed neutron detection with an integrated differential die-away and delayed neutron instrument

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Lee, Taehoon [Los Alamos National Laboratory; Hu, Jianwei S [Los Alamos National Laboratory; Hendricks, John [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded a multilab/university collaboration to quantify the plutonium (Pu) mass and detect the diversion of pins from spent nuclear fuel. The first two years of this NGSI effort was focused on quantifying the capability of a range of nondestructive assay (NDA) techniques with Monte Carlo (MCNPX) modeling and the second current phase involves measuring Spent Fuel. One of the techniques of interest in this paper involves measuring delayed neutrons. A delayed neutron instrument using 36 fission chambers and a 14 MeV neutron generator so called DT generator (Deuterium + Tritium) surrounding the fuel was previously studied as part of the NGSI effort. This paper will quantify the capability of a standalone delayed neutron instrument using 4 {sup 3}He gas filled tubes and a DT generator with significant spectrum tailoring, located far from the fuel. So that future research can assess how well a delayed neutron instrument will function as part of an integrated NDA system. A new design is going to be used to respond to the need of the techniques. This design has been modeled for a water media and is currently being optimized for borated water and air media as part of ongoing research. This new design was selected in order to minimize the fission of {sup 238}U, to use a more realistic neutron generator design in the model, to reduce cost and facilitate the integration of a delayed neutron (DN) with a differential die-away (DDA) instrument. Since this paper will focus on delayed neutron detection, the goal is to quantify the signal from {sup 235}U, {sup 239}Pu and {sup 241}Pu, which are the isotopes present in Spent Fuel that respond significantly to a neutron interrogation. This report will quantify the capability of this new delayed neutron design to measure the combined mass of {sup 235}U, {sup 239}Pu and {sup 241}Pu for 16 of the 64 assemblies of the NGSI Spent Fuel library in one

  19. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, C.; Fallin, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Gooden, M.E., E-mail: megooden@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Howell, C.R. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Kelley, J.H. [Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Department of Physics, North Carolina State University, Raleigh, NC 27605 (United States); Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Arnold, C.W.; Bond, E.M.; Bredeweg, T.A.; Fowler, M.M.; Moody, W.A.; Rundberg, R.S.; Rusev, G.; Vieira, D.J.; Wilhelmy, J.B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Becker, J.A.; Macri, R.; Ryan, C.; Sheets, S.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); and others

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  20. Understanding of fission dynamics from fragment mass distribution studies

    International Nuclear Information System (INIS)

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  1. Fission fragment mass distribution in the 13C+182W and 176Yb reactions

    Directory of Open Access Journals (Sweden)

    Ramachandran K.

    2013-12-01

    Full Text Available Shell effects can play a prominent role in fission fragment mass distributions. For lighter systems in the region of A~180-200, mass distributions were generally expected to be symmetric. However, a recent experiment showed that fission of 180Hg following electron capture of 180Tl leads to an asymmetric mass split. Recent calculations by various groups indicate that the mechanism of asymmetric fission could be very different in this mass region compared to the actinide region. To investigate the role of shell effects in this mass region, we have measured the fission fragment mass distribution for the 13C+182W,176Yb reactions forming the compound nuclei 195Hg and 189Os respectively, at lab bombarding energies of 60, 63 and 66 MeV using the CUBE detector setup located at the ANU Heavy Ion Accelerator Facility. The experimental data were fitted with single and double Gaussian distributions. The results indicate an asymmetric mass split for 195Hg, whereas for 189Os, the mass distribution is well fitted with a single Gaussian distribution.

  2. Delayed Gambler's Ruin

    CERN Document Server

    Imai, Tomohisa

    2016-01-01

    We present here a new extended model of the gambler's ruin problem by incorporating delays in receiving of rewards and paying of penalties. When there is a difference between two delays, an exact analysis of the ruin probability is difficult. We derive an approximate scheme to find an effective shift in the initial assets of the gambler. Through comparison against computer simulations, this approximation is shown to work for small differences between the two delays.

  3. VARIABLE TIME DELAY MEANS

    Science.gov (United States)

    Clemensen, R.E.

    1959-11-01

    An electrically variable time delay line is described which may be readily controlled simuitaneously with variable impedance matching means coupied thereto such that reflections are prevented. Broadly, the delay line includes a signal winding about a magnetic core whose permeability is electrically variable. Inasmuch as the inductance of the line varies directly with the permeability, the time delay and characteristic impedance of the line both vary as the square root of the permeability. Consequently, impedance matching means may be varied similariy and simultaneously w:th the electrically variable permeability to match the line impedance over the entire range of time delay whereby reflections are prevented.

  4. Derivation of Energy Generated by Nuclear Fission-Fusion Reaction

    OpenAIRE

    Kayano, Hideo; Teshigawara, Makoto; Konashi, Kenji; Yamamoto, Takuya

    1994-01-01

    In the solids which contain fissionable elements and deuterium, it is expected that the energy generated by nuclear fission contributes to the promotion of the D-D nuclear fusion in the solids. When nuclear fission occurs by neutrons in the solid, the fissionable elements divide into two fission product nuclei having the energy of 100MeV, respectively. It is expected that the hige energy fission products promote rapidly nuclear fision reaction by knocking out the D atoms in the solids and by ...

  5. Licensing topical report: the measurement and modelling of time-dependent fission product release from failed HTGR fuel particles under accident conditions

    International Nuclear Information System (INIS)

    The release of fission products from failed fuel particles was measured under simulated accident (core heatup) conditions. A generic model and specific model parameters that describe delayed fission product release from the kernels of failed HTGR fuel particles were developed from the experimental results. The release of fission products was measured from laser-failed BISO ThO2 and highly enriched (HEU) TRISO UC2 particles that had been irradiated to a range of kernel burnups. The burnups were 0.25, 1.4, and 15.7% FIMA for ThO2 particles and 23.5 and 74% FIMA for UC2 particles. The fission products measured were nuclides of xenon, iodine, krypton, tellurium, and cesium

  6. Nuclear fission induced by heavy ions

    International Nuclear Information System (INIS)

    Because the accelerators of the 50's and 60's mostly provided beams of light ions, well suited for studying individual quantum states of low angular momentum or reactions involving the transfer of one or two nucleons, the study of fission, being an example of large-scale collective motion, has until recently been outside of the mainstream of nuclear research. This situation has changed in recent years, due to the new generation of accelerators capable of producing beams of heavy ions with energies high enough to overcome the Coulomb barriers of all stable nuclei. These have made possible the study of new examples of large-scale collective motions, involving major rearrangements of nuclear matter, such as deep-inelastic collisions and heavy-ion fusion. Perhaps the most exciting development in the past few years is the discovery that dissipative effects (nuclear viscosity) play an important role in fission induced by heavy ions, contrary to earlier assumptions that the viscosity involved in fission was very weak and played only a minor role. This review will be mainly concerned with developments in heavy-ion induced fission during the last few years and have an emphasis on the very recent results on dissipative effects. Since heavy-ion bombardment usually results in compound systems with high excitation energies and angular momenta, shell effects might be expected to be small, and the subject of low energy fission, where they are important, will not be addressed. 285 refs., 58 figs

  7. Fission product decay heat for thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J. K.

    1979-01-01

    In the past five years there have been new experimental programs to measure decay heat (i.e., time dependent beta- plus gamma-ray energy release rates from the decay of fission products) following thermal-neutron fission of /sup 235/U, /sup 239/Pu, and /sup 241/Pu for times after fission between 1 and approx. 10/sup 5/ sec. Experimental results from the ORNL program stress the very short times following fission, particularly in the first few hundred sec. Complementing the experimental effort, computer codes have been developed for the computation of decay heat by summation of calculated individual energies released by each one of the fission products. By suitably combining the results of the summation calculations with the recent experimental results, a new Decay Heat Standard has been developed for application to safety analysis of operations of light water reactors. The new standard indicates somewhat smaller energy release rates than those being used at present, and the overall uncertainties assigned to the new standard are much smaller than those being used at present.

  8. Rupture of the neck in nuclear fission

    International Nuclear Information System (INIS)

    We introduce a degree of freedom to describe the rupture of the neck in nuclear fission and calculate the point at which the neck ruptures as the nucleus descends dynamically from its fission saddle point. This is done by mentally slicing the system into two portions at its minimum neck radius and calculating the force required to separate the two portions while keeping their shapes fixed. This force is obtained by differentiating with respect to separation the sum of the Coulomb and nuclear interaction energies between the two portions. For nuclei throughout the Periodic Table we calculate this force along dynamical paths leading from the fission saddle point. The force is initially attractive but becomes repulsive when the neck reaches a critical size. For actinide nuclei the neck radius at which rupture occurs is about 2 fm. This increases the calculated translational kinetic energy of the fission fragments at infinity relative to that calculated for scission occurring at zero neck radius. With the effect of neck rupture taken into account, we calculate and compare with experimental results fission-fragment kinetic energies for two types of nuclear dissipation: ordinary two-body viscosity and one-body dissipation

  9. An improved technique for fission track dating

    International Nuclear Information System (INIS)

    The necessity of improving the fission track dating (FTD) technique both at home and abroad is illustrated. The ways of making such improvement are also proposed. It is suggested to calibrate the constant b value of the uranium standard glass by using the method of fission products activity. The 3 kinds of uranium standard glass which have been calibrated are NBS SRM962a, UB1 and UB2. An established new method σ·Φ ρd/b, to measure neutron fluence, avoids the influence of the varying neutron spectrum on measuring neutron fluence. The improved etching technique for fission tracks in zircon adopted a two-step method which includes the molten alkali system etching using NaOH + KOH and the mixed acid system etching using HNO3 + HF; this technique results in adequate track etching, increased track clarity and less interference. In this way the intensity of tracks is authentically reflected. Dividing angular zone in accordance with the angular distribution of spontaneous fission track on the crystal surface of minerals to count the tracks and using the improved etching technique to remove the non-uniform angular distribution of spontaneous fission tracks in zircon, ensure the accuracy of tracks count. The improved FTD techniques were used to finish Laboratory Standardized Calibration. The tests using international FTD age standards samples have proved that above mentioned techniques are reliable and practical in obtaining the accurate FTD data. (8 tabs.; 3 figs.)

  10. Heavy-ion-induced fission reactions

    International Nuclear Information System (INIS)

    Fission-cross-section excitation functions were measured from near threshold to approx. 10 MeV/nucleon using heavy-ion beams from the Brookhaven National Laboratory three-stage Tandem Accelerator Facility. The systems studied included 210Po formed in 12C and 18O induced reactions, 186Os formed in 9Be, 12C, 16O, and 26Mg reactions, 158Er formed in 16O, 24Mg, 32S, and 64Ni reactions. In addition the composite systems 204206, 208Po formed with 16O and 18O projectiles were studied. The measured fission excitation functions along with previous data from 4He and 11B bombardments for the 186Os and 210Po systems and recent data on the 200Pb system are compared to predictions from a statistical model using recent fission-barrier calculations from A. Sierk. Comparisons of calculated and measured fission excitation functions show good overall agreement between data and calculations and between calculations with two different level-density functions. It is concluded that the barriers from Sierk give a good description of both the mass and angular momentum dependence of fission barriers in this region

  11. Anatomy of neck configuration in fission decay

    CERN Document Server

    Patra, S K; Satpathy, L

    2010-01-01

    The anatomy of neck configuration in the fission decay of Uranium and Thorium isotopes is investigated in a microscopic study using Relativistic mean field theory. The study includes $^{236}U$ and $^{232}Th$ in the valley of stability and exotic neutron rich isotopes $^{250}U$, $^{256}U$, $^{260}U$, $^{240}Th$, $^{250}Th$, $^{256}Th$ likely to play important role in the r-process nucleosynthesis in stellar evolution. Following the static fission path, the neck configurations are generated and their composition in terms of the number of neutrons and protons are obtained showing the progressive rise in the neutron component with the increase of mass number. Strong correlation between the neutron multiplicity in the fission decay and the number of neutrons in the neck is seen. The maximum neutron-proton ratio is about 5 for $^{260}$U and $^{256}$Th suggestive of the break down of liquid-drop picture and inhibition of the fission decay in still heavier isotopes. Neck as precursor of a new mode of fission decay li...

  12. Marine turtle capture data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...

  13. Neutrinoless double electron capture

    CERN Document Server

    Kotila, J; Iachello, F

    2015-01-01

    Direct determination of the neutrino mass is at the present time one of the most important aims of experimental and theoretical research in nuclear and particle physics. A possible way of detection is through neutrinoless double electron capture, $0\

  14. The Role of Fission in Neutron Star Mergers and its Impact on the r-Process Peaks

    DEFF Research Database (Denmark)

    Eichler, Marius; Arcones, Almudena; Kelic, Alexandra;

    2015-01-01

    -peak as a function of mass models and fission fragment distributions, as well as the origin of a shift in the third r-process peak position. The latter has been noticed in a number of merger nucleosynthesis predictions. We show that the shift occurs during the r-process freeze-out when neutron captures and {\\beta......}-decays compete and an (n,{\\gamma})-({\\gamma},n) equilibrium is not maintained anymore. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of {\\beta}-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning...... of r-process nucleosynthesis calculations for the dynamical ejecta of neutron star merger simulations based on three different nuclear mass models: The Finite Range Droplet Model (FRDM), the (quenched version of the) Extended Thomas Fermi Model with Strutinsky Integral (ETFSI-Q), and the Hartree...

  15. Studies on short-lived fission products at the Mainz TRIGA reactor

    International Nuclear Information System (INIS)

    Neutron-rich nuclei of medium mass number are produced by thermal-neutron-induced fission of heavy elements, e.g., 235U, 239Pu, and 249Cf. Pulse irradiations lead to an enhancement of the ratio of short-lived activities to the accompanying longer-lived components. One approach for investigating the properties of short-lived nuclei consists in a combination of rapid chemical separations with higher-resolution gamma spectroscopy. This is demonstrated by the isolation of neutron-rich isotopes of niobium by sorption on glass and of ruthenium by solvent extraction. Other rapid separation procedures from aqueous solutions are briefly summarized and a few examples for their application in nuclear fission- and delayed neutron studies are given. Some experiments with an on-line mass separator of the ISOLDE-type, using chemical targets, are described. (U.S.)

  16. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons. Pt. 2

    International Nuclear Information System (INIS)

    Blood samples were spiked with Na-24 to study the separate effect of this nuclide on the incidence of chromosomal aberrations in neutron irradiated blood samples. A delay of 96 h was allowed before cultivation, so the results of chromosomal aberration analysis could be compared with the results obtained by direct irradiation of blood samples with U-235 fission neutrons. The absorbed dose was calculated using a simple conservative model. From the results obtained we can conclude that Na-24 alone was not the reason for the difference in the incidence of chromosomal aberrations between blood samples cultivated immediately after 'in vitro' irradiation by U-235 fission neutrons and samples which were cultivated after 96 h storage. (orig.)

  17. Excitation-energy dependence of the nuclear fission characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Saito, T.; Takahashi, N. [Osaka City Univ. (Japan). Faculty of Science] [and others

    1996-03-01

    It is known that the width parameter of the fragment mass yield distribution follows a beautiful systematics with respect to the excitation energy. According to this systematics, the fission characteristics following the systematics should disappear when the excitation energy Ex goes down to 14 MeV. The present purpose is to elucidate if, where, how and why a transition takes place in the fission characteristics of the asymmetric fission of light actinide elements. Two types of experiments are performed, one is the double-energy measurement of the kinetic energies of complementary fragments in the thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at 13.3- and 15.7-MeV excitations, and the other is the radiochemical study of proton-induced fission and photofission of {sup 238}U at various excitation energies. In conclusion, it has demonstrated that there are two distinctive fission mechanisms in the low-energy fission of light actinide elements and the transition between them takes place around 14-MeV excitation. The characteristics of proton fission and photofission in the energy range lower than the above transition point are the essentially the same as those of thermal-neutron fission and also spontaneous fission. The results of GDR fission indicates the fission in the high-energy side starts from the nuclear collective states, whereas the lower-energy fission is of non-collective nature. It is likely that thermal-neutron fission is rather of the barrier-penetrating type like spontaneous fission than the threshold fission. (S.Y.)

  18. Measurements of the effective cumulative fission yields of 143Nd, 145Nd, 146Nd, 148Nd and 150Nd for 235U in the PHENIX fast reactor

    Directory of Open Access Journals (Sweden)

    Privas Edwin

    2016-01-01

    Full Text Available The effective Neodymium cumulative fission yields for 235U have been measured in the fast reactor PHENIX relatively to the 235U fission cross-section. The data were derived from isotope-ratio measurements obtained in the frame of the PROFIL-1, PROFIL-2A and PROFIL-2B programs. The interpretations of the experimental programs were performed with the ERANOS code in association with the Joint Evaluated Fission and Fusion library JEFF-3.1.1. Final results for 143Nd, 145Nd, 146Nd, 148Nd and 150Nd were 5.61%, 3.70%, 2.83%, 1.64% and 0.66%, respectively. The relative uncertainties attached to each of the cumulative fission yields lie between 2.1% and 2.4%. The main source of uncertainty is due to the fluence scaling procedure (<2%. The uncertainties on the Neodymium capture cross-sections provide a contribution lower than 1%. The energy dependence of the fission yields was studied with the GEF code from the thermal energy to 20 MeV. Neutron spectrum average corrections, deduced from GEF calculations, were applied to our effective fission yields with the aim of estimating fission yields at 400 keV and 500 keV, as given in the International Evaluated Nuclear Data Files (JEFF, ENDF/B and JENDL. The neutron spectrum average correction calculated for the PROFIL results remains lower than 1.5%.

  19. Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I.

    Science.gov (United States)

    Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M

    2016-01-01

    Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3-4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells. PMID:27166749

  20. Paired arrangement of kinetochores together with microtubule pivoting and dynamics drive kinetochore capture in meiosis I.

    Science.gov (United States)

    Cojoc, Gheorghe; Florescu, Ana-Maria; Krull, Alexander; Klemm, Anna H; Pavin, Nenad; Jülicher, Frank; Tolić, Iva M

    2016-01-01

    Kinetochores are protein complexes on the chromosomes, whose function as linkers between spindle microtubules and chromosomes is crucial for proper cell division. The mechanisms that facilitate kinetochore capture by microtubules are still unclear. In the present study, we combine experiments and theory to explore the mechanisms of kinetochore capture at the onset of meiosis I in fission yeast. We show that kinetochores on homologous chromosomes move together, microtubules are dynamic and pivot around the spindle pole, and the average capture time is 3-4 minutes. Our theory describes paired kinetochores on homologous chromosomes as a single object, as well as angular movement of microtubules and their dynamics. For the experimentally measured parameters, the model reproduces the measured capture kinetics and shows that the paired configuration of kinetochores accelerates capture, whereas microtubule pivoting and dynamics have a smaller contribution. Kinetochore pairing may be a general feature that increases capture efficiency in meiotic cells.

  1. A NIMA homologue promotes chromatin condensation in fission yeast.

    Science.gov (United States)

    Krien, M J; Bugg, S J; Palatsides, M; Asouline, G; Morimyo, M; O'Connell, M J

    1998-04-01

    Entry into mitosis requires p34(cdc2), which activates downstream mitotic events through phosphorylation of key target proteins. In Aspergillus nidulans, the NIMA protein kinase has been identified as a potential downstream target and plays a role in regulating chromatin condensation at mitosis. nimA- mutants arrest in a state that physically resembles interphase even though p34(cdc2) is fully active. Despite evidence for the existence of NIMA-like activities in a variety of cell types, the only bona fide NIMA homologue that has been identified is the nim-1 gene of Neurospora crassa. We report here the isolation of a fission yeast NIMA homologue, and have designated this gene fin1 and the 83 kDa predicted protein p83(fin1). Overexpression of fin1 promotes premature chromatin condensation from any point in the cell cycle independently of p34(cdc2) function. Like NIMA, p83(fin1) levels fluctuate through the cell cycle, peaking in mitosis and levels are greatly elevated by removal of C-terminal PEST sequences. Deletion of fin1 results in viable but elongated cells, indicative of a cell cycle delay. Genetic analysis has placed this delay in G2 but, unlike in nimA mutants of Aspergillus, p34(cdc2) activation appears to be delayed. Interaction of fin1 mutants with other strains defective in chromatin organisation also support the hypothesis of p83(fin1) playing a role in this process at the onset of mitosis. These data indicate that NIMA-related kinases may be a general feature of the cell cycle and chromatin organisation at mitosis.

  2. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  3. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  4. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  5. Lunar surface fission power supplies: Radiation issues

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Lee, S.K.

    1994-07-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield.

  6. Process for fine purification of fission molybdenum

    International Nuclear Information System (INIS)

    The invention deals with a method for the fine purification of fission molybdenum, dissolved in anionic form together with the anions of the fission products of J, Sn, Ce, Ru, and Zr in an aqueous mineral acid solution; in this process the fission molybdenum is a) fixed on a metal oxide in a sorption step and b) released again in a desorption step. By the invention, a method shall be created, which is, under less favourable working conditions, almost insusceptible to failure and can be safely carried out with low expenditure of operation time, working equipment and handling technique and which delivers a highly pure Mo-99 product with a decreased volume of radioactive waste at the same time. (orig./RB)

  7. Energy partition in low energy fission

    CERN Document Server

    Mirea, M

    2011-01-01

    The intrinsic excitation energy of fission fragments is dynamically evaluated in terms of the time dependent pairing equations. These equations are corroborated with two conditions. One of them fixes the number of particles and the another separates the pairing active spaces associated to the two fragments in the vicinity of the scission configuration. The fission path is obtained in the frame of the macroscopic-microscopic model. The single particle level schemes are obtained within the two center Woods-Saxon shell model. It is shown that the available intrinsic dissipated energy is not shared proportionally to the masses of the two fission fragments. If the heavy fragment possesses nucleon numbers close to the magic ones, the accumulated intrinsic excitation energy is lower than that of the light fragment.

  8. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (Tfission of the neck, while the mother vesicle remains intact. Pearling tubes which formed upon heating break-up and decay into multiple individual vesicles which then diffuse freely. Finally we demonstrate that mimicking the intracellular bulk viscosity by increasing the bulk viscosity to 40cP does not affect the overall fission process, but leads to a significant decrease in size of the released vesicles.

  9. Evaluation of covariance for fission neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Ohsawa, Takaaki; Shibata, Keiichi

    1999-02-01

    A covariance evaluation system for the evaluated nuclear data library JENDL-3.2 was established, and the covariance data for fission neutron spectra of {sup 233}U, {sup 235}U, {sup 238}U, {sup 239}Pu were evaluated. Two methods were employed to evaluate the covariance. One is based on the experimental data, and the other is based on a model calculation including some kinds of renormalizations. The latter technique was adopted for the covariance evaluation of the fission neutron spectra in JENDL-3.2. We performed an adjustment of the evaluated fission neutron spectrum of {sup 235}U using the spectrum averaged cross sections for the {sup 27}Al(n, p), {sup 46,47,48}Ti(n, p), {sup 54,56}Fe(n, p), {sup 58}Ni(n, p), {sup 90}Zr(n, 2n) reactions. The adjusted spectrum integrated over energy was found to be unity. (author)

  10. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  11. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  12. Dynamic Network Delay Cartography

    CERN Document Server

    Rajawat, Ketan; Giannakis, Georgios B

    2012-01-01

    Path delays in IP networks are important metrics, required by network operators for assessment, planning, and fault diagnosis. Monitoring delays of all source-destination pairs in a large network is however challenging and wasteful of resources. The present paper advocates a spatio-temporal Kalman filtering approach to construct network-wide delay maps using measurements on only a few paths. The proposed network cartography framework allows efficient tracking and prediction of delays by relying on both topological as well as historical data. Optimal paths for delay measurement are selected in an online fashion by leveraging the notion of submodularity. The resulting predictor is optimal in the class of linear predictors, and outperforms competing alternatives on real-world datasets.

  13. Heavy ion fusion and fission reactions

    International Nuclear Information System (INIS)

    Various methods of probing the partial wave distribution are reviewed and new results using fission fragment angular distributions are discussed. Evidence that existing models of fusion reactions near-barrier and sub-barrier energies underestimate the mean-square spin values are presented. The dynamics of fusion reactions at higher energies are also discussed. The controversy over the interpretation of fission fragment and angular distributions are reviewed. Both statistical scission models and dynamical models with incomplete K mixing are discussed. New developments related to the effective moment of inertia of the saddlepoint shape are presented

  14. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  15. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  16. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  17. Actinide and fission product separation and transmutation

    International Nuclear Information System (INIS)

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  18. Fission cross section for 242Am.met

    International Nuclear Information System (INIS)

    The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements

  19. A fission-fragment-sensitive target for X-ray spectroscopy in neutron-induced fission

    CERN Document Server

    Ethvignot, T; Giot, L; Casoli, P; Nelson, R O

    2002-01-01

    A fission-fragment-sensitive detector built for low-energy photon spectroscopy applications at the WNR 'white' neutron source at Los Alamos is described. The detector consists of eight layers of thin photovoltaic cells, onto which 1 mg/cm sup 2 of pure sup 2 sup 3 sup 8 U is deposited. The detector serves as an active target to select fission events from background and other reaction channels. The fairly small thickness of the detector with respect to transmission of 20-50 keV photons permits the measurement of prompt fission-fragment X-rays. Results with the GEANIE photon spectrometer are presented.

  20. Fission Multiplicity Detection with Temporal Gamma-Neutron Discrimination from Higher-Order Time Correlation Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Oberer, R.B.

    2002-11-12

    The current practice of nondestructive assay (NDA) of fissile materials using neutrons is dominated by the {sup 3}He detector. This has been the case since the mid 1980s when Fission Multiplicity Detection (FMD) was replaced with thermal well counters and neutron multiplicity counting (NMC). The thermal well counters detect neutrons by neutron capture in the {sup 3}He detector subsequent to moderation. The process of detection requires from 30 to 60 {micro}s. As will be explained in Section 3.3 the rate of detecting correlated neutrons (signal) from the same fission are independent of this time but the rate of accidental correlations (noise) are proportional to this time. The well counters are at a distinct disadvantage when there is a large source of uncorrelated neutrons present from ({alpha}, n) reactions for example. Plastic scintillating detectors, as were used in FMD, require only about 20 ns to detect neutrons from fission. One thousandth as many accidental coincidences are therefore accumulated. The major problem with the use of fast-plastic scintillation detectors, however, is that both neutrons and gamma rays are detected. The pulses from the two are indistinguishable in these detectors. For this thesis, a new technique was developed to use higher-order time correlation statistics to distinguish combinations of neutron and gamma ray detections in fast-plastic scintillation detectors. A system of analysis to describe these correlations was developed based on simple physical principles. Other sources of correlations from non-fission events are identified and integrated into the analysis developed for fission events. A number of ratios and metric are identified to determine physical properties of the source from the correlations. It is possible to determine both the quantity being measured and detection efficiency from these ratios from a single measurement without a separate calibration. To account for detector dead-time, an alternative analytical technique

  1. Microscopic description of complex nuclear decay: multimodal fission

    OpenAIRE

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-01-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fissi...

  2. Development and Utilization of Space Fission Power Systems

    Science.gov (United States)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  3. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  4. Dynamical effects in fission investigated at high excitation energy

    OpenAIRE

    Benlliure J.

    2016-01-01

    The experimental techniques used for the investigation of nuclear fission have progressed considerably during the last decade. Most of this progress is based on the use of the inverse kinematics technique allowing for the first time the complete isotopic and kinematic characterization of both fission fragments. These measurements make possible to characterize the fissioning system at saddle and at scission, and can be used to benchmark fission model calculations. One of the important ingredie...

  5. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  6. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  7. Developing an "atomic clock" for fission lifetime measurements

    NARCIS (Netherlands)

    Wilschut, H.W.E.M.; Kravchuk, V.

    2004-01-01

    The relevance of measuring fission lifetimes of hot nuclei is briefly discussed. It is shown that K X-ray emission prior to fission can be used to measure fission lifetimes. The preparation of the K-shell hole, the simultaneous nuclear excitation, and the analysis of the X-ray spectra is described.

  8. The effect of atomic electrons on nuclear fission

    OpenAIRE

    Dzuba, V. A.; Flambaum, V. V.

    2008-01-01

    We calculate correction to the nuclear fission barrier produced by the atomic electrons. The result presented in analytical form is convenient to use in future nuclear calculations. The atomic electrons have a small stabilizing effect on nuclei, increasing lifetime in nuclear fission channel. This effect gives a new instrument to study the fission process.

  9. Design and Simulation of High Radioactivity Fission Ionization Chamber

    Institute of Scientific and Technical Information of China (English)

    WANG; Qi

    2012-01-01

    <正>It is great effect that the fission neutron release in 239Pu(n, 2n) cross section measurement by using multi-unit gadolinium loaded liquid scintillation detector system, for the 239Pu fission cross section is larger than (n, 2n) cross section one order of magnitude. In order to deduct the effect of fission neutrons,

  10. Cold fission studies using a double-ionization chamber

    International Nuclear Information System (INIS)

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  11. Enabling the Use of Space Fission Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Houts; Melissa Van Dyke; Tom Godfroy; James Martin; Kevin Pedersen; Ricky Dickens; Ivana Hrbud; Leo Bitteker; Bruce Patton; Suman Chakrabarti; Joe Bonometti

    2000-06-04

    This paper gives brief descriptions of advantages of fission technology for reaching any point in the solar system and of earlier efforts to develop space fission propulsion systems, and gives a more detailed description of the safe, affordable fission engine (SAFE) concept being pursued at the National Aeronautics and Space Administration's Marshall Space Flight Center.

  12. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  13. Fission barrier heights in the A ∼ 200 mass region

    Indian Academy of Sciences (India)

    K Mahata

    2015-08-01

    Statistical model analysis is carried out for - and -induced fission reactions using a consistent description for fission barrier and level density in A ∼ 200 mass region. A continuous damping of shell correction with excitation energy is considered. Extracted fission barriers agree well with the recent microscopic–macroscopic model. The shell corrections at the saddle point were found to be insignificant.

  14. US Spacesuit Knowledge Capture

    Science.gov (United States)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  15. Delay in Contests

    OpenAIRE

    Bester, Helmut; Konrad, Kai A.

    2003-01-01

    "Why is there delay in contests? In this paper we follow and extend the line of reasoning of Carl von Clausewitz to explain delay. For a given contest technology, delay may occur if there is an asymmetry between defense and attack, if the expected change in relative strengths is moderate, and if the additional cost of investment in future strength is low." (author's abstract) "In Konfliktsituationen findet der 'showdown' häufig mit einer Verzögerung statt. Das ist überraschend, weil sich m...

  16. Determination of the effective delayed neutron fraction in the Coral-I Reactor

    International Nuclear Information System (INIS)

    The effective delayed neutron fraction, β eff, has been determined from the measurement of E / β2, by means of reactor noise analysis in the time domain, and the neutron detector efficiency, ε. For the ε measurement it is necessary to determine the fission rate in the reactor. This value can be obtained from the absolute measurement of the fission rate per cm3, at a certain point of the reactor, and the determination of these two values ratio, which has been calculated by the Monte Cario method and also measured with results in good agreement. (Author)

  17. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  18. Entrance channel dependence of fission fragment anisotropies - a direct experimental signature of fission before equilibration

    International Nuclear Information System (INIS)

    In several cases of heavy ion induced fusion-fission reactions, the fission fragment angular distributions exhibit much larger anisotropies than predicted by the standard Halpern-Strutinsky theory. Several explanations have been put forward to interpret these anomalous angular distributions. One of them is that a characteristic signature of fission before full K-equilibration will be an entrance channel dependence of the fragment anisotropies for target-projectile combinations across the Businaro-Gallone ridge in the mass/charge asymmetry degree of freedom. To look for any such entrance channel dependence of fragment anisotropies, we have carried out measurements of fragment angular distributions in fission induced by boron, carbon, oxygen ions on thorium and neptunium targets and by fluorine ions on neptunium target at above barrier energies. (author). 7 refs., 1 fig

  19. Fission barriers and probabilities of spontaneous fission for elements with Z$\\geq$100

    CERN Document Server

    Baran, A; Reinhard, P -G; Robledo, L M; Staszczak, A; Warda, M

    2015-01-01

    This is a short review of methods and results of calculations of fission barriers and fission half-lives of even-even superheavy nuclei. An approvable agreement of the following approaches is shown and discussed: The macroscopic-microscopic approach based on the stratagem of the shell correction to the liquid drop model and a vantage point of microscopic energy density functionals of Skyrme and Gogny type selfconsistently calculated within Hartree-Fock-Bogoliubov method. Mass parameters are calculated in the Hartree-Fock-Bogoliubov cranking approximation. A short part of the paper is devoted to the nuclear fission dynamics. We also discuss the predictive power of Skyrme functionals applied to key properties of the fission path of $^{266}$Hs. It applies the standard techniques of error estimates in the framework of a $\\chi^2$ analysis.

  20. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Directory of Open Access Journals (Sweden)

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  1. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  2. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  3. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P;

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  4. Fission--fusion systems: classification and critique

    International Nuclear Information System (INIS)

    A useful classification scheme for hybrid systems is described and some common features that the scheme makes apparent are pointed out. The early history of fusion-fission systems is reviewed. Some designs are described along with advantages and disadvantages of each. The extension to low and moderate Q devices is noted. (U.S.)

  5. Brownian shape motion: Fission fragment mass distributions

    Directory of Open Access Journals (Sweden)

    Sierk Arnold J.

    2012-02-01

    Full Text Available It was recently shown that remarkably accurate fission-fragment mass distributions can be obtained by treating the nuclear shape evolution as a Brownian walk on previously calculated five-dimensional potential-energy surfaces; the current status of this novel method is described here.

  6. Angular-momentum-bearing modes in fission

    International Nuclear Information System (INIS)

    The angular-momentum-bearing degrees of freedom involved in the fission process are identified and their influence on experimental observables is discussed. The excitation of these modes is treated in the ''thermal'' limit, and the resulting distributions of observables are calculated. Experiments demonstrating the role of these modes are presented and discussed. 61 refs., 12 figs

  7. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  8. Energy Correlation of Prompt Fission Neutrons

    Science.gov (United States)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  9. Energy Correlation of Prompt Fission Neutrons

    Directory of Open Access Journals (Sweden)

    Elter Zs.

    2016-01-01

    Full Text Available In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  10. Fission in intermediate energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelmy, J.B.; Begemann-Blaich, M.; Blaich, T.; Boissevain, J.; Fowler, M.M.; Gavron, A.; Jacak, B.V.; Lysaght, P.S. (Los Alamos National Lab., NM (USA)); Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.M.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L. (Lawrence Livermore National Lab., CA (USA)); Chan, Y.D.; Dacai, A.; Harmon, A.; Leyba, J.; Pouliot, J.; Stokstad, R.G. (Lawrence Berkeley Lab., CA (USA)); Hansen, O.; Levine, M.J.; Thorn, C.E.; Trautmann, W. (Brookhaven National Lab., Upton, NY (USA)); Dichter, B.; Kaufman, S.; Videbaek, F. (Argonne National Lab. (USA)); Fraenkel, Z.; Mamane, G. (Weizmann Inst. of Science, Rehovoth (Israel)); Cebra, D.; Westfall, G.D. (Michigan State Univ., East Lansing (USA))

    1989-10-09

    A systematic study of reaction mechanisms at intermediate energies (50-100 MeV/A) has been performed at the Lawrence Berkeley Laboratory's BeValac using medium weight projectiles on medium and heavy element targets. A gas and plastic phoswich detector system was employed which gave large geometric coverage and a wide dynamic response. The particles identified with the gas detectors could be characterized into three components - intermediate mass fragments (IMF), fission fragments (FF) and heavy residues (HR). Major observed features are: The reaction yields are similar in the 50 to 100 MeV/A range, central collisions have high multiplicty of IMF's with broad angular correlations consistent with a large participant region, effects of final state Coulomb interactions are observed and give information on the size and temporal behavior of the source, true fission yields are dependent on target fissility and correlated with relatively peripheral collisions. Analysis of fission and evaporation yields implies limiting conditions for which fission decay remains a viable deexcitation channel. (orig.).

  11. Subminiature fission chamber with gas tight penetration

    International Nuclear Information System (INIS)

    Fission chambers suffer from gas leaks at electric feed-trough. This micro chamber suppresses that defect thanks to an alumina plug and welded seal of the chamber sleeve. This device is easy to produce at industrial scale with reduced dimensions (1,5 mm diameter, 25 mm length). It can work with 30 m long feeding cables. (D.L.). 3 figs

  12. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  13. Angular distribution of oriented nucleus fission neutrons

    International Nuclear Information System (INIS)

    Calculations of anisotropy of angular distribution of oriented 235U nuclei thermal fission neutrons have been carried out. the neutrons were assumed to evaporate isotropically by completely accelerated fragements in the fragment system with only its small part, i. e. fission-producing neutrons, emitted at the moment of neck break. It has been found out that at low energies of neutrons Esub(n)=1-2 MeV the sensitivity of the angular distribution anisotropy to variations of spectrum of neutron evaporation from fragments and the magnitude of a share of fission-producing neutrons reaches approximately 100%, which at high energies, Esub(n) > 5 MeV it does not exceed approximately 20%. Therefore the angular distribution of fast neutrons to a greater degree of confidence may be used for restoring the angular distribution anisotropy of fragments while the angular distribution of low energy neutrons may be used for deriving information on the fission process, but only in case 6f the experiment accuracy is better than approximately 3%

  14. Otto Hahn (1944). Discovery of nuclear fission

    CERN Document Server

    Hahn, Otto

    2003-01-01

    Otto Hahn (Frankfurt-on-Main, 1879-Gotinga, 1968) is the discoverer of nuclear fission, which awarded him the Nobel Prize for Chemistry in 1944. After leaving Germany during the Second World War to settle in the United Kingdom, he returned to this country as a renown figure.

  15. Density Functional Theory Approach to Nuclear Fission

    CERN Document Server

    Schunck, N

    2012-01-01

    The Skyrme nuclear energy density functional theory (DFT) is used to model neutron-induced fission in actinides. This paper focuses on the numerical implementation of the theory. In particular, it reports recent advances in DFT code development on leadership class computers, and presents a detailed analysis of the numerical accuracy of DFT solvers for near-scission calculations.

  16. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  17. The partial fission of fast spinning asteroids

    Science.gov (United States)

    Tardivel, Simon; Sanchez, Paul; Scheeres, Daniel J.

    2016-10-01

    The spin rates of asteroids systematically change over time due the Yarkovsky–O'Keefe–Radzievskii–Paddack (YORP) effect. Above a certain spin rate that depends on the body's density, regions of an asteroid can enter in tension, with components held to the body by cohesive forces. When the body fails, deformation or fission can occur. Catastrophic fission leading to complete disruption has been directly observed in active asteroid P/2013 R3. Partial fission, the loss of only part of the body, has been proposed as a mechanism for the formation of binaries and is explored here.The equatorial cavities of (341843) 2008 EV5 and of (185851) 2000 DP107 (a binary system) are consistent with a localized partial fission of the body (LPSC 2016 #1036). The examination of the gravity field of these bodies reveals that a mass placed within these cavities could be shed. In this mechanism, the outward pull of inertial forces creates an average stress at the cavity interface of ≈1 Pa for 2008 EV5 and ≈3 Pa for 2000 DP107 at spin periods of ≈3.15 h for the assumed densities of 1.3 g/cm3.This work continues the study of this partial, localized fission. Specifically, it addresses the issue of the low cohesion necessary to the mechanism. These cohesion values are typically lower than global strength values inferred on other asteroids (10 - 200 Pa), meaning that partial fission may occur prior to larger-scale deformations. Yet, several processes can explain the discrepancy, as they can naturally segregate particles by size. For instance, landslides or granular convection (Brazil nut effect) could bring larger boulders to the equator of the body, while finer particles are left at higher latitudes or sink to the center. Conversely, failure of the interior could bring boulders to the surface. The peculiar profile shape of these asteroids, shared by many binaries (e.g. 1999 KW4, 1996 FG3) may also be a clue of this heterogeneity, as this "spin top" shape is obtained in

  18. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula used to

  19. Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    OpenAIRE

    Veselsky, M.

    2003-01-01

    The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross se...

  20. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    Science.gov (United States)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  1. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  2. commensurate point delays

    Directory of Open Access Journals (Sweden)

    M. de la Sen

    2005-01-01

    nominal controller is maintained. In the current approach, the finite spectrum assignment is only considered as a particular case of the designer's choice of a (delay-dependent arbitrary spectrum assignment objective.

  3. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions.

    Science.gov (United States)

    Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch

    2016-05-13

    Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  4. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions.

    Science.gov (United States)

    Lin, Aijing; Liu, Kang K L; Bartsch, Ronny P; Ivanov, Plamen Ch

    2016-05-13

    Within the framework of 'Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  5. Quad precision delay generator

    International Nuclear Information System (INIS)

    A Quad Precision Delay Generator delays a digital edge by a programmed amount of time, varying from nanoseconds to microseconds. The output of this generator has an amplitude of the order of tens of volts and rise time of the order of nanoseconds. This was specifically designed and developed to meet the stringent requirements of the plasma focus experiments. Plasma focus is a laboratory device for producing and studying nuclear fusion reactions in hot deuterium plasma. 3 figs

  6. CAPTURED End Evaluation Synthesis Report

    NARCIS (Netherlands)

    Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Synthesis Study of the CAPTURED Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the three CAPTURED partners have achieved commendable results. Ten lessons learned are formulated th

  7. 14. International workshop on nuclear fission physics. Proceedings

    International Nuclear Information System (INIS)

    The meetings on nuclear fission took place 12-15 October 1998 and was organized by Institute of Physics and Power Engineering. The aim of the workshop was to present and discuss main new both theoretical and experimental results obtained in the area of nuclear fission, dynamical feature, properties of fission fragments and complementary radiation. As usual the program of the workshop was designed to cover a wide range of physical phenomena - from low energy and spontaneous fission to fission of hot rotating nuclei and multifragmentation at intermediate and high energies. Reaction induced by slow and fast neutron, light and heavy ions were discussed

  8. Geometrical and statistical factors in fission of small metal clusters

    OpenAIRE

    Obolensky, O. I.; Lyalin, A. G.; Solov'yov, A. V.; Greiner, W.

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fissi...

  9. Application of the dinuclear system model to fission process

    Science.gov (United States)

    Andreev, A. V.; Shneidman, T. M.; Ventura, A.

    2016-01-01

    A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron-induced fission of 239Pu.

  10. Application of the dinuclear system model to fission process

    Directory of Open Access Journals (Sweden)

    Andreev A. V.

    2016-01-01

    Full Text Available A theoretical evaluation of the collective excitation spectra of nucleus at large deformations is possible within the framework of the dinuclear system model, which treats the wave function of the fissioning nucleus as a superposition of a mononucleus configuration and two-cluster configurations in a dynamical way, permitting exchange of nucleons between clusters. In this work the method of calculation of the potential energy and the collective spectrum of fissioning nucleus at scission point is presented. Combining the DNS model calculations and the statistical model of fission we calculate the mass, total kinetic energy, and angular distribution of fission fragments for the neutron–induced fission of 239Pu.

  11. Measurements of Marius initial conversion factor and fast fission factor 1967

    International Nuclear Information System (INIS)

    This report describes the program of measurement of Co initial conversion factor and of δ28 fast fission factor which has been performed with the Marius critical pile for graphite networks (the pile configuration allowed the network and the reference thermal column to be simultaneously irradiated). The measurement of the U-238 capture rate has been performed by detection of γ-γ coincidences of Np-239. The δ28 measurement has been performed by using pairs of natural-U - depleted-U detectors. Measurement accuracy is assessed, and measurements are compared with numerical results. Some improvements are suggested to reduce experimental margins again

  12. Fusion–fission dynamics studies using mass distribution as a probe

    Indian Academy of Sciences (India)

    T K Ghosh; A Chaudhuri; K Banerjee; S Bhattacharya; C Bhattacharya; S Kundu; G Mukherjee; R Pandey; T K Rana; P Roy; T Roy; V Srivastava; P Bhattacharya

    2015-08-01

    Study of quasifission reaction mechanism and shell effects in compound nuclei has important implications on the synthesis of superheavy elements (SHE). Using the major accelerator facilities available in India, quasifission reaction mechanism and shell effects in compound nuclei were studied extensively. Fission fragment mass distribution was used as a probe. Two factors, viz., nuclear orientation and direction of mass flow of the initial dinuclear system after capture were seen to determine the extent of quasifission. From the measurement of fragment mass distribution in -induced reaction on actinide targets, it was possible to constrain the excitation energy at which nuclear shell effect washed out.

  13. Fast Neutron Induced Fission neutron Spectra Below the Incident Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.

    2008-06-15

    Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.

  14. Conservation of Isospin in Neutron-rich Fission Fragments

    Science.gov (United States)

    Jain, A. K.; Choudhury, D.; Maheshwari, B.

    2014-06-01

    On the occasion of the 75th anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions 238U(18O,f) and 208Pb(18O,f) as well as a thermal neutron fission reaction 245Cm(nth,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  15. Conservation of Isospin in Neutron-Rich Fission Fragments

    CERN Document Server

    Jain, Ashok Kumar; Maheshwari, Bhoomika

    2014-01-01

    On the occasion of the $75^{th}$ anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavy-ion reactions $^{238}$U($^{18}$O,f) and $^{208}$Pb($^{18}$O,f) as well as a thermal neutron fission reaction $^{245}$Cm(n$^{th}$,f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  16. Subroutines to Simulate Fission Neutrons for Monte Carlo Transport Codes

    CERN Document Server

    Lestone, J P

    2014-01-01

    Fortran subroutines have been written to simulate the production of fission neutrons from the spontaneous fission of 252Cf and 240Pu, and from the thermal neutron induced fission of 239Pu and 235U. The names of these four subroutines are getnv252, getnv240, getnv239, and getnv235, respectively. These subroutines reproduce measured first, second, and third moments of the neutron multiplicity distributions, measured neutron-fission correlation data for the spontaneous fission of 252Cf, and measured neutron-neutron correlation data for both the spontaneous fission of 252Cf and the thermal neutron induced fission of 235U. The codes presented here can be used to study the possible uses of neutron-neutron correlations in the area of transparency measurements and the uses of neutron-neutron correlations in coincidence neutron imaging.

  17. A transferable model for singlet-fission kinetics.

    Science.gov (United States)

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  18. Fifty years of nuclear fission: Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  19. Development of an effective delayed neutron fraction calculation code, BETA-K

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Song, Hoon; Kim, Young Il; Kim, Young In; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-08-01

    BETA-K, an effective delayed neutron fraction calculation code consistent with Nodal Expansion Method (NEM), has been developed. By using relevant output files of DIF3D code, it can calculate the effective delayed neutron fraction({beta}{sub eff}), neutron lifetime(l{sub eff}), fission spectrum ({chi}-bar) and fission yield data({nu}) for each fissionable isotope, composition of fuels and over the whole core. BETA-K code has been validated by comparing the calculated values to the measured ones of effective delayed neutron fraction in two critical experiments, BFS73-1 and BFS55-1. BFS73-1 is a metal uranium core and BFS55-1 is a metal plutonium core. The C/E values, 1.007 and 0.992 for BFS73-1 and BFS55-1 respectively, agreed well with the experimental values within the experiment errors. BETA-K code predicts 0.00709 and 0.356 {mu}sec as the effective delayed neutron fraction and neutron life time for the uranium metallic fueled equilibrium core of 150MWe KALIMER. (author). 9 refs., 6 figs., 12 tabs.

  20. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    Directory of Open Access Journals (Sweden)

    K. Nishio

    2015-09-01

    Full Text Available Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E⁎(Hg180=33–66 MeV and E⁎(Hg190=48–71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses A¯L/A¯H=79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of A¯L/A¯H=83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  1. Improved Algorithm for Weak GPS Signal Acquisition Based on Delay-accumulation Method

    OpenAIRE

    Li, Yuanming; Li, Jing; Zhang, Peng; Zheng, Yong

    2016-01-01

    A new improved algorithm is proposed to solve the problem of GPS weak signal capture that the traditional algorithms are unavailable to capture under a weak signal environment. This algorithm is based on the analysis of double block zero padding (DBZP) algorithm and it adopts the delay-accumulation method to retain the operation results temporarily which are discarded in DBZP algorithm. Waiting for delaying 1 ms, the corresponding correlation calculation results are obtained. Then superimpose...

  2. The astrophysical r-process and its dependence on properties of nuclei far from stability: Beta strength functions and neutron capture rates

    International Nuclear Information System (INIS)

    The question of the astrophysical site of the rapid neutron capture (r-) process which is believed to be responsible for the production of the heavy elements in the universe has been a problem in astrophysics for more than two decades. The solution of this problem is not only dependent on the development of realistic astrophysical supernova models, i.e. correct treatment of the hydrodynamics of gravitational collapse and supernova explosion and the equation of state of hot and dense matter, but is shown in this paper to be very sensitive also to 'standard' nuclear physics properties of nuclei far from stability such as beta decay properties and neutron capture rates. For both of the latter, strongly oversimplifying assumptions, not applying the development in nuclear physics during the last decade, have been made in almost all r-process calculations performed up to now. A critical discussion of the state of the art of such calculations seems therefore to be indicated. In this paper procedures are described which allow one to obtain: 1) β-decay properties (decay rates, β-delayed neutron emissions and fission rates); 2) neutron capture rates for neutron-rich nuclei considerably improved over what has been used up to now. The beta strength functions are calculated for approx. equal to6000 nuclei between beta stability line and neutron drip line. By hydrodynamical supernova explosion calculations using realistic stellar models it is shown that as a consequence of the improved β-rates explosive He burning is a convincing alternative site to the 'classical' r-process whose existence still is questionable. The new β-rates will be important also for the investigation of further astrophysical sites producing heavy elements such as the r(n)-processes in explosive C or Ne burning. (orig.)

  3. Delayed stochastic control

    Science.gov (United States)

    Hosaka, Tadaaki; Ohira, Toru; Lucian, Christian; Milton, John

    2005-03-01

    Time-delayed feedback control becomes problematic in situations in which the time constant of the system is fast compared to the feedback reaction time. In particular, when perturbations are unpredictable, traditional feedback or feed-forward control schemes can be insufficient. Nonethless a human can balance a stick at their fingertip in the presence of fluctuations that occur on time scales shorter than their neural reaction times. Here we study a simple model of a repulsive delayed random walk and demonstrate that the interplay between noise and delay can transiently stabilize an unstable fixed-point. This observation leads to the concept of ``delayed stochastic control,'' i.e. stabilization of tasks, such as stick balancing at the fingertip, by optimally tuning the noise level with respect to the feedback delay time. References:(1)J.L.Cabrera and J.G.Milton, PRL 89 158702 (2002);(2) T. Ohira and J.G.Milton, PRE 52 3277 (1995);(3)T.Hosaka, T.Ohira, C.Lucian, J.L.Cabrera, and J.G.Milton, Prog. Theor. Phys. (to appear).

  4. Laser capture microscopy

    OpenAIRE

    Curran, S.; McKay, J A; McLeod, H L; Murray, G I

    2000-01-01

    Human tissues are composed of complex admixtures of different cell types and their biologically meaningful analysis necessitates the procurement of pure samples of the cells of interest. Many approaches have been used in attempts to overcome this difficulty, including a variety of microdissection methods. This review concerns a recent advance in microdissection techniques, namely laser capture microdissection (LCM). The principle underlying this technique is outlined, and practical issues per...

  5. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  6. Sub-library of Updated Fission Barrier Parameters(CENPL-FBP2)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fission barrier parameters are important to determine the fission character of a nucleus. The fission barrier parameters and fission level densities are key ingredients in calculations of not only fission cross section but also various cross sections, and spectra for the fissile nuclides, even heavy nuclides at higher incident energies. It is necessaries that the accuracy of fission barrier parameters requires even higher, and nuclides with fission barrier parameters can cover even wider nuclear range.

  7. Development and Analysis of Cold Trap for Use in Fission Surface Power-Primary Test Circuit

    Science.gov (United States)

    Wolfe, T. M.; Dervan, C. A.; Pearson, J. B.; Godfroy, T. J.

    2012-01-01

    The design and analysis of a cold trap proposed for use in the purification of circulated eutectic sodium potassium (NaK-78) loops is presented. The cold trap is designed to be incorporated into the Fission Surface Power-Primary Test Circuit (FSP-PTC), which incorporates a pumped NaK loop to simulate in-space nuclear reactor-based technology using non-nuclear test methodology as developed by the Early Flight Fission-Test Facility. The FSP-PTC provides a test circuit for the development of fission surface power technology. This system operates at temperatures that would be similar to those found in a reactor (500-800 K). By dropping the operating temperature of a specified percentage of NaK flow through a bypass containing a forced circulation cold trap, the NaK purity level can be increased by precipitating oxides from the NaK and capturing them within the cold trap. This would prevent recirculation of these oxides back through the system, which may help prevent corrosion.

  8. SABR Fusion-Fission Hybrid Studies

    Science.gov (United States)

    Stewart, Chris

    2012-03-01

    The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.

  9. Fusion-fission energy systems evaluation

    International Nuclear Information System (INIS)

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept

  10. FALSTAFF: A new tool for fission studies

    Directory of Open Access Journals (Sweden)

    Dore D.

    2013-12-01

    Full Text Available The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  11. In-beam Fission Study at JAEA

    Directory of Open Access Journals (Sweden)

    Nishio Katsuhisa

    2013-12-01

    Full Text Available Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  12. Fusion-fission energy systems evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  13. Measurement of subcriticality using delayed neutron source combined with pulsed neutron accelerator

    International Nuclear Information System (INIS)

    A new experimental method for subcriticality measurement was developed by using delayed neutron source which is produced by external pulsed neutron source to increase accuracy of measured results by overcoming the space dependency problem which means difference of measured results in different detector position and often appeared in almost all other subcriticality measurement techniques. Experiments were performed at Kyoto University Critical Assembly (KUCA) combined with a DT accelerator to produce pulsed neutron in outside of the core repeatedly. In this method, neutron detection counts in the prompt neutron time region which are appeared just after injection of pulsed neutron are omitted, whereas neutron counts in the delayed neutron time region which are appeared after disappearance of exponential decay of the prompt neutron are adopted in analysis based on neutron source multiplication method or neutron noise analysis method; the variance to mean ratio method. In the delayed neutron time region, neutron sources to initiate fission chain reactions in subcritical state are delayed neutrons from delayed neutron precursors which are mainly produced by fission chain reactions in the prompt neutron time region, and delayed neutron precursors exist only in the fuel region, which makes possible to decrease the space dependency problem. The obtained results were compared with conventional pulsed neutron method, and it was found that the space dependency problem in subcriticality measurement can be fairly decreased by using the present new method compared with conventional one. (author)

  14. Delayed breast implant reconstruction

    DEFF Research Database (Denmark)

    Hvilsom, Gitte B.; Hölmich, Lisbet R.; Steding-Jessen, Marianne;

    2011-01-01

    Studies of complications following reconstructive surgery with implants among women with breast cancer are needed. As the, to our knowledge, first prospective long-term study we evaluated the occurrence of complications following delayed breast reconstruction separately for one- and two......-stage procedures. From the Danish Registry for Plastic Surgery of the Breast, which has prospectively registered data for women undergoing breast implantations since 1999, we identified 559 women without a history of radiation therapy undergoing 592 delayed breast reconstructions following breast cancer during...... of reoperation was significantly higher following the one-stage procedure. For both procedures, the majority of reoperations were due to asymmetry or displacement of the implant. In conclusion, non-radiated one- and two-stage delayed breast implant reconstructions are associated with substantial risks...

  15. Time Delay Cosmography

    CERN Document Server

    Treu, Tommaso

    2016-01-01

    Gravitational time delays, observed in strong lens systems where the variable background source is multiply-imaged by a massive galaxy in the foreground, provide direct measurements of cosmological distance that are very complementary to other cosmographic probes. The success of the technique depends on the availability and size of a suitable sample of lensed quasars or supernovae, precise measurements of the time delays, accurate modeling of the gravitational potential of the main deflector, and our ability to characterize the distribution of mass along the line of sight to the source. We review the progress made during the last 15 years, during which the first competitive cosmological inferences with time delays were made, and look ahead to the potential of significantly larger lens samples in the near future.

  16. Opimization of fusion-driven fissioning systems

    International Nuclear Information System (INIS)

    Potential advantages of hybrid or fusion/fission systems can be exploited in different ways. With selection of the 238U--239Pu fuel cycle, we show that the system has greatest value as a power producer. Numerical examples of relative revenue from power production vs. 239Pu production are discussed, and possible plant characteristics described. The analysis tends to show that the hybrid may be more economically attractive than pure fusion systems

  17. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  18. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  19. Fissionable material handlers certification training program

    International Nuclear Information System (INIS)

    A formal program for certification of fissionable material handlers is presented that cultivates safe working practices. This certification complies with the training requirements of the Department of Energy Directive 0530 (ERDA Manual Chapter 0530), Nuclear Criticality Safety. The program consists of a series of classroom lectures, on-the-job training, and examinations in criticality safety, radiation protection, industrial safety, emergency procedures, and the employee's specific work operations. The program for recertification is also discussed

  20. Neutron measurements performed with miniature fission chambers

    International Nuclear Information System (INIS)

    This research aims at proposing solutions regarding instruments to perform neutron flow measurements in nuclear power reactors and to perform measurements of the reaction rates of highly radioactive transuranic fissile elements in experimental reactors. This research is also part of a program aimed at the adjustment of the Cadarache cross section set. The report defines the instrumentation, recalls the operation of fission chambers, discusses the implemented instrumentation, and discusses the obtained measurements

  1. Singlet fission: Towards efficient solar cells

    International Nuclear Information System (INIS)

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency

  2. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  3. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  4. General Description of Fission Observables - JEFF Report 24. GEF Model

    International Nuclear Information System (INIS)

    The Joint Evaluated Fission and Fusion (JEFF) Project is a collaborative effort among the member countries of the OECD Nuclear Energy Agency (NEA) Data Bank to develop a reference nuclear data library. The JEFF library contains sets of evaluated nuclear data, mainly for fission and fusion applications; it contains a number of different data types, including neutron and proton interaction data, radioactive decay data, fission yield data and thermal scattering law data. The General fission (GEF) model is based on novel theoretical concepts and ideas developed to model low energy nuclear fission. The GEF code calculates fission-fragment yields and associated quantities (e.g. prompt neutron and gamma) for a large range of nuclei and excitation energy. This opens up the possibility of a qualitative step forward to improve further the JEFF fission yields sub-library. This report describes the GEF model which explains the complex appearance of fission observables by universal principles of theoretical models and considerations on the basis of fundamental laws of physics and mathematics. The approach reveals a high degree of regularity and provides a considerable insight into the physics of the fission process. Fission observables can be calculated with a precision that comply with the needs for applications in nuclear technology. The relevance of the approach for examining the consistency of experimental results and for evaluating nuclear data is demonstrated. (authors)

  5. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  6. Parametric analyses of fusion-fission systems

    International Nuclear Information System (INIS)

    After a short review of the nuclear reactions relevant to fusion-fission systems the various types of blankets and characteristic model cases are presented. The fusion-fission system is modelled by its energy flow diagram. The system components and the system as a whole are characterized by 'component parameters' and 'system parameters' all of which are energy ratios. A cost estimate is given for the net energy delivered by the system, and a collection of formulas for the various energies flowing in the system in terms of the thermal energy delivered by the fusion part is presented. For sensitivity analysis four reference cases are defined which combine two plasma confinement schemes (mirror and tokamak) with two fissile fuel cycles (thorium-uranium and uranium-plutonium). The sensitivity of the critical plasma energy multiplication, of the circulating energy fraction, and of the energy cost with respect to changes of the component parameters is analysed. For the mirror case only superconducting magnets are considered, whereas two tokimak cases take into account both superconducting and normal-conducting coils. A section presenting relations between the plasma energy multiplication and the confinement parameter n tausub(E) of driven tokamak plasmas is added for reference. The conclusions summarize the results which could be obtained within the framework of energy balances, cost estimates and their parametric sensitivities. This is supplemented by listing those issues which lie beyond this scope but have to be taken into account when assessments of fusion-fission systems are made. (orig.)

  7. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 1013Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 1010Bq (0.5 Ci) per day per ton of fuel

  8. Mass and Inertia Parameters for Nuclear Fission

    International Nuclear Information System (INIS)

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  9. Mass and inertia parameters for nuclear fission

    International Nuclear Information System (INIS)

    The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)

  10. Time dependent particle emission from fission products

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory

    2010-01-01

    Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.

  11. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  12. Development of fission Mo production technology

    International Nuclear Information System (INIS)

    The feasibility study is accomplished in this project for the development of fission moly production. The KAERI process proposed for development in KAERI is discussed together with those of the American Cintichem and Russian IPPE, each of which would be plausible for introduction whenever the indigenous development is not much feasible. For the conceptual design of the KAERI irradiation target, analysis method is set up and some preliminary analysis is performed accordingly for the candidate design. To establish chemical process concepts for the afore-mentioned three processes, characteristics, operation conditions, and the management of the generated wastes are investigated. Basic requirements of hotcell facilities for chemical processing and a possible way of utilizing the existing hotcells are discussed in parallel with the counter-measures for the construction of new hotcell facilities. Various conditions of target irradiation for fission moly production in Hanaro are analyzed. Plan for introduction of the relevant technology introduction and for procurement of highly enriched uranium are considered. On the basis of assuming some conditions, the economic feasibility study for fission moly production is also overviewed. (author). 22 refs., 28 tabs., 24 figs

  13. Gas-phase transport of fission products

    International Nuclear Information System (INIS)

    The paper presents the results of an experimental investigation to show the importance of nuclear aerosol formation as a mechanism for semi-volatile fission product transport under certain postulated HTGR accident conditions. Simulated fission product Sr and Ba as oxides are impregnated in H451 graphite and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperatures. Increasing carrier-gas flow rate greatly enhances the extent of particulate transport. The release and transport of simulated fission product Ag as metal are also investigated. Electron microscopic examinations of the collected Sr and Ag aerosols show large agglomerates composed of primary particles roughly 0.06 to 0.08 μm in diameter

  14. Approximation of distributed delays

    CERN Document Server

    Lu, Hao; Eberard, Damien; Simon, Jean-Pierre

    2010-01-01

    We address in this paper the approximation problem of distributed delays. Such elements are convolution operators with kernel having bounded support, and appear in the control of time-delay systems. From the rich literature on this topic, we propose a general methodology to achieve such an approximation. For this, we enclose the approximation problem in the graph topology, and work with the norm defined over the convolution Banach algebra. The class of rational approximates is described, and a constructive approximation is proposed. Analysis in time and frequency domains is provided. This methodology is illustrated on the stabilization control problem, for which simulations results show the effectiveness of the proposed methodology.

  15. Delayed Random Relays

    CERN Document Server

    Ohira, Toru

    2016-01-01

    We present here a system with collection of random walks relaying a signal in one dimension with a presence of a delay. We are interested in the time for a signal to travel from one end (start) to the other end (finish) of the lined group of random walkers. It is found that there is an optimal number of walkers for the signal to travel fastest if the delay is present. We discuss implications of this model and associated behaviors to physical and biological systems.

  16. Detecting robust time-delayed regulation in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Rajapakse Jagath C

    2009-12-01

    Full Text Available Abstract Background Time delays are often found in gene regulation though most techniques of building gene regulatory networks are not capable of capturing such phenomena. Here we look at the delays in the DNA repair system of Mycobacterium tuberculosis which is unusually slow in the bacteria. We propose a method based on a skip-chain model to study this phenomena in gene networks. The Viterbi paths of the underlying Markov chains find the most likely regulatory interactions among genes, taking care of very long delays. Using the derived networks, we discuss the delayed regulations and robustness of the DNA damage seen in the bacterium. Results We evaluated our method on time-course gene expressions after DNA damage with Mitocyin C. Several time-delayed interactions were observed with our analysis. The presence of hubs in the networks indicates that a small number of transcriptional factors regulate the rest of the system. We demonstrate the use of priors to overcome over-fitting problem in the generation of networks. We compare our results with the gene networks derived with dynamic Bayesian networks (DBN. Conclusion Different transcription networks are active at different stages, and constant feedback and regulation is maintained throughout the activities of a biological pathway. Skip-chain models are capable of capturing, long distant and the time-delayed regulations. Use of a Dirichlet prior over parameters and Gibbs prior over structure can greatly reduce the over-fitting in the new model.

  17. Electron capture Q value of 179Ta

    International Nuclear Information System (INIS)

    There is a discrepancy in the measured electron capture Q value of 179Ta; from the EC(L)/EC(K) capture ratio of Bisi et al.one obtains Q = 103±6 keV, while the ratio measured by Jopson et al. gives Q = 121 ± 7 keV. To resolve this discrepancy we have remeasured the L to K capture ratio. A 179Ta source was produced by bombarding a natural Hf target with 20-MeV protons from LBL's 88-inch cyclotron, and, after a suitable delay, extracted radiochemically from the Hf. The L x rays were counted in a planar Ge detector (FWHM = 280 eV at 8 keV) and the K x rays in a well-type NaI detector. From the ratio of L x rays in anti-coincidence with K x rays to those in coincidence with them we deduce a Q value of 111.2 ± 1.9 keV. This value is in agreement with the recommended value of 110 ± 5 keV found in the latest Evaluated Nuclear Structure Data File

  18. Group delay functions and its applications in speech technology

    Indian Academy of Sciences (India)

    Hema A Murthy; B Yegnanarayana

    2011-10-01

    Traditionally, the information in speech signals is represented in terms of features derived from short-time Fourier analysis. In this analysis the features extracted from the magnitude of the Fourier transform (FT) are considered, ignoring the phase component. Although the significance of the FT phase was highlighted in several studies over the recent three decades, the features of the FT phase were not exploited fully due to difficulty in computing the phase and also in processing the phase function. The information in the short-time FT phase function can be extracted by processing the derivative of the FT phase, i.e., the group delay function. In this paper, the properties of the group delay functions are reviewed, highlighting the importance of the FT phase for representing information in the speech signal. Methods to process the group delay function are discussed to capture the characteristics of the vocal-tract system in the form of formants or through a modified group delay function. Applications of group delay functions for speech processing are discussed in some detail. They include segmentation of speech into syllable boundaries, exploiting the additive and high resolution properties of the group delay functions. The effectiveness of segmentation of speech, and the features derived from the modified group delay are demonstrated in applications such as language identification, speech recognition and speaker recognition. The paper thus demonstrates the need to exploit the potential of the group delay functions for development of speech systems.

  19. 50 years with nuclear fission, April 25-28, 1989. A prelude to fission: France

    International Nuclear Information System (INIS)

    A personal account of the events leading to the 1938 discovery, by Irene Joliot-Curie and the author, of the unidentified element R3.5h will be presented, as well as the experimental methods proving the R3.5h had chemical properties similar to lanthanum which in turn led Hahn and Strassmann to the discovery of fission in 1939. The author points out that Irene Curie's intuition indicated the path towards the solution of the problem of uranium irradiated by neutrons, which made possible the discovery of fission by Hahn and Strassmann. Further applications of fission became possible by tremendous efforts and excellent contributions of scientists in the USA

  20. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....