WorldWideScience

Sample records for capture cross-section measurements

  1. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  2. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  3. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  4. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  5. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  6. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  7. Neutron capture cross section measurements: case of lutetium isotopes

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Belier, G.

    2011-01-01

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu 173 , Lu 175 , Lu 176 and Lu 177m , the measurement of the probability of gamma emission in the substitution reaction Yb 174 (He 3 ,pγ)Lu 176 . The measurement of neutron cross sections on Lu 177m have permitted to highlight the process of super-elastic scattering

  8. Measurements of neutron capture cross sections of wolfram and thulium

    International Nuclear Information System (INIS)

    Xia Yijun; Wang Chunhao; Yang Jingfu; Yang Zhihua; Luo Xiaobing

    1992-01-01

    The neutron capture cross sections of wolfram and thulium were measured in the energy range from 10 to 100 KeV using gold as the standard. Kinematically collimated neutrons were produced via the 7 Li(p, n) 7 Be reaction with a 2.5 MV pulsed Van de Graaff accelerator at Sichuan University. The capture events were detected by a pair of Moxon-Rae detectors. Time-of-flight technique was used to improve the signal-background ratio. The present results are compared with data by other authors. The capture cross section were calculated from 10 to 100 KeV for two nuclides by the Hauser-Feshbach statistical theory with width fluctuation correction. The nonstatistical effects such as potential capture and radiative capture in elastic and inelastic channels of a compound nucleus were included in the calculations. The calculated results show that the nonstatistical contribution to the capture cross sections is negligible compared with that of the statistical effects

  9. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  10. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Er isotopes

    International Nuclear Information System (INIS)

    Harun-Ar-Rashid, A.K.M.; Igashira, Masayuki; Ohsaki, Toshiro

    2000-01-01

    Neutron capture cross sections and capture γ-ray spectra of 166,167, 168 Er were measured in the energy region of 10 to 550 keV. The measurements were performed with a pulsed 7 Li(p,n) 7 Be neutron source and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique and the standard capture cross sections of gold were used to derive the capture cross sections. The errors of the derived cross sections were about 5%. The present results were compared with other measurements and evaluations. The observed capture γ-ray pulse-height spectra were unfolded to obtain the corresponding γ-ray spectra. An anomalous shoulder was observed around 3 MeV in each of the capture γ-ray spectra. (author)

  11. Resonance structure of 32S+n from measurements of neutron total and capture cross sections

    International Nuclear Information System (INIS)

    Halperin, J.; Johnson, C.H.; Winters, R.R.; Macklin, R.L.

    1980-01-01

    Neutron total and capture cross sections of 32 S have been measured up to 1100 keV neutron energy [E/sub exc/( 33 S) =9700 keV]. Spin and parity assignments have been made for 28 of the 64 resonances found in this region. Values of total radiation widths, reduced neutron widths, level spacings, and neutron strength functions have been evaluated for s/sub 1/2/, p/sub 1/2/, p/sub 3/2/, and d/sub 5/2/ levels. Single particle contributions using the valency model account for a significant portion of the total radiation width only for the p/sub 1/2/-wave resonances. A significant number of resonances can be identified with reported levels excited in 32 S(d,p) and 29 Si(α,n) reactions. A calculation of the Maxwellian average cross section appropriate to stellar interiors indicates an average capture cross section at 30 keV, sigma-bar approx. = 4.2(2) mb, a result that is relatively insensitive to the assumed stellar temperature. Direct (potential) capture and the s-wave resonance capture contributions to the thermal capture cross section do not fully account for the reported thermal cross section (530 +- 40 mb) and a bound state is invoked to account for the discrepancy

  12. Integral-capture measurements and cross-section adjustments for Nd, Sm, and Eu

    International Nuclear Information System (INIS)

    Anderl, R.A.; Schmittroth, F.; Harker, Y.D.

    1981-07-01

    Integral-capture reaction rates are reported for 143 Nd, 144 Nd, 145 Nd, 147 Sm, 151 Eu, 152 Eu, 153 Eu, and 154 Eu irradiated in different neutron spectra in EBR-II. These reaction rates are based primarily on mass-spectrometric measurements of the isotopic atom ratios of the capture product to the target nuclide. The neutron spectra are characterized using passive neutron dosimetry and spectrum-unfolding with the FERRET least-squares data analysis code. Reaction rates for the neutron spectrum monitors were determined by the radiometric technique using Ge(Li) spectrometers. These rates are also reported here. The integral data for the rare-earth samples and for the spectrum monitors were used in multigroup flux/cross-section adtustment analyses with FERRET to generate adjustments to 47 group representations of the ENDF/B-IV capture cross sections for the rare-earth isotopes. These adjusted cross sections are in good agreement with recent differential data and with adjusted cross sections based on STEK integral data. Examples are given of the use of the adjusted cross sections and covariance matrices for cross-section evaluation

  13. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    International Nuclear Information System (INIS)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A.; Hentati, A.

    2012-01-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of 157 Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of nat Gd which is (49360 ± 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1σ, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 ± 500) b. (authors)

  14. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  15. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  16. Differential cross section measurement of radiative capture of protons by nuclei 12C

    International Nuclear Information System (INIS)

    Burtebayev, N.; Zazulin, D.M.; Buminskii, V.P.; Zarifov, R.A.; Tohtarov, R.N.; Sagindykov, Sh.Sh.; Baktibayev, M.K.

    2003-01-01

    Measurements of differential cross sections of nuclear reaction 12 C(p, γ) 13 N at 0, 45, 90, 135 Deg. to beam direction of flying protons in the field of E p = 350-1100 KeV with an error it is not worse than 10 % have been carried out. Most important was studied, from the astrophysical point of view, process of capture of protons by nucleuses 12 C on the ground state of a nucleus 13 N. It is experimentally shown isotropy of angular distribution of differential cross sections of reaction 12 C(p, γ) 13 N, in the given field energy of protons

  17. Measurement of neutron captured cross-sections in 1-2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Dong; Kim, Young Sek; Kim, Jun Kon; Yang, Tae Keun [Korea Institutes of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-04-01

    The measurement of neutron captured reaction cross sections was performed to build the infra system for the production of nuclear data. MeV neutrons were produced with TiT target and {sup 3}T(p,n){sup 3}He reaction. The characteristics of TiT thin film was analyzed with ERD-TOF and RBS. The results was published at Journal of the Korea Physical Society (SCI registration). The energy, the energy spread and the flux of the produced neutron were measured. The neutron excitation functions of {sup 12}C and {sup 16}O were obtained to confirm the neutron energy and neutron energy spread. The neutron energy spread found to be 1.3 % at the neutron energy of 2.077 MeV. The {sup 197}Au(n,{gamma}) reaction was performed to obtain the nerutron flux. The maximum neutron flux found to be 1 x 10{sup 8} neutrons/sec at the neutron energy of 2 MeV. The absolute efficiency of liquid scintillation detector was obtained in the neutron energy of 1 - 2 MeV. The fast neutron total reaction cross sections of Cu, Fe, and Au were measured with sample in-out method. Also the neutron captured reaction cross sections of {sup 63}Cu were measured with fast neutron activation method. The measurement of neutron total reaction cross sections and the neutron captured reaction cross sections with fast neutrons were first tried in Korea. The beam pulsing system was investigated and the code of calculating the deposition spectrums for primary gamma rays was made to have little errors at nuclear data. 25 refs., 28 figs., 14 tabs. (Author)

  18. Cross section measurements of proton capture reactions on Se isotopes relevant to the astrophysical p process

    Science.gov (United States)

    Foteinou, V.; Harissopulos, S.; Axiotis, M.; Lagoyannis, A.; Provatas, G.; Spyrou, A.; Perdikakis, G.; Zarkadas, Ch.; Demetriou, P.

    2018-03-01

    Cross sections of proton capture reactions on 74Se, 78Se, and 80Se have been measured at incident beam energies from 2 to 6 MeV, 1.7 to 3 MeV, and 1.5 to 3.5 MeV, respectively. In the case of Se,8078, cross sections were obtained from in-beam γ -angular distribution measurements, whereas for the 74Se isotope they were derived from off-beam activity measurements. The measured cross sections were compared with calculations performed with the nuclear reaction code talys (version 1.6). A good agreement between theory and experiment was found. Astrophysical S factors and reaction rates deduced from the experimental and calculated cross sections were also compared and the impact of different nuclear ingredients in the calculations on the reaction rates was investigated. It was found that, for certain combinations of nuclear input models, the reaction rates obtained at temperatures relevant to p -process nucleosynthesis differ by a factor 2 at the most, differences that are well within the acceptable deviations of calculated p -nuclei abundances and observations.

  19. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Jazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but also for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energy part of the resonance 1320 keV onto the cross section. Last experimental data for a wider energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E P = (320 - 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E P = 991 - 365 keV, the accuracy is not worse than 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The theoretical investigation of the given reaction included calculation of cross sections. The cross sections were calculated within the framework of model of direct capture with the using of optical potentials for the description of a channel of scattering. The wave functions of a bound state were generated in a potential reproducing binding energy of a proton in 14 N nucleus. Results of calculations were compared with the experimental data. (author)

  20. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  1. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  2. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  3. Absorption and activation techniques in measurements of fast-neutron capture cross sections

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1982-01-01

    The absorption and activation methods have been applied for a long time to systematic studies of fast neutron capture cross sections. Both methods are simple in principle but difficult in practice. The simplicity should ensure a wider use of the methods in particular for problems which may be complicated to approach with other methods. The difficulties encountered in absorption measurements are related to multiple scattering and resonance shielding effects. In activation experiments the influence of secondary low-energy neutrons causes the main problems

  4. Aborption and activation techniques in measurements of fast-neutron capture cross sections

    International Nuclear Information System (INIS)

    Bergqvist, I.

    1982-01-01

    The absorption and activation methods have been applied for a long time to systematic studies of fast neutron capture cross sections. Both methods are simple in principle but difficult in practice. The simplicity should ensure a wider use of the methods in particular for problems which may be complicated to approach with other methods The difficulties encountered in absorption measurements are related to multiple scattering and resonance shielding effects. In activation experiments the influence of secondary low-energy neutrons c causes the main problems. (Author)

  5. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Dzazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    Full text: The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but and for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energetical part of the resonance 1320 keV onto the cross section. Last experimental data for more wide energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E ρ = (320 † 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E p = 991, 558 and 365 keV, the accuracy is not worse then 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The 13 C (99%) targets, used in the experiment, were sprayed onto copper base. The target thickness was determined by incident protons energy losses in the target. The energy losses were clearly reflected in the corresponding spreading of transitions of radiation capture. The statement about the gamma-lines spreading is valid in this case, because energy losses in the target are here significantly more, than the energetical resolution of the detector. The peak width of the radiation capture gamma-line at half-height corresponds to energy losses of incident protons in the target. From the Table of brake values for protons in carbon [2] there was determined that the thickness of the target was 140 ± 5% μg/cm 2 . The upper part of gamma-lines in the spectrum repeats the

  6. Measurements and analysis of the 127I and 129I neutron capture and total cross sections

    International Nuclear Information System (INIS)

    Noguere, G.

    2005-01-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of 129 I produced yearly in the reactors of the EU countries and a very long β - half-life of 1.57 x 10 7 years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, 129 I is potentially a key long-lived fission product for transmutation applications, since 129 I transmutes in 130 I after a single neutron capture and decays to 130 Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI 2 samples used in this work contain natural and radioactive iodine, extensive measurements of 129 I have been carried out under the same experimental conditions as for the 129 I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  7. Measurements and calculations of integral capture cross-sections of structural materials in fast reactor spectra

    International Nuclear Information System (INIS)

    Seth, S.; Brunson, G.; Gmuer, K.; Jermann, M.; McCombie, C.; Richmond, R.; Schmocker, U.

    1979-01-01

    This paper relates the checking of integral data of steel and iron in fast reactor lattices. The fully-rodded GCFR benchmark lattice of the zero-energy reactor PROTEUS was successively modified by replacing the PuO 2 -UO 2 fuel rods by steel-18/8 or steel-37 (iron) rods. The neutron spectra of the modified lattices in fact have median energies close to that of a typical LMFBR. The replacement of fuel by the structural material of interest was such that in each case the value of k(infinity) was reduced to near-unity. This allowed the measurement of the lattice-k(infinity) by the null-reactivity technique. In addition, the principal reaction rates (namely U238 capture and fission, relative to Pu239 fission) and the neutron spectrum were measured. These directly measured integral data which are particularly sensitive to the steel cross-sections can be used for the checking and systematic adjustment of data sets. The results may also be analysed so as to derive specific values for the integral capture cross-sections of steel and iron. Neutron balance equations were set-up for each of the lattices using the measured k(infinity) and reaction rates

  8. Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2007-01-01

    The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results hav...

  9. Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project

    International Nuclear Information System (INIS)

    Letourneau, A.

    2006-01-01

    Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)

  10. High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of 116,120Sn

    International Nuclear Information System (INIS)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H.

    1997-01-01

    Improved astrophysical reaction rates for 116,120 Sn(n, γ) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope 116 Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the (n,T) cross sections used in the reaction network calculations or in the s-process models. One reason to suspect the (n, γ) data is that previous measurements did not extend to low enough energies to determine accurately the Maxwellian-averaged capture cross sections at the low temperatures (kT=6-8 keV) favored by the most recent stellar models of the s process. Also, the two most recent high-precision measurements of the 120 Sn(n, γ) cross section are in serious disagreement. Because of its small size, this cross section could affect (via the s-process branching at 121 Sn) the relative abundances of the three s-only isotopes of Te

  11. Response of Moxon-Rae type gamma detectors for neutron capture cross section measurements

    International Nuclear Information System (INIS)

    Iyengar, K.V.K.; Lal, B.; Jhingan, M.L.

    1974-01-01

    A detector devised by Moxon and Rae for the absolute measurement of (n,γ) cross sections is briefly described. This detector is supposed to have an efficiency per MeV of γ-ray energy independent of the energy of the γ-rays. Such a detector consists of an electron converter placed before a thin plastic scintillator which detects the electron emitted by interaction of the γ-ray in the converter. The performance of this type of detector depends on the thickness and composition of the converter. Detailed Monte-Carlo calculations of the response for γ-ray energies from 0.2 to 12 MeV has been carried out for elements ranging from C to Bi and for a mixture of elements as well as for a mixture of an element plus compound, to find out the suitable material and thickness of the converter. Among the elements studied for the converter, Ni, Mo and Sn have a uniform response over the photon energy range 1-12 MeV. Out of these elements Mo has a low neutron capture cross section in the energy range 1-1000 keV and is thus to be preferred. A mixture of C + Bi 2 O 3 in the weight ratio 11.6 : 88.4 gives a uniform response over the photon energy range 1-12 MeV. (K.B.)

  12. Photoneutron cross sections measurements in 9Be, 13C e 17O with thermal neutron capture gamma-rays

    International Nuclear Information System (INIS)

    Semmler, Renato

    2006-01-01

    Photoneutron cross sections measurements of 9 Be, 13 C and 17 O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4π geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  13. Measurement of the effective thermal cross section of {sup 134}Cs by triple neutron capture reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1998-03-01

    The effective thermal cross section ({sigma}{sub eff}) of the {sup 134}Cs(n,{gamma}){sup 135}Cs reaction was measured by the activation method and the {gamma}-ray spectroscopic method in order to obtain fundamental data for research on the transmutation of nuclear wastes. The effective thermal cross section of the reaction {sup 134}Cs(n,{gamma}){sup 135}Cs was found to be 140.6{+-}8.5 barns. (author)

  14. The 236U neutron capture cross-section measured at the n_TOF CERN facility

    Directory of Open Access Journals (Sweden)

    Mastromarco M.

    2017-01-01

    Full Text Available The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a FX1 total absorption calorimeter (TAC, made of 40 BaF2 crystals. The two n_TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to ≃ 20% are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n_TOF data. In the Unresolved Resonance Region up to 200 keV, the n_TOF results show a reasonable agreement with previous measurements and evaluated data.

  15. 12C+16O sub-barrier radiative capture cross-section measurements

    International Nuclear Information System (INIS)

    Goasduff, A.; Courtin, S.; Haas, F.; Beck, C.; Lebhertz, D.; Jenkins, D.G.; Fallis, J.; Ruiz, C.; Hutcheon, D.A.; Amandruz, P.A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2011-01-01

    We have performed a heavy ion radiative capture reaction between two light heavy ions, 12 C and 16 O, leading to 28 Si. The present experiment has been performed below Coulomb barrier energies in order to reduce the phase space and to try to shed light on structural effects. Obtained γ-spectra display a previously unobserved strong feeding of intermediate states around 11 MeV at these energies. This new decay branch is not fully reproduced by statistical nor semi-statistical decay scenarios and may imply structural effects. Radiative capture cross-sections are extracted from the data. (authors)

  16. A compact multi-plate fission chamber for the simultaneous measurement of 233U capture and fission cross-sections

    Directory of Open Access Journals (Sweden)

    Bacak M.

    2017-01-01

    Full Text Available 233U plays the essential role of fissile nucleus in the Th-U fuel cycle. A particularity of 233U is its small neutron capture cross-section which is about one order of magnitude lower than the fission cross-section on average. Therefore, the accuracy in the measurement of the 233U capture cross-section essentially relies on efficient capture-fission discrimination thus a combined setup of fission and γ-detectors is needed. At CERN n_TOF the Total Absorption Calorimeter (TAC coupled with compact fission detectors is used. Previously used MicroMegas (MGAS detectors showed significant γ-background issues above 100 eV coming from the copper mesh. A new measurement campaign of the 233U capture cross-section and alpha ratio is planned at the CERN n_TOF facility. For this measurement, a novel cylindrical multi ionization cell chamber was developed in order to provide a compact solution for 14 active targets read out by 8 anodes. Due to the high specific activity of 233U fast timing properties are required and achieved with the use of customized electronics and the very fast ionizing gas CF4 together with a high electric field strength. This paper describes the new fission chamber and the results of the first tests with neutrons at GELINA proving that it is suitable for the 233U measurement.

  17. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  18. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  19. Neutron capture cross section measurement of $^{151}Sm$ at the CERN neutron Time of Flight Facility (nTOF)

    CERN Document Server

    Abbondanno, U; Alvarez-Velarde, F; Alvarez-Pol, H; Andriamonje, Samuel A; Andrzejewski, J; Badurek, G; Baumann, P; Becvar, F; Benlliure, J; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Cortina-Gil, D; Couture, A; Cox, J; Dababneh, S; Dahlfors, M; David, S; Dolfini, R; Domingo-Pardo, C; Durán, I; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Kölbl, H; Furman, W; Gonçalves, I; Gallino, R; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez-Val, J; Mastinu, P; Mengoni, A; Milazzo, P M; Molina-Coballes, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papaevangelou, T; Paradela, C; Pavlik, A; Pavlopoulos, P; Perlado, J M; Perrot, L; Pignatari, M; Plag, R; Plompen, A; Plukis, A; Poch, A; Policarpo, Armando; Pretel, C; Quesada, J; Raman, S; Rapp, W; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Soares, J C; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Voss, F; Wendler, H; Wiescher, M; Wissha, K

    2004-01-01

    The measurement of **1**5**1Sm(n, gamma)**1**5**2Sm (samarium) cross section showed improved performance of the new spallation neutron facility. It covered a wide energy range with good resolution, high neutron flux, low backgrounds and a favourable duty factor. The samarium cross section was found to be of great importance for characterizing neutron capture nucleosynthesis in asymptotic giant stars. The combination of these features provided a promising basis for a broad experimental program directed towards application in astrophysics and advanced nuclear technologies. (Edited abstract)

  20. Neutron capture cross section of ^243Am

    Science.gov (United States)

    Jandel, M.

    2009-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross section measurement on ^243Am. The high granularity of DANCE (160 BaF2 detectors in a 4π geometry) enables the efficient detection of prompt gamma-rays following neutron capture. DANCE is located on the 20.26 m neutron flight path 14 (FP14) at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The methods and techniques established in [1] were used for the determination of the ^243Am neutron capture cross section. The cross sections were obtained in the range of neutron energies from 0.02 eV to 400 keV. The resonance region was analyzed using SAMMY7 and resonance parameters were extracted. The results will be compared to existing evaluations and calculations. Work was performed under the auspices of the U.S. Department of Energy at Los Alamos National Laboratory by the Los Alamos National Security, LLC under Contract No. DE-AC52-06NA25396 and at Lawrence Livermore National Laboratory by the Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. [4pt] [1] M. Jandel et al., Phys. Rev. C78, 034609 (2008)

  1. Capture cross sections for very heavy systems

    International Nuclear Information System (INIS)

    Rowley, N.; Grar, N.; Ntshangase, S.S.

    2006-01-01

    In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru

  2. Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV

    Science.gov (United States)

    Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.

  3. Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN

    Directory of Open Access Journals (Sweden)

    Mendoza E.

    2017-01-01

    Full Text Available New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241Am(n,γ cross section at the n_TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241Am(n,γ cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.

  4. Neutron capture cross section of $^{93}$Zr

    CERN Document Server

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  5. New neutron capture and total cross section measurements on 88Sr and their impact on s-process nucleosynthesis

    International Nuclear Information System (INIS)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H.

    1998-01-01

    The authors have made new and improved measurements of the neutron capture and total cross sections of 88 Sr at the Oak Ridge Electron Linear Accelerator (ORELA). Improvements over previous measurements include a wider incident neutron energy range, the use of metallic rather than carbonate samples, better background subtraction, reduced sensitivity to sample-dependent backgrounds, and better pulse-height weighting functions. Because of its small cross section, the 88 Sr(n,γ) reaction is an important bottleneck during the s-process nucleosynthesis. Hence, an accurate determination of this rate is needed to better constrain the neutron exposure in s-process models and to more fully exploit the recently discovered isotopic anomalies in certain meteorites. They describe the experimental procedures, compare the results to previous data, and discuss their astrophysical impact

  6. Measurement of the neutron capture cross-section of 232Th using the neutron activation technique

    International Nuclear Information System (INIS)

    Naik, H.; Singh, Sarbjit; Goswami, A.; Manchanda, V.K.; Prajapati, P.M.; Surayanarayana, S.V.; Nayak, B.K.; Sharma, S.C.; Jagadeesan, K.C.; Thakare, S.V.; Raj, D.; Ganesan, S.; Mulik, V.K.; Sivashankar, B.S.; Mukherjee, S.

    2011-01-01

    The 232 Th(n, γ) reaction cross-section at average neutron energies of 3.7±0.3 MeV and 9.85±0.38 MeV from the 7 Li(p, n) reaction has been determined for the first time using activation and off-line γ -ray spectrometric technique. The 232 Th(n, 2n) reaction cross-section at the average neutron energy of 9.85±0.38 MeV has been also determined using the same technique. The experimentally determined 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0 and JEFF-3.1 and were found to be in good agreement. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were found to be slightly higher than the experimental data. (orig.)

  7. Measurement of the 232Th capture cross section in the energy region 5 keV-150 keV

    International Nuclear Information System (INIS)

    Lobo, G.; Schillebeeckx, P.; Brusegan, A.; Borella, A.; Corvi, F.; Janeva, N.; Volev, K.

    2003-01-01

    The 232 Th(n,γ) neutron capture cross-section is of great importance for accelerator driven reactor (ADS) systems based on the Thorium-Uranium fuel cycle. An analysis of the required nuclear data, reveals that the status of the 232 Th capture data is far from the requested 2 % uncertainty level. Recently 232 Th average capture measurements, between 5-200 keV neutron energy, were performed at the FzK Karlsruhe (DE). A comparison of the measured averaged capture cross section with the evaluated data files shows a reasonable agreement in the neutron energy range above 15 keV. However, discrepancies of up to 40 % at lower neutron energies are observed. The same order of discrepancies is observed when comparing their results with the results obtained by Macklin et al. at ORELA. To clarify these discrepancies we measured at IRMM the average capture cross-section at the GEel LINear Accelerator (GELINA). The measurements were performed at a 14.37 m flight-path using the Time-Of-Flight (TOF) method. The gamma rays, originating from the 232 Th(n,γ) reaction, were detected by a pair of C 6 D 6 -based liquid scintillators applying a pulse-height weighting method. The neutron flux was measured with an ionisation chamber placed at 80 cm before the Thorium sample. This chamber has a cathode loaded with two back-to-back layers of about 40 μg/cm 2 10 B. The sample consisted of a metallic natural thorium disc of 8 cm diameter and 0.5 mm thick, corresponding to a thickness of 1.588 10 -3 at/b. The background for the capture measurements consists of a time independent and time dependent component. The former, mainly produced by the radioactive decay of the sample, was deduced from measurements with a closed beam. The latter was measured by replacing the thorium sample with a 0.5 mm thick 208 Pb sample of the same size. Such a Pb sample has practically the same scattering probability as the thorium sample and has a negligible capture yield. Therefore, the 208 Pb run provides a good

  8. Neutron capture cross section measurements and theoretical calculation for the {sup 186}W(n,γ){sup 187}W reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2017-08-01

    Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.

  9. Electron Capture Cross Sections for Stellar Nucleosynthesis

    Directory of Open Access Journals (Sweden)

    P. G. Giannaka

    2015-01-01

    Full Text Available In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasiparticle random-phase approximation (pn-QRPA and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the abovementioned e--capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the 66Zn isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.

  10. Resonance capture cross section of 207Pb

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.

  11. Measurements of 14 MeV neutron radiative capture γ-ray spectra and integrated cross sections in Sc, Y, Pr and Ho

    International Nuclear Information System (INIS)

    Budnar, M.; Cvelbar, F.; Likar, A.; Martincic, R.; Potokar, M.; Ivkovic, V.

    1977-01-01

    Gamma ray spectra and integrated cross sections for radiative capture in 45 Sc, 89 Y, 141 Pr and 165 Ho have been measured. Obtained integrated cross sections (800+-110)μb, (1490+-210)μb, (980+-160)μb and (940+-150)μb are in accordance with measurements at other elements showing smooth mass dependence. Measuring procedure and experimental data evaluation is described in details. (author)

  12. Measurement of the 232Th neutron capture cross section in the region 5 keV-150 keV

    International Nuclear Information System (INIS)

    Lobo, Georges; Corvi, Franco; Schillebeeckx, Peter; Brusegan, Antonio; Mutti, Paolo; Janeva, Natalia

    2002-01-01

    The average capture cross-section of 232 Th has been measured at the 14.37 m flight path of GELINA, IRMM-Geel, in the energy range from 5 to 150 keV. The capture events were detected by two C 6 D 6 liquid scintillators and the neutron flux was measured with a 10 B-loaded ionisation chamber. The data, corrected with the pulse-height weighting technique, have been normalised to the well-isolated and nearly saturated 232 Th (n, γ) resonances at 21.8 eV and 23.5 eV. Below 15 keV neutron energy, we do not observe the discrepancies, up to 40%, with the evaluated ENDF/B-VI data as reported by Wisshak et al.. Between 5 and 80 keV our results are about 10% systematically above the ENDF/B-VI data and approach the evaluated data between 80 and 100 keV. (author)

  13. Neutron capture cross section measurements: case of lutetium isotopes; Mesures de donnees de sections efficaces de capture radiative de neutrons: application au cas du lutecium

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O.; Meot, V.; Belier, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-07-15

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu{sup 173}, Lu{sup 175}, Lu{sup 176} and Lu{sup 177m}, the measurement of the probability of gamma emission in the substitution reaction Yb{sup 174}(He{sup 3},p{gamma})Lu{sup 176}. The measurement of neutron cross sections on Lu{sup 177m} have permitted to highlight the process of super-elastic scattering

  14. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  15. Neutron capture cross section measurements of $^{238}$U, $^{241}$Am and $^{243}$Am at n_TOF

    CERN Multimedia

    Koehler, P E; Plag, R

    The increase of the world energy demand and the need of low carbon energy sources have triggered the renaissance and/or enhancement of nuclear energy in many countries. Fundamental nuclear physics can contribute in a practical way to the sustainability and safety of the nuclear energy production and the management of the nuclear waste. There exists a series of recent studies which address the most relevant isotopes, decay data, nuclear reaction channels and energy ranges which have to be investigated in more detail for improving the design of different advanced nuclear systems [1] and nuclear fuel cycles [2]. In this proposal, we aim at the measurement of the neutron capture cross sections of $^{238}$U, $^{241}$Am and $^{243}$Am. All three isotopes are listed in the NEA High Priority Request List [37], are recommended for measurements [1] and play an important role in the nuclear energy production and fuel cycle scenarios. The measurements will provide as well valuable nuclear structure data necessary for the...

  16. Measurement and analysis of the 241Am neutron capture cross section at the n_TOF facility at CERN

    Science.gov (United States)

    Mendoza, E.; Cano-Ott, D.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Balibrea, J.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Durán, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; López, D.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Roman, F.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.; n TOF Collaboration

    2018-05-01

    The 241Am(n ,γ ) cross section has been measured at the n_TOF facility at CERN with the n_TOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.

  17. Measurement of the 241Am and the 243Am Neutron Capture Cross Sections at the n_TOF Facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The capture cross sections of Am-241 and Am-243 were measured at the n\\_TOF facility at CERN in the epithermal energy range with a BaF2 Total Absorption Calorimeter. A preliminary analysis of the Am-241 and a complete analysis of the Am-243 measurement, including the data reduction and the resonance analysis, have been performed.

  18. Neutron capture cross section measurements of 109Ag, 186W and 158Gd on filtered neutron beams of 55 and 144 keV

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2004-12-01

    The neutron capture cross sections of the 109 Ag(n, γ) 110 mAg, 186 W(n, γ) 187 W and 158 Gd(n, γ) 159 Gd have been measured at 55 and 144 keV by the activation method with filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au using highly purity metallic foils of Ag, W, Gd and Au. The high efficient HPGe detector was used for the gamma rays measurement from the samples, and absolute efficiency calibration was performed by using a set of standard radioisotope sources and a multi-nuclides standard solution. The present results were compared with the previous measurements listed in EXFOR-CINDA, and the evaluated data of ENDF/B-VI. (author)

  19. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  20. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch. [CEA Saclay, Dept. d' Astrophysique de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Oriol, L. [CEA Cadarache, Dept. d' Etudes des Reacteurs, 13 - Saint Paul lez Durance (France); Chartier, F. [CEA Saclay, Dept. de Physico-Chimie, 91 - Gif sur Yvette (France); Mutti, P. [Institut Laue Langevin, 38 - Grenoble, (France); AlMahamid, I. [Wadsworth Center, New York State Dept. of Health, Albany, NY (United States)

    2008-07-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The {sup 232}Th, {sup 237}Np, {sup 241}Am, and {sup 244}Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  1. Measurements of thermal fission and capture cross sections of minor actinides within the Mini-INCA project

    International Nuclear Information System (INIS)

    Bringer, O.; Chabod, S.; Dupont, E.; Letourneau, A.; Panebianco, S.; Veyssiere, Ch.; Oriol, L.; Chartier, F.; Mutti, P.; AlMahamid, I.

    2008-01-01

    In the framework of nuclear waste transmutation studies, the Mini-INCA project has been initiated at Cea/DSM to determine optimal conditions for transmutation and incineration of Minor Actinides in high intensity neutron fluxes in the thermal region. Our experimental tool is based on alpha- and gamma-spectroscopy of irradiated samples and microscopic fission-chambers. It can provide both microscopic information on nuclear reactions (total and partial cross sections for neutron capture and/or fission reactions) and macroscopic information on transmutation and incineration potentials. The 232 Th, 237 Np, 241 Am, and 244 Cm transmutation chains have been explored in details, showing some discrepancies in comparison with evaluated data libraries but in overall good agreement with recent experimental data. (authors)

  2. Neutron-capture cross-section measurement for 163Dy In the neutron energy range from 15 to 75 keV

    International Nuclear Information System (INIS)

    Kim, Hyun Duk; Jung, Eui Jung; Ahn, Jung Keun; Lee, Dae Won; Kim, Guin Yun; Ro, Tae Ik; Min, Young Ki; Igashira, Masayuki; Ohsaki, Toshiro; Mizuno, Satoshi

    2002-01-01

    The neutron-capture cross-section of 163 Dy were measured in the neutron energy range from 15 to 75 keV at the 3-MV Pelletron accelerator of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. Pulsed neutrons were produced from the 7 Li(p,n) 7 Be reaction by bombarding a metallic lithium target with the 1.903-MeV proton beam. The incident neutron spectra were measured by means of a neutron time-of-flight method with a 6 Li-glass detector. Capture γ-rays were detected with a large anti-Compton NaI(Tl) spectrometer. A pulse-height weighting technique was applied to the capture γ-ray pulse-height spectra to obtain capture yields. The neutron capture cross-section were determined relative to the standard capture cross-sections of 197 Au. The present results were compared with the previous measurements and the evaluated values of ENDF/B-VI

  3. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  4. Measurement of the radiative capture cross section of the s-process branching points 204Tl and 171Tm at the n_TOF facility (CERN)

    Science.gov (United States)

    Casanovas, A.; Domingo-Pardo, C.; Guerrero, C.; Lerendegui-Marco, J.; Calviño, F.; Tarifeño-Saldivia, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Quesada, J. M.; Schumann, D.; Aberle, O.; Alcayne, V.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Barbagallo, M.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Busso, M.; Caamaño, M.; Caballero-Ontanaya, L.; Calviani, M.; Cano-Ott, D.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Cristallo, S.; Damone, L. A.; Diakaki, M.; Dietz, M.; Dupont, E.; Durán, I.; Eleme, Z.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Furman, V.; Göbel, K.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Gunsing, F.; Heyse, J.; Jenkins, D. G.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kimura, A.; Kokkoris, M.; Kopatch, Y.; Krtička, M.; Kurtulgil, D.; Ladarescu, I.; Lederer-Woods, C.; Meo, S. Lo; Lonsdale, S. J.; Macina, D.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Michalopoulou, V.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Ogállar, F.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Persanti, L.; Porras, I.; Praena, J.; Radeck, D.; Ramos, D.; Rauscher, T.; Reifarth, R.; Rochman, D.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Simone, S.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Talip, T.; Tassan-Got, L.; Tsinganis, A.; Ulrich, J.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Woods, P. J.; Wright, T.; Žugec, P.; Köster, U.

    2018-05-01

    The neutron capture cross section of some unstable nuclei is especially relevant for s-process nucleosynthesis studies. This magnitude is crucial to determine the local abundance pattern, which can yield valuable information of the s-process stellar environment. In this work we describe the neutron capture (n,γ) measurement on two of these nuclei of interest, 204Tl and 171Tm, from target production to the final measurement, performed successfully at the n_TOF facility at CERN in 2014 and 2015. Preliminary results on the ongoing experimental data analysis will also be shown. These results include the first ever experimental observation of capture resonances for these two nuclei.

  5. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  6. Measurement of the neutron capture cross section of U234 in n-TOF at CERN for Generation IV nuclear reactors

    International Nuclear Information System (INIS)

    Dridi, W.

    2006-11-01

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U 234 (n,γ) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U 234 , with a 4π BaF 2 Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width γ > is found to be (38.2 ± 1.5) meV and the mean spacing parameter 0 > is (11.0 ± 0.2) eV, both values agree well with recommended values

  7. Fast neutron capture cross section facility at Cadarache

    International Nuclear Information System (INIS)

    Le Rigoleur, C.; Arnaud, A.

    1975-01-01

    The total energy weighting technique has been applied to measure absolute fast neutron capture cross section at Cadarache. We use a non hydrogeneous liquid scintillator to detect the gamma from the cascade. The neutron flux is measured with a B 10 INa(Tl) detector or Li 6 glass scintillator of well known efficiency. Time of flight technique is used with on line digital computer data processing. (orig.) [de

  8. Capture cross-section measurements for different elements at neutron energies between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Grenier, Gerard; Voignier, Jacques; Joly, Serge.

    1981-03-01

    Neutron capture cross-sections have been measured for the nuclides: Rb, Y, Nb, Gd, W, Pt, Tl, and for the isotopes 155 Gd, 156 Gd, 157 Gd, 158 Gd, 160 Gd, 182 W, 183 W, 184 W, 186 W, 203 Tl and 205 Tl in the 0.5 MeV to 3.0 MeV neutron energy range. Neutron capture cross-sections are determined through direct γ-ray spectrum emitted by the sample. The gamma-rays are detected by a NaI scintillator surrounded by an annular NaI detector. The time-of-flight method is used. Our results are compared with previous data, evaluations and statistical model calculations [fr

  9. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  10. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Knoll, G.F.

    1992-01-01

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase

  11. Measurements of the 40Ar(n, γ)41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Tornow, W.

    2014-09-01

    The 40Ar(n, γ)41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ)41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  12. Measurements of the 40Ar(n, γ41Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Directory of Open Access Journals (Sweden)

    Megha Bhike

    2014-09-01

    Full Text Available The 40Ar(n, γ41Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the 40Ar(n, γ41Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  13. Neutron capture cross section standards for BNL-325

    International Nuclear Information System (INIS)

    Holden, N.E.

    1980-01-01

    The most common cross section standards for capture reactions in the thermal neutron energy region are gold, cobalt, and manganese. In preparation for the fourth edition of BNL-325, data on the thermal cross section and resonance integral were evaluated for these three standards. For gold, only measurements below the Bragg scattering cutoff were used and extrapolated to a neutron velocity of 2200 meters/second. A non 1/v correction due to the 4.9 eV resonance was made. The resonance integral is based on Jirlow's integral measurement and Tellier's parameters. The resonance integrals for cobalt and manganese are based solely on integral measurements because the capture widths of the first major resonance either vary by 20% in various measurements (cobalt), or have never been measured (manganese). Recommended thermal cross sections and resonance integrals are respectively gold: 98.65/plus or minus/0.9 barns, 1550/plus or minus/28 barns; cobalt: 37.18/plus or minus/0.06 barns, 74.2/plus or minus/2.0 barns and manganese: 13.3/plus or minus/0.2 barns, and 14.0/plus or minus/0.3 barns. 72 refs

  14. A new approach for precise measurements of keV neutron capture cross sections: The examples of 93Nb, 103Rh, and 181Ta

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Reffo, G.

    1990-04-01

    A new experimental method has been implemented for precise measurements of neutron capture cross sections in the energy range from 3 to 200 keV. Neutrons are produced via the 7 Li(p,n) 7 Be reaction using a pulsed 3 MV Van de Graaff accelerator. The neutron energy is determined by the time of flight technique using flight paths of less than 1 m. Capture events are detected with the Karlsruhe 4π Barium Fluoride Detector. This detector is characterized by a resolution in gamma-ray energy of 14% at 662 keV and 7% at 2.5 MeV, a time resolution of 500 ps, and a peak efficiency of 90% at 1 MeV. Capture events are registered with ≅ 95% probability above a gamma-ray threshold of 2.5 MeV. The combined effect of the relatively short primary flight path, the 10 cm inner radius of the detector sphere, and of the low capture cross section of BaF 2 allows to discriminate the main background due to capture of sample scattered neutrons in the scintillator via time of flight, leaving part of the neutron energy range completely undisturbed. The high efficiency and good energy resolution for capture gamma-rays yields a further reduction of this background by using only the relevant energy channels for data evaluation. In the first measurements with the new detector, the neutron capture cross sections of 93 Nb, 103 Rh, and 181 Ta were determined in the energy range from 3 to 200 keV relative to gold as a standard. The cross section ratios could be determined with overall systematic uncertainties of 0.7 to 0.8%; statistical uncertainties were less than 1% in the energy range from 20 to 100 keV, if the data are combined in 20 keV wide bins. The necessary sample masses were of the order of one gram. Further improvements with respect to sensitivity and accuracy are discussed. (orig.) [de

  15. Stellar neutron capture cross sections of the Ba isotopes

    International Nuclear Information System (INIS)

    Voss, F.; Wisshak, K.; Guber, K.; Kaeppeler, F.; Reffo, G.

    1994-03-01

    The neutron capture cross sections of 134 Ba, 135 Ba, 136 Ba, and 137 Ba were measured in the energy range from 5 to 225 keV at the Karlsruhe 3.75 MV Van de Graaff accelerator. Neutrons were produced via the 7 Li(p,n) 7 Be reaction by bombarding metallic Li targets with a pulsed proton beam. Capture events were registered with the Karlsruhe 4π Barium Fluoride Detector. Several runs have been performed under different experimental conditions to study the systematic uncertainties, which resulted mainly from the large ratios of total to capture cross sections of up to 400. The cross section ratios were determined with an overall uncertainty of ∼3%, an improvement by factors of five to eight compared to existing data. Severe discrepancies were found with respect to previous results. Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT=10 keV and 100 keV. These stellar cross sections were used in an s-process analysis. For the s-only isotopes 134 Ba and 136 Ba the N s ratio was determined to 0.875±0.025. Hence, a significant branching of the s-process path at 134 Cs can be claimed for the first time, in contrast to predictions from the classical approach. This branching yields information on the s-process temperature, indicating values around T 8 =2. The new cross sections are also important for the interpretation of barium isotopic anomalies, which were recently discovered in SiC grains of carbonaceous chondrite meteorites. Together with the results from previous experiments on tellurium and samarium, a general improvement of the N s systematics in the mass range A=120 to 150 is achieved. This allows for a more reliable separation of s- and r-process yields, resulting in an improved assignment of the respective contributions to elemental barium that is required for comparison with stellar observations. (orig.) [de

  16. Simultaneous measurement of neutron-induced fission and capture cross sections for {sup 241}Am at neutron energies below fission threshold

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K., E-mail: hirose.kentaro@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Nagayama, T. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, Mito 310-0056 (Japan); Tamura, N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Goto, S. [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Andreyev, A.N. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Vermeulen, M.J. [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Gillespie, S.; Barton, C. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Kimura, A.; Harada, H. [Nuclear Science and Engineering Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Meigo, S. [J-PARC Center, JAEA, Tokai, Ibaraki 319-1195 (Japan); Chiba, S. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ohtsuki, T. [Research Reactor Institute, Kyoto University, Kumatori-cho S' ennangun,Osaka 590-0494 (Japan)

    2017-06-01

    Fission and capture reactions were simultaneously measured in the neutron-induced reactions of {sup 241}Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of E{sub n}=0.1–20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.

  17. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2003-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122 Te, 124 Te, 125 Te, 126 Te, 128 Te, and 130 Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  18. Thermal neutron capture cross sections of tellurium isotopes

    International Nuclear Information System (INIS)

    Tomandl, I.; Honzatko, J.; Egidy, T. von; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-01-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given

  19. Thermal neutron capture cross sections of tellurium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.

    2004-03-01

    New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.

  20. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  1. Thermal neutron capture cross-section measurements of 243Am and 242Pu using the new mini-INCA α- and γ-spectroscopy station

    International Nuclear Information System (INIS)

    Marie, F.; Letourneau, A.; Fioni, G.; Deruelle, O.; Veyssiere, Ch.; Faust, H.; Mutti, P.; AlMahamid, I.; Muhammad, B.

    2006-01-01

    In the framework of the Mini-INCA project, dedicated to the study of Minor Actinide transmutation process in high neutron fluxes, an α- and γ-spectroscopy station has been developed and installed at the High Flux Reactor of the Laue-Langevin Institut. This set-up allows short irradiations as well as long irradiations in a high quasi-thermal neutron flux and post-irradiation spectroscopy analysis. It is well suited to measure precisely, in reference to 59 Co cross-section, neutron capture cross-sections, for all the actinides, in the thermal energy region. The first measurements using this set-up were done on 243 Am and 242 Pu isotopes. Cross-section values, at E n =0.025eV, were found to be (81.8+/-3.6)b for 243 Am and (22.5+/-1.1)b for 242 Pu. These values differ from evaluated data libraries by a factor of 9% and 17%, respectively, but are compatible with the most recent measurements, validating by the way the experimental apparatus

  2. Isotonic and isotopic dependence of the radiative neutron capture cross-section on the neutron excess

    International Nuclear Information System (INIS)

    Trofimov, Yu.N.

    1991-01-01

    The radiative neutron capture cross-section of nuclei has been derived as a function of neutron excess on the basis of the exponential dependence of the cross-section on the reaction energy. It is shown that unknown cross-sections of stable and radioactive nuclei may be evaluated by using the isotonic and isotopic dependence together with available reference cross-section measurements. (author). 4 refs, 3 figs

  3. Comparison of fission and capture cross sections of minor actinides

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Iwamoto, Osamu

    2003-01-01

    The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)

  4. Neutron capture cross section standards for BNL 325, Fourth Edition

    International Nuclear Information System (INIS)

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed

  5. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  6. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  7. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  8. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  9. Q-Dependence of the double capture cross sections measured by electron spectroscopy at 10 qkeV (q = 4-8). Comparison with other experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Boudjema, M.; Benoit-Cattin, P.; Gleizes, A.; Moretto-Capelle, P.

    1989-01-01

    The q dependence of cross sections for double capture into autoionising states has been investigated by electron spectroscopy. It is shown that they are independent of the ionic core. Our results are compared with all other available experimental data obtained at 10 qkeV collision energy.

  10. Q-Dependence of the double capture cross sections measured by electron spectroscopy at 10 qkeV (q = 4-8). Comparison with other experimental data

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Boudjema, M.; Benoit-Cattin, P.; Gleizes, A.; Moretto-Capelle, P.

    1989-01-01

    The q dependence of cross sections for double capture into autoionising states has been investigated by electron spectroscopy. It is shown that they are independent of the ionic core. Our results are compared with all other available experimental data obtained at 10 qkeV collision energy

  11. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  12. Capture cross section and resonance parameters of thulium-169

    International Nuclear Information System (INIS)

    Arbo, J.C.; Felvinci, J.P.; Melkonian, E.; Havens, W.W. Jr.

    1975-01-01

    The previously analyzed energy range for thulium capture resonance parameters is extended from 1 keV to 2 keV. In addition, point and group averaged thulium cross section curves are extended to above 2 keV and 181 Ta impurity levels are discussed. (SDF)

  13. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  14. Simple, empirical approach to predict neutron capture cross sections from nuclear masses

    Science.gov (United States)

    Couture, A.; Casten, R. F.; Cakirli, R. B.

    2017-12-01

    Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of

  15. Thermal neutron capture cross section for the K isomer 177Lum

    International Nuclear Information System (INIS)

    Belier, G.; Roig, O.; Daugas, J.-M.; Giarmana, O.; Meot, V.; Letourneau, A.; Marie, F.; Foucher, Y.; Aupiais, J.; Abt, D.; Jutier, Ch.; Le Petit, G.; Bettoni, C.; Gaudry, A.; Veyssiere, Ch.; Barat, E.; Dautremer, T.; Trama, J.-Ch.

    2006-01-01

    The thermal neutron radiative capture cross section for the K isomeric state in 177 Lu has been measured for the first time. Several 177 Lu m targets have been prepared and irradiated in various neutron fluxes at the Lauee Langevin Institute in Grenoble and at the CEA reactors OSIRIS and ORPHEE in Saclay. The method consists of measuring the 178 Lu activity by γ-ray spectroscopy. The values obtained in four different neutron spectra have been used to calculate the resonance integral of the radiative capture cross section for 177 Lu m . In addition, an indirect method leads to the determination of the 177 Lu g neutron radiative capture cross section

  16. Neutron cross section measurements at ORELA

    International Nuclear Information System (INIS)

    Dabbs, J.W.T.

    1979-01-01

    ORELA (Oak Ridge Electron Linear Accelerator) has been for the last decade the most powerful and useful pulsed neutron time-of-flight facility in the world, particularly in the broad midrange of neutron energies (10 eV to 1 MeV). This position will be enhanced with the addition of a pulse narrowing prebuncher, recently installed and now under test. Neutron capture, fission, scattering, and total cross sections are measured by members of the Physics and Engineering Physics Divisions of ORNL, and by numerous guests and visitors. Several fundamental and applied measurements are described, with some emphasis on instrumentation used. The facility comprises the accelerator and its target(s), 10 evacuated neutron flight paths having 18 measurement stations at flight path distances 8.9 to 200 meters, and a complex 4-computer data acquisition system capable of handling some 17,000 32-bit events/s from a total of 12 data input ports. The system provides a total of 2.08 x 10 6 words of data storage on 3 fast disk units. In addition, a dedicated PDP-10 timesharing system with a 250-megabyte disk system and 4 PDP-15 graphic display satellites permits on-site data reduction and analysis. More than 10 man-years of application software development supports the system, which is used directly by individual experiments. 12 figures, 1 table

  17. Progress on FP13 Total Cross Section Measurements Capability

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since the detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γγ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.

  18. Measurement of the {sup 232}thorium capture cross section at n-TOF-CERN; Mesure de la section efficace de capture neutronique du {sup 232}Th a n-TOF au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Aerts, G

    2005-09-01

    Within the context of nuclear power as a sustainable energy resource, a program of research is concentrated on a new nuclear fuel cycle based on thorium. The main advantage, as compared to the uranium cycle, is a lower production of minor actinides, of which the radiological impact on the long term constitutes a problem. At present, nuclear data libraries don't provide cross sections of a good enough quality, allowing more realistic calculations from simulations related to these reactors. The {sup 232}Th neutron capture cross section is an example. With the n-TOF collaboration, the measurement of this reaction was achieved in 2002 using two C{sub 6}D{sub 6} detectors. The experimental area located at CERN, is characterized by an outstanding neutron energy resolution coupled to a high instantaneous neutron flux. The determination of the gamma-ray cascade detection efficiency, with a random behaviour, has been obtained by the use of weighting functions. These were deduced from Monte Carlo simulations with the code MCNP. Data extraction, reduction, and the description of the neutron flux have lead to the capture yield. In the resolved resonance region, the resonance parameters describing the cross section were deduced with the code SAMMY, using the R-matrix theory. In the unresolved resonance region, an uncertainty of 3,5% is found, and a comparison with recent measurements shows a good agreement. (author)

  19. LAMBDA p total cross-section measurement

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A view of the apparatus used for the LAMBDA p total cross-section measurement at the time of its installation. The hyperons decaying into a proton and a pion in the conical tank in front were detected in the magnet spectrometer in the upper half of the picture. A novel detection technique using exclusively multiwire proportional chambers was employed.

  20. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  1. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  2. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  3. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  4. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  5. Measurements of neutron spallation cross section. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.

    1997-03-01

    Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)

  6. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  7. Measurement of the neutron-capture cross section on 63,65Cu between 0.4 and 7.5 MeV

    Science.gov (United States)

    Bray, Isabel; Bhike, Megha; Krishichayan, (None); Tornow, W.

    2015-10-01

    Copper is currently being used as a cooling and shielding material in most experimental searches for 0 ν β β decay. In order to accurately interpret background events in these experiments, the cross section of neutron-induced reactions on copper must be known. The purpose of this work was to measure the cross section of the 63,65Cu(n, γ)64,66Cu reactions. Data were collected through the activation method at a range of energies from approximately 0.4 MeV to 7.5 MeV, employing the neutron production reactions 3H(p,n)3Heand2H(d,n)3He. Previous data were limited to energies below approximately 3 MeV. The results are compared to predictions from the nuclear data libraries ENDF/B-VII.1 and TENDL-2014.

  8. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  9. L-shell photoelectric cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-05-14

    L-shell photoelectric cross sections in Ta, W, Au, Pb, Th and U at 59.5 keV have been determined using three different versions of Sood's method of measuring the absolute yield of fluorescent x-rays when a target is irradiated with a known flux of photons. The results obtained by all the methods agree with one another showing that no hidden systematic errors are involved in the measurements. The present results are found to compare well with the theoretical calculations of Scofield (Lawrence Livermore Laboratory Report No 51326).

  10. Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn

    International Nuclear Information System (INIS)

    Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.

    2006-01-01

    The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)

  11. Evaluations of fission product capture cross sections for ENDF/B-V

    International Nuclear Information System (INIS)

    Schenter, R.E.; Johnson, D.L.; Mann, F.M.; Schmittroth, F.

    1979-01-01

    Capture cross section evaluations were made for the 36 most important fission product absorbers in a fast reactor system. These evaluations were obtained by use of a generalized least-squares approach with calculations being performed with the computer code FERRET. These results will provide the major revisions to the ENDF/B-IV Fission Product Cross Section File which will be released as part of ENDF/B-V. Input for the cross section adjustment calculations included both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, and 4000. Comparisons of these evaluations with recent capture measurements are presented. 14 figures

  12. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-06

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for the method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].

  13. Electroweak Boson Cross-Section Measurements

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    This report summarises the ATLAS prospects for the measurement of W and Z pro- duction cross-section at the LHC. The electron and muon decay channels are considered. Focusing on the early data taking phase, strategies are presented that allow a fast and robust extraction of the signals. An overall uncertainty of about 5% can be achieved with 50 pb−1 in the W channels, where the background uncertainty dominates (the luminosity measurement uncertainty is not discussed here). In the Z channels, the expected preci- sion is 3%, the main contribution coming from the lepton selection efficiency uncertainty. Extrapolating to 1 fb−1 , the uncertainties shrink to incompressible values of 1-2%, de- pending on the final state. This irreducible uncertainty is essentially driven by strong interaction effects, notably parton distribution uncertainties and non-perturbative effects, affecting the W and Z rapidity and transverse momentum distributions. These effects can be constrained by measuring these distributions. Al...

  14. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  15. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  16. Thermal neutron capture cross-section and resonance integral measurements of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce(n, γ){sup 141}Ce using a Am-Be neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Panikkath, Priyada; Mohanakrishnan, P. [Manipal University, Manipal Centre for Natural Sciences, Karnataka (India)

    2017-03-15

    Thermal neutron capture cross-sections and resonance integrals of {sup 139}La(n, γ){sup 140}La and {sup 140}Ce (n, γ){sup 141}Ce are measured with respect to reference reactions {sup 197}Au(n, γ){sup 198}Au and {sup 55}Mn(n, γ){sup 56}Mn using the neutron activation technique. Measurements are carried out using neutrons from an Am-Be source located inside a concrete bunker. Two different methods are used for determining self-shielding factors of activation foils as well as for finding the epithermal neutron spectrum shape factor. For {sup 139}La with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 9.24 ± 0.25 b and 9.28 ± 0.37 b, respectively, while the measured resonance integrals are 12.18 ± 0.67 b and 11.81 ± 0.94 b, respectively. For {sup 140}Ce with reference to {sup 197}Au and {sup 55}Mn the measured thermal cross sections are 0.44 ± 0.01 b and 0.44 ± 0.02 b, respectively, while the measured resonance integrals are 0.55 ± 0.03 b and 0.54 ± 0.04 b, respectively. The present measurements are compared with earlier measurements and evaluations. Presently estimated values confirm the established {sup 139}La(n, γ){sup 140}La cross-sections. The presently measured thermal capture cross-section {sup 140}Ce(n, γ){sup 141}Ce, though lower than the evaluated data, is having higher accuracy compared to previous measurements with large uncertainties. The resonance integral measured is higher (like most previous measurements) than most evaluations requiring a revision of the evaluated data. (orig.)

  17. Neutron capture cross section of /sup 197/Au: A standard for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Ratynski, W.; Kaeppeler, F.

    1988-01-01

    We have measured the neutron capture cross section of gold using the 7 Li(p,n) 7 Be reaction for neutron production. This reaction not only provides the integrated neutron flux via the 7 Be activity of the target, but also allows for the simulation of a Maxwellian neutron energy spectrum at kT = 25 keV. As this spectrum is emitted in a forward cone of 120 0 opening angle, the cross section can be measured in good geometry and independent of any other standard. Systematic uncertainties were studied experimentally in a series of activations. The final stellar cross section at kT = 25 keV was found to be 648 +- 10 mb, and extrapolation to the common s-process temperature kT = 30 keV yields 582 +- 9 mb. This result is used for renormalization of a number of cross sections which had been measured relative to gold

  18. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  19. Surface State Capture Cross-Section at the Interface between Silicon and Hafnium Oxide

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available The interfacial properties between silicon and hafnium oxide (HfO2 are explored by the gated-diode method and the subthreshold measurement. The density of interface-trapped charges, the current induced by surface defect centers, the surface recombination velocity, and the surface state capture cross-section are obtained in this work. Among the interfacial properties, the surface state capture cross-section is approximately constant even if the postdeposition annealing condition is changed. This effective capture cross-section of surface states is about 2.4 × 10−15 cm2, which may be an inherent nature in the HfO2/Si interface.

  20. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes

    International Nuclear Information System (INIS)

    Bringer, O.

    2007-10-01

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of 241 Am and 237 Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the 241 Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  1. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    Energy Technology Data Exchange (ETDEWEB)

    Winters, R. R.

    2000-08-25

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + {sup 88}Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model.

  2. Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA

    International Nuclear Information System (INIS)

    Winters, R. R.

    2000-01-01

    This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + 88 Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model

  3. Neutron-capture-activation cross sections of 9496Zr and 98100Mo at thermal and 30 keV energy

    International Nuclear Information System (INIS)

    Wyrick, J.M.; Poenitz, W.P.

    1982-01-01

    Neutron-capture cross sections of 94 96 Zr and 98 100 Mo were measured relative to the standard-capture cross section of gold at thermal and 30 keV neutron energies using the activation technique. The reported values are based upon available decay-scheme information

  4. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  5. Neutron capture cross section of $^{25}$Mg and its astrophysical implications

    CERN Multimedia

    We propose to measure the neutron capture cross section of the stable $^{25}$Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics.The measurement will be carried out under similar conditions as for the Mgexperiment that was completed at n_TOF during 2003. A metal $^{25}$Mg-enriched sample will be used in the proposed experiment instead of a MgO powder sample, which was used in the previous measurement and prevented us to minimize the uncertainty of the measured cross section. This experiment will be part of an ongoing study for a comprehensive discussion of the s-process abundances in massive stars.

  6. Differential Single-Capture Cross Sections for Fast Alpha–Helium Collisions

    International Nuclear Information System (INIS)

    Ghanbari-Adivi, Ebrahim; Ghavaminia, Hoda

    2014-01-01

    A four-body theoretical study of the single charge transfer process in collision of energetic alpha ions with helium atoms in their ground states is presented. The model utilizes the Coulomb–Born distorted wave approximation with correct boundary conditions to calculate the single-electron capture differential and integral cross sections. The influence of the dynamic and static electron correlations on the capture probability is investigated. The results of the calculations are compared with the recent experimental measurements for differential cross sections and with the other theoretical manipulations. The results for scattering at extreme forward angles are in good agreement with the experimental measurements, but in other scattering angles the agreement is poor. However, the present four-body results for integral cross sections are in excellent agreement with the experimental data. (author)

  7. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  8. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  9. [Fast neutron cross section measurements]: Progress report

    International Nuclear Information System (INIS)

    1988-01-01

    As projected in our previous proposal, the past year on the cross section project at the University of Michigan has been one primarily of construction and assembly of our 14 MeV pulsed Neutron Facility. All the components of the system have now been either purchased or fabricated in our shop facilities and have been assembled in their final configuration. We are now in the process of testing the rf components that have been designed to deliver voltage to both the pulser and buncher stages. We expect that the system will be operational by the end of the current contract year. We have also accomplished the design and construction of several other major pieces of equipment that are needed to begin fast neutron time-of-flight measurements. These include the primary proton recoil detector, and a californium fission chamber needed in the efficiency calibration of the primary detector. We have also added considerable concrete shielding designed to lower the neutron background in the experimental area. 10 figs., 5 tabs

  10. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  11. New Maxwellian averaged neutron capture cross sections for 35,37Cl

    International Nuclear Information System (INIS)

    Guber, K.H.; Sayer, R.O.; Valentine, T.E.; Leal, L.C.; Spencer, R.R.; Harvey, J.A.; Koehler, P.E.; Rauscher, T.

    2002-01-01

    The Oak Ridge Electron Linear Accelerator (ORELA) was used to measure neutron total and capture cross sections of natural chlorine in the energy range from 100 eV to 600 keV. We performed an R-matrix analysis of our new capture and transmission data up to 500 keV. From these resonance parameters new (n,γ) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models of the s process

  12. Measurements of the {sup 40}Ar(n, γ){sup 41}Ar radiative-capture cross section between 0.4 and 14.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Bhike, Megha, E-mail: megha@tunl.duke.edu [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Fallin, B.; Tornow, W. [Department of Physics, Duke University, Durham, NC 27708 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2014-09-07

    The {sup 40}Ar(n, γ){sup 41}Ar neutron capture cross section has been measured between 0.4 and 14.8 MeV neutron energy using the activation technique. The data are important for estimating backgrounds in argon-based neutrino and dark-matter detectors and in the neutrino-less double-beta decay search GERDA, which uses liquid argon as cooling and shielding medium. For the first time the {sup 40}Ar(n, γ){sup 41}Ar cross section has been measured for neutron energies above 1 MeV. Our results are compared to the evaluation ENDF/B-VII.1 and the calculated prediction TENDL-2013. The latter agrees very well with the present results.

  13. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    1984-11-01

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  14. Measurement of the neutron-capture cross section of 76Ge and 74Ge below 15 MeV and its relevance to 0 νββ decay searches of 76Ge

    Science.gov (United States)

    Bhike, Megha; Fallin, B.; Krishichayan; Tornow, W.

    2015-02-01

    The neutron radiative-capture cross section of 76Ge was measured between 0.4 and 14.8 MeV using the activation technique. Germanium samples with the isotopic abundance of ∼ 86%76Ge and ∼ 14%74Ge used in the 0 νββ searches by the GERDA and Majorana Collaborations were irradiated with monoenergetic neutrons produced at eleven energies via the 3H (p , n)3He, 2H (d , n)3He and 3H (d , n)4He reactions. Previously, data existed only at thermal energies and at 14 MeV. As a by-product, capture cross-section data were also obtained for 74Ge at neutron energies below 8 MeV. Indium and gold foils were irradiated simultaneously for neutron fluence determination. High-resolution γ-ray spectroscopy was used to determine the γ-ray activity of the daughter nuclei of interest. For the 76Ge total capture cross section the present data are in good agreement with the TENDL-2013 model calculations and the ENDF/B-VII.1 evaluations, while for the 74Ge (n , γ)75Ge reaction, the present data are about a factor of two larger than predicted. It was found that the 74Ge (n , γ)75Ge yield in the High-Purity Germanium (HPGe) detectors used by the GERDA and Majorana Collaborations is only about a factor of two smaller than the 76Ge (n , γ)77Ge yield due to the larger cross section of the former reaction.

  15. Kilo-electron-volt neutron capture cross sections of the krypton isotopes

    International Nuclear Information System (INIS)

    Walter, G.; Leugers, B.; Kappeler; Bao, Z.Y.; Reffo, G.; Fabbri, F.

    1986-01-01

    The neutron capture cross sections of the stable krypton isotopes were determined in the energy interval from 4 to 250 keV using a C/sub 6/D/sub 6/-detector system in conjunction with the time-of-flight technique. The energy resolution of the measurement was 4% at 20 keV and 6% at 100 keV, and the experimental uncertainties were typically 6 to 10%. The measurements were complemented by statistical model calculations of all krypton isotopes in the mass range 78 < A < 86 to also obtain reliable cross sections for the unstable nuclei /sup 79,81,85/Kr. These calculations were based on local systematics for all relevant parameters, and the results were estimated to show uncertainties of 20 to 25%. Maxwellian average cross sections were calculated for kT=30 keV

  16. Absolute measurement of the cross sections of neutron radiative capture for 23Na, Cr, 55Mn, Fe, Ni, 103Rh, Ta, 197Au and 238U in the 10-600keV energy range

    International Nuclear Information System (INIS)

    Le Rigoleur, Claude; Arnaud, Andre; Taste, Jean.

    1976-10-01

    The total energy weighting technique has been applied to measuring absolute neutron capture cross sections for 23 Na, Cr, 55 Mn, Fe, Ni, 103 Rh, Ta, 197 Au, 238 U in the 10-600keV energy range. A non hydrogeneous liquid scintillator was used to detect the gamma from the cascade. The neutron flux was measured with a 10 B INa(Tl) detector or a 6 Li glass scintillator of well known efficiency. The fast time-of-flight technique was used with on line digital computer data processing [fr

  17. Neutron cross section measurement using the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Winters, R.R.

    1991-08-01

    This report discusses: argon-40 -- neutron reaction total cross sections from 6.9 kev to 50 kev; The maxwellian averaged neutron capture cross section of oxygen-16; r-matrix parameter analysis of the lead-208 -- neutron reaction cross section measurement; r-matrix parameter analysis of the ORELA neutron transmission zirconium-90 low energy measurement; porting computer codes from the HP9000 to the IBM RISC/6000;and measurements of neutron reactions with strontium-88, zirconium-90, and calcium-40

  18. High resolution neutron total and capture cross-sections in separated isotopes of copper (6365Cu)

    International Nuclear Information System (INIS)

    Pandey, M.S.

    1975-01-01

    High resolution neutron total and capture cross section measurements have been performed on separated isotopes of copper ( 63 65 Cu). Measurements for capture cross section were made from about 1 keV to a few hundreds of keV. The total cross section measurements were made in the energy interval of approximately 10 keV to 150 keV. The resulting capture data have been analyzed by a generalized least square peak fitting computer code in the energy interval of 2.5 keV to 50 keV. Photon strengths are determined using the data up to approximately 250 keV. The resulting total cross section data have been analyzed by area-analysis on the transmission values and by R-matrix multilevel code on cross section values. Average s- and p-wave level spacing and s- and p-wave strength function values are determined. From the resonance parameters thus obtained, by the analysis, statistical distribution is studied for s- and p-wave level spacings and reduced neutron widths. A comparison has been made for adjacent level spacings with the theoretical predictions of level repulsion (of same J/sup π/) by Wigner considering levels with various spin states separately for s-wave resonances where confident spin assignment has been possible. Reduced neutron widths are compared with the Porter-Thomas distribution. Optical model formulated by Feshbach, Porter and Weiskopf describes the neutron-nucleus interaction. A comparison has been made between experimentally determined values of the s- and p-wave strength functions and that obtainable from optical model calculations, thereby determining the appropriate optical model parameters. The experimental arrangement, pertinent theoretical discussion, and the processes of data reduction and the analyses along with the comparison of the previously reported results with the present work are presented in detail

  19. Neutron-capture cross-section measurements of 74Ge and 76Ge in the energy region 0.4-14.8 MeV for neutrinoless double β decay applications

    Science.gov (United States)

    Bhike, Megha; Tornow, Werner

    2013-10-01

    Fast neutron capture cross sections for the reactions 74Ge(n, γ)75Ge and 76Ge(n, γ)77Ge have been measured in the neutron energy region 0.4-14.8 MeV with the activation method. The results are important to identify backgrounds in the neutrinoless double- β decay experiments GERDA and MAJORANA, which use germanium as both source and detector. Isotopically enriched targets which consisted of 86% of 76Ge and 14% of 74Ge were irradiated with mono-energetic neutrons produced via 3H(p,n)3He, 2H(d,n)3He and 3H(d,n)4He reactions. The cross sections were determined relative to 197Au(n, γ)198Au, 115In(n,n')115mIn and 197Au(n,2n)196Au standard cross sections. The activities of the products were measured using high-resolution γ-ray spctroscopy. The present results are compared with the evaluated data from ENDF/B-VII.1 and TALYS.

  20. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  1. Gold standard capture cross section from 100 keV to 15 MeV

    International Nuclear Information System (INIS)

    Ryves, T.B.

    1982-01-01

    The capture cross section of gold is now generally accepted as the principal reference standard, and therefore in this review only gold is considered. Recent measurements of the gold capture cross section in the unresolved region are discussed and compared with the ENDF/B-V evaluation. It is concluded that in the energy interval 100 to 2000 keV the present uncertainty in the evaluation is +-8%, in the interval 2 to 3.5 MeV the uncertainty is +-4%, in ther interval 3.5 to 14 MeV more measurements are needed before a realistic error can be assigned, and from 14 to 15 MeV the uncertainty is +-10%. Several recommendations for future work have been made

  2. Neutron capture cross section of $^{90}$Zr Bottleneck in the s-process reaction flow

    CERN Document Server

    Tagliente, G; Milazzo, P M; Moreau, C; Aerts, G; Abbondanno, U; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Köhler, P; Kossionides, E; Krtička, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Santos, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M, C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2008-01-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus 90Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,γ) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Γγ widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section f...

  3. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  4. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  5. Stellar Neutron Capture Cross Sections of the Lu and Hf Isotopes

    International Nuclear Information System (INIS)

    Wisshak, K.; Voss, F.; Kaeppeler, F.; Kazakov, L.; Krticka, M.

    2005-01-01

    The neutron capture cross sections of 175,176Lu and 176,177,178,179,180Hf have been measured in the energy range from 3 to 225 keV at the Karlsruhe 3.7 MV Van de Graaff accelerator relative to the gold standard. Neutrons were produced by the 7Li(p,n)7Be reaction and capture events were detected by the Karlsruhe 4πBaF2 detector. The cross section ratios could be determined with uncertainties between 0.9 and 1.8% about a factor of five more accurate than previous data. A strong population of isomeric states was found in neutron capture of the Hf isotopes, which are only partially explained by CASINO/GEANT simulations based on the known level schemes.Maxwellian averaged neutron capture cross sections were calculated for thermal energies between kT = 8 keV and 100 keV. Severe differences up to40% were found to the data of a recent evaluation based on existing experimental results. The new data allow for a much more reliable analysis of the important branching in the s-process synthesis path at 176Lu which can be interpreted as an s-process thermometer

  6. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for

  7. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of {sup 187}Re (t{sub 1/2}=41.2 Gyr) into {sup 187}Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the {sup 187}Re/{sup 187}Os pair, provide the possibility to identify the radiogenic fraction of {sup 187}Os exclusively by nuclear physics considerations. Apart from its radiogenic component, {sup 187}Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, {sup 187}Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of {sup 187}Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of {sup 187}Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of {sup 186}Os, {sup 187}Os and {sup 188}Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for {sup 186}Os, {sup 187}Os, and {sup 188}Os, respectively. Since, the first excited state in {sup 187}Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, {gamma

  8. Space, energy and anisotropy effects on 238U effective capture cross sections in the resonance region

    International Nuclear Information System (INIS)

    Meftah, B.; Karam, R.A.

    1984-01-01

    Agreement between calculations and measurements within prescribed limits of error is always the test of engineering design analysis. Large and puzzling discrepancies do exist between several measured and calculated important integral reactor parameters. A thorough and exhaustive investigation of the methods used in reactor analysis revealed that in the generation of effective resonance cross sections no anisotropy effects are considered in the resonances. This is true in the integral transport and fundamental-mode codes. The neglect of anisotropy introduces errors at two levels: (1) the effective group cross sections such as σsub(c), σsub(f) and σsub(s); and (2) the diffusion coefficients and P 1 and higher components of the scattering cross sections. The study showed that the inclusion of linear scattering anisotropy increases, in general, the cell effective capture cross section of 238 U in both ZPR-6/5 and TRX-3 reactors. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% Δk/k for ZPR-6/5 and -0.05% Δk/k for TRX-3. (author)

  9. Partial neutron capture cross sections of actinides using cold neutron prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Genreith, Christoph

    2015-01-01

    Nuclear waste needs to be characterized for its safe handling and storage. In particular long-lived actinides render the waste characterization challenging. The results described in this thesis demonstrate that Prompt Gamma Neutron Activation Analysis (PGAA) with cold neutrons is a reliable tool for the non-destructive analysis of actinides. Nuclear data required for an accurate identification and quantification of actinides was acquired. Therefore, a sample design suitable for accurate and precise measurements of prompt γ-ray energies and partial cross sections of long-lived actinides at existing PGAA facilities was presented. Using the developed sample design the fundamental prompt γ-ray data on 237 Np, 241 Am and 242 Pu were measured. The data were validated by repetitive analysis of different samples at two individual irradiation and counting facilities - the BRR in Budapest and the FRM II in Garching near Munich. Employing cold neutrons, resonance neutron capture by low energetic resonances was avoided during the experiments. This is an improvement over older neutron activation based works at thermal reactor neutron energies. 152 prompt γ-rays of 237 Np were identified, as well as 19 of 241 Am, and 127 prompt γ-rays of 242 Pu. In all cases, both high and lower energetic prompt γ-rays were identified. The most intense line of 237 Np was observed at an energy of E γ =182.82(10) keV associated with a partial capture cross section of σ γ =22.06(39) b. The most intense prompt γ-ray lines of 241 Am and of 242 Pu were observed at E γ =154.72(7) keV with σ γ =72.80(252) b and E γ =287.69(8) keV with σ γ =7.07(12) b, respectively. The measurements described in this thesis provide the first reported quantifications on partial radiative capture cross sections for 237 Np, 241 Am and 242 Pu measured simultaneously over the large energy range from 45 keV to 12 MeV. Detailed uncertainty assessments were performed and the validity of the given uncertainties was

  10. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  11. Measurements of Neutron Induced Cross Sections at the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Guber, K.H.; Harvey, J.A.; Hill, N.W.; Koehler, P.E.; Leal, L.C.; Sayer, R.O.; Spencer, R.R.

    1999-01-01

    We have used the Oak Ridge Electron Linear Accelerator (ORELA) to measure neutron total and the fission cross sections of 233 U in the energy range from 0.36 eV to 700 keV. We report average fission and total cross sections. Also, we measured the neutron total cross sections of 27 Al and Natural chlorine as well as the capture cross section of Al over an energy range from 100 eV up to about 400 keV

  12. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  13. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  14. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    International Nuclear Information System (INIS)

    Tan, V H; Son, P N

    2016-01-01

    The thermal neutron radiative capture cross section for 186 W(n, γ) 187 W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of R cd = 420 and peak energy E n = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197 Au(n, γ) 198 Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations. (paper)

  15. Capture cross sections for Cr, Fe and Ni

    International Nuclear Information System (INIS)

    Corvi, F.

    1990-01-01

    Since stainless steel represents about 25% of the volume of a fast power reactor, its constituent elements strongly influence its two main neutronic parameters: critical enrichment and breeding gain. Also, capture in the narrow p and d-wave resonances of Cr, Fe and Ni contributes as much as 10 to 15% of the Doppler coefficient of reactivity. Following sensitivity calculations, typical accuracy requirements in the energy range 0.1-100 keV are 5-10% for capture in Fe and 10-20% for capture in Ni and Cr. 11 refs, 2 tabs

  16. Optical and statistical model calculation of the americium 242m capture cross section

    International Nuclear Information System (INIS)

    Tellier, Henry.

    1981-04-01

    The capture cross sections of Am 242m can be deduced from resonances analysis at low energy and computed with theoretical models at high energy. In this work, a coherent set of cross sections which reproduced the experimental values of the fission cross sections is computed. These calculations were performed for an energy of the incoming neutron between 1 keV and 1 MeV

  17. Five-dimensional black hole capture cross sections

    International Nuclear Information System (INIS)

    Gooding, Cisco; Frolov, Andrei V.

    2008-01-01

    We study scattering and capture of particles by a rotating black hole in the five-dimensional spacetime described by the Myers-Perry metric. The equations of geodesic motion are integrable, and allow us to calculate capture conditions for a free particle sent towards a black hole from infinity. We introduce a three-dimensional impact parameter describing asymptotic initial conditions in the scattering problem for a given initial velocity. The capture surface in impact parameter space is a sphere for a nonrotating black hole, and is deformed for a rotating black hole. We obtain asymptotic expressions that describe such deformations for small rotational parameters, and use numerical calculations to investigate the arbitrary rotation case, which allows us to visualize the capture surface as extremal rotation is approached

  18. Neutron capture cross section measurement of 238U at the n TOF CERN facility with C6D6 scintillation detectors in the energy region from 1 eV to 700 keV

    CERN Document Server

    Mingrone, F.

    2017-01-01

    The aim of this work is to provide a precise and accurate measurement of the 238U(n,g) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behaviour of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross-section of 238U should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carrie...

  19. Neutron capture cross section measurement of $^{238}$U at the n_TOF CERN facility in the energy region from 1 eV to 700 keV

    CERN Document Server

    Mingrone, F; Vannini, G; Colonna, N; Gunsing, F; Zugec, P; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Becares, V; Becvavr, F; Belloni, F; Berthoumieux, E; Billowes, J; Bosnar, D; Brugger, M; Calviani, M; Calvino, F; Cano-Ott, D; Carrapico, C; Cerutti, F; Chiaveri, E; Chin, M; Cortes, G; Cortes-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcia, A R; Giubrone, G; Goncalves, I F; Gonzalez-Romero, E; Griesmayer, E; Guerrero, C; Hernandez-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Kappeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krticka, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Lo Meo, S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martinez, T; Mastinu, P F; Mastromarco, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mirea Horia, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Rubbia, C; Sabate-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; LTain, J; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Variale, V; Vaz, P; Ventura, A; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T

    2016-01-01

    The aim of this work is to provide a precise and accurate measurement of the $^{238}$U(n,$\\gamma$) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behaviour of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross-section of $^{238}$U should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were pr...

  20. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  1. Use of gamma ray strength functions for predicting the neutron capture cross section of 88Y

    International Nuclear Information System (INIS)

    Gardner, D.G.; Gardner, M.A.

    1977-01-01

    The present study indicates that the estimation of the gamma-ray strength function is the approach least subject to error when unmeasured capture cross sections are to be computed. An estimate is given for the 88 γ(n,γ) cross section

  2. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  3. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  4. Cross sections for one-electron capture by highly stripped ions of Be, B and C from H2 and Ar below 10 keV

    International Nuclear Information System (INIS)

    Takagi, S.; Ohtani, S.; Kadota, K.; Fujita, J.

    1982-03-01

    Cross sections for one-electron capture by highly stripped ions of Be, B and C from H 2 and Ar are measured at low energies below 10 keV. The cross sections are nearly independent of the collision energy investigated. The distinct oscillation with incident ionic charge g in the cross sections are observed. (author)

  5. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  6. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  7. Revisiting the U-238 thermal capture cross section and gamma-raymission probabilities from Np-239 decay

    Energy Technology Data Exchange (ETDEWEB)

    Trkov, A.; Molnar, G.L.; Revay, Zs.; Mughabghab, S.F.; Firestone,R.B.; Pronyaev, V.G.; Nichols, A.L.; Moxon, M.C.

    2005-03-03

    The precise value of the thermal capture cross section of238U is uncertain, and evaluated cross sections from various sourcesdiffer by more than their assigned uncertainties. A number of theoriginal publications have been reviewed to assess the discrepant data,corrections were made for more recent standard cross sections andotherconstants, and one new measurement was analyzed. Due to the strongcorrelations in activation measurements, the gamma-ray emissionprobabilities from the beta decay of 239Np were also analyzed. As aresult of the analysis, a value of 2.683 +- 0.012 barns was derived forthe thermal capture cross section of 238U. A new evaluation of thegamma-ray emission probabilities from 239Np decay was alsoundertaken.

  8. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  9. Measurements of the electron and muon inclusive cross-sections

    Indian Academy of Sciences (India)

    We present the measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of s = 7 TeV, using ∼ 1.4 pb-1 of data collected by the ATLAS detector at the Large Hadron Collider. The muon cross-section is measured as a function of muon ...

  10. Summary of activation cross section measurements at FNS

    International Nuclear Information System (INIS)

    Ikeda, Y.; Konno, C.; Kasugai, Y.; Kumar, A.

    1996-01-01

    Neutron activation cross sections around 14 MeV for seventeen reactions have been measured at the FNS facility in JAERI in order to provide experimental data meeting the requirement in the radioactive wastes disposal assessment in the D-T fusion reactor. This report summarizes contributing data measured in several phases of experiments to the IAEA-CRP on ''Activation Cross sections for the Generation of Long-Lived radionuclides of Importance in Fusion Reactor Technology''. (author). 18 refs, 1 tab

  11. Electron capture cross-section of Au-Fe complex in silicon

    International Nuclear Information System (INIS)

    Ali, Akbar; Shafi, M; Majid, Abdul

    2006-01-01

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E c -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10 -16 cm 2 for electrons which is independent of temperature

  12. Electron capture cross-section of Au-Fe complex in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Akbar; Shafi, M; Majid, Abdul [Advance Materials Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad (Pakistan)

    2006-10-15

    A deep level transient spectroscopy technique is applied to study the capture cross-section of an iron-gold complex. The thermal ionization energy obtained from emission rate data is found to be E{sub c} -0.36 eV. The Au-Fe complex is a single defect having a capture cross-section of 2.48x10{sup -16} cm{sup 2} for electrons which is independent of temperature.

  13. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  14. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  15. Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)

  16. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  17. Non-statistical effects in the radiative capture cross sections of the neodymium isotopes

    International Nuclear Information System (INIS)

    Musgrove, A.R.; Allen, B.J.; Boldeman, J.W.

    1977-01-01

    The neutron capture cross sections of the stable neodymium isotopes have been measured with high energy resolution in the keV region at the 40 m station of ORELA. Average resonance parameters are extracted for s-wave resonances. Significant positive correlations are found between gamma-n-0 and gamma-gamma for all isotopes. The magnitude of the observed correlation coefficient, particularly for 142 Nd (rho = 0.9), cannot be explained in terms of valence neutron capture and additional mechanisms are discussed. The average s-wave radiative widths for the odd-A isotopes are markedly greater than for the even-A isotopes, while the p-wave radiative width for 142 Nd is considerably less than the s-wave width. (author)

  18. Light stops emerging in WW cross section measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2{sigma}, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m{sub t{sub 1}}{proportional_to}200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  19. Light stops emerging in WW cross section measurements?

    International Nuclear Information System (INIS)

    Rolbiecki, Krzysztof

    2013-03-01

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2σ, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m t 1 ∝200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  20. Thermal neutron capture cross sections resonance integrals and g-factors

    International Nuclear Information System (INIS)

    Mughabghab, S.F.

    2003-02-01

    The thermal radiative capture cross sections and resonance integrals of elements and isotopes with atomic numbers from 1 to 83 (as well as 232 Th and 238 U) have been re-evaluated by taking into consideration all known pertinent data published since 1979. This work has been undertaken as part of an IAEA co-ordinated research project on 'Prompt capture gamma-ray activation analysis'. Westcott g-factors for radiative capture cross sections at a temperature of 300K were computed by utilizing the INTER code and ENDF-B/VI (Release 8) library files. The temperature dependence of the Westcott g-factor is illustrated for 113 Cd, 124 Xe and 157 Gd at temperatures of 150, 294 and 400K. Comparisons have also been made of the newly evaluated capture cross sections of 6 Li, 7 Li, 12 C and 207 Pb with those determined by the k 0 method. (author)

  1. Differential cross sections for single-electron capture in He{sup 2+}-D collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, D.; Dagnac, R. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Toulouse-3 Univ., 31 (France)

    1995-06-14

    A translational energy spectroscopy technique was used to study single-electron capture into the He{sup +} (n = 2) and He{sup +} (n 3) states in He{sup 2+}-D collisions. Differential cross sections were determined at 4, 6 and 8 keV in the angular range 5`-1{sup o}30` (laboratory frame). As expected, single-electron capture into the n = 2 state was found to be the dominant process; total cross sections for capture into the He{sup +} (n = 3) state were compared to other experimental and theoretical results. (author).

  2. The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni

    CERN Multimedia

    Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...

  3. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  4. Measurement of the neutron capture cross section of U{sup 234} in n-TOF at CERN for Generation IV nuclear reactors; Mesure de la section efficace de capture neutronique de l'{sup 234}U a n-TOF au CERN pour les reacteurs nucleaires de generation 4

    Energy Technology Data Exchange (ETDEWEB)

    Dridi, W

    2006-11-15

    Accurate and reliable neutron capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. In particular, the accurate knowledge of U{sup 234}(n,{gamma}) reaction cross section is required for the design and realization of nuclear power plants based on the thorium fuel cycle. We have measured the neutron capture cross section of U{sup 234}, with a 4{pi} BaF{sub 2} Total Absorption Calorimeter, at the recently constructed neutron time-of-flight facility n-TOF at CERN in the energy range from 0.03 eV to 1 MeV. Monte-Carlo simulations with GEANT4 and MCNPX of the detector response have been performed. After the background subtraction and correction with dead time and pile-up, the capture yield from 0.03 eV up to 1.5 keV was derived. The analysis of the capture yield in terms of R-matrix resonance parameters is discussed. We have identified 123 resonances and measured the resonance parameters in the energy range from 0.03 eV to 1.5 keV. The mean radiative width <{gamma}{sub {gamma}}> is found to be (38.2 {+-} 1.5) meV and the mean spacing parameter is (11.0 {+-} 0.2) eV, both values agree well with recommended values.

  5. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  6. Absolute measurements of chlorine Cl+ cation single photoionization cross section

    NARCIS (Netherlands)

    Hernandez, E. M.; Juarez, A. M.; Kilcoyne, A. L. D.; Aguilar, A.; Hernandez, L.; Antillon, A.; Macaluso, D.; Morales-Mori, A.; Gonzalez-Magana, O.; Hanstorp, D.; Covington, A. M.; Davis, V.; Calabrese, D.; Hinojosa, G.

    The photoionization of Cl+ leading to Cl2+ was measured in the photon energy range of 19.5-28.0 eV. A spectrum with a photon energy resolution of 15 meV normalized to absolute cross-section measurements is presented. The measurements were carried out by merging a Cl+ ion beam with a photon beam of

  7. (n, Xn) cross sections measurements at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Inmaculada C.

    2006-01-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n, Xn) reactions in this energy range. Neutron double differential cross sections measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL laboratory, in Uppsala (Sweden). The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 deg.-98 deg.). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100 MeV). The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparisons between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its original treatment of nucleon-nucleus reactions. (author) [fr

  8. Measurement of correlated b quark cross sections at CDF

    International Nuclear Information System (INIS)

    Gerdes, D.

    1994-09-01

    Using data collected during the 1992--93 collider run at Fermilab, CDF has made measurements of correlated b quark cross section where one b is detected from a muon from semileptonic decay and the second b is detected with secondary vertex techniques. We report on measurements of the cross section as a function of the momentum of the second b and as a function of the azimuthal separation of the two b quarks, for transverse momentum of the initial b quark greater than 15 GeV. Results are compared to QCD predictions

  9. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    International Nuclear Information System (INIS)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Jiang, C. L.; Lai, J.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Giardina, G.; Eidelman, S.; Venanzoni, G.; Battaglieri, M.; Mandaglio, G.

    2015-01-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work

  10. C+C Fusion Cross Sections Measurements for Nuclear Astrophysics

    Science.gov (United States)

    Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernandez Niello, J. O.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-06-01

    Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.

  11. Preliminary study of the α ratio measurement, ratio of the neutron capture cross section to the fission one for 233U, on the PEREN platform. Development and study of the experimental setup

    International Nuclear Information System (INIS)

    Cognet, M.A.

    2007-12-01

    Producing nuclear energy in order to reduce anthropic CO 2 emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of 233 U, ratio of the neutron capture cross section to fission one for 233 U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233 U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a 235 U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of 235 U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid special attention to quantify the

  12. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  13. Determination of Thermal Neutron Capture Cross Sections Using Cold Neutron Beams at the Budapest PGAA-NIPS Facilities

    International Nuclear Information System (INIS)

    Belgya, T.

    2006-01-01

    A complete elemental gamma-ray library was measured with our guided thermal beam at the Budapest PGAA facility in the period of 1995-2000. Using this data library in an IAEA CRP on PGAA it was managed to re-normalize the ENSDF intensity data with the Budapest intensities. Based on this renormalization thermal neutron cross sections were deduced for several isotopes. Most of these calculations were done by Richard B. Firestone. The Budapest PGAA-NIPS facilities have been used for routine prompt gamma activation analysis with cold neutrons since the year of 2000. The advantage of the cold neutron beam is that the neutron guide has much higher neutron transmission. This resulted in a gain factor about 20 relative to our thermal guide. For the analytical works a precise comparator technique was developed that is routinely used to determine partial gamma-ray production cross sections. An additional development of our methodology was necessary to be worked out to determine thermal neutron capture cross sections based on the partial gamma-ray production cross sections. In this talk our methodology of radiative capture cross section determination will be presented, including our latest results on 129 I, 204,206,207 Pb and 209 Bi. Most of these works were done in cooperation with people from EU-JRC-IRMM, Geel, Belgium and CEA Cadarache, France. Many partial cross sections of short lived nuclei have been re-measured with our new chopper technique. The uncertainty calculations of the radiative capture cross section determination procedures will be also shown. (authors)

  14. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  15. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  16. Measurement, calculation and evaluation of photon production cross-sections

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1990-11-01

    The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  17. Measurement of 241Am Ground State Radiative Neutron Capture Cross Section with Cold Neutron Beam. Progress Report on Research Contract HUN14318 for the CRP on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Belgya, T.; Szentmiklosi, L.; Kis, Z.; Nagy, N.M.; Konya, J.

    2012-01-01

    The ground state cross section of 242 Am has been measured with beams of cold neutrons at the Budapest Research Reactor using the X-ray emission of the decay product of 242 Pu. This methodology avoids the uncertainty caused by resonance neutrons in the pile activations. The target was characterized with gamma and X-ray spectrometry. The obtained ground state cross section is 540 ± 32 b, which is at the low end of the most recent literature values, but agrees with most of them within their uncertainty. (author)

  18. Measurement of inclusive jet cross sections in photoproduction at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schoerner-Sadenius, Thomas; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wiesand, S.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \\eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \\eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.

  19. Measured and evaluated fast neutron cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.

    1975-07-01

    Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)

  20. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  1. Capture cross-section and rate of the 14 C (n, γ) 15 C reaction from ...

    Indian Academy of Sciences (India)

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the ...

  2. Simultaneous analysis of fission and capture cross section with Adler-Adler resonance formula

    International Nuclear Information System (INIS)

    Cao Hengdao; Qiu Guochun

    1989-01-01

    The method of simultaneous analysis of fission and capture cross section for fissile nuclide with Adler-Adler resonance formula and the corresponding computer code are presented. A simple and convenient method to correct parameters μ, γ simultaneously is given in order to acquire optimized parameters. The results are satisfactory

  3. Ion-induced ionization and capture cross sections for DNA nucleobases impacted by light ions

    International Nuclear Information System (INIS)

    Champion, Christophe; Hanssen, Jocelyn; Galassi, Mariel E; Fojón, Omar; Rivarola, Roberto D; Weck, Philippe F

    2012-01-01

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented for describing electron ionization and electron capture induced by heavy charged particles in DNA bases. Multiple differential and total cross sections are determined and compared with the scarce existing experimental data.

  4. Highlights of top quark cross-section measurements at ATLAS

    CERN Document Server

    Wilk, Fabian; The ATLAS collaboration

    2018-01-01

    Measurements of inclusive and differential top-quark production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at a center of mass energy of 8 TeV and 13 TeV. An inclusive measurements of top quark pair production as well as measurement of the cross section for single top production in association with a Z boson is is presented and both are compared to the best available theoretical calculations. Two differential measurement of the kinematic properties of top quark events are presented: one involving a single top produced in association with a W boson and one with top-antitop pair events which decay to an allhadronic final state.

  5. Radiochemical determination of the neutron capture cross sections of {sup 241}Am irradiated in the JMTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, N.; Hatsukawa, Y.; Hata, K.; Kohno, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The thermal neutron capture cross section {sigma}{sub 0} and Resonance integral I{sub 0} of {sup 241}Am leading to the production of {sup 242m}Am and {sup 242g}Am were measured by radiochemical method. The cross sections obtained in this study are {sigma}{sub 0}=60.9 {+-} 2.6 barn, I{sub 0}=213 {+-} 13 barn for {sup 241}Am(n,{gamma}){sup 242m}Am and {sigma}{sub 0}=736 {+-} 31 barn, I{sub 0}=1684 {+-} 92 barn for {sup 241}Am(n,{gamma}){sup 242g}Am. (author)

  6. Measurement of Charmonium Production Cross Section at LHCb

    CERN Multimedia

    Frosini, M

    2010-01-01

    The great abundance of charmonium states, collected from the start up of LHC, allows to study its production mechanism. In particular the total and differential $J/\\psi$ production cross section are measured in the transverse momentum range [0;10] GeV/$c$ and in the pseudorapidity range $y \\in$ [2.5;4]. The measurements are performed disentagling the prompt (direct production in $pp$ collisions and feed down from excited charmonium states) and delayed ($b$-hadron decays products) component.

  7. Photoneutron cross sections measurements in {sup 9}Be, {sup 13}C e {sup 17}O with thermal neutron capture gamma-rays; Medidas das secoes de choque de fotoneutrons do {sup 9}Be, {sup 13}C e {sup 17}O com radiacao gama de captura de neutrons termicos

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, Renato

    2006-07-01

    Photoneutron cross sections measurements of {sup 9}Be, {sup 13}C and {sup 17}O have been obtained in the energy interval between 1,6 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 a 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (5 MW) research reactor. The samples have been irradiated inside a 4{pi} geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A inversion matrix methodology to solve inversion problems for unfolding the set of experimental compound cross sections, was used in order to obtain the cross sections at specific excitation energy values (principal gamma line energies of the capture targets). The cross sections obtained at the energy values of the principal gamma lines were compared with experimental data reported by other authors, with have employed different gamma-ray sources. A good agreement was observed among the experimental data in this work with reported in the literature. (author)

  8. UCN anomalous losses and the UCN capture cross section on material defects

    International Nuclear Information System (INIS)

    Serebrov, A.; Romanenko, N.; Zherebtsov, O.; Lasakov, M.; Vasiliev, A.; Fomin, A.; Geltenbort, P.; Krasnoshekova, I.; Kharitonov, A.; Varlamov, V.

    2005-01-01

    Experimental data shows anomalously large ultra cold neutrons (UCN) reflection losses and that the process of UCN reflection is not completely coherent. UCN anomalous losses under reflection cannot be explained in the context of neutron optics calculations. UCN losses by means of incoherent scattering on material defects are considered and cross-section values calculated. The UCN capture cross section on material defects is enhanced by a factor of 10 4 due to localization of UCN around defects. This phenomenon can explain anomalous losses of UCN

  9. Fusion cross sections measurement for 6Li + 159Tb

    International Nuclear Information System (INIS)

    Pradhan, M.K.; Mukherjee, A.; Kshetri, R.; Roy, Subinit; Basu, P.; Goswami, A.; Saha Sarkar, M.; Ray, M.; Parkar, V.; Santra, S.; Kailas, S.; Palit, R.

    2009-01-01

    In order to investigate the effect of projectile breakup threshold energy on fusion in mass region around A∼170, we have carried out a systematic investigation of the fusion (both CF and ICF) cross sections for the systems 11 B, 10 B + 159 Tb and 7 Li + 159 Tb at energies near and close to the barrier where 11 B was considered to be a strongly bound nucleus. The nucleus 10 B has a α-separation energy of 4.5 MeV. The measurements show that the extent of suppression of CF cross sections is correlated with the α-separation energies of the projectiles. As a further continuation of this work, we have recently carried out fusion excitation function measurement for the system 6 Li + 159 Tb (Coulomb barrier 27 MeV) at energies near and close to the barrier

  10. Neutron total cross section measurements on 249Cf

    International Nuclear Information System (INIS)

    Carlton, R.F.; Harvey, J.A.; Hill, N.W.; Pandey, M.S.; Benjamin, R.W.

    1979-01-01

    Neutron total cross section measurements were performed on a sample of 249 Cf (5.65 mg total weight) with the ORELA as a source of pulsed neutrons. The sample, the inverse thickness of which was 1542 barns/atom, consisted of 85.3% 249 Cf and 14.4% 249 Bk, and was cooled to liquid nitrogen temperature. Analyses were also made of data from a thin sample (l/n = 17430) of 65% 249 Cf in the region of the large fission resonance at 0.7 eV. Fifty-five resonances in 249 Cf were observed and analyzed over the energy range 0.1 eV to 90 eV by use of an R-matrix multilevel formalism. The resonance parameters obtained were used to determine the level spacing and the s-wave neutron and fission strength functions. Thermal total cross section measurements were also performed. 5 figures, 3 tables

  11. Measurement, calculation and evaluation of photon production cross-sections

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1990-03-01

    The IAEA Specialists' Meeting on Measurement, Calculation and Evaluation of Photon Production Cross-Sections was held in Smolenice, Czechoslovakia, 5-7 February 1990. The meeting was hosted by the Institute of Physics of the Electro-Physical Research Centre, Slovak Academy of Sciences, Bratislava. This report contains the conclusions and recommendations of this meeting. The papers which the participants have presented at the meeting will be published as an INDC Report. (author)

  12. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  13. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J

    1971-12-15

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  14. Fast Neutron Radiative Capture Cross Sections for some Important Standards from 30 keV to 1.5 MeV

    International Nuclear Information System (INIS)

    Hellstroem, J.

    1971-12-01

    Neutron capture radiative cross sections for Ta, Ag, In and Au have been measured between 30 keV and 1.5 MeV using time-of-flight technique. The detector used was a large liquid scintillator. Cross sections are given in relative and absolute units

  15. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, C; The ATLAS collaboration

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. It is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic final state and the state-of-the-art of the b-jet trigger performance estimation are presented in this contribution.

  16. Status of recent fast capture cross section evaluations for important fission product nuclides

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    A comparison is made between recent evaluations of fission-product cross sections as given in the CNEN/CEA, ENDF/B-IV, ENDF/V-V, JENDL-1, RCN-2 and RCN-3 data libraries. The intercomparison is restricted to 24 important fission products in a fast power reactor. The evaluation methods used to obtain the various data files are reviewed and possible shortcomings are indicated. A survey is given of the experimental data based used in the various evaluations. Some graphs are included showing the new ENDF/B-V and RCN-3 fastcapture cross-section evaluations. Further intercomparisons are made by means of multi-group and one-group cross sections. It is shown that lumped fission-product cross sections calculated from the most recent versions of the data files are in quite good agreement with each other. This review concludes with a discussion on observed discrepancies and requests for new measurements. 78 references

  17. Thermal neutron cross section measurements for technetium-99

    International Nuclear Information System (INIS)

    Yates, M.A.; Schroeder, N.C.; Fowler, M.M.

    1993-01-01

    Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty

  18. Highlights of top quark cross-section measurements at ATLAS

    CERN Document Server

    Bielski, Rafal; The ATLAS collaboration

    2017-01-01

    Measurements of inclusive and differential top-quark production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at a center of mass energy of 8 TeV and 13 TeV. The inclusive measurements of top quark pair and single top quark production reach high precision and are compared to the best available theoretical calculations. Differential measurements of the kinematic properties of top quark events are also discussed. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime.

  19. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, Claudia

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic f...

  20. Cross Section Measurements of the Reaction 23Na(p, γ)24Mg

    Science.gov (United States)

    Boeltzig, Axel; Deboer, Richard James; Macon, Kevin; Wiescher, Michael; Best, Andreas; Imbriani, Gianluca; Gyürky, György; Strieder, Frank

    2017-09-01

    The reaction 23Na(p, γ)24Mg can provide a link from the NeNa to the MgAl cycle in stellar burning and is therefore of interest in nuclear astrophysics. To determine the reaction rates at stellar temperatures, new cross section measurements at low proton energies have been performed recently, and further experiments are underway. The current cross section data implies that the reaction rate up to temperatures of 1 GK is determined by a few narrow resonances and direct capture. Complementary to these experimental efforts at low proton energies, cross section measurements at higher energies can help to constrain the direct capture and broad resonance contributions to the cross section and reduce the uncertainty of the extrapolation towards stellar energies. In this paper we report an experiment to measure the 23Na(p, γ)24Mg cross section with a solid target setup at the St. ANA 5U accelerator at the University of Notre Dame. The experiment and the current status of data analysis will be described. This work benefited from support by the National Science Foundation under Grant No. PHY-1430152 (JINA-CEE), the Nuclear Science Laboratory (NSL), the Istituto Nazionale di Fisica Nucleare (INFN), and the Gran Sasso Science Institute (GSSI).

  1. Recommended data for capture cross sections in B5+ + H collisions

    International Nuclear Information System (INIS)

    Errea, L F; Guzman, F; Illescas, Clara; Mendez, L; Pons, B; Riera, A; Suarez, J

    2006-01-01

    Recommended values for state selective capture cross sections are presented for the collision B 5+ + H(1s) in the energy range from 0.05 to 1000 keV amu -1 . Special attention is focused on capture processes to n = 7 states of B 4+ , which play an important role in spectral diagnostics in fusion plasmas. In order to completely cover the intermediate impact energy domain, quantal, semi-classical and classical treatments have been employed for low, low-intermediate and intermediate-high energies, respectively. We also give some guidelines about the domain of accuracy of the methodologies employed. Additionally, preliminary cross sections of the B 5+ + H(2s) collision are also provided

  2. Measurements and analysis of the {sup 127}I and {sup 129}I neutron capture and total cross sections; Mesure et analyses des sections efficaces neutroniques totales et de capture radiative des iodes 127 et 129 de 0.5 eV a 100keV

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G

    2005-07-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of {sup 129}I produced yearly in the reactors of the EU countries and a very long {beta}{sup -} half-life of 1.57 x 10{sup 7} years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, {sup 129}I is potentially a key long-lived fission product for transmutation applications, since {sup 129}I transmutes in {sup 130}I after a single neutron capture and decays to {sup 130}Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI{sub 2} samples used in this work contain natural and radioactive iodine, extensive measurements of {sup 129}I have been carried out under the same experimental conditions as for the {sup 129}I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  3. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    International Nuclear Information System (INIS)

    Broda, E.

    1945-01-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  4. The Radiative Capture Cross-Section of U 238 for Fast Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1945-07-01

    This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)

  5. Neutron cross sections measurements for light elements at ORELA and their application in nuclear criticality

    International Nuclear Information System (INIS)

    Guber, Klaus H.; Leal, Luiz C.; Sayer, Royce O.; Spencer, Robert R.; Koehler, Paul E.; Valentine, Timothy E.; Derrien, Herve; Harvey, John A.

    2002-01-01

    The Oak Ridge Electron Linear Accelerator (ORELA) was used to measure neutron total and capture cross sections of aluminium, natural chlorine and silicon in the energy range from 100 eV to ∼600 keV. ORELA is the only high power white neutron source with excellent time resolution and ideally suited for these experiments still operating in the USA. These measurements were carried out to support the Nuclear Criticality Predictability Program. Concerns about the use of existing cross section data in the nuclear criticality calculations using Monte Carlo codes and benchmarks have been a prime motivator for the new cross section measurements. More accurate nuclear data are not only needed for these calculations but also serve as input parameters for s-process stellar models. (author)

  6. Measurement of the diffractive cross section in deep inelastic scattering

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-02-01

    Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)

  7. Measurement of Beauty Particle Lifetimes and Hadroproduction Cross-Section

    CERN Multimedia

    2002-01-01

    We propose an experimental search for beauty particles produced in fixed target hadronic interactions. The essential feature of the proposed experimental technique is the use of two specially designed pieces of hardware~-~a high precision ``decay detector'' and a fast secondary vertex trigger processor. If these devices perform to our expectations, we should be able to obtain sufficient data sample to address several important physics issues, including measurements of the lifetimes of charged and neutral B~mesons, the B~hadroproduction cross-section, and possibly B$^0$- $ \\bar{B} ^0 $ mixing.

  8. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  9. Micromegas detector for $^{33}$S(n,$\\alpha$) cross section measurement at n_TOF

    CERN Multimedia

    The present proposal is a consequence of the successful tests performed in 2011 related to the Letter of Intent CERN-INTC-2010-023/I-092. The main goal of this proposal is a first (n,$\\alpha$) cross section measurement with the Micromegas detector presently running at n_TOF for monitoring purposes and fission cross section measurements. The $^{33}$S(n,$\\alpha$) cross section is of interest in astrophysics mainly due to the origin of $^{36}$S which is still an open question. $^{33}$S is also of interest in medical physics since it has been proposed as a possible/alternative cooperating target to boron neutron capture therapy. Important discrepancies between previous measurements of $^{33}$S(n,$\\alpha$) cross section and especially between the resonance parameters are found in the literature. We propose to measure the (n,$\\alpha$) cross section of the stable isotope $^{33}$S in the energy range up to 300 keV covering the astrophysical range of interest. The possibility of increasing this energy range will be st...

  10. Neutrino-nucleon cross section measurements in NOMAD

    CERN Document Server

    Wu, Qun

    2006-01-01

    The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E [nu] < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) events. This data is the largest high resolution neutrino nucleon scattering data to date and is ideal for precision measurements and searches in neutrino-physics. This thesis presents the precise measurement of the inclusive neutrino CC cross section in 2.5 GeV < E [nu] < 150 GeV region. The linear dependence of the inclusive CC cross section ([Special characters omitted.] ) versus the incoming neutrino energy ( E [nu] ) is observed in the high energy region of 30 GeV < E [nu] < 150 GeV. Especially, the measurement in 2.5 GeV < E [nu] < 30 GeV region provides the first precise determination of [Special characters omitted.] . The significant deviation from the linear dependence for [Special character...

  11. Differential measurements of Drell-Yan cross-sections

    CERN Document Server

    Blumenschein, Ulrike; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed high precision measurements at center-of-mass energies of 7 and 8 TeV. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. ATLAS also performed a precise triple differential cross-section measurement as a function of Mll, dilepton rapidity and cosθ∗ defined in the Collins-Soper frame. This measurement provides sensitivity to the PDFs and the Z forward-backward asymmetry, AFB.

  12. A measurement of the Z cross-section at LHCb

    CERN Document Server

    Keaveney, James Michael

    2011-01-01

    The LHCb experiment, one of the four main experiments at the Large Hadron Collider, recorded 37.66 pb$^{-1}$ of 7 TeV proton collision data in 2010. In this thesis, the total cross section and the differential cross section as a function of boson rapidity of the Z $\\to \\mu^+ \\mu^-$ process are measured using 16.5 pb$^{-1}$ of this data. The precise testing of the Standard Model and reduction of uncertainty on Parton Distribution Functions constitute the primary motivations of these measurements. A scheme to select Z $\\to \\mu^+ \\mu^-$ decays has been developed and was justified using simulation. The application of this scheme to the data yielded 830 candidates for the signal process. The events were used to estimate tracking, muon identification and trigger efficiencies with an overall efficiency of 0.71 $\\pm$ 0.04. Three main background sources have been identified: the semi-leptonic decays of beauty and charm quarks, the Z $\\to \\tau^+ \\tau^-$ process where both tau leptons decay to muons and the mis-identifi...

  13. Study of the surrogate-reaction method applied to neutron-induced capture cross sections

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Méot, V.; Roig, O.; Mathieu, L.; Aïche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Schmidt, K.-H.; Burke, J.T.; Bail, A.; Daugas, J.M.; Faul, T.; Morel, P.; Pillet, N.; Théroine, C.; Derkx, X.; Sérot, O.

    2012-01-01

    Gamma-decay probabilities of 173 Yb and 176 Lu have been measured using the surrogate reactions 174 Yb( 3 He,αγ) 173 Yb* and 174 Yb( 3 He,pγ) 176 Lu*, respectively. For the first time, the gamma-decay probabilities have been obtained with two independent experimental methods based on the use of C 6 D 6 scintillators and Germanium detectors. Our results for the radiative-capture cross sections are several times higher than the corresponding neutron-induced data. To explain these differences, we have used our gamma-decay probabilities to extract rather direct information on the spin distributions populated in the transfer reactions used. They are about two times wider and the mean values are 3 to 4 ℏ higher than the ones populated in the neutron-induced reactions. As a consequence, in the transfer reactions neutron emission to the ground and first excited states of the residual nucleus is strongly suppressed and gamma-decay is considerably enhanced.

  14. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  15. Neutron capture and fission cross section of Americium-243 in the energy range from 5 to 250 keV

    International Nuclear Information System (INIS)

    Wisshak, K.; Kaeppeler, F.

    1983-04-01

    The neutron capture and subthreshold fission cross section of 243 Am was measured in the energy range from 5 to 250 keV using 197 Au and 235 U as the respective standards. Neutrons were produced via the 7 Li(p,n) and the T(p,n) reaction with the Karlsruhe 3-MV pulsed Van de Graaff accelerator. Capture events were detected by two MoxonRae detectors with graphite and bismuthgraphite converters, respectively. Fission events were registered by a NE-213 liquid scintillator with pulse-shape discriminator equipment. Flight paths as short as 50-70 mm were used to obtain optimum signal-to-background ratio. After correction for the different efficiency of the individual converter materials the capture cross section could be determined with a total uncertainty of 3-6%. The respective values for the fission cross section are 8-12%. The results are compared to predictions of recent evaluations, which in some cases are severely discrepant. (orig.)

  16. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  17. Total and (n, 2n) neutron cross section measurements on 241Am

    International Nuclear Information System (INIS)

    Sage, C.

    2009-01-01

    Neutron induced reaction cross sections on 241 Am have been measured at the IRMM in Geel, Belgium, in the frame of a collaboration between the EC Joint Research Centres IRMM and ITU and French laboratories from CNRS and CEA. Raw material coming from the Atalante facility of CEA Marcoule has been transformed into suitable AmO 2 samples embedded in Al 2 O 3 and Y 2 O 3 matrices. The irradiations for the 241 Am(n, 2n) 240 Am reaction cross section measurement were carried out at the 7 MV Van de Graaff accelerator using the activation technique with quasi mono-energetic neutrons from 8 to 21 MeV produced via the D(d, n) 3 He and the T(d, n) 4 He reactions. The cross section was determined relative to the 27 Al(n, α) 24 Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line by standard γ-ray spectrometry using a high purity Ge detector. A special effort was made for the estimation of the uncertainties and the correlations between our experimental points. A different sample of the same isotope 241 Am has been measured in transmission and capture experiments in the resolved resonance region at the neutron ToF facility GELINA. The transmission measurement was performed in two campaigns, with an upgrade of the whole data acquisition system in between, followed by an investigation of its new performances. A preliminary analysis of the resonance parameters tends to confirm the recent evaluation to a higher value for the cross section at the bottom of the first resonances. A new design of C 6 D 6 detectors for capture measurements has been studied, but the data reduction and analysis of the measurement are not part of this work. (author) [fr

  18. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Document Server

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  19. MicroBooNE and its Cross Section Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yun-Tse [SLAC

    2017-05-22

    MicroBooNE (the Micro Booster Neutrino Experiment) is a short-baseline neutrino experiment based on the technology of a liquid-argon time-projection chamber (LArTPC), and has recently completed its first year of data-taking in the Fermilab Booster Neutrino Beam. It aims to address the anomalous excess of events with an electromagnetic final state in MiniBooNE, to measure neutrino-argon interaction cross sections, and to provide relevant R\\&D for the future LArTPC experiments, such as DUNE. In these proceedings, we present the first reconstructed energy spectrum of Michel electrons from cosmic muon decays, the first kinematic distributions of the candidate muon tracks from $\

  20. Application of backpack Lidar to geological cross-section measurement

    Science.gov (United States)

    Lin, Jingyu; Wang, Ran; Xiao, Zhouxuan; Li, Lu; Yao, Weihua; Han, Wei; Zhao, Baolin

    2017-11-01

    As the traditional geological cross section measurement, the artificial traverse method was recently substituted by using point coordinates data. However, it is still the crux of the matter that how to acquire the high-precision point coordinates data quickly and economically. Thereby, the backpack Lidar is presented on the premise of the principle of using point coordinates in this issue. Undoubtedly, Lidar technique, one of booming and international active remote sensing techniques, is a powerful tool in obtaining precise topographic information, high-precision 3-D coordinates and building a real 3-D model. With field practice and date processing indoors, it is essentially accomplished that geological sections maps could be generated simply, accurately and automatically in the support of relevant software such as ArcGIS and LiDAR360.

  1. Measurement of Dijet Cross Sections in Photoproduction at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Becker, J.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Kurca, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Mangano, S.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2002-01-01

    Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05

  2. Single electron capture differential cross section in H+ + He collisions at intermediate and high collision energies

    International Nuclear Information System (INIS)

    Abufager, P N; Fainstein, P D; MartInez, A E; Rivarola, R D

    2005-01-01

    The generalized continuum distorted wave-eikonal initial state (CDW-EIS II) approximation is employed to study differential cross sections (DCS) for single electron capture in H + + He collisions at intermediate and high energies. Present results are compared with theoretical calculations obtained using the previous CDW-EIS formulation in order to show the importance of the description of the bound and continuum target states in the entrance and exit channels, respectively. Both DCS are also shown together with other theoretical results and with experimental data

  3. The Cross-Section for the Radiative Capture of Thermal Neutrons by Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1942-07-01

    This report is based on an experiment performed at the Cavendish Laboratory (Cambridge) by E. Broda, J. Guéron and L. Kowarski in July 1942 where the intensity of the beta-activity induced in uranium by thermal neutrons has been compared with that induced in manganese or iodine. Care was taken to avoid losses due to a Szilard-Chalmers effect. The capture cross section of uranium for thermal neutrons is found to amount to (2.78 ±0.1)*10{sup -24} cm{sup 2}, assuming the value 581*10{sup -24} cm{sup 2} for σ{sub B}. (nowak)

  4. Production, separation and target preparation of 171Tm an 147Pm for neutron cross section measurements

    CERN Document Server

    Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S

    2015-01-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.

  5. A methodology to leverage cross-sectional accelerometry to capture weather's influence in active living research.

    Science.gov (United States)

    Katapally, Tarun R; Rainham, Daniel; Muhajarine, Nazeem

    2016-06-27

    While active living interventions focus on modifying urban design and built environment, weather variation, a phenomenon that perennially interacts with these environmental factors, is consistently underexplored. This study's objective is to develop a methodology to link weather data with existing cross-sectional accelerometry data in capturing weather variation. Saskatoon's neighbourhoods were classified into grid-pattern, fractured grid-pattern and curvilinear neighbourhoods. Thereafter, 137 Actical accelerometers were used to derive moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB) data from 455 children in 25 sequential one-week cycles between April and June, 2010. This sequential deployment was necessary to overcome the difference in the ratio between the sample size and the number of accelerometers. A data linkage methodology was developed, where each accelerometry cycle was matched with localized (Saskatoon-specific) weather patterns derived from Environment Canada. Statistical analyses were conducted to depict the influence of urban design on MVPA and SB after factoring in localized weather patterns. Integration of cross-sectional accelerometry with localized weather patterns allowed the capture of weather variation during a single seasonal transition. Overall, during the transition from spring to summer in Saskatoon, MVPA increased and SB decreased during warmer days. After factoring in localized weather, a recurring observation was that children residing in fractured grid-pattern neighbourhoods accumulated significantly lower MVPA and higher SB. The proposed methodology could be utilized to link globally available cross-sectional accelerometry data with place-specific weather data to understand how built and social environmental factors interact with varying weather patterns in influencing active living.

  6. Measurement of 107Ag(α,γ)111In cross sections

    International Nuclear Information System (INIS)

    Baglin, Coral M.; Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory A.

    2004-01-01

    Cross sections have been measured for the 107 Ag(α,γ) 111 In reaction at several α-particle energies between 7.8 MeV and 11.9 MeV. This reaction is of interest because it can provide a check on calculations of low-energy (α,γ) cross sections required for stellar nucleosynthesis predictions. Stacks of natural Ag foils of 1 (micro)m thickness and 99.97% purity were bombarded with 4 He + beams. Following irradiation, the yields of the 171-keV and 245-keV photons produced in the 2.805 day electron-capture decay of the 111 In product nucleus were measured off-line. The Ag foils were interleaved with 99.6% purity, 6 (micro)m thick natural Ti foils so that known cross sections for the 48 Ti(α,n) reaction could be used to check the accuracy of the beam current integration. For any given beam energy, beam energy degradation in the foils resulted in lower effective bombarding energies for successive foils in the stack, enabling measurements to be made for several energies per irradiation. The measured cross sections are compared with published statistical-model calculations

  7. Secondary standard neutron detector for measuring total reaction cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Gabbard, F.

    1975-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron-production cross sections. The detector consists of a polyethylene sphere of 24'' diameter in which 8- 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies, from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p,n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p,n) 51 Cr and 57 Fe(p,n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for measurement of total neutron yields from neutron producing reactions such as 23 Na(p,n) 23 Mg are given

  8. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  9. Measurement of the stellar (n,γ) cross section of the shortlived radioactive isotope 147Pm

    International Nuclear Information System (INIS)

    Gerstenhoefer, T.W.

    1993-05-01

    During helium burning in the red giant phase of stellar evolution, nuclei with A>60 are produced by the slow neutron capture process (s-process). Starting from the iron group isotopes, the synthesis path works along the valley of beta stability by subsequent neutron captures and beta decays. An important feature of the s-process is the occurence of branchings in this path whenever unstable isotopes with half-lives comparable to the typical neutron capture time scale of about one year are encountered. The analysis of the corresponding abundance patterns can be used to derive estimates for the stellar neutron flux, temperature, and density. Quantitative branching analyses require reliable (n,γ) cross sections for the branch point nuclei. This report presents the first ever measured (n,γ) cross section for the branch point 147 Pm (t 1/2 =2.6 yr) in the neutron energy range 1 n 7 Li(p,n) 7 Be reaction that allowes to simulate a quasi-stellar neutron spectrum. To this end, the rf gas discharge ion source and optical components of the Karlsruhe 3.75 Van de Graaff accelerator were revised. Last but not least, the radiation hazard of the 147 Pm sample (180 GBq) had to be accounted for. In addition of the measurements on 147 Pm, the stellar (n,γ) cross section on its stable daughter, 147 Sm was also determined, mainly in order to verify the experimental technique with Moxon-Rae detectors. (orig.)

  10. Performing Neutron Cross-Section Measurements at RIA

    International Nuclear Information System (INIS)

    Ahle, L.E.

    2003-01-01

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10 12 pps. Included in these isotopes are many that are important to stockpile stewardship, such as 87 Y, 146-50 Eu, and 231 Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make ∼10 μg targets of nuclei with a half-life of ∼1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,γ), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10 -9 . This is particularly problematic for (n,2n) and (n,γ) reactions, whose reaction production cannot be chemically separated from the target. In either case, the first step at RIA to doing these measurements is

  11. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  12. Neutron cross section measurements at n-TOF for ADS related studies

    Science.gov (United States)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  13. Neutron cross section measurements at n-TOF for ADS related studies

    International Nuclear Information System (INIS)

    Mastinu, P F; Abbondanno, U; Aerts, G

    2006-01-01

    A neutron Time-of-Flight facility (n T OF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n T OF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed

  14. Neutron cross section measurements at n-TOF for ADS related studies

    CERN Document Server

    Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K

    2006-01-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  15. Measurement of photon production cross sections with the ATLAS detector

    CERN Document Server

    Turra, Ruggero; The ATLAS collaboration

    2017-01-01

    The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the proton structure. The ATLAS Collaboration has performed precise measurements of the inclusive production of isolated prompt photons at a centre-of-mass energy of 13 TeV, differential in both rapidity and photon transverse momentum. In addition, the integrated and differential cross sections for isolated photon pairs at 8 TeV have been measured. The results are compared with state-of-the-art theory predictions at NLO in QCD and with predictions of several MC generators. The production of prompt photons in association with jets provides an additional testing ground for perturbative QCD (pQCD) with a hard colourless probe less affected by hadronisation effects than jet production. The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 8 and 13 TeV will be presented and discussed.

  16. Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes

    International Nuclear Information System (INIS)

    Venturini, L.; Pecequilo, B.R.S.

    1990-04-01

    The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt

  17. Thermal neutron capture and resonance integral cross sections of {sup 45}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Thi Hien, Nguyen [Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi (Viet Nam); Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Kwangsoo [Department of Physics and Center for High Energy Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Department of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Lee, Manwoo [Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of)

    2015-11-01

    The thermal neutron cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been measured relative to that of the {sup 197}Au(n,γ){sup 198}Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (G{sub th}) and resonance (G{sub epi}) neutron self-shielding, the γ-ray attenuation (F{sub g}) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the {sup 45}Sc(n,γ){sup 46}Sc reaction have been determined relative to the reference values of the {sup 197}Au(n,γ){sup 198}Au reaction, with σ{sub o,Au} = 98.65 ± 0.09 barn and I{sub o,Au} = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σ{sub o,Sc} = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be I{sub o,Sc} = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  18. Mean cross sections of fast neutrons radiative capture, transmission and mean resonance parameters for the tin isotopes

    International Nuclear Information System (INIS)

    Timokhov, V.M.; Bokhovko, M.V.; Kazakov, L.E.; Kononov, V.N.; Manturov, G.N.; Poletaev, E.D.

    1988-01-01

    Results of measurements of neutron radiative capture cross sections in the energy range of 20-450 keV and of neutron transmission in the energy range of 20-1400 keV for 112,114,115,116,117,118,119,120,122 ,124S n isotopes and natural mixture of tin are presented. Analysis of the experimental data in the framework of nuclear reactions statistical theory is carried out, as a result of which data on neutron and radiation strength functions, potential scattering radii for S- and P-neutrons, as well as nuclear levels density parameters, are obtained

  19. Status of measured neutron cross sections of transactinium isotopes in the fast region

    International Nuclear Information System (INIS)

    Igarasi, S.

    1976-01-01

    This paper reviews present status of measured neutron cross sections of transactinium isotopes from a viewpoint of requested data in application field of the nuclear data. The measured cross sections from 1 keV to 15 MeV are examined. Comparison between different data sets is mainly performed on the fission cross sections

  20. Eikonal calculation of electron-capture cross sections in collisions of H atoms with fast projectiles

    International Nuclear Information System (INIS)

    Ho, T.S.; Lieber, M.; Chan, F.T.

    1981-01-01

    We have employed the eikonal method to calculate the cross section for the capture of an electron into an arbitrary nl subshell in collisions between hydrogen atoms and fast projectiles. the projectiles were protons, C 6+ , O 8+ , and Fe 24+ . The energy ranges considered were 20--100 keV in the proton case, and 40--200 keV per nucleon in the other cases. These projectiles were selected because of their importance in fusion plasmas. For the highly charged case of Fe 24+ we found that our formulas, while exact, involved a high degree of cancellation and produced unreliable numerical results, so that a numerical integration of the penultimate formula was substituted. In the proton case agreement with recent experimental data is excellent

  1. Coupled-channel calculations of partial capture cross sections in multiply charged ion collisions with hydrogen

    International Nuclear Information System (INIS)

    Hansen, J.P.; Taulbjerg, K.; University of Tennessee, Knoxville, Tennessee 37996)

    1989-01-01

    Partial cross sections for electron capture in 1--50-keV collisions of Ar 6+ and Ar 8+ with atomic hydrogen have been calculated using an atomic expansion including two complete principal shells of final states (n=4,5 for Ar 6+ and n=5,6 for Ar 8+ ). The qualitative structure of the results is in good accord with a reaction window picture. The results for Ar 6+ ions are in agreement with published experimental data when precaution is taken with respect to uncertainties in absolute normalization of the data and with respect to a proper analysis of translation energy spectra at lower impact energies. The limited experimental data for Ar 8+ do not agree with the present results

  2. Electron capture cross sections by O{sup +} from atomic He

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Dwayne C; Saha, Bidhan C [Department of Physics, Florida A and M University, Tallahassee, FL-32307 (United States)

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  3. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    Science.gov (United States)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also

  4. A Detector for (n,gamma) Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-09-15

    A new detector to be used for determining total (n,gamma) cross sections has been developed in this laboratory. The detector is a large liquid scintillator of approximately 4pi geometry. When used in an experiment the overall time resolution was found to be 10 ns

  5. Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2015-12-01

    Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance

  6. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  7. Neutron capture cross sections of rhodium, thulium, iridium, and gold between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Joly, S.; Voignier, J.; Grenier, G.; Drake, D.M.; Nilsson, L.

    1979-01-01

    Measurements of the neutron capture cross sections of rhodium, thulium, gold, and iridium were carried out in the 0.5- to 3.0-MeV energy range. The cross sections are deduced from the capture gamma-ray spectra recorded by a NaI spectrometer consisting of central and annulus detectors. Time-of-flight techniques are used to improve the signal-to-background ratio. When comparison is possible, the present results are found to be in general agreement with the previous data. 5 figures, 3 tables

  8. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-01-01

    Recently reported neutron radiative capture cross section of 232 Th measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of 232 Th. 16 refs., 3 tables, 4 figures. (author)

  9. Neutron radiative capture cross section of 232Th in the energy range 0.1 to 1.2 MeV

    International Nuclear Information System (INIS)

    Jain, H.M.; Kailas, S.

    1987-03-01

    Recently reported neutron radiative capture cross section of Th-232 measurements in the energy range 0.1 to 1.2 MeV are compared with the calculations based on the statistical model Hauser-Feshbach theory using the spherical optical model transmission coefficients and simple Fermi gas level density formula. The calculations are in good agreement with the recent experimental data, reproducing both the absolute magnitude and the shape exhibited by the excitation function. The results of this comparative study can be used for improving the evaluation of the neutron radiative capture cross section of Th-232. (author)

  10. Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, V. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Yerevan State University, 0025 Yerevan (Armenia); Adamian, G. G., E-mail: adamian@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Antonenko, N. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Mathematical Physics Department, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Diaz-Torres, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, I-38123 Villazzano, Trento (Italy); Gomes, P. R. S. [de Fisica, Universidade Federal Fluminense, Av. Litorânea, s/n, Niterói, R.J. 24210-340 (Brazil); Lenske, H. [Institut für Theoretische Physik der Justus–Liebig–Universität, D–35392 Giessen (Germany)

    2016-07-07

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle.

  11. Sensitivity coefficients for the 238U neutron-capture shielded-group cross sections

    International Nuclear Information System (INIS)

    Munoz-Cobos, J.L.; de Saussure, G.; Perez, R.B.

    1981-01-01

    In the unresolved resonance region cross sections are represented with statistical resonance parameters. The average values of these parameters are chosen in order to fit evaluated infinitely dilute group cross sections. The sensitivity of the shielded group cross sections to the choice of mean resonance data has recently been investigated for the case of 235 U and 239 Pu by Ganesan and by Antsipov et al; similar sensitivity studies for 238 U are reported

  12. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  13. Nuclear reactions cross section measurement using Z-pinch technology

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, T; Bystritskij, V; Mesyats, G A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics; and others

    1997-12-31

    Direct experimental estimate of the upper limit of the d + d {yields} {sup 3}He + n cross-section at deuteron energies below the keV region was obtained for the first time. The experiment was performed at the Pulsed Ion Beam Accelerator of the High-Current Electronics Institute in Tomsk, using high intensity, radially converging deuteron beams, generated during implosion of liner plasma. A two-jet liner made of 17% D{sub 2} + 83% N{sub 2} gas was used, with the inner jet serving as the target. The dd-fusion neutrons were registered by time-of-flight scintillator spectrometers and BF{sub 3} detectors of thermal neutrons placed in a polyethylene moderator. The upper limit obtained for the d + d {yields} {sup 3}He + n cross-section for a deuteron energy of 440 eV is {sigma} < 2 x 10{sup -34} cm{sup 2} at the 90% confidence level. The result demonstrates that the liner implosion technique can be used in the investigation of nuclear reactions between light nuclei at infra low energies, previously not accessible in experiments with classical beam accelerators. (author). 7 refs.

  14. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  15. SB2. Experiment on secondary gamma-ray production cross sections arising from thermal-neutron capture in each of 14 different elements plus a stainless steel

    International Nuclear Information System (INIS)

    Maerker, R.E.

    1976-01-01

    The experimental and calculational details for a CSEWG integral data testing shielding experiment are presented. This particular experiment measured the secondary gamma-ray production cross sections arising from thermal-neutron capture in iron, nitrogen, sodium, aluminum, copper, titanium, calcium, potassium, chlorine, silicon, ickel, zinc, barium, sulfur and a type 321 stainless steel. 1 figure, 30 tables

  16. A CVD diamond detector for (n,α) cross-section measurements

    International Nuclear Information System (INIS)

    Weiss, C.

    2014-01-01

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,α) cross-sections at the neutron time-of-flight facility n⎽TOF at CERN. The 59 Ni(n,α) 56 Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,α) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n⎽TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the thesis. The second part is dedicated to the design and production of the Diamond Mosaic-Detector (DM-D) and its characterization. The 59 Ni(n,α) 56 Fe cross-section measurement at n⎽TOF and the data analysis are discussed in detail in the third part of the thesis, before the summary of the thesis and an outlook to possible future developments and applications conclude the thesis in the forth part. In this work, the Diamond Mosaic-Detector, which consist of eight single-crystal (sCVD) diamond sensors and one 'Diamond on Iridium' (DOI) sensor has proven to be well suited for (n,α) cross-section measurements for 1 MeV < E α < 22 MeV. The upper limit is given by the thickness of the sensors, d = 150 μm, while the lower limit is dictated by background induced by neutron capture reactions in in-beam materials. The cross-section measurement was focussed on the resonance integral of 59 Ni(n,α) 56 Fe at E n = 203 eV, with the aim of clarifying

  17. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  18. THE WEAK s-PROCESS IN MASSIVE STARS AND ITS DEPENDENCE ON THE NEUTRON CAPTURE CROSS SECTIONS

    International Nuclear Information System (INIS)

    Pignatari, M.; Herwig, F.; Gallino, R.; Bisterzo, S.; Heil, M.; Wiescher, M.; Kaeppeler, F.

    2010-01-01

    The slow neutron capture process in massive stars (weak s process) produces most of the s-process isotopes between iron and strontium. Neutrons are provided by the 22 Ne(α,n) 25 Mg reaction, which is activated at the end of the convective He-burning core and in the subsequent convective C-burning shell. The s-process-rich material in the supernova ejecta carries the signature of these two phases. In the past years, new measurements of neutron capture cross sections of isotopes beyond iron significantly changed the predicted weak s-process distribution. The reason is that the variation of the Maxwellian-averaged cross sections (MACS) is propagated to heavier isotopes along the s path. In the light of these results, we present updated nucleosynthesis calculations for a 25 M sun star of Population I (solar metallicity) in convective He-burning core and convective C-burning shell conditions. In comparison with previous simulations based on the Bao et al. compilation, the new measurement of neutron capture cross sections leads to an increase of s-process yields from nickel up to selenium. The variation of the cross section of one isotope along the s-process path is propagated to heavier isotopes, where the propagation efficiency is higher for low cross sections. New 74 Ge, 75 As, and 78 Se MACS result in a higher production of germanium, arsenic, and selenium, thereby reducing the s-process yields of heavier elements by propagation. Results are reported for the He core and for the C shell. In shell C-burning, the s-process nucleosynthesis is more uncertain than in the He core, due to higher MACS uncertainties at higher temperatures. We also analyze the impact of using the new lower solar abundances for CNO isotopes on the s-process predictions, where CNO is the source of 22 Ne, and we show that beyond Zn this is affecting the s-process yields more than nuclear or stellar model uncertainties considered in this paper. In particular, using the new updated initial

  19. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  20. Stroke Volume estimation using aortic pressure measurements and aortic cross sectional area: Proof of concept.

    Science.gov (United States)

    Kamoi, S; Pretty, C G; Chiew, Y S; Pironet, A; Davidson, S; Desaive, T; Shaw, G M; Chase, J G

    2015-08-01

    Accurate Stroke Volume (SV) monitoring is essential for patient with cardiovascular dysfunction patients. However, direct SV measurements are not clinically feasible due to the highly invasive nature of measurement devices. Current devices for indirect monitoring of SV are shown to be inaccurate during sudden hemodynamic changes. This paper presents a novel SV estimation using readily available aortic pressure measurements and aortic cross sectional area, using data from a porcine experiment where medical interventions such as fluid replacement, dobutamine infusions, and recruitment maneuvers induced SV changes in a pig with circulatory shock. Measurement of left ventricular volume, proximal aortic pressure, and descending aortic pressure waveforms were made simultaneously during the experiment. From measured data, proximal aortic pressure was separated into reservoir and excess pressures. Beat-to-beat aortic characteristic impedance values were calculated using both aortic pressure measurements and an estimate of the aortic cross sectional area. SV was estimated using the calculated aortic characteristic impedance and excess component of the proximal aorta. The median difference between directly measured SV and estimated SV was -1.4ml with 95% limit of agreement +/- 6.6ml. This method demonstrates that SV can be accurately captured beat-to-beat during sudden changes in hemodynamic state. This novel SV estimation could enable improved cardiac and circulatory treatment in the critical care environment by titrating treatment to the effect on SV.

  1. Cross-section requirements for reactor neutron flux measurements from the user's point of view

    International Nuclear Information System (INIS)

    Mas, P.; Lloret, R.

    1978-01-01

    The dosimetry of testing materials irradiations involves in practice a lot of problems: fluences measurements, knowledge of spectrum, choice of a convenient set of cross section, damage rate determination, transposition from testing reactor to power reactor. From those problems, we consider that a temporary recommandation concerning the differential cross section of some fluence detectors is to be done, and that it is necessary to dispose of more accessible benchmarks in order to correlate cross section and computer codes. (author)

  2. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  3. Uncertainties of Electron Capture Cross Sections In Be4+ + H(1s) Collisions

    International Nuclear Information System (INIS)

    Méndez, L.; Illescas, Clara; Jorge, Alba; Errea, L.F.; Rabadán, I.; Suárez, J.

    2014-01-01

    We have considered one-electron systems where the theoretical methods are well established. The use of different computational alternatives enables the accurate evaluation of nl-partial cross sections in a wide range of collision energies. In the presentation we have analyzed the uncertainties of n-partial charge exchange (CX) cross sections in Be 4+ + H(1s) collisions, which are relevant in tokamak plasmas and experimental data are not available.

  4. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    International Nuclear Information System (INIS)

    Hellstroem, J.; Beshai, S.

    1971-11-01

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  5. Neutron Capture Gamma Ray Cross Sections for Ta, Ag, In and Au between 30 and 175 keV

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, J; Beshai, S

    1971-11-15

    A new detector has been used to determine neutron capture gamma ray cross sections for Ta, Ag, In and Au. The results are listed and discussed together with associated problems. The energy range from 30 keV to 175 keV is considered

  6. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  7. Measurement of photon (also +jets) production cross sections, jets production cross sections and extraction of the strong coupling constant

    CERN Document Server

    Villaplana Perez, Miguel; The ATLAS collaboration

    2017-01-01

    The production of prompt isolated photons at hadron colliders provides a stringent test of perturbative QCD and can be used to probe the proton structure. The ATLAS collaboration has performed precise measurements of the inclusive production of isolated prompt photons at a centre-of-mass energy of 13 TeV, differential in both rapidity and the photon transverse momentum. In addition, the integrated and differential cross sections for isolated photon pairs and tri-photon production 8 TeV have been measured. The results are compared with state-of-the-art theory predictions at NLO in QCD and with predictions of several MC generators. The production of prompt photons in association with jets provides an additional testing ground for perturbative QCD (pQCD) with a hard colourless probe less affected by hadronisation effects than jet production. The ATLAS collaboration has studied the dynamics of isolated-photon production in association with gluon, light and heavy quark final states in pp collisions at a centre-of-...

  8. Measurement of the cross-section of Zγ and limits on ADD models at ...

    Indian Academy of Sciences (India)

    The measurement of the inclusive cross-section for Z production at LHC with 7 TeV proton–proton collision is presented. The electron and muon decay modes are used to reconstruct the boson. The total cross-section is measured for photon transverse energy greater than 10 GeV and with photon and charged lepton ...

  9. Measurement of multinucleon transfer cross-sections in Ni, Fe( C, x ...

    Indian Academy of Sciences (India)

    Measurement of multinucleon transfer cross-sections be treated as a stable particle in participation in nuclear reactions, thus the two-body kine- matics can be applied for the reaction (12C, 8Be) and the outgoing 8Be(g.s.) will have a unique kinetic energy at a given laboratory angle. To measure the cross-section for the.

  10. Measurement of np→dπ0 cross sections very near threshold

    International Nuclear Information System (INIS)

    Hutcheon, D.A.; Abegg, R.; Greeniaus, L.G.; Miller, C.A.; Korkmaz, E.; Moss, G.A.; Edwards, G.W.R.; Mack, D.; Olsen, W.C.; Ye, Y.

    1989-06-01

    We have measured np→dπ 0 cross sections at ten beam energies within 16 MeV of threshold. Total cross sections followed closely the relationship σ tot (np→dπ 0 ) = (1/2)[(184±5)η 3 ]μb, where η is the c.m. pion momentum in units of m π c. The differential cross sections are anisotropic at only 1 MeV (c.m.) above threshold. These results are predicted by Faddeev model calculations and by a perturbative model. Our cross sections are in fair agreement with previous π + d→pp data. (Author) 12 refs., tab., 4 figs

  11. Determination of the neutron resonance parameters for 206Pb and of the thermal neutron capture cross section for 206Pb and 209Bi

    International Nuclear Information System (INIS)

    Borella, A.

    2005-01-01

    Chapter 1 describes the motivation of the measurements (accelerator driven systems, stellar nucleosynthesis, neutron induced reactions on 206 Pb), the present status of the neutron capture data for 206 Pb and 209 Bi and the structure of this work. In Chapter 2 the basic reaction theory underlying this work is described. The neutron induced reaction mechanism and formalism are explained. The parameterisation of the cross section in terms of R-matrix theory is discussed and we put particular emphasis on the statistical behaviour of the resonance parameters and the impact of the angular distribution of gamma rays following neutron capture. The relation between experimental observables and the resonance parameters is discussed together with general comments related to resonance shape analysis. Chapter 3 is focused on the determination of resonance parameters for 206 Pb. We performed high-resolution transmission and capture measurements at the Time-Of-Flight (TOF) facility GELINA of the IRMM at Geel (B) and determined the resonance parameters. For nuclei like 206 Pb, where the total width is dominated by Γ n , the capture area allows to determine G . Transmission measurements were carried out to determine Γ n , and the statistical factor g of resonances. Before performing a Resonance Shape Analysis (RSA) on the transmission and capture data, we verified the neutron flux and resolution at GELINA. We also compared the characteristics of GELINA with those of the n-TOF facility at CERN. A special emphasis is placed on the total energy detection technique using C 6 D 6 detectors. This technique was applied for the determination of the capture cross section. To reduce systematic bias effects on the capture cross section, the response of the detectors was determined by Monte Carlo simulations, which has been validated by experiments. Using these response functions the partial capture cross sections for individual resonances of 206 Pb have been deduced, by unfolding the

  12. Alpha-induced reaction cross section measurements on 151Eu for the astrophysical γ-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Elekes, Z.; Farkas, J.; Fueloep, Zs.; Halasz, Z.; Kiss, G.G.; Somorjai, E.; Szuecs, T.; Gueraya, R.T.; Oezkana, N.

    2010-01-01

    Compete text of publication follows. The astrophysical γ-process is the main production mechanism of the p-isotopes, the heavy, proton-rich nuclei not produced by neutron capture reactions in the astrophysical sand r-processes. The γ-process is a poorly known process of nucleosynthesis, the models are not able to reproduce well the p-isotope abundances observed in nature. Experimental data on nuclear reactions involved in γ-process reaction networks are clearly needed to provide input for a more reliable γ-process network calculation. As a continuation of our systematic study of reactions relevant for the γ-process, the cross sections of the 151 Eu(α, γ) 155 Tb and 151 Eu(α,n) 154 Tb reactions have been measured. These reactions have been chosen because α-induced cross section data in the region of heavy p-isotopes are almost completely missing although the calculations show a strong influence of these cross section on the resulting abundances. Since the reaction products of both reactions are radioactive, the cross sections have been measured using the activation technique. The targets have been prepared by evaporating Eu 2 O 3 enriched to 99.2% in 151 Eu onto thin Al foils. The target thicknesses have been measured by weighing and Rutherford Backscattering Spectroscopy. The targets have been irradiated by typically 1-2 μA intensity α-beams from the cyclotron of ATOMKI. The investigated energy range between 12 and 17 MeV was covered with 0.5 MeV steps. This energy range is somewhat higher than the astrophysically relevant one, but the cross section at astrophysical energies is so low that the measurements are not possible there. The γ- activity of the reaction products has been measured by a shielded HPGe detector. The absolute efficiency of the detector was measured with several calibration sources. Since 154 Tb has two long lived isomeric states, partial cross sections of the 151 Eu(α,n) 154 Tb reaction leading to the ground and isomeric states

  13. Recent measurements of low energy charge exchange cross sections for collisions of multicharged ions on neutral atoms and molecules

    International Nuclear Information System (INIS)

    Havener, Charles C.

    2001-01-01

    At ORNL Multicharged Ion Research Facility (MIRF), charge exchange (CX) cross sections have been measured for multicharged ions (MCI) on neutral atoms and molecules. The ORNL ion-atom merged-beam apparatus was used to measure single electron capture by MCI from H at eV/amu energies. A gas cell was used to measure single and double electron capture by MCI from a variety of molecular targets at keV collision energies. The merged-beams experiment has been successful in providing benchmark total electron capture measurements for several collision systems with a variety of multicharged ions on H or D

  14. Neutron cross section measurements using the ORELA: the stable tellurium isotopes (n,γ), 238U(n,n'), 232Th(n,n'), 187Os(n,n'), 186187188Os(n,nn'γ), and 205Tl(n,nγ). Progress report, September 1, 1980-September 1, 1981

    International Nuclear Information System (INIS)

    Winters, R.R.

    1981-08-01

    Progress on the following subjects is reviewed: (1) high resolution neutron cross sections and the optical model potential, (2) renormalization of neutron capture cross sections, and (3) measurement of the argon 40 total cross section

  15. Measurements of activation cross sections for some long-lived nuclides important in fusion reactor technology

    International Nuclear Information System (INIS)

    Blinov, M.V.; Filatenkov, A.A.; Chuvaev, S.V.

    1992-01-01

    The Ag-109(n,2n)Ag-108m, Eu-151(n,2n)Eu-150 and Eu-153(n,2n)Eu-152 cross sections have been measured in the neutron energy interval of 13.7-14.9 MeV. The measurements were performed at the neutron generator NG-400 of the Radium Institute using (D-T) neutrons. At the same facility the upper limit has been obtained for the W-182(n,n'a)Hf-178m 2 cross section. Neutron capture of the Mo-98 that lead ultimately to the production of the long-lived Tc-99 has been studied at neutron energies 0.7-2.0 MeV. For these purposes, the Van de Graaf accelerator (EG-5) was employed that produced monochromatic neutrons in the (p-T) reaction. Both at EG-5 and NG-400 measurements, special efforts were made to minimize neutron spectrum impurities which unavoidably arise in irradiation environments. (author). 15 refs, 6 figs, 1 tab

  16. Measurements of integral cross-sections of incoherent interactions of photons with L-shell electrons

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1983-05-21

    Integral cross-sections of incoherent interactions of 662 and 1250 keV gamma-rays with L-shell electrons of different elements with 74<=Z<=92 have been measured. The experimental results, when interpreted in terms of photoelectric and Compton interaction cross-sections, are found to agree with theory.

  17. Measurement of the 243Am capture cross section at the n{sub T}OF facility; Medida de la sección eficaz de captura del 243Am en la instalación n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cembranos, E.

    2014-07-01

    Nuclear data for minor actinides are necessary for improving the design and performance of advanced reactors and transmutation devices for the incineration of radioactive nuclear waste [Sal08, Gon09, Ali04, Ali06]. In particular, the 243Am isotope is relevant since it is the minor actinide which contributes more to the radiotoxicity of the nuclear waste between s3 03 and s3 04 years. In addition, the neutron capture in 243Am is the main gate to the creation of 244Cm and higher mass isotopes. The purpose of the this work is to provide experimental data on the 243Am(n, ) for improving the current evaluations. At present, there is no published neutron capture measurement of 243Am below 250 eV, and all the existing evaluations of the elastic and capture cross sections are based essentially on a single transmission measurement [Sim74]. Above 250 eV there are only a few capture measurements available [Wes85, Wis83], which show discrepancies that make them incompatible. Due to the lack of experimental data on 243Am the standard ENDF-6 format libraries present sizeable di rences between each other...(Author)

  18. Measurements of electron-proton elastic cross sections for 0.4 2 2

    International Nuclear Information System (INIS)

    Christy, M.E.; Ahmidouch, Abdellah; Armstrong, Christopher; Arrington, John; Razmik Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin McIlhany; Daniella Mckee; David Meekins; Miller, J.W.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-Ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Buz Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Stepan Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 2 2 . These measurements represent a significant contribution to the world's cross section data set in the Q 2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab

  19. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  20. Cross Sections for High-Energy Gamma Transitions from MeV Neutron Capture in {sup 206}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, I; Lundberg, B; Nilsson, L

    1970-03-15

    Gamma-ray spectra from neutron capture in Pb (radiogenic lead) in the energy range 1.5 to 8.5 MeV were recorded using time-of-flight techniques. The spectrometer was a Nal (Tl) crystal, 20.8 cm long and 22.6 cm in diameter. The spectra are dominated by gamma transitions to levels with large single-particle strength, in agreement with predictions of semi-direct capture theories. The theories predict enhancements of the direct capture cross section by a factor of 10 - 15 in the region of the giant dipole resonance. The observed enhancement is about 50.

  1. Measurement of the total cross section with ALFA Detector at ATLAS

    CERN Document Server

    Trzebinski, M; The ATLAS collaboration

    2017-01-01

    The main goals of the Absolute Luminosity For ATLAS (ALFA) detector is to provide an absolute luminosity and total cross section measurement. The measurement method used, the detector alignment and the quality of the collected data are discussed.

  2. Measured Mass-Normalized Optical Cross Sections For Aerosolized Organophosphorus Chemical Warfare Simulants

    National Research Council Canada - National Science Library

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-01-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid and long wave infrared for a variety of chemical and biologically based aerosols...

  3. Towards a Total Cross Section Measurement with the ALFA Detector at ATLAS

    CERN Document Server

    Trzebiński, Maciej

    2013-01-01

    The main goals of the Absolute Luminosity For ATLAS (ALFA) detector is to provide an absolute luminosity and total cross section measurement. The measurement method used, the detector alignment and the quality of the collected data are discussed.

  4. Measurements of the effective total and resonance absorption cross sections for zircaloy-2 and zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Kocic, A; Markovic, V [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-04-15

    Zirconium and zircaloy-2 alloy, as constructive materials, have found wide application in reactor technology, especially in heavy water systems for two reasons: a) low neutron absorption cross section, b) good mechanical properties. The thickness of the zirconium and zircaloy-2 for different applications varies from several tenths of a millimeter to about ten millimeters. Therefore, to calculate reactor systems it is desirable to know the effective neutron absorption cross section for the range of thicknesses mention above. The thermal neutron cross sections for these materials are low and no appreciable variation of the effective neutron cross section occurs even for the largest thicknesses. However, this is not true for effective resonance absorption. On the other hand, due to the lack of detailed knowledge of the zirconium resonances, calculations of the effective resonance integrals cannot be performed. Therefore it is necessary to measure the effective total and resonance absorption cross section for zirconium (author)

  5. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  6. Measurements of the Total, Elastic, Inelastic and Diffractive Cross Sections with the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237700; The ATLAS collaboration

    2016-01-01

    The main results of the total, elastic and inelastic cross sections measurements performed by the ATLAS ALFA detectors are presented. The independent inelastic cross section measurement done using Minimum Bias Trigger Scintillators is also shown. Next, the single diffractive di-jet production and gap survival probability are briefly described. After the event selection, it was found that the diffractive component is needed for a more complete description of data. Finally, the exclusive lepton pair production analysis in electron and muon channels is also described. The measured cross sections were found to be consistent with the theory prediction.

  7. Deep inelastic cross-section measurements at large y with the ZEUS detector at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2014-04-01

    The reduced cross sections for e + p deep inelastic scattering have been measured with the ZEUS detector at HERA at three different centre-of-mass energies, 318, 251 and 225 GeV. The cross sections, measured double differentially in Bjorken x and the virtuality, Q 2 , were obtained in the region 0.13≤y≤0.75, where y denotes the inelasticity and 5≤Q 2 ≤110 GeV 2 . The proton structure functions F 2 and F L were extracted from the measured cross sections.

  8. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  9. The Measurement of the Quasi-Elastic Neutrino-Nucleon Scattering Cross Section at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Suwonjandee, Narumon [Cincinnati U.

    2004-01-01

    The quasi-elastic neutrino nucleon cross section measurement has been measured in the low energy region less than 100 Ge V. The data agree well with the model proposed by C. H. Llewellyn Smith. This model predicts that the quasi-elastic cross section should be constant in the high enery region. The NuTeV experiment at Fermilab provides data which allows us to measure the quasi-elastic cross section for both neutrinos and anti-neutrinos at high energy. We find that $\\sigma^{Neucleon}_{qe}(v) = 0.94 \\pm 0.03(stat.) \\pm 0.07(syst.)$, and $\\sigma^{Neucleon}_{qe}(\\bar\

  10. LHCb: Measurement of $J/\\psi$ production cross-section at LHCb

    CERN Multimedia

    Zhang, Y

    2011-01-01

    The measurement of the $J/\\psi$ production cross-section with the LHCb detector is presented. The cross-section is measured as a function of the $J/\\psi$ transverse momentum and rapidity, in the forward region. Contributions from prompt $J/\\psi$ and $J/\\psi$ from $b$ are measured separately. Prospects for measurements of the $J/\\psi$ polarisation with a full angular analysis are also shown.

  11. Measurement of the neutron total cross section of sodium

    International Nuclear Information System (INIS)

    Larson, D.C.; Harvey, J.A.; Hill, M.W.

    1976-01-01

    The transmission of neutrons through a sample of pure sodium was measured in the energy range 40 keV to 20 MeV. The measurement points out several areas for improvement in the sodium evaluation for ENDF/B-V, the most important being the broadening of the minimum at 300 keV

  12. Measurements of the top-quark mass and production cross section at CMS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Recent measurements of the top mass at CMS are presented, based on several channels and different techniques. The results are combined giving a precise determination of the top mass. The measurements of the ttbar and single top production cross sections at 7 TeV and 8 TeV centre-of-mass energy are reviewed. The ttbar production cross section is utilized to derive a precise determination of the strong coupling constant, the single top cross section is interpreted in terms of the CKM element V_tb

  13. Measurement of 89Y (n, 2n)88Y cross sections

    International Nuclear Information System (INIS)

    Zhu Chuanxin

    2006-12-01

    The 89 Y(n, 2n) 88 Y cross sections in 13.5-14.8 MeV induced by D-T neutrons have been measured, using the activation method and related measurement technology. 89 Y(n,2n) 88 Y cross sections are 629-1053 mb. The relative accuracy is 1.7%. The results were compared with the experiment result by using large liquid scintillator and with the cross section data of ENDF/B-6 base, the ratio of ENDF/B-6 data to experiment values in 14.1 MeV is 0.99. (authors)

  14. First measurement of charged current cross sections at HERA with longitudinally polarised positrons

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-03-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, ep→ν¯X, for negative four-momentum transfer squared Q>400 GeV and inelasticity y<0.9. Together with the corresponding cross section obtained from the previously published unpolarised data, the polarisation dependence of the charged current cross section is measured for the first time at high Q and found to be in agreement with the Standard Model prediction.

  15. Thermal neutron capture cross section for Fe-56(n,gamma)

    Czech Academy of Sciences Publication Activity Database

    Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmiklosi, L.; Tomandl, Ivo

    2017-01-01

    Roč. 95, č. 1 (2017), č. článku 014328. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : neutron cross section * gamma gamma-coincidence data Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.820, year: 2016

  16. A unique way to measure charmonium-nucleon cross sections

    International Nuclear Information System (INIS)

    Seth, K.K.

    2001-01-01

    The attenuation of charmonium formation in relativistic collisions of heavy ions is considered to be the most promising signature of quarkgluon plasma formation. The promise remains suspect because very little experimental data exist which can convincingly refute alternate explanations of the observed suppression. An experimental measurement of charmonium formation in antiproton annihilation with nuclear protons is proposed to answer some of the questions posed by the alternate explanations. (orig.)

  17. Use of integral experiments for the assessment of the 235U capture cross section within the CIELO Project

    Directory of Open Access Journals (Sweden)

    Ichou Raphaelle

    2016-01-01

    Full Text Available A new 235U capture cross-section evaluation, evaluated by ORNL and the CEA Bruyères-le-Châtel (BRC has been proposed within the CIELO project. IRSN, who participates in the CIELO project, contributes with data testing and has carried out benchmark calculations using few benchmarks, extracted from the ICSBEP database, for testing the new 235U evaluation. The benchmarks have been selected by privileging the experiments showing small experimental uncertainties and a significant sensitivity to 235U capture cross-section. The keff calculations were performed with both the MCNP 6 code and the 5.C.1 release of the MORET 5 code, using the ENDF/B-VII.1 library for all isotopes except 235U, for which both the ENDF/B-VII.1 and the new 235U evaluation was used. The benchmark selection allowed highlighting a significant effect on keff of the new 235U capture cross-section. The results of this data testing, provided as input for the evaluators, are presented here.

  18. Proton Radiography: Cross Section Measurements and Detector Development

    International Nuclear Information System (INIS)

    Longo, Michael J.

    2003-01-01

    OAK-B135 The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This will provide data essential to proton radiography. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeter. The project is on track to meet its technical milestones, though the overall schedule at Fermilab has slipped. The electromagnetic calorimeter and the hadron calorimeter were both assembled and ready for testing with beam in December 2003

  19. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reisert, B.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  20. Possible use of measurements to amend cross section tables (PUMA)

    International Nuclear Information System (INIS)

    Kherani, N.P.; Bonalumi, R.A.

    1983-01-01

    In a companion paper, the RAM flux mapping procedure has been demonstrated. RAM combines theory and in-core detector flux measurements, thereby recognizing a difference between the two. Assuming that the RAM ''smoothed-out'' flux distribution is exact, then the discrepancy with purely theoretical fluxes is due to inadequacies in the diffusion theory, homogenised core parameters. PUMA has been devised with the purpose of inferring adjustments in the homogenised core parameters from the theory vs. experiment flux discrepancy. This has been achieved by introducing influence functions similar to those defined by Buckler. A thorough mathematical analysis shows that influence functions are not all linearly independent and that it is crucial to use the criticality equation in the equation set. Numerical examples are shown to demonstrate the procedure

  1. Absolute measurement of the critical scattering cross section in cobalt

    International Nuclear Information System (INIS)

    Glinka, C.J.; Minkiewicz, V.J.; Passell, L.

    1975-01-01

    Small-angle neutron scattering techniques have been used to study the angular distribution of the critical scattering from cobalt above T/sub c/. These measurements have been put on an absolute scale by calibrating the critical scattering directly against the nuclear incoherent scattering from cobalt. In this way the interaction range r 1 , which appears in the classical and modified Ornstein--Zernike expressions for the asymptotic form of the spin pair correlation function and is related to the strength of the spin correlations, has been determined. We obtain r 1 /a = 0.46 +- 0.03 for the ratio of the interaction range to the nearest-neighbor distance in cobalt. This result is in good agreement with theoretical predictions. Lack of agreement among previous determinations of the ratio r 1 /a made in iron failed to provide a definitive comparison with theory

  2. Measurement of Prompt Photon Cross Sections in Photoproduction at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    Results are presented on the photoproduction of isolated prompt photons, inclusively and associated with jets, in the gamma p center of mass energy range 142 4.5 GeV. They are measured differentially as a function of E_T^gamma, E_T^jet, the pseudorapidities eta^gamma and eta^jet and estimators of the momentum fractions x_gamma and x_p of the incident photon and proton carried by the constituents participating in the hard process. In order to further investigate the underlying dynamics, the angular correlation between the prompt photon and the jet in the transverse plane is studied. Predictions by perturbative QCD calculations in next to leading order are about 30% below the inclusive prompt photon data after corrections for hadronisation and multiple interactions, but are in reasonable agreement with the results for prompt photons associated with jets. Comparisons with the predictions of the event generators PYTHIA and HERWIG are also presented.

  3. Cross-sectional measurement of grain boundary segregation using WDS

    Energy Technology Data Exchange (ETDEWEB)

    Christien, F., E-mail: frederic.christien@emse.fr [Laboratoire Georges Friedel, CNRS, Ecole des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 Saint-Etienne (France); Risch, P. [Institut des Matériaux Jean Rouxel (IMN), CNRS, Université de Nantes, Rue Christian Pauc, 44306 Nantes (France)

    2016-11-15

    A new method is proposed for the quantification of grain boundary segregation using Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM). Analyses are undertaken on a simple metallographically polished section of material. The method is demonstrated for the model system of sulphur segregation to nickel grain boundaries. Quantification was carried out from sulphur concentration profiles acquired across 11 grain boundaries of a nickel specimen containing 5.4 wt ppm of sulphur in the bulk and equilibrated at 550 °C. The average sulphur grain boundary concentration determined is µ=35.2 ng cm{sup −2}=6.6×10{sup 14} atoms cm{sup −2}≈0.5 monolayer, which is in good agreement with a previous quantification obtained from SIMS (Secondary Ion Mass Spectrometry) on the same material. However this is lower by a factor of two than the quantification obtained using “surface” techniques on fractured specimens of the same material. With the conditions of analysis used in this study, the limit of detection of the method developed is found to be better than 10% of a sulphur monolayer. - Highlights: • Impurity grain boundary segregation can be measured using WDS in a SEM. • The method proposed is quantitative. • The specimen preparation is simple: metallographical section.

  4. Measurement of the antiproton-nucleus annihilation cross-section at low energy

    Science.gov (United States)

    Aghai-Khozani, H.; Bianconi, A.; Corradini, M.; Hayano, R.; Hori, M.; Leali, M.; Lodi Rizzini, E.; Mascagna, V.; Murakami, Y.; Prest, M.; Vallazza, E.; Venturelli, L.; Yamada, H.

    2018-02-01

    Systematic measurements of the annihilation cross sections of low energy antinucleons were performed at CERN in the 80's and 90's. However the antiproton data on medium-heavy and heavy nuclear targets are scarce. The ASACUSA Collaboration at CERN has measured the antiproton annihilation cross section on carbon at 5.3 MeV: the value is (1.73 ± 0.25) barn. The result is compared with the antineutron experimental data and with the theoretical previsions.

  5. Stealth metamaterial objects characterized in the far field by Radar Cross Section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, K.; Strikwerda, A. C.

    Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed.......Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed....

  6. Status of (n,2n) cross section measurements at Bruyeres-le-Chatel

    International Nuclear Information System (INIS)

    Frehaut, J.; Bertin, A.; Bois, R.; Jary, J.

    1980-05-01

    Cross sections for the (n,2n) reactions have been measured between threshold and 15 MeV for about 50 elements and separated isotopes using the large gadolinium-loaded liquid scintillator method and the 7 MV tandem Van de Graaff accelerator as a pulsed neutron source. The (n,2n) cross sections have been normalized to the fission cross section of 238 U; they are obtained with a relative accuracy of 4% to 10%. The systematic trends of the data obtained on series of separated isotopes are discussed, and some comparaisons with statistical model calculations are presented

  7. Study of the molecular structure and dynamics of bakelite with neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1990-06-01

    The molecular structure and dynamics of calcined bakelite were studied with neutron transmission and scattering cross section measurements. The total cross sections determined were correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. The total cross section determined showed a deviation smaller than 5% from the literature values. The frequency distribution as well as overall experimental results allowed to suggest a structural model like polycyclic hydrocarbons for bakelite calcined at 800 0 C. (F.E.). 65 refs, 31 figs, 5 tabs

  8. Proton Radiography: Cross Section Measurement and Detector Development

    International Nuclear Information System (INIS)

    Longo, Michael J.

    2007-01-01

    Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is being carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neutron/photon calorimeters. These are the only detectors in the experiment that provide information on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway

  9. ATLAS-ALFA measurements on the total cross section and diffraction

    CERN Document Server

    Mortensen, Simon Stark; The ATLAS collaboration

    2015-01-01

    The measurement of the total pp cross section at the LHC at $\\sqrt{s}=7$ TeV with the ALFA subdetector of ATLAS is presented in this talk. In a special run with $\\beta^*=90$ m beam optics corresponding to an integrated luminosity of 80 $\\text{mb}^{-1}$ the differential elastic cross section is measured in the range from $-t=0.0025\\text{ GeV}^2$ to $-t=0.38\\text{ GeV}^2$. The total cross section $\\sigma(pp\\rightarrow X)$ is extracted using the Optical Theorem by extrapolation of the differential elastic cross section to $t=0\\text{ GeV}^2$. Prospects for diffractive measurements using ALFA to detect the intact proton(s) is also discussed.

  10. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  11. Analysis of (n,2n) cross-section measurements for nuclei up to mass 238

    International Nuclear Information System (INIS)

    Davey, W.G.; Goin, R.W.; Ross, J.R.

    1975-06-01

    All suitable measurements of the energy dependence of (n,2n) cross sections of all isotopes up to mass 238 have been analyzed. The objectives were to display the quality of the measured data for each isotope and to examine the systematic dependence of the (n,2n) cross section upon N, Z, and A. Graphs and tables are presented of the ratio of the asymptotic (n,2n) and nonelastic cross section to the neutron-asymmetry parameter (N--Z)/A. Similar data are presented for the derived nuclear temperature, T, and level-density parameter, α, as a function of N, Z, and A. This analysis of the results of over 145 experiments on 61 isotopes is essentially a complete review of the current status of (n,2n) cross-section measurements

  12. Production, separation and target preparation of {sup 171}Tm and {sup 147}Pm for neutron cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Heinitz, Stephan; Maugeri, Emilio A.; Schumann, Dorothea; Dressler, Rugard; Kivel, Niko [Paul Scherrer Institute, Villigen (Switzerland); Guerrero, Carlos [Sevilla Univ. (Spain); Koester, Ullrich [Institut Laue-Langevin, Grenoble (France); Tessler, Moshe; Paul, Michael [Hebrew Univ. of Jerusalem (Israel); Halfon, Shlomi [Soreq Nuclear Research Center, Yavne (Israel); Collaboration: nTOF Collaboration

    2017-07-01

    The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg {sup 171}Tm from 240 mg {sup 170}Er{sub 2}O{sub 3} and 72 μg {sup 147}Pm from 100 mg {sup 146}Nd{sub 2}O{sub 3} irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at nTOF CERN and the SARAF-LiLiT facility.

  13. Measurement of reaction cross sections of {sup 129}I induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The cross sections were measured for the {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions by DT neutrons, at OKTAVIAN facility of Osaka University, Japan. The foil activation method was used in the measurement. The sample was a sealed source of {sup 129}I, which was covered with a Cd foil. The irradiations were performed for 75 minutes to obtain the cross section of reaction producing {sup 128}I (T{sub 1/2}=24.99m) and 22 hours for the {sup 130}I (T{sub 1/2}=12.36h), respectively. The gamma-rays emitted from the irradiated sample were measured with a high purity Ge detector. The measured cross sections of {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions were 0.92{+-}0.11 barn and 0.013{+-}0.002 barn, respectively. For the {sup 129}I(n,2n){sup 128}I reaction, the evaluation of JENDL-3.2 overestimates cross section about 60% to the experimental result. However, especially for the {sup 129}I(n,{gamma}) reaction, the measured cross section may include the contribution from the neutrons in MeV region as well as epithermal ones. Also, the obtained cross section of the {sup 129}I(n,{gamma}){sup 130}I reaction was evaluated as an effective production cross section of {sup 130}I including {sup 129}I(n,{gamma}){sup 130m}I reaction. In order to remove the contribution from the epithermal and MeV region neutrons. A new method was proposed for the measurement of (n,{gamma}) reaction cross section. (author)

  14. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  15. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  16. Measurements of the effective thermal neutron absorption cross-section in multi-grain models

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Igielski, A.; Krynicka, E.; Schneider, K.; Woznicka, U.

    2005-01-01

    The effective macroscopic absorption cross-section Σ a eff of thermal neutrons in a grained medium differs from the corresponding cross-section Σ a hom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co 3 O 4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)

  17. Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer

    International Nuclear Information System (INIS)

    Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.

    1975-01-01

    The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn

  18. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  19. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  20. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  1. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  2. Cross Section Measurements for Some Elements Suited as Thermal Spectrum indicators: Cd, Sm, Gd and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E; Pekarek, H; Jonsson, E

    1964-05-15

    The effective cross sections of Cd, Sm, Gd and Lu have been measured by the oscillator technique in the spectrum of the central channel of the Swedish reactor R1. For Cd, Sm and Gd the 2200 m/s cross sections were deduced on the basis of Westcott's g and s factors. The values obtained were generally in agreement with other recent values obtained by integral methods, although a systematic trend indicated that the value T{sub n} - T{sub m} = 29 {+-} 10 deg C for the neutron spectrum, measured with a fast chopper, was slightly too high. A new value of T{sub n} - T{sub m} = 22.5 {+-} 3.5 deg C was deduced and new 2200 m/s cross sections were obtained by iteration. For natural Lu, the energy dependence of the cross section is not well known. Certain assumptions about the cross section function led to unreasonably high values for the 2200 m/s cross section. Complementary differential measurements of the cross sections of Cd, Sm and Gd were made with the Rl fast chopper. For Cd and Sm the 2200 m/s cross section thus obtained agreed within experimental error with those obtained from the integral measurements. For Gd, the chopper measured value was higher, confirming earlier findings and indicating that the Westcott g factor for Gd is too high. Cd: Integral meas. : {sigma}(2200) = 2,390 {+-} 45 b; Differential meas. : {sigma}(2200) = 2,445 {+-} 25 b; Sm: Integral meas. : {sigma}(2200) = 5,880 {+-} 90 b; Differential meas. : {sigma}(2200) = 5,740 {+-} 150 b; Gd: Integral meas. : {sigma}(2200) = 46,470 {+-} 550 b; Differential meas. : {sigma}(2200) = 47,900 {+-} 700 b.

  3. Cross Section Measurements for Some Elements Suited as Thermal Spectrum indicators: Cd, Sm, Gd and Lu

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, E.; Pekarek, H.; Jonsson, E.

    1964-05-15

    The effective cross sections of Cd, Sm, Gd and Lu have been measured by the oscillator technique in the spectrum of the central channel of the Swedish reactor R1. For Cd, Sm and Gd the 2200 m/s cross sections were deduced on the basis of Westcott's g and s factors. The values obtained were generally in agreement with other recent values obtained by integral methods, although a systematic trend indicated that the value T{sub n} - T{sub m} = 29 {+-} 10 deg C for the neutron spectrum, measured with a fast chopper, was slightly too high. A new value of T{sub n} - T{sub m} = 22.5 {+-} 3.5 deg C was deduced and new 2200 m/s cross sections were obtained by iteration. For natural Lu, the energy dependence of the cross section is not well known. Certain assumptions about the cross section function led to unreasonably high values for the 2200 m/s cross section. Complementary differential measurements of the cross sections of Cd, Sm and Gd were made with the Rl fast chopper. For Cd and Sm the 2200 m/s cross section thus obtained agreed within experimental error with those obtained from the integral measurements. For Gd, the chopper measured value was higher, confirming earlier findings and indicating that the Westcott g factor for Gd is too high. Cd: Integral meas. : {sigma}(2200) = 2,390 {+-} 45 b; Differential meas. : {sigma}(2200) = 2,445 {+-} 25 b; Sm: Integral meas. : {sigma}(2200) = 5,880 {+-} 90 b; Differential meas. : {sigma}(2200) = 5,740 {+-} 150 b; Gd: Integral meas. : {sigma}(2200) = 46,470 {+-} 550 b; Differential meas. : {sigma}(2200) = 47,900 {+-} 700 b.

  4. Status update on the NIFFTE high precision fission cross section measurement program

    International Nuclear Information System (INIS)

    Laptev, Alexander B.; Tovesson, Fredrik; Burgett, Eric; Greife, Uwe; Grimes, Steven; Heffner, Michael D.; Hertel, Nolan E.; Hill, Tony; Isenhower, Donald; Klay, Jennifer L.; Kornilov, Nickolay; Kudo, Ryuho; Loveland, Walter; Massey, Thomas; McGrath, Chris; Pickle, Nathan; Qu, Hai; Sharma, Sarvagya; Snyder, Lucas; Thornton, Tyler; Towell, Rusty S.; Watson, Shon

    2010-01-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) program has been underway for nearly two years. The program's mission is to measure fission cross sections of the primary fissionable and fissile materials ( 235 U, 239 Pu, 238 U) as well as the minor actinides across energies from approximately 50 keV up to 20 MeV with an absolute uncertainty of less than one percent while investigating energy ranges from below an eV to 600 MeV. This basic nuclear physics data is being reinvestigated to support the next generation power plants and a fast burner reactor program. Uncertainties in the fast, resolved and unresolved resonance regions in plutonium and other transuranics are extremely large, dominating safety margins in the next generation nuclear power plants and power plants of today. This basic nuclear data can be used to support all aspects of the nuciear renaissance. The measurement campaign is utilizing a Time Projection Chamber or TPC as the tool to measure these cross sections to these unprecedented levels. Unlike traditional fission cross section measurements using time-of-flight and a multiple fission foil configurations in which fission cross sections in relation to that of 235 U are performed, the TPC project uses time-of-flight and hydrogen as the benchmark cross section. Using the switch to hydrogen, a simple, smooth cross section that can be used which removes the uncertainties associated with the resolved and unresolved resonances in 235 U.

  5. A database of fragmentation cross section measurements applicable to cosmic ray propagation calculations

    International Nuclear Information System (INIS)

    Crawford, H.J.; Engelage, J.; Jones, F.C.

    1989-08-01

    A database of single particle inclusive fragment production cross section measurements has been established and is accessible over common computer networks. These measurements have been obtained from both published literature and direct communication with experimenters and include cross sections for nuclear beams on H, He, and heavier targets, and for H and He beams on nuclear targets, for energies >30 MeV/nucleon. These cross sections are directly applicable to calculations involving cosmic ray nuclear interactions with matter. The data base includes projectile, target, and fragment specifications, beam energy, cross section with uncertainty, literature reference, and comment code. It is continuously updated to assure accuracy and completeness. Also available are widely used semi-empirical formulations for calculating production cross sections and excitation functions. In this paper we discuss the database in detail and describe how it can be accessed. We compare the measurements with semi-empirical calculations and point out areas where improved calculations and further cross section measurements are required. 5 refs., 2 figs

  6. Differential cross section measurement for the 6Li(n,t)4He Reaction

    International Nuclear Information System (INIS)

    Zhang Guohui; Tang Guoyou; Chen Jinxiang; Shi Zhaomin

    2002-01-01

    The differential cross sections and integrated cross sections of the 6 Li(n,t) 4 He reaction were measured at 1.85 and 2.67 MeV by using a gridded ionization chamber. Neutrons were produced through the T(p, n) 3 He reaction. The absolute neutron flux was determined through the 238 U(n, f) reaction. Present results are compared with existing data

  7. Differential cross section measurement for the {sup 6}Li(n,t){sup 4}He Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Guohui, Zhang; Guoyou, Tang; Jinxiang, Chen; Zhaomin, Shi [Beijing Univ., Beijing (China). Inst. of Heavy Ion Physics and MOE Key Laboratory of Heavy Ion Physics; Zemin, Chen [Tsinghua Univ., Beijing (China). Dept. of Physics; Gledenov, Yu M; Sedysheva, M; Khuukhenkhuu, G [Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna (Russian Federation)

    2002-06-01

    The differential cross sections and integrated cross sections of the {sup 6}Li(n,t){sup 4}He reaction were measured at 1.85 and 2.67 MeV by using a gridded ionization chamber. Neutrons were produced through the T(p, n){sup 3}He reaction. The absolute neutron flux was determined through the {sup 238}U(n, f) reaction. Present results are compared with existing data.

  8. A measurement of the b bar b cross section at CDF

    International Nuclear Information System (INIS)

    Yu, I.

    1994-08-01

    We report a measurement of the b bar b cross section at CDF from the 1992--1993 run of the Tevatron Collider. Dimuon events from inclusive b → μ decays of b bar b pairs are used to obtain the cross section as a function of P T (b 1 ) and P T (b 2 ). The results are compared to the predictions of next-to-leading order QCD and are found to be consistent

  9. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  10. Determination of extra-push energies for fusion from differential fission cross-section measurements

    International Nuclear Information System (INIS)

    Ramamurthy, V.S.; Kapoor, S.S.

    1993-01-01

    Apparent discrepancies between values of extra-push energies for fusion of two heavy nuclei derived through measurements of fusion evaporation residue cross sections and of differential fission cross sections have been reported by Keller et al. We show here that with the inclusion of the recently proposed preequilibrium fission decay channel in the analysis, there is no inconsistency between the two sets of data in terms of the deduced extra-push energies

  11. Comparison of the potentials used for the calculation of the resonant coherent electron capture and loss cross sections

    International Nuclear Information System (INIS)

    Pauly, N.; Dubus, A.; Roesler, M.

    2003-01-01

    For incident protons with velocities around 1 a.u., electron capture and loss processes are known to play an important role. In particular, electron emission as well as electronic stopping power are strongly influenced by the charge changing processes. Several different electron capture and loss processes have been identified [Solid State Phys. 43 (1990) 229], i.e. Auger valence band processes, shell processes and resonant coherent processes. In the latter, the incident projectile undergoes a periodic excitation due to the periodic crystalline potential so that an electron can be lost or captured. In the literature, several different choices have been made for the crystalline potential. It is precisely the aim of the present work to review and compare the various potentials used in the literature and to show the influence of this choice on the resonant coherent electron capture and loss cross sections

  12. Influence of the Coulomb interaction in the final state on the cross section of single-electron capture by fast ions

    International Nuclear Information System (INIS)

    Novikov, N.V.; Teplova, Ya.A.

    2011-01-01

    It is shown that the Coulomb interaction of ions in the final state must be taken into account in the estimation of the cross section of electron capture by fast ions. The cross section of electron capture decreases considerably, and the dependence of the cross section on the collision energy becomes close to the experimental one if the interaction of charged particles after collision is taken into account. -- Highlights: → Coulomb interaction of ions in the final state must be taken into account. → This interaction leads to a considerable decrease in the cross section. → The dependence on energy close to the experimental one.

  13. Molecular dynamical and structural studies for the bakelite by neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1992-05-01

    Neutron reaction cross sections were determined by transmission and scattering measurements, to study the dynamics and molecular structure of calcined bakelites. Total cross sections were determined, with a deviation smaller than 5%, from the literature values, by neutron transmission method and a specially devised approximation. These cross sections were then correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. Double differential scattering cross sections, scattering law values and frequency distributions were determined with 15% error using the neutron inelastic scattering method. The frequency distributions as well as the overall results from all experimental techniques used in this work allowed to suggest a structural model like polycyclic hydrocarbons, for calcined bakelite at 800 0 C. (author)

  14. Argon intermolecular potential from a measurement of the total scattering cross-section

    International Nuclear Information System (INIS)

    Wong, Y.W.

    1975-01-01

    An inversion method to obtain accurate intermolecular potentials from experimental total cross section measurements is presented. This method is based on the high energy Massey--Smith approximation. The attractive portion of the potential is represented by a multi-parameter spline function and the repulsive part by a Morse function. The best fit potential is obtained by a least squares minimization based on comparison of experimental cross sections with those obtained by a Fourier transform of the reduced Massey--Smith phase shift curve. An experimental method was developed to obtain the total cross sections needed for the above inversion procedure. In this technique, integral cross sections are measured at various resolutions and the total cross section is obtained by extrapolating to infinite resolution. Experimental results obtained for the Ar--Ar system are in excellent agreement with total cross sections calculated using the Barker-Fisher-Watts potential. Inversion of the data to obtain a potential distinguishable from the BFW-potential requires an extension of the method based on the Massey--Smith approximation to permit use of JWKB phase shifts and was not attempted

  15. Electron capture to the continuum manifestation in fully differential cross sections for ion impact single ionization

    Science.gov (United States)

    Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.

    2018-04-01

    We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.

  16. Surrogate Measurements of Actinide (n,2n) Cross Sections with NeutronSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Oregon State Univ., Corvallis, OR (United States)

    2016-09-27

    Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-­lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-­particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, which acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a 235U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of 241Pu(n,2n) and 239Pu(n,2n) cross section measurements

  17. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  18. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/dΩ was made for the reaction π + + 12 C → π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al using the optical model

  19. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/d..cap omega.. was made for the reaction ..pi../sup +/ + /sup 12/C ..-->.. ..pi../sup +/ + /sup 12/C with 142 MeV pions at ten angles ranging from 35 to 85/sup 0/ in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55/sup 0/. Finally, the carbon elastic cross sections were compared to similar ..pi../sup -/ + /sup 12/C cross sections of Binon et al using the optical model.

  20. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-01-01

    A measurement of the elastic cross section dsigma/dOMEGA was made for the reaction π + + 12 C yields π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometers focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al., eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al., using the optical model

  1. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    2000-06-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron accelerator in Tohoku University. The followings were performed in this fiscal year; (1) Research of nuclear data of MA, (2) Sample preparation and sample mass assay, (3) Investigation of neutron sources with the energy of several 10 keV, (4) Preliminary measurement of fission cross section using Dynamitron accelerator. As the result, four 237 Np samples were prepared and the sample mass were measured using alpha-spectrometry with the accuracy of 1.2%. Then, it was confirmed that a neutron source via 7 Li(p,n) 7 Be reaction using a Li-thick target is suitable for measuring fission cross section of MA in the energy region of several 10 keV. Furthermore, it was verified by the preliminary measurement that the measurement of fission cross section of MA is available using a fission chamber and electronics developed in this study. (author)

  2. Study on neutron capture cross sections using the filtered neutron beams of 55 keV and 144 keV at the Dalat reactor and related applications

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2007-01-01

    In this fundamental research project on nuclear physics in period of 2006, the neutron capture cross sections for the reactions of 139 La (n,γ) 140 La, 152 Sm (n,γ) 153 Sm, 191 Ir (n,γ) 192 Ir and 193 Ir (n,γ) 194 Ir have been measured at 55 keV and 144 keV by the activation method using the filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au. The samples and standard were prepaid from high purity (99.99%) foil of Au and natural oxide powders of La 2 O 3 , Sm 2 O 3 and IrO 2 . A high efficient HPGe detector (58%) was used to detect the gamma rays, emitted from the activated samples. The absolute efficiency curve of the detector has been precisely calibrated thanks to a set of standard radioisotope sources and a multi-nuclide standard solution, supported by IAEA. The present results were compared with the previous measurements from EXFOR-2003, and the evaluated values of JENDL 3.3 and ENDF/B-6.8. (author)

  3. Differential cross-section measurements at the University of Kentucky - Adventures in analysis

    International Nuclear Information System (INIS)

    Vanhoy, J.R.; Garza, E.A.; Steves, J.L.; Hicks, S.F.; Henderson, S.L.; Sidwell, L.C.; Champine, B.R.; Crider, B.P.; Liu, S.H.; Peters, E.E.; Prados-Estevez, F.M.; McEllistrem, M.T.; Ross, T.J.; Yates, S.W.

    2014-01-01

    Elastic and inelastic neutron scattering cross-sections are determined at the University of Kentucky Accelerator Laboratory (UKAL) 1 using time-of-flight techniques at incident energies in the fast neutron region. Measurements have been completed for scattering from 23 Na and for the 23 Na(n,n'γ) reaction; similar measurements are in progress for 54 Fe. Commencing in the summer of 2014, measurements will address 56 Fe. An overview of the facilities and instrumentation at UKAL is given, and our measurement and analysis procedures are outlined. Of particular concern are portions of the analysis which limit the accuracy and precision of the measurements. We briefly examine detector efficiencies derived from the 3 H(p,n) cross-sections, attenuation and multiple scattering corrections, and neutron and γ-ray cross-sections standardizations. (authors)

  4. Single Top quark production cross-section measurements using the ATLAS detector at the LHC

    CERN Document Server

    Jimenez Pena, Javier; The ATLAS collaboration

    2018-01-01

    Measurements of single top-quark production in proton-proton collisions are presented based on the 13 TeV and 8 TeV ATLAS datasets. In the leading order process, a W-boson is exchanged in the t-channel. The cross-section for the production of single top-quarks and single antitop-quarks, their ratio, as well as differential cross-section measurements are also reported. Measurements of the inclusive and differential cross-sections for the production of a single top quark in association with a W-boson, the second largest single top production mode are also presented. Evidence for the s-channel single top-quark production in the 8 TeV dataset is presented. Finally, the first measurement of the tZq electroweak production is presented. All measurements are compared to state-of-the art theoretical calculations. (On behalf of the ATLAS collaboration)

  5. Measurements of the neutron capture cross sections and incineration potentials of minor-actinides in high thermal neutron fluxes: Impact on the transmutation of nuclear wastes; Mesures des sections efficaces de capture et potentiels d'incineration des actinides mineurs dans les hauts flux de neutrons: Impact sur la transmutation des dechets

    Energy Technology Data Exchange (ETDEWEB)

    Bringer, O

    2007-10-15

    This thesis comes within the framework of minor-actinide nuclear transmutation studies. First of all, we have evaluated the impact of minor actinide nuclear data uncertainties within the cases of {sup 241}Am and {sup 237}Np incineration in three different reactor spectra: EFR (fast), GT-MHR (epithermal) and HI-HWR (thermal). The nuclear parameters which give the highest uncertainties were thus highlighted. As a result of fact, we have tried to reduce data uncertainties, in the thermal energy region, for one part of them through experimental campaigns in the moderated high intensity neutron fluxes of ILL reactor (Grenoble). These measurements were focused onto the incineration and transmutation of the americium-241, the curium-244 and the californium-249 isotopes. Finally, the values of 12 different cross sections and the {sup 241}Am isomeric branching ratio were precisely measured at thermal energy point. (author)

  6. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.

    Science.gov (United States)

    Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven

    2012-01-01

    A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.

  7. Pressure/cross-sectional area probe in the assessment of urethral closure function. Reproducibility of measurement

    DEFF Research Database (Denmark)

    Lose, G; Schroeder, T

    1990-01-01

    A probe, which enables measurement of related values of pressure and cross-sectional area, was used for in vitro studies and in vivo measurements in the female urethra. Six healthy females underwent two successive investigations. Measurements were performed at the bladder neck, in the high......-pressure zone and distally in the urethra. The in vitro study showed that cross sectional areas of 13-79 mm2 were determined with a SD of 1.4 mm2. In vivo measurements revealed that the urethral parameters: elastance, hysteresis, pressure and power of contraction during coughing and squeezing were fairly...

  8. Cross-section-constrained top-quark mass measurement from dilepton events at the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; DeCecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-02-15

    We report the first top-quark mass measurement that uses a cross-section constraint to improve the mass determination. This measurement is made with a dilepton tt event candidate sample collected with the Collider Detector II at Fermilab. From a data sample corresponding to an integrated luminosity of 1.2 fb(-1), we measure a top-quark mass of 170.7(-3.9)(+4.2)(stat)+/-2.6(syst)+/-2.4(theory) GeV/c(2). The measurement without the cross-section constraint is 169.7(-4.9)(+5.2)(stat)+/-3.1(syst) GeV/c(2).

  9. Measurement of the Cross Section of W-boson pair production at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Button, A.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Nandakumar, R.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, An.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2004-01-01

    The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.

  10. Recent progress in ATLAS top pair cross-sections: from precision measurements to rare processes

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    High-precision top quark pair production cross-section measurements in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV reach a precision of better than 4%, similar to that of recently achieved state-of-art NNLO+NNLL QCD calculations. These benchmark results can be used to extract physical parameters such as the top quark mass or constraints on new physics processes from the comparison between measurement and prediction. Inclusive, differential and fiducial cross section measurements for top pair production are also precision probes of QCD allowing to test latest Monte-Carlo generators. The large Run-1 data sample delivered by the LHC also allows the experiments to explore the production of top pair production in association with bosons.The seminar presents recent ATLAS results on cross-section measurements involving top quark pairs.

  11. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  12. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Science.gov (United States)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  13. 14N + 10B fusion and elastic scattering cross section measurements near the interaction barrier

    International Nuclear Information System (INIS)

    Wu, S.C.; Overley, J.C.; Barnes, C.A.; Switkowski, Z.E.

    1979-01-01

    The 14 N + 10 B fusion reactions were studied at c.m. energies between 2.9 and 7.5 MeV by measuring the yields of γ-rays from the residual nuclei formed by particle evaporation from the compound system. Cross sections for formation of the evaporation residues 16 O, 19 F, 19 Ne, 20 Ne, 21 Ne, 22 Ne, 22 Na, 23 Na and 23 Mg, as well as the total cross section, were deduced from these yields with the aid of statistical model calculations. 14 N + 10 B elastic scattering differential cross sections were measured from 4.3 to 9.1 MeV at THETA 74.4 degrees, and from 3.3 to 8.3 MeV at THETA = 90.0 degrees. The elastic scattering cross sections were analyzed within the framework of the incoming-wave boundary condition (IWBC) model. The fusion cross sections calculated for the real ion-ion potential deduced from the IWBC model fit to the elastic scattering are in good agreement with the measured values

  14. Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...

  15. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.

  16. Cross section measurements of the (n,2n) reaction with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Harumi; Shiokawa, Takanobu [Tohoku Univ., Sendai (Japan). Faculty of Science; Suehiro, Teruo; Yagi, Masuo

    1975-07-01

    Cross sections are measured for the reactions /sup 64/Zn(n, 2n)/sup 63/Zn, /sup 75/As(n, 2n)/sup 74/As, /sup 79/Br(n, 2n)/sup 78/Br, /sup 90/Zr(n, 2n)/sup 89/Zr, /sup 141/Pr(n, 2n)/sup 140/Pr and /sup 144/Sm(n, 2n)/sup 143/Sm by activation method in the energy range 13.5-14.8 MeV. The cross sections are determined relatively to the cross section for the /sup 63/Cu(n, 2n)/sup 62/Cu and /sup 19/F(n, 2n)/sup 18/F reactions. Before the cross section measurement, incident-neutron energies are measured by recoil proton method. The results of the cross sections are compared with data existing in the literatures and are discussed with reference to the theory of Weisskopf and Ewing.

  17. Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig [Univ. of Florida, Gainesville, FL (United States)

    2006-01-01

    A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb-1 of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.

  18. The latest results on top quark pair cross-section measurement

    CERN Document Server

    Yamauchi, Katsuya; The ATLAS collaboration

    2015-01-01

    The latest results on top quark pair production cross-section measurement in proton-proton collisions at $\\sqrt{s} = 7\\ TeV$ and $\\sqrt{s} = 8\\ TeV$ with the ATLAS detector are reported. The inclusive cross-section was measured with 4% of uncertainty using di-lepton e-mu events. The measurement of the differential cross-section as functions of various observables such as transverse momentum and rapidity of the top quark and invariant mass of the pseudo-top-quark pair system including the results in boosted topologies are also reported. These results are compared with the various generators such as Powheg, Alpgen and MC@NLO and the various PDF sets.

  19. From Van der Meer scans to precision cross section determination: the CMS luminosity and W/Z cross section measurements at √s=8 TeV

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    In this seminar the measurement performed by the CMS experiment of total and fiducial inclusive W and Z boson production cross sections at sqrt(s)=8 TeV will be presented; electron and muon final states are considered from a data set recorded in dedicated conditions and corresponding to an integrated luminosity of 18.2 pb-1. Details abou...

  20. Measurement of the 33S(n,α) cross-section at n_TOF(CERN): Applications to BNCT

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    Aim The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, 33S, in order to solve existing discrepancies. Background 33S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of 33S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. Materials and methods A new measurement of the 33S(n,α)30Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. Results In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to 33S in addition to 10B and those of a standard four-component ICRU tissue. Conclusions MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of 33S. PMID:26933393

  1. Measurement of the (33)S(n,α) cross-section at n_TOF(CERN): Applications to BNCT.

    Science.gov (United States)

    Sabaté-Gilarte, Marta; Praena, Javier; Porras, Ignacio; Quesada, José Manuel; Mastinu, Pierfrancesco

    2016-01-01

    The main purpose of this work is to present a new (n,α) cross-section measurement for a stable isotope of sulfur, (33)S, in order to solve existing discrepancies. (33)S has been studied as a cooperating target for Boron Neutron Capture Therapy (BNCT) because of its large (n,α) cross-section in the epithermal neutron energy range, the most suitable one for BNCT. Although the most important evaluated databases, such as ENDF, do not show any resonances in the cross-section, experimental measurements which provided data from 10 keV to 1 MeV showed that the lowest-lying and strongest resonance of (33)S(n,α) cross-section occurs at 13.5 keV. Nevertheless, the set of resonance parameters that describe such resonance shows important discrepancies (more than a factor of 2) between them. A new measurement of the (33)S(n,α)(30)Si reaction cross-section was proposed to the ISOLDE and Neutron Time-of-Flight Experiments Committee of CERN. It was performed at n_TOF(CERN) in 2012 using MicroMegas detectors. In this work, we will present a brief overview of the experiment as well as preliminary results of the data analysis in the neutron energy range from thermal to 100 keV. These results will be taken into account to calculate the kerma-fluence factors corresponding to (33)S in addition to (10)B and those of a standard four-component ICRU tissue. MCNP simulations of the deposited dose, including our experimental data, shows an important kerma rate enhancement at the surface of the tissue, mainly due to the presence of (33)S.

  2. Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, Vladimir; Begzsuren, Khurelbaatar; Belousov, Anatoli; Bolz, Arthur; Boudry, Vincent; Brandt, Gerhard; Brisson, Violette; Britzger, Daniel; Buniatyan, Armen; Bylinkin, Alexander; Bystritskaya, Lena; Campbell, Alan; Cantun Avila, Karla Beatriz; Cerny, Karel; Chekelian, Vladimir; Contreras, Guillermo; Cvach, Jaroslav; Dainton, John; Daum, Karin; Diaconu, Cristinel; Dobre, Monica; Dodonov, Vitaliy; Eckerlin, Guenter; Egli, Stephan; Elsen, Eckhard; Favart, Laurent; Fedotov, Alexandre; Feltesse, Joel; Ferencei, Jozef; Fleischer, Manfred; Fomenko, Alexander; Gabathuler, Erwin; Gayler, Joerg; Ghazaryan, Samvel; Goerlich, Lidia; Gogitidze, Nelly; Gouzevitch, Maxime; Grab, Christoph; Grebenyuk, Anastasia; Greenshaw, Timothy; Grindhammer, Guenter; Haidt, Dieter; Henderson, Rob~CW; Hladky, Jan; Hoffmann, Dirk; Horisberger, Roland; Hreus, Tomas; Huber, Florian; Jacquet, Marie; Janssen, Xavier; Jung, Hannes; Kapichine, Mikhail; Katzy, Judith; Kiesling, Christian; Klein, Max; Kleinwort, Claus; Kogler, Roman; Kostka, Peter; Kretzschmar, Jan; Kruecker, Dirk; Krueger, Katja; Landon, Murrough; Lange, Wolfgang; Laycock, Paul; Lebedev, Andrei; Levonian, Sergey; Lipka, Katerina; List, Benno; List, Jenny; Lobodzinski, Bogdan; Malinovski, Evgenij; Martyn, Hans-Ulrich; Maxfield, Steve~J; Mehta, Andrew; Meyer, Andreas; Meyer, Hinrich; Meyer, Joachim; Mikocki, Stanislav; Morozov, Anatoly; Mueller, Katharina; Naumann, Thomas; Newman, Paul~R; Niebuhr, Carsten; Nowak, Grazyna; Olsson, Jan~Erik; Ozerov, Dmitri; Pascaud, Christian; Patel, Girish; Perez, Emmanuelle; Petrukhin, Alexey; Picuric, Ivana; Pirumov, Hayk; Pitzl, Daniel; Placakyte, Ringaile; Polifka, Richard; Radescu, Voica; Raicevic, Natasa; Ravdandorj, Togoo; Reimer, Petr; Rizvi, Eram; Robmann, Peter; Roosen, Robert; Rostovtsev, Andrei; Rotaru, Marina; Salek, David; Sankey, Dave~PC; Sauter, Michel; Sauvan, Emmanuel; Schmitt, Stefan; Schoeffel, Laurent; Schoening, Andre; Sefkow, Felix; Shushkevich, Stanislav; Soloviev, Yuri; Sopicki, Pawel; South, David; Spaskov, Vladimir; Specka, Arnd; Steder, Michael; Stella, Bruno; Straumann, Ulrich; Sykora, Tomas; Thompson, Paul; Traynor, Daniel; Truoel, Peter; Tsakov, Ivan; Tseepeldorj, Baatar; Valkarova, Alice; Vallee, Claude; VanMechelen, Pierre; Vazdik, Iakov; Wegener, Dietrich; Wuensch, Eberhard; Zacek, Jozef; Zhang, Zhiqing; Zlebcik, Radek; Zohrabyan, Hamlet

    2017-04-04

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150

  3. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y.; Baghdasaryan, A.; Zohrabyan, H.; Begzsuren, K.; Ravdandorj, T.; Bolz, A.; Huber, F.; Sauter, M.; Schoening, A.; Boudry, V.; Specka, A.; Brandt, G.; Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Buniatyan, A.; Newman, P.R.; Thompson, P.D.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Avila, K.B.C.; Contreras, J.G.; Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B.; Cvach, J.; Hladky, J.; Reimer, P.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Vallee, C.; Dobre, M.; Rotaru, M.; Egli, S.; Horisberger, R.; Ozerov, D.; Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van; Feltesse, J.; Schoeffel, L.; Ferencei, J.; Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P.; Gouzevitch, M.; Petrukhin, A.; Grab, C.; Henderson, R.C.W.; Jung, H.; Kapichine, M.; Morozov, A.; Spaskov, V.; Kogler, R.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Lange, W.; Naumann, T.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Perez, E.; Picuric, I.; Raicevic, N.; Polifka, R.; Radescu, V.; Rostovtsev, A.; Sankey, D.P.C.; Sauvan, E.; Shushkevich, S.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Tseepeldorj, B.; Wegener, D.

    2017-01-01

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q"2 < 80 GeV"2 and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb"-"1. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q"2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q"2-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q"2 < 15,000 GeV"2 are extended to low transverse jet momenta 5 < P_T"j"e"t < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q"2, the strong coupling constant α_s(M_Z) is determined in next-to-leading order. (orig.)

  4. Measurement of (n,Xn) reaction cross sections at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Melle Inmaculada C.

    2006-10-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  5. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics (United Kingdom); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, Queen Mary, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (CA); Radescu, V. [Oxford University, Department of Physics, Oxford (GB); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (RU); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (GB); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (FR); Universite de Savoie, LAPP, Annecy-le-Vieux (FR); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Soloviev, Y. [DESY, Hamburg (DE); Lebedev Physical Institute, Moscow (RU); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (IT); INFN Roma 3, Rome (IT); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (BE); Charles University, Faculty of Mathematics and Physics, Praha (CZ); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (BG); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (DE); Collaboration: H1 Collaboration

    2017-04-15

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q{sup 2} < 80 GeV{sup 2} and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb{sup -1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q{sup 2}. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q{sup 2}-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q{sup 2} < 15,000 GeV{sup 2} are extended to low transverse jet momenta 5 < P{sub T}{sup jet} < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q{sup 2}, the strong coupling constant α{sub s}(M{sub Z}) is determined in next-to-leading order. (orig.)

  6. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1997-03-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron Accelerator in Tohoku University. The experimental method and the samples, which were developed or introduced during the last year, were improved in this fiscal year: (1) Development of a sealed fission chamber, (2) Intensification of Li neutron target, (3) Improvement of time-resolution of Time-of-Flight (TOF) electronic circuit, (4) Introduction of Np237 samples with large sample mass and (5) Introduction of a U235 sample with high purity. Using these improved tools and samples, the fission cross section ratio of Np237 relative to U235 was measured between 5 to 100 keV, and the fission cross section of Np237 was deduced. On the other hand, samples of Am241 and Am243 were obtained from Japan Atomic Energy Research Institute (JAERI) after investigating fission cross section of two americium isotopes (Am241 and Am 243) which are important for core physics calculation of fast reactors. (author)

  7. Status report and measurement of total cross-sections at the Pohang Neutron Facility

    International Nuclear Information System (INIS)

    Kim, G.N.; Meaze, A.K.M.M.H.; Ahmed, H.

    2004-01-01

    We report the status of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and an 11-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It is possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to 100 eV by using the neutron time of flight method. A 6 LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 10.81±0.02 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements are in general agreement with the evaluated data in ENDF/B-VI. The resonance parameters were extracted from the transmission data from the SAMMY fitting and compared with the previous ones. (author)

  8. Density distribution of {sup 14}Be from reaction cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Abe, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Fukuda, M. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hachiuma, I. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ishibashi, Y.; Ito, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Lantz, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Namihira, K. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nishimura, D. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ooishi, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suda, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Takechi, M.; Tanaka, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); and others

    2014-09-15

    We measured the reaction cross sections of the two-neutron halo nucleus {sup 14}Be with proton and carbon targets at about 41 and 76 MeV/nucleon. Based on a Glauber model calculation, we deduced the matter density distribution of {sup 14}Be in which previously measured interaction cross sections at relativistic energies were also included. An s-wave dominance in {sup 14}Be has been confirmed, although the halo tail of {sup 14}Be is not distributed as much as that of {sup 11}Li. Significant mixing of the p-wave in addition to the s- and d-wave is also suggested.

  9. Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source

    CERN Document Server

    Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.

  10. Double diffractive cross-section measurement in the forward region at LHC

    CERN Document Server

    Antchev, G.; Atanassov, I.; Baechler, J.; Avati, V.; Berardi, V.; Bossini, E.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.S.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Karev, A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lippmaa, J.; Lokajicek, M.; Losurdo, L.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Maki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Orava, R.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.; Wyszkowski, P.

    2013-12-26

    The first double diffractive cross-section measurement in the very forward region has been carriedout by the TOTEM experiment at the LHC with center-of-mass energy of √s = 7 TeV. By utilizingthe very forward TOTEM tracking detectors T1 and T2, which extend up to pseudo rapidity |$\\eta$|=6.5, a clean sample of double diffractive pp events was extracted. From these events, we measured the cross-section $\\sigma_{DD}$ = (116±25) mb for events where both diffractive systems have 4.7 < |$\\eta$|$_{min}$ < 6.5.

  11. Measurements of neutron-induced fission cross sections of Pb and Bi at intermediate energies

    International Nuclear Information System (INIS)

    Ryzhov, Igor; Tutin, Gennady; Eismont, Vilen; Mitryukhin, Andrey; Oplavin, Valery; Soloviev, Sergey; Conde, Henri; Olsson, Nils; Renberg, Per-Ulf

    2002-01-01

    Neutron-induced fission cross sections of nat Pb and 209 Bi have been measured relative to the 238 U(n.f) cross section at energies 96 MeV for lead and 133 MeV for bismuth. The measurements were performed at the quasi-mono-energetic neutron beam facility of The Svedberg Laboratory in Uppsala using Frisch-gridded ionization chamber. The results obtained are compared with other experimental data. The present state of the Bi standard recommended by IAEA is discussed. (author)

  12. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  13. Measurement of the inelastic proton-proton cross section with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Zenis, Tibor [Comenius University Bratislava (Slovakia); Collaboration: ATLAS Collaboration

    2013-04-15

    A measurement of the inelastic proton-proton cross-section at centre-of-mass energy of Central diffraction in proton-proton collisions at {radical}(s) = 7TeV using the ATLAS detector at the Large Hadron Collider is presented. Events are selected by requiring hits in scintillator counters mounted in the forward region of the ATLAS detector and the dataset corresponding to an integrated luminosity of 20{mu}b{sup -1}. In addition, the total cross-section is studied as a function of the rapidity gap size measured with the inner detector and calorimetry.

  14. Measurement of the thorium absorption cross section shape near thermal energy (LWBR development program)

    International Nuclear Information System (INIS)

    Green, L.

    1976-11-01

    The shape of the thorium absorption cross section near thermal energies was investigated. This shape is dominated by one or more negative energy resonances whose parameters are not directly known, but must be inferred from higher energy data. Since the integral quantity most conveniently describing the thermal cross section shape is the Westcottg-factor, effort was directed toward establishing this quantity to high precision. Three nearly independent g-factor estimates were obtained from measurements on a variety of foils in three different neutron spectra provided by polyethylene-moderated neutrons from a 252 Cf source and from irradiations in the National Bureau of Standards ''Standard Thermal Neutron Density.'' The weighted average of the three measurements was 0.993 +- 0.004. This is in good agreement with two recent evaluations and supports the adequacy of the current cross section descriptions

  15. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  16. Measurement of the neutron-induced fission cross-section of 240,242Pu

    International Nuclear Information System (INIS)

    Salvador-Castineira, P.; Hambsch, F.J.; Brys, T.; Oberstedt, S.; Vidali, M.; Pretel, C.

    2014-01-01

    Fast spectrum neutron-induced fission cross-section data for transuranic isotopes are in high demand in the nuclear data community. In particular, highly accurate data are needed for the new Generation-IV nuclear applications. The aim is to obtain precise neutron-induced fission cross-sections for 240 Pu and 242 Pu. In this context accurate data on spontaneous fission half-lives have also been measured. To minimise the total uncertainty on the fission cross-sections the detector efficiency has been studied in detail. Both isotopes have been measured using a twin Frisch-grid ionisation chamber (TFGIC) due to its superiority compared to other detector systems in view of radiation hardness, 2 x 2π solid angle coverage and very good energy resolution. (authors)

  17. Cross-section measurements of neutron-deuteron breakup at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Tornow, W.; Braun, R.T.; Gonzalez Trotter, D.E.; Hussein, A.H.; Pedroni, R.S.; Roper, C.D.; Salinas, F.; Slaus, I.; Vlahovic, B.; Walter, R.L.; Mertens, G.; Lambert, J.M.; Witala, H.; Gloeckle, W.

    2005-01-01

    Cross-section measurements of seven exit-channel configurations in the neutron-deuteron breakup at 13.0 MeV are reported and compared to rigorous calculations. Our data are consistent with those of previous measurements in four of six configurations. The present data for five configurations are in good agreement with theoretical predictions. The cross-section data for the space-star and another out-of-plane configuration are larger than the theoretical predictions by more than three standard deviations. The previously observed 20% discrepancy between theory and data for the space-star configuration is confirmed in the present work. The inclusion of the Tucson-Melbourne 2π-exchange three-nucleon force changes the predicted cross section by only 2% and in the wrong direction needed to bring theory into agreement with data

  18. Total pion cross section measurements. Annual progress report, 1 January 1977--31 December 1978

    International Nuclear Information System (INIS)

    Jakobson, M.J.; Jeppesen, R.H.

    1978-01-01

    The pion-nucleus total cross section runs were completed. The principal effort for the past year has been devoted to data analysis. The experiment was primarily designed to provide an accurate measurement of total cross section differences for pairs of isotopes. Data were published on neutron radii of calcium isotopes and on pion cross section measurements for aligned holmium. The π+- data to be published include targets and energies for 4 He, 23 → 90 MeV; 12 C, 13 C, 23 → 240 MeV; 6 Li, 7 Li, 9 Be, 10 B, 11 B, 43 → 215 MeV; 16 O, 18 O, 40 Ca, 44 Ca, 48 Ca, 43 → 240 MeV; 45 Sc, 51 V, Al, Cu, Sn, Ho, Pb, 60 → 215 MeV

  19. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  20. The measurement of anomalous neutron inelastic cross-sections at electronvolt energy transfers

    International Nuclear Information System (INIS)

    Mayers, J; Abdul-Redah, T

    2004-01-01

    It has been proposed that short-lived quantum entanglement of protons in condensed matter systems would result in anomalous inelastic scattering cross-sections at electronvolt energy transfers. This proposal seems to be confirmed by neutron measurements on the VESUVIO spectrometer at ISIS and by measurements using other techniques. However, there have been a number of published suggestions of ways in which the observed effects on VESUVIO could be introduced by assumptions used in the data analysis. In this paper it is shown using experimental data and Monte Carlo simulations that these suggestions cannot explain the observed cross-section anomalies. The other assumptions of the data analysis are also examined. It is shown that the assumption of a Gaussian peak shape for the neutron Compton profile can introduce significant errors into the determination of cross-section ratios, but also cannot explain the observed anomalies

  1. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Directory of Open Access Journals (Sweden)

    Göbel Kathrin

    2017-01-01

    Full Text Available We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n. The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  2. Neutron capture cross sections of 69Ga and 71Ga at 25 keV and Epeak = 90 keV

    Science.gov (United States)

    Göbel, Kathrin; Beinrucker, Clemens; Erbacher, Philipp; Fiebiger, Stefan; Fonseca, Micaela; Heftrich, Michael; Heftrich, Tanja; Käppeler, Franz; Krása, Antonin; Lederer-Woods, Claudia; Plag, Ralf; Plompen, Arjan; Reifarth, René; Schmidt, Stefan; Sonnabend, Kerstin; Weigand, Mario

    2017-09-01

    We measured the neutron capture cross sections of 69Ga and 71Ga for a quasi-stellar spectrum at kBT = 25 keV and a spectrum with a peak energy at 90 keV by the activation technique at the Joint Research Centre (JRC) in Geel, Belgium. Protons were provided by an electrostatic Van de Graaff accelerator to produce neutrons via the reaction 7Li(p,n). The produced activity was measured via the γ emission of the product nuclei by high-purity germanium detectors. We present preliminary results.

  3. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  4. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    KAUST Repository

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-01-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging

  5. First nondestructive measurements of power MOSFET single event burnout cross sections

    International Nuclear Information System (INIS)

    Oberg, D.L.; Wert, J.L.

    1987-01-01

    A new technique to nondestructively measure single event burnout cross sections for N-channel power MOSFETs is presented. Previous measurements of power MOSFET burnout susceptibility have been destructive and thus not conducive to providing statistically meaningful burnout probabilities. The nondestructive technique and data for various device types taken at several accelerators, including the LBL Bevalac, are documented. Several new phenomena are observed

  6. Fast-neutron capture cross sections for the most important fission-product nuclei

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1982-01-01

    The main activity of the fission-product (FP) Working Group was the discussion of the current status of neutron capture knowledge of the most important FP nuclides, including the formulation of recommendations toward improved understanding. The results of the discussion are summarized. General conclusions and recommendations are given. The status of integral data is summarized by R. Anderl; and nuclear models and calculations are reviewed by D. Gardner and G. Reffo

  7. Assessment of the ''thermal normalization technique'' for measurement of neutron cross sections vs energy

    International Nuclear Information System (INIS)

    Peelle, R.W.; de Sassure, G.

    1977-01-01

    Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error

  8. Measurement of neutron-production double-differential cross sections for intermediate energy pion incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Shigyo, Nobuhiro; Satoh, Daiki

    2002-01-01

    Neutron-production double-differential cross sections for 870-MeV π + and π - and 2.1-GeV π + mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120 and 150deg. The typical flight path length was 15 m. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the JAM code. The double differential cross sections calculated by the JAM code disagree with experimental data at neutron energies below about 30 MeV. JAM overestimates π + -incident neutron-production cross sections in forward angles at neutron energies of 100 to 500 MeV. (author)

  9. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  10. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  11. Measurement of 230Pa and 186Re Production Cross Sections Induced by Deuterons at Arronax Facility

    Science.gov (United States)

    Duchemin, Charlotte; Guertin, Arnaud; Metivier, Vincent; Haddad, Ferid; Michel, Nathalie

    2014-02-01

    A dedicated program has been launched on production of innovative radionuclides for PET imaging and for β- and α targeted radiotherapy using proton or α particles at the ARRONAX cyclotron. Since the accelerator is also able to deliver deuteron beams up to 35 MeV, we have reconsidered the possibility of using them to produce medical isotopes. Two isotopes dedicated to targeted therapy have been considered: 226Th, a decay product of 230Pa, and 186Re. The production cross sections of 230Pa and 186Re, as well as those of the contaminants created during the irradiation, have been determined by the stacked-foil technique using deuteron beams. Experimental values have been quantified using a referenced cross section. The measured cross sections have been used to determine expected production yields and compared with the calculated values obtained using the Talys code with default parameters.

  12. Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector

    International Nuclear Information System (INIS)

    Finke, L.

    2007-01-01

    A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. The lifetime signature of c- and b-flavoured hadrons is exploited to determine the fractions of events in the sample containing charm or beauty. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, the predicted cross sections for beauty production being somewhat lower than the measurement. (author)

  13. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  14. Experimental cross sections for two-electron capture into nitrogen autoionising states in Nsup(q+) (q=6,7) on He and H/sub 2/ collisions at 10. 5q keV

    Energy Technology Data Exchange (ETDEWEB)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Marrakchi, A.I.; Dousson, S.; Hitz, D.

    1985-07-01

    Singly differential cross sections for two-electron capture into autoionising states (nl,n'l') with n=2,3,4 and n'>=n in Nsup(q+) (q=6,7) on He and H/sub 2/ collisions have been measured at 10,5q ke V collision energy and an observation angle thetasub(lab)=11.6/sup 0/. Total cross sections are estimated assuming isotropic angular distributions. (orig.).

  15. Experimental cross sections for two-electron capture into nitrogen autoionising states in Nsup(q+) (q=6,7) on He and H2 collisions at 10.5q keV

    International Nuclear Information System (INIS)

    Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A.; Marrakchi, A.I.

    1985-01-01

    Singly differential cross sections for two-electron capture into autoionising states (nl,n'l') with n=2,3,4 and n'>=n in Nsup(q+) (q=6,7) on He and H 2 collisions have been measured at 10,5q ke V collision energy and an observation angle thetasub(lab)=11.6 0 . Total cross sections are estimated assuming isotropic angular distributions. (orig.)

  16. First Double Excitation Cross Sections of Helium Measured for 100-keV Proton Impact

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589, CNRS and Universite Paul Sabatier, 31062 Toulouse Cedex (France); Godunov, A.L.; Schipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk, Moscow region, 142092 (Russia)

    1997-12-01

    Excitation cross sections of the (2s{sup 2}){sup 1}S, (2p{sup 2}){sup 1}D , and (2s2p){sup 1}P autoionizing states of helium, produced in collisions with 100-keV protons, have been measured for the first time. Using a high resolution electron spectroscopy together with a recently proposed parametrization of autoionizing resonances distorted by Coulomb interaction in the final state makes it possible to extract from electron spectra {ital total cross sections} as well as {ital magnetic sublevel populations.} These new experimental data are briefly compared with out theoretical calculations. {copyright} {ital 1997} {ital The American Physical Society}

  17. First Double Excitation Cross Sections of Helium Measured for 100-keV Proton Impact

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Godunov, A.L.; Schipakov, V.A.

    1997-01-01

    Excitation cross sections of the (2s 2 ) 1 S, (2p 2 ) 1 D , and (2s2p) 1 P autoionizing states of helium, produced in collisions with 100-keV protons, have been measured for the first time. Using a high resolution electron spectroscopy together with a recently proposed parametrization of autoionizing resonances distorted by Coulomb interaction in the final state makes it possible to extract from electron spectra total cross sections as well as magnetic sublevel populations. These new experimental data are briefly compared with out theoretical calculations. copyright 1997 The American Physical Society

  18. Relative L-shell phototelectric cross-section measurements in W, Pb and U

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-06-01

    Measurements of L-shell photoelectric cross sections in W, Pb and U at K X-ray energies of Nb, Mo, Ag, In, Sn, I, Ba, Ce, Gd, and Er have been made. The method yields relative cross sections and is, therefore, simpler and more accurate than those giving absolute values. The problems arising due to the non-monochromatic character of incident and emitted X-rays in the targets have been investigated. The present results show a fairly good agreement with the theoretical predictions.

  19. Relative L-shell photoelectric cross-section measurements in W, Pb and U

    Energy Technology Data Exchange (ETDEWEB)

    Arora, S K; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1981-06-01

    Measurements of L-shell photoelectric cross sections in W, Pb and U at K X-ray energies of Nb, Mo, Ag, In, Sn, I, Ba, Ce, Gd and Er have been made. The method yields relative cross sections and is, therefore, simpler and more accurate than those giving absolute values. The problems arising due to the non-monochromatic character of incident and emitted X-rays in the targets have been investigated. The present results show a fairly good agreement with the theoretical predicitions.

  20. Measurements of neutron-deuteron breakup cross sections at 13.0 MeV

    International Nuclear Information System (INIS)

    Setze, H.R.; Howell, C.R.; Tornow, W.

    1993-01-01

    The discrepancy between low-energy nucleon-deuteron breakup cross-section data and calculations, which do not include three-nucleon forces, has been cited as a possible signature of the influence of three-nucleon forces section. The comparison between data and calculations is difficult to interpret because there are significant disagreements between the data. To help clarify the situation we have made kinematically complete cross-section measurements for n-d breakup at an incident neutron energy of 13.0 MeV. The experimental techniques and data analysis method will be described. Preliminary results will be presented in comparison to calculations and previous data

  1. Neutron capture cross-section of fission products in the European activation file EAF-3

    International Nuclear Information System (INIS)

    Kopecky, J.; Delfini, M.G.; Kamp, H.A.J. van der; Gruppelaar, H.; Nierop, D.

    1992-05-01

    This paper contains a description of the work performed to extend and revise the neutron capture data in the European Activation File (EAF-3) with emphasis on nuclides in the fission-product mass range. The starter was the EAF-1 data file from 1989. The present version, EAF/NG-3, contains (n,γ) excitation functions for all nuclides (729 targets) with half-lives exceeding 1/2 day in the mass range from H-1 to Cm-248. The data file is equipped with a preliminary uncertainty file, that will be improved in the near future. (author). 19 refs.; 5 figs.; 3 tabs

  2. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  3. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  4. Measurements of inelastic, elastic and total pp cross-sections at the LHC with ATLAS

    CERN Document Server

    Trottier-McDonald, Michel; The ATLAS collaboration

    2015-01-01

    First, a recent measurement of the inelastic cross section using the ATLAS detector with 63 $\\mu b^{−1}$ of proton-proton collisions at $\\sqrt{s}=13$ TeV is presented. The measurement is performed using scintillators mounted in front of the forward calorimeters. A cross section of $65.2\\pm0.8$ (exp.) $\\pm5.9$ (lum.) mb is measured in the fiducial region $M_X>13$ GeV, where $M_X$ is the larger of the dissociation masses of the two proton systems in diffractive events. The experimental uncertainty is indicated by (exp.) and the luminosity uncertainty by (lum.). The full inelastic cross section is determined to be $73.1\\pm0.9$ (exp.) $\\pm6.6$ (lum.) $\\pm3.8$ (extr.) mb, where (extr.) indicates model-dependent uncertainties on the extrapolation from the fiducial region. The measured value is about one standard deviation below most current theoretical predictions. Second, a measurement of the total $pp$ cross section at the LHC at $\\sqrt{s}=7$ TeV is presented. In a special run with high-$\\beta^*$ beam optics, a...

  5. Measurement of 54Fe(n,2n)53Fe cross section near threshold

    International Nuclear Information System (INIS)

    Smither, R.K.; Greenwood, L.R.

    1984-01-01

    A series of experiments were performed at the Princeton Plasma Physics Laboratory to measure the cross section of the 54 Fe(n,2n) 53 Fe reaction near threshold. Measurements were made at 6 different neutron energies and cover the 1 MeV energy range from threshold (13.64 MeV) to 14.64 MeV. The 54 Fe(n,2n) cross section was measured relative to the 27 Al(n,p) 27 Mg cross section to an accuracy of a few percent. These accurate cross-section measurements will be useful in calculating damage caused by 14 MeV D-T plasma neutrons in Fe and calculating the production of the long-lived 53 Mn nuclei that account for much of the buildup of long-lived radioactivity in steel structures and other ferrous materials used in the construction of fusion reactors. They will also play an important part in a new method for measuring the plasma ion temperature of a D-T plasma

  6. 14.2 MeV neutron induced U-235 fission cross section measurement

    International Nuclear Information System (INIS)

    Li Jingwen; Shen Guanren; Ye Zongyuan; Li Anli; Zhou Shuhua; Sun Zhongfan; Wu Jingxia; Huang Tanzi

    1986-01-01

    The cross section of U-235 fission induced by 14.2 MeV neutrons was measured by the time correlated associated particle method. The result obtained is (2.078+-0.040) barn. Comparison with other author's is also given. (author)

  7. Top quark differential cross-section measurement with the ATLAS detector

    CERN Document Server

    Scornajenghi, Matteo; The ATLAS collaboration

    2018-01-01

    The most recent results on top quark pairs and single top quark differential cross-sections measurements in proton-proton (pp) collisions with the ATLAS detector at the Large Hadron Collider (LHC) at $\\sqrt{s}\\,=\\,$8 and 13~TeV are presented. The results are compared to the latest QCD theoretical calculations.

  8. Numerical estimates of multiple reaction corrections in neutron cross-section measurements

    International Nuclear Information System (INIS)

    Magnusson, G.

    1979-04-01

    A method to evaluate the effect of secondary neutrons in 14-15 MeV neutron cross-section measurements is presented. The emission spectra of secondary neutrons are calculated by means of the preequilibrium and statistical models. An expression for the collision probability in a homogenous body has been utilized in the calculations. (author)

  9. Measurements of total cross sections between 23 and 280 GeV/c

    International Nuclear Information System (INIS)

    Koehler, P.F.M.

    1975-01-01

    The high precision measurements of the total cross sections for π/sup +-/, K/sup +-/, p, and anti p scattering from H 2 and D 2 were continued with an extension of the energy range from 23 to 280 GeV/c

  10. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    CSIR Research Space (South Africa)

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  11. Measurements of fusion cross section for 12C +63,65 Cu systems

    International Nuclear Information System (INIS)

    Rocha, C.A. da.

    1987-01-01

    Cross-section measurements for nuclear fusion in the 12 C+ 63.65 Cu system, at 12 C energy range from 0.9 to 1.8 times the Coulomb barrier are presented. In order to detect and to obtain the mass identification of the evaporation residues following the fusion process, the time of flight method was adopted in conjunction with an eletrostatic deflector capable of separating the evaporation residues from the beam particles. The limitation and advantadges of this method of measurement are discussed. The excitation functions were analysed using the unidimensional barrier penetration model with different nuclear potentials. Theoretical fusion cross-section values obtained from this analysis were systematically smaller than our measured values, in the energy region below the Coulomb barrier. In order to discover which channel enhances the fusion cross-section in this region, a coupled channel calculation was performed, with the CCFUS code. The experimental data for the above reactions were compared with the systems 16.18 O+ 63.65 Cu, measured by our group. In this comparison, it was noted that the systems 12 C+ 63.65 Cu, have greater fusion cross section below the Coulomb barrier. The comparison of velocity spectra of the evaporated residues for the two systems shows that 12 C+ 63 Cu has a strong reaction channel that was not present in the 12 C+ 65 Cu system. (author) [pt

  12. Measurements of the ZZ production cross sections in the $2\\ell2\

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; De Remigis, Paolo; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Golutvin, Igor; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Kovalskyi, Dmytro; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank J.M.; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-10-29

    Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode $\\mathrm{ZZ} \\to 2\\ell2\

  13. Measurement of the π- proton total cross section from 5 to 15 GeV/c

    International Nuclear Information System (INIS)

    Lelouch, Daniel.

    1979-01-01

    An original method for total cross-section measurement based on a fast microcomputer processing events on line is described. An excellent accuracy is reached by a systematical control of numerous biases. It is shown that the experiment is a first approach to the study of narrow baryonic resonances a multiquark states ('color chemics') [fr

  14. Measurement of integral cross-sections of incoherent interactions of photons with K-shell electrons

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S L; Allawadhi, K L; Sood, B S [Punjabi Univ., Patiala (India). Dept. of Physics. Nuclear Science Labs.

    1981-06-01

    Integral cross-sections of incoherent interactions of 145, 279, 662 and 1250 keV gamma-rays with K-shell electrons of thirty-one different elements with 26 <= Z <= 92 have been measured. The results are interpreted in terms of the photoelectric and Compton interactions and are found to agree with theory.

  15. Measuring Cross-Section and Estimating Uncertainties with the fissionTPC

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manning, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sangiorgio, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seilhan, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-30

    The purpose of this document is to outline the prescription for measuring fission cross-sections with the NIFFTE fissionTPC and estimating the associated uncertainties. As such it will serve as a work planning guide for NIFFTE collaboration members and facilitate clear communication of the procedures used to the broader community.

  16. Combined inclusive diffractive cross sections measured with forward proton spectrometers at HERA

    International Nuclear Information System (INIS)

    Ruspa, Marta

    2013-01-01

    A combination is presented of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA. The analysis uses samples of diffractive deep inelastic scattering data where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account by the combination method, resulting in improved precision.

  17. Combined inclusive diffractive cross sections measured with forward proton spectrometers at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Ruspa, Marta [Univ. Piemonte Orientale, via Solaroli 17, 28100 Novara (Italy); Collaboration: H1 Collaboration; ZEUS Collaboration

    2013-04-15

    A combination is presented of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA. The analysis uses samples of diffractive deep inelastic scattering data where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account by the combination method, resulting in improved precision.

  18. Measurement of the elastic, total and diffraction cross sections at tevatron energies

    International Nuclear Information System (INIS)

    Belforte, S.

    1993-11-01

    The CDF collaboration has measured the differential elastic cross section dσ el /dt, the single diffraction dissociation double differential cross section d 2 σ sd /dM 2 dt and the total inelastic cross section for antiproton-proton collisions at center of mass energies √s = 546 and 1,800 GeV. Data for this measurement have been collected in short dedicated runs during the 1988--1989 data taking period of CDF. The elastic scattering slope is 15.28 ± 0.58 (16.98 ± 0.25) GeV -2 at √s = 546 (1,800) GeV. Using the luminosity independent method (1 + ρ 2 )σ T is measured to be 62.64 ± 0.95 (81.83 ± 2.29) mb at √s = 546 (1,800) GeV. Assuming ρ = 0.15 the elastic, total and single diffraction cross sections are σ el = 12.87 ± 0.30, σ T = 61.26 ± 0.93 and σ sd = 7.89 ± 0.33 mb (σ el = 19.70 ± 0.85, σ T = 80.03 ± 2.24 and σ sd = 9.46 ± 0.44 mb) at √s = 546 (1,800) GeV

  19. A Measurement of the Charged-Current Interaction Cross Section of the Tau Neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor [Univ. of Minnesota, Minneapolis, MN (United States)

    2007-02-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result σντNconstνeNconst = 0.77 ± 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result σντNexp = 45 ± 21 x 10-38 cm2 is consistent with the standard model prediction calculated in this thesis, σντNSM = 48 ± 5 x 10-38 cm2.

  20. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Science.gov (United States)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  1. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Directory of Open Access Journals (Sweden)

    Nyman Markus

    2017-01-01

    Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  2. Measurement of the Z → ττ cross section with the ATLAS detector

    International Nuclear Information System (INIS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.

    2011-01-01

    The Z → ττ cross section is measured with the ATLAS experiment at the LHC in four different final states determined by the decay modes of the τ leptons: muon-hadron, electron-hadron, electron-muon, and muon-muon. The analysis is based on a data sample corresponding to an integrated luminosity of 36 pb -1 , at a proton-proton center-of-mass energy of √s = 7 TeV. Cross sections are measured separately for each final state in fiducial regions of high detector acceptance, as well as in the full phase space, over the mass region 66-116 GeV. The individual cross sections are combined and the product of the total Z production cross section and Z → ττ branching fraction is measured to be 0.97 ± 0.07(stat) ± 0.06(syst) ± 0.03(lumi) nb, in agreement with next-to-next-to-leading order calculations.

  3. High-precision Measurement of the 238U(n,γ) Cross Section with the Total Absorption Calorimeter (TAC) at n_TOF, CERN

    CERN Document Server

    Wright, T; Billowes, J; Ware, T; Cano-Ott, D; Mendoza, E; Massimi, C; Mingrone, F; Gunsing, F; Berthoumieux, E; Lampoudis, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Giubrone, G; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mengoni, A; Milazzo, P M; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Weigand, M; Weiß, C; Žugec, P

    2014-01-01

    The neutron capture cross section of U-238 is fundamental to the design and operation of current reactors and future fast nuclear reactors, and thus must be measured to a high level of accuracy. An experiment has been performed at the CERN n TOF facility using a 4 pi Total Absorption Calorimeter (TAC) to measure the capture cross section in the resolved resonance region between 1 eV and 25 keV. A preliminary analysis of the TAC data is presented with particular emphasis to the experimental background in this energy region of interest.

  4. Measurement of muon neutrino and antineutrino induced single neutral pion production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Colin E. [Yale Univ., New Haven, CT (United States)

    2011-05-01

    Elucidating the nature of neutrino oscillation continues to be a goal in the vanguard of the efforts of physics experiment. As neutrino oscillation searches seek an increasingly elusive signal, a thorough understanding of the possible backgrounds becomes ever more important. Measurements of neutrino-nucleus interaction cross sections are key to this understanding. Searches for νμ → νe oscillation - a channel that may yield insight into the vanishingly small mixing parameter θ13, CP violation, and the neutrino mass hierarchy - are particularly susceptible to contamination from neutral current single π0 (NC 1π0) production. Unfortunately, the available data concerning NC 1π0 production are limited in scope and statistics. Without satisfactory constraints, theoretical models of NC 1π0 production yield substantially differing predictions in the critical Eν ~ 1 GeV regime. Additional investigation of this interaction can ameliorate the current deficiencies. The Mini Booster Neutrino Experiment (MiniBooNE) is a short-baseline neutrino oscillation search operating at the Fermi National Accelerator Laboratory (Fermilab). While the oscillation search is the principal charge of the MiniBooNE collaboration, the extensive data (~ 106 neutrino events) offer a rich resource with which to conduct neutrino cross section measurements. This work concerns the measurement of both neutrino and antineutrino NC 1π0 production cross sections at MiniBooNE. The size of the event samples used in the analysis exceeds that of all other similar experiments combined by an order of magnitude. We present the first measurements of the absolute NC 1π0 cross section as well as the first differential cross sections in both neutrino and antineutrino mode. Specifically, we measure single differential cross sections with respect to pion momentum and pion angle. We find the

  5. Unpolarized neutral current e{sup {+-}}p cross section measurements at the H1 experiment, HERA

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Shiraz Z.

    2009-11-15

    Measurements of the unpolarized inclusive neutral current reduced cross section in e{sup {+-}}p scattering at a center of mass energy {radical}(s) {approx_equal} 319 GeV are presented. The data was collected by the H1 detector during the HERA II running phase, after the 2000 luminosity upgrade, and corresponds to an integrated luminosity of 145 pb{sup -1} and 167 pb{sup -1} for the e{sup -}p and e{sup +}p periods respectively. The cross section measurements were made for the negative four-momentum transfer squared range 65{<=} Q{sup 2}{<=}30000 GeV{sup 2} and Bjorken-x range 0.00085{<=}x{<=}0.65. Dedicated measurements at inelasticity y=0.75 and Q{sup 2}{<=}800 GeV{sup 2} are also made. The details of the analysis are presented here. The cross section measurements presented here are found to agree with previously published data as well as predictions determined from various NLO QCD fits. Scaling violation of the F{sub 2} structure function as well differences between the e{sup -} and e{sup +} cross sections at high Q{sup 2} due to the xF{sub 3} structure function have been observed. The cross sections in the range Q{sup 2}{<=}800 GeV{sup 2} at inelasticity y=0.75 suggest non-zero values of the longitudinal structure function F{sub L}. (orig.)

  6. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    International Nuclear Information System (INIS)

    Bhattacharya, Debdatta

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10 6 neutrino events and 1.60 x 10 5 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section

  7. Top pair cross section measurements and event modelling with the CMS detector

    CERN Document Server

    Keaveney, James Michael

    2016-01-01

    Precision measurements are presented of the top-quark pair inclusive production cross section in proton-proton collisions at the LHC at centre-of-mass energies of 7, 8 and 13 TeV. The data are collected with the CMS experiment during the years 2011, 2012, and 2015. The analyses profit from different top quark final states and make use of events with two, one or no reconstructed charged leptons. In most analyses b-jet identification is used to increase the purity of the selection. The backgrounds are determined using data-driven techniques. The results are combined with each other and compared with theory predictions. Indirect constraints on both the top quark mass and alpha_s are obtained through their relation to the inclusive cross section.Differential top quark pair production cross sections are measured in proton-proton collisions at the LHC at centre-of-mass energies of 7, 8, and 13 TeV, using data collected by the CMS experiment in the years 2011, 2012, and 2015. The differential cross sections are meas...

  8. The Measurement of Neutrino Induced Quasi-Elastic Cross Section In NOMAD

    CERN Document Server

    Kim, Jae Jun

    2010-01-01

    NOMAD (Neutrino Oscillation MAgnetic Detector) was a short baseline neutrino experiment conducted at CERN (the European Laboratory for Particle physics) West Area Neutrino Facility (WANF) with a neutrino beam provided by the super proton synchrotron (SPS) accelerator. In this dissertation, we present a measurement of muon-neutrino induced quasi-elastic cross section and its axial-mass off an isoscalar target in the NOMAD detector. The incident neutrino energy in NOMAD experiment spans from 2.5 to 300 GeV. The measurement of cross-section is conducted in two seperate kinematic-based topology, two-track and one-track topologies, where a proton is not properly reconstructed. The QEL cross-section as a function of the incoming neutrino energy is consistent for the two different topologies, and within errors , constant as a function of the neutrino energy. We determine the energy-averaged cross-section. From the shape-comparisons of kinematics of QEL-like events, the parameter of QEL axial mass is estimated. It i...

  9. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  10. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  11. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  12. US Findings of Biceps Tendinitis: Cross Sectional Area Measurements of Long Head of Biceps Brachii

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Soo; Seo, Kyung Mook; Lee, Hwa Yeon; Song, In Sup [ChungAng University College of Medicine, Seoul (Korea, Republic of); Yoo, Seung Min [Bundang Cha Hospital, Bundang (Korea, Republic of)

    2009-12-15

    The purpose of this study was to describe typical sonographic findings in patients with biceps tendinitis. Seventy five patients who had been clinically diagnosed with biceps tendinitis were included. Of the 75, 37 were male, 38 were female, and their mean age was 56 {+-} 9.74. The patients complained of shoulder pain and ultrasonography was performed for bilateral shoulders in all patients. The cross sectional area of the biceps tendon was measured. The status of fluid collection around the biceps tendon and accompanying rotator cuff disease were also investigated. The cross sectional areas of the diseased biceps tendon were 0.18 {+-} 0.09 cm2 (range: 0.07-0.42), and the areas of the normal side was 0.11 {+-} 0.05 cm2 (0.03-0.24). The cross sectional area of the diseased biceps tendon was 0.075 {+-} 0.062 cm2 greater, on average, than the uninvolved site (p < 0.01). Thirty six patients(48%) had fluid collection around the inflamed biceps tendon, and 30 patients had accompanied rotator cuff disease. During US examination of the shoulder in patients complaining of shoulder pain, if the cross sectional area of the biceps tendon in the painful shoulder is asymmetrically and larger than the contralateral tendon, biceps tendonitis is suggested

  13. US Findings of Biceps Tendinitis: Cross Sectional Area Measurements of Long Head of Biceps Brachii

    International Nuclear Information System (INIS)

    Shin, Jong Soo; Seo, Kyung Mook; Lee, Hwa Yeon; Song, In Sup; Yoo, Seung Min

    2009-01-01

    The purpose of this study was to describe typical sonographic findings in patients with biceps tendinitis. Seventy five patients who had been clinically diagnosed with biceps tendinitis were included. Of the 75, 37 were male, 38 were female, and their mean age was 56 ± 9.74. The patients complained of shoulder pain and ultrasonography was performed for bilateral shoulders in all patients. The cross sectional area of the biceps tendon was measured. The status of fluid collection around the biceps tendon and accompanying rotator cuff disease were also investigated. The cross sectional areas of the diseased biceps tendon were 0.18 ± 0.09 cm2 (range: 0.07-0.42), and the areas of the normal side was 0.11 ± 0.05 cm2 (0.03-0.24). The cross sectional area of the diseased biceps tendon was 0.075 ± 0.062 cm2 greater, on average, than the uninvolved site (p < 0.01). Thirty six patients(48%) had fluid collection around the inflamed biceps tendon, and 30 patients had accompanied rotator cuff disease. During US examination of the shoulder in patients complaining of shoulder pain, if the cross sectional area of the biceps tendon in the painful shoulder is asymmetrically and larger than the contralateral tendon, biceps tendonitis is suggested

  14. High transverse momentum dijet cross section measurements in photoproduction at HERA

    International Nuclear Information System (INIS)

    Dossanov, Aziz

    2013-06-01

    The measurement of high transverse momentum differential dijet cross sections in photoproduction at HERA in the γp center-of-mass energy 101 γp + p mode during the year 2006, collecting an integrated luminosity of 92.4 pb -1 . The results correspond to a kinematic range of photon virtualities Q 2 2 and inelasticities 0.1 perpendicular to algorithm, and a minimum transverse momentum of the two leading jets, P T,1st,2nd >15.0 GeV and pseudorapidities in the range of -0.5 1st,2nd 12 >40.0 GeV is required. Single differential dijet cross sections are measured, including cross sections in the direct and resolved photon enhanced regions. In order to study the contribution of partons interacting in the hard process, which are sensitive to the jet pseudorapidities, three different topologies of jets pseudorapidities are investigated. Single differential cross sections as a function of proton momentum fraction, taken by the interacting parton, x P , the fraction of photon momentum, x γ , the angle between the incoming and outgoing partons in the hard scatter, vertical stroke cos θ * vertical stroke are presented. Additionally, the cross sections as a function of the invariant mass of dijets, M 12 , anti η=(η 1st +η 2nd )/2, anti P T =(P T,1st +P T,2nd )/2 and P T,1st are also presented. The data are compared to predictions from the Pythia event generator, based on the LO matrix elements and parton showers, and to the NLO QCD calculations corrected for hadronization effects.

  15. Single top-quark production cross section measurements using the ATLAS detector at the LHC

    CERN Document Server

    Rieck, Patrick; The ATLAS collaboration

    2016-01-01

    Measurements of single top­quark production in proton proton collisions are presented. The measurements include the first such measurements from the 13 TeV ATLAS dataset. In the leading order process, a W boson is exchanged in the t­channel. The single top­quark and anti­top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. At 8 TeV, differential cross­section measurements of the t­channel process are also presented, these measurements include limits on anomalous contributions to the Wtb vertex. A measurement of the production cross section of a single top quark in association with a W boson, the second largest single­top production mode, is also presented. Finally, evidence for single­top production in the 8 TeV ATLAS dataset is presented. All measurements are compared to state­of­ the­art theoretical calculations.

  16. Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons

    Directory of Open Access Journals (Sweden)

    Meigo Shin-ichiro

    2017-01-01

    Full Text Available To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x7Be, Al(p,x22Na-22 and Al(p,x24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.

  17. Measurement of neutron and gamma-ray production double differential cross section at KEK

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1995-01-01

    High energy nuclear radiations were measured for 0.8-3.0 GeV proton induced reactions at KEK. The measurement was carried out to overcome the problems arising from the use of secondary beam line of a quite low incident beam intensity. Digital pulse shape discrimination method was applicable to separation between high energy neutrons and gamma-rays. By the use of a number of scintillators, cross sections were obtained for production of neutrons and gamma-rays. (author)

  18. Positron interactions with water–total elastic, total inelastic, and elastic differential cross section measurements

    International Nuclear Information System (INIS)

    Tattersall, Wade; Chiari, Luca; Machacek, J. R.; Anderson, Emma; Sullivan, James P.; White, Ron D.; Brunger, M. J.; Buckman, Stephen J.; Garcia, Gustavo; Blanco, Francisco

    2014-01-01

    Utilising a high-resolution, trap-based positron beam, we have measured both elastic and inelastic scattering of positrons from water vapour. The measurements comprise differential elastic, total elastic, and total inelastic (not including positronium formation) absolute cross sections. The energy range investigated is from 1 eV to 60 eV. Comparison with theory is made with both R-Matrix and distorted wave calculations, and with our own application of the Independent Atom Model for positron interactions

  19. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  20. Evidence for WZ Production and a Measurement of the WZ Production Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Degenhardt, James D. [Univ. of Michigan, Ann Arbor, MI (United States)

    2007-05-01

    This dissertation describes a test of the Standard Model (SM) of particle physics by measuring the probability, or cross section, of simultaneously producing a W boson and a Z boson from proton-antiproton collisions. The SM predicts the cross section of WZ production to be 3.68 ± 0.25 pb. The SM and physics of WZ production are described in Chapter 2 of this dissertation. The 1.96 TeV center-of-mass energy proton-antiproton collisions are provided by the Fermi National Accelerator Laboratory (FNAL) Tevatron Collider. The W and Z particles are detected using the D0 detector, which is described in Chapter 3. The data were collected by the detector during 2002-2006 corresponding to 1 fb-1 of p{bar p} collisions. This data set is described in Chapter 6. The measurement uses the trilepton (evee, μvee, evμμ, and μvμμ) decay channels, in which a W decays to a charged lepton plus a neutrino and a Z decays to a pair of charged leptons. The W and Z particle selection criteria, detection efficiency, and background determination are described in Chapter 7. We observe 13 candidate events in 1 fb-1 of p$\\bar{p}$ collisions. In this data set we expect to see 4.5 ± 0.6 background events, and we expect to see 9.2 ± 1.0 signal events. The probability of 4.5 ± 0.6 background events to fluctuate to 13 or more events is 1.2 x 10-3 which is a 3.0 σ deviation from the background estimate. A log likelihood method is used to determine the most likely cross section as determined by the measured signal efficiencies, the expected backgrounds, and the observed data. Presented in Chapter 8 is a measurement of the cross section for p$\\bar{p}$ → WZ + X at √s = 1.96 TeV. The WZ diboson production cross section is measured to be σWZ = 2.7$+1.7\\atop{-1.3}$ pb. This is in agreement with the predicted Standard Model cross section.

  1. High Precision Measurement of the differential vector boson cross-sections with the ATLAS detector

    CERN Document Server

    Armbruster, Aaron James; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at center-of-mass energies of 8 eV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of systematic effects and allows for a high precision comparison to the theory predictions. The cross section of single W events has also been measured precisely at center-of-mass energies of 8TeV and 13TeV and the W charge asymmetry has been determ...

  2. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    Science.gov (United States)

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  3. Photoionization cross section measurements of the excited states of cobalt in the near-threshold region

    Directory of Open Access Journals (Sweden)

    Xianfeng Zheng

    2014-10-01

    Full Text Available We present measurements of photoionization cross-sections of the excited states of cobalt using a two-color, two-step resonance ionization technique in conjunction with a molecular beam time of flight (TOF mass spectrometer. The atoms were produced by the laser vaporization of a cobalt rod, coupled with a supersonic gas jet. The absolute photoionization cross-sections at threshold and near-threshold regions (0-1.2 eV were measured, and the measured values ranged from 4.2±0.7 Mb to 10.5±1.8 Mb. The lifetimes of four odd parity energy levels are reported for the first time.

  4. Measurement of the inclusive ep scattering cross section at low Q2 and x at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bartel, W.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Behrendt, O.; South, D.; Wegener, D.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Dodonov, V.; Lytkin, L.; Povh, B.; Eckstein, D.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Lastovicka, T.; Lobodzinska, E.; Naumann, T.; Piec, S.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Schoening, A.; Tsakov, I.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV 2 ≤Q 2 ≤12 GeV 2 , and low Bjorken x, 5.10 -6 ≤x≤0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q 2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering. (orig.)

  5. Measurement of the Top Quark Pair Production Cross Section in pp Collisions

    International Nuclear Information System (INIS)

    Gomez, B.; Hoeneisen, B.; Mooney, P.; Negret, J.P.; Davis, K.; Fein, D.; Forden, G.E.; Guida, J.A.; James, E.; Johns, K.; Markosky, L.; Nang, F.; Narayanan, A.; Rutherfoord, J.; Butler, J.M.; Fatyga, M.; Featherly, J.; Gibbard, B.; Gordon, H.; Graf, N.; Kahn, S.; Kotcher, J.; Protopopescu, S.; Rajagopalan, S.; Bantly, J.; Cullen-Vidal, D.; Cutts, D.; Guida, J.M.; Hoftun, J.S.; Nesic, D.; Partridge, R.; Grinstein, S.; Piegaia, R.; Bloom, P.; Fisyak, Y.; Glenn, S.; Grim, G.; Klopfenstein, C.; Lander, R.; Mani, S.; Drinkard, J.; Fahland, T.; Hall, R.E.; Boswell, C.; Choudhary, B.C.; Cochran, J.; Ellison, J.; Gartung, P.; Heinson, A.P.; Huehn, T.; Alves, G.A.; Carvalho, W.; Maciel, A.K.; Miranda, J.M. de; Motta, H. da.; Nicola, M.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Adam, I.; Kotwal, A.V.; Bhattacharjee, M.; Abachi, S.; Ahn, S.; Baldin, B.; Bartlett, J.F.; Bhat, P.C.; Boehnlein, A.; Borcherding, F.; Brandt, A.; Bross, A.; Christenson, J.H.; Cooper, W.E.; Demarteau, M.; Denisov, D.; Diehl, H.T.; Diesburg, M.; Feher, S.; Fisk, H.E.; Flattum, E.; Fuess, S.; Genser, K.; Gerber, C.E.; Green, D.R.; Greenlee, H.; Grossman, N.; Haggerty, H.

    1997-01-01

    We present a measurement of the t bar t production cross section in p bar p collisions at √(s)=1.8 TeV by the D0 experiment at the Fermilab Tevatron. The measurement is based on data from an integrated luminosity of approximately 125 pb -1 accumulated during the 1992 endash 1996 collider run. We observe 39t bar t candidate events in the dilepton and lepton+jets decay channels with an expected background of 13.7±2.2 events. For a top quark mass of 173.3 GeV/c 2 , we measure the t bar t production cross section to be 5.5±1.8 pb. copyright 1997 The American Physical Society

  6. Measurement of the Inclusive ep Scattering Cross Section at Low Q^2 and x at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lastovicka, T.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

  7. Measurement of Dijet Cross Sections in ep Interactions with a Leading Neutron at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Winter, G.-G.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zohrabyan, H.; Zomer, F.

    2005-01-01

    Measurements are reported of the production of dijet events with a leading neutron in ep interactions at HERA. Differential cross sections for photoproduction and deep inelastic scattering are presented as a function of several kinematic variables. Leading order QCD simulation programs are compared with the measurements. Models in which the real or virtual photon interacts with a parton of an exchanged pion are able to describe the data. Next-to-leading order perturbative QCD calculations based on pion exchange are found to be in good agreement with the measured cross sections. The fraction of leading neutron dijet events with respect to all dijet events is also determined. The dijet events with a leading neutron have a lower fraction of resolved photon processes than do the inclusive dijet data.

  8. Interim report on research between Oak Ridge National Laboratory and Japan Nuclear Cycle Development Institute on neutron-capture cross sections by long-lived fission product nuclides

    International Nuclear Information System (INIS)

    Furutaka, Kazuyoshi; Nakamura, Shoji; Harada, Hideo

    2004-03-01

    Neutron capture cross sections of long-lived fission products (LLFP) are important quantities as fundamental data for the study of nuclear transmutation of radioactive wastes. Previously obtained thermal-neutron capture gamma-ray data were analyzed to deduce the partial neutron-capture cross sections of LLFPs including 99 Tc, 93 Zr, and 107 Pd for thermal neutrons. By comparing the decay gamma-ray data and prompt gamma-ray data for 99 Tc, the relation between the neutron-capture cross section deduced by the two different methods was studied. For the isotopes 93 Zr and 107 Pd, thermal neutron-capture gamma-ray production cross sections were deduced for the first time. The level schemes of 99 Tc, 93 Zr, and 107 Pd have also been constructed form the analyzed data and compared with previously reported levels. This work has been done under the cooperative program 'Neutron Capture Cross Sections of Long-Lived Fission products (LLFPs)' by Japan Nuclear Cycle Development Institute (JNC) and Oak Ridge National Laboratory (ORNL). (author)

  9. How Many Muons Do We Need to Store in a Ring For Neutrino Cross-Section Measurements?

    International Nuclear Information System (INIS)

    Geer, Steve

    2011-01-01

    Analytical estimate of the number of muons that must decay in the straight section of a storage ring to produce a neutrino and anti-neutrino beam of sufficient intensity to facilitate cross-section measurements with a statistical precision of 1%. As we move into the era of precision long-baseline ν μ → ν e and (bar ν) μ → (bar ν) e measurements there is a growing need to precisely determine the ν e and (bar ν) e cross-sections in the relevant energy range, from a fraction of 1 GeV to a few GeV. This will require ν e and (bar ν) e beams with precisely known fluxes and spectra. One way to produce these beams is to use a storage ring with long straight sections in which muon decays (μ - → e - ν μ (bar ν) e if negative muons are stored, and ν + → e + ν e (bar ν) μ if positive muons are stored) produce the desired beam. The challenge is to capture enough muons in the ring to obtain useful neutrino and anti-neutrino fluxes. Early proposals to use a muon storage ring for neutrino oscillation experiments were based upon injecting 'high energy' charged pions into the ring which then decayed to create stored muons. These proposals were hampered by lack of sufficient intensity to pursue the physics. The Neutrino Factory proposal in 1997 was designed to fix this problem by using a Muon Collider class 'low energy' muon source to capture many more pions at low energy, allow them to decay in an external decay channel, manipulate their phase space to capture as many muons as possible within the acceptance of an accelerator, and then accelerate to the energy of choice before injecting into a specially designed ring with long straight sections. All this technology would do a wonderful job in fixing the intensity problem, but at a price that excludes this solution from being realized in the short term. The question that we are now faced with is whether the older, lower intensity 'parasitic' muon storage ring based on 'high energy' pion decays can, with

  10. Experimental system to measure excitation cross-sections by electron impact. Measurements for ArI and ArII

    International Nuclear Information System (INIS)

    Blanco, F.; Sanchez, J.A.; Aguilera, J.A.; Campos, J.

    1989-01-01

    An experimental set-up to measure excitation cross-section of atomic and molecular levels by electron impact based on the optical method is reported. We also present some measurements on the excitation cross-section for ArI 5p'(1/2)0 level, and for simultaneous ionization and excitation of Ar leading to ArII levels belonging to the 3p 4 4p and 3p 4 4d configurations. (Author)

  11. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    International Nuclear Information System (INIS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coboeken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wieber, H.; Bailey, D.S.; Barret, O.; Brook, N.H.; Foster, B.; Heath, G.P.; Heath, H.F.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowalski, T.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Kotanski, A.; Bauerdick, L.A.T.; Behrens, U.; Bienlein, J.K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hebbel, K.; Hillert, S.; Koch, W.; Koetz, U.; Kowalski, H.; Labes, H.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Rohde, M.; Savin, A.A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P.B.; Barbagli, G.; Gallo, E.; Parenti, A.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Eisenhardt, S.; Markun, P.; Raach, H.; Woelfle, S.; Bussey, P.J.; Bell, M.; Doyle, A.T.; Glasman, C.; Lee, S.W.; Lupi, A.; Macdonald, N.; McCance, G.J.; Saxon, D.H.; Sinclair, L.E.; Skillicorn, I.O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Carli, T.; Garfagnini, A.; Gialas, I.; Gladilin, L.K.; Kcira, D.; Klanner, R.; Lohrmann, E.; Goncalo, R.; Long, K.R.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Corriveau, F.; Hanna, D.S.; Ochs, A.; Padhi, S.; Stairs, D.G.; Wing, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, M.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Botje, M.; Bruemmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Grosse-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M.R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B.Y.; Okrasinski, J.R.; Saull, P.R.B.; Toothacker, W.S.; Whitmore, J.J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Shah, T.P.; Epperson, D.; Heusch, C.; Sadrozinski, H.F.-W.; Seiden, A.; Wichmann, R.; Williams, D.C.; Park, I.H.; Pavel, N.; Abramowicz , H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D.C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wroblewski, A.K.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W.F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D.D.; Smith, W.H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Bhadra, S.; Catterall, C.; Cole, J.E.; Frisken, W.R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2001-01-01

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e + +p→e + +n+jet+jet+X r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb -1 . The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E T jet >6 GeV, neutron energy E n >400 GeV, and neutron production angle θ n <0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model

  12. Differential Top and Diboson Cross-Section Measurements with the ATLAS detector

    CERN Document Server

    Mochizuki, Kazuya; The ATLAS collaboration

    2017-01-01

    Measurements of the differential production cross-sections of the production of pairs of electroweak gauge bosons as well as top-quark pairs at the LHC provide stringent tests of advanced perturbative QCD calculations. In addition, these processes constitute a dominant background for many searches for signs of beyond Standard Model physics processes and are directly sensitive to anomalous couplings. The ATLAS collaboration has performed detailed measurements of those differential cross sections in various final states at centre-of-mass energies of 8 and 13 TeV. In this talk, the most recent results are presented and compared to predictions at NLO (and NNLO) in pQCD, highlighting observed differences and providing an overview of required improvements on the underlying physics modeling.

  13. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coboeken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wieber, H.; Bailey, D.S.; Barret, O.; Brook, N.H.; Foster, B. E-mail: b.foster@bristol.ac.uk; Heath, G.P.; Heath, H.F.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowalski, T.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Kotanski, A.; Bauerdick, L.A.T.; Behrens, U.; Bienlein, J.K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hebbel, K.; Hillert, S.; Koch, W.; Koetz, U.; Kowalski, H.; Labes, H.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Rohde, M.; Savin, A.A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.[and others

    2001-02-26

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e{sup +}+p{yields}e{sup +}+n+jet+jet+X{sub r} have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb{sup -1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E{sub T}{sup jet}>6 GeV, neutron energy E{sub n}>400 GeV, and neutron production angle {theta}{sub n}<0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

  14. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, Mark Edward [Univ. College London, Bloomsbury (United Kingdom)

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  15. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    International Nuclear Information System (INIS)

    Dorman, Mark Edward

    2008-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented

  16. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to eight scintillators with their photomultipliers, surrounding a fission chamber. A software analysis sets the coincidence rate between the scintillators. In order to understand perfectly the experimental setup, preliminary tests using a {sup 235}U fission chamber have been done. This experiment resulted in a very low signal to background ratio (1 %). The background coming from the scintillators themselves seriously handicapped the measurement. Another series of experiment has been done with scintillators 5 times thinner. Nevertheless, the signal to background ratio should still be increased to measure the capture of {sup 235}U. To make sure that the experimental setup has totally been understood, we made many comparisons between experimental results and simulations. Two simulation codes were mainly used: MCNP and GEANT4. We paid

  17. Preliminary study of the {alpha} ratio measurement, ratio of the neutron capture cross section to the fission one for {sup 233}U, on the PEREN platform. Development and study of the experimental setup; Etude preliminaire de la mesure du rapport {alpha}, rapport de la section efficace moyenne de capture sur celle de fission de l'{sup 233}U, sur la plateforme PEREN. Developpement et etude du dispositif experimental

    Energy Technology Data Exchange (ETDEWEB)

    Cognet, M.A

    2007-12-15

    Producing nuclear energy in order to reduce anthropic CO{sub 2} emission and to meet high energy demand, implies three conditions to the nuclear plants of the IV. generation: safety improvements, radioactive waste minimization, and fuel breeding for a sustainable use of the resources. The Thorium fuel cycle used in Molten Salt Reactors seems promising. Many numerical studies based on probabilistic codes are carried out in order to analyse the behaviour of such reactors. Nevertheless, one of the most important parameters is badly known: the alpha ratio of {sup 233}U, ratio of the neutron capture cross section to fission one for {sup 233}U. This key-parameter is necessary to calculate the breeding ratio and thus, the deployment capacities of those reactors. This Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of {sup 233}U between 1 eV and 10 keV. Preliminary measurements have been performed on the experimental platform PEREN. This experimental environment is composed of a lead slowing-down time spectrometer associat