WorldWideScience

Sample records for capsid size specificity

  1. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R Jude

    2007-07-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response.

  2. Adeno-Associated Virus Type 2 (AAV2) Capsid-Specific Cytotoxic T Lymphocytes Eliminate Only Vector-Transduced Cells Coexpressing the AAV2 Capsid In Vivo▿

    Science.gov (United States)

    Li, Chengwen; Hirsch, Matthew; Asokan, Aravind; Zeithaml, Brian; Ma, Hong; Kafri, Tal; Samulski, R. Jude

    2007-01-01

    A recent clinical trial has suggested that recombinant adeno-associated virus (rAAV) vector transduction in humans induces a cytotoxic T-lymphocyte (CTL) response against the AAV2 capsid. To directly address the ability of AAV capsid-specific CTLs to eliminate rAAV-transduced cells in vitro and in vivo in mice, we first demonstrated that AAV2 capsid-specific CTLs could be induced by dendritic cells with endogenous AAV2 capsid expression or pulsed with AAV2 vectors. These CTLs were able to kill a cell line stable for capsid expression in vitro and also in a mouse tumor xenograft model in vivo. Parent colon carcinoma (CT26) cells transduced with a large amount of AAV2 vectors in vitro were also destroyed by these CTLs. To determine the effect of CTLs on the elimination of target cells transduced by AAV2 vectors in vivo, we carried out adoptive transfer experiments. CTLs eliminated liver cells with endogenous AAV2 capsid expression but not liver cells transduced by AAV2 vectors, regardless of the reporter genes. Similar results were obtained for rAAV2 transduction in muscle. Our data strongly suggest that AAV vector-transduced cells are rarely eliminated by AAV2 capsid-specific CTLs in vivo, even though the AAV capsid can induce a CTL response. In conclusion, AAV capsid-specific CTLs do not appear to play a role in elimination of rAAV-transduced cells in a mouse model. In addition, our data suggest that the mouse model may not mimic the immune response noted in humans and additional modification to AAV vectors may be required for further study in order to elicit a similar cellular immune response. PMID:17475652

  3. The conformation of double-stranded DNA inside bacteriophages depends on capsid size and shape.

    Science.gov (United States)

    Petrov, Anton S; Boz, Mustafa Burak; Harvey, Stephen C

    2007-11-01

    The packaging of double-stranded DNA into bacteriophages leads to the arrangement of the genetic material into highly-packed and ordered structures. Although modern experimental techniques reveal the most probable location of DNA inside viral capsids, the individual conformations of DNA are yet to be determined. In the current study we present the results of molecular dynamics simulations of the DNA packaging into several bacteriophages performed within the framework of a coarse-grained model. The final DNA conformations depend on the size and shape of the capsid, as well as the size of the protein portal, if any. In particular, isometric capsids with small or absent portals tend to form concentric spools, whereas the presence of a large portal favors coaxial spooling; slightly and highly elongated capsids result in folded and twisted toroidal conformations, respectively. The results of the simulations also suggest that the predominant factor in defining the global DNA arrangement inside bacteriophages is the minimization of the bending stress upon packaging.

  4. Production of monoclonal antibodies specific to Macrobrachium rosenbergii nodavirus using recombinant capsid protein.

    Science.gov (United States)

    Wangman, Pradit; Senapin, Saengchan; Chaivisuthangkura, Parin; Longyant, Siwaporn; Rukpratanporn, Sombat; Sithigorngul, Paisarn

    2012-03-20

    The gene encoding the capsid protein of Macrobrachium rosenbergii nodavirus (MrNV) was cloned into pGEX-6P-1 expression vector and then transformed into the Escherichia coli strain BL21. After induction, capsid protein-glutathione-S-transferase (GST-MrNV; 64 kDa) was produced. The recombinant protein was separated using SDS-PAGE, excised from the gel, electro-eluted and then used for immunization for monoclonal antibody (MAb) production. Four MAbs specific to the capsid protein were selected and could be used to detect natural MrNV infections in M. rosenbergii by dot blotting, Western blotting and immunohistochemistry without cross-reaction with uninfected shrimp tissues or other common shrimp viruses. The detection sensitivity of the MAbs was 10 fmol µl-1 of the GST-MrNV, as determined using dot blotting. However, the sensitivity of the MAb on dot blotting with homogenate from naturally infected M. rosenbergii was approximately 200-fold lower than that of 1-step RT-PCR. Immunohistochemical analysis using these MAbs with infected shrimp tissues demonstrated staining in the muscles, nerve cord, gill, heart, loose connective tissue and inter-tubular tissue of the hepatopancreas. Although the positive reactions occurred in small focal areas, the immunoreactivity was clearly demonstrated. The MAbs targeted different epitopes of the capsid protein and will be used to develop a simple immunoassay strip test for rapid detection of MrNV.

  5. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins

    OpenAIRE

    Luxton, G.W. Gant; Haverlock, Sarah; Coller, Kelly Elizabeth; Antinone, Sarah Elizabeth; Pincetic, Andrew; Smith, Gregory Allan

    2005-01-01

    The capsids of neurotropic herpesviruses have the remarkable ability to move in specific directions within axons. By modulating bidirectional capsid transport to favor either retrograde (minus-end) or anterograde (plus-end) motion, these viruses travel to sensory ganglia or peripheral tissue at specific stages of infection. By using correlative motion analysis to simultaneously monitor the trafficking of distinct viral proteins in living neurons, we demonstrate that viral “tegument” proteins ...

  6. The Herpes Simplex Virus 1 UL17 Protein Is the Second Constituent of the Capsid Vertex-Specific Component Required for DNA Packaging and Retention▿

    OpenAIRE

    Toropova, Katerina; Huffman, Jamie B.; Homa, Fred L.; James F Conway

    2011-01-01

    The herpes simplex virus (HSV) UL17 and UL25 minor capsid proteins are essential for DNA packaging. They are thought to comprise a molecule arrayed in five copies around each of the capsid vertices. This molecule was initially termed the “C-capsid-specific component” (CCSC) (B. L. Trus et al., Mol. Cell 26:479-489, 2007), but as we have subsequently observed this feature on reconstructions of A, B, and C capsids, we now refer to it more generally as the “capsid vertex-specific component” (CVS...

  7. Critical Role of Autophagy in the Processing of Adenovirus Capsid-Incorporated Cancer-Specific Antigens.

    Directory of Open Access Journals (Sweden)

    Sarah R Klein

    Full Text Available Adenoviruses are highly immunogenic and are being examined as potential vectors for immunotherapy. Infection by oncolytic adenovirus is followed by massive autophagy in cancer cells. Here, we hypothesize that autophagy regulates the processing of adenoviral proteins for antigen presentation. To test this hypothesis, we first examined the presentation of viral antigens by infected cells using an antibody cocktail of viral capsid proteins. We found that viral antigens were processed by JNK-mediated autophagy, and that autophagy was required for their presentation. Consistent with these results, splenocytes isolated from virus-immunized mice were activated by infected cells in an MHC II-dependent manner. We then hypothesize that this mechanism can be utilized to generate an efficient cancer vaccine. To this end, we constructed an oncolytic virus encompassing an EGFRvIII cancer-specific epitope in the adenoviral fiber. Infection of cancer cells with this fiber-modified adenovirus resulted in recognition of infected cancer cells by a specific anti-EGFRvIII antibody. However, inhibition of autophagy drastically decreased the capability of the specific antibody to detect the cancer-related epitope in infected cells. Our data suggest that combination of adenoviruses with autophagy inducers may enhance the processing and presentation of cancer-specific antigens incorporated into capsid proteins.

  8. Microplate-based assay for identifying small molecules that bind a specific intersubunit interface within the assembled HIV-1 capsid.

    Science.gov (United States)

    Halambage, Upul D; Wong, Jason P; Melancon, Bruce J; Lindsley, Craig W; Aiken, Christopher

    2015-09-01

    Despite the availability of >30 effective drugs for managing HIV-1 infection, no current therapy is curative, and long-term management is challenging owing to the emergence and spread of drug-resistant mutants. Identification of drugs against novel HIV-1 targets would expand the current treatment options and help to control resistance. The highly conserved HIV-1 capsid protein represents an attractive target because of its multiple roles in replication of the virus. However, the low antiviral potencies of the reported HIV-1 capsid-targeting inhibitors render them unattractive for therapeutic development. To facilitate the identification of more-potent HIV-1 capsid inhibitors, we developed a scintillation proximity assay to screen for small molecules that target a biologically active and specific intersubunit interface in the HIV-1 capsid. The assay, which is based on competitive displacement of a known capsid-binding small-molecule inhibitor, exhibited a signal-to-noise ratio of >9 and a Z factor of >0.8. In a pilot screen of a chemical library containing 2,400 druglike compounds, we obtained a hit rate of 1.8%. This assay has properties that are suitable for screening large compound libraries to identify novel HIV-1 capsid ligands with antiviral activity.

  9. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  10. Specificity of an anti-capsid antibody associated with Hepatitis B Virus-related acute liver failure.

    Science.gov (United States)

    Wu, Weimin; Chen, Zhaochun; Cheng, Naiqian; Watts, Norman R; Stahl, Stephen J; Farci, Patrizia; Purcell, Robert H; Wingfield, Paul T; Steven, Alasdair C

    2013-01-01

    Previously, the livers of patients suffering from acute liver failure (ALF), a potentially fatal syndrome arising from infection by Hepatitis B Virus (HBV), were found to contain massive amounts of an antibody specific for the core antigen (HBcAg) capsid. We have used cryo-electron microscopy and molecular modeling to define its epitope. HBV capsids are icosahedral shells with 25Å-long dimeric spikes, each a 4-helix bundle, protruding from the contiguous "floor". Of the anti-HBcAg antibodies previously characterized, most bind around the spike tip while one binds to the floor. The ALF-associated antibody binds tangentially to a novel site on the side of the spike. This epitope is conformational. The Fab binds with high affinity to its principal determinants but has lower affinities for quasi-equivalent variants. The highest occupancy site is on one side of a spike, with no detectable binding to the corresponding site on the other side. Binding of one Fab per dimer was also observed by analytical ultracentrifugation. The Fab did not bind to the e-antigen dimer, a non-assembling variant of capsid protein. These findings support the propositions that antibodies with particular specificities may correlate with different clinical expressions of HBV infection and that antibodies directed to particular HBcAg epitopes may be involved in ALF pathogenesis.

  11. The herpes simplex virus 1 UL17 protein is the second constituent of the capsid vertex-specific component required for DNA packaging and retention.

    Science.gov (United States)

    Toropova, Katerina; Huffman, Jamie B; Homa, Fred L; Conway, James F

    2011-08-01

    The herpes simplex virus (HSV) UL17 and UL25 minor capsid proteins are essential for DNA packaging. They are thought to comprise a molecule arrayed in five copies around each of the capsid vertices. This molecule was initially termed the "C-capsid-specific component" (CCSC) (B. L. Trus et al., Mol. Cell 26:479-489, 2007), but as we have subsequently observed this feature on reconstructions of A, B, and C capsids, we now refer to it more generally as the "capsid vertex-specific component" (CVSC) (S. K. Cockrell et al., J. Virol. 85:4875-4887, 2011). We previously confirmed that UL25 occupies the vertex-distal region of the CVSC density by visualizing a large UL25-specific tag in reconstructions calculated from cryo-electron microscopy (cryo-EM) images. We have pursued the same strategy to determine the capsid location of the UL17 protein. Recombinant viruses were generated that contained either a small tandem affinity purification (TAP) tag or the green fluorescent protein (GFP) attached to the C terminus of UL17. Purification of the TAP-tagged UL17 or a similarly TAP-tagged UL25 protein clearly demonstrated that the two proteins interact. A cryo-EM reconstruction of capsids containing the UL17-GFP protein reveals that UL17 is the second component of the CVSC and suggests that UL17 interfaces with the other CVSC component, UL25, through its C terminus. The portion of UL17 nearest the vertex appears to be poorly constrained, which may provide flexibility in interacting with tegument proteins or the DNA-packaging machinery at the portal vertex. The exposed locations of the UL17 and UL25 proteins on the HSV-1 capsid exterior suggest that they may be attractive targets for highly specific antivirals.

  12. Specific recognition of the major capsid protein of Acanthamoeba polyphaga mimivirus by sera of patients infected by Francisella tularensis.

    Science.gov (United States)

    Pelletier, Nicolas; Raoult, Didier; La Scola, Bernard

    2009-08-01

    Francisella tularensis, a Gram-negative cocobacillus responsible for tularemia, especially severe pneumonia, is a facultative intracellular bacterium classified as a biological agent of category A. Acanthamoeba polyphaga mimivirus (APM) is a recently discovered giant virus suspected to be an agent of both community- and hospital-acquired pneumonia. During specificity testing of antibody to APM detection, it was observed that nearly all patients infected by F. tularensis had elevated antibody titers to APM. In the present study, we investigated this cross-reactivity by immunoproteomics. Apart from the detection of antibodies reactive to new immunoreactive proteins in patients infected by F. tularensis, we showed that the sera of those patients recognize specifically two proteins of APM: the capsid protein and another protein of unknown function. No common protein motif can be detected in silico based on genome analysis of the involved protein. Furthermore, this cross-reactivity was confirmed with the recombinant capsid protein expressed in Escherichia coli. This emphasizes the pitfalls of a serological diagnosis of pneumonia.

  13. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore.

    Directory of Open Access Journals (Sweden)

    Anusha Panjwani

    2014-08-01

    Full Text Available Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family.

  14. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: micngml@nus.edu.sg [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  15. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  16. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses.

    Science.gov (United States)

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L; Merritt, Robert; Hackett, Neil R; Rovelink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imi; Crystal, Ronald G

    2004-03-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif

  17. Species-specific and cross-reactive IgG1 antibody binding to viral capsid protein 1 (VP1 antigens of human rhinovirus species A, B and C.

    Directory of Open Access Journals (Sweden)

    Jua Iwasaki

    Full Text Available BACKGROUND: Human rhinoviruses (HRV are associated with upper and lower respiratory illnesses, including severe infections causing hospitalization in both children and adults. Although the clinical significance of HRV infections is now well established, no detailed investigation of the immune response against HRV has been performed. The purpose of this study was to assess the IgG1 antibody response to the three known HRV species, HRV-A, -B and -C in healthy subjects. METHODS: Recombinant polypeptides of viral capsid protein 1 (VP1 from two genotypes of HRV-A, -B and -C were expressed as glutathione S-transferase (GST fusion proteins and purified by affinity and then size exclusion chromatography. The presence of secondary structures similar to the natural antigens was verified by circular dichroism analysis. Total and species-specific IgG1 measurements were quantitated by immunoassays and immunoabsorption using sera from 63 healthy adults. RESULTS: Most adult sera reacted with the HRV VP1 antigens, at high titres. As expected, strong cross-reactivity between HRV genotypes of the same species was found. A high degree of cross-reactivity between different HRV species was also evident, particularly between HRV-A and HRV-C. Immunoabsorption studies revealed HRV-C specific titres were markedly and significantly lower than the HRV-A and HRV-B specific titres (P<0.0001. A truncated construct of HRV-C VP1 showed greater specificity in detecting anti-HRV-C antibodies. CONCLUSIONS: High titres of IgG1 antibody were bound by the VP1 capsid proteins of HRV-A, -B and -C, but for the majority of people, a large proportion of the antibody to HRV-C was cross-reactive, especially to HRV-A. The improved specificity found for the truncated HRV-C VP1 indicates species-specific and cross-reactive regions could be defined.

  18. Phenylthiourea specifically reduces zebrafish eye size.

    Science.gov (United States)

    Li, Zeran; Ptak, Devon; Zhang, Liyun; Walls, Elwood K; Zhong, Wenxuan; Leung, Yuk Fai

    2012-01-01

    Phenylthiourea (PTU) is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO) and sodium-iodide symporter (NIS), suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos.

  19. Phenylthiourea specifically reduces zebrafish eye size.

    Directory of Open Access Journals (Sweden)

    Zeran Li

    Full Text Available Phenylthiourea (PTU is commonly used for inhibiting melanization of zebrafish embryos. In this study, the standard treatment with 0.2 mM PTU was demonstrated to specifically reduce eye size in larval fish starting at three days post-fertilization. This effect is likely the result of a reduction in retinal and lens size of PTU-treated eyes and is not related to melanization inhibition. This is because the eye size of tyr, a genetic mutant of tyrosinase whose activity is inhibited in PTU treatment, was not reduced. As PTU contains a thiocarbamide group which is presented in many goitrogens, suppressing thyroid hormone production is a possible mechanism by which PTU treatment may reduce eye size. Despite the fact that thyroxine level was found to be reduced in PTU-treated larvae, thyroid hormone supplements did not rescue the eye size reduction. Instead, treating embryos with six goitrogens, including inhibitors of thyroid peroxidase (TPO and sodium-iodide symporter (NIS, suggested an alternative possibility. Specifically, three TPO inhibitors, including those that do not possess thiocarbamide, specifically reduced eye size; whereas none of the NIS inhibitors could elicit this effect. These observations indicate that TPO inhibition rather than a general suppression of thyroid hormone synthesis is likely the underlying cause of PTU-induced eye size reduction. Furthermore, the tissue-specific effect of PTU treatment might be mediated by an eye-specific TPO expression. Compared with treatment with other tyrosinase inhibitors or bleaching to remove melanization, PTU treatment remains the most effective approach. Thus, one should use caution when interpreting results that are obtained from PTU-treated embryos.

  20. Sizing up large protein complexes by electrospray ionisation-based electrophoretic mobility and native mass spectrometry : morphology selective binding of Fabs to hepatitis B virus capsids

    NARCIS (Netherlands)

    Bereszczak, Jessica Z; Havlik, Marlene; Weiss, Victor U; Marchetti-Deschmann, Martina; van Duijn, Esther; Watts, Norman R; Wingfield, Paul T; Allmaier, Guenter; Steven, Alasdair C; Heck, Albert J R

    2014-01-01

    The capsid of hepatitis B virus (HBV) is a major viral antigen and important diagnostic indicator. HBV capsids have prominent protrusions ('spikes') on their surface and are unique in having either T = 3 or T = 4 icosahedral symmetry. Mouse monoclonal and also human polyclonal antibodies bind either

  1. The impact of AAV capsid-specific T cell responses on design and outcome of clinical gene transfer trials with recombinant AAV vectors - an evolving controversy.

    Science.gov (United States)

    Ertl, Hildegund Cj; High, Katherine A

    2017-01-02

    Recombinant adenovirus-associated (rAAV) vectors due to their ease of construction, wide tissue tropism and lack of pathogenicity remain at the forefront for long-term gene replacement therapy. In spite of very encouraging pre-clinical results, clinical trials were initially unsuccessful; expression of the rAAV vector-delivered therapeutic protein was transient. Loss of expression was linked to an expansion of AAV capsid-specific T cell responses, leading to the hypothesis that rAAV vectors recall pre-existing memory T cells that had been induced by natural infections with AAV together with a helper virus. Although this was hotly debated at first, AAV capsid-specific T cell responses were observed in several gene transfer trials that used high doses of rAAV vectors. Subsequent trials designed to circumvent these T cell responses through the use of immunosuppressive drugs, rAAV vectors based on rare serotypes or modified to allow for therapeutic levels of the transgene product at low, non-immunogenic vector doses are now successful in correcting debilitating diseases.

  2. Progressive Multifocal Leukoencephalopathy (PML) Development Is Associated With Mutations in JC Virus Capsid Protein VP1 That Change Its Receptor Specificity

    Science.gov (United States)

    Reid, Carl; Testa, Manuela; Brickelmaier, Margot; Bossolasco, Simona; Pazzi, Annamaria; Bestetti, Arabella; Carmillo, Paul; Wilson, Ewa; McAuliffe, Michele; Tonkin, Christopher; Carulli, John P.; Lugovskoy, Alexey; Lazzarin, Adriano; Sunyaev, Shamil; Simon, Kenneth; Cinque, Paola

    2011-01-01

    Progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease caused by JC virus (JCV) infection of oligodendrocytes, may develop in patients with immune disorders following reactivation of chronic benign infection. Mutations of JCV capsid viral protein 1 (VP1), the capsid protein involved in binding to sialic acid cell receptors, might favor PML onset. Cerebrospinal fluid sequences from 37/40 PML patients contained one of several JCV VP1 amino acid mutations, which were also present in paired plasma but not urine sequences despite the same viral genetic background. VP1-derived virus-like particles (VLPs) carrying these mutations lost hemagglutination ability, showed different ganglioside specificity, and abolished binding to different peripheral cell types compared with wild-type VLPs. However, mutants still bound brain-derived cells, and binding was not affected by sialic acid removal by neuraminidase. JCV VP1 substitutions are acquired intrapatient and might favor JCV brain invasion through abrogation of sialic acid binding with peripheral cells, while maintaining sialic acid–independent binding with brain cells. PMID:21628664

  3. Designing Nonwovens to Meet Pore Size Specifications

    Directory of Open Access Journals (Sweden)

    Glen E. Simmonds

    2007-04-01

    Full Text Available New nonwovens applications in areas such as filtration require a media designed to particular pore size specifications in the 3 to 20 micron range. The purpose of this work was to develop a basis by which to design and construct a fabric with given pore size specifications. While doing so we have provided a validation for two different mathematical models. We have also found that bicomponent spunbonded islands-in-the-sea nonwoven fabrics can be designed very precisely to achieve target pore diameters and porosity. Mathematical models can be used to develop fabric specifications in the standard manufacturing terms of basis weight and fiber diameter. Measured mean flow pore diameters for the test fabrics showed excellent correlation to targeted mean flow pore diameters for both models. The experimental fit to the Bryner model is the better of the two, but requires specification of fabric thickness in addition to basis weight and fiber diameter to achieve actual mean pore diameters that closely match target values. Experimental validation of the influence of fabric thickness on the mean flow pore diameter at constant basis weight and fiber diameter remains open for further investigation. In addition, achieving complete separation of the island and sea polymers along with unbundling of the island fibers remain areas for improvement.

  4. Classification and Evolutionary Trends of Icosahedral Viral Capsids

    Directory of Open Access Journals (Sweden)

    Richard Kerner

    2008-01-01

    Full Text Available A classification of icosahedral viral capsids is proposed. We show how the self-organization of capsids during their formation implies a definite composition of their elementary building blocks. The exact number of hexamers with three different admissible symmetries is related to capsids' sizes, labelled by their T-numbers. Simple rules determining these numbers for each value of T are deduced and certain consequences concerning the probabilities of mutations and evolution of viruses are discussed.

  5. Molecular studies on bromovirus capsid protein. VII. Selective packaging on BMV RNA4 by specific N-terminal arginine residuals.

    Science.gov (United States)

    Choi, Y G; Rao, A L

    2000-09-15

    An arginine-rich RNA-binding motif (ARM) found at the N-proximal region of Brome mosaic virus (BMV) coat protein (CP) adopts alpha-helical conformation and shares homology with CPs of plant and insect RNA viruses, HIV-Rev and Tat proteins, bacterial antiterminators, and ribosomal splicing factors. The ARM of BMV CP, consisting of amino acids 9 through 21 with six arginine residues, is essential for RNA binding and subsequent packaging. In this study analysis of the alpha-helical contents of wild-type and mutant peptides by circular dichroism spectra identified protein determinants required for such conformation. Electrophoretic mobility-shift assays between viral RNA and BMV CP peptides with either proline or alanine substitutions revealed that the interaction is nonspecific. Expression in vivo of mature full-length BMV CP subunits, having the same substitutions for each arginine within the ARM, derived from biologically active clones was found to be competent to assemble into infectious virions and cause visible symptom phenotypes in whole plants. However, analysis of virion progeny RNA profiles of CP variants and subsequent in vitro reassembly assays between mutant CP and four BMV RNAs unveiled the ability of arginine residues at positions 10, 13, or 14 of the ARM to confer selective packaging of BMV RNA4. Thus, BMV CP contains determinants that specifically interact with RNA4 to ensure selective packaging.

  6. Dynamic pathways for viral capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

  7. Inhibition of protein kinase C phosphorylation of hepatitis B virus capsids inhibits virion formation and causes intracellular capsid accumulation.

    Science.gov (United States)

    Wittkop, Linda; Schwarz, Alexandra; Cassany, Aurelia; Grün-Bernhard, Stefanie; Delaleau, Mildred; Rabe, Birgit; Cazenave, Christian; Gerlich, Wolfram; Glebe, Dieter; Kann, Michael

    2010-07-01

    Capsids of hepatitis B virus and other hepadnaviruses contain a cellular protein kinase, which phosphorylates the capsid protein. Some phosphorylation sites are shown to be essential for distinct steps of viral replication as pregenome packaging or plus strand DNA synthesis. Although different protein kinases have been reported to phosphorylate the capsid protein, varying experimental approaches do not allow direct comparison. Furthermore, the activity of a specific protein kinase has not yet been correlated to steps in the hepadnaviral life cycle. In this study we show that capsids from various sources encapsidate active protein kinase Calpha, irrespective of hepatitis B virus genotype and host cell. Treatment of a virion expressing cell line with a pseudosubstrate inhibitor showed that inhibition of protein kinase C phosphorylation did not affect genome maturation but resulted in capsid accumulation and inhibited virion release to the medium. Our results imply that different protein kinases have distinct functions within the hepadnaviral life cycle.

  8. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes.

    Science.gov (United States)

    Rasheedi, Sheeba; Shun, Ming-Chieh; Serrao, Erik; Sowd, Gregory A; Qian, Juan; Hao, Caili; Dasgupta, Twishasri; Engelman, Alan N; Skowronski, Jacek

    2016-05-27

    HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.

  9. The Astrovirus Capsid: A Review

    Science.gov (United States)

    Arias, Carlos F.; DuBois, Rebecca M.

    2017-01-01

    Astroviruses are enterically transmitted viruses that cause infections in mammalian and avian species. Astroviruses are nonenveloped, icosahedral viruses comprised of a capsid protein shell and a positive-sense, single-stranded RNA genome. The capsid protein undergoes dramatic proteolytic processing both inside and outside of the host cell, resulting in a coordinated maturation process that affects cellular localization, virus structure, and infectivity. After maturation, the capsid protein controls the initial phases of virus infection, including virus attachment, endocytosis, and genome release into the host cell. The astrovirus capsid is the target of host antibodies including virus-neutralizing antibodies. The capsid protein also mediates the binding of host complement proteins and inhibits complement activation. Here, we will review our knowledge on the astrovirus capsid protein (CP), with particular attention to the recent structural, biochemical, and virological studies that have advanced our understanding of the astrovirus life cycle. PMID:28106836

  10. Kinetics versus Thermodynamics in Virus Capsid Polymorphism.

    Science.gov (United States)

    Moerman, Pepijn; van der Schoot, Paul; Kegel, Willem

    2016-07-07

    Virus coat proteins spontaneously self-assemble into empty shells in aqueous solution under the appropriate physicochemical conditions, driven by an interaction free energy per bond on the order of 2-5 times the thermal energy kBT. For this seemingly modest interaction strength, each protein building block nonetheless gains a very large binding free energy, between 10 and 20 kBT. Because of this, there is debate about whether the assembly process is reversible or irreversible. Here we discuss capsid polymorphism observed in in vitro experiments from the perspective of nucleation theory and of the thermodynamics of mass action. We specifically consider the potential contribution of a curvature free energy term to the effective interaction potential between the proteins. From these models, we propose experiments that may conclusively reveal whether virus capsid assembly into a mixture of polymorphs is a reversible or an irreversible process.

  11. Mechanostability of Proteins and Virus Capsids

    Science.gov (United States)

    Cieplak, Marek

    2013-03-01

    Molecular dynamics of proteins within coarse grained models have become a useful tool in studies of large scale systems. The talk will discuss two applications of such modeling. The first is a theoretical survey of proteins' resistance to constant speed stretching as performed for a set of 17134 simple and 318 multidomain proteins. The survey has uncovered new potent force clamps. They involve formation of cysteine slipknots or dragging of a cystine plug through the cystine ring and lead to characteristic forces that are significantly larger than the common shear-based clamp such as observed in titin. The second application involves studies of nanoindentation processes in virus capsids and elucidates their molecular aspects by showing deviations in behavior compared to the continuum shell model. Across the 35 capsids studied, both the collapse force and the elastic stiffness are observed to vary by a factor of 20. The changes in mechanical properties do not correlate simply with virus size or symmetry. There is a strong connection to the mean coordination number , defined as the mean number of interactions to neighboring amino acids. The Young's modulus for thin shell capsids rises roughly quadratically with - 6, where 6 is the minimum coordination for elastic stability in three dimensions. Supported by European Regional Development Fund, through Innovative Economy grant Nanobiom (POIG.01.01.02-00-008/08)

  12. Integrated microfluidic system capable of size-specific droplet generation with size-dependent droplet separation.

    Science.gov (United States)

    Lee, Sangmin; Hong, Seok Jun; Yoo, Hyung Jung; Ahn, Jae Hyun; Cho, Dong-il Dan

    2013-06-01

    Droplet-based microfluidics is receiving much attention in biomedical research area due to its advantage in uniform size droplet generation. Our previous results have reported that droplet size plays an important role in drug delivery actuated by flagellated bacteria. Recently, many research groups have been reported the size-dependent separation of emulsion droplets by a microfluidic system. In this paper, an integrated microfluidic system is proposed to produce and sort specificsized droplets sequentially. Operation of the system relies on two microfluidic transport processes: initial generation of droplets by hydrodynamic focusing and subsequent separation of droplets by a T-junction channel. The microfluidic system is fabricated by the SU-8 rapid prototyping method and poly-di-methyl-siloxane (PDMS) replica molding. A biodegradable polymer, poly-capro-lactone (PCL), is used for the droplet material. Using the proposed integrated microfluidic system, specific-sized droplets which can be delivered by flagellated bacteria are successfully generated and obtained.

  13. The specific uptake size index for quantifying radiopharmaceutical uptake

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, John S [Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton (United Kingdom); Bolt, Livia [Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton (United Kingdom); Stratford, Jennifer S [Department of Medical Physics and Bioengineering, Southampton University Hospitals NHS Trust, Southampton (United Kingdom); Kemp, Paul M [Department of Nuclear Medicine, Southampton University Hospitals NHS Trust, Southampton (United Kingdom)

    2004-07-21

    Quantitative indices of radionuclide uptake in an object of interest provide a useful adjunct to qualitative interpretation in the diagnostic application of radionuclide imaging. This note describes a new measure of total uptake of an organ, the specific uptake size index (SUSI). It can either be related in absolute terms to the total activity injected or to the specific activity in a reference region. As it depends on the total activity in the object, the value obtained will not depend on the resolution of the imaging process, as is the case with some other similar quantitative indices. This has been demonstrated in an experiment using simulated images. The application of the index to quantification of dopamine receptor SPECT imaging and parathyroid-thyroid subtraction planar scintigraphy is described. The index is considered to be of potential value in reducing variation in quantitative assessment of uptake in objects with applications in all areas of radionuclide imaging. (note)

  14. Single hepatitis-B virus core capsid binding to individual nuclear pore complexes in Hela cells.

    Science.gov (United States)

    Lill, Yoriko; Lill, Markus A; Fahrenkrog, Birthe; Schwarz-Herion, Kyrill; Paulillo, Sara; Aebi, Ueli; Hecht, Bert

    2006-10-15

    We investigate the interaction of hepatitis B virus capsids lacking a nuclear localization signal with nuclear pore complexes (NPCs) in permeabilized HeLa cells. Confocal and wide-field optical images of the nuclear envelope show well-spaced individual NPCs. Specific interactions of capsids with single NPCs are characterized by extended residence times of capsids in the focal volume which are characterized by fluorescence correlation spectroscopy. In addition, single-capsid-tracking experiments using fast wide-field fluorescence microscopy at 50 frames/s allow us to directly observe specific binding via a dual-color colocalization of capsids and NPCs. We find that binding occurs with high probability on the nuclear-pore ring moiety, at 44 +/- 9 nm radial distance from the central axis.

  15. RNA-binding region of Macrobrachium rosenbergii nodavirus capsid protein.

    Science.gov (United States)

    Goh, Zee Hong; Mohd, Nur Azmina Syakirin; Tan, Soon Guan; Bhassu, Subha; Tan, Wen Siang

    2014-09-01

    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

  16. Capsid modification of adeno-associated virus and tumor targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU ZengHu; ZHOU XiuMei; SHI WenFang; QIAN QiJun

    2008-01-01

    Targeting is critical for successful tumor gene therapy. The adeno-associated virus (AAV) has aroused wide concern due to its excellent advantages over other viral vectors in gene therapy. AAV has a broad infection spectrum, which also results in poor specificity towards tissues or cells and low transduction efficiency. Therefore, it is imperative to improve target and transduction efficiency in AAV-mediated gene therapy. Up to now, researchers have developed many strategies to modify AAV capsids for improving targeting or retargeting only desired cells. These strategies include not only traditional chemical modification, phage display technology, modification of AAV capsid genome, chimeric vectors and so on, but also many novel strategies involved in marker rescue strategy, direct evolution of capsid proteins, direct display random peptides on AAV capsid, AAVP (AAV-Phage), and etc. This review will summarize the advances of researches on the capsid modification of AAV to target malignant cells.

  17. Modeling of the rotavirus group C capsid predicts a surface topology distinct from other rotavirus species.

    Science.gov (United States)

    Eren, Elif; Zamuda, Kimberly; Patton, John T

    2016-01-01

    Rotavirus C (RVC) causes sporadic gastroenteritis in adults and is an established enteric pathogen of swine. Because RVC strains grow poorly in cell culture, which hinders generation of virion-derived RVC triple-layered-particle (TLP) structures, we used the known Rotavirus A (RVA) capsid structure to model the human RVC (Bristol) capsid. Comparative analysis of RVA and RVC capsid proteins showed major differences at the VP7 layer, an important target region for vaccine development due to its antigenic properties. Our model predicted the presence of a surface extended loop in RVC, which could form a major antigenic site on the capsid. We analyzed variations in the glycosylation patterns among RV capsids and identified group specific conserved sites. In addition, our results showed a smaller RVC VP4 foot, which protrudes toward the intermediate VP6 layer, in comparison to that of RVA. Finally, our results showed major structural differences at the VP8* glycan recognition sites.

  18. Detection of PMTV Using Polyclonal Antibodies Raised Against a Capsid-Specific Peptide Antigen / Detección de PMTV Utilizando Anticuerpos Policlonales Contra un Péptido Antigénico Derivado de la Cápside Viral

    Directory of Open Access Journals (Sweden)

    Yuliana Gallo García

    2013-12-01

    Full Text Available Potato mop-top virus (PMTV; genus Pomovirus;family Virgaviridae is the causing agent of the spraing disease in potato (Solanum tuberosum. PMTV is transmitted by Spongospora subterranea f. sp. subterranea (Sss. This disease has a widespread distribution in potato growing regions around the world. The possibility of obtaining strain specific antibodies at low cost can greatly increase the sensitivity and use of serological tests in seed certification programs, plant breeding and quarantine regulations to avoid dissemination of this injurious virus. This work presents an alternative procedure for the production of PMTV specific antibodies useful in serological test such as ELISAand lateral flow. In contrast to standard methods requiring theisolation of viral particles or expression of recombinant capsid, this method uses peptides mimicking the N-terminal region of PMTV capsid protein as antigen for the production of specific polyclonal antibodies. The antibodies were tested against bait plants grown in soil infested with viruliferous Sss, as well as potato plants obtained from naturally Sss infested fields in Colombia. PMTV was detected in 9/14 and 24/28 foliage samples of N. benthamiana and S. phureja, respectively. In the case of field plants, the virus wasdetected in eight out of 12 root tissues evaluated. The minimumpeptide concentration detected by ELISA was of the order of 0.1 nM. / Potato mop-top virus (PMTV; género Pomovirus; familia Virgaviridae es transmitido por Spongospora subterranea f. sp. subterranea (Sss, agente causal de la sarna polvosa de la papa. Esta enfermedad tiene una amplia distribución en las regiones cultivadoras de papa alrededor del mundo. La posibilidad de obtener anticuerpos específicos contra cepas de este virus, puede incrementar la sensibilidad y la utilización de pruebas serológicas en programas de certificación de semilla, mejoramiento genético y regulaciones cuarentenarias que eviten su diseminaci

  19. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  20. Packaging Double-Helical DNA into Viral Capsids: Structures, Forces, and Energetics

    OpenAIRE

    Petrov, Anton S.; Harvey, Stephen C.

    2008-01-01

    Small, icosahedral double-stranded DNA bacteriophage pack their genomes tightly into preformed protein capsids using an ATP-driven motor. Coarse-grain molecular-mechanics models provide a detailed picture of DNA packaging in bacteriophage, revealing how conformation depends on capsid size and shape, and the presence or absence of a protein core. The forces that oppose packaging have large contributions from both electrostatic repulsions and the entropic penalty of confining the DNA into the c...

  1. Exacerbated Leishmaniasis Caused by a Viral Endosymbiont can be Prevented by Immunization with Its Viral Capsid

    Science.gov (United States)

    Castiglioni, Patrik; Hartley, Mary-Anne; Rossi, Matteo; Prevel, Florence; Desponds, Chantal; Utzschneider, Daniel T.; Eren, Remzi-Onur; Zangger, Haroun; Brunner, Livia; Collin, Nicolas; Zehn, Dietmar; Kuhlmann, F. Matthew; Beverley, Stephen M.; Ronet, Catherine

    2017-01-01

    Recent studies have shown that a cytoplasmic virus called Leishmaniavirus (LRV) is present in some Leishmania species and acts as a potent innate immunogen, aggravating lesional inflammation and development in mice. In humans, the presence of LRV in Leishmania guyanensis and in L. braziliensis was significantly correlated with poor treatment response and symptomatic relapse. So far, no clinical effort has used LRV for prophylactic purposes. In this context, we designed an original vaccine strategy that targeted LRV nested in Leishmania parasites to prevent virus-related complications. To this end, C57BL/6 mice were immunized with a recombinant LRV1 Leishmania guyanensis viral capsid polypeptide formulated with a T helper 1-polarizing adjuvant. LRV1-vaccinated mice had significant reduction in lesion size and parasite load when subsequently challenged with LRV1+ Leishmania guyanensis parasites. The protection conferred by this immunization could be reproduced in naïve mice via T-cell transfer from vaccinated mice but not by serum transfer. The induction of LRV1 specific T cells secreting IFN-γ was confirmed in vaccinated mice and provided strong evidence that LRV1-specific protection arose via a cell mediated immune response against the LRV1 capsid. Our studies suggest that immunization with LRV1 capsid could be of a preventive benefit in mitigating the elevated pathology associated with LRV1 bearing Leishmania infections and possibly avoiding symptomatic relapses after an initial treatment. This novel anti-endosymbiotic vaccine strategy could be exploited to control other infectious diseases, as similar viral infections are largely prevalent across pathogenic pathogens and could consequently open new vaccine opportunities. PMID:28099431

  2. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids

    Science.gov (United States)

    Castle, Michael J.; Turunen, Heikki T.; Vandenberghe, Luk H.; Wolfe, John H.

    2016-01-01

    More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina. PMID:26611584

  3. Antigenic properties of avian hepatitis E virus capsid protein.

    Science.gov (United States)

    Zhao, Qin; Syed, Shahid Faraz; Zhou, En-Min

    2015-10-22

    Avian hepatitis E virus (HEV) is the main causative agent of big liver and spleen disease and hepatitis-splenomegaly syndrome in chickens, and is genetically and antigenically related to mammalian HEVs. HEV capsid protein contains immunodominant epitopes and induces a protective humoral immune response. A better understanding of the antigenic composition of this protein is critically important for the development of effective vaccine and sensitive and specific serological assays. To date, six linear antigenic domains (I-VI) have been characterized in avian HEV capsid protein and analyzed for their applications in the serological diagnosis and vaccine design. Domains I and V induce strong immune response in chickens and are common to avian, human, and swine HEVs, indicating that the shared epitopes hampering differential diagnosis of avian HEV infection. Domains III and IV are not immunodominant and elicit a weak immune response. Domain VI, located in the N-terminal region of the capsid protein, can also trigger an intense immune response, but the anti-domain VI antibodies are transient. The protection analysis showed that the truncated capsid protein containing the C-terminal 268 amino acid residues expressed by the bacterial system can provide protective immunity against avian HEV infection in chickens. However, the synthetic peptides incorporating the different linear antigenic domains (I-VI) and epitopes are non-protective. The antigenic composition of avian HEV capsid protein is altogether complex. To develop an effective vaccine and accurate serological diagnostic methods, more conformational antigenic domains or epitopes are to be characterized in detail.

  4. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  5. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  6. Engineering Virus Capsids Into Biomedical Delivery Vehicles: Structural Engineering Problems in Nanoscale.

    Science.gov (United States)

    Bajaj, Saumya; Banerjee, Manidipa

    2015-01-01

    Virus capsids have evolved to protect the genome sequestered in their interior from harsh environmental conditions, and to deliver it safely and precisely to the host cell of choice. This characteristic makes them naturally perfect containers for delivering therapeutic molecules to specific locations. Development of an ideal virus-based nano-container for medical usage requires that the capsid be converted into a targetable protein cage which retains the original stability, flexibility and host cell penetrating properties of the native particles, without the associated immunogenicity, and is able to encapsulate large quantities of therapeutic or diagnostic material. In the last few years, several icosahedral, non-enveloped viruses, with a diameter of 25-90 nm-a size which conveniently falls within the 10-100 nm range desirable for biomedical nanoparticles-have been chemically or genetically engineered towards partial fulfilment of the above criteria. This review summarizes the approaches taken towards engineering viruses into biomedical delivery devices and discusses the challenges involved in achieving this goal.

  7. Effect of size on specific heat and Debye temperature of nanomaterials

    Science.gov (United States)

    Patel, Ghanshyam R.; Thakar, Nilesh A.; Pandya, Tushar C.

    2016-05-01

    Liquid drop model is used to predict the size dependent melting temperature of low dimensional systems. In the present work we have extended liquid drop model for predicting size dependent Debye temperature of nanoparticles of Au and Se. It is found that the Debye temperature drop when the particle size is decreased. The results obtained for the size dependence of the Debye temperature are found to be in good agreement with the experimental data. This supports the validity of the method presented in this paper. In the present study relationship for size dependent of specific heat is also deduced for nanoparticles using liquid drop model. Our theoretical predictions of size dependent of specific heat of Cu nanoparticles agree fairly well with available computer simulation results. The present relationship for Debye temperature and specific heat may be used to predict the Debye temperature and specific heat for nanomaterials.

  8. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  9. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  10. Dynamic pathways for viral capsid assembly

    OpenAIRE

    Hagan, Michael F.; Chandler, David

    2006-01-01

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer c...

  11. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  12. Lifespan and Aggregate Size Variables in Specifications of Mortality or Survivorship

    Science.gov (United States)

    Epelbaum, Michael

    2014-01-01

    A specification of mortality or survivorship provides respective explicit details about mortality's or survivorship's relationships with one or more other variables (e.g., age, sex, etc.). Previous studies have discovered and analyzed diverse specifications of mortality or survivorship; these discoveries and analyses suggest that additional specifications of mortality or survivorship have yet to be discovered and analyzed. In consistency with previous research, multivariable limited powered polynomials regression analyses of mortality and survivorship of selected humans (Swedes, 1760–2008) and selected insects (caged medflies) show age-specific, historical-time-specific, environmental-context-specific, and sex-specific mortality and survivorship. These analyses also present discoveries of hitherto unknown lifespan-specific, contemporary-aggregate-size-specific, and lifespan-aggregate-size-specific mortality and survivorship. The results of this investigation and results of previous research help identify variables for inclusion in regression models of mortality or survivorship. Moreover, these results and results of previous research strengthen the suggestion that additional specifications of mortality or survivorship have yet to be discovered and analyzed, and they also suggest that specifications of mortality and survivorship indicate corresponding specifications of frailty and vitality. Furthermore, the present analyses reveal the usefulness of a multivariable limited powered polynomials regression model-building approach. This article shows that much has yet to be learned about specifications of mortality or survivorship of diverse kinds of individuals in diverse times and places. PMID:24454719

  13. The role of body size in host specificity: reciprocal transfer experiments with feather lice.

    Science.gov (United States)

    Bush, Sarah E; Clayton, Dale H

    2006-10-01

    Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.

  14. Specific Heat of Hollow Nanosphere Coupled to Substrate: Quantum Size Effects

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the help of the elastic wave theory, in the perturbed approximation the density-of-states for vibrational modes and the specific heat axe studied for different hollow Si nanospheres, coupled with a semi-infinite substrate. We find that the modes of such coupled hollow spheres are significantly broadened and shifted toward low frequencies. The specific heat of the coupled hollow nanosphere is bigger than an isolated one due to the coupling interaction and quantum size effects. The predicted coupling and size enhancements on specific heat are probed in thermal experiments.

  15. Crosslinking in viral capsids via tiling theory.

    Science.gov (United States)

    Twarock, R; Hendrix, R W

    2006-06-07

    A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.

  16. Size-specific tree mortality varies with neighbourhood crowding and disturbance in a Montane Nothofagus forest.

    Directory of Open Access Journals (Sweden)

    Jennifer M Hurst

    Full Text Available Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1 patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2 the strength and direction of neighbourhood crowding effects on size-specific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (<20 cm in diameter were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that size-asymmetric competition for light was a major cause of mortality. In contrast, large trees (≥ 20 cm in diameter were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.

  17. Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms

    NARCIS (Netherlands)

    Roos, W.H.; Ivanovska, I.L.; Evilevitch, A.; Wuite, G.J.L.

    2007-01-01

    The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its

  18. Determining size-specific emission factors for environmental tobacco smoke particles

    Energy Technology Data Exchange (ETDEWEB)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.; Sextro, Richard G.; Nazaroff, William W.

    2002-07-07

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured every minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.

  19. Structure of Hepatitis E Virion-Sized Particle Reveals an RNA-Dependent Viral Assembly Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xing, L.; Wall, J.; Li, T.-C.; Mayazaki, N.; Simon, M. N.; Moore, M.; Wang, C.-Y.; Takeda, N.; Wakita, T.; Miyamura, T.; Cheng, R. H.

    2010-10-22

    Hepatitis E virus (HEV) induces acute hepatitis in humans with a high fatality rate in pregnant women. There is a need for anti-HEV research to understand the assembly process of HEV native capsid. Here, we produced a large virion-sized and a small T=1 capsid by expressing the HEV capsid protein in insect cells with and without the N-terminal 111 residues, respectively, for comparative structural analysis. The virion-sized capsid demonstrates a T=3 icosahedral lattice and contains RNA fragment in contrast to the RNA-free T=1 capsid. However, both capsids shared common decameric organization. The in vitro assembly further demonstrated that HEV capsid protein had the intrinsic ability to form decameric intermediate. Our data suggest that RNA binding is the extrinsic factor essential for the assembly of HEV native capsids.

  20. A simple nomogram for sample size for estimating sensitivity and specificity of medical tests

    Directory of Open Access Journals (Sweden)

    Malhotra Rajeev

    2010-01-01

    Full Text Available Sensitivity and specificity measure inherent validity of a diagnostic test against a gold standard. Researchers develop new diagnostic methods to reduce the cost, risk, invasiveness, and time. Adequate sample size is a must to precisely estimate the validity of a diagnostic test. In practice, researchers generally decide about the sample size arbitrarily either at their convenience, or from the previous literature. We have devised a simple nomogram that yields statistically valid sample size for anticipated sensitivity or anticipated specificity. MS Excel version 2007 was used to derive the values required to plot the nomogram using varying absolute precision, known prevalence of disease, and 95% confidence level using the formula already available in the literature. The nomogram plot was obtained by suitably arranging the lines and distances to conform to this formula. This nomogram could be easily used to determine the sample size for estimating the sensitivity or specificity of a diagnostic test with required precision and 95% confidence level. Sample size at 90% and 99% confidence level, respectively, can also be obtained by just multiplying 0.70 and 1.75 with the number obtained for the 95% confidence level. A nomogram instantly provides the required number of subjects by just moving the ruler and can be repeatedly used without redoing the calculations. This can also be applied for reverse calculations. This nomogram is not applicable for testing of the hypothesis set-up and is applicable only when both diagnostic test and gold standard results have a dichotomous category.

  1. Effects of Sample Size, Estimation Methods, and Model Specification on Structural Equation Modeling Fit Indexes.

    Science.gov (United States)

    Fan, Xitao; Wang, Lin; Thompson, Bruce

    1999-01-01

    A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)

  2. The sizes, masses and specific star formation rates of massive galaxies at 1.3

    NARCIS (Netherlands)

    McLure, R. J.; Pearce, H. J.; Dunlop, J. S.; Cirasuolo, M.; Curtis-Lake, E.; Bruce, V. A.; Caputi, K. I.; Almaini, O.; Bonfield, D. G.; Bradshaw, E. J.; Buitrago, F.; Chuter, R.; Foucaud, S.; Hartley, W. G.; Jarvis, M. J.

    2013-01-01

    We report the results of a comprehensive study of the relationship between galaxy size, stellar mass and specific star formation rate (sSFR) at redshifts 1.3

  3. Virus capsid dissolution studied by microsecond molecular dynamics simulations.

    Science.gov (United States)

    Larsson, Daniel S D; Liljas, Lars; van der Spoel, David

    2012-01-01

    Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis.

  4. Determination of size-specific exposure settings in dental cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Ruben [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand); University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Jacobs, Reinhilde [University of Leuven, OMFS-IMPATH Research Group, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Bogaerts, Ria [University of Leuven, Laboratory of Experimental Radiotherapy, Department of Oncology, Biomedical Sciences Group, Leuven (Belgium); Bosmans, Hilde [University of Leuven, Medical Physics and Quality Assessment, Department of Imaging and Pathology, Biomedical Sciences Group, Leuven (Belgium); Panmekiate, Soontra [Chulalongkorn University, Department of Radiology, Faculty of Dentistry, Patumwan, Bangkok (Thailand)

    2017-01-15

    To estimate the possible reduction of tube output as a function of head size in dental cone-beam computed tomography (CBCT). A 16 cm PMMA phantom, containing a central and six peripheral columns filled with PMMA, was used to represent an average adult male head. The phantom was scanned using CBCT, with 0-6 peripheral columns having been removed in order to simulate varying head sizes. For five kV settings (70-90 kV), the mAs required to reach a predetermined image noise level was determined, and corresponding radiation doses were derived. Results were expressed as a function of head size, age, and gender, based on growth reference charts. The use of 90 kV consistently resulted in the largest relative dose reduction. A potential mAs reduction ranging from 7 % to 50 % was seen for the different simulated head sizes, showing an exponential relation between head size and mAs. An optimized exposure protocol based on head circumference or age/gender is proposed. A considerable dose reduction, through reduction of the mAs rather than the kV, is possible for small-sized patients in CBCT, including children and females. Size-specific exposure protocols should be clinically implemented. (orig.)

  5. Effect of voxel size when calculating patient specific radionuclide dosimetry estimates using direct Monte Carlo simulation.

    Science.gov (United States)

    Hickson, Kevin J; O'Keefe, Graeme J

    2014-09-01

    The scalable XCAT voxelised phantom was used with the GATE Monte Carlo toolkit to investigate the effect of voxel size on dosimetry estimates of internally distributed radionuclide calculated using direct Monte Carlo simulation. A uniformly distributed Fluorine-18 source was simulated in the Kidneys of the XCAT phantom with the organ self dose (kidney ← kidney) and organ cross dose (liver ← kidney) being calculated for a number of organ and voxel sizes. Patient specific dose factors (DF) from a clinically acquired FDG PET/CT study have also been calculated for kidney self dose and liver ← kidney cross dose. Using the XCAT phantom it was found that significantly small voxel sizes are required to achieve accurate calculation of organ self dose. It has also been used to show that a voxel size of 2 mm or less is suitable for accurate calculations of organ cross dose. To compensate for insufficient voxel sampling a correction factor is proposed. This correction factor is applied to the patient specific dose factors calculated with the native voxel size of the PET/CT study.

  6. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

    Science.gov (United States)

    Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.

    2016-07-01

    We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

  7. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

    Science.gov (United States)

    Krishnamani, V.; Globisch, C.; Peter, C.; Deserno, M.

    2016-10-01

    We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

  8. Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging.

    Science.gov (United States)

    Bleker, Svenja; Pawlita, Michael; Kleinschmidt, Jürgen A

    2006-01-01

    Single-stranded genomes of adeno-associated virus (AAV) are packaged into preformed capsids. It has been proposed that packaging is initiated by interaction of genome-bound Rep proteins to the capsid, thereby targeting the genome to the portal of encapsidation. Here we describe a panel of mutants with amino acid exchanges in the pores at the fivefold axes of symmetry on AAV2 capsids with reduced packaging and reduced Rep-capsid interaction. Mutation of two threonines at the rim of the fivefold pore nearly completely abolished Rep-capsid interaction and packaging. This suggests a Rep-binding site at the highly conserved amino acids at or close to the pores formed by the capsid protein pentamers. A different mutant (P. Wu, W. Xiao, T. Conlon, J. Hughes, M. Agbandje-McKenna, T. Ferkol, T. Flotte, and N. Muzyczka, J. Virol. 74:8635-8647, 2000) with an amino acid exchange at the interface of capsid protein pentamers led to a complete block of DNA encapsidation. Analysis of the capsid conformation of this mutant revealed that the pores at the fivefold axes were occupied by VP1/VP2 N termini, thereby preventing DNA introduction into the capsid. Nevertheless, the corresponding capsids had more Rep proteins bound than wild-type AAV, showing that correct Rep interaction with the capsid depends on a defined capsid conformation. Both mutant types together support the conclusion that the pores at the fivefold symmetry axes are involved in genome packaging and that capsid conformation-dependent Rep-capsid interactions play an essential role in the packaging process.

  9. Parvovirus capsid disorders cholesterol-rich membranes.

    Science.gov (United States)

    Pakkanen, Kirsi; Kirjavainen, Sanna; Mäkelä, Anna R; Rintanen, Nina; Oker-Blom, Christian; Jalonen, Tuula O; Vuento, Matti

    2009-02-06

    In this study canine parvovirus, CPV, was found to induce disorder in DPPC:cholesterol membranes in acidic conditions. This acidicity-induced fluidizing effect is suggested to originate from the N-terminus of the viral capsid protein VP1. In accordance with the model membrane studies, a fluidizing effect was seen also in the endosomal membranes during CPV infection implying an important functional role of the fluidization in the endocytic entry of the virus.

  10. Effect of meal size on the specific dynamic action of the juvenile snakehead (Channa argus).

    Science.gov (United States)

    Wang, Qianqian; Wang, Wen; Huang, Qingda; Zhang, Yurong; Luo, Yiping

    2012-04-01

    The effect of meal size on the specific dynamic action (SDA) of the juvenile snakehead (Channa argus) was assessed at 25 °C. The fish were fed with test diets at meal sizes of 0.5, 1, 2, 3, 4, and 5% body mass and the postprandial oxygen consumption rate was determined at 1-h intervals until it returned to the pre-prandial level. The peak metabolic rate increased from 237.4 to 283.2 mg O(2) kg(-1) h(-1) as the relative meal size increased from 0.5% to 3% and leveled off at 4% and 5%. Factorial metabolic scope increased from 1.53 to 1.99 and SDA duration increased from 11.7 to 32.3h as the relative meal size increased from 0.5% to 5%. The relationship between SDA duration (D) and relative meal size (M) was described as: D=4.28 M+10.62 (r(2)=0.752, Psnakehead may adopt different feeding strategies when taking in different amounts of food.

  11. On the geometry of regular icosahedral capsids containing disymmetrons

    CERN Document Server

    Ang, Kai-Siang

    2016-01-01

    Icosahedral virus capsids are composed of symmetrons, organized arrangements of capsomers. There are three types of symmetrons: disymmetrons, trisymmetrons, and pentasymmetrons, which have different shapes and are centered on the icosahedral 2-fold, 3-fold and 5-fold axes of symmetry, respectively. In 2010 [Sinkovits & Baker] gave a classification of all possible ways of building an icosahedral structure solely from trisymmetrons and pentasymmetrons, which requires the triangulation number T to be odd. In the present paper we incorporate disymmetrons to obtain a geometric classification of icosahedral viruses formed by regular penta-, tri-, and disymmetrons. For every class of solutions, we further provide formulas for symmetron sizes and parity restrictions on h, k, and T numbers. We also present several methods in which invariants may be used to classify a given configuration.

  12. Intra-specific variation in genome size in maize: cytological and phenotypic correlates

    Science.gov (United States)

    Realini, María Florencia; Poggio, Lidia; Cámara-Hernández, Julián; González, Graciela Esther

    2016-01-01

    Genome size variation accompanies the diversification and evolution of many plant species. Relationships between DNA amount and phenotypic and cytological characteristics form the basis of most hypotheses that ascribe a biological role to genome size. The goal of the present research was to investigate the intra-specific variation in the DNA content in maize populations from Northeastern Argentina and further explore the relationship between genome size and the phenotypic traits seed weight and length of the vegetative cycle. Moreover, cytological parameters such as the percentage of heterochromatin as well as the number, position and sequence composition of knobs were analysed and their relationships with 2C DNA values were explored. The populations analysed presented significant differences in 2C DNA amount, from 4.62 to 6.29 pg, representing 36.15 % of the inter-populational variation. Moreover, intra-populational genome size variation was found, varying from 1.08 to 1.63-fold. The variation in the percentage of knob heterochromatin as well as in the number, chromosome position and sequence composition of the knobs was detected among and within the populations. Although a positive relationship between genome size and the percentage of heterochromatin was observed, a significant correlation was not found. This confirms that other non-coding repetitive DNA sequences are contributing to the genome size variation. A positive relationship between DNA amount and the seed weight has been reported in a large number of species, this relationship was not found in the populations studied here. The length of the vegetative cycle showed a positive correlation with the percentage of heterochromatin. This result allowed attributing an adaptive effect to heterochromatin since the length of this cycle would be optimized via selection for an appropriate percentage of heterochromatin. PMID:26644343

  13. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  14. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  15. Impact of Capsid Conformation and Rep-Capsid Interactions on Adeno-Associated Virus Type 2 Genome Packaging

    OpenAIRE

    Bleker, Svenja; Pawlita, Michael; Kleinschmidt, Jürgen A.

    2006-01-01

    Single-stranded genomes of adeno-associated virus (AAV) are packaged into preformed capsids. It has been proposed that packaging is initiated by interaction of genome-bound Rep proteins to the capsid, thereby targeting the genome to the portal of encapsidation. Here we describe a panel of mutants with amino acid exchanges in the pores at the fivefold axes of symmetry on AAV2 capsids with reduced packaging and reduced Rep-capsid interaction. Mutation of two threonines at the rim of the fivefol...

  16. Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages.

    Science.gov (United States)

    Qin, Li; Fokine, Andrei; O'Donnell, Erin; Rao, Venigalla B; Rossmann, Michael G

    2010-01-29

    Many viruses need to stabilize their capsid structure against DNA pressure and for survival in hostile environments. The 9-kDa outer capsid protein (Soc) of bacteriophage T4, which stabilizes the virus, attaches to the capsid during the final stage of maturation. There are 870 Soc molecules that act as a "glue" between neighboring hexameric capsomers, forming a "cage" that stabilizes the T4 capsid against extremes of pH and temperature. Here we report a 1.9 A resolution crystal structure of Soc from the bacteriophage RB69, a close relative of T4. The RB69 crystal structure and a homology model of T4 Soc were fitted into the cryoelectron microscopy reconstruction of the T4 capsid. This established the region of Soc that interacts with the major capsid protein and suggested a mechanism, verified by extensive mutational and biochemical studies, for stabilization of the capsid in which the Soc trimers act as clamps between neighboring capsomers. The results demonstrate the factors involved in stabilizing not only the capsids of T4-like bacteriophages but also many other virus capsids.

  17. Potentials for site-specific design of MW sized wind turbines

    DEFF Research Database (Denmark)

    Thomsen, K.; Fuglsang, P.; Schepers, G.

    2001-01-01

    The potential for site specific design of MW sized wind turbines is quantified by comparing design loads for wind turbines installed at a range of different sites. The sites comprise on-shore normal flat terrain stand-alone conditions and wind farm conditions together with offshore and mountainous...... complex terrain wind farms. The design loads are established for a 1 MW active stall regulated wind turbine with the aeroelastic code HAWC. The load analysis is limited to fatigue loads. We do not consider ultimate loads in this paper. The results illustrate the differences in design wind conditions...... for different sites and the related differences in design loads for the 1 MW wind turbine. Based on the difference in the design loads, the potentials for site specific design of the wind turbine main components are identified. The results show that the variation in aerodynamically driven loads and energy...

  18. Imaging of the alphavirus capsid protein during virus replication.

    Science.gov (United States)

    Zheng, Yan; Kielian, Margaret

    2013-09-01

    Alphaviruses are enveloped viruses with highly organized structures. The nucleocapsid (NC) core contains a capsid protein lattice enclosing the plus-sense RNA genome, and it is surrounded by a lipid bilayer containing a lattice of the E1 and E2 envelope glycoproteins. Capsid protein is synthesized in the cytoplasm and particle budding occurs at the plasma membrane (PM), but the traffic and assembly of viral components and the exit of virions from host cells are not well understood. To visualize the dynamics of capsid protein during infection, we developed a Sindbis virus infectious clone tagged with a tetracysteine motif. Tagged capsid protein could be fluorescently labeled with biarsenical dyes in living cells without effects on virus growth, morphology, or protein distribution. Live cell imaging and colocalization experiments defined distinct groups of capsid foci in infected cells. We observed highly motile internal puncta that colocalized with E2 protein, which may represent the transport machinery that capsid protein uses to reach the PM. Capsid was also found in larger nonmotile internal structures that colocalized with cellular G3BP and viral nsP3. Thus, capsid may play an unforeseen role in these previously observed G3BP-positive foci, such as regulation of cellular stress granules. Capsid puncta were also observed at the PM. These puncta colocalized with E2 and recruited newly synthesized capsid protein; thus, they may be sites of virus assembly and egress. Together, our studies provide the first dynamic views of the alphavirus capsid protein in living cells and a system to define detailed mechanisms during alphavirus infection.

  19. Molecular interactions of Epstein-Barr virus capsid proteins.

    Science.gov (United States)

    Wang, Wen-Hung; Chang, Li-Kwan; Liu, Shih-Tung

    2011-02-01

    The capsids of herpesviruses, which comprise major and minor capsid proteins, have a common icosahedral structure with 162 capsomers. An electron microscopic study shows that Epstein-Barr virus (EBV) capsids in the nucleus are immunolabeled by anti-BDLF1 and anti-BORF1 antibodies, indicating that BDLF1 and BORF1 are the minor capsid proteins of EBV. Cross-linking and electrophoresis studies of purified BDLF1 and BORF1 revealed that these two proteins form a triplex that is similar to that formed by the minor capsid proteins, VP19C and VP23, of herpes simplex virus type 1 (HSV-1). Although the interaction between VP23, a homolog of BDLF1, and the major capsid protein VP5 could not be verified biochemically in earlier studies, the interaction between BDLF1 and the EBV major capsid protein, viral capsid antigen (VCA), can be confirmed by glutathione S-transferase (GST) pulldown assay and coimmunoprecipitation. Additionally, in HSV-1, VP5 interacts with only the middle region of VP19C; in EBV, VCA interacts with both the N-terminal and middle regions of BORF1, a homolog of VP19C, revealing that the proteins in the EBV triplex interact with the major capsid protein differently from those in HSV-1. A GST pulldown study also identifies the oligomerization domains in VCA and the dimerization domain in BDLF1. The results presented herein reveal how the EBV capsid proteins interact and thereby improve our understanding of the capsid structure of the virus.

  20. Size dependence of the magnetic relaxation and specific power absorption in iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lima, E. [CONICET and Instituto de Nanociencia y Nanotecnologia and Centro Atomico Bariloche (Argentina); Torres, T. E. [University of Zaragoza, Instituto de Nanociencia de Aragon (INA) and Departamento de Fisica de la Materia Condensada and Laboratorio de Microscopias Avanzadas (LMA) (Spain); Rossi, L. M. [Instituto de Quimica, Universidade de Sao Paulo (Brazil); Rechenberg, H. R. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Berquo, T. S. [Institute of Rock Magnetism, University of Minnesota (United States); Ibarra, A. [University of Zaragoza, INA and LMA (Spain); Marquina, C. [CSIC, Universidad de Zaragoza, Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon (ICMA) (Spain); Ibarra, M. R. [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada and LMA (Spain); Goya, G. F., E-mail: goya@unizar.es [University of Zaragoza, INA and Departamento de Fisica de la Materia Condensada (Spain)

    2013-05-15

    In this study, magnetic and power absorption properties of a series of iron oxide nanoparticles with average sizes Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket ranging from 3 to 23 nm were reported. The nanoparticles were prepared by thermal decomposition of Iron(III) acetylacetonate in organic media. From the careful characterization of the magnetic and physicochemical properties of these samples, the specific power absorption (SPA) values experimentally found were numerically reproduced, as well as their dependence with particle size, using a simple model of Brownian and Neel relaxation at room temperature. SPA experiments in ac magnetic fields (H{sub 0} = 13 kA/m and f = 250 kHz) indicated that the magnetic and rheological properties played a crucial role determining the heating efficiency at different conditions. A maximum SPA value of 344 W/g was obtained for a sample containing nanoparticles with Left-Pointing-Angle-Bracket d Right-Pointing-Angle-Bracket = 12 nm and dispersion {sigma} = 0.25. The observed SPA dependence with particle diameter and their magnetic parameters indicated that, for the size range and experimental conditions of f and H studied in this study, both Neel and Brown relaxation mechanisms are important to the heat generation observed.

  1. Dose assessment in accordance with the measured position of size specific dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Su [Dept. of Radio-technology, Health Welfare, Wonkwang Health Science University, Iksan (Korea, Republic of); Hong, Sung Wan [Dept. of Radiology, Inje University Ilsan Paik Hospital, Iksan (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Science, Korea University, Seoul (Korea, Republic of)

    2015-12-15

    This study investigated the size specific dose estimates of difference localizer on pediatric CT image. Seventy one cases of pediatric abdomen-pelvic CT (M:F=36:35) were included in this study. Anterior-posterior and lateral diameters were measured in axial CT images. Conversion factors from American Association of Physicists in Medicine (AAPM) report 204 were obtained for effective diameter to determine size specific dose estimate (SSDE) from the CT dose index volume (CTDIvol) recorded from the dose reports. For the localizer of mid-slice SSDE was 107.63% higher than CTDIvol and that of xiphoid-process slices SSDE was higher than 92.91%. The maximum error of iliac crest slices, xiphoid process slices and femur head slices between mid-slices were 7.48%, 17.81% and 14.04%. In conclusion, despite the SSDE of difference localizer has large number of errors, SSDE should be regarded as the primary evaluation tool of the patient radiation in pediatric CT for evaluation.

  2. Specific sizes of hyaluronan oligosaccharides stimulate fibroblast migration and excisional wound repair.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available The extracellular matrix polysaccharide hyaluronan (HA plays a key role in both fibrotic and regenerative tissue repair. Accumulation of high molecular weight HA is typical of regenerative repair, which is associated with minimal inflammation and fibrosis, while fragmentation of HA is typical of postnatal wounds, which heal in the presence of inflammation and transient fibrosis. It is generally considered that HA oligosaccharides and fragments of a wide size range support these processes of adult, fibrotic wound repair yet the consequences of sized HA fragments/oligosaccharides to each repair stage is not well characterized. Here, we compared the effects of native HA, HA oligosaccharide mixtures and individual sizes (4-10 mer oligosaccharides, 5 and, 40 kDa of HA oligosaccharides and fragments, on fibroblast migration in scratch wound assays and on excisional skin wound repair in vivo. We confirm that 4-10 mer mixtures significantly stimulated scratch wound repair and further report that only the 6 and 8 mer oligosaccharides in this mixture are responsible for this effect. The HA 6 mer promoted wound closure, accumulation of wound M1 and M2 macrophages and the M2 cytokine TGFβ1, but did not increase myofibroblast differentiation. The effect of 6 mer HA on wound closure required both RHAMM and CD44 expression. In contrast, The 40 kDa HA fragment inhibited wound closure, increased the number of wound macrophages but had no effect on TGFβ1 accumulation or subsequent fibrosis. These results show that specific sizes of HA polymer have unique effects on postnatal wound repair. The ability of 6 mer HA to promote wound closure and inflammation resolution without increased myofibroblast differentiation suggests that this HA oligosaccharide could be useful for treatment of delayed or inefficient wound repair where minimal fibrosis is advantageous.

  3. Multivalent viral capsids with internal cargo for fibrin imaging.

    Directory of Open Access Journals (Sweden)

    Allie C Obermeyer

    Full Text Available Thrombosis is the cause of many cardiovascular syndromes and is a significant contributor to life-threatening diseases, such as myocardial infarction and stroke. Thrombus targeted imaging agents have the capability to provide molecular information about pathological clots, potentially improving detection, risk stratification, and therapy of thrombosis-related diseases. Nanocarriers are a promising platform for the development of molecular imaging agents as they can be modified to have external targeting ligands and internal functional cargo. In this work, we report the synthesis and use of chemically functionalized bacteriophage MS2 capsids as biomolecule-based nanoparticles for fibrin imaging. The capsids were modified using an oxidative coupling reaction, conjugating ∼90 copies of a fibrin targeting peptide to the exterior of each protein shell. The ability of the multivalent, targeted capsids to bind fibrin was first demonstrated by determining the impact on thrombin-mediated clot formation. The modified capsids out-performed the free peptides and were shown to inhibit clot formation at effective concentrations over ten-fold lower than the monomeric peptide alone. The installation of near-infrared fluorophores on the interior surface of the capsids enabled optical detection of binding to fibrin clots. The targeted capsids bound to fibrin, exhibiting higher signal-to-background than control, non-targeted MS2-based nanoagents. The in vitro assessment of the capsids suggests that fibrin-targeted MS2 capsids could be used as delivery agents to thrombi for diagnostic or therapeutic applications.

  4. Human-specific hypomethylation of CENPJ, a key brain size regulator.

    Science.gov (United States)

    Shi, Lei; Lin, Qiang; Su, Bing

    2014-03-01

    Both the enlarged brain and concurrent highly developed cognitive skills are often seen as distinctive characteristics that set humans apart from other primates. Despite this obvious differentiation, the genetic mechanisms that underlie such human-specific traits are not clearly understood. In particular, whether epigenetic regulations may play a key role in human brain evolution remain elusive. In this study, we used bisulfite sequencing to compare the methylation patterns of four known genes that regulate brain size (ASPM, CDK5RAP2, CENPJ, and MCPH1) in the prefrontal cortex among several primate species spanning the major lineages of primates (i.e., humans, great apes, lesser apes, and Old World monkeys). The results showed a human-specific hypomethylation in the 5' UTR of CENPJ in the brain, where methylation levels among humans are only about one-third of those found among nonhuman primates. Similar methylation patterns were also detected in liver, kidney, and heart tissues, although the between-species differences were much less pronounced than those in the brain. Further in vitro methylation assays indicated that the methylation status of the CENPJ promoter could influence its expression. We also detected a large difference in CENPJ expression in the human and nonhuman primate brains of both adult individuals and throughout the major stages of fetal brain development. The hypomethylation and comparatively high expression of CENPJ in the central nervous system of humans suggest that a human-specific--and likely heritable--epigenetic modification likely occurred during human evolution, potentially leading to a much larger neural progenitor pool during human brain development, which may have eventually contributed to the dramatically enlarged brain and highly developed cognitive abilities associated with humans.

  5. A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes.

    Science.gov (United States)

    Aguilar-Hidalgo, Daniel; Domínguez-Cejudo, María A; Amore, Gabriele; Brockmann, Anette; Lemos, María C; Córdoba, Antonio; Casares, Fernando

    2013-01-01

    During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression--the prospective anterior and posterior ocelli--and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.

  6. Analysis of Epstein-Barr viral DNA load, EBV-LMP2 specific cytotoxic T-lymphocytes and levels of CD4+CD25+T cells in patients with nasopharyngeal carcinomas positive for IgA antibody to EBV viral capsid antigen

    Institute of Scientific and Technical Information of China (English)

    MO Wu-ning; TANG An-zhou; ZHOU Ling; HUANG Guang-wu; WANG Zhan; ZENG Yi

    2009-01-01

    Background Epstein-Barr virus (EBV) is a herpesvirus commonly associated with several malignant diseases including nasopharyngeal carcinoma (NPC), which is a common cancer in Southeastem Asia. Previous studies showed that plasma levels of EBV-DNA might be a sensitive and reliable biomarker for the diagnosis, staging and evaluating of therapy for NPC. There are a few analyses of the levels of EBV-latent membrane protein 2 (LMP2)-specific cytotoxic T-lymphocytes (CTLs) in patients with NPC. This study was conducted to investigate the levels of EBV-LMP2-specific CTLs, EBV-DNA load and the level of CD4+CD25+T cells in such patients.Methods From February 2006 to April 2006, 62 patients with NPC, 40 healthy virus carders positive for EBV viral capsid antigen (EBV-IgA-VCA) and 40 controls were enrolled in the study. We used a highly sensitive ELISPOT assay,real-time polymerase chain reaction (PCR) and flow cytometry to measure the EBV-LMP2-specific CTL response, the EBV DNA load and the level of CD4+CD25+T cells, respectively.Results The EBV-LMP2-specific CTL responses of the samples from the control, healthy virus carders and patients with NPC were significantly different from the LMP2 epitopes, with the control and healthy virus carder samples displaying a stronger response in three cases. There were significant differences in EBV DNA load in serum between NPC and the healthy groups; patients with NPC at stages Ⅲ or Ⅳ had significantly higher viral loads compared with those at stages Ⅰ or Ⅱ. A significantly higher percentage of CD4+CD25+ T lymphocytes were detected in the patients, compared with healthy virus carriers and healthy controls. Moreover, patients with advanced stages of NPC (Ⅲ and Ⅲ) had significantly higher percentages than the patients with early stages (Ⅰ and Ⅱ).Conclusions Patients with NPC are frequently unable to establish or maintain sufficient immunosurveillance to control proliferating B cells harboring EBV and to destroy the tumor

  7. Virus capsid dissolution studied by microsecond molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Daniel S D Larsson

    Full Text Available Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis.

  8. Trimester-Specific Gestational Weight Gain and Infant Size for Gestational Age

    Science.gov (United States)

    Sridhar, Sneha B.; Xu, Fei; Hedderson, Monique M.

    2016-01-01

    Gestational weight gain is known to influence fetal growth. However, it is unclear whether the associations between gestational weight gain and fetal growth vary by trimester. In a diverse cohort of 8,977 women who delivered a singleton between 2011 and 2013, we evaluated the associations between trimester-specific gestational weight gain and infant size for gestational age. Gestational weight gain was categorized per the 2009 Institute of Medicine (IOM) recommendations; meeting the recommendations was the referent. Large for gestational age and small for gestational age were defined as birthweight > 90th percentile or <10th percentile, respectively, based on a national reference standard birthweight distribution. Logistic regression models estimated the odds of having a large or small for gestational age versus an appropriate for gestational age infant. Only gestational weight gain exceeding the IOM recommendations in the 2nd and 3rd trimesters independently increased the odds of delivering a large for gestational age infant (Odds Ratio (95% Confidence Interval): 1st: 1.17 [0.94, 1.44], 2nd: 1.47 [1.13, 1.92], 3rd: 1.70 [1.30, 2.22]). Gestational weight gain below the IOM recommendations increased the likelihood of having a small for gestational age infant in the 2nd trimester only (1.76 [1.23, 2.52]). There was effect modification, and gestational weight gain below the IOM recommendations increased the likelihood of having a small for gestational age infant in the 2nd trimester and only among women with a pre-pregnancy body mass index from 18.5–24.9 kg/m2 (2.06 [1.35, 3.15]). These findings indicate that gestational weight gain during the 2nd and 3rd trimesters is more strongly associated with infant growth. Interventions to achieve appropriate gestational weight gain may optimize infant size at birth. PMID:27442137

  9. The role of size-specific predation in the evolution and diversification of prey life histories.

    Science.gov (United States)

    Day, Troy; Abrams, Peter A; Chase, Jonathan M

    2002-05-01

    Some of the best empirical examples of life-history evolution involve responses to predation. Nevertheless, most life-history theory dealing with responses to predation has not been formulated within an explicit dynamic food-web context. In particular, most previous theory does not explicitly consider the coupled population dynamics of the focal species and its predators and resources. Here we present a model of life-history evolution that explores the evolutionary consequences of size-specific predation on small individuals when there is a trade-off between growth and reproduction. The model explicitly describes the population dynamics of a predator, the prey of interest, and its resource. The selective forces that cause life-history evolution in the prey species emerge from the ecological interactions embodied by this model and can involve important elements of frequency dependence. Our results demonstrate that the strength of the coupling between predator and prey in the community determines many aspects of life-history evolution. If the coupling is weak (as is implicitly assumed in many previous models), differences in resource productivity have no effect on the nature of life-history evolution. A single life-history strategy is favored that minimizes the equilibrium resource density (if possible). If the coupling is strong, then higher resource productivities select for faster growth into the predation size refuge. Moreover, under strong coupling it is also possible for natural selection to favor an evolutionary diversification of life histories, possibly resulting in two coexisting species with divergent life-history strategies.

  10. Sequence-specific size, structure, and stability of tight protein knots

    CERN Document Server

    Dzubiella, Joachim

    2008-01-01

    Approximately 1% of the known protein structures display knotted configurations in their native fold but their function is not understood. It has been speculated that the entanglement may inhibit mechanical protein unfolding or transport, e.g., as in cellular threading or translocation processes through narrow biological pores. Here we investigate tigh peptide knot (TPK) characteristics in detail by pulling selected 3_1 and 4_1-knotted peptides using all-atom molecular dynamics computer simulations. We find that the 3_1 and 4_1-TPK lengths are typically Delta l~4.7 nm and 6.9 nm, respectively, for a wide range of tensions (F < 1.5 nN), pointing to a pore diameter of ~2 nm below which a translocated knotted protein might get stuck. The 4_1-knot length is in agreement with recent AFM pulling experiments. Detailed TPK characteristics however, may be sequence-specific: we find a different size and structural behavior in polyglycines, and, strikingly, a strong hydrogen bonding and water molecule trapping capabi...

  11. Hierarchical Assembly of Plasmonic Nanostructures using Virus Capsid Scaffolds on DNA Origami Tiles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Debin; Capehart, Stacy L.; Pal, Suchetan; Liu, Minghui; Zhang, Lei; Schuck, P. J.; Liu, Yan; Yan, Hao; Francis, Matthew B.; De Yoreo, James J.

    2014-07-07

    Plasmonic nanoarchitectures using biological scaffolds have shown the potential to attain controllable plasmonic fluorescence via precise spatial arrangement of fluorophores and plasmonic antennae. However, previous studies report a predominance of fluorescence quenching for small metal nanoparticles (less than ~60 nm) due to their small scattering cross-sections. In this work, we report the design and performance of fluorescent plasmonic structures composed of fluorophore-modified virus capsids and gold nanoparticles (AuNPs) assembled on DNA origami tiles. The virus capsid creates a scaffold for control over the three dimensional arrangement of the fluorophores, whereas the DNA origami tile provides precise control over the distance between the capsid and the AuNP. Using finite-difference time-domain (FDTD) numerical simulations and multimodal single-particle imaging measurements, we show that the judicial design of these structures places the dye molecules near the hot spot of the AuNP. This effectively increases the fluorescence intensity in the quenching regime of the AuNP, with an enhancement factor that increases with increasing AuNP size. This strategy of using biological scaffolds to control fluorescence paves the way for exploring the parameters that determine plasmonic fluorescence. It may lead to a better understanding of the antenna effects of photon absorption and emission, enabling the construction of multicomponent plasmonic systems.

  12. Nonlinear Finite Element Analysis of Nanoindentation of Viral Capsids

    CERN Document Server

    Gibbons, M M; Gibbons, Melissa M.; Klug, William S.

    2006-01-01

    Recent Atomic Force Microscope (AFM) nanoindentation experiments measuring mechanical response of the protein shells of viruses have provided a quantitative description of their strength and elasticity. To better understand and interpret these measurements, and to elucidate the underlying mechanisms, this paper adopts a course-grained modeling approach within the framework of three-dimensional nonlinear continuum elasticity. Homogeneous, isotropic, elastic, thick shell models are proposed for two capsids: the spherical Cowpea Chlorotic Mottle Virus (CCMV), and the ellipsocylindrical bacteriophage $\\phi 29$. As analyzed by the finite element method, these models enable parametric characterization of the effects of AFM tip geometry, capsid dimensions, and capsid constitutive descriptions. The generally nonlinear force response of capsids to indentation is shown to be insensitive to constitutive details, and greatly influenced by geometry. Nonlinear stiffening and softening of the force response is dependent on ...

  13. Polymorphism of DNA conformation inside the bacteriophage capsid

    OpenAIRE

    Leforestier, Amélie

    2013-01-01

    Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide vari...

  14. Quantum dot-induced viral capsid assembling in dissociation buffer.

    Science.gov (United States)

    Gao, Ding; Zhang, Zhi-Ping; Li, Feng; Men, Dong; Deng, Jiao-Yu; Wei, Hong-Ping; Zhang, Xian-En; Cui, Zong-Qiang

    2013-01-01

    Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs) are still unknown. In this article, it was found that quantum dots (QDs) can induce simian virus 40 (SV40) capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1) can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD=2.19E-10 M), which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles.

  15. Characterization of the DNA binding properties of polyomavirus capsid protein

    Science.gov (United States)

    Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.

  16. Detection of major capsid protein of infectious myonecrosis virus in shrimps using monoclonal antibodies.

    Science.gov (United States)

    Seibert, Caroline H; Borsa, Mariana; Rosa, Rafael D; Cargnin-Ferreira, Eduardo; Pereira, Alitiene M L; Grisard, Edmundo C; Zanetti, Carlos R; Pinto, Aguinaldo R

    2010-10-01

    Infectious myonecrosis virus (IMNV) has been causing a progressive disease in farm-reared shrimps in Brazil and Indonesia. Immunodiagnostic methods for IMNV detection, although reliable, are not employed currently because monoclonal antibodies (MAbs) against this virus are not available. In this study, a fragment of the IMNV major capsid protein gene, comprising amino acids 300-527 (IMNV(300-527)), was cloned and expressed in Escherichia coli. The nucleotide sequence of the recombinant IMNV(300-527) fragment displayed a high degree of identity to the major capsid protein of IMNV isolates from Brazil (99%) and Indonesia (98%). Ten MAbs were generated against the expressed fragment, and eight of these, mostly IgG(2a) or IgG(2b), were able to bind to IMNV in tissue extracts from shrimps infected naturally in immunodot-blot assays. Six of these MAbs recognized a approximately 100 kDa protein in a Western-blot, which is the predicted mass of IMNV major capsid protein, and also bound to viral inclusions present in muscle fibroses and in coagulative myonecrosis, as demonstrated by immunohistochemistry. Among all those MAbs created, four did not cross-react with non-infected shrimp tissues; this observation supports their applicability as a sensitive and specific immunodiagnosis of IMNV infection in shrimps.

  17. Trophy hunting, size, rarity and willingness to pay: inter–specific analyses of trophy prices require reliable specific data

    Directory of Open Access Journals (Sweden)

    Sarasa, M.

    2013-12-01

    Full Text Available Awareness of the importance of the wildlife trade and human perception in animal conservation is growing. Recent studies carried out on a continental and world scale have analysed the associations between trophy score, rarity and prices. As a large range of ungulates are legally hunted throughout the world and numerous ungulate taxa are threatened, the relationship between rarity and trophy prices has been studied in several species. This article briefly reviews verifiable data on species and trophy prices and compares findings with data used in recent articles. The findings show that several elements of intra–specific data were inadequately addressed and that the trophy prices considered were not necessarily representative of real trophy prices. Furthermore, the body mass used for numerous taxa did not fit current knowledge of species, and several subspecies and rarity indexes that were considered disagreed with recognized subspecies or with the real conservation status of taxa. Thus, caution should be taken when considering some reported results. To improve our understanding of the associations between wildlife trade and wildlife conservation, further studies should take into account reliable specific data, such as that from government agencies, rather than publicity data.

  18. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    Science.gov (United States)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  19. Discrimination of Terrestrial Source Materials to the Northern North Atlantic Using Particle Size Specific Magnetic Measurements and Electron Microscopy.

    Science.gov (United States)

    Hatfield, R. G.; Stoner, J. S.; Tepley, F. J., III

    2015-12-01

    We investigate the magnetic properties of different terrestrial sediment fractions (sand, silt, and clay) from Iceland and Greenland as major sediment sources to the northern North Atlantic (NNA). Magnetic susceptibility (MS) and hysteresis data have previously shown to be strongly particle size dependent with silt (3-63μm) important for hosting the ferrimagnetic fraction and discriminating source. Here we expand upon these data with more fundamental observations including low temperature remanence, low and high temperature MS, and electron microscopy. All Iceland fractions lack a Verwey transition (Tv) and MS decreases gradually on heating between 100-500°C, consistent with (TM60) titanomagnetite. Frequency dependent MS (fd%; 1-998 Hz) of ~8% across all Iceland fractions implies significant SP grain populations within the average Day plot determined PSD grain size. Homogeneity in magnetic grain size across all Icelandic fractions implies a disconnect with physical grain size that is visualized in electron backscatter images as fine Fe-rich fragments are included within larger host grains. In contrast Greenlandic silt and sand possess a strong Tv and MS values that fall steeply between 560-580°C on heating, consistent with magnetite. Greenlandic ferrimagnetic fragments within the silt and sand size fractions exist as discrete particles and average magnetic grain size scales with physical grain size; the sand fraction is dominated by MD grains and silts are coarse PSD in size. While finer PSD clays are indistinguishable from all Iceland fractions on a Day plot SP contributions are lower and the Tv is more pronounced in Greenland clay. These new magnetic mineralogy, magnetic grain size, and electron microscopy measurements expand the differentiation of source and grain size of NNA source materials, and further highlight the necessity for grain-size specific magnetic measurements to isolate source from physical grain size variation in bulk marine sediment cores.

  20. Characterization of size-specific particulate matter emission rates for a simulated medical laser procedure--a pilot study.

    Science.gov (United States)

    Lopez, Ramon; Lacey, Steven E; Lippert, Julia F; Liu, Li C; Esmen, Nurtan A; Conroy, Lorraine M

    2015-05-01

    Prior investigation on medical laser interaction with tissue has suggested device operational parameter settings influence laser generated air contaminant emission, but this has not been systematically explored. A laboratory-based simulated medical laser procedure was designed and pilot tested to determine the effect of laser operational parameters on the size-specific mass emission rate of laser generated particulate matter. Porcine tissue was lased in an emission chamber using two medical laser systems (CO2, λ = 10,600 nm; Ho:YAG, λ = 2100 nm) in a fractional factorial study design by varying three operational parameters (beam diameter, pulse repetition frequency, and power) between two levels (high and low) and the resultant plume was measured using two real-time size-selective particle counters. Particle count concentrations were converted to mass emission rates before an analysis of variance was used to determine the influence of operational parameter settings on size-specific mass emission rate. Particle shape and diameter were described for a limited number of samples by collecting particles on polycarbonate filters, and photographed using a scanning electron microscope (SEM) to examine method of particle formation. An increase in power and decrease in beam diameter led to an increase in mass emission for the Ho:YAG laser at all size ranges. For the CO2 laser, emission rates were dependent on particle size and were not statistically significant for particle ranges between 5 and 10 µm. When any parameter level was increased, emission rate of the smallest particle size range also increased. Beam diameter was the most influential variable for both lasers, and the operational parameters tested explained the most variability at the smallest particle size range. Particle shape was variable and some particles observed by SEM were likely created from mechanical methods. This study provides a foundation for future investigations to better estimate size-specific

  1. Clinical relevance is associated with allergen-specific wheal size in skin prick testing

    DEFF Research Database (Denmark)

    Haahtela, T.; Burbach, G. J.; Bachert, C.;

    2014-01-01

    BackgroundWithin a large prospective study, the Global Asthma and Allergy European Network (GA(2)LEN) has collected skin prick test (SPT) data throughout Europe to make recommendations for SPT in clinical settings. ObjectiveTo improve clinical interpretation of SPT results for inhalant allergens...... by providing quantitative decision points. MethodsThe GA(2)LEN SPT study with 3068 valid data sets was used to investigate the relationship between SPT results and patient-reported clinical relevance for each of the 18 inhalant allergens as well as SPT wheal size and physician-diagnosed allergy (rhinitis......) to 87-89% (grass, mites) of the positive SPT reactions (wheal size3mm) were associated with patient-reported clinical symptoms when exposed to the respective allergen. The risk of allergic symptoms increased significantly with larger wheal sizes for 17 of the 18 allergens tested. Children with positive...

  2. Effects of meal size, meal type, body temperature, and body size on the specific dynamic action of the marine toad, Bufo marinus.

    Science.gov (United States)

    Secor, Stephen M; Faulkner, Angela C

    2002-01-01

    Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.

  3. Industry-specificities and Size of Corporations: Determinants of Ownership Structures

    NARCIS (Netherlands)

    van der Elst, C.

    2004-01-01

    This paper analyses ownership concentration in six European countries and empirically studies the rent-seeking theory. This theory states that ownership concentration not only depends on the level of investor protection but also on company-specific and industry-specific parameters. This study analys

  4. Diminished reovirus capsid stability alters disease pathogenesis and littermate transmission.

    Directory of Open Access Journals (Sweden)

    Joshua D Doyle

    2015-03-01

    Full Text Available Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.

  5. Considerations on the practical application of the size-specific dose estimation (SSDE) method of AAPM Report 204.

    Science.gov (United States)

    Noferini, Linhsia; Fulcheri, Christian; Taddeucci, Adriana; Bartolini, Marco; Gori, Cesare

    2014-07-01

    Computed tomography (CT) is responsible for much of the radiation exposure to the population for medical purposes. The technique requires high doses that vary widely from center to center, and for different scanners and radiologists as well. In order to monitor doses to patients, the American Association of Physicists in Medicine has developed the size-specific dose estimate (SSDE), which consists of the determination of patient size dependent coefficients for converting the standard dosimetric index, CTDIvol, into an estimate of the dose actually absorbed by the patient. The present work deals with issues concerning the use of SSDE in the clinical practice. First the issue regarding how much SSDE varies when, for a given CT protocol, the scan covers slightly different volumes is addressed. Then, the differences among SSDE values derived from different patient size descriptors are investigated. For these purposes, data from a clinical archive are analyzed by an automatic procedure specifically developed for SSDE.

  6. Habitat-specific size structure variations in periwinkle populations ( Littorina littorea) caused by biotic factors

    Science.gov (United States)

    Eschweiler, Nina; Molis, Markus; Buschbaum, Christian

    2009-06-01

    Shell size distribution patterns of marine gastropod populations may vary considerably across different environments. We investigated the size and density structure of genetically continuous periwinkle populations ( Littorina littorea) on an exposed rocky and a sheltered sedimentary environment on two nearby islands in the south-eastern North Sea (German Bight). On the sedimentary shore, periwinkle density (917 ± 722 individuals m-2) was about three times higher than on the rocky shore (296 ± 168 individuals m-2). Mean (9.8 ± 3.9 mm) and maximum (22 mm) shell size of L. littorea on the sedimentary shore were smaller than on the rocky shore (21.5 ± 4.2 and 32 mm, respectively), where only few small snails were found. Additionally, periwinkle shells were thicker and stronger on the rocky than on the sedimentary shore. To ascertain mechanisms responsible for differences in population structures, we examined periwinkles in both environments for growth rate, predation pressure, infection with a shell boring polychaete ( Polydora ciliata) and parasitic infestation by trematodes. A crosswise transplantation experiment revealed better growth conditions on the sedimentary than on the rocky shore. However, crab abundance and prevalence of parasites and P. ciliata in adult snails were higher on the sedimentary shore. Previous investigations showed that crabs prefer large periwinkles infested with P. ciliata. Thus, we suggest that parasites and shell boring P. ciliata in conjunction with an increased crab predation pressure are responsible for low abundances of large periwinkles on the sedimentary shore while high wave exposure may explain low densities of juvenile L. littorea on the rocky shore. We conclude that biotic factors may strongly contribute to observed differences in size structure of the L. littorea populations studied on rocky and sedimentary shores.

  7. Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly

    Science.gov (United States)

    Grime, John M. A.; Dama, James F.; Ganser-Pornillos, Barbie K.; Woodward, Cora L.; Jensen, Grant J.; Yeager, Mark; Voth, Gregory A.

    2016-05-01

    The maturation of HIV-1 viral particles is essential for viral infectivity. During maturation, many copies of the capsid protein (CA) self-assemble into a capsid shell to enclose the viral RNA. The mechanistic details of the initiation and early stages of capsid assembly remain to be delineated. We present coarse-grained simulations of capsid assembly under various conditions, considering not only capsid lattice self-assembly but also the potential disassembly of capsid upon delivery to the cytoplasm of a target cell. The effects of CA concentration, molecular crowding, and the conformational variability of CA are described, with results indicating that capsid nucleation and growth is a multi-stage process requiring well-defined metastable intermediates. Generation of the mature capsid lattice is sensitive to local conditions, with relatively subtle changes in CA concentration and molecular crowding influencing self-assembly and the ensemble of structural morphologies.

  8. Polymorphism of DNA conformation inside the bacteriophage capsid.

    Science.gov (United States)

    Leforestier, Amélie

    2013-03-01

    Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.

  9. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  10. The Strategic Choices of Small Medium-Sized Enterprises Integration: Evidence from Specific Economic Territory

    Directory of Open Access Journals (Sweden)

    Mohsen Brahmi

    2015-04-01

    Full Text Available The emergence of SMEs was conditioned by institutional and economic factors. These factors, as well as other internal promoted the integration of strategic thinking within this type of business, by adopting suitable strategies. Indeed, our research objective is to determine the extent of adoption of the approach and the strategic decision by the Algerian SMEs, and highlight the characteristics of its strategies through a survey on a sample of SMEs located in the West of the Algeria. The analysis of this empirical study will be preceded by a theoretical overview that aims to show the different concepts of business strategy, and more specifically those of the SMEs, and then to identify the specifics of strategic management within the SME. Finally, we will analyze the survey data basing on graphics to determine the different strategic options available to theses SMEs from the sample according to this specific economic territory.

  11. Quantum dot-induced viral capsid assembling in dissociation buffer

    Directory of Open Access Journals (Sweden)

    Gao D

    2013-06-01

    Full Text Available Ding Gao,1,2 Zhi-Ping Zhang,1 Feng Li,3 Dong Men,1 Jiao-Yu Deng,1 Hong-Ping Wei,1 Xian-En Zhang,1 Zong-Qiang Cui1 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 2Graduate University of Chinese Academy of Sciences, Beijing, 3Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China Abstract: Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs are still unknown. In this article, it was found that quantum dots (QDs can induce simian virus 40 (SV40 capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1 can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD = 2.19E-10 M, which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles. Keywords: quantum dots, simian virus 40, self-assembly, encapsulation, virus-based nanoparticles

  12. Specific Approach for Size-Control III-V Quantum/Nano LED Fabrication for Prospective White Light Source

    Science.gov (United States)

    2007-08-10

    The Final Report Title: Specific approach for size-control III-V based quantum/nano LED fabrication for prospective white ...COVERED 14-06-2005 to 14-12-2005 4. TITLE AND SUBTITLE Size controlled GaN based quantum dot LED for the prospective white light source 5a. CONTRACT...structure LED The physical model of the PC LED for optical simulation is shown in Figure 10. The LED are composed with p-type GaN/ MQW of InGaN /GaN/ n

  13. Sphingomyelin induces structural alteration in canine parvovirus capsid

    OpenAIRE

    Pakkanen, Kirsi; Karttunen, Jenni; Virtanen, Salla; Vuento, Matti

    2008-01-01

    One of the essential steps in canine parvovirus (CPV) infection, the release from endosomal vesicles, is dominated by interactions between the virus capsid and the endosomal membranes. In this study, the effect of sphingomyelin and phosphatidyl serine on canine parvovirus capsid and on the phospholipase A2 (PLA2) activity of CPV VP1 unique N-terminus was analyzed. Accordingly, a significant (P ≤ 0.05) shift of tryptophan fluorescence emission peak was detected at pH 5.5 in the presen...

  14. Finite Size Effect on the Specific Heat of a Bose Gas in Multi-filament Cables

    Science.gov (United States)

    Guijarro, G.; Solís, M. A.

    2016-05-01

    The specific heat for an ideal Bose gas confined in semi-infinite multi-filament cables is analyzed. We start with a Bose gas inside a semi-infinite tube of impenetrable walls and finite rectangular cross section. The internal filament structure is created by applying to the gas two, mutually perpendicular, finite Kronig-Penney delta potentials along the tube cross section, while particles are free to move perpendicular to the cross section. The energy spectrum accessible to the particles is obtained and introduced into the grand potential to calculate the specific heat of the system as a function of temperature for different values of the periodic structure parameters such as the cross-section area, the wall impenetrability, and the number of filaments. The specific heat as a function of temperature shows at least two maxima and one minimum. The main difference with respect to the infinite case is that the peak associated with the BE condensation becomes a smoothed maximum, namely there is not a jump in the specific heat derivative, whose temperature no longer represents a critical point.

  15. Prenatal famine exposure has sex-specific effects on brain size.

    Science.gov (United States)

    de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J

    2016-08-01

    Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract.

  16. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Science.gov (United States)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  17. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  18. Are the determinants of markup size industry-specific? The case of Slovenian manufacturing firms

    Directory of Open Access Journals (Sweden)

    Ponikvar Nina

    2011-01-01

    Full Text Available The aim of this paper is to identify factors that affect the pricing policy in Slovenian manufacturing firms in terms of the markup size and, most of all, to explicitly account for the possibility of differences in pricing procedures among manufacturing industries. Accordingly, the analysis of the dynamic panel is carried out on an industry-by-industry basis, allowing the coefficients on the markup determinants to vary across industries. We find that the oligopoly theory of markup determination for the most part holds for the manufacturing sector as a whole, although large variability in markup determinants exists across industries within the Slovenian manufacturing. Our main conclusion is that each industry should be investigated separately in detail in order to assess the precise role of markup factors in the markup-determination process.

  19. Crystal Structure of the Human Astrovirus Capsid Protein

    Science.gov (United States)

    Toh, Yukimatsu; Harper, Justin; Dryden, Kelly A.; Yeager, Mark; Méndez, Ernesto

    2016-01-01

    ABSTRACT Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP9071–415 (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP9071–415 encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP9071–415 is comprised of two domains: an S domain, which adopts the typical jelly-roll β-barrel fold, and a P1 domain, which forms a squashed β-barrel consisting of six antiparallel β-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP9071–415 structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus

  20. Influence of voxel size on specific absorbed fractions and S-values in a mouse voxel phantom.

    Science.gov (United States)

    Mohammadi, A; Kinase, S

    2011-02-01

    Photon and electron specific absorbed fractions (SAFs) and S-values have been evaluated using mouse voxel phantoms. In voxel phantoms, it is important to choose the voxel size carefully since it affects the accuracy of results. In this study, two mouse voxel phantoms were constructed, with cubic voxels, one with 0.1-mm sides and the other with 0.4-mm sides. The sources were considered to be distributed uniformly in the main organs and the radiation transport was simulated using the Monte Carlo code EGS4. It was found that the effect of voxel size on SAFs for self-irradiation was not high (voxel size was investigated on S-values for some beta emitters such as (131)I, (153)Sm, (188)Re and (90)Y.

  1. Sphingomyelin induces structural alteration in canine parvovirus capsid.

    Science.gov (United States)

    Pakkanen, Kirsi; Karttunen, Jenni; Virtanen, Salla; Vuento, Matti

    2008-03-01

    One of the essential steps in canine parvovirus (CPV) infection, the release from endosomal vesicles, is dominated by interactions between the virus capsid and the endosomal membranes. In this study, the effect of sphingomyelin and phosphatidyl serine on canine parvovirus capsid and on the phospholipase A(2) (PLA(2)) activity of CPV VP1 unique N-terminus was analyzed. Accordingly, a significant (P< or =0.05) shift of tryptophan fluorescence emission peak was detected at pH 5.5 in the presence of sphingomyelin, whereas at pH 7.4 a similar but minor shift was observed. This effect may relate to the exposure of VP1 N-terminus in acidic pH as well as to interactions between sphingomyelin and CPV. When the phenomenon was further characterized using circular dichroism spectroscopy, differences in CPV capsid CD spectra with and without sphingomyelin and phosphatidyl serine were detected, corresponding to data obtained with tryptophan fluorescence. However, when the enzymatic activity of CPV PLA(2) was tested in the presence of sphingomyelin, no significant effect in the function of the enzyme was detected. Thus, the structural changes observed with spectroscopic techniques appear not to manipulate the activity of CPV PLA(2), and may therefore implicate alternative interactions between CPV capsid and sphingomyelin.

  2. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  3. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Roed, Jørn;

    1997-01-01

    The process of aerosol deposition on indoor surfaces has implications for human exposure to particulate contaminants of both indoor and outdoor origin. In the radiological context, current accident models assume a uniform Dose Reduction Factor (DRF) of 0.5 for indoor residence during the outdoor...... and dispersed in unfurnished and furnished rooms; the decay rate of the particles was then inferred from analysis of sequential air samples. Allowing for the differences in furnishing and level of occupancy between the tests, consistent aerosol deposition velocities were determined and, for furnished rooms...... with previous measurements of I/O ratios for fine and coarse particles. It was concluded that, for realistic dose estimates, a radioisotope-specific factor may be merited. (C) 1997 Elsevier Science Ltd....

  4. VP2 capsid domain of the H-1 parvovirus determines susceptibility of human cancer cells to H-1 viral infection.

    Science.gov (United States)

    Cho, I-R; Kaowinn, S; Song, J; Kim, S; Koh, S S; Kang, H-Y; Ha, N-C; Lee, K H; Jun, H-S; Chung, Y-H

    2015-05-01

    Although H-1 parvovirus is used as an antitumor agent, not much is known about the relationship between its specific tropism and oncolytic activity. We hypothesize that VP2, a major capsid protein of H-1 virus, determines H-1-specific tropism. To assess this, we constructed chimeric H-1 viruses expressing Kilham rat virus (KRV) capsid proteins, in their complete or partial forms. Chimeric H-1 viruses (CH1, CH2 and CH3) containing the whole KRV VP2 domain could not induce cytolysis in HeLa, A549 and Panc-1 cells. However, the other chimeric H-1 viruses (CH4 and CH5) expressing a partial KRV VP2 domain induced cytolysis. Additionally, the significant cytopathic effect caused by CH4 and CH5 infection in HeLa cells resulted from preferential viral amplification via DNA replication, RNA transcription and protein synthesis. Modeling of VP2 capsid protein showed that two variable regions (VRs) (VR0 and VR2) of H-1 VP2 protein protrude outward, because of the insertion of extra amino-acid residues, as compared with those of KRV VP2 protein. This might explain the precedence of H-1 VP2 protein over KRV in determining oncolytic activity in human cancer cells. Taking these results together, we propose that the VP2 protein of oncolytic H-1 parvovirus determines its specific tropism in human cancer cells.

  5. Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits

    Directory of Open Access Journals (Sweden)

    Sylvanus Mensah

    2016-06-01

    Full Text Available Biomass allocation is closely related to species traits, resources availability and competitive abilities, and therefore it is often used to capture resource utilisation within plants. In this study, we searched for patterns in biomass allocation between foliage and wood (stem plus branch, and how they changed with tree size (diameter, species identity and functional traits (leaf area and specific wood density. Using data on the aboveground biomass of 89 trees from six species in a Mistbelt forest (South Africa, we evaluated the leaf to wood mass ratio (LWR. The effects of tree size, species identity and specific traits on LWR were tested using Generalised Linear Models. Tree size (diameter was the main driver of biomass allocation, with 44.43 % of variance explained. As expected, LWR declined significantly with increasing tree diameter. Leaf area (30.17% explained variance and wood density (12.61% explained variance also showed significant effects, after size effect was accounted for. Results also showed clear differences among species and between groups of species. Per unit of wood mass, more biomass is allocated to the foliage in the species with the larger leaf area. Inversely, less biomass is allocated to the foliage in species with higher wood density. Moreover, with increasing diameter, lower wood density species tended to allocate more biomass to foliage and less biomass to stems and branches. Overall, our results emphasise the influence of plant size and functional traits on biomass allocation, but showed that neither tree diameter and species identity nor leaf area and wood density are the only important variables.

  6. Prenatal endotoxemia and placental drug transport in the mouse: placental size-specific effects.

    Directory of Open Access Journals (Sweden)

    Enrrico Bloise

    Full Text Available Lipopolysaccharide (LPS in high doses inhibits placental multidrug resistance P-glycoprotein (P-gp--Abcb1a/b and breast cancer resistance protein (BCRP--Abcg2. This potentially impairs fetal protection against harmful factors in the maternal circulation. However, it is unknown whether LPS exposure, at doses that mimic sub-lethal clinical infection, alters placental multidrug resistance. We hypothesized that sub-lethal (fetal LPS exposure reduces placental P-gp activity. Acute LPS (n = 19;150 µg/kg; ip or vehicle (n = 19 were given to C57BL/6 mice at E15.5 and E17.5. Placentas and fetal-units were collected 4 and 24 h following injection. Chronic LPS (n = 6; 5 µg/kg/day; ip or vehicle (n = 5 were administered from E11.5-15.5 and tissues were collected 4 h after final treatment. P-gp activity was assessed by [³H]digoxin accumulation. Placental Abcb1a/b, Abcg2, interleukin-6 (Il-6, Tnf-α, Il-10 and toll-like receptor-4 (Tlr-4 mRNA were measured by qPCR. Maternal plasma IL-6 was determined. At E15.5, maternal IL-6 was elevated 4 h after single (p<0.001 and chronic (p<0.05 LPS, but levels had returned to baseline by 24 h. Placental Il-6 mRNA was also increased after acute and chronic LPS treatments (p<0.05, whereas Abcb1a/b and Abcg2 mRNA were unaffected. However, fetal [³H]digoxin accumulation was increased (p<0.05 4 h after acute LPS, and maternal [³H]digoxin myocardial accumulation was increased (p<0.05 in mice exposed to chronic LPS treatments. There was a negative correlation between fetal [³H]digoxin accumulation and placental size (p<0.0001. Acute and chronic sub-lethal LPS exposure resulted in a robust inflammatory response in the maternal systemic circulation and placenta. Acute infection decreased placental P-gp activity in a time- and gestational age-dependent manner. Chronic LPS decreased P-gp activity in the maternal myocardium and there was a trend for fetuses with smaller placentas to accumulate more P

  7. Peptide ligands incorporated into the threefold spike capsid domain to re-direct gene transduction of AAV8 and AAV9 in vivo.

    Directory of Open Access Journals (Sweden)

    Stefan Michelfelder

    Full Text Available Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT. Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes.

  8. Role of electrostatic interactions in the assembly of empty spherical viral capsids

    CERN Document Server

    Siber, Antonio

    2007-01-01

    We examine the role of electrostatic interactions in the assembly of empty spherical viral capsids. The charges on the protein subunits that make the viral capsid mutually interact and are expected to yield electrostatic repulsion acting against the assembly of capsids. Thus, attractive protein-protein interactions of non-electrostatic origin must act to enable the capsid formation. We investigate whether the interplay of repulsive electrostatic and attractive interactions between the protein subunits can result in the formation of spherical viral capsids of a preferred radius. For this to be the case, we find that the attractive interactions must depend on the angle between the neighboring protein subunits (i.e. on the mean curvature of the viral capsid) so that a particular angle(s) is (are) preferred energywise. Our results for the electrostatic contributions to energetics of viral capsids nicely correlate with recent experimental determinations of the energetics of protein-protein contacts in Hepatitis B ...

  9. CapsidMaps: protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps.

    Science.gov (United States)

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L; Reddy, Vijay S

    2015-04-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu.

  10. Production and Application of Polyclonal Antibodies Against Recombinant Capsid Protein of Extra Small Virus of Macrobrachium rosenbergii.

    Science.gov (United States)

    Neethi, V; Sivakumar, N; Kumar, Kundan; Rajendran, K V; Makesh, M

    2012-12-01

    Macrobrachium rosenbergii nodavirus along with a satellite virus, extra small virus (XSV) causes white tail disease (WTD) in the giant freshwater prawn M. rosenbergii. Infected M. rosenbergii postlarvae were collected from a hatchery in Kakinada, Andhra Pradesh. The gene coding the capsid protein of XSV was cloned in a bacterial expression vector pRSET A and the recombinant protein was expressed in Escherichia coli BL21(DE3)pLysS cells. The recombinant protein was purified by Nickel affinity chromatography. Polyclonal antibodies were produced in mice against the recombinant protein and the antibodies reacted specifically with the recombinant protein and XSV in WTD-infected tissues. This is the first report of detection of XSV using antibodies against recombinant capsid protein.

  11. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution

    Science.gov (United States)

    Schur, Florian K. M.; Hagen, Wim J. H.; Rumlová, Michaela; Ruml, Tomáš; Müller, Barbara; Kräusslich, Hans-Georg; Briggs, John A. G.

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.

  12. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    Science.gov (United States)

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  13. High capsid-genome correlation facilitates creation of AAV libraries for directed evolution.

    Science.gov (United States)

    Nonnenmacher, Mathieu; van Bakel, Harm; Hajjar, Roger J; Weber, Thomas

    2015-04-01

    Directed evolution of adeno-associated virus (AAV) through successive rounds of phenotypic selection is a powerful method to isolate variants with improved properties from large libraries of capsid mutants. Importantly, AAV libraries used for directed evolution are based on the "natural" AAV genome organization where the capsid proteins are encoded in cis from replicating genomes. This is necessary to allow the recovery of the capsid DNA after each step of phenotypic selection. For directed evolution to be used successfully, it is essential to minimize the random mixing of capsomers and the encapsidation of nonmatching viral genomes during the production of the viral libraries. Here, we demonstrate that multiple AAV capsid variants expressed from Rep/Cap containing viral genomes result in near-homogeneous capsids that display an unexpectedly high capsid-DNA correlation. Next-generation sequencing of AAV progeny generated by bulk transfection of a semi-random peptide library showed a strong counter-selection of capsid variants encoding premature stop codons, which further supports a strong capsid-genome identity correlation. Overall, our observations demonstrate that production of "natural" AAVs results in low capsid mosaicism and high capsid-genome correlation. These unique properties allow the production of highly diverse AAV libraries in a one-step procedure with a minimal loss in phenotype-genotype correlation.

  14. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    Science.gov (United States)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially

  15. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  16. Development of Viral Capsid DNA Aptamer Conjugates as Cell-Targeted Delivery Vehicles

    Science.gov (United States)

    Tong, Gary Jen-Wei

    The ability to generate semi-synthetic DNA-protein conjugates has become increasingly important in the fields of chemical biology and nanobiotechnology. As applications in these fields become more complex, there is also an increased need for methods of attaching synthetic DNA to protein substrates in a well-defined manner. This work outlines the development of new methods for site-specific DNA-protein bioconjugation, as well as the development of novel viral capsid DNA aptamer conjugates for cell-targeting purposes. In order to generate DNA-protein conjugates in a site-specific manner, chemistries orthogonal to native functional groups present on DNA and proteins were exploited. In one method, the attachment of DNA to proteins was achieved via oxime formation. This strategy involved the in situ deprotection of an allyloxycarbonyl-protected alkoxyamine-bearing DNA in the presence of a protein containing a single ketone group. The utility of this approach was demonstrated in the synthesis of a DNA-GFP conjugate. In addition to the oxime formation route, two oxidative coupling methods were also developed for DNA-protein bioconjugation. The first reaction coupled phenylenediamine-containing DNA to anilines, which had been site-specifically incorporated into proteins, in the presence of NaIO4. These reaction conditions were demonstrated on the proteins bacteriophage MS2 and GFP, and were mild enough for the components to retain both protein structure and DNA base-pairing capabilities. The second oxidative coupling reaction conjugated aniline-containing proteins to DNA bearing an o-aminophenol moiety. This reaction occurred under similarly mild conditions; however, higher coupling yields were achieved on MS2 at shorter reaction times by using this strategy. In all three of these methods, the generation of a singly-modified product was achieved. Using one of our oxidative coupling strategies, MS2-DNA aptamer conjugates were synthesized for the development of multivalent

  17. Useful scars: Physics of the capsids of archaeal viruses

    Science.gov (United States)

    Perotti, L. E.; Dharmavaram, S.; Klug, W. S.; Marian, J.; Rudnick, J.; Bruinsma, R. F.

    2016-07-01

    We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.

  18. Refinement of herpesvirus B-capsid structure on parallel supercomputers.

    Science.gov (United States)

    Zhou, Z H; Chiu, W; Haskell, K; Spears, H; Jakana, J; Rixon, F J; Scott, L R

    1998-01-01

    Electron cryomicroscopy and icosahedral reconstruction are used to obtain the three-dimensional structure of the 1250-A-diameter herpesvirus B-capsid. The centers and orientations of particles in focal pairs of 400-kV, spot-scan micrographs are determined and iteratively refined by common-lines-based local and global refinement procedures. We describe the rationale behind choosing shared-memory multiprocessor computers for executing the global refinement, which is the most computationally intensive step in the reconstruction procedure. This refinement has been implemented on three different shared-memory supercomputers. The speedup and efficiency are evaluated by using test data sets with different numbers of particles and processors. Using this parallel refinement program, we refine the herpesvirus B-capsid from 355-particle images to 13-A resolution. The map shows new structural features and interactions of the protein subunits in the three distinct morphological units: penton, hexon, and triplex of this T = 16 icosahedral particle.

  19. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    Science.gov (United States)

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  20. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects.

    Science.gov (United States)

    García, José R; Clark, Amy Y; García, Andrés J

    2016-04-01

    Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.

  1. Potential recombinant vaccine against influenza A virus based on M2e displayed on nodaviral capsid nanoparticles

    Directory of Open Access Journals (Sweden)

    Yong CY

    2015-04-01

    Full Text Available Chean Yeah Yong,1 Swee Keong Yeap,2 Kok Lian Ho,3 Abdul Rahman Omar,2,4 Wen Siang Tan1,2 1Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, 2Institute of Bioscience, 3Department of Pathology, Faculty of Medicine and Health Sciences, 4Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia Abstract: Influenza A virus poses a major threat to human health, causing outbreaks from time to time. Currently available vaccines employ inactivated viruses of different strains to provide protection against influenza virus infection. However, high mutation rates of influenza virus hemagglutinin (H and neuraminidase (N glycoproteins give rise to vaccine escape mutants. Thus, an effective vaccine providing protection against all strains of influenza virus would be a valuable asset. The ectodomain of matrix 2 protein (M2e was found to be highly conserved despite mutations of the H and N glycoproteins. Hence, one to five copies of M2e were fused to the carboxyl-terminal end of the recombinant nodavirus capsid protein derived from Macrobrachium rosenbergii. The chimeric proteins harboring up to five copies of M2e formed nanosized virus-like particles approximately 30 nm in diameter, which could be purified easily by immobilized metal affinity chromatography. BALB/c mice immunized subcutaneously with these chimeric proteins developed antibodies specifically against M2e, and the titer was proportional to the copy numbers of M2e displayed on the nodavirus capsid nanoparticles. The fusion proteins also induced a type 1 T helper immune response. Collectively, M2e displayed on the nodavirus capsid nanoparticles could provide an alternative solution to a possible influenza pandemic in the future. Keywords: matrix 2 ectodomain, nodavirus capsid, virus-like particle, fusion protein, subunit vaccine, immunogenicity

  2. Structure of recombinant capsids formed by the beta-annulus deletion mutant -- rCP (Delta48-59) of Sesbania mosaic virus.

    Science.gov (United States)

    Pappachan, Anju; Subashchandrabose, Chinnathambi; Satheshkumar, P S; Savithri, H S; Murthy, M R N

    2008-05-25

    A unique feature of several T=3 icosahedral viruses is the presence of a structure called the beta-annulus formed by extensive hydrogen bonding between protein subunits related by icosahedral three-fold axis of symmetry. This unique structure has been suggested as a molecular switch that determines the T=3 capsid assembly. In order to examine the importance of the beta-annulus, a deletion mutant of Sesbania mosaic virus coat protein in which residues 48-59 involved in the formation of the beta-annulus were deleted retaining the rest of the residues in the amino terminal segment (rCP (Delta48-59)) was constructed. When expressed in Escherichia coli, the mutant protein assembled into virus like particles of sizes close to that of the wild type virus particles. The purified capsids were crystallized and their three dimensional structure was determined at 3.6 A resolution by X-ray crystallography. The mutant capsid structure closely resembled that of the native virus particles. However, surprisingly, the structure revealed that the assembly of the particles has proceeded without the formation of the beta-annulus. Therefore, the beta-annulus is not essential for T=3 capsid assembly as speculated earlier and may be formed as a consequence of the particle assembly. This is the first structural demonstration that the virus particle morphology with and without the beta-annulus could be closely similar.

  3. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    Science.gov (United States)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  4. The Pseudorabies Virus VP1/2 Tegument Protein Is Required for Intracellular Capsid Transport†

    OpenAIRE

    Luxton, G.W. Gant; Lee, Joy I-Hsuan; Haverlock-Moyns, Sarah; Schober, Joseph Martin; Smith, Gregory Allan

    2006-01-01

    Transport of capsids in cells is critical to alphaherpesvirus infection and pathogenesis; however, viral factors required for transport have yet to be identified. Here we provide a detailed examination of capsid dynamics during the egress phase of infection in Vero cells infected with pseudorabies virus. We demonstrate that the VP1/2 tegument protein is required for processive microtubule-based transport of capsids in the cytoplasm. A second tegument protein that binds to VP1/2, UL37, was nec...

  5. Three-dimensional structure determination of capsid of Aedes albopicus C6/36 cell densovirus

    Institute of Scientific and Technical Information of China (English)

    CHENG Lingpeng; CHEN Senxiong; Jenifer M.Brannan; Joanita Jakana; ZHANG Qinfen; Z.H.Zhou; ZHANG Jingqiang

    2004-01-01

    The three-dimensional structure of capsid of Aedes albopictus C6/36 densovirus was determined to 14-(A) resolution by electron cryomicroscopy and computer reconstruction. The triangulation number of the capsid is 1. There are 12 holes in each triangular face and a spike on each 5-fold vertex. The validity of the capsid and nucleic acid densities in the reconstructions was discussed.

  6. A minimal representation of the self-assembly of virus capsids

    CERN Document Server

    Llorente, J M Gomez; Breton, J

    2013-01-01

    Viruses are biological nanosystems with a capsid of protein-made capsomer units that encloses and protects the genetic material responsible for their replication. Here we show how the geometrical constraints of the capsomer-capsomer interaction in icosahedral capsids fix the form of the shortest and universal truncated multipolar expansion of the two-body interaction between capsomers. The structures of many of the icosahedral and related virus capsids are located as single lowest energy states of this potential energy surface. Our approach unveils relevant features of the natural design of the capsids and can be of interest in fields of nanoscience and nanotechnology where similar hollow convex structures are relevant.

  7. Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids

    Science.gov (United States)

    Li, Yen-Li; Chandrasekaran, Viswanathan; Carter, Stephen D; Woodward, Cora L; Christensen, Devin E; Dryden, Kelly A; Pornillos, Owen; Yeager, Mark; Ganser-Pornillos, Barbie K; Jensen, Grant J; Sundquist, Wesley I

    2016-01-01

    TRIM5 proteins are restriction factors that block retroviral infections by binding viral capsids and preventing reverse transcription. Capsid recognition is mediated by C-terminal domains on TRIM5α (SPRY) or TRIMCyp (cyclophilin A), which interact weakly with capsids. Efficient capsid recognition also requires the conserved N-terminal tripartite motifs (TRIM), which mediate oligomerization and create avidity effects. To characterize how TRIM5 proteins recognize viral capsids, we developed methods for isolating native recombinant TRIM5 proteins and purifying stable HIV-1 capsids. Biochemical and EM analyses revealed that TRIM5 proteins assembled into hexagonal nets, both alone and on capsid surfaces. These nets comprised open hexameric rings, with the SPRY domains centered on the edges and the B-box and RING domains at the vertices. Thus, the principles of hexagonal TRIM5 assembly and capsid pattern recognition are conserved across primates, allowing TRIM5 assemblies to maintain the conformational plasticity necessary to recognize divergent and pleomorphic retroviral capsids. DOI: http://dx.doi.org/10.7554/eLife.16269.001 PMID:27253068

  8. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions.

    Science.gov (United States)

    Ling, S D; Johnson, C R

    2012-06-01

    Spatial closures in the marine environment are widely accepted as effective conservation and fisheries management tools. Given increasing human-derived stressors acting on marine ecosystems, the need for such effective action is urgently clear. Here we explore mechanisms underlying the utility of marine reserves to reinstate trophic dynamics and to increase resilience of kelp beds against climate-driven phase shift to sea urchin barrens on the rapidly warming Tasmanian east coast. Tethering and tagging experiments were used to examine size- and shelter-specific survival of the range-extending sea urchin Centrostephanus rodgersii (Diadematidae) translocated to reefs inside and outside no-take Tasmanian marine reserves. Results show that survival rates of C. rodgersii exposed on flat reef substratum by tethering were approximately seven times (small urchins 10.1 times; large urchins 6.1 times) lower on protected reef within marine reserve boundaries (high abundance of large predatory-capable lobsters) compared to fished reef (large predatory lobsters absent). When able to seek crevice shelter, tag-resighting models estimated that mortality rates of C. rodgersii were lower overall but remained 3.3 times (small urchins 2.1 times; large urchins 6.4 times) higher in the presence of large lobsters inside marine reserves, with higher survival of small urchins owing to greater access to crevices relative to large urchins. Indeed, shelter was 6.3 times and 3.1 times more important to survival of small and large urchins, respectively, on reserved relative to fished reef. Experimental results corroborate with surveys throughout the range extension region, showing greater occurrence of overgrazing on high-relief rocky habitats where shelter for C. rodgersii is readily available. This shows that ecosystem impacts mediated by range extension of such habitat-modifying organisms will be heterogeneous in space, and that marine systems with a more natural complement of large and thus

  9. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    Science.gov (United States)

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; Ferkol, Thomas; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    insertions identified several other regions that were on the surface of the capsid. These included insertions at amino acids 1, 34, 138, 266, 447, 591, and 664. Positions 1 and 138 were the N termini of VP1 and VP2, respectively; position 34 was exclusively in VP1; the remaining surface positions were located in putative loop regions of VP3. The remaining mutants, most of them partially defective, were presumably defective in steps of viral entry that were not tested in the preliminary screening, including intracellular trafficking, viral uncoating, or coreceptor binding. Finally, in vitro experiments showed that insertion of the serpin receptor ligand in the N-terminal regions of VP1 or VP2 can change the tropism of AAV. Our results provide information on AAV capsid functional domains and are useful for future design of AAV vectors for targeting of specific tissues. PMID:10954565

  10. Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins.

    Science.gov (United States)

    Sit, T L; AbouHaidar, M G

    1993-06-01

    Genomic length cDNAs of papaya mosaic virus (PMV) RNA were generated utilizing reverse transcriptase (RNase H-) for first strand synthesis, Sequenase for second strand synthesis and primers specific for the 5' and 3' termini of the viral genome. These cDNAs were cloned into plasmid pUC18 and infectious RNA transcripts were synthesized in vitro from a bacteriophage T7 RNA polymerase promoter incorporated into the 5' specific primer. The infectivity of transcripts was 16% that of native PMV RNA. Increasing the poly(A) tail length from A24 to A71 produced a 43% increase in infectivity. Transcripts synthesized with or without an m7GpppG cap structure were biologically active although uncapped transcripts were much less infectious. The addition of up to 2434 non-viral nucleotides at the 3' end of transcripts decreased but did not abolish infectivity. Insertions of two amino acid residues within the polymerase coding region inactivated viral transcripts. A single amino acid deletion within the capsid protein (CP) produced local lesions of a reduced size as compared to native PMV RNA. Viral particles could not be observed in crude extracts from lesions produced by this deletion mutant suggesting that it exists as a naked RNA species within the host. Mutations to the CP suggest that it is required not only for viral assembly but also for some other unidentified function(s) during the replication cycle.

  11. Cyclin-dependent kinase 2 phosphorylates s/t-p sites in the hepadnavirus core protein C-terminal domain and is incorporated into viral capsids.

    Science.gov (United States)

    Ludgate, Laurie; Ning, Xiaojun; Nguyen, David H; Adams, Christina; Mentzer, Laura; Hu, Jianming

    2012-11-01

    Phosphorylation of the hepadnavirus core protein C-terminal domain (CTD) is important for viral RNA packaging, reverse transcription, and subcellular localization. Hepadnavirus capsids also package a cellular kinase. The identity of the host kinase that phosphorylates the core CTD or gets packaged remains to be resolved. In particular, both the human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) core CTDs harbor several conserved serine/threonine-proline (S/T-P) sites whose phosphorylation state is known to regulate CTD functions. We report here that the endogenous kinase in the HBV capsids was blocked by chemical inhibitors of the cyclin-dependent kinases (CDKs), in particular, CDK2 inhibitors. The kinase phosphorylated the HBV CTD at the serine-proline (S-P) sites. Furthermore, we were able to detect CDK2 in purified HBV capsids by immunoblotting. Purified CDK2 phosphorylated the S/T-P sites of the HBV and DHBV CTD in vitro. Inhibitors of CDKs, of CDK2 in particular, decreased both HBV and DHBV CTD phosphorylation in vivo. Moreover, CDK2 inhibitors blocked DHBV CTD phosphorylation, specifically at the S/T-P sites, in a mammalian cell lysate. These results indicate that cellular CDK2 phosphorylates the functionally critical S/T-P sites of the hepadnavirus core CTD and is incorporated into viral capsids.

  12. Codon optimization of the rabbit hemorrhagic disease virus (RHDV) capsid gene leads to increased gene expression in Spodoptera frugiperda 9 (Sf9) cells.

    Science.gov (United States)

    Gao, Jingpeng; Meng, Chunchun; Chen, Zongyan; Li, Chuanfeng; Liu, Guangqing

    2013-01-01

    Rabbit hemorrhagic disease (RHD) is contagious and highly lethal. Commercial vaccines against RHD are produced from the livers of experimentally infected rabbits. Although several groups have reported that recombinant subunit vaccines against rabbit hemorrhagic disease virus (RHDV) are promising, application of the vaccines has been restricted due to high production costs or low yield. In the present study, we performed codon optimization of the capsid gene to increase the number of preference codons and eliminate rare codons in Spodoptera frugiperda 9 (Sf9) cells. The capsid gene was then subcloned into the pFastBac plasmid, and the recombinant baculoviruses were identified with a plaque assay. As expected, expression of the optimized capsid protein was markedly increased in the Sf9 cells, and the recombinant capsid proteins self-assembled into virus-like particles (VLPs) that were released into the cell supernatant. Rabbits inoculated with the supernatant and the purified VLPs were protected against RHDV challenge. A rapid, specific antibody response against RHDV was detected by an ELISA in all of the experimental groups. In conclusion, this strategy of producing a recombinant subunit vaccine antigen can be used to develop a low-cost, insect cell-derived recombinant subunit vaccine against RHDV.

  13. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  14. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Son [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Tabarin, Thibault [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Garvey, Megan; Pade, Corinna [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Rossy, Jérémie [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Monaghan, Paul; Hyatt, Alex [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Böcking, Till [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Leis, Andrew [CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia); Gaus, Katharina, E-mail: k.gaus@unsw.edu.au [ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220 (Australia); Mak, Johnson, E-mail: j.mak@deakin.edu.au [Deakin University, Victoria 3216 (Australia); CSIRO Australian Animal Health Laboratory, Victoria 3220 (Australia)

    2015-12-15

    Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the ‘lynchpin’ for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection. - Highlights: • Cell free viruses are able to receive external trigger that leads to apparent size expansion. • Virus envelope and CD4 receptor engagement is the lynchpin of virus size expansion. • Internal capsid organisation can influence receptor mediated virus size expansion. • Pre-existing virus-associated lipid membrane in cell free virus can accommodate the receptor mediated virus size expansion.

  15. Production, purification, and capsid stability of rhinovirus C types.

    Science.gov (United States)

    Griggs, Theodor F; Bochkov, Yury A; Nakagome, Kazuyuki; Palmenberg, Ann C; Gern, James E

    2015-06-01

    The rhinovirus C (RV-C) were discovered in 2006 and these agents are an important cause of respiratory morbidity. Little is known about their biology. RV-C15 (C15) can be produced by transfection of recombinant viral RNA into cells and subsequent purification over a 30% sucrose cushion, even though yields and infectivity of other RV-C genotypes with this protocol are low. The goal of this study was to determine whether poor RV-C yields were due to capsid instability, and moreover, to develop a robust protocol suitable for the purification of many RV-C types. Capsid stability assays indicated that virions of RV-C41 (refractory to purification) have similar tolerance for osmotic and temperature stress as RV-A16 (purified readily), although C41 is more sensitive to low pH. Modification to the purification protocol by removing detergent increased the yield of RV-C. Addition of nonfat dry milk to the sucrose cushion increased the virus yield but sacrificed purity of the viral suspension. Analysis of virus distribution following centrifugation indicated that the majority of detectable viral RNA (vRNA) was found in pellets refractory to resuspension. Reduction of the centrifugal force with commiserate increase in spin-time improved the recovery of RV-C for both C41 and C2. Transfection of primary lung fibroblasts (WisL cells) followed by the modified purification protocol further improved yields of infectious C41 and C2. Described herein is a higher yield purification protocol suitable for RV-C types refractory to the standard purification procedure. The findings suggest that aggregation-adhesion problems rather than capsid instability influence RV-C yield during purification.

  16. Size-specific interaction of alkali metal ions in the solvation of M+-benzene clusters by Ar atoms.

    Science.gov (United States)

    Huarte-Larrañaga, F; Aguilar, A; Lucas, J M; Albertí, M

    2007-08-23

    The size-specific influence of the M+ alkali ion (M = Li, Na, K, Rb, and Cs) in the solvation process of the M+-benzene clusters by Ar atoms is investigated by means of molecular dynamic simulations. To fully understand the behavior observed in M+-bz-Ar(n) clusters, solvation is also studied in clusters containing either M+ or benzene only. The potential energy surfaces employed are based on a semiempirical bond-atom decomposition, which has been developed previously by some of the authors. The outcome of the dynamics is analyzed by employing radial distribution functions, studying the evolution of the distances between the Ar atoms and the alkali ion M+ or the benzene molecule for all M+-bz-Ar(n) clusters. For all members, in the M+-bz series, the benzene molecule (bz) is found to remain strongly bound to M+ even in the presence of solvent atoms. The radial distribution functions for the heavier clusters (K+-bz, Rb+-bz, and Cs+-bz), are found to be different than for the lighter (Na+-bz and Li+-bz) ones.

  17. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress

    Directory of Open Access Journals (Sweden)

    Roy Polly

    2007-01-01

    Full Text Available Abstract Background The VP2 outer capsid protein Bluetongue Virus (BTV is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. Results In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of aminio acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. Conclusion The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii Deletion of amino acids 65–114 or mutation of amino acids 70–72 to DVD abrogates vimentin association. iii Finally

  18. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability.

    Science.gov (United States)

    Selzer, Lisa; Katen, Sarah P; Zlotnick, Adam

    2014-09-02

    During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.

  19. Epitope-distal effects accompany the binding of two distinct antibodies to hepatitis B virus capsids

    NARCIS (Netherlands)

    Bereszczak, J.Z.; Rose, R.J.; Duijn, E. van; Watts, N.R.; Wingfield, P.T.; Steven, A.C.; Heck, A.J.R.

    2013-01-01

    Infection of humans by hepatitis B virus (HBV) induces the copious production of antibodies directed against the capsid protein (Cp). A large variety of anticapsid antibodies have been identified that differ in their epitopes. These data, and the status of the capsid as a major clinical antigen, mot

  20. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen;

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  1. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  2. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits.

    Science.gov (United States)

    Guo, Huimin; Zhu, Jie; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Sun, Shiqi; Liu, Guangqing

    2016-07-01

    In this study, virus-like particles (VLPs) derived from rabbit hemorrhagic disease virus (RHDV) were evaluated for the development of a vaccine against RHDV infection. The VP60 gene was cloned and inserted into a pSMK expression vector containing a small ubiquitin-like modifier (SUMO) tag that can promote the soluble expression of heterologous proteins in Escherichia coli cells. After expression and purification of His-SUMO-VP60 and cleavage of the SUMO tag, we found that the RHDV VP60 protein had self-assembled into VLPs with a similar shape and smaller size compared with authentic RHDV capsid. Next, the antigenicity and immunogenicity of the VLPs were examined. The results showed that RHDV-specific responses were clearly induced in rabbits and that all rabbits in the VLP group survived while those in the negative control group died within 72 h post-infection. These results suggest that VLP-based RHDV could be a promising RHDV vaccine candidate.

  3. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  4. A 1-D Size Specific Numerical Model for Gravel Transport That Includes Sediment Exchange with a Floodplain

    Science.gov (United States)

    Lauer, Wesley; Viparelli, Enrica; Piegay, Herve

    2014-05-01

    Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a

  5. Differential sex-specific walking kinematics in leghorn chickens (Gallus gallus domesticus) selectively bred for different body size.

    Science.gov (United States)

    Rose, Kayleigh A; Codd, Jonathan R; Nudds, Robert L

    2016-08-15

    The differing limb dynamics and postures of small and large terrestrial animals may be mechanisms for minimising metabolic costs under scale-dependent muscle force, work and power demands; however, empirical evidence for this is lacking. Leghorn chickens (Gallus gallus domesticus) are highly dimorphic: males have greater body mass and relative muscle mass than females, which are permanently gravid and have greater relative intestinal mass. Furthermore, leghorns are selected for standard (large) and bantam (small) varieties and the former are sexually dimorphic in posture, with females having a more upright limb. Here, high-speed videography and morphological measurements were used to examine the walking gaits of leghorn chickens of the two varieties and sexes. Hindlimb skeletal elements were geometrically similar among the bird groups, yet the bird groups did not move with dynamic similarity. In agreement with the interspecific scaling of relative duty factor (DF, the proportion of a stride period with ground contact for any given foot) with body mass, bantams walked with greater DF than standards, and females walked with greater DF than males. Greater DF in females than in males was achieved via variety-specific kinematic mechanisms, associated with the presence/absence of postural dimorphism. Females may require greater DF in order to reduce peak muscle forces and minimise power demands associated with lower muscle to reproductive tissue mass ratios and smaller body size. Furthermore, a more upright posture observed in the standard, but not bantam, females, may relate to minimising the work demands of being larger and having proportionally larger reproductive tissue volume. Lower DF in males relative to females may also be a work-minimising strategy and/or due to greater limb inertia (as a result of greater pelvic limb muscle mass) prolonging the swing phase.

  6. Phylogenetic Diversity of Marine Cyanophage Isolates and Natural Virus Communities as Revealed by Sequences of Viral Capsid Assembly Protein Gene g20†

    OpenAIRE

    Zhong, Yan; Chen, Feng; Wilhelm, Steven W.; Poorvin, Leo; Hodson, Robert E.

    2002-01-01

    In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanoph...

  7. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids

    OpenAIRE

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; James F Conway; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated reco...

  8. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-12-18

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H/sub 2/O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H/sub 2/O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H/sub 2/O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H/sub 2/O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions.

  9. Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Nicholas [Univ. of California, Berkeley, CA (United States); Liu, Minghui [Arizona State Univ., Tempe, AZ (United States); Tong, Gary J [Univ. of California, Berkeley, CA (United States); Li, Zhe [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Francis, Matthew B [Univ. of California, Berkeley, CA (United States)

    2010-06-24

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (~100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  10. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Science.gov (United States)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  11. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  12. Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid.

    Science.gov (United States)

    Li, Qin; Shivachandra, Sathish B; Zhang, Zhihong; Rao, Venigalla B

    2007-07-27

    Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.

  13. Assembly of bacteriophage T7. Dimensions of the bacteriophage and its capsids

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, R.M.; Serwer, P.; Ross, M.J.

    1981-12-01

    The dimensions of bacteriophage T7 and T7 capsids have been investigated by small-angle x-ray scattering. Phage T7 behaves like a sphere of uniform density with an outer radius of 301 +/- 2 A (excluding the phage tail) and a calculated volume for protein plus nucleic acid of 1.14 +/- 0.05 x 10/sup -16/ ml. The outer radius determined of T7 phage in solution is approx.30% greater than the radius measured from electron micrographs, which indicates that considerable shrinkage occurs during preparation for electron microscopy. Capsids that have a phagelike envelope and do not contain DNA were obtained from lysates of T7-infected Escherichia coli (capsid II) and by separating the capsid component of T7 phage from the phage DNA by means of temperature shock (capsid IV). In both cases the peak protein density is at a radius of 275 A; the outer radius is 286 +/- 4 A, approx.5% smaller than the envelope of T7 phage. The thickness of the envelope of capsid II is 22 +/- 4 A, consistent with the thickness of protein estimated to be 23 +/- 5 A in whole T7 phage, as seen on electron micrographs in which the internal DNA is positively stained. The volume in T7 phage available to package DNA is estimated to be 9.2 +/- 0.4 x 10/sup -17/ ml. The packaged DNA adopts a regular packing with 23.6 A interplanar spacing between DNA strands. The angular width of the 23.6 A reflection shows that the mean DNA-DNA spacing throughout the phage head is 27.5 +/- <2.2 A. A T7 precursor capsid (capsid I) expands when pelleted for x-ray scattering in the ultracentrifuge to essentially the same outer dimensions as for capsids II and IV. This expansion of capsid I can be prevented by fixing with glutaraldehyde; fixed capsid I has peak density at a radius of 247 A, 10% less than capsid II or IV.

  14. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor.

  15. The Suramin Derivative NF449 Interacts with the 5-fold Vertex of the Enterovirus A71 Capsid to Prevent Virus Attachment to PSGL-1 and Heparan Sulfate.

    Directory of Open Access Journals (Sweden)

    Yorihiro Nishimura

    2015-10-01

    Full Text Available NF449, a sulfated compound derived from the antiparasitic drug suramin, was previously reported to inhibit infection by enterovirus A71 (EV-A71. In the current work, we found that NF449 inhibits virus attachment to target cells, and specifically blocks virus interaction with two identified receptors--the P-selectin ligand, PSGL-1, and heparan sulfate glycosaminoglycan--with no effect on virus binding to a third receptor, the scavenger receptor SCARB2. We also examined a number of commercially available suramin analogues, and newly synthesized derivatives of NF449; among these, NF110 and NM16, like NF449, inhibited virus attachment at submicromolar concentrations. PSGL-1 and heparan sulfate, but not SCARB2, are both sulfated molecules, and their interaction with EV-A71 is thought to involve positively charged capsid residues, including a conserved lysine at VP1-244, near the icosahedral 5-fold vertex. We found that mutation of VP1-244 resulted in resistance to NF449, suggesting that this residue is involved in NF449 interaction with the virus capsid. Consistent with this idea, NF449 and NF110 prevented virus interaction with monoclonal antibody MA28-7, which specifically recognizes an epitope overlapping VP1-244 at the 5-fold vertex. Based on these observations we propose that NF449 and related compounds compete with sulfated receptor molecules for a binding site at the 5-fold vertex of the EV-A71 capsid.

  16. Sample size estimation to substantiate freedom from disease for clustered binary data with a specific risk profile

    DEFF Research Database (Denmark)

    Kostoulas, P.; Nielsen, Søren Saxmose; Browne, W. J.;

    2013-01-01

    and power when applied to these groups. We propose the use of the variance partition coefficient (VPC), which measures the clustering of infection/disease for individuals with a common risk profile. Sample size estimates are obtained separately for those groups that exhibit markedly different heterogeneity......SUMMARY Disease cases are often clustered within herds or generally groups that share common characteristics. Sample size formulae must adjust for the within-cluster correlation of the primary sampling units. Traditionally, the intra-cluster correlation coefficient (ICC), which is an average...

  17. Organ-Specific and Size-Dependent Ag Nanoparticle Toxicity in Gills and Intestines of Adult Zebrafish.

    Science.gov (United States)

    Osborne, Olivia J; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Yu, Xuechen; Wang, Xiang; Lin, Shuo; Xia, Tian; Nel, André E

    2015-10-27

    We studied adult zebrafish to determine whether the size of 20 and 110 nm citrate-coated silver nanoparticles (AgC NPs) differentially impact the gills and intestines, known target organs for Ag toxicity in fish. Following exposure for 4 h, 4 days, or 4 days plus a 7 day depuration period, we obtained different toxicokinetic profiles for different particle sizes, as determined by Ag content of the tissues. Ionic AgNO3 served as a positive control. The gills showed a significantly higher Ag content for the 20 nm particles at 4 h and 4 days than the 110 nm particles, while the values were more similar in the intestines. Both particle types were retained in the intestines even after depuration. These toxicokinetics were accompanied by striking size-dependent differences in the ultrastructural features and histopathology in the target organs in response to the particulates. Ag staining of the gills and intestines confirmed prominent Ag deposition in the basolateral membranes for the 20 nm but not for the 110 nm particles. Furthermore, it was possible to link the site of tissue deposition to disruption of the Na(+)/K(+) ion channel, which is also localized to the basolateral membrane. This was confirmed by a reduction in ATPase activity and immunohistochemical detection of the α subunit of this channel in both target organs, with the 20 nm particles causing significantly higher inhibition and disruption than the larger size particles or AgNO3. These results demonstrate the importance of particle size in determining the hazardous impact of AgNPs in the gills and intestines of adult zebrafish.

  18. Remodeling nuclear architecture allows efficient transport of herpesvirus capsids by diffusion.

    Science.gov (United States)

    Bosse, Jens B; Hogue, Ian B; Feric, Marina; Thiberge, Stephan Y; Sodeik, Beate; Brangwynne, Clifford P; Enquist, Lynn W

    2015-10-20

    The nuclear chromatin structure confines the movement of large macromolecular complexes to interchromatin corrals. Herpesvirus capsids of approximately 125 nm assemble in the nucleoplasm and must reach the nuclear membranes for egress. Previous studies concluded that nuclear herpesvirus capsid motility is active, directed, and based on nuclear filamentous actin, suggesting that large nuclear complexes need metabolic energy to escape nuclear entrapment. However, this hypothesis has recently been challenged. Commonly used microscopy techniques do not allow the imaging of rapid nuclear particle motility with sufficient spatiotemporal resolution. Here, we use a rotating, oblique light sheet, which we dubbed a ring-sheet, to image and track viral capsids with high temporal and spatial resolution. We do not find any evidence for directed transport. Instead, infection with different herpesviruses induced an enlargement of interchromatin domains and allowed particles to diffuse unrestricted over longer distances, thereby facilitating nuclear egress for a larger fraction of capsids.

  19. Preliminary study of neck muscle size and strength measurements in females with chronic non-specific neck pain and healthy control subjects.

    Science.gov (United States)

    Rezasoltani, Asghar; Ali-Reza, Ahmadipor; Khosro, Khademi-Kalantari; Abbass, Rahimi

    2010-08-01

    Neck muscle weakness and atrophy are two common causes of pain and disability among office workers. The aim of this study was to compare the strength of the neck extensor and flexor muscles and the size of the semispinalis capitis muscle (SECM) in patients with chronic non-specific neck pain (CNNP) and healthy subjects. Twenty female office workers (10 patients with CNNP and 10 healthy subjects) participated in this study. The strength of the neck extensor and flexor muscles was measured by an isometric device and the SECM size was measured by ultrasonography. Neck muscle strength, size of the SECM and the ratios of neck strength to body weight, neck extensor strength to SECM size, SECM size to body weight and neck flexor to extensor strength were all significantly lower in patients compared to controls (P neck strength, the size of the SECM and the ratio of neck muscle strength to SECM size appear to be useful parameters in appraising patients with CNNP.

  20. Residues of the UL25 protein of herpes simplex virus that are required for its stable interaction with capsids.

    Science.gov (United States)

    Cockrell, Shelley K; Huffman, Jamie B; Toropova, Katerina; Conway, James F; Homa, Fred L

    2011-05-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes.

  1. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  2. Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ossiboff, Robert J.; Zhou, Yi; Lightfoot, Patrick J.; Prasad, B.V. Venkataram; Parker, John S.L. (Baylor); (Cornell)

    2010-07-19

    Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline functional adhesion molecule A (fJAM-A) mediates the attachment and infectious viral entry of feline calicivirus (FCV). Here, we show that the infectivity of some FCV isolates is neutralized following incubation with the soluble receptor at 37 C. We used this property to select mutants resistant to preincubation with the soluble receptor. We isolated and sequenced 24 soluble receptor-resistant (srr) mutants and characterized the growth properties and receptor-binding activities of eight mutants. The location of the mutations within the capsid structure of FCV was mapped using a new 3.6-{angstrom} structure of native FCV. The srr mutations mapped to the surface of the P2 domain were buried at the protruding domain dimer interface or were present in inaccessible regions of the capsid protein. Coupled with data showing that both the parental FCV and the srr mutants underwent increases in hydrophobicity upon incubation with the soluble receptor at 37 C, these findings indicate that FCV likely undergoes conformational change upon interaction with its receptor. Changes in FCV capsid conformation following its interaction with fJAM-A may be important for subsequent interactions of the capsid with cellular membranes, membrane penetration, and genome delivery.

  3. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing

    OpenAIRE

    Seal, Dakshina R.; Cliff G. Martin

    2016-01-01

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether ...

  4. Development and evaluation of an immunochromatographic strip for rapid detection of capsid protein antigen p27 of avian leukosis virus.

    Science.gov (United States)

    Qian, Kun; Liang, You-zhi; Yin, Li-ping; Shao, Hong-xia; Ye, Jian-qiang; Qin, Ai-jian

    2015-09-01

    A rapid immunochromatographic strip for detecting capsid protein antigen p27 of avian leukosis virus was successfully developed based on two high-affinity monoclonal antibodies. The test strip could detect not only 600pg purified recombinant p27 protein but also quantified avian leukosis virus as low as 70 TCID50, which has comparative sensitivity to the commercial enzyme-linked immunosorbent assay (ELISA) kit. For the evaluation of this test strip, 1100 samples consisting of cloacal swabs, meconium collected from the earliest stool of one day old chicken and virus isolates were assessed both by the strip and by the commercial ELISA kit. The agreement between these two tests was 93.91%, 93.42% and 100%, respectively. The sensitivity and specificity of the strip were also calculated by using the ELISA kit as the standard. This immunochromatographic strip provides advantages of rapid and simple detection of capsid protein antigen p27 of avian leukosis virus, which could be applied as an on-site testing assay and used for control and eradication programs of avian leukosis disease.

  5. The VPS4 component of the ESCRT machinery plays an essential role in HPV infectious entry and capsid disassembly

    Science.gov (United States)

    Broniarczyk, Justyna; Pim, David; Massimi, Paola; Bergant, Martina; Goździcka-Józefiak, Anna; Crump, Colin; Banks, Lawrence

    2017-01-01

    Human Papillomavirus (HPV) infection involves multiple steps, from cell attachment, through endocytic trafficking towards the trans-Golgi network, and, ultimately, the entry into the nucleus during mitosis. An essential viral protein in infectious entry is the minor capsid protein L2, which engages different components of the endocytic sorting machinery during this process. The ESCRT machinery is one such component that seems to play an important role in the early stages of infection. Here we have analysed the role of specific ESCRT components in HPV infection, and we find an essential role for VPS4. Loss of VPS4 blocks infection with multiple PV types, suggesting an evolutionarily conserved critical step in infectious entry. Intriguingly, both L1 and L2 can interact with VPS4, and appear to be in complex with VPS4 during the early stages of virus infection. By using cell lines stably expressing a dominant-negative mutant form of VPS4, we also show that loss of VPS4 ATPase activity results in a marked delay in capsid uncoating, resulting in a defect in the endocytic transport of incoming PsVs. These results demonstrate that the ESCRT machinery, and in particular VPS4, plays a critical role in the early stages of PV infection.

  6. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yan, E-mail: yzheng15@students.kgi.edu; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.

  7. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  8. Human serum antibodies to a major defined epitope of human herpesvirus 8 small viral capsid antigen.

    Science.gov (United States)

    Tedeschi, R; De Paoli, P; Schulz, T F; Dillner, J

    1999-04-01

    The major antibody-reactive epitope of the small viral capsid antigen (sVCA) of human herpesvirus 8 (HHV-8) was defined by use of overlapping peptides. Strong IgG reactivity was found among approximately 50% of 44 human immunodeficiency virus-positive or -negative patients with Kaposi's sarcoma and 13 subjects who were seropositive by immunofluorescence assay (IFA) for the latent HHV-8 nuclear antigen. Only 1 of 106 subjects seronegative for both lytic and latent HHV-8 antigens and 10 of 81 subjects IFA-seropositive only for the lytic HHV-8 antigen had strong IgG reactivity to this epitope. Among 534 healthy Swedish women, only 1.3% were strongly seropositive. Comparison of the peptide-based and purified sVCA protein-based ELISAs found 55% sensitivity and 98% specificity. However, only 1 of 452 serum samples from healthy women was positive in both tests. In conclusion, the defined sVCA epitope was a specific, but not very sensitive, serologic marker of active HHV-8 infection. Such infection appears to be rare among Swedish women, even with sexual risk-taking behavior.

  9. Several recombinant capsid proteins of equine rhinitis a virus show potential as diagnostic antigens.

    Science.gov (United States)

    Li, Fan; Stevenson, Rachel A; Crabb, Brendan S; Studdert, Michael J; Hartley, Carol A

    2005-06-01

    Equine rhinitis A virus (ERAV) is a significant pathogen of horses and is also closely related to Foot-and-mouth disease virus (FMDV). Despite these facts, knowledge of the prevalence and importance of ERAV infections remains limited, largely due to the absence of a simple, robust diagnostic assay. In this study, we compared the antigenicities of recombinant full-length and fragmented ERAV capsid proteins expressed in Escherichia coli by using sera from experimentally infected and naturally exposed horses. We found that, from the range of antigens tested, recombinant proteins encompassing the C-terminal region of VP1, full-length VP2, and the N-terminal region of VP2 reacted specifically with antibodies present in sera from each of the five experimentally infected horses examined. Antibodies to epitopes on VP2 (both native and recombinant forms) persisted longer postinfection (>105 days) than antibodies specific for epitopes on other fragments. Our data also suggest that B-cell epitopes within the C terminus of VP1 and N terminus of VP2 contribute to a large proportion of the total reactivity of recombinant VP1 and VP2, respectively. Importantly, the reactivity of these VP1 and VP2 recombinant proteins in enzyme-linked immunosorbent assays (ELISAs) correlated well with the results from a range of native antigen-based serological assays using sera from 12 field horses. This study provides promising candidates for development of a diagnostic ERAV ELISA.

  10. Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength?

    Science.gov (United States)

    Duckham, Rachel L; Baxter-Jones, Adam D G; Johnston, James D; Vatanparast, Hassanali; Cooper, David; Kontulainen, Saija

    2014-02-01

    The long-term benefits of habitual physical activity during adolescence on adult bone structure and strength are poorly understood. We investigated whether physically active adolescents had greater bone size, density, content, and estimated bone strength in young adulthood when compared to their peers who were inactive during adolescence. Peripheral quantitative computed tomography (pQCT) was used to measure the tibia and radius of 122 (73 females) participants (age mean ± SD, 29.3 ± 2.3 years) of the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS). Total bone area (ToA), cortical density (CoD), cortical area (CoA), cortical content (CoC), and estimated bone strength in torsion (SSIp ) and muscle area (MuA) were measured at the diaphyses (66% tibia and 65% radius). Total density (ToD), trabecular density (TrD), trabecular content (TrC), and estimated bone strength in compression (BSIc ) were measured at the distal ends (4%). Participants were grouped by their adolescent physical activity (PA) levels (inactive, average, and active) based on mean PA Z-scores obtained from serial questionnaire assessments completed during adolescence. We compared adult bone outcomes across adolescent PA groups in each sex using analysis of covariance followed by post hoc pairwise comparisons with Bonferroni adjustments. When adjusted for adult height, MuA, and PA, adult males who were more physically active than their peers in adolescence had 13% greater adjusted torsional bone strength (SSIp , p adolescence had 10% larger adjusted CoA (p adolescence seemed to persist into young adulthood, with greater ToA and SSIp in males, and greater CoA, CoC, and TrC in females.

  11. Path sets size, model specification, or model estimation: Which one matters most in predicting stochastic user equilibrium traffic flow?

    Directory of Open Access Journals (Sweden)

    Milad Haghani

    2016-06-01

    Further investigations with respect to the relative importance of STA model estimation (or equivalently, parameter calibration and model specification (or equivalently, error term formulation are also conducted. A paired combinatorial logit (PCL assignment model with an origin–destination-specific-parameter, along with a heuristic method of model estimation (calibration, is proposed. The proposed model cannot only accommodate the correlation between path utilities, but also accounts for the fact that travelling between different origin–destination (O–D pairs can correspond to different levels of stochasticity and choice randomness. Results suggest that the estimation of the stochastic user equilibrium (SUE models can affect the outcome of the flow prediction far more meaningfully than the complexity of the choice model (i.e., model specification.

  12. Environmental change indicated by a site-specific grain size ratio - the example of the Semlac loess-paleosol sequence (Romania

    Directory of Open Access Journals (Sweden)

    Philipp SCHULTE

    2014-11-01

    Full Text Available Loess sequences provide important and at least a partial continuous record of Quaternary palaeoenvironmental change. In addition, loess-palaeosol sequences provide valuable information concerning environmental change and climate evolution. It is customary to reconstruct such changes by means of grain sizes ratios. In this study, we calculated an site-specific grain size (GS ratio (Schulte et al. in review and compare this ratio with the common U-ratio (Vandenberghe et al.1985 and, in addition, with selected geochemical parameters. As an example we present the Middle to Late Pleistocene loess-paleosol section of Semlac in western Romania (MIS 10 – 1

  13. Specific features of the spectral properties of a photonic crystal with a nanocomposite defect with allowance for the size effects

    Science.gov (United States)

    Vetrov, S. Ya.; Pankin, P. S.; Timofeev, I. V.

    2015-07-01

    The spectral properties of a one-dimensional photonic crystal (PC) with a structure defect (a layer of isotropic nanocomposite inserted between two multilayer dielectric mirrors) have been investigated. The nanocomposite consists of spherical gold nanoparticles dispersed in a transparent matrix; it is characterized by effective resonant permittivity. The dependence of the transmission and absorption spectra on the size and concentration of nanoparticles is analyzed. It is shown that the transmission spectrum contains, along with the band gap caused by Bragg diffraction of light, an additional nontransmission band due to the nanocomposite absorption near the resonant frequency.

  14. Justification of Drug Product Dissolution Rate and Drug Substance Particle Size Specifications Based on Absorption PBPK Modeling for Lesinurad Immediate Release Tablets.

    Science.gov (United States)

    Pepin, Xavier J H; Flanagan, Talia R; Holt, David J; Eidelman, Anna; Treacy, Don; Rowlings, Colin E

    2016-09-01

    In silico absorption modeling has been performed, to assess the impact of in vitro dissolution on in vivo performance for ZURAMPIC (lesinurad) tablets. The dissolution profiles of lesinurad tablets generated using the quality control method were used as an input to a GastroPlus model to estimate in vivo dissolution in the various parts of the GI tract and predict human exposure. A model was set up, which accounts for differences of dosage form transit, dissolution, local pH in the GI tract, and fluid volumes available for dissolution. The predictive ability of the model was demonstrated by confirming that it can reproduce the Cmax observed for independent clinical trial. The model also indicated that drug product batches that pass the proposed dissolution specification of Q = 80% in 30 min are anticipated to be bioequivalent to the clinical reference batch. To further explore the dissolution space, additional simulations were performed using a theoretical dissolution profile below the proposed specification. The GastroPlus modeling indicates that such a batch will also be bioequivalent to standard clinical batches despite having a dissolution profile, which would fail the proposed dissolution specification of Q = 80% in 30 min. This demonstrates that the proposed dissolution specification sits comfortably within a region of dissolution performance where bioequivalence is anticipated and is not near an edge of failure for dissolution, providing additional confidence to the proposed specifications. Finally, simulations were performed using a virtual drug substance batch with a particle size distribution at the limit of the proposed specification for particle size. Based on these simulations, such a batch is also anticipated to be bioequivalent to clinical reference, demonstrating that the proposed specification limits for particle size distribution would give products bioequivalent to the pivotal clinical batches.

  15. Effect of the measurement size on the robustness of the assessment of the features specific for cylinder liner surfaces

    Science.gov (United States)

    Dimkovski, Z.; Ohlsson, R.; Rosén, B.-G.

    2014-01-01

    The quality of the cylinder liner surface is of great importance due to its impact on the fuel/oil consumption and emissions of the internal combustion engine. A good liner function depends on the size and distribution of the deep honing grooves and the amount of the cold work material (Blechmantel) left inside the grooves after finishing. A fast evaluation of these features requires optical three-dimensional measurements with a large area and good resolution, but many interferometers used today have limited resolution when measuring larger areas. To find out how the measurement size and resolution would affect the quantification and the variation of the parameters, two objectives, 2.5 × and 10 × , were used for measuring a cylinder liner from a truck engine. The Blechmantel was of special interest as it first comes into contact with piston/rings, detaches as particles and wears the running surfaces. The 2.5 × objective showed more robust assessment than the 10 × one, manifested by a lower coefficient of variation for the parameters describing the features: Blechmantel, groove width and height, groove balance and number of grooves. This means that fewer measurements are required if a 2.5 × objective is used in production and hence the time and cost of the liner would be decreased.

  16. Pepper Weevil (Coleoptera: Curculionidae) Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing.

    Science.gov (United States)

    Seal, Dakshina R; Martin, Cliff G

    2016-03-04

    Peppers (Capsicum spp.) are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin "Habanero" was least susceptible, and C. annuum L. cultivars "SY" and "SR" were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long) attracted more weevils than small fruits (eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation.

  17. Pepper Weevil (Coleoptera: Curculionidae Preferences for Specific Pepper Cultivars, Plant Parts, Fruit Colors, Fruit Sizes, and Timing

    Directory of Open Access Journals (Sweden)

    Dakshina R. Seal

    2016-03-01

    Full Text Available Peppers (Capsicum spp. are an important crop in the USA, with about 32,000 ha cultivated in 2007, which resulted in $588 million in farm revenue. The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae, is the most troublesome insect pest of peppers in the southern United States. It is therefore urgent to find different vulnerabilities of pepper cultivars, fruit and plants parts, fruit colors and sizes, and timing to infestation by A. eugenii. Also relevant is testing whether fruit length and infestation state affect fruit numbers, weights, and proportions of fruit that are infested. Counts of A. eugenii adults and marks from oviposition and feeding suggested that C. chinense Jacquin “Habanero” was least susceptible, and C. annuum L. cultivars “SY” and “SR” were most susceptible. Comparison of plant parts and fruit sizes revealed that A. eugenii preferred the peduncle, calyx, and top of pepper fruits over the middle, bottom, leaves, or remainder of flowers. Anthonomus eugenii does not discriminate between green or yellow fruit color nor vary diurnally in numbers. Based on adult counts, medium to extra-large fruits (≥1.5 cm long attracted more weevils than small fruits (<1.5 cm. However based on proportions of fruit numbers or fruit weights that were infested, there were no differences between large and small fruits. Choice of pepper cultivar can thus be an important part of an IPM cultural control program designed to combat A. eugenii by reduced susceptibility or by synchronous fruit drop of infested fruits. Our results are potentially helpful in developing scouting programs including paying particular attention to the preferred locations of adults and their sites of feeding and oviposition on the fruit. The results also suggested the potential value of spraying when the fruits are still immature to prevent and control infestation.

  18. Capsid protein genetic analysis and viral spread to the spinal cord in cats experimentally infected with feline calicivirus (FCV).

    Science.gov (United States)

    Fujita, Y; Sato, Y; Ohe, K; Sakai, S; Fukuyama, M; Furuhata, K; Kishikawa, S; Yamamoto, S; Kiuchi, A; Hara, M; Ishikawa, Y; Taneno, A

    2005-08-01

    We investigated primitively the molecular basis of the neural spread of a feline calcivirus isolate (FCV-S) from the spinal cord of a cat that died after manifesting excitation. Experimental infections of cats with three clones from parent virus isolate FCV-S, isolated based on plaque size, were performed, and virus recovery from the spinal cord and the nucleotide and predicted amino acid sequences of the viral capsid protein region (ORF2) were compared. In the experimental infection with the one-time cloned virus (C1L1) isolated from a large plaque, the C1L1 was recovered from the spinal cord. In contrast, seven-times cloned C6L7 (from large plaque) and five-times cloned C5S2 (isolated from small plaque) were not recovered from the spinal cord. Genetic analysis of the capsid protein gene of the three viral clones revealed that four bases were different and two amino acids were different at positions 34 (Val in C6L7 and Ala in C1L1 and C5S2) and 46 (Leu in C6L7 and Pro in C1L1 and C5S2) between C6L7 (with large plaque) and C5S2 (with small plaque). The amino acid at position 434 of C1L1 was different from those of C6L7 and C5S2 (Gly in C1L1, D (Asp) in C6L7 and C5S2). From these results, the plaque size seemed not to be related to the spread of virus to the spinal cord. Clone C1L1, which spread to the spinal cord, had a difference of one amino acid from the other two clones, which may be related to the ability to spread to the spinal cord.

  19. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli.

    Science.gov (United States)

    Hammond, Rosemarie W; Hammond, John

    2010-02-01

    Maize rayado fino virus (MRFV; genus Marafivirus; family Tymoviridae) is an isometric plant virus of 30 nm containing two components: empty shells and complete virus particles (encapsidating the 6.3 kb genomic RNA). Both particles are composed of two serologically related, carboxy co-terminal, coat proteins (CP) of apparent molecular mass 21-22 kDa (CP2) and 24-28 kDa (CP1) in a molar ratio of 3:1, respectively; CP1 contains a 37 amino acid amino terminal extension of CP2. In our study, expression of CP1 or CP2 in Escherichia coli resulted in assembly of each capsid protein into virus-like particles (VLPs), appearing in electron microscopy as stain-permeable (CP2) or stain-impermeable particles (CP1). CP1 VLPs encapsidated bacterial 16S ribosomal RNA, but not CP mRNA, while CP2 VLPs encapsidated neither CP mRNA nor 16S ribosomal RNA. Expression of CP1 and CP2 in E. coli using a co-expression vector resulted in the assembly of VLPs which were stain-impermeable and encapsidated CP mRNA. These results suggest that the N-terminal 37 amino acid residues of CP1, although not required for particle formation, may be involved in the assembly of complete virions and that the presence of both CP1 and CP2 in the particle is required for specific encapsidation of MRFV CP mRNA.

  20. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.

    Directory of Open Access Journals (Sweden)

    Guido Polles

    Full Text Available Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available.

  1. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  2. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking.

    Science.gov (United States)

    Nam, Hyun-Joo; Gurda, Brittney L; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2011-11-01

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  3. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  4. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice.

    Science.gov (United States)

    Thünken, Timo; Meuthen, Denis; Bakker, Theo C M; Baldauf, Sebastian A

    2012-08-01

    Mating preferences for genetic compatibility strictly depend on the interplay of the genotypes of potential partners and are therein fundamentally different from directional preferences for ornamental secondary sexual traits. Thus, the most compatible partner is on average not the one with most pronounced ornaments and vice versa. Hence, mating preferences may often conflict. Here, we present a solution to this problem while investigating the interplay of mating preferences for relatedness (a compatibility criterion) and large body size (an ornamental or quality trait). In previous experiments, both sexes of Pelvicachromis taeniatus, a cichlid fish with mutual mate choice, showed preferences for kin and large partners when these criteria were tested separately. In the present study, test fish were given a conflicting choice between two potential mating partners differing in relatedness as well as in body size in such a way that preferences for both criteria could not simultaneously be satisfied. We show that a sex-specific trade-off occurs between mating preferences for body size and relatedness. For females, relatedness gained greater importance than body size, whereas the opposite was true for males. We discuss the potential role of the interplay between mating preferences for relatedness and body size for the evolution of inbreeding preference.

  5. Sizing the cannabis market: a demand-side and user-specific approach in seven European countries.

    Science.gov (United States)

    van Laar, Margriet; Frijns, Tom; Trautmann, Franz; Lombi, Linda

    2013-06-01

    Demand-based estimates of total cannabis consumption rarely consider differences among different user types and variation across countries. To describe cannabis consumption patterns and estimate annual consumption for different user types across EU Member States, a web survey in Bulgaria, Czech Republic, Italy, the Netherlands, Portugal, Sweden and United Kingdom (England & Wales) collected data on cannabis use patterns from 3,922 persons who had consumed cannabis at least once in the past year. They were classified into four groups based on their number of use days in the past 12 months: infrequent users or chippers (users (11-50 days), regular users (51-250 days) and intensive users (>250 days). User type specific data on typical amounts consumed were matched with data on numbers of users per user type estimated from existing population surveys, taking differences in mode of consumption, age and gender into account. Estimates were supplemented with data from populations of problem users to compensate for under coverage. Results showed remarkably consistent differences among user groups across countries. Both the average number of units consumed per typical use day and the average amount of cannabis consumed per unit increased across user types of increasing frequency of use. In all countries except Portugal, intensive users formed the smallest group of cannabis users but were responsible for the largest part of total annual cannabis consumption. Annual cannabis consumption varied across countries but confidence intervals were wide. Results are compared with previous estimates and discussed in the context of improving estimation methods.

  6. A molecular thermodynamic model for the stability of hepatitis B capsids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-06-21

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  7. CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

    Directory of Open Access Journals (Sweden)

    Borozan Ivan

    2012-08-01

    Full Text Available Abstract Background It is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools. Results Here we present CaPSID (Computational Pathogen Sequence IDentification, a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage. Conclusions To demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro.

  8. X-Ray Structures of the Hexameric Building Block of the HIV Capsid

    Energy Technology Data Exchange (ETDEWEB)

    Pornillos, Owen; Ganser-Pornillos, Barbie K.; Kelly, Brian N.; Hua, Yuanzi; Whitby, Frank G.; Stout, C. David; Sundquist, Wesley I.; Hill, Christopher P.; Yeager, Mark; (Scripps); (Utah)

    2009-09-11

    The mature capsids of HIV and other retroviruses organize and package the viral genome and its associated enzymes for delivery into host cells. The HIV capsid is a fullerene cone: a variably curved, closed shell composed of approximately 250 hexamers and exactly 12 pentamers of the viral CA protein. We devised methods for isolating soluble, assembly-competent CA hexamers and derived four crystallographically independent models that define the structure of this capsid assembly unit at atomic resolution. A ring of six CA N-terminal domains form an apparently rigid core, surrounded by an outer ring of C-terminal domains. Mobility of the outer ring appears to be an underlying mechanism for generating the variably curved lattice in authentic capsids. Hexamer-stabilizing interfaces are highly hydrated, and this property may be key to the formation of quasi-equivalent interactions within hexamers and pentamers. The structures also clarify the molecular basis for capsid assembly inhibition and should facilitate structure-based drug design strategies.

  9. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    Science.gov (United States)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  10. A molecular thermodynamic model for the stability of hepatitis B capsids

    Science.gov (United States)

    Kim, Jehoon; Wu, Jianzhong

    2014-06-01

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  11. Sequence analysis and structural implications of rotavirus capsid proteins.

    Science.gov (United States)

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications.

  12. Sex-specific effects of altered competition on nestling growth and survival: an experimental manipulation of brood size and sex ratio.

    Science.gov (United States)

    Nicolaus, Marion; Michler, Stephanie P M; Ubels, Richard; van der Velde, Marco; Komdeur, Jan; Both, Christiaan; Tinbergen, Joost M

    2009-03-01

    1. An increase of competition among adults or nestlings usually negatively affects breeding output. Yet little is known about the differential effects that competition has on the offspring sexes. This could be important because it may influence parental reproductive decisions. 2. In sexual size dimorphic species, two main contradictory mechanisms are proposed regarding sex-specific effects of competition on nestling performance assuming that parents do not feed their chicks differentially: (i) the larger sex requires more resources to grow and is more sensitive to a deterioration of the rearing conditions ('costly sex hypothesis'); (ii) the larger sex has a competitive advantage in intra-brood competition and performs better under adverse conditions ('competitive advantage hypothesis'). 3. In the present study, we manipulated the level of sex-specific sibling competition in a great tit population (Parus major) by altering simultaneously the brood size and the brood sex ratio on two levels: the nest (competition for food among nestlings) and the woodlot where the parents breed (competition for food among adults). We investigated whether altered competition during the nestling phase affected nestling growth traits and survival in the nest and whether the effects differed between males, the larger sex, and females. 4. We found a strong negative and sex-specific effect of experimental brood size on all the nestling traits. In enlarged broods, sexual size dimorphism was smaller which may have resulted from biased mortality towards the less competitive individuals i.e. females of low condition. No effect of brood sex ratio on nestling growth traits was found. 5. Negative brood size effects on nestling traits were stronger in natural high-density areas but we could not confirm this experimentally. 6. Our results did not support the 'costly sex hypothesis' because males did not suffer from higher mortality under harsh conditions. The 'competitive advantage hypothesis' was

  13. The effect of the magnetic nanoparticle's size dependence of the relaxation time constant on the specific loss power of magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Harabech, Mariem; Leliaert, Jonathan; Coene, Annelies; Crevecoeur, Guillaume; Van Roost, Dirk; Dupré, Luc

    2017-03-01

    Magnetic nanoparticle hyperthermia is a cancer treatment in which magnetic nanoparticles (MNPs) are subjected to an alternating magnetic field to induce heat in the tumor. The generated heat of MNPs is characterized by the specific loss power (SLP) due to relaxation phenomena of the MNP. Up to now, several models have been proposed to predict the SLP, one of which is the Linear Response Theory. One parameter in this model is the relaxation time constant. In this contribution, we employ a macrospin model based on the Landau-Lifshitz-Gilbert equation to investigate the relation between the Gilbert damping parameter and the relaxation time constant. This relaxation time has a pre-factor τ0 which is often taken as a fixed value ranging between 10-8 and 10-12 s. However, in reality it has small size dependence. Here, the influence of this size dependence on the calculation of the SLP is demonstrated, consequently improving the accuracy of this estimate.

  14. The three-dimensional structure of Infectious flacherie virus capsid determined by cryo-electron microscopy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Cryo-electron microscopy and image reconstruction were used to determine the three-dimensional structure of Infectious flacherie virus (IFV). 5047 particles were selected for the final reconstruction. The FSC curve showed that the resolution of this capsid structure was 18 ·. The structure is a psuedo T=3 (P=3) icosahedral capsid with a diameter of 302.4 · and a single shell thickness of 15 ·. The density map showed that IFV has a smooth surface without any prominent protrude or depression. Comparison of the IFV structure with those of the insect picorna-like virus-Cricket paralysis virus (CrPV)and human picornavirus-Human rhinovirus 14 (HRV 14) revealed that the IFV structure resembles the CrPV structure. The "Rossmann canyon" is absent in both IFV and CrPV particles. The polypeptide topology of IFV VP2, IFV VP3 was predicted and the subunit location at the capsid surface was further analyzed.

  15. A Ginzburg-Landau model for the expansion of a dodecahedral viral capsid

    Science.gov (United States)

    Zappa, E.; Indelicato, G.; Albano, A.; Cermelli, P.

    2013-11-01

    We propose a Ginzburg-Landau model for the expansion of a dodecahedral viral capsid during infection or maturation. The capsid is described as a dodecahedron whose faces, meant to model rigid capsomers, are free to move independent of each other, and has therefore twelve degrees of freedom. We assume that the energy of the system is a function of the twelve variables with icosahedral symmetry. Using techniques of the theory of invariants, we expand the energy as the sum of invariant polynomials up to fourth order, and classify its minima in dependence of the coefficients of the Ginzburg-Landau expansion. Possible conformational changes of the capsid correspond to symmetry breaking of the equilibrium closed form. The results suggest that the only generic transition from the closed state leads to icosahedral expanded form. Our approach does not allow to study the expansion pathway, which is likely to be non-icosahedral.

  16. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain.

    Science.gov (United States)

    Selzer, Lisa; Kant, Ravi; Wang, Joseph C-Y; Bothner, Brian; Zlotnick, Adam

    2015-11-20

    Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.

  17. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.;

    2013-01-01

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...

  18. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn sup 2+

    Energy Technology Data Exchange (ETDEWEB)

    Ratka, M.; Lackmann, M.; Ueckermann, C.; Karlins, U.; Koch, G. (Univ. of Hamburg (West Germany))

    1989-09-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg{sup 2+}. In this paper, the effect of Zn{sup 2+} on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg{sup 2+}. In the presence of Zn{sup 2+}, phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn{sup 2+}. The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn{sup 2+}. This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus.

  19. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    NARCIS (Netherlands)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-01-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of

  20. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-10-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.

  1. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  2. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging

    Science.gov (United States)

    Wu, Weimin; Newcomb, William W.; Cheng, Naiqian; Aksyuk, Anastasia; Winkler, Dennis C.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids—which develop into infectious virions—are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation

  3. Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen.

    OpenAIRE

    Lin, S F; Sun, R; Heston, L; Gradoville, L; Shedd, D; Haglund, K; Rigsby, M; Miller, G.

    1997-01-01

    We describe a recombinant antigen for use in serologic tests for antibodies to Kaposi's sarcoma (KS)-associated herpesvirus (KSHV). The cDNA for a small viral capsid antigen (sVCA) was identified by immunoscreening of a library prepared from the BC-1 body cavity lymphoma cell line induced into KSHV lytic gene expression by sodium butyrate. The cDNA specified a 170-amino-acid peptide with homology to small viral capsid proteins encoded by the BFRF3 gene of Epstein-Barr virus and the ORF65 gene...

  4. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette;

    2012-01-01

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus. In the present study we...... B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region. Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected...

  5. Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies

    OpenAIRE

    HAN, YUN; Ahn, Jinwoo; Concel, Jason; Byeon, In-Ja L.; Gronenborn, Angela M.; YANG, Jun; Polenova, Tatyana

    2010-01-01

    In mature HIV-1 virions, a 26.6 kDa CA protein is assembled into a characteristic cone shaped core (capsid) that encloses the RNA viral genome. The assembled capsid structure is best described by a fullerene cone model that is made up from a hexameric lattice containing a variable number of CA pentamers, thus allowing for closure of tubular or conical structures. In this report, we present a solid-state NMR analysis of the wild type HIV-1 CA protein, prepared as conical and spherical assembli...

  6. Positive Correlation between Epstein-Barr Virus Viral Load and Anti-Viral Capsid Immunoglobulin G Titers Determined for Hodgkin's Lymphoma Patients and Their Relatives

    OpenAIRE

    Besson, Caroline; Amiel, Corinne; Le-Pendeven, Catherine; Brice, Pauline; Fermé, Christophe; Carde, Patrice; Hermine, Olivier; Raphael, Martine; Abel, Laurent; Nicolas, Jean-Claude

    2006-01-01

    Markers of Epstein-Barr virus (EBV) infection include measures of specific serological titers and of viral load (VLo) in peripheral blood mononuclear cells. Few studies have investigated the correlation between these two phenotypes. Here, we found that there was no correlation between VLo and either anti-EBV nuclear antigen type 1 or anti-early antigen immunoglobulin G (IgG) titer but that anti-viral capsid antigen (VCA) IgG titer increased with VLo in peripheral blood mononuclear cells in pa...

  7. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianhan, E-mail: jianhan@cau.edu.cn [Ministry of Agriculture Key Laboratory of Agricultural Information Acquisition Technology (Beijing), 17 East Tsinghua Road, China Agricultural University, Mailbox 125, Beijing 100083 (China); Li, Min [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Li, Yanbin [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Chen, Qi [Modern Precision Agriculture System Integration Research Key Laboratory of Ministry of Education, China Agricultural University, Beijing 100083 (China)

    2015-03-15

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody–antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 µg/ml and 100 µg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 10{sup 2} to 10{sup 5} cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are

  8. Identification of two neutralization epitopes on the capsid protein of avian hepatitis E virus.

    Science.gov (United States)

    Zhou, E-M; Guo, H; Huang, F F; Sun, Z F; Meng, X J

    2008-02-01

    Avian hepatitis E virus (avian HEV) is genetically and antigenically related to human HEV, the causative agent of hepatitis E. To identify the neutralizing epitopes on the capsid (ORF2) protein of avian HEV, four mAbs (7B2, 1E11, 10A2 and 5G10) against recombinant avian HEV ORF2 protein were generated. mAbs 7B2, 1E11 and 10A2 blocked each other for binding to avian HEV ORF2 protein in a competitive ELISA, whereas 5G10 did not block the other mAbs, suggesting that 7B2, 1E11 and 10A2 recognize the same or overlapping epitopes and 5G10 recognizes a different one. The epitopes recognized by 7B2, 1E11 and 10A2, and by 5G10 were mapped by Western blotting between aa 513 and 570, and between aa 476 and 513, respectively. mAbs 1E11, 10A2 and 5G10 were shown to bind to avian HEV particles in vitro, although only 5G10 reacted to viral antigens in transfected LMH cells. To assess the neutralizing activities of the mAbs, avian HEV was incubated in vitro with each mAb before inoculation into specific-pathogen-free chickens. Both viraemia and faecal virus shedding were delayed in chickens inoculated with the mixtures of avian HEV and 1E11, 10A2 or 5G10, suggesting that these three mAbs partially neutralize avian HEV.

  9. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André;

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching. The...

  10. Essential C-Terminal region of the baculovirus minor capsid protein VP80 binds DNA

    NARCIS (Netherlands)

    Marek, M.; Merten, O.W.; Francis-Devaraj, F.; Oers, van M.M.

    2012-01-01

    The essential Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) minor capsid protein VP80 has been recently shown to interact with the virus-triggered, nuclear F-actin cytoskeleton. A role for VP80 in virus morphogenesis has been proposed in the maturation of progeny nucleocapsids and

  11. Immobilization and One-Dimensional Arrangement of Virus Capsids With Nanoscale Precision Using DNA Origami

    Science.gov (United States)

    Stephanopoulos, Nicholas; Liu, Minghui; Tong, Gary J.; Li, Zhe; Liu, Yan; Yan, Hao; Francis, Matthew B.

    2011-01-01

    Self-assembly has proven to be one of the most effective ways to arrange matter at the nanometer level. Biology, in particular, makes extensive use of self-assembly to position molecules over several length scales with a high degree of spatial control over structure. In recent years, one promising approach that takes advantage of biological self-assembly in order to build synthetic materials employs virus capsids, the protein shells that encapsulate the genetic material of viruses.1 Capsids are composed of multiple protein subunits that can assemble (either spontaneously or under an external stimulus) into a monodisperse structure with different geometries depending on the virus. By appropriately functionalizing the proteins that comprise the capsid, multiple copies of a molecule or other entity can be positioned with a predictable arrangement. A wide variety of components have been attached to and arranged by virus capsids, including chromophores,2 catalysts,3 nanoparticles and quantum dots,4 polymers,5 drug molecules,6 and imaging agents.7 PMID:20575574

  12. Functional dissection of the alphavirus capsid protease: sequence requirements for activity

    Directory of Open Access Journals (Sweden)

    Pützer Brigitte M

    2010-11-01

    Full Text Available Abstract Background The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Results Amongst alphaviruses, the C-terminal amino acid tryptophan (W261 is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. Conclusions We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  13. Cloning and Sequence Analysis of Capsid Protein Gene of Iridovirus Indonesian Isolates

    Directory of Open Access Journals (Sweden)

    Murwantoko .

    2015-11-01

    Full Text Available generated by an Adobe application 11.5606 Iridovirus was known as agents that caused serious systemic disease in freshwater and marine fishes. The mortality up to 100% of orange-spotted grouper (Epinephelus coioides due to iridovirus infection has been reported in Indonesia. The gene encoding capsid protein of iridovirus is supposed to be conserved and has the potency for the development of control methods. The objectives of this study are to clone the gene encoding capsid protein iridovirus and to analyze their sequences. The   spleen tissues of orange-spotted grouper were collected and extracted their DNA. The DNA fragment of capsid protein of iridovirus genes were amplified by PCR using designed primers with the extraction DNA as templates. The amplified DNA fragments were cloned in pBSKSII and sequenced.  The genes encoding capsid protein of iridovirus from Jepara and Bali were successfully amplified and cloned. The Jepara clone (IJP03 contained complete open reading frame (ORF of the gene composed by 1362 bp nucleotides which encoded 453 amino acids. Those Jepara and Bali (IGD01 clones shared 99.8% similarity in nucleotide level and 99.4% at amino acid level. Based on those sequences, Indonesian iridovirus was belonged to genus Megalocystivirus and shared 99,6-99,9% similarity on nucleotide level with DGIV, ISKNV, MCIV, and ALIV Normal 0 36 false false false

  14. Disassociation of the SV40 Genome from Capsid Proteins Prior to Nuclear Entry

    Directory of Open Access Journals (Sweden)

    Kuksin Dmitry

    2012-08-01

    Full Text Available Abstract Background Previously, we demonstrated that input SV40 particles undergo a partial disassembly in the endoplasmic reticulum, which exposes internal capsid proteins VP2 and VP3 to immunostaining. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection, as well as to detection by an ethynyl-2-deoxyuridine (EdU-based chemical reaction. The cytoplasmic partially disassembled SV40 particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Findings In the current study, we asked where in the cell the SV40 genome might disassociate from capsid components. We observed partially disassembled input SV40 particles around the nucleus and, beginning at 12 hours post-infection, 5-Bromo-2-deoxyuridine (BrdU-labeled parental SV40 DNA in the nucleus, as detected using anti-BrdU antibodies. However, among the more than 1500 cells examined, we never detected input VP2/VP3 in the nucleus. Upon translocation of the BrdU-labeled SV40 genomes into nuclei, they were transcribed and, thus, are representative of productive infection. Conclusions Our findings imply that the SV40 genome disassociates from the capsid proteins before or at the point of entry into the nucleus, and then enters the nucleus devoid of VP2/3.

  15. Hidden symmetry of small spherical viruses and organization principles in "anomalous" and double-shelled capsid nanoassemblies.

    Science.gov (United States)

    Rochal, S B; Konevtsova, O V; Myasnikova, A E; Lorman, V L

    2016-09-29

    We propose the principles of structural organization in spherical nanoassemblies with icosahedral symmetry constituted by asymmetric protein molecules. The approach modifies the paradigmatic geometrical Caspar and Klug (CK) model of icosahedral viral capsids and demonstrates the common origin of both the "anomalous" and conventional capsid structures. In contrast to all previous models of "anomalous" viral capsids the proposed modified model conserves the basic structural principles of the CK approach and reveals the common hidden symmetry underlying all small viral shells. We demonstrate the common genesis of the "anomalous" and conventional capsids and explain their structures in the same frame. The organization principles are derived from the group theory analysis of the positional order on the spherical surface. The relationship between the modified CK geometrical model and the theory of two-dimensional spherical crystallization is discussed. We also apply the proposed approach to complex double-shelled capsids and capsids with protruding knob-like proteins. The introduced notion of commensurability for the concentric nanoshells explains the peculiarities of their organization and helps to predict analogous, but yet undiscovered, double-shelled viral capsid nanostructures.

  16. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Science.gov (United States)

    Liu, Xiang; Zaid, Ali; Goh, Lucas Y. H.; Hobson-Peters, Jody; Hall, Roy A.; Merits, Andres

    2017-01-01

    ABSTRACT Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. PMID:28223458

  17. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Adam Taylor

    2017-02-01

    Full Text Available Mosquito-transmitted chikungunya virus (CHIKV is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro. Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design.

  18. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  19. Topography of the Human Papillomavirus Minor Capsid Protein L2 during Vesicular Trafficking of Infectious Entry

    Science.gov (United States)

    DiGiuseppe, Stephen; Keiffer, Timothy R.; Bienkowska-Haba, Malgorzata; Luszczek, Wioleta; Guion, Lucile G. M.; Müller, Martin

    2015-01-01

    ABSTRACT The human papillomavirus (HPV) capsid is composed of the major capsid protein L1 and the minor capsid protein L2. During entry, the HPV capsid undergoes numerous conformational changes that result in endosomal uptake and subsequent trafficking of the L2 protein in complex with the viral DNA to the trans-Golgi network. To facilitate this transport, the L2 protein harbors a number of putative motifs that, if capable of direct interaction, would interact with cytosolic host cell factors. These data imply that a portion of L2 becomes cytosolic during infection. Using a low concentration of digitonin to selectively permeabilize the plasma membrane of infected cells, we mapped the topography of the L2 protein during infection. We observed that epitopes within amino acid residues 64 to 81 and 163 to 170 and a C-terminal tag of HPV16 L2 are exposed on the cytosolic side of intracellular membranes, whereas an epitope within residues 20 to 38, which are upstream of a putative transmembrane region, is luminal. Corroborating these findings, we also found that L2 protein is sensitive to trypsin digestion during infection. These data demonstrate that the majority of the L2 protein becomes accessible on the cytosolic side of intracellular membranes in order to interact with cytosolic factors to facilitate vesicular trafficking. IMPORTANCE In order to complete infectious entry, nonenveloped viruses have to pass cellular membranes. This is often achieved through the viral capsid protein associating with or integrating into intracellular membrane. Here, we determine the topography of HPV L2 protein in the endocytic vesicular compartment, suggesting that L2 becomes a transmembrane protein with a short luminal portion and with the majority facing the cytosolic side for interaction with host cell transport factors. PMID:26246568

  20. Local diagnostic reference level based on size-specific dose estimates: Assessment of pediatric abdominal/pelvic computed tomography at a Japanese national children's hospital

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Rumi; Miyazaki, Osamu; Kurosawa, Hideo; Nosaka, Shunsuke [National Center for Child Health and Development, Department of Radiology, Setagaya-ku, Tokyo (Japan); Horiuchi, Tetsuya [Osaka University, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Course of Health Science, Graduate School of Medicine, Suita, Osaka (Japan)

    2015-03-01

    A child's body size is not accurately reflected by volume CT dose index (CTDI{sub vol}) and dose-length product (DLP). Size-specific dose estimation (SSDE) was introduced recently as a new index of radiation dose. However, it has not yet been established as a diagnostic reference level (DRL). To calculate the SSDE of abdominal/pelvic CT and compare the SSDE with CTDI{sub vol}. To calculate the DRLs of CTDI{sub vol} and SSDE. Our hypotheses are: SSDE values will be greater than CTDI{sub vol}, and our DRL will be smaller than the known DRLs of other countries. The CTDI{sub vol} and DLP of 117 children who underwent abdominal/pelvic CT were collected retrospectively. The SSDE was calculated from the sum of the lateral and anteroposterior diameters. The relationships between body weight and effective diameter and between effective diameter and CTDI{sub vol}/SSDE were compared. Further, the local DRL was compared with the DRLs of other countries. Body weight and effective diameter and effective diameter and SSDE were positively correlated. In children ages 1, 5 and 10 years, the SSDE is closer to the exposure dose of CTDI{sub vol} for the 16-cm phantom, while in children ages 15 years, the SSDE falls between CTDI{sub vol} for the 16-cm phantom and that for the 32-cm phantom. The local DRL was lower than those of other countries. With SSDE, the radiation dose increased with increasing body weight. Since SSDE takes body size into account, it proved to be a useful indicator for estimating the exposure dose. (orig.)

  1. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  2. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    Science.gov (United States)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid

  3. Influence of 320-detector-row volume scanning and AAPM report 111 CT dosimetry metrics on size-specific dose estimate: a Monte Carlo study.

    Science.gov (United States)

    Haba, Tomonobu; Koyama, Shuji; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao

    2016-09-01

    The American Association of Physicists in Medicine (AAPM) task group 204 has recommended the use of size-dependent conversion factors to calculate size-specific dose estimate (SSDE) values from volume computed tomography dose index (CTDIvol) values. However, these conversion factors do not consider the effects of 320-detector-row volume computed tomography (CT) examinations or the new CT dosimetry metrics proposed by AAPM task group 111. This study aims to investigate the influence of these examinations and metrics on the conversion factors reported by AAPM task group 204, using Monte Carlo simulations. Simulations were performed modelling a Toshiba Aquilion ONE CT scanner, in order to compute dose values in water for cylindrical phantoms with 8-40-cm diameters at 2-cm intervals for each scanning parameter (tube voltage, bow-tie filter, longitudinal beam width). Then, the conversion factors were obtained by applying exponential regression analysis between the dose values for a given phantom diameter and the phantom diameter combined with various scanning parameters. The conversion factors for each scanning method (helical, axial, or volume scanning) and CT dosimetry method (i.e., the CTDI100 method or the AAPM task group 111 method) were in agreement with those reported by AAPM task group 204, within a percentage error of 14.2 % for phantom diameters ≥11.2 cm. The results obtained in this study indicate that the conversion factors previously presented by AAPM task group 204 can be used to provide appropriate SSDE values for 320-detector-row volume CT examinations and the CT dosimetry metrics proposed by the AAPM task group 111.

  4. Bacteriophage P23-77 capsid protein structures reveal the archetype of an ancient branch from a major virus lineage.

    Science.gov (United States)

    Rissanen, Ilona; Grimes, Jonathan M; Pawlowski, Alice; Mäntynen, Sari; Harlos, Karl; Bamford, Jaana K H; Stuart, David I

    2013-05-07

    It has proved difficult to classify viruses unless they are closely related since their rapid evolution hinders detection of remote evolutionary relationships in their genetic sequences. However, structure varies more slowly than sequence, allowing deeper evolutionary relationships to be detected. Bacteriophage P23-77 is an example of a newly identified viral lineage, with members inhabiting extreme environments. We have solved multiple crystal structures of the major capsid proteins VP16 and VP17 of bacteriophage P23-77. They fit the 14 Å resolution cryo-electron microscopy reconstruction of the entire virus exquisitely well, allowing us to propose a model for both the capsid architecture and viral assembly, quite different from previously published models. The structures of the capsid proteins and their mode of association to form the viral capsid suggest that the P23-77-like and adeno-PRD1 lineages of viruses share an extremely ancient common ancestor.

  5. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing.

    Science.gov (United States)

    Adachi, Kei; Enoki, Tatsuji; Kawano, Yasuhiro; Veraz, Michael; Nakai, Hiroyuki

    2014-01-01

    Adeno-associated virus (AAV) capsid engineering is an emerging approach to advance gene therapy. However, a systematic analysis on how each capsid amino acid contributes to multiple functions remains challenging. Here we show proof-of-principle and successful application of a novel approach, termed AAV Barcode-Seq, that allows us to characterize phenotypes of hundreds of different AAV strains in a high-throughput manner and therefore overcomes technical difficulties in the systematic analysis. In this approach, we generate DNA barcode-tagged AAV libraries and determine a spectrum of phenotypes of each AAV strain by Illumina barcode sequencing. By applying this method to AAV capsid mutant libraries tagged with DNA barcodes, we can draw a high-resolution map of AAV capsid amino acids important for the structural integrity and functions including receptor binding, tropism, neutralization and blood clearance. Thus, Barcode-Seq provides a new tool to generate a valuable resource for virus and gene therapy research.

  6. Location of the Bacteriophage P22 Coat Protein C-terminus Provides Opportunities for the Design of Capsid Based Materials

    OpenAIRE

    Servid, Amy; Jordan, Paul; O’Neil, Alison; Prevelige, Peter; Douglas, Trevor

    2013-01-01

    Rational design of modifications to the interior and exterior surfaces of virus-like particles (VLPs) for future therapeutic and materials applications is based on structural information about the capsid. Existing cryo-electron microscopy based models suggest that the C-terminus of the bacteriophage P22 coat protein (CP) extends towards the capsid exterior. Our biochemical analysis through genetic manipulations of the C-terminus supports the model where the CP C-terminus is exposed on the ext...

  7. Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

    OpenAIRE

    Rebeca Bocanegra; María Nevot; Rosa Doménech; Inmaculada López; Olga Abián; Alicia Rodríguez-Huete; Cavasotto, Claudio N.; Adrián Velázquez-Campoy; Javier Gómez; Miguel Ángel Martínez; José Luis Neira; Mateu, Mauricio G.

    2011-01-01

    Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces in...

  8. Vesicular stomatitis virus replicon expressing the VP2 outer capsid protein of bluetongue virus serotype 8 induces complete protection of sheep against challenge infection.

    Science.gov (United States)

    Kochinger, Stefanie; Renevey, Nathalie; Hofmann, Martin A; Zimmer, Gert

    2014-06-13

    Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.

  9. High level expression of the capsid protein of hepatitis E virus in diverse eukaryotic cells using the Semliki Forest virus replicon.

    Science.gov (United States)

    Torresi, J; Meanger, J; Lambert, P; Li, F; Locarnini, S A; Anderson, D A

    1997-12-01

    The capsid protein of hepatitis E virus (HEV) is encoded by open reading frame 2 (ORF 2) and exhibits variable processing when expressed in insect and COS cells, but nothing is known of its processing in cells relevant to its replication. The full-length ORF 2 protein was expressed at high levels in mammalian cells by insertion of ORF 2 in the Semliki Forest virus (SFV) replicon to generate rSFV/HEV ORF 2K. Expression of the capsid protein was detected readily by metabolic labelling and indirect immunofluorescence in BHK-21 cells transfected with RNA transcripts derived from rSFV/HEV ORF 2K. ORF 2 protein was also expressed at high levels in cells of diverse origin, including liver-derived cell lines Huh7 and HepG2, following infection with recombinant virus derived from cotransfection of BHK-21 cells with the rSFV/HEV ORF 2K and helper SFV replicon RNAs. The addition of hypertonic KCl during metabolic labelling reduced the level of host cell protein synthesis and enhanced the detection of intermediates in ORF 2 protein processing. The wide host range and high level expression directed by SFV replicon particles has particular utility in the analysis of cell-specific factors in the protein processing and assembly of non-cultivable viruses such as HEV.

  10. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico

    CERN Document Server

    Kononova, Olga; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2015-01-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of pr...

  11. Selective Inhibitor of Nuclear Export (SINE) Compounds Alter New World Alphavirus Capsid Localization and Reduce Viral Replication in Mammalian Cells.

    Science.gov (United States)

    Lundberg, Lindsay; Pinkham, Chelsea; de la Fuente, Cynthia; Brahms, Ashwini; Shafagati, Nazly; Wagstaff, Kylie M; Jans, David A; Tamir, Sharon; Kehn-Hall, Kylene

    2016-11-01

    The capsid structural protein of the New World alphavirus, Venezuelan equine encephalitis virus (VEEV), interacts with the host nuclear transport proteins importin α/β1 and CRM1. Novel selective inhibitor of nuclear export (SINE) compounds, KPT-185, KPT-335 (verdinexor), and KPT-350, target the host's primary nuclear export protein, CRM1, in a manner similar to the archetypical inhibitor Leptomycin B. One major limitation of Leptomycin B is its irreversible binding to CRM1; which SINE compounds alleviate because they are slowly reversible. Chemically inhibiting CRM1 with these compounds enhanced capsid localization to the nucleus compared to the inactive compound KPT-301, as indicated by immunofluorescent confocal microscopy. Differences in extracellular versus intracellular viral RNA, as well as decreased capsid in cell free supernatants, indicated the inhibitors affected viral assembly, which led to a decrease in viral titers. The decrease in viral replication was confirmed using a luciferase-tagged virus and through plaque assays. SINE compounds had no effect on VEEV TC83_Cm, which encodes a mutated form of capsid that is unable to enter the nucleus. Serially passaging VEEV in the presence of KPT-185 resulted in mutations within the nuclear localization and nuclear export signals of capsid. Finally, SINE compound treatment also reduced the viral titers of the related eastern and western equine encephalitis viruses, suggesting that CRM1 maintains a common interaction with capsid proteins across the New World alphavirus genus.

  12. Two-Dimensional Phase Transition of Viral Capsid Gives Insights into Subunit Interactions

    Science.gov (United States)

    Tresset, Guillaume; Chen, Jingzhi; Chevreuil, Maelenn; Nhiri, Naïma; Jacquet, Eric; Lansac, Yves

    2017-01-01

    We show that the thermal dissociation of icosahedral viral capsids can be interpreted in terms of a two-dimensional phase transition. The approach provides a useful framework to get direct insights into the interactions at work between viral components. We devise a mean-field lattice model that relates the melting temperature to subunit attractive energy, effective charge, and chemical potential. Through fluorescence thermal shift assay on a plant viral system, we illustrate how the model gives access to the interaction parameters for empty and loaded viral capsids in various ionic conditions. This work should help construct physical models accounting for the assembly and disassembly mechanisms of viruses, with possible fallout in the development of therapeutic inhibitors.

  13. Expression and subcellular targeting of canine parvovirus capsid proteins in baculovirus-transduced NLFK cells.

    Science.gov (United States)

    Gilbert, Leona; Välilehto, Outi; Kirjavainen, Sanna; Tikka, Päivi J; Mellett, Mark; Käpylä, Pirjo; Oker-Blom, Christian; Vuento, Matti

    2005-01-17

    A mammalian baculovirus delivery system was developed to study targeting in Norden Laboratories feline kidney (NLFK) cells of the capsid proteins of canine parvovirus (CPV), VP1 and VP2, or corresponding counterparts fused to EGFP. VP1 and VP2, when expressed alone, both had equal nuclear and cytoplasmic distribution. However, assembled form of VP2 had a predominantly cytoplasmic localization. When VP1 and VP2 were simultaneously present in cells, their nuclear localization increased. Thus, confocal immunofluorescence analysis of cells transduced with the different baculovirus constructs or combinations thereof in the absence or presence of infecting CPV revealed that the VP1 protein is a prerequisite for efficient targeting of VP2 to the nucleus. The baculovirus vectors were functional and the genes of interest efficiently introduced to this CPV susceptible mammalian cell line. Thus, we show evidence that the system could be utilized to study targeting of the CPV capsid proteins.

  14. Theory of morphological transformation of viral capsid shells during maturation process

    CERN Document Server

    Konevtsova, O V; Rochal, S B

    2015-01-01

    In the frame of the Landau-Ginzburg formalism we propose a minimal phenomenological model for a morphological transformation in viral capsid shells. The transformation takes place during virus maturation process which renders virus infectious. The theory is illustrated on the example of the HK97 bacteriophage and viruses with similar morphological changes in the protective protein shell. The transformation is shown to be a structural phase transition driven by two order parameters. The first order parameter describes the isotropic expansion of the protein shell while the second one is responsible for the shape symmetry breaking and the resulting shell faceting. The group theory analysis and the resulting thermodynamic model make it possible to choose the parameter which discriminates between the icosahedral shell faceting often observed in viral capsids and the dodecahedral one observed in viruses of the Parvovirus family. Calculated phase diagram illustrates the discontinuous character of the virus morpholog...

  15. DNA condensates organized by the capsid protein VP15 in White Spot Syndrome Virus.

    Science.gov (United States)

    Liu, Yingjie; Wu, Jinlu; Chen, Hu; Hew, Choy Leong; Yan, Jie

    2010-12-20

    The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.

  16. Calculation of size specific dose estimates (SSDE) value at cylindrical phantom from CBCT Varian OBI v1.4 X-ray tube EGSnrc Monte Carlo simulation based

    Science.gov (United States)

    Nasir, M.; Pratama, D.; Anam, C.; Haryanto, F.

    2016-03-01

    The aim of this research was to calculate Size Specific Dose Estimates (SSDE) generated by the varian OBI CBCT v1.4 X-ray tube working at 100 kV using EGSnrc Monte Carlo simulations. The EGSnrc Monte Carlo code used in this simulation was divided into two parts. Phase space file data resulted by the first part simulation became an input to the second part. This research was performed with varying phantom diameters of 5 to 35 cm and varying phantom lengths of 10 to 25 cm. Dose distribution data were used to calculate SSDE values using trapezoidal rule (trapz) function in a Matlab program. SSDE obtained from this calculation was compared to that in AAPM report and experimental data. It was obtained that the normalization of SSDE value for each phantom diameter was between 1.00 and 3.19. The normalization of SSDE value for each phantom length was between 0.96 and 1.07. The statistical error in this simulation was 4.98% for varying phantom diameters and 5.20% for varying phantom lengths. This study demonstrated the accuracy of the Monte Carlo technique in simulating the dose calculation. In the future, the influence of cylindrical phantom material to SSDE would be studied.

  17. Characterization of nickel and vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.; Jones, E.L.; Bennett, J.A.; Biggs, W.R.

    1988-02-01

    Previously, we have examined the Ni and V in heavy crude oils, residua, and processed products by several metal speciation techniques to ascertain molecular structure and processing behavior. Two classes of metal compounds were found/--/metallopetroporphyrins and metallo-nonporphyrins/--/each having unique reactivity during processing. In efforts to better understand the binding of metals in the oil medium, we have now examined Ni and V in tar sand bitumens. The bitumen was solvent extracted from the sand matrix and was separated by column chromatography to quantitate petroporphyrin content. The petroporphyrin contents ranged from virtually none to over 36% of the total metals. Asphalt Ridge (Utah) has primarily Ni petroporphyrins; Big Clifty (Kentucky) and Athabasca (Canada) have primarily V petroporphyrins; Arroyo Grande and McKittrick (California) have roughly equal amounts of both types; and Sunnyside (Utah) has virtually none of either. Size characteristic profiles (SEC-HPLC-ICP) were generated for the extracted bitumens. The profiles are generally bimodal in shape and resemble several different specific heavy crude oils and residua. For examples, Arroyo Grande and McKittrick appear to be similar to Kern River (California) 650/degree/F+ residuum, while Athabasca resembles Morichal (Venezuela) 650/degree/F+ residuum. These results will be discussed in terms of generalized profile and petroporphyrin behavior. 23 refs., 3 figs., 3 tabs.

  18. Purification of recombinant virus-like particles of porcine circovirus type 2 capsid protein using ion-exchange monolith chromatography.

    Science.gov (United States)

    Zaveckas, Mindaugas; Snipaitis, Simas; Pesliakas, Henrikas; Nainys, Juozas; Gedvilaite, Alma

    2015-06-01

    Diseases associated with porcine circovirus type 2 (PCV2) infection are having a severe economic impact on swine-producing countries. The PCV2 capsid (Cap) protein expressed in eukaryotic systems self-assemble into virus-like particles (VLPs) which can serve as antigens for diagnostics or/and as vaccine candidates. In this work, conventional adsorbents as well as a monolithic support with large pore sizes were examined for the chromatographic purification of PCV2 Cap VLPs from clarified yeast lysate. Q Sepharose XL was used for the initial separation of VLPs from residual host nucleic acids and some host cell proteins. For the further purification of PCV2 Cap VLPs, SP Sepharose XL, Heparin Sepharose CL-6B and CIMmultus SO3 monolith were tested. VLPs were not retained on SP Sepharose XL. The purity of VLPs after chromatography on Heparin Sepharose CL-6B was only 4-7% and the recovery of VLPs was 5-7%. Using ion-exchange chromatography on the CIMmultus SO3 monolith, PCV2 Cap VLPs with the purity of about 40% were obtained. The recovery of VLPs after chromatography on the CIMmultus SO3 monolith was 15-18%. The self-assembly of purified PCV2 Cap protein into VLPs was confirmed by electron microscopy. Two-step chromatographic purification procedure of PCV2 Cap VLPs from yeast lysate was developed using Q Sepharose XL and cation-exchange CIMmultus SO3 monolith.

  19. Interactions of the HSV-1 UL25 Capsid Protein with Cellular Microtubule-associated Protein

    Institute of Scientific and Technical Information of China (English)

    Lei GUO; Ying ZHANG; Yan-chun CHE; Wen-juan WU; Wei-zhong LI; Li-chun WANG; Yun LIAO; Long-ding LIU; Qi-han LI

    2008-01-01

    An interaction between the HSV-1 UL25 capsid protein and cellular microtubule-associated protein was found using a yeast two-hybrid screen and β-D-galactosidase activity assays. Immunofluorescence microscopy of the UL25 protein demonstrated its co-localization with cellular microtubule-associated protein in the plasma membrane. Further investigations with deletion mutants suggest that UL25 is likely to have a function in the nucleus.

  20. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    Directory of Open Access Journals (Sweden)

    Bugli F

    2014-05-01

    Full Text Available Francesca Bugli,1 Valeria Caprettini,2 Margherita Cacaci,1 Cecilia Martini,1 Francesco Paroni Sterbini,1 Riccardo Torelli,1 Stefano Della Longa,3 Massimiliano Papi,4 Valentina Palmieri,4 Bruno Giardina,5 Brunella Posteraro,1 Maurizio Sanguinetti,1 Alessandro Arcovito5 1Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 2Dipartimento di Fisica, Sapienza Università di Roma, Rome, 3Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, L’Aquila, 4Istituto di Fisica, 5Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy Abstract: In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few micron long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native

  1. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  2. Modeling of the human rhinovirus C capsid suggests possible causes for antiviral drug resistance.

    Science.gov (United States)

    Basta, Holly A; Ashraf, Shamaila; Sgro, Jean-Yves; Bochkov, Yury A; Gern, James E; Palmenberg, Ann C

    2014-01-05

    Human rhinoviruses of the RV-C species are recently discovered pathogens with greater clinical significance than isolates in the RV-A+B species. The RV-C cannot be propagated in typical culture systems; so much of the virology is necessarily derivative, relying on comparative genomics, relative to the better studied RV-A+B. We developed a bioinformatics-based structural model for a C15 isolate. The model showed the VP1-3 capsid proteins retain their fundamental cores relative to the RV-A+B, but conserved, internal RV-C residues affect the shape and charge of the VP1 hydrophobic pocket that confers antiviral drug susceptibility. When predictions of the model were tested in organ cultures or ALI systems with recombinant C15 virus, there was a resistance to capsid-binding drugs, including pleconaril, BTA-188, WIN56291, WIN52035 and WIN52084. Unique to all RV-C, the model predicts conserved amino acids within the pocket and capsid surface pore leading to the pocket may correlate with this activity.

  3. Motion of an antiviral compound in a rhinovirus capsid under rotational symmetry boundary conditions.

    Science.gov (United States)

    Yoneda, Shigetaka; Yoneda, Teruyo; Kurihara, Youji; Umeyama, Hideaki

    2002-08-01

    A molecular dynamics (MD) simulation of a complex of a rhinovirus protein shell referred to as a "capsid" and an anti-rhinovirus drug, WIN52084s, was performed under the rotational symmetry boundary conditions. For the simulation, the energy parameters of WIN52084s in all-atom approximations were determined by ab initio calculations using a 6-31G* basis set and the two-conformational two-stage restricted electrostatic potential fit method. The motion of WIN52084s and the capsid was focused on in the analysis of the trajectory of the simulation. The root mean square deviations of WIN52084s from the X-ray structure were decomposed to conformational, translational, and rotational components. The translation was further decomposed to radial, longitudinal, and lateral components. The conformation of WIN52084s was rigid, but moving in the pocket. The easiest path of motion for WlN52084s was on the longitudinal line, providing a track for the binding process required of the anti-rhinovirus drug to enter the pocket. The conformation of the pocket was also preserved in the simulation, although the position of the pocket in the capsid fluctuated in the lateral and radial directions.

  4. Enhancing the clinical potential of AAV vectors by capsid engineering to evade pre-existing immunity

    Directory of Open Access Journals (Sweden)

    Melissa eBartel

    2011-10-01

    Full Text Available Vectors based on adeno-associated viruses have shown considerable promise in both preclinical models and increasingly in clinical trials. However, one formidable challenge is pre-existing immunity due to widespread exposure to numerous AAV variants and serotypes within the human population, which affect efficacy of clinical trials due to the accompanying high levels of anti-capsid neutralizing antibodies. Transient immunosuppression has promise in mitigating cellular and humoral responses induced by vector application in naïve hosts, but cannot overcome the problem that pre-existing neutralizing antibodies pose towards the goal of safe and efficient gene delivery. Shielding of AAV from antibodies, however, may be possible by covalent attachment of polymers to the viral capsid or by encapsulation of vectors inside biomaterials. In addition, there has been considerable progress in using rational mutagenesis, combinatorial libraries, and directed evolution approaches to engineer capsid variants that are not recognized by anti-AAV antibodies generally present in the human population. While additional progress must be made, such strategies, alone or in combination with immunosuppression to avoid de novo induction of antibodies, have strong potential to significantly enhance the clinical efficacy of AAV vectors.

  5. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway

    Science.gov (United States)

    Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun

    2016-12-01

    HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.

  6. Characterization of a nuclear localization signal of canine parvovirus capsid proteins.

    Science.gov (United States)

    Vihinen-Ranta, M; Kakkola, L; Kalela, A; Vilja, P; Vuento, M

    1997-12-01

    We investigated the abilities of synthetic peptides mimicking the potential nuclear localization signal of canine parvovirus (CPV) capsid proteins to translocate a carrier protein to the nucleus following microinjection into the cytoplasm of A72 cells. Possible nuclear localization sequences were chosen for synthesis from CPV capsid protein sequences (VP1, VP2) on the basis of the presence of clustered basic residues, which is a common theme in most of the previously identified targeting peptides. Nuclear targeting activity was found within the N-terminal residues 4-13 (PAKRARRGYK) of the VP1 capsid protein. While replacement of Arg10 with glycine did not affect the activity, replacement of Lys6, Arg7, or Arg9 with glycine abolished it. The targeting activity was found to residue in a cluster of basic residues, Lys5, Arg7, and Arg9. Nuclear import was saturated by excess of unlabelled peptide conjugates (showing that it was a receptor-mediated process). Transport into the nucleus was an energy-dependent and temperature-dependent process actively mediated by the nuclear pores and inhibited by wheat germ agglutinin.

  7. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  8. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: <0.05 mm) were studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of

  9. Positive Correlation between Epstein-Barr Virus Viral Load and Anti-Viral Capsid Immunoglobulin G Titers Determined for Hodgkin's Lymphoma Patients and Their Relatives

    Science.gov (United States)

    Besson, Caroline; Amiel, Corinne; Le-Pendeven, Catherine; Brice, Pauline; Fermé, Christophe; Carde, Patrice; Hermine, Olivier; Raphael, Martine; Abel, Laurent; Nicolas, Jean-Claude

    2006-01-01

    Markers of Epstein-Barr virus (EBV) infection include measures of specific serological titers and of viral load (VLo) in peripheral blood mononuclear cells. Few studies have investigated the correlation between these two phenotypes. Here, we found that there was no correlation between VLo and either anti-EBV nuclear antigen type 1 or anti-early antigen immunoglobulin G (IgG) titer but that anti-viral capsid antigen (VCA) IgG titer increased with VLo in peripheral blood mononuclear cells in patients with Hodgkin's lymphoma (P = 3.10−3). A similar pattern was observed in healthy first-degree relatives (parents and siblings) of patients (P = 6.10−4). Our results indicate that anti-VCA IgG titers and EBV VLo are specifically correlated EBV phenotypes. PMID:16390946

  10. Cloning and expression of a truncated pigeon circovirus capsid protein suitable for antibody detection in infected pigeons.

    Science.gov (United States)

    Daum, Iris; Finsterbusch, Tim; Härtle, Stefan; Göbel, Thomas W; Mankertz, Annette; Korbel, Rüdiger; Grund, Christian

    2009-04-01

    Infections with pigeon circovirus (PiCV) (also termed columbid circovirus) occur in meat and racing pigeons (Columba livia) of all ages and have been reported worldwide. A PiCV infection is associated with immunosuppression and the development of young pigeon disease syndrome. An indirect enzyme-linked immunosorbent assay (ELISA) for the detection of virus-specific serum antibody was developed for research purposes. In the absence of a method to propagate PiCV in cell culture, the assay was based on a recombinant truncated capsid protein (rCapPiCV) produced by overexpression in Escherichia coli. A 6xHis-Tag was fused to the N-terminus of the protein to facilitate purification by metal affinity chromatography and detection by anti-His antibody. PiCV-negative and PiCV-positive control sera were generated by inoculation of pigeons with tissue homogenate containing PiCV, followed by five weekly blood sample collections. Western blotting of the immune serum revealed a specific protein band of approximately 32 kDa, which was absent in the pre-immune sera. Using rCapPiCV as antigen in an indirect ELISA, PiCV-specific antibody was detected in sera of the experimentally PiCV-infected pigeons collected at 1 to 5 weeks post infection. By testing 118 field sera collected in the years 1989, 1991, 1994 and 2008 in the rCapPiCV ELISA, virus-specific antibody was detected in 89 (75%) of the sera. The results obtained demonstrate that the rCapPiCV-based indirect ELISA is able to detect PiCV-specific antibodies in pigeon sera and may be a useful tool for PiCV serodiagnosis.

  11. Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism

    OpenAIRE

    Wu, Pei; Xiao, Wu; Conlon, Thomas; Hughes, Jeffrey; Agbandje-McKenna, Mavis; FERKOL, THOMAS; Flotte, Terence; Muzyczka, Nicholas

    2000-01-01

    Adeno-associated virus type 2 (AAV2) has proven to be a valuable vector for gene therapy. Characterization of the functional domains of the AAV capsid proteins can facilitate our understanding of viral tissue tropism, immunoreactivity, viral entry, and DNA packaging, all of which are important issues for generating improved vectors. To obtain a comprehensive genetic map of the AAV capsid gene, we have constructed 93 mutants at 59 different positions in the AAV capsid gene by site-directed mut...

  12. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons

    Directory of Open Access Journals (Sweden)

    Christopher J Evans

    2012-03-01

    Full Text Available The striatum can be divided into the DLS (dorsolateral striatum and the VMS (ventromedial striatum, which includes NAcC (nucleus accumbens core and NAcS (nucleus accumbens shell. Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons based on their location, expression of DA (dopamine D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances compared with cells in the VMS. RMPs (resting membrane potentials were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials. Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.

  13. Simultaneous Cu-, Fe-, and Zn-specific detection of metalloproteins contained in rabbit plasma by size-exclusion chromatography-inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Manley, Shawn A; Byrns, Simon; Lyon, Andrew W; Brown, Peter; Gailer, Jürgen

    2009-01-01

    Analytical methods which are capable of determining the plasma or serum metalloproteome have inherent diagnostic value for human diseases associated with increased or decreased concentrations of specific plasma metalloproteins. We have therefore systematically developed a method to rapidly determine the major Cu-, Fe-, and Zn-containing metalloproteins in rabbit plasma (0.5 mL) based on size-exclusion chromatography (SEC; stationary phase Superdex 200, mobile phase phosphate-buffered saline pH 7.4) and the simultaneous online detection of Cu, Fe, and Zn in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). Whereas most previous studies reported on the analysis of serum, our investigations clearly demonstrated that the analysis of plasma within 30 min of collection results in the detection of one more Cu peak (blood coagulation factor V) than has been previously reported (transcuprein, ceruloplasmin, albumin-bound Cu, and small molecular weight Cu). The average amount of Cu associated with these five proteins corresponded to 21, 18, 21, 30 and 10% of total plasma Cu, respectively. In contrast, only two Fe metalloproteins (ferritin and transferrin, corresponding to an average of 9 and 91% of total plasma Fe) and approximately five Zn metalloproteins (alpha(2)-macroglobulin and albumin-bound Zn, which corresponded to an average of 10 and 57% of total [corrected] plasma Zn) were detected. Metalloproteins were assigned on the basis of the coelution of the corresponding metal and protein identified by immunoassays or activity-based enzyme assays. The SEC-ICP-AES approach developed allowed the determination of approximately 12 Cu, Fe, and Zn metalloproteins in rabbit plasma within approximately 24 min and can be applied to analyze human plasma, which is potentially useful for diagnosing Cu-, Fe-, and Zn-related diseases.

  14. Alignment of capsid protein VP1 sequences of all human rhinovirus prototype strains: conserved motifs and functional domains.

    Science.gov (United States)

    Laine, Pia; Blomqvist, Soile; Savolainen, Carita; Andries, Koen; Hovi, Tapani

    2006-01-01

    An alignment was made of the deduced amino acid sequences of the entire capsid protein VP1 of all human rhinovirus (HRV) prototype strains to examine conserved motifs in the primary structure. A set of previously proposed crucially important amino acids in the footprints of the two known receptor molecules was not conserved in a receptor group-specific way. In contrast, VP1 and VP3 amino acids in the minor receptor-group strains corresponding to most of the predicted ICAM-1 footprint definitely differed from those of the ICAM-1-using major receptor-group strains. Previous antiviral-sensitivity classification showed an almost-complete agreement with the species classification and a fair correlation with amino acids aligning in the antiviral pocket. It was concluded that systematic alignment of sequences of related virus strains can be used to test hypotheses derived from molecular studies of individual model viruses and to generate ideas for future studies on virus structure and replication.

  15. [Genetic diversity of capsid assembly protein genes (g20) of cyanophage in different natural environment--a review].

    Science.gov (United States)

    Jing, Ruiyong; Kimura, Makoto; Wang, Guanghua

    2013-11-04

    With the development of molecular biological techniques and progress of sequencing virus genome, scientists pay great attentions to the genetic diversity of viruses, which are ubiquitous and abundant in natural environments. So far, no universal genetic marker, analogous to 16S rDNA and 18S rDNA used for microbial communities exists throughout all viruses. However, some family-specific genes encoding conserved amino acids have been proposed for the evaluation of phage diversity and a series of breakthrough achievements were obtained. In this paper, we targeted the capsid assembly protein genes (g20) of cyanophages and reviewed the recent progress on their genetic diversity in natural environments of marines, lakes and paddy fields and discussed the relationship between distribution of g20 gene of cyanophages and its environments. Those studies showed that the distribution of g20 gene varied with environments and many unique clusters were found in different natural environment. In final, several research issues and the future research tendencies for the study of environmental g20 gene were also addressed in this paper.

  16. Immunogenicity of a recombinant Sendai virus expressing the capsid precursor polypeptide of foot-and-mouth disease virus.

    Science.gov (United States)

    Zhang, Guo-Ging; Chen, Xiao-Yun; Qian, Ping; Chen, Huan-Chun; Li, Xiang-Min

    2016-02-01

    In this study, SeV was used as a vector to express capsid precursor polypeptide (P1) of Foot-and-mouth disease virus (FMDV) by using reverse genetics. The rescue recombinant SeV (rSeV-P1) can efficiently propagate and express P1 protein by Western blot and IFA analysis. To evaluate the immunogenicity of rSeV-P1, BALB/c mice were divided into several groups and immunized intramuscularly with various doses of rSeV-P1, rSeV-eGFP, PBS and commercial FMD vaccine, respectively, and then challenged with an intraperitoneal injection of 1 × 10(6) TCID50 of virulent serotype O FMDV O/ES/2001 strain 4 weeks after booster immunization. Mice vaccinated with rSeV-P1 acquired FMDV-specific ELISA antibodies, neutralizing antibodies as well as cellular immune response. Meantime, mice immunized with rSeV-P1 (dose-dependent) had the ability to inhibit the replication of FMDV in the sera after FMDV challenge. Our results indicated that the recombinant SeV-P1 virus could be utilized as an alternative strategy to develop a new generation of safety and efficacious vaccine against FMDV infection.

  17. Rationally designed interfacial peptides are efficient in vitro inhibitors of HIV-1 capsid assembly with antiviral activity.

    Directory of Open Access Journals (Sweden)

    Rebeca Bocanegra

    Full Text Available Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8 were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization, or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid

  18. Capsid structure and dynamics of a human rhinovirus probed by hydrogen exchange mass spectrometry.

    Science.gov (United States)

    Wang, Lintao; Smith, David L

    2005-06-01

    Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating.

  19. Optimization of Substitution Matrix for Sequence Alignment of Major Capsid Proteins of Human Herpes Simplex Virus

    Directory of Open Access Journals (Sweden)

    Vipan Kumar Sohpal

    2011-12-01

    Full Text Available Protein sequence alignment has become an informative tool in modern molecular biology research. A number of substitution matrices have been readily available for sequence alignments, but it is challenging task to compute optimal matrices for alignment accuracy. Here, we used the parameter optimization procedure to select the optimal Q of substitution matrices for major viral capsid protein of human herpes simplex virus. Results predict that Blosum matrix is most accurate on alignment benchmarks, and Blosum 60 provides the optimal Q in all substitution matrices. PAM 200 matrices results slightly below than Blosum 60, while VTML matrices are intermediate of PAM and VT matrices under dynamic programming.

  20. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    precursor enhances the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells. Such particles can potentially form the basis of a vaccine but they may only have the same properties as the current inactivated vaccines. We have expressed the FMDV P1-2A alone...... or with FMDV 3Cpro using a “single cycle” alphavirus vector based on Semliki Forest virus (SFV). Cattle vaccinated with these rSFV-FMDV vectors alone, produced anti-FMDV antibodies but the immune response was insufficient to give protection against FMDV challenge. However, vaccination with these vectors primed...... a much stronger immune response against FMDV post-challenge. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector...

  1. A novel finding for enterovirus virulence from the capsid protein VP1 of EV71 circulating in mainland China.

    Science.gov (United States)

    Liu, Yongjuan; Fu, Chong; Wu, Suying; Chen, Xiong; Shi, Yingying; Zhou, Bingfei; Zhang, Lianglu; Zhang, Fengfeng; Wang, Zhihao; Zhang, Yingying; Fan, Chengpeng; Han, Song; Yin, Jun; Peng, Biwen; Liu, Wanhong; He, Xiaohua

    2014-04-01

    Enterovirus 71 (EV71) is a neurotropic virus that causes various clinical manifestations in young children, ranging from asymptomatic to fatal. Different pathotypes of EV71 notably differ in virulence. Several virulence determinants of EV71 have been predicted. However, these reported virulence determinants could not be used to identify the EV71 strains of subgenotype C4, which mainly circulate in China. In this study, VP1 sequences of 37 EV71 strains from severe cases (SC-EV71) and 192 EV71 strains from mild cases (MC-EV71) in mainland China were analyzed to determine the potential virulence determinants in the capsid protein VP1 of EV71. Although most SC-EV71 strains belonged to subgenotype C4a, no specific genetic lineages in C4a were correlated with EV71 virulence. Interestingly, amino acid substitutions at nine positions (H22Q, P27S, N31S/D, E98K, E145G/Q, D164E, T240A/S, V249I, and A289T) were detected by aligning the VP1 sequences of the SC-EV71 and MC-EV71 strains. Moreover, both the constituent ratios of the conservative or mutated residues in the MC-EV71 and SC-EV71 strains and the changes in the VP1 3D structure resulting from these mutations confirmed that the conservative residues (22H, 249V, and 289A) and the mutated residues (27S, 31S/D, 98K, 145G/Q, 164E, and 240A/S) might be potential virulence determinants in VP1 of EV71. Furthermore, these results led to the hypothesis that VP1 acts as a sandwich switch for viral particle stabilization and cellular receptors attachment, and specific mutations in this protein can convert mild cases into severe cases. These findings highlight new opportunities for diagnostic and therapeutic interventions.

  2. Combination of autoantibodies against NY-ESO-1 and viral capsid antigen immunoglobulin A for improved detection of nasopharyngeal carcinoma.

    Science.gov (United States)

    Peng, Yu-Hui; Xu, Yi-Wei; Qiu, Si-Qi; Hong, Chao-Qun; Zhai, Tian-Tian; Li, En-Min; Xu, Li-Yan

    2014-09-01

    Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in Southern China and Southeast Asia, and early detection remains a challenge. Autoantibodies have been found to precede the manifestations of symptomatic cancer by several months to years, making their identification of particular relevance for early detection. In the present study, the diagnostic value of serum autoantibodies against NY-ESO-1 in NPC patients was evaluated. The study included 112 patients with NPC and 138 normal controls. Serum levels of autoantibodies against NY-ESO-1 and classical Epstein-Barr virus marker, viral capsid antigen immunoglobulin A (VCA-IgA), were measured by enzyme-linked immunosorbent assay. Measurement of autoantibodies against NY-ESO-1 and VCA-IgA demonstrated a sensitivity/specificity of 42.9/94.9% [95% confidence interval (CI), 33.7-52.6/89.4-97.8%] and 55.4/95.7% (95% CI, 45.7-64.7/90.4-98.2%), respectively. The area under receiver operating characteristic curve for autoantibodies against NY-ESO-1 (0.821; 95% CI, 0.771-0.871) was marginally lower than that for VCA-IgA (0.860; 95% CI, 0.810-0.910) in NPC. The combination of autoantibodies against NY-ESO-1 and VCA-IgA yielded an enhanced sensitivity of 80.4% (95% CI, 71.6-87.0%) and a specificity of 90.6% (95% CI, 84.1-94.7%). Moreover, detection of autoantibodies against NY-ESO-1 could differentiate early-stage NPC patients from normal controls. Our results suggest that autoantibodies against NY-ESO-1 may serve as a potential biomarker, as a supplement to VCA-IgA, for the screening and diagnosis of NPC.

  3. Sex-specific effects of altered competition on nestling growth and survival : an experimental manipulation of brood size and sex ratio

    NARCIS (Netherlands)

    Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Komdeur, Jan; Both, Christiaan; Tinbergen, Joost M.; Wright, Jonathan

    2009-01-01

    An increase of competition among adults or nestlings usually negatively affects breeding output. Yet little is known about the differential effects that competition has on the offspring sexes. This could be important because it may influence parental reproductive decisions. In sexual size dimorphic

  4. Testing the generality of the zoom-lens model: Evidence for visual-pathway specific effects of attended-region size on perception.

    Science.gov (United States)

    Goodhew, Stephanie C; Lawrence, Rebecca K; Edwards, Mark

    2017-03-16

    There are volumes of information available to process in visual scenes. Visual spatial attention is a critically important selection mechanism that prevents these volumes from overwhelming our visual system's limited-capacity processing resources. We were interested in understanding the effect of the size of the attended area on visual perception. The prevailing model of attended-region size across cognition, perception, and neuroscience is the zoom-lens model. This model stipulates that the magnitude of perceptual processing enhancement is inversely related to the size of the attended region, such that a narrow attended-region facilitates greater perceptual enhancement than a wider region. Yet visual processing is subserved by two major visual pathways (magnocellular and parvocellular) that operate with a degree of independence in early visual processing and encode contrasting visual information. Historically, testing of the zoom-lens has used measures of spatial acuity ideally suited to parvocellular processing. This, therefore, raises questions about the generality of the zoom-lens model to different aspects of visual perception. We found that while a narrow attended-region facilitated spatial acuity and the perception of high spatial frequency targets, it had no impact on either temporal acuity or the perception of low spatial frequency targets. This pattern also held up when targets were not presented centrally. This supports the notion that visual attended-region size has dissociable effects on magnocellular versus parvocellular mediated visual processing.

  5. Structural Basis for the Development of Avian Virus Capsids That Display Influenza Virus Proteins and Induce Protective Immunity

    OpenAIRE

    Pascual, Elena; Mata, Carlos P.; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L.; Castón, José R.

    2014-01-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ∼70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an am...

  6. Analogs of LDL Receptor Ligand Motifs in Dengue Envelope and Capsid Proteins as Potential Codes for Cell Entry

    OpenAIRE

    Juan Guevara; Jaime Romo; Troy McWhorter; Natalia Valentinova Guevara

    2015-01-01

    It is established that cell entry of low density lipoprotein particles (LLPs) containing Apo B100 and Apo E is mediated by receptors and GAGs. Receptor ligand motifs, XBBBXXBX, XBBXBX, and ΨBΨXB, and mono- and bipartite NLS sequences are abundant in Apo E and Apo B100 as well as in envelope and capsid proteins of Dengue viruses 1–4 (DENV1–4). Synthetic, fluorescence-labeled peptides of sequences in DENV2 envelope protein, and DENV3 capsid that include these motifs were used to conduct a quali...

  7. Dissociation of an antiviral compound from the internal pocket of human rhinovirus 14 capsid.

    Science.gov (United States)

    Li, Yumin; Zhou, Zhigang; Post, Carol Beth

    2005-05-24

    WIN antiviral compounds bind human rhinovirus, as well as enterovirus and parechovirus, in an internal cavity located within the viral protein capsid. Access to the buried pocket necessitates deviation from the average viral protein structure identified by crystallography. We investigated the dissociation of WIN 52084 from the pocket in human rhinovirus 14 by using an adiabatic, biased molecular dynamics simulation method. Multiple dissociation trajectories are used to characterize the pathway. WIN 52084 exits between the polypeptide chain near the ends of betaC and betaH in a series of steps. Small, transient packing defects in the protein are sufficient for dissociation. A number of torsion-angle transitions of the antiviral compound are involved, which suggests that flexibility in antiviral compounds is important for binding. It is interesting to note that dissociation is associated with an increase in the conformational fluctuations of residues never in direct contact with WIN 52084 over the course of dissociation. These residues are N-terminal residues in the viral proteins VP3 and VP4 and are located in the interior of the capsid near the icosahedral 5-fold axis. The observed changes in dynamics may be relevant to structural changes associated with virion uncoating and its inhibition by antiviral compounds.

  8. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines

    Science.gov (United States)

    Fox, Helen; Minor, Philip D.

    2017-01-01

    While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated) vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models. PMID:28103317

  9. 3D reconstruction and capsid protein characterization of grass carp reovirus

    Institute of Scientific and Technical Information of China (English)

    FANG; Qin; Shah; Sanket; LIANG; Yuyao; Z.; H.; ZHOU

    2005-01-01

    Grass carp reovirus (GCRV) is a relatively new virus first isolated in China and is a member of the Aquareovirus genus of the Reoviridae family. Recent report of genomic sequencing showed that GCRV shared high degree of homology with mammalian reovirus (MRV). As a step of our effort to understand the structural basis of GCRV pathogenesis, we determined the three-dimensional (3D) structure of GCRV capsid at 17 (A) resolution by electron cryomicroscopy. Each GCRV capsid has a multilayered organization, consisting of an RNA core, an inner, middle and outer protein layer. The outer layer is made up of 200 trimers that are arranged on an incomplete T=13 icosahedral lattice. A characteristic feature of this layer is the depression resulting from the absence of trimers around the peripentonal positions, revealing the underlying trimers on the middle layer. There are 120 subunits in the inner layer arranged with T=1 symmetry. These structural features are common to other members of the Reoviridae. Moreover, SDS-PAGE analysis showed that GCRV virions contain seven structural proteins (VP1-VP7). These structural proteins have a high degree of sequence homology to MRV, consistent with the structural similarities observed in our study. The high structural similarities of isolated GCRV and MRV suggest that future structural studies focusing on GCRV entering into and replicating within its host cell are necessary in order to fully understand the structural basis of GCRV pathogenesis.

  10. Sequence analysis and location of capsid proteins within RNA 2 of strawberry latent ringspot virus.

    Science.gov (United States)

    Kreiah, S; Strunk, G; Cooper, J I

    1994-09-01

    The nucleotide sequence of the RNA 2 of a strawberry isolate (H) of strawberry latent ringspot virus (SLRSV) comprised 3824 nucleotides and contained one long open reading frame with a theoretical coding capacity of 890 amino acids equivalent to a protein of 98.8K. The N-terminal amino acid sequences of virion-derived proteins were determined by Edman degradation allowing the capsid coding regions to be located and serine/glycine cleavage sites to be identified within the polyprotein. The amino acid sequence in the capsid coding region of an isolate of SLRSV from flowering cherry in New Zealand was 97% identical to that of SLRSV-H. Except in the 3' and 5' terminal non-coding sequences, computer-based alignment and comparison algorithms did not reveal any substantial homologies between RNA 2 of SLRSV-H and the equivalent genomic segments in the nepoviruses arabis mosaic, cherry leaf roll, grapevine fanleaf, raspberry ringspot, grapevine hungarian chrome mosaic, tomato blackring, tomato ringspot, tobacco ringspot, or in the comoviruses cowpea mosaic and red clover mottle. Despite the similarities in overall genome organization, data from RNA 2 remain insufficient for unambiguous positioning of SLRSV in relation to species/genera in the Comoviridae.

  11. RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins.

    Science.gov (United States)

    Yang, Zhu; Reeves, Michael; Ye, Jun; Trang, Phong; Zhu, Li; Sheng, Jingxue; Wang, Yu; Zen, Ke; Wu, Jianguo; Liu, Fenyong

    2015-06-24

    An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%-99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.

  12. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  13. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine.

    Science.gov (United States)

    Qiu, Kai; Qin, Chun Fu; Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption.

  14. Protein Restriction with Amino Acid-Balanced Diets Shrinks Circulating Pool Size of Amino Acid by Decreasing Expression of Specific Transporters in the Small Intestine

    Science.gov (United States)

    Luo, Min; Zhang, Xin; Sun, Wen Juan; Jiao, Ning; Li, De Fa; Yin, Jing Dong

    2016-01-01

    Dietary protein restriction is not only beneficial to health and longevity in humans, but also protects against air pollution and minimizes feeding cost in livestock production. However, its impact on amino acid (AA) absorption and metabolism is not quite understood. Therefore, the study aimed to explore the effect of protein restriction on nitrogen balance, circulating AA pool size, and AA absorption using a pig model. In Exp.1, 72 gilts weighting 29.9 ± 1.5 kg were allocated to 1 of the 3 diets containing 14, 16, or 18% CP for a 28-d trial. Growth (n = 24), nitrogen balance (n = 6), and the expression of small intestinal AA and peptide transporters (n = 6) were evaluated. In Exp.2, 12 barrows weighting 22.7 ± 1.3 kg were surgically fitted with catheters in the portal and jejunal veins as well as the carotid artery and assigned to a diet containing 14 or 18% CP. A series of blood samples were collected before and after feeding for determining the pool size of circulating AA and AA absorption in the portal vein, respectively. Protein restriction did not sacrifice body weight gain and protein retention, since nitrogen digestibility was increased as dietary protein content reduced. However, the pool size of circulating AA except for lysine and threonine, and most AA flux through the portal vein were reduced in pigs fed the low protein diet. Meanwhile, the expression of peptide transporter 1 (PepT-1) was stimulated, but the expression of the neutral and cationic AA transporter systems was depressed. These results evidenced that protein restriction with essential AA-balanced diets, decreased AA absorption and reduced circulating AA pool size. Increased expression of small intestinal peptide transporter PepT-1 could not compensate for the depressed expression of jejunal AA transporters for AA absorption. PMID:27611307

  15. Predicting Quiescence: The Dependence of Specific Star Formation Rate on Galaxy Size and Central Density at 0.5

    CERN Document Server

    Whitaker, Katherine E; van Dokkum, Pieter G; Franx, Marijn; van der Wel, Arjen; Brammer, Gabriel; Forster-Schreiber, Natascha M; Giavalisco, Mauro; Labbe, Ivo; Momcheva, Ivelina G; Nelson, Erica J; Skelton, Rosalind

    2016-01-01

    In this paper, we investigate the relationship between star formation and structure, using a mass-complete sample of 27,893 galaxies at 0.50.5 dex from z~2 to z~0.7. Neither a compact galaxy size nor a high n are sufficient to assess the likelihood of quiescence for the average galaxy; rather, it is the combination of these two parameters together with stellar mass that results in a unique quenching threshold in central density or velocity.

  16. Synthesis of dispersive iron or iron–silver nanoparticles on engineered capsid pVIII of M13 virus with electronegative terminal peptides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Nakano, Kazuhiko; Zhang, Shu-liang; Yu, Hui-min, E-mail: yuhm@tsinghua.edu.cn [Tsinghua University, Key Laboratory of Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering (China)

    2015-10-15

    M13 is a filamentous Escherichia coli virus covered with five types of capsid proteins, in which pVIII with ∼2700 copies was around the cylindered surface and pIII with five copies located at one end of the phage particle. The pIII-engineered M13 phages with enhanced binding specificity toward Fe were screened after five rounds of biopanning, and the one containing ATPTVAMSLSPL peptide at pIII-terminus was selected for mediated synthesis of zero valent (ZV) Fe nanoparticles (NPs) with the wild M13 as control. Under a reducing environment, uniformly dispersed ZVFeNPs with diameter of 5–10 nm were both synthesized and the morphologies after annealing were confirmed to be face-centered cubic type. The synthesized FeNPs mediated by the two phages showed no significant difference, revealing that the pVIII capsid did dominant contribution to metal binding in comparison with the pIII. A novel pVIII-engineered M13 containing AAEEEDPAK at terminus, named as 4ED-pVIII-M13, was constructed and it carried one more negatively charged residue than the wild one (AEGDDPAK). Metal adsorption quantification showed that the binding affinity of the 4ED-pVIII-M13 toward Ag and Ni ions improved to 62 and 18 % from original 21 and 6 %, respectively. The binding affinity toward Fe remained constant (∼85 %). ZVFe–Ag bi-NPs were successfully synthesized through mediation of 4ED-pVIII-M13. Particularly, the Fe:Ag ratio in the bi-NPs was conveniently controlled through changing the molar concentration of FeCl{sub 2} and AgNO{sub 3} solution before reduction.

  17. High-Resolution X-Ray Structure and Functional Analysis of the Murine Norovirus 1 Capsid Protein Protruding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Taube, Stefan; Rubin, John R.; Katpally, Umesh; Smith, Thomas J.; Kendall, Ann; Stuckey, Jeanne A.; Wobus, Christiane E. (Michigan); (Danforth)

    2010-07-23

    Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A{prime}-B{prime} and E{prime}-F{prime} loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1{sup -/-} mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A{prime}-B{prime} and E{prime}-F{prime} loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface.

  18. Inhibition of enterovirus 71 (EV-71 infections by a novel antiviral peptide derived from EV-71 capsid protein VP1.

    Directory of Open Access Journals (Sweden)

    Chee Wah Tan

    Full Text Available Enterovirus 71 (EV-71 is the main causative agent of hand, foot and mouth disease (HFMD. In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50 values ranging from 6-9.3 µM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.

  19. Plant size and abiotic factors determine the intra-specific variation in the multi-stemmed architecture of Prunus lusitanica in the Northeast limit of its global distribution

    Directory of Open Access Journals (Sweden)

    A. Muñoz Costa

    2013-12-01

    Full Text Available Aim of study: The present work provides novel insights on factors (either intrinsic or extrinsic that trigger sprouting in woody species living at range margins. We aim to explain the inter-individual variability in the multi-stemmed architecture of Prunus lusitanica L., an Iberian evergreen relict tree related to the Tertiary flora.Area of study: Northeastern Mediterranean mountains of the Iberian Peninsula, the Northeast limit of the global distribution of the species.Material and Methods: We gathered data on two modes of vegetative reproduction, basal and layering sprouts, in 288 clumps of Prunus lusitanica from four populations. We modeled and analyzed the effect of environmental factors (topography, canopy cover, soil moisture and disturbances and plant size (diameter at breast height on sprouting by means of Generalized Linear Model and other statistical approaches.Main results: Plant size arises as the principal factor to explain the variability of the numbers of both types of sprouts yet it is not a trigger factor. Natural and anthropogenic disturbances promote basal and layering shoots, while tree canopy is mainly relevant for basal shoots, and slope and soil moisture are significant factors for layering shoots.Research highlights: The multi-stemmed architecture of P. lusitanica at the Northeastern limit of its worldwide distribution is triggered by local environmental factors and disturbances. Each external factor shows different levels of influence on the variability and type of vegetative reproduction yet the intensity of the response is driven by the size of the largest trunk of each clump.Key words: vegetative reproduction; sprouting; disturbances; woody plants; relict tree; subtropical; Iberian Peninsula.

  20. Macrophage reactivity to different polymers demonstrates particle size- and material-specific reactivity: PEEK-OPTIMA(®) particles versus UHMWPE particles in the submicron, micron, and 10 micron size ranges.

    Science.gov (United States)

    Hallab, Nadim James; McAllister, Kyron; Brady, Mark; Jarman-Smith, Marcus

    2012-02-01

    Biologic reactivity to orthopedic implant debris is generally the main determinant of long-term clinical performance where released polymeric particles of Ultra-high molecular weight polyethylene (UHMWPE) remain the most prevalent debris generated from metal-on-polymer bearing total joint arthroplasties. Polymeric alternatives to UHMWPE such as polyetherether-ketone (PEEK) may have increased wear resistance but the bioreactivity of PEEK-OPTIMA particles on peri-implant inflammation remains largely uncharacterized. We evaluated human monocyte/macrophage responses (THP-1s and primary human) when challenged by PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles of three particle sizes (0.7 um, 2 um, and 10 um) at a dose of 20 particles-per-cell at 24- and 48-h time points. Macrophage responses were measured using cytotoxicity assays, viability assays, proliferation assays and cytokine analysis (IL-1b, IL-6, IL-8, MCP-1, and TNF-α). In general, there were no significant differences between PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles on macrophage viability or proliferation. However, macrophages demonstrated greater cytotoxicity responses to UHMWPE and X-UHMWPE than to PEEK-OPTIMA at 24 and 48 h, where 0.7 μm-UHMWPE particles produced the highest amount of cytotoxicity. Particles of X-UHMWPE more than PEEK-OPTIMA and UHMWPE induced IL-1β, IL-6, MCP-1, and TNF-α at 24 h, p UHMWPE particles, in that they induced less inflammatory cytokine responses and thus, in part, demonstrates that PEEK-OPTIMA implant debris does not represent an increased inflammatory risk over that of UHMWPE.

  1. Theory of morphological transformation of viral capsid shell during the maturation process in the HK97 bacteriophage and similar viruses

    Science.gov (United States)

    Konevtsova, O. V.; Lorman, V. L.; Rochal, S. B.

    2016-05-01

    We consider the symmetry and physical origin of collective displacement modes playing a crucial role in the morphological transformation during the maturation of the HK97 bacteriophage and similar viruses. It is shown that the experimentally observed hexamer deformation and pentamer twist in the HK97 procapsid correspond to the simplest irreducible shear strain mode of a spherical shell. We also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the simplest irreducible radial displacement field. The shear field has the rotational icosahedral symmetry group I while the radial field has the full icosahedral symmetry Ih. This difference makes their actions independent. The radial field sign discriminates between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus making the approach relevant not only for the HK97-like viruses but also for the parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple phenomenological model valid for the first reversible step of the HK97 maturation process. The calculated phase diagram illustrates the discontinuous character of the virus shape transformation. The characteristics of the virus shell faceting and expansion obtained in the in vitro and in vivo experiments are related to the decrease in the capsid shell thickness and to the increase of the internal capsid pressure.

  2. Theory of morphological transformation of viral capsid shell during the maturation process in the HK97 bacteriophage and similar viruses.

    Science.gov (United States)

    Konevtsova, O V; Lorman, V L; Rochal, S B

    2016-05-01

    We consider the symmetry and physical origin of collective displacement modes playing a crucial role in the morphological transformation during the maturation of the HK97 bacteriophage and similar viruses. It is shown that the experimentally observed hexamer deformation and pentamer twist in the HK97 procapsid correspond to the simplest irreducible shear strain mode of a spherical shell. We also show that the icosahedral faceting of the bacteriophage capsid shell is driven by the simplest irreducible radial displacement field. The shear field has the rotational icosahedral symmetry group I while the radial field has the full icosahedral symmetry I_{h}. This difference makes their actions independent. The radial field sign discriminates between the icosahedral and the dodecahedral shapes of the faceted capsid shell, thus making the approach relevant not only for the HK97-like viruses but also for the parvovirus family. In the frame of the Landau-Ginzburg formalism we propose a simple phenomenological model valid for the first reversible step of the HK97 maturation process. The calculated phase diagram illustrates the discontinuous character of the virus shape transformation. The characteristics of the virus shell faceting and expansion obtained in the in vitro and in vivo experiments are related to the decrease in the capsid shell thickness and to the increase of the internal capsid pressure.

  3. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid.

    Directory of Open Access Journals (Sweden)

    Damià Garriga

    2012-01-01

    Full Text Available Upon attachment to their respective receptor, human rhinoviruses (HRVs are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process.

  4. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid.

    Science.gov (United States)

    Garriga, Damià; Pickl-Herk, Angela; Luque, Daniel; Wruss, Jürgen; Castón, José R; Blaas, Dieter; Verdaguer, Núria

    2012-01-01

    Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Å resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process.

  5. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  6. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Science.gov (United States)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  7. Protection of chickens against avian hepatitis E virus (avian HEV) infection by immunization with recombinant avian HEV capsid protein.

    Science.gov (United States)

    Guo, H; Zhou, E M; Sun, Z F; Meng, X J

    2007-04-12

    Avian hepatitis E virus (avian HEV) is an emerging virus associated with hepatitis-splenomegaly syndrome in chickens in North America. Avian HEV is genetically and antigenically related to human HEV, the causative agent of hepatitis E in humans. In the lack of a practical animal model, avian HEV infection in chickens has been used as a model to study human HEV replication and pathogenesis. A 32 kDa recombinant ORF2 capsid protein of avian HEV expressed in Escherichia coli was found having similar antigenic structure as that of human HEV containing major neutralizing epitopes. To determine if the capsid protein of avian HEV can be used as a vaccine, 20 chickens were immunized with purified avian HEV recombinant protein with aluminum as adjuvant and another 20 chickens were mock immunized with KLH precipitated in aluminum as controls. Both groups of chickens were subsequently challenged with avian HEV. All the tested mock-immunized control chickens developed typical avian HEV infection characterized by viremia, fecal virus shedding and seroconversion to avian HEV antibodies. Gross hepatic lesions were also found in portion of these chickens. In contrast, none of the tested chickens immunized with avian HEV capsid protein had detectable viremia, fecal virus shedding or observable gross hepatitis lesions. The results from this study suggested that immunization of chickens with avian HEV recombinant ORF2 capsid protein with aluminum as adjuvant can induce protective immunity against avian HEV infection. Chickens are a useful small animal model to study anti-HEV immunity and pathogenesis.

  8. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Science.gov (United States)

    Wiens, Mayim E.

    2017-01-01

    ABSTRACT α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5) blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV) infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses. PMID:28119475

  9. X-ray structure of Triatoma virus empty capsid: insights into the mechanism of uncoating and RNA release in dicistroviruses.

    Science.gov (United States)

    Sánchez-Eugenia, Rubén; Durana, Aritz; López-Marijuan, Ibai; Marti, Gerardo A; Guérin, Diego M A

    2016-10-01

    In viruses, uncoating and RNA release are two key steps of successfully infecting a target cell. During these steps, the capsid must undergo the necessary conformational changes to allow RNA egress. Despite their importance, these processes are poorly understood in the family Dicistroviridae. Here, we used X-ray crystallography to solve the atomic structure of a Triatoma virus(TrV) empty particle (Protein Data Bank ID 5L7O), which is the resulting capsid after RNA release. It is observed that the overall shape of the capsid and of the three individual proteins is maintained in comparison with the mature virion. Furthermore, no channels indicative of RNA release are formed in the TrV empty particle. However, the most prominent change in the empty particle when compared with the mature virion is the loss of order in the N-terminal domain of the VP2 protein. In mature virions, the VP2 N-terminal domain of one pentamer is swapped with its twofold related copy in an adjacent pentamer, thereby stabilizing the binding between the pentamers. The loss of these interactions allows us to propose that RNA release may take place through transient flipping-out of pentameric subunits. The lower number of stabilizing interactions between the pentamers and the lack of formation of new holes support this model. This model differs from the currently accepted model for rhinoviruses and enteroviruses, in which genome externalization occurs by extrusion of the RNA through capsid channels.

  10. Sequence Analysis of the Capsid Gene during a Genotype II.4 Dominated Norovirus Season in One University Hospital

    DEFF Research Database (Denmark)

    Holzknecht, Barbara Juliane; Franck, Kristina Træholt; Nielsen, Rikke Thoft;

    2015-01-01

    Norovirus (NoV) is a leading cause of gastroenteritis and genotype II.4 (GII.4) is responsible for the majority of nosocomial NoV infections. Our objective was to examine whether sequencing of the capsid gene might be a useful tool for the hospital outbreak investigation to define possible...

  11. Location of the bacteriophage P22 coat protein C-terminus provides opportunities for the design of capsid-based materials.

    Science.gov (United States)

    Servid, Amy; Jordan, Paul; O'Neil, Alison; Prevelige, Peter; Douglas, Trevor

    2013-09-01

    Rational design of modifications to the interior and exterior surfaces of virus-like particles (VLPs) for future therapeutic and materials applications is based on structural information about the capsid. Existing cryo-electron microscopy-based models suggest that the C-terminus of the bacteriophage P22 coat protein (CP) extends toward the capsid exterior. Our biochemical analysis through genetic manipulations of the C-terminus supports the model where the CP C-terminus is exposed on the exterior of the P22 capsid. Capsids displaying a 6xHis tag appended to the CP C-terminus bind to a Ni affinity column, and the addition of positively or negatively charged coiled coil peptides to the capsid results in association of these capsids upon mixing. Additionally, a single cysteine appended to the CP C-terminus results in the formation of intercapsid disulfide bonds and can serve as a site for chemical modifications. Thus, the C-terminus is a powerful location for multivalent display of peptides that facilitate nanoscale assembly and capsid modification.

  12. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J.L.; Roos, Wouter H.; Barsegov, Valeri

    2013-01-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Combined AFM experiments and computational modeling on subsecond timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus capsid show that the capsid’s physical properties are dynamic and local characteristics of the structure, which change with the depth of indentation and depend on the magnitude and geometry of mechanical input. Under large deformations, the Cowpea Chlorotic Mottle Virus capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state ΔHind = 11.5–12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending; the entropy change TΔSind = 5.1–5.8 MJ/mol is due to coherent in-plane rearrangements of protein chains, which mediate the capsid stiffening. Direct coupling of these modes defines the extent of (ir)reversibility of capsid indentation dynamics correlated with its (in)elastic mechanical response to the compressive force. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses’ biological function. PMID:24138865

  13. Chasing the Origin of Viruses: Capsid-Forming Genes as a Life-Saving Preadaptation within a Community of Early Replicators.

    Science.gov (United States)

    Jalasvuori, Matti; Mattila, Sari; Hoikkala, Ville

    2015-01-01

    Virus capsids mediate the transfer of viral genetic information from one cell to another, thus the origin of the first viruses arguably coincides with the origin of the viral capsid. Capsid genes are evolutionarily ancient and their emergence potentially predated even the origin of first free-living cells. But does the origin of the capsid coincide with the origin of viruses, or is it possible that capsid-like functionalities emerged before the appearance of true viral entities? We set to investigate this question by using a computational simulator comprising primitive replicators and replication parasites within a compartment matrix. We observe that systems with no horizontal gene transfer between compartments collapse due to the rapidly emerging replication parasites. However, introduction of capsid-like genes that induce the movement of randomly selected genes from one compartment to another rescues life by providing the non-parasitic replicators a mean to escape their current compartments before the emergence of replication parasites. Capsid-forming genes can mediate the establishment of a stable meta-population where parasites cause only local tragedies but cannot overtake the whole community. The long-term survival of replicators is dependent on the frequency of horizontal transfer events, as systems with either too much or too little genetic exchange are doomed to succumb to replication-parasites. This study provides a possible scenario for explaining the origin of viral capsids before the emergence of genuine viruses: in the absence of other means of horizontal gene transfer between compartments, evolution of capsid-like functionalities may have been necessary for early life to prevail.

  14. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation.

    Science.gov (United States)

    Schur, Florian K M; Obr, Martin; Hagen, Wim J H; Wan, William; Jakobi, Arjen J; Kirkpatrick, Joanna M; Sachse, Carsten; Kräusslich, Hans-Georg; Briggs, John A G

    2016-07-29

    Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.

  15. Three-dimensional structure of the Epstein-Barr virus capsid.

    Science.gov (United States)

    Germi, Raphaele; Effantin, Gregory; Grossi, Laurence; Ruigrok, Rob W H; Morand, Patrice; Schoehn, Guy

    2012-08-01

    Epstein-Barr virus (EBV), a gammaherpesvirus, infects >90 % of the world's population. Primary infection by EBV can lead to infectious mononucleosis, and EBV persistence is associated with several malignancies. Despite its importance for human health, little structural information is available on EBV. Here we report the purification of the EBV capsid by CsCl- or sucrose density-gradient centrifugation. Cryo-electron microscopy and image analysis resulted in two slightly different three-dimensional structures at about 20 Å resolution. These structures were compared with that of human herpesvirus 8, another gammaherpesvirus. CsCl-gradient purification leads to the removal of part of the triplex complex around the fivefold axes, whereas the complexes between hexons remained in place. This may be due to local differences in stability resulting from variation in quasi-equivalent interactions between pentons and hexons compared with those between hexons only.

  16. Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions.

    Science.gov (United States)

    Weber, Philipp H; Bujarski, Jozef J

    2015-01-22

    In addition to providing a protective shell for genomic RNA(s), the coat (capsid) proteins (CPs) of plus-stranded RNA viruses play a variety of other functions that condition the plant-virus relationship. In this review we outline the extensive research progress that has been made within the last decade on those CP characteristics that relate to virus infectivity, pathogenicity, symptom expression, interactions with host factors, virus movement, vector transmission, host range, as well as those used to study virus evolution. By discussing the examples among a variety of plant RNA viruses we show that in addition to general features and pathways, the involvement of CPs may assume very distinct tasks that depend on the particular virus life style. Research perspectives and potential applications are discussed at the end.

  17. Analysis of epitopes in the capsid protein of avian hepatitis E virus by using monoclonal antibodies.

    Science.gov (United States)

    Dong, Shiwei; Zhao, Qin; Lu, Mingzhe; Sun, Peiming; Qiu, Hongkai; Zhang, Lu; Lv, Junhua; Zhou, En-Min

    2011-02-01

    Avian hepatitis E virus (HEV) is related genetically and antigenically to human and swine HEVs and capsid protein of avian HEV shares approximately 48-49% amino acid sequence identities with those of human and swine HEVs. Six monoclonal antibodies (MAbs) were produced and used to locate different epitopes in the ORF2 region of aa 339-570 of avian HEV Chinese isolate. The results showed that five epitopes were located in the aa 339-414 region and one in the aa 510-515 region. Two epitopes located in aa 339-355 and aa 384-414 regions are the immunodominant epitopes on the surface of the avian HEV particles as demonstrated by immune capture of viral particles and immunohistochemical detection of the ORF2 antigens with two MAbs.

  18. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    赛吉庆; 康良仪; 黄忠; 史春霖; 田波; 谢友菊

    1995-01-01

    The 3’-terminal 1 279 nucleotide sequence of maize dwarf mosaic virus (MDMV) genome has been determined. This sequence contains an open reading frame of 1023 nudeotides and a 3’ -non-coding region of 256 nucleotides. The open reading frame includes all of the coding regions for the viral capsid protein (CP) and part of the viral nuclear inclusion protein (Nib). The predicted viral CP consists of 313 amino acid residues with a calculated molecular weight of 35400. The amino acid sequence of the viral CP derived from MDMV cDNA shows about 47%-54% homology to that of 4 other potyviruses. The viral CP gene was constructed in frame with the lacZ gene in pUC19 plasmid and expressed in E. coli cells. The fusion polypeptide positively reacted in Western blot with an antiserum prepared against the native viral CP.

  19. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Sun, Ya-Ni [College of Veterinary Medicine, Northwest A and F University, Shanxi, Yangling 712100 (China); Gao, Ji-Ming; Xie, Zhi-Jing [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Wang, Yu [Department of Basic Medical Sciences, Taishan Medical College, Shandong, Taian 271000 (China); Zhu, Yan-Li [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Jiang, Shi-Jin, E-mail: sjjiang@sdau.edu.cn [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China)

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  20. Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen.

    Science.gov (United States)

    Lin, S F; Sun, R; Heston, L; Gradoville, L; Shedd, D; Haglund, K; Rigsby, M; Miller, G

    1997-04-01

    We describe a recombinant antigen for use in serologic tests for antibodies to Kaposi's sarcoma (KS)-associated herpesvirus (KSHV). The cDNA for a small viral capsid antigen (sVCA) was identified by immunoscreening of a library prepared from the BC-1 body cavity lymphoma cell line induced into KSHV lytic gene expression by sodium butyrate. The cDNA specified a 170-amino-acid peptide with homology to small viral capsid proteins encoded by the BFRF3 gene of Epstein-Barr virus and the ORF65 gene of herpesvirus saimiri. KSHV sVCA was expressed from a 0.85-kb mRNA present late in lytic KSHV replication in BC-1 cells. This transcript was sensitive to phosphonoacetic acid and phosphonoformic acid, inhibitors of herpesvirus DNA replication. KSHV sVCA expressed in mammalian cells or Escherichia coli or translated in vitro was recognized as an antigen by antisera from KS patients. Rabbit antisera raised to KSHV sVCA expressed in E. coli detected a 22-kDa protein in KSHV-infected human B cells. Overexpressed KSHV sVCA purified from E. coli and used as an antigen in immunoblot screening assay did not cross-react with EBV BFRF3. Antibodies to sVCA were present in 89% of 47 human immunodeficiency virus (HIV)-positive patients with KS, in 20% of 54 HIV-positive patients without KS, but in none of 122 other patients including children born to HIV-seropositive mothers and patients with hemophilia, autoimmune disease, or nasopharyngeal carcinoma. Low-titer antibody was detected in three sera from 28 healthy subjects. Antibodies to recombinant sVCA correlate with KS in high-risk populations. Recombinant sVCA can be used to examine the seroepidemiology of infection with KSHV in the general population.

  1. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung

    Directory of Open Access Journals (Sweden)

    Sabrina V. Martini

    2016-07-01

    Full Text Available Background/Aims: Adeno-associated virus (AAV vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Methods: Eighteen C57BL/6 mice were randomly assigned into three groups: (1 a control group (CTRL animals underwent intratracheal (i.t. instillation of saline, (2 the wild-type AAV9 group (WT-AAV9, 1010 vg, and (3 the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg, which received (i.t. self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP. Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. Results: No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30% compared with their wild-type counterparts, without eliciting an inflammatory response. Conclusion: Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy.

  2. The ability of apolipoprotein E fragments to promote intraneuronal accumulation of amyloid beta peptide 42 is both isoform and size-specific

    Science.gov (United States)

    Dafnis, Ioannis; Argyri, Letta; Sagnou, Marina; Tzinia, Athina; Tsilibary, Effie C.; Stratikos, Efstratios; Chroni, Angeliki

    2016-01-01

    The apolipoprotein (apo) E4 isoform is the strongest risk factor for late-onset Alzheimer’s disease (AD). ApoE4 is more susceptible to proteolysis than apoE2 and apoE3 isoforms and carboxyl-terminal truncated apoE4 forms have been found in AD patients’ brain. We have previously shown that a specific apoE4 fragment, apoE4-165, promotes amyloid-peptide beta 42 (Aβ42) accumulation in human neuroblastoma SK-N-SH cells and increased intracellular reactive oxygen species formation, two events considered to occur early in AD pathogenesis. Here, we show that these effects are allele-dependent and absolutely require the apoE4 background. Furthermore, the exact length of the fragment is critical since longer or shorter length carboxyl-terminal truncated apoE4 forms do not elicit the same effects. Structural and thermodynamic analyses showed that apoE4-165 has a compact structure, in contrast to other carboxyl-terminal truncated apoE4 forms that are instead destabilized. Compared however to other allelic backgrounds, apoE4-165 is structurally distinct and less thermodynamically stable suggesting that the combination of a well-folded structure with structural plasticity is a unique characteristic of this fragment. Overall, our findings suggest that the ability of apoE fragments to promote Aβ42 intraneuronal accumulation is specific for both the apoE4 isoform and the particular structural and thermodynamic properties of the fragment. PMID:27476701

  3. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  4. The mosquito Aedes aegypti has a large genome size and high transposable element load but contains a low proportion of transposon-specific piRNAs

    Directory of Open Access Journals (Sweden)

    Arensburger Peter

    2011-12-01

    Full Text Available Abstract Background The piRNA pathway has been shown in model organisms to be involved in silencing of transposons thereby providing genome stability. In D. melanogaster the majority of piRNAs map to these sequences. The medically important mosquito species Aedes aegypti has a large genome size, a high transposon load which includes Miniature Inverted repeat Transposable Elements (MITES and an expansion of the piRNA biogenesis genes. Studies of transgenic lines of Ae. aegypti have indicated that introduced transposons are poorly remobilized and we sought to explore the basis of this. We wished to analyze the piRNA profile of Ae. aegypti and thereby determine if it is responsible for transposon silencing in this mosquito. Results Estimated piRNA sequence diversity was comparable between Ae. aegypti and D. melanogaster, but surprisingly only 19% of mosquito piRNAs mapped to transposons compared to 51% for D. melanogaster. Ae. aegypti piRNA clusters made up a larger percentage of the total genome than those of D. melanogaster but did not contain significantly higher percentages of transposon derived sequences than other regions of the genome. Ae. aegypti contains a number of protein coding genes that may be sources of piRNA biogenesis with two, traffic jam and maelstrom, implicated in this process in model organisms. Several genes of viral origin were also targeted by piRNAs. Examination of six mosquito libraries that had previously been transformed with transposon derived sequence revealed that new piRNA sequences had been generated to the transformed sequences, suggesting that they may have stimulated a transposon inactivation mechanism. Conclusions Ae. aegypti has a large piRNA complement that maps to transposons but primarily gene sequences, including many viral-derived sequences. This, together the more uniform distribution of piRNA clusters throughout its genome, suggest that some aspects of the piRNA system differ between Ae. aegypti and D

  5. Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid.

    Science.gov (United States)

    Worgall, Stefan; Krause, Anja; Rivara, Michael; Hee, Kyung-Kim; Vintayen, Enrico V; Hackett, Neil R; Roelvink, Peter W; Bruder, Joseph T; Wickham, Thomas J; Kovesdi, Imre; Crystal, Ronald G

    2005-05-01

    Pseudomonas aeruginosa is an important opportunistic pathogen that can cause chronic and often life-threatening infections of the respiratory tract, particularly in individuals with cystic fibrosis (CF). Because infections with P. aeruginosa remain the major cause of the high morbidity and mortality of CF, a vaccine against P. aeruginosa would be very useful for preventing this disorder. The outer membrane protein F (OprF) of P. aeruginosa is a promising vaccine candidate and various B cell epitopes within OprF have been identified. Given that adenovirus (Ad) vectors have strong immunogenic potential and can function as adjuvants for genetic vaccines, the present study evaluates the immunogenic and protective properties of a novel replication-deficient Ad vector in which the Ad hexon protein was modified to include a 14-amino acid epitope of P. aeruginosa OprF (Epi8) in loop 1 of the hypervariable region 5 of the hexon (AdZ.Epi8). Immunization of C57BL/6 mice with AdZ.Epi8 resulted in detectable serum anti-P. aeruginosa and anti-OprF humoral responses. These responses were haplotype dependent, with higher serum anti-OprF titers in CBA mice than in BALB/c or C57BL/6 mice. AdZ.Epi8 induced Epi8-specific IFN-gamma-positive CD4 and CD8 T cell responses and resulted in protection against a lethal pulmonary challenge with agar-encapsulated P. aeruginosa. Importantly, repeated administration of AdZ.Epi8 resulted in boosting of the anti-OprF humoral and anti-Epi8 cellular response, whereas no boosting effect was present in the response against the transgene beta-galactosidase. These observations suggest that Ad vectors expressing pathogen epitopes in their capsid will protect against an extracellular pathogen and will allow boosting of the epitope-specific humoral response with repeated administration, a strategy that should prove useful in developing Ad vectors as vaccines where humoral immunity will be protective.

  6. Structural polymorphism of the major capsid protein of a double-stranded RNA virus: an amphipathic alpha helix as a molecular switch.

    Science.gov (United States)

    Saugar, Irene; Luque, Daniel; Oña, Ana; Rodríguez, José F; Carrascosa, José L; Trus, Benes L; Castón, José R

    2005-07-01

    The infectious bursal disease virus T=13 viral particle is composed of two major proteins, VP2 and VP3. Here, we show that the molecular basis of the conformational flexibility of the major capsid protein precursor, pVP2, is an amphipatic alpha helix formed by the sequence GFKDIIRAIR. VP2 containing this alpha helix is able to assemble into the T=13 capsid only when expressed as a chimeric protein with an N-terminal His tag. An amphiphilic alpha helix, which acts as a conformational switch, is thus responsible for the inherent structural polymorphism of VP2. The His tag mimics the VP3 C-terminal region closely and acts as a molecular triggering factor. Using cryo-electron microscopy difference imaging, both polypeptide elements were detected on the capsid inner surface. We propose that electrostatic interactions between these two morphogenic elements are transmitted to VP2 to acquire the competent conformations for capsid assembly.

  7. Identification of an antigenic domain in the N-terminal region of avian hepatitis E virus (HEV) capsid protein that is not common to swine and human HEVs.

    Science.gov (United States)

    Wang, Lizhen; Sun, Yani; Du, Taofeng; Wang, Chengbao; Xiao, Shuqi; Mu, Yang; Zhang, Gaiping; Liu, Lihong; Widén, Frederik; Hsu, Walter H; Zhao, Qin; Zhou, En-Min

    2014-12-01

    The antigenic domains located in the C-terminal 268 amino acid residues of avian hepatitis E virus (HEV) capsid protein have been characterized. This region shares common epitopes with swine and human HEVs. However, epitopes in the N-terminal 338 amino acid residues have never been reported. In this study, an antigenic domain located between amino acids 23 and 85 was identified by indirect ELISA using the truncated recombinant capsid proteins as coating antigens and anti-avian HEV chicken sera as primary antibodies. In addition, this domain did not react with anti-swine and human HEV sera. These results indicated that the N-terminal 338 amino acid residues of avian HEV capsid protein do not share common epitopes with swine and human HEVs. This finding is important for our understanding of the antigenicity of the avian HEV capsid protein. Furthermore, it has important implications in the selection of viral antigens for serological diagnosis.

  8. The sizes, masses and specific star-formation rates of massive galaxies at 1.3

    CERN Document Server

    McLure, R J; Dunlop, J S; Cirasuolo, M; Curtis-Lake, E; Bruce, V A; Caputi, K; Almaini, O; Bonfield, D G; Bradshaw, E J; Buitrago, F; Chuter, R; Foucaud, S; Hartley, W G; Jarvis, M J

    2012-01-01

    We report the results of a comprehensive study of the relationship between galaxy size, stellar mass and specific star-formation rate (sSFR) at redshifts 1.3= 6x10^10 Msun), spectroscopic sample from the UKIDSS Ultra-deep Survey (UDS), with accurate stellar-mass measurements derived from spectro photometric fitting, we find that at z~1.4 the location of massive galaxies on the size-mass plane is determined primarily by their sSFR. At this epoch we find that massive galaxies which are passive (sSFR <= 0.1 Gyr^-1) follow a tight size-mass relation, with half-light radii a factor f=2.4+/-0.2 smaller than their local counterparts. Moreover, amongst the passive sub-sample we find no evidence that the off-set from the local size-mass relation is a function of stellar population age. Based on a sub-sample with dynamical mass estimates we also derive an independent estimate of f=2.3+/-0.3 for the typical growth in half-light radius between z~1.4 and the present day. Focusing on the passive sub-sample, we conclude ...

  9. Essential role of the unordered VP2 n-terminal domain of the parvovirus MVM capsid in nuclear assembly and endosomal enlargement of the virion fivefold channel for cell entry

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Martinez, Cristina; Grueso, Esther [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain); Carroll, Miles [Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury SP4 OJG, Wilts (United Kingdom); Rommelaere, Jean [Deutsches Krebsforschungszentrum Division F010, Im Neuenheimer Feld 242, D-69120 Heidelberg (Germany); Almendral, Jose M., E-mail: jmalmendral@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2012-10-10

    The unordered N-termini of parvovirus capsid proteins (Nt) are translocated through a channel at the icosahedral five-fold axis to serve for virus traffick. Heterologous peptides were genetically inserted at the Nt of MVM to study their functional tolerance to manipulations. Insertion of a 5T4-single-chain antibody at VP2-Nt (2Nt) yielded chimeric capsid subunits failing to enter the nucleus. The VEGFR2-binding peptide (V1) inserted at both 2Nt and VP1-Nt efficiently assembled in virions, but V1 disrupted VP1 and VP2 entry functions. The VP2 defect correlated with restricted externalization of V1-2Nt out of the coat. The specific infectivity of MVM and wtVP-pseudotyped mosaic MVM-V1 virions, upon heating and/or partial 2Nt cleavage, demonstrated that some 2Nt domains become intracellularly translocated out of the virus shell and cleaved to initiate entry. The V1 insertion defines a VP2-driven endosomal enlargement of the channel as an essential structural rearrangement performed by the MVM virion to infect.

  10. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    Science.gov (United States)

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  11. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    Science.gov (United States)

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  12. Imunogenicidade de proteínas do capsídeo do Cowpea severe mosaic virus (CPSMV Capsid protein immunogenicity of Cowpea severe mosaic virus (CPSMV

    Directory of Open Access Journals (Sweden)

    José Evando Aguiar Beserra Júnior

    2009-02-01

    used for subcutaneous immunization. The mucosal immune response was detected by the cellular proliferation of the Peyer's patches of mice immunized by oral route with CPSMV. It was demonstrated that CPSMV induces immune response, evidenced by the synthesis of specific antibodies, when administered in the native form by the oral and nasal routes or with two denatured capsid proteins by the subcutaneous route. The use of adjuvants in the oral and nasal immunizations was not necessary. The 43 and 23 kDa protein fractions were responsible for the immunogenicity of the virus, evidenced by the synthesis of specific antibodies detected by ELISA test. The cellular proliferation analysis of the Peyer's patches revealed an increase (r=0.88 of leucocytes along 42 days after immunization. The results reinforce the possibility of the use of CPSMV as a safe vector of antigens for human/animal diseases of low immunogenicity for the production of vaccines.

  13. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  14. Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration

    Science.gov (United States)

    Zurnic, Irena; Hütter, Sylvia; Rzeha, Ute; Stanke, Nicole; Reh, Juliane; Müllers, Erik; Hamann, Martin V.; Kern, Tobias; Gerresheim, Gesche K.; Serrao, Erik; Lesbats, Paul; Engelman, Alan N.; Cherepanov, Peter; Lindemann, Dirk

    2016-01-01

    Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. PMID:27579920

  15. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  16. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Edward I. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Dombrovski, Andrew K. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Swarbrick, Crystall M.D. [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Raidal, Shane R. [Charles Sturt University, School of Animal and Veterinary Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); Forwood, Jade K., E-mail: jforwood@csu.edu.au [Charles Sturt University, School of Biomedical Sciences, Boorooma St., Wagga Wagga, New South Wales 2678 (Australia); EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Boorooma St., Wagga Wagga, New South Wales 2678 (Australia)

    2013-09-06

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface.

  17. Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

    Science.gov (United States)

    Shakeel, Shabih; Westerhuis, Brenda M.; Domanska, Ausra; Koning, Roman I.; Matadeen, Rishi; Koster, Abraham J.; Bakker, Arjen Q.; Beaumont, Tim; Wolthers, Katja C.; Butcher, Sarah J.

    2016-07-01

    The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.

  18. Effects of capsid-modified oncolytic adenoviruses and their combinations with gemcitabine or silica gel on pancreatic cancer.

    Science.gov (United States)

    Kangasniemi, Lotta; Parviainen, Suvi; Pisto, Tommi; Koskinen, Mika; Jokinen, Mika; Kiviluoto, Tuula; Cerullo, Vincenzo; Jalonen, Harry; Koski, Anniina; Kangasniemi, Anna; Kanerva, Anna; Pesonen, Sari; Hemminki, Akseli

    2012-07-01

    Conventional cancer treatments often have little impact on the course of advanced pancreatic cancer. Although cancer gene therapy with adenoviruses is a promising developmental approach, the primary receptor is poorly expressed in pancreatic cancers which might compromise efficacy and thus targeting to other receptors could be beneficial. Extended stealth delivery, combination with standard chemotherapy or circumvention of host antiadenoviral immune response might improve efficacy further. In this work, capsid-modified adenoviruses were studied for transduction of cell lines and clinical normal and tumor tissue samples. The respective oncolytic viruses were tested for oncolytic activity in vitro and in vivo. Survival was studied in a peritoneally disseminated pancreas cancer model, with or without concurrent gemcitabine while silica implants were utilized for extended intraperitoneal virus delivery. Immunocompetent mice and Syrian hamsters were used to study the effect of silica mediated delivery on antiviral immune responses and subsequent in vivo gene delivery. Capsid modifications selectively enhanced gene transfer to malignant pancreatic cancer cell lines and clinical samples. The respective oncolytic viruses resulted in increased cell killing in vitro, which translated into a survival benefit in mice. Early proinfammatory cytokine responses and formation of antiviral neutralizing antibodies was partially avoided with silica implants. The implant also shielded the virus from pre-existing neutralizing antibodies, while increasing the pancreas/liver gene delivery ratio six-fold. In conclusion, capsid modified adenoviruses would be useful for testing in pancreatic cancer trials. Silica implants might increase the safety and efficacy of the approach.

  19. Modification to the Capsid of the Adenovirus Vector That Enhances Dendritic Cell Infection and Transgene-Specific Cellular Immune Responses

    OpenAIRE

    Worgall, Stefan; Busch, Annette; Rivara, Michael; Bonnyay, David; Leopold, Philip L.; Merritt, Robert; Hackett, Neil R.; Rovelink, Peter W.; Joseph T Bruder; Wickham, Thomas J.; Kovesdi, Imi; Crystal, Ronald G.

    2004-01-01

    Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing β-galactosidase as a model antigen and genetica...

  20. A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2.

    Directory of Open Access Journals (Sweden)

    Ebenezer Tumban

    Full Text Available BACKGROUND: Current human papillomavirus (HPV vaccines that are based on virus-like particles (VLPs of the major capsid protein L1 largely elicit HPV type-specific antibody responses. In contrast, immunization with the HPV minor capsid protein L2 elicits antibodies that are broadly cross-neutralizing, suggesting that a vaccine targeting L2 could provide more comprehensive protection against infection by diverse HPV types. However, L2-based immunogens typically elicit much lower neutralizing antibody titers than L1 VLPs. We previously showed that a conserved broadly neutralizing epitope near the N-terminus of L2 is highly immunogenic when displayed on the surface of VLPs derived from the bacteriophage PP7. Here, we report the development of a panel of PP7 VLP-based vaccines targeting L2 that protect mice from infection with carcinogenic and non-carcinogenic HPV types that infect the genital tract and skin. METHODOLOGY/PRINCIPAL FINDINGS: L2 peptides from eight different HPV types were displayed on the surface of PP7 bacteriophage VLPs. These recombinant L2 VLPs, both individually and in combination, elicited high-titer anti-L2 IgG serum antibodies. Immunized mice were protected from high dose infection with HPV pseudovirus (PsV encapsidating a luciferase reporter. Mice immunized with 16L2 PP7 VLPs or 18L2 PP7 VLPs were nearly completely protected from both PsV16 and PsV18 challenge. Mice immunized with the mixture of eight L2 VLPs were strongly protected from genital challenge with PsVs representing eight diverse HPV types and cutaneous challenge with HPV5 PsV. CONCLUSION/SIGNIFICANCE: VLP-display of a cross-neutralizing HPV L2 epitope is an effective approach for inducing high-titer protective neutralizing antibodies and is capable of offering protection from a spectrum of HPVs associated with cervical cancer as well as genital and cutaneous warts.

  1. HIV capsid is a tractable target for small molecule therapeutic intervention.

    Directory of Open Access Journals (Sweden)

    Wade S Blair

    Full Text Available Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.

  2. A Novel Pharmacophore Model Derived from a Class of Capsid Protein Enterovirus 71 Inhibitors

    Institute of Scientific and Technical Information of China (English)

    DUAN Hong-Xia; YANG Xin-Ling; WANG Dao-Quan; NING Jun; MEI Xiang-Dong; ZHANG Jian

    2012-01-01

    Capsid protein enterovirus 71 (EV71) is one of the major viruses that cause the severe encephalitis and thus result in a high mortality in children less than 5 years of age.In an effort to discover new potent inhibitors against EV71,a novel three-dimensional pharmacophore model was developed on 24 inhibitors with different molecular structures and bioactivities.The best hypothesis (Hypo1) has a high predictive power and consists of four features,namely,one hydrophobic point (HY) and three hydrogen-bond acceptors (HA).Two key features of the best Hypo1,HY1 and HA3 match well with an important narrow hydrophobic canyon and with the surface of LYS274 in the target EV71 active site,respectively.The more versatile feature,HA1,is firstly found to be very influential on these compounds’ bioactivities,which may interact with the other side of the active site in the EV71 receptor.The application of the model is successful in predicting the activities of 30 known EV71 inhibitors with a correlation coefficient of 0.831.Furthermore,Hypo1 demonstrates a superior screening capability for retrieving inhibitors from the database with a high enrichment factor of 70.This study provides some important clues in search for more potent inhibitors against EV71 infection.

  3. Molecular variability analyses of Apple chlorotic leaf spot virus capsid protein

    Indian Academy of Sciences (India)

    T Rana; V Chandel; Y Kumar; R Ram; V Hallan; A A Zaidi

    2010-12-01

    The complete sequences of the coat protein (CP) gene of 26 isolates of Apple chlorotic leaf spot virus (ACLSV) from India were determined. The isolates were obtained from various pome (apple, pear and quince) and stone (plum, peach, apricot, almond and wild Himalayan cherry) fruit trees. Other previously characterized ACLSV isolates and Trichoviruses were used for comparative analysis. Indian ACLSV isolates among themselves and with isolates from elsewhere in the world shared 91–100% and 70–98% sequence identities at the amino acid and nucleotide levels, respectively. The highest degree of variability was observed in the middle portion with 9 amino acid substitutions in contrast to the N-terminal and C-terminal ends, which were maximally conserved with only 4 amino acid substitutions. In phylogenetic analysis no reasonable correlation between host species and/or geographic origin of the isolates was observed. Alignment with capsid protein genes of other Trichoviruses revealed the TaTao ACLSV peach isolate to be phylogenetically closest to Peach mosaic virus, Apricot pseudo chlorotic leaf spot virus and Cherry mottle leaf virus. Recombination analysis (RDP3 ver.2.6) done for all the available ACLSV complete CP sequences of the world and Indian isolates indicate no significant evidence of recombination. However, one recombination event among Indian ACLSV-CP isolates was detected. To the best of our knowledge, this is the first report of complete CP sequence variability study from India and also the first evidence of homologous recombination in ACLSV.

  4. Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein.

    Science.gov (United States)

    Bamunusinghe, Devinka; Seo, Jang-Kyun; Rao, A L N

    2011-03-01

    Genome packaging in the plant-infecting Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, as well as in other positive-strand RNA viruses pathogenic to humans (e.g., poliovirus) and animals (e.g., Flock House virus), is functionally coupled to replication. Although the subcellular localization site of BMV replication has been identified, that of the capsid protein (CP) has remained elusive. In this study, the application of immunofluorescence confocal microscopy to Nicotiana benthamiana leaves expressing replication-derived BMV CP as a green fluorescent protein (GFP) fusion, in conjunction with antibodies to the CP and double-stranded RNA, a presumed marker of RNA replication, revealed that the subcellular localization sites of replication and CP overlap. Our temporal analysis by transmission electron microscopy of ultrastructural modifications induced in BMV-infected N. benthamiana leaves revealed a reticulovesicular network of modified endoplasmic reticulum (ER) incorporating large assemblies of vesicles derived from ER accumulated in the cytoplasm during BMV infection. Additionally, for the first time, we have found by ectopic expression experiments that BMV CP itself has the intrinsic property of modifying ER to induce vesicles similar to those present in BMV infections. The significance of CP-induced vesicles in relation to CP-organized viral functions that are linked to replication-coupled packaging is discussed.

  5. Development of chitosan nanoparticles as drug delivery system for a prototype capsid inhibitor.

    Science.gov (United States)

    Xue, Meiyan; Hu, Steven; Lu, Yifei; Zhang, Yu; Jiang, Xutao; An, Sai; Guo, Yubo; Zhou, Xue; Hou, Huimin; Jiang, Chen

    2015-11-30

    Oral delivery of biopharmaceutics drug disposition classification system (BDDCS) Class II or IV drugs with poor aqueous solubility and poor enzymatic and/or metabolic stability is very challenging. Bay41-4109, a member of the heteroaryldihydropyrimidine (HAP) family, inhibits HBV replication by destabilizing capsid assembly. It pertains to class II of the BDDCS which has a practically insoluble solubility which is 38 μg/mL (LYSA) and the oral delivery resulted in low bioavailability. The purpose of the current research work was to develop and evaluate Bay41-4109 loaded chitosan nanoparticles to increase the solubility and bioavailability for treatment of HBV. The Bay41-4109 nanoparticles were prepared by gelation of chitosan with tripolyphosphate (TPP) through ionic cross-linking. A three-factor three-level central composite design (CCD) was introduced to perform the experiments. A quadratic polynomial model was generated to predict and evaluate the independent variables with respect to the dependent variables. Bay41-4109 was encapsulated in the chitosan nanoparticles were demonstrated by PLM, FTIR, DSC, XRD and TEM etc. The in vivo results suggest that Bay41-4109 nanoparticles have better bioavailability and would be a promising approach for oral delivery of Bay41-4109 for the treatment of HBV.

  6. Efficient lysis of epithelial ovarian cancer cells by MAGE-A3-induced cytotoxic T lymphocytes using rAAV-6 capsid mutant vector.

    Science.gov (United States)

    Batchu, Ramesh B; Gruzdyn, Oksana V; Moreno-Bost, Amberly M; Szmania, Susann; Jayandharan, Giridhararao; Srivastava, Arun; Kolli, Bala K; Weaver, Donald W; van Rhee, Frits; Gruber, Scott A

    2014-02-12

    MAGE-A3 is highly expressed in epithelial ovarian cancer (EOC), making it a promising candidate for immunotherapy. We investigated whether dendritic cells (DCs) transduced with a rAAV-6 capsid mutant vector Y445F could elicit effective MAGE-A3-specific anti-tumor cytotoxic T lymphocyte (CTL) responses in vitro. MAGE-A3 was cloned and rAAV-6-MAGE-A3 purified, followed by proviral genome detection using real-time PCR. Immunofluorescence detection of rAAV-6-Y445F-MAGE-A3-transduced DCs demonstrated 60% transduction efficiency. Fluorescent in situ hybridization analysis confirmed chromosomal integration of rAAV vectors. Flow cytometric analysis of transduced DCs showed unaltered expression of critical monocyte-derived surface molecules with retention of allo-stimulatory activity. Co-culture of autologous T lymphocytes with MAGE-A3-expressing DCs produced CTLs that secreted IFN-γ, and efficiently killed MAGE-A3+ EOC cells. This form of rAAV-based DC immunotherapy, either alone or more likely in combination with other immune-enhancing protocols, may prove useful in the clinical setting for management of EOC.

  7. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20.

    Science.gov (United States)

    Zhong, Yan; Chen, Feng; Wilhelm, Steven W; Poorvin, Leo; Hodson, Robert E

    2002-04-01

    In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity.

  8. Protection of guinea pigs and swine by a recombinant adenovirus expressing O serotype of foot-and-mouth disease virus whole capsid and 3C protease.

    Science.gov (United States)

    Lu, Zengjun; Bao, Huifang; Cao, Yimei; Sun, Pu; Guo, Jianhun; Li, Pinghua; Bai, Xingwen; Chen, Yingli; Xie, Baoxia; Li, Dong; Liu, Zaixin; Xie, Qingge

    2008-12-19

    Two recombinant adenoviruses were constructed expressing foot-and-mouth disease virus (FMDV) capsid and 3C/3CD proteins in replicative deficient human adenovirus type 5 vector. Guinea pigs vaccinated with 1-3 x 10(8)TCID(50) Ad-P12x3C recombinant adenovirus were completely protected against 10,000GID(50) homologous virulent FMDV challenge 25 days post vaccination (dpv). Ad-P12x3CD vaccinated guinea pigs were only partially protected. Swine were vaccinated once with 1x10(9)TCID(50) Ad-P12x3C hybrid virus and challenged 28 days later. Three of four vaccinated swine were completely protected against 200 pig 50% infectious doses (ID(50)) of homologous FMDV challenge, and vaccinated pigs developed specific cellular and humoral immune responses. The immune effect of Ad-P12x3C in swine further indicated that the recombinant adenovirus was highly efficient in transferring the foreign gene. This approach may thus be a very hopeful tool for developing FMD live virus vector vaccine.

  9. Prevalence and Genetic Variability in Capsid L1 Gene of Rare Human Papillomaviruses (HPV Found in Cervical Lesions of Women from North-East Brazil

    Directory of Open Access Journals (Sweden)

    Ana Pavla Almeida Diniz Gurgel

    2013-01-01

    Full Text Available The aim of this study was to examine the prevalence and genetic variability of the capsid L1 gene of rare HPV genotypes that were found in the cervical lesions of women from North-East Brazil. A total number of 263 patients were included in this study. HPV detection was performed using PCR followed by direct sequencing of MY09/11, as well as type-specific PCR to detect the Alpha-9 species. Epitope prediction was performed to determine whether or not the genetic variants are inserted in B-cell and T-cell epitopes. The prevalence of rare HPV types in cervical lesions was found to be 9.47%. The rare HPV genotypes that were detected were HPV-53, 54, 56, 61, 62, 66, 70, and 81. The genetic variability in the L1 gene of rare HPV types involved thirty nucleotide changes, eight of which were detected for the first time in this study. Moreover, some of these variants are embedded in B-cell or T-cell epitope regions. The results of this research suggest that rare HPV types might be involved in cervical lesions and some of these variants can be found in B-cell and T-cell epitopes. Data on the prevalence and variability of rare HPV types will assist in clarifying the role of these viruses in carcinogenesis.

  10. Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus

    DEFF Research Database (Denmark)

    Bøtner, Anette; Kakker, Naresh K.; Barbezange, Cyril

    2011-01-01

    Chimeric foot-and-mouth disease viruses (FMDVs) have been generated from plasmids containing full-length FMDV cDNAs and characterized. The parental virus cDNA was derived from the cell-culture-adapted O1Kaufbeuren B64 (O1K B64) strain. Chimeric viruses, containing capsid coding sequences derived...... cells than the rescued parental O1K B64 virus. The two chimeric viruses displayed the expected antigenicity in serotype-specific antigen ELISAs. Following inoculation of each virus into cattle, the rescued O1K B64 strain proved to be attenuated whereas, with each chimeric virus, typical clinical signs...... from the O/UKG/34/2001 or A/Turkey 2/2006 field viruses, were constructed using the backbone from the O1K B64 cDNA, and viable viruses (O1K/O-UKG and O1K/A-Tur, respectively) were successfully rescued in each case. These viruses grew well in primary bovine thyroid cells but grew less efficiently in BHK...

  11. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  12. Epstein-Barr virus glycoprotein gH/gL antibodies complement IgA-viral capsid antigen for diagnosis of nasopharyngeal carcinoma.

    Science.gov (United States)

    Li, Rui-Chen; Du, Yong; Zeng, Qiu-Yao; Tang, Lin-Quan; Zhang, Hua; Li, Yan; Liu, Wan-Li; Zhong, Qian; Zeng, Mu-Sheng; Huang, Xiao-Ming

    2016-03-29

    To determine whether measuring antibodies against Epstein-Barr virus (EBV) glycoprotein gH/gL in serum could improve diagnostic accuracy in nasopharyngeal carcinoma (NPC) cases, gH/gL expressed in a recombinant baculovirus system was used in an enzyme-linked immunosorbent assay (ELISA) to detect antibodies in two independent cohorts. Binary logistic regression analyses were performed using results from a training cohort (n = 406) to establish diagnostic mathematical models, which were validated in a second independent cohort (n = 279). Levels of serum gH/gL antibodies were higher in NPC patients than in healthy controls (p gH/gL ELISA had a sensitivity of 83.7%, specificity of 82.3% and area under the curve (AUC) of 0.893 (95% CI, 0.862-0.924) for NPC diagnosis. Furthermore, gH/gL maintained diagnostic capacity in IgA-VCA negative NPC patients (sensitivity = 78.1%, specificity = 82.3%, AUC = 0.879 [95% CI, 0.820 - 0.937]). Combining gH/gL and viral capsid antigen (VCA) detection improved diagnostic capacity as compared to individual tests alone in both the training cohort (sensitivity = 88.5%, specificity = 97%, AUC = 0.98 [95% CI, 0.97 - 0.991]), and validation cohort (sensitivity = 91.2%, specificity = 96.5%, AUC = 0.97 [95% CI, 0.951-0.988]). These findings suggest that EBV gH/gL detection complements VCA detection in the diagnosis of NPC and aids in the identification of patients with VCA-negative NPC.

  13. Diagnostic significance of DNA and antibodies against capsid antigens of anti-Epstein–Barr virus antibodies levels in blood plasma of nasopharyngeal carcinoma patients from non-endemic region

    Directory of Open Access Journals (Sweden)

    V. E. Gurtsevich

    2015-01-01

    Full Text Available Epstein–Barr virus (EBV, a representative of the herpesvirus family, is the etiological agent for a number of benign and malignant human neoplasms. Among the latter, the nasopharyngeal carcinoma (NPC occupies a special place. In NPC development EBV plays a key role stimulating the progression of the pathological process from precancerous lesions to the cancer development. For most NPC patients, elevated levels of humoral IgG and IgA antibodies against capsid and early EBV antigens are characteristic and their antibody titers rise to high levels long before the diagnosis of cancer. Using this phenomenon, virus-specific antibodies are used for many years as markers for NPC screening, especially in cases of undiagnosed primary lesion. In recent years, in endemic for NPC regions (South China, South-East Asia a great attention has been paid to the use of quantitative determination of EBV DNA copies in the blood plasma of patients with NPC as a method of early cancer detection and monitoring.The aim of this study was to compare clinical significance of EBV DNA and humoral antibodies levels in blood plasma of NPC patients in non-endemic region, Russia. The results obtained indicate that both markers DNA / EBV and IgA antibodies against capsid EBV antigens can be successfully used for diagnosis of NPC in non-endemic region. However, in comparison with the virus-specific antibody titers, the viral DNA levels in the patients plasma are more sensitive and specific as NPC marker reflecting the efficacy of the therapy, and the state of remission or relapse.

  14. Portion size

    Science.gov (United States)

    ... Romaine lettuce) One medium baked potato is a computer mouse To control your portion sizes when you ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  15. Conserved Tryptophan Motifs in the Large Tegument Protein pUL36 Are Required for Efficient Secondary Envelopment of Herpes Simplex Virus Capsids

    Science.gov (United States)

    Ivanova, Lyudmila; Buch, Anna; Döhner, Katinka; Pohlmann, Anja; Binz, Anne; Prank, Ute; Sandbaumhüter, Malte

    2016-01-01

    ABSTRACT Herpes simplex virus (HSV) replicates in the skin and mucous membranes, and initiates lytic or latent infections in sensory neurons. Assembly of progeny virions depends on the essential large tegument protein pUL36 of 3,164 amino acid residues that links the capsids to the tegument proteins pUL37 and VP16. Of the 32 tryptophans of HSV-1-pUL36, the tryptophan-acidic motifs 1766WD1767 and 1862WE1863 are conserved in all HSV-1 and HSV-2 isolates. Here, we characterized the role of these motifs in the HSV life cycle since the rare tryptophans often have unique roles in protein function due to their large hydrophobic surface. The infectivity of the mutants HSV-1(17+)Lox-pUL36-WD/AA-WE/AA and HSV-1(17+)Lox-CheVP26-pUL36-WD/AA-WE/AA, in which the capsid has been tagged with the fluorescent protein Cherry, was significantly reduced. Quantitative electron microscopy shows that there were a larger number of cytosolic capsids and fewer enveloped virions compared to their respective parental strains, indicating a severe impairment in secondary capsid envelopment. The capsids of the mutant viruses accumulated in the perinuclear region around the microtubule-organizing center and were not dispersed to the cell periphery but still acquired the inner tegument proteins pUL36 and pUL37. Furthermore, cytoplasmic capsids colocalized with tegument protein VP16 and, to some extent, with tegument protein VP22 but not with the envelope glycoprotein gD. These results indicate that the unique conserved tryptophan-acidic motifs in the central region of pUL36 are required for efficient targeting of progeny capsids to the membranes of secondary capsid envelopment and for efficient virion assembly. IMPORTANCE Herpesvirus infections give rise to severe animal and human diseases, especially in young, immunocompromised, and elderly individuals. The structural hallmark of herpesvirus virions is the tegument, which contains evolutionarily conserved proteins that are essential for several

  16. Characterization of virus-like particles and identification of capsid proteins in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Flores, Oriana; Alcaíno, Jennifer; Fernandez-Lobato, María; Cifuentes, Víctor; Baeza, Marcelo

    2015-04-01

    Two dsRNAs of estimated lengths of 5 (L1) and 3.7 (L2) kpb are commonly found in strains of the basidiomycetous yeast Xanthophyllomyces dendrorhous, and the presence of virus-like particles (VLPs) have been described in some strains. Recently, two putative totiviruses (XdV-L1A and XdV-L1B) were identified from L1 dsRNA and one (XdV-L2) from L2 dsRNA in the strain UCD 67-385. In some strains, there are smaller dsRNAs (0.9-1.4 kb) that probable are satellite elements. In this work, the VLPs from several strains of X. dendrorhous, which differ in their dsRNAs content, were separated by sucrose gradient and characterized in relation to the dsRNAs and proteins that compose them. It was found that all types of dsRNAs were encapsidated into VLPs, supporting the hypothesis that the smaller dsRNAs are satellite molecules. A main protein of approx. 76 or 37 kDa composed the virions that only have the L1-dsRNA or L2-dsRNA, respectively. In the strain UCD 67-385, these both proteins were identified as viral capsid protein (CP), allow to confirm the gag predicted ORFs in XdV-L1A, XdV-L1B, and XdV-L2, with CPs of 76.6, 76.2, and 38.8 kDa, respectively. Analysis of predicted structures of CPs of XdV-L1A and XdV-L1B, showed high similitudes with the CPs of ScV-L-A and other totiviruses.

  17. Natural type 3/type 2 intertypic vaccine-related poliovirus recombinants with the first crossover sites within the VP1 capsid coding region.

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    Full Text Available BACKGROUND: Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008. PRINCIPAL FINDINGS: Complete genomic sequences revealed their vaccine-related genomic features and showed that their first crossover sites were randomly distributed in the 3' end of the VP1 coding region. The length of donor Sabin 2 sequences ranged from 55 to 136 nucleotides, which is the longest donor sequence reported in the literature for this type of poliovirus recombination. The recombination resulted in the introduction of Sabin 2 neutralizing antigenic site 3a (NAg3a into a Sabin 3 genomic background in the VP1 coding region, which may have been altered by some of the type 3-specific antigenic properties, but had not acquired any type 2-specific characterizations. NAg3a of the Sabin 3 strain seems atypical; other wild-type poliovirus isolates that have circulated in recent years have sequences of NAg3a more like the Sabin 2 strain. CONCLUSIONS: 10 natural type 3/type 2 intertypic VP1 capsid-recombinant polioviruses, in which the first crossover sites were found to be in the VP1 coding region, were isolated and characterized. In spite of the complete replacement of NAg3a by type 2-specific amino acids, the serotypes of the recombinants were not altered, and they were totally neutralized by polyclonal type 3 antisera but not at all by type 2 antisera. It is possible that recent type 3 wild poliovirus isolates may be a recombinant having NAg3a sequences derived from another strain during between 1967 and 1980, and the type 3/type 2 recombination events in the 3' end of the VP1 coding region may result in a higher fitness.

  18. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a "horned" bacteriophage of marine synechococcus.

    Science.gov (United States)

    Pope, Welkin H; Weigele, Peter R; Chang, Juan; Pedulla, Marisa L; Ford, Michael E; Houtz, Jennifer M; Jiang, Wen; Chiu, Wah; Hatfull, Graham F; Hendrix, Roger W; King, Jonathan

    2007-05-11

    Marine Synechococcus spp and marine Prochlorococcus spp are numerically dominant photoautotrophs in the open oceans and contributors to the global carbon cycle. Syn5 is a short-tailed cyanophage isolated from the Sargasso Sea on Synechococcus strain WH8109. Syn5 has been grown in WH8109 to high titer in the laboratory and purified and concentrated retaining infectivity. Genome sequencing and annotation of Syn5 revealed that the linear genome is 46,214 bp with a 237 bp terminal direct repeat. Sixty-one open reading frames (ORFs) were identified. Based on genomic organization and sequence similarity to known protein sequences within GenBank, Syn5 shares features with T7-like phages. The presence of a putative integrase suggests access to a temperate life cycle. Assignment of 11 ORFs to structural proteins found within the phage virion was confirmed by mass-spectrometry and N-terminal sequencing. Eight of these identified structural proteins exhibited amino acid sequence similarity to enteric phage proteins. The remaining three virion proteins did not resemble any known phage sequences in GenBank as of August 2006. Cryo-electron micrographs of purified Syn5 virions revealed that the capsid has a single "horn", a novel fibrous structure protruding from the opposing end of the capsid from the tail of the virion. The tail appendage displayed an apparent 3-fold rather than 6-fold symmetry. An 18 A resolution icosahedral reconstruction of the capsid revealed a T=7 lattice, but with an unusual pattern of surface knobs. This phage/host system should allow detailed investigation of the physiology and biochemistry of phage propagation in marine photosynthetic bacteria.

  19. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA

    OpenAIRE

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-01-01

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence o...

  20. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2.

    OpenAIRE

    1994-01-01

    The three-dimensional structure of the complex between the Fab fragment of an anti-human rhinovirus neutralizing antibody (8F5) and a cross-reactive synthetic peptide from the viral capsid protein VP2 has been determined at 2.5 A resolution by crystallographic methods. The refinement is presently at an R factor of 0.18 and the antigen-binding site and viral peptide are well defined. The peptide antigen adopts a compact fold by two tight turns and interacts through hydrogen bonds, some with io...

  1. Alternative Polyadenylation of Human Bocavirus at Its 3′ End Is Regulated by Multiple Elements and Affects Capsid Expression

    Science.gov (United States)

    Hao, Sujuan; Zhang, Junmei; Chen, Zhen; Xu, Huanzhou; Wang, Hanzhong

    2016-01-01

    ABSTRACT Alternative processing of human bocavirus (HBoV) P5 promoter-transcribed RNA is critical for generating the structural and nonstructural protein-encoding mRNA transcripts. The regulatory mechanism by which HBoV RNA transcripts are polyadenylated at proximal [(pA)p] or distal [(pA)d] polyadenylation sites is still unclear. We constructed a recombinant HBoV infectious clone to study the alternative polyadenylation regulation of HBoV. Surprisingly, in addition to the reported distal polyadenylation site, (pA)d, a novel distal polyadenylation site, (pA)d2, which is located in the right-end hairpin (REH), was identified during infectious clone transfection or recombinant virus infection. (pA)d2 does not contain typical hexanucleotide polyadenylation signal, upstream elements (USE), or downstream elements (DSE) according to sequence analysis. Further study showed that HBoV nonstructural protein NS1, REH, and cis elements of (pA)d were necessary and sufficient for efficient polyadenylation at (pA)d2. The distance and sequences between (pA)d and (pA)d2 also played a key role in the regulation of polyadenylation at (pA)d2. Finally, we demonstrated that efficient polyadenylation at (pA)d2 resulted in increased HBoV capsid mRNA transcripts and protein translation. Thus, our study revealed that all the bocaviruses have distal poly(A) signals on the right-end palindromic terminus, and alternative polyadenylation at the HBoV 3′ end regulates its capsid expression. IMPORTANCE The distal polyadenylation site, (pA)d, of HBoV is located about 400 nucleotides (nt) from the right-end palindromic terminus, which is different from those of bovine parvovirus (BPV) and canine minute virus (MVC) in the same genus whose distal polyadenylation is located in the right-end stem-loop structure. A novel polyadenylation site, (pA)d2, was identified in the right-end hairpin of HBoV during infectious clone transfection or recombinant virus infection. Sequence analysis showed that (pA)d2

  2. Structure of the Three N-Terminal Immunoglobulin Domains of the Highly Immunogenic Outer Capsid Protein from a T4-Like Bacteriophage

    Energy Technology Data Exchange (ETDEWEB)

    Fokine, Andrei; Islam, Mohammad Z.; Zhang, Zhihong; Bowman, Valorie D.; Rao, Venigalla B.; Rossmann, Michael G. (CUA); (Purdue)

    2011-09-16

    The head of bacteriophage T4 is decorated with 155 copies of the highly antigenic outer capsid protein (Hoc). One Hoc molecule binds near the center of each hexameric capsomer. Hoc is dispensable for capsid assembly and has been used to display pathogenic antigens on the surface of T4. Here we report the crystal structure of a protein containing the first three of four domains of Hoc from bacteriophage RB49, a close relative of T4. The structure shows an approximately linear arrangement of the protein domains. Each of these domains has an immunoglobulin-like fold, frequently found in cell attachment molecules. In addition, we report biochemical data suggesting that Hoc can bind to Escherichia coli, supporting the hypothesis that Hoc could attach the phage capsids to bacterial surfaces and perhaps also to other organisms. The capacity for such reversible adhesion probably provides survival advantages to the bacteriophage.

  3. Prognostic relevance of human papillomavirus L1 capsid protein detection within mild and moderate dysplastic lesions of the cervix uteri in combination with p16 biomarker

    DEFF Research Database (Denmark)

    Hilfrich, Ralf; Hariri, Jalil

    2008-01-01

    OBJECTIVE: To proof the prognostic relevance of HPV L1 capsid protein detection on colposcopically-guided punch biopsies in combination with p16. STUDY DESIGN: Sections of colposcopically-guided punch biopsies from 191 consecutive cases with at least 5 years of follow-up were stained with HPV L1...... capsid protein antibodies (Cytoactiv screening antibody) and a monoclonal anti-p16 antibody. Fifty sections were derived from a benign group, 91 from low-grade (cervical intraepithelial neoplasia [CIN 1]) lesions and 50 from high-grade (CIN 2 and 3) lesions. RESULTS: Overall only 16.1% of the 87 L1......-negative, p16-positive CIN lesions showed remission of the lesion compared to 72.4% of the double positive cases. None of the L1/p16 double negative CIN lesions progressed. CONCLUSION: HPV L1 capsid protein detection with Cytoactiv screening antibody seems to be a promising new tool to predict the behavior...

  4. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  5. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    Objectives We examined how a reduction in plate size would affect the amount of food waste from leftovers in a field experiment at a standing lunch for 220 CEOs. Methods A standing lunch for 220 CEOs in the Danish Opera House was arranged to feature two identical buffets with plates of two differ...

  6. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    Directory of Open Access Journals (Sweden)

    Höglund Stefan

    2007-09-01

    Full Text Available Abstract Background The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24 molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. Results We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. Conclusion These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.

  7. 人乳头瘤病毒衣壳蛋白与宫颈病变%Human Papillomavirus′ Capsid Proteins and Cervical Lesions

    Institute of Scientific and Technical Information of China (English)

    黄成琳; 张淑兰

    2014-01-01

    Cervical cancer seriously endangers women′s health,and human papillomavirus (HPV) is considered to be the primary cause. Doctors have been striving to find an effective diagnostic method for judging cervical lesions level and predicting its prognosis. HPV capsid proteins comprise the major capsid protein (L1 capsid protein) and the minor capsid protein (L2 capsid protein),and these two proteins play an important role in assembling into virus particles,trafficking HPV to the cell,and causing the host′s immune reactions. In recent years,studies have shown that the L1 capsid protein can be used to predict the progress and subsidence of cervical lesions. HPV prophylactic vaccines ,which are exploited on the basis of the L1 and L2 capsid protein,are proved to get a good preventive effect in clinical trials. This paper reviews the biological characteristics of HPV and researches progress on HPV capsid protein in cervical lesions in recent years.%宫颈癌严重危害妇女健康,人乳头瘤病毒(HPV)感染是其首要病因。临床医师一直致力于寻找一种能有效判断宫颈病变级别及预测预后的诊断方法。 HPV衣壳蛋白包括主要衣壳蛋白(L1壳蛋白)和次要衣壳蛋白(L2壳蛋白),这两种蛋白在组装成病毒颗粒、协助病毒入胞及引起机体免疫反应等多个方面发挥重要作用。近年研究表明, L1壳蛋白可用于预测宫颈病变的进展与消退。以L1及L2壳蛋白为基础研发的HPV预防性疫苗在临床试验中得到了很好的预防效果。综述HPV生物学特点及近年来有关HPV衣壳蛋白在宫颈病变的研究进展。

  8. Size matters

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2012-11-01

    The shakeout in the solar cell and module industry is in full swing. While the number of companies and production locations shutting down in the Western world is increasing, the capacity expansion in the Far East seems to be unbroken. Size in combination with a good sales network has become the key to success for surviving in the current storm. The trade war with China already looming on the horizon is adding to the uncertainties. (orig.)

  9. Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles.

    Science.gov (United States)

    Balinsky, Corey A; Schmeisser, Hana; Ganesan, Sundar; Singh, Kavita; Pierson, Theodore C; Zoon, Kathryn C

    2013-12-01

    Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans and is considered a reemerging pathogen of significant importance to public health. The DENV capsid (C) protein functions as a structural component of the infectious virion; however, it may have additional functions in the virus replicative cycle. Here, we show that the DENV C protein interacts and colocalizes with the multifunctional host protein nucleolin (NCL). Furthermore, we demonstrate that this interaction can be disrupted by the addition of an NCL binding aptamer (AS1411). Knockdown of NCL with small interfering RNA (siRNA) or treatment of cells with AS1411 results in a significant reduction of viral titers after DENV infection. Western blotting and quantitative RT-PCR (qRT-PCR) analysis revealed no differences in viral RNA or protein levels at early time points postinfection, suggesting a role for NCL in viral morphogenesis. We support this hypothesis by showing that treatment with AS1411 alters the migration characteristics of the viral capsid, as visualized by native electrophoresis. Here, we identify a critical interaction between DENV C protein and NCL that represents a potential new target for the development of antiviral therapeutics.

  10. Biophysical and Structural Studies on the Capsid Protein of the Human Immunodeficiency Virus Type 1: A New Drug Target?

    Directory of Open Access Journals (Sweden)

    José L. Neira

    2009-01-01

    Full Text Available AIDS affects 30 million people worldwide and is one of the deadliest epidemics in human history. It is caused by a retrovirus, HIV, whose mature capsid (enclosing the RNA with other proteins is formed by the assembly of several hundred copies of a protein, CA*. The C-terminal domain of such protein, CAC, is a driving force in virus assembly and the connections in the mature capsid lattice indicate that CAC joins through homodimerization of the CA hexamers. In the first part of this work, I shall review the biophysical studies carried out with the dimeric wild-type CAC protein and a mutant monomeric variant. The results open new venues for the development of drugs able to interact either with the dimeric species, hampering its assembly, or with the monomeric species, obstructing its folding. In the second part of this review, I shall describe the structures of complexes of CAC with small molecules able to weaken its dimerization. Furthermore, interactions with other proteins and lipids are also described. The whole set of results suggests that much of the surface of CAC does not accommodate binding per se, but rather binding sites in the protein are predefined, i.e., there are “hot” spots for binding in CAC (whatever be the molecule to bind. These “hot” residues involve most of the dimerization interface (an α-helix of the CAC wild-type protein, but also polypeptide patches at the other helices.

  11. Characterization of the antibody response against EV71 capsid proteins in Chinese individuals by NEIBM-ELISA.

    Science.gov (United States)

    Ding, Yingying; Chen, Xuguang; Qian, Baohua; Wu, Guorong; He, Ting; Feng, Jiaojiao; Gao, Caixia; Wang, Lili; Wang, Jinhong; Li, Xiangyu; Cao, Mingmei; Peng, Heng; Zhao, Chunyan; Pan, Wei

    2015-01-01

    Human enterovirus 71 (EV71) has become the major pathogen of hand, foot, and mouth disease (HFMD) worldwide, while the anti-EV71 antibody responses other than neutralizing epitopes have not been characterized. In this study, EV71 capsid proteins VP1, VP3, VP0 and various VP1 antigens were constructed to analyze anti-EV71 response in severe HFMD cases, non-HFMD outpatient children and normal adults using a novel evolved immunoglobulin-binding molecule (NEIBM)-based ELISA. The high prevalence of antibody responses against all three capsid proteins was demonstrated, and anti-EV71 VP1 showed the main antibody response. Anti-EV71 VP1 antibody response was found to predominantly target to epitopes based on the common enterovirus cross-reactive sequence. Moreover, inhibition pattern against anti-EV71 VP1 reactions in three groups was obviously different. Taken together, these results firstly characterized the anti-EV71 antibody responses which are predominantly against VP1 epitopes based on common enterovirus cross-reactive sequence. This finding could be helpful for the better understanding of anti-EV71 humoral immunity and useful for seroepidemiological surveillance.

  12. Development of Cell Lines Stably Expressing Staphylococcal Nuclease Fused to Dengue 2 Virus Capsid Protein for CTVI

    Institute of Scientific and Technical Information of China (English)

    Cheng-Feng QIN; E-De QIN

    2004-01-01

    To explore the potential application of capsid-targeted viral inactivation(CTVI)strategy in prophylactic model against dengue virus(DV)infection,here we fused a Ca2+-dependent nuclease,staphylococcal nuclease(SN),to the capsid protein of dengue 2 virus(D2C)at the carboxyl terminal,and constructed the desired expression plasmid pc/D2C-SN and control plasmids pc/D2C-SN* and pc/D2C.A mammalian cell line BHK-21 was transfected by electroporation with those plasmids and thereafter selected by 5 μg/ml blasticidin.The resistant cell clones were then expanding cultured and screened by RT-PCR and Western Blot assays.The nuclease activity of the expressed fusion protein D2C-SN was analyzed by in vitro DNA digestion assay.It was confirmed cell lines stably expressing D2C-SN and control constructs were obtained.The intracellular expressed fusion protein D2C-SN had ideal nuclease activity and no cytotoxicity on mammalian cells.Those engineered cell lines provided the experimental system for CTVI application in prophylactic model and paved the new road for combating DV infection with CTVI.

  13. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    Science.gov (United States)

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  14. Capsid protein: evidences about the partial protective role of neutralizing antibody-independent immunity against dengue in monkeys.

    Science.gov (United States)

    Gil, Lázaro; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Marcos, Ernesto; Suzarte, Edith; Kariuki, Thomas; Guzmán, Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2014-05-01

    The role of cellular immune response in dengue virus infection is not yet fully understood. Only few studies in murine models propose that CD8(+) T-cells are associated with protection from infection and disease. At the light of recent reports about the protective role of CD8(+) T-cells in humans and the no correlation between neutralizing antibodies and protection observed in several studies, a vaccine based on cell-mediated immunity constitute an attractive approach. Our group has developed a capsid-based vaccine as nucleocpasid-like particles from dengue-2 virus, which induced a protective CD4(+) and CD8(+) cell-mediated immunity in mice, without the contribution of neutralizing antibodies. Herein we evaluated the immunogenicity and protective efficacy of this molecule in monkeys. Neither IgG antibodies against the whole virus nor neutralizing antibodies were elicited after the antigen inoculation. However, animals developed a cell-mediated immunity, measured by gamma interferon secretion and cytotoxic capacity. Although only one out of three vaccinated animals was fully protected against viral challenge, a viral load reduction was observed in this group compared with the placebo one, suggesting that capsid could be the base on an attractive vaccine against dengue.

  15. Expression of viral polymerase and phosphorylation of core protein determine core and capsid localization of the human hepatitis B virus.

    Science.gov (United States)

    Deroubaix, Aurélie; Osseman, Quentin; Cassany, Aurélia; Bégu, Dominique; Ragues, Jessica; Kassab, Somar; Lainé, Sébastien; Kann, Michael

    2015-01-01

    Biopsies from patients show that hepadnaviral core proteins and capsids - collectively called core - are found in the nucleus and cytoplasm of infected hepatocytes. In the majority of studies, cytoplasmic core localization is related to low viraemia while nuclear core localization is associated with high viral loads. In order to better understand the molecular interactions leading to core localization, we analysed transfected hepatoma cells using immune fluorescence microscopy. We observed that expression of core protein in the absence of other viral proteins led to nuclear localization of core protein and capsids, while expression of core in the context of the other viral proteins resulted in a predominantly cytoplasmic localization. Analysis of which viral partner was responsible for cytoplasmic retention indicated that the HBx, surface proteins and HBeAg had no impact but that the viral polymerase was the major determinant. Further analysis revealed that ϵ, an RNA structure to which the viral polymerase binds, was essential for cytoplasmic retention. Furthermore, we showed that core protein phosphorylation at Ser 164 was essential for the cytoplasmic core localization phenotype, which is likely to explain differences observed between individual cells.

  16. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  17. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes

    Science.gov (United States)

    Hernáez, Bruno; Guerra, Milagros; Salas, María L.

    2016-01-01

    African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717

  18. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  19. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks.

    Science.gov (United States)

    Parent, Kristin N; Khayat, Reza; Tu, Long H; Suhanovsky, Margaret M; Cortines, Juliana R; Teschke, Carolyn M; Johnson, John E; Baker, Timothy S

    2010-03-10

    Viral capsid assembly and stability in tailed, dsDNA phage and Herpesviridae are achieved by various means including chemical crosslinks (unique to HK97), or auxiliary proteins (lambda, T4, phi29, and herpesviruses). All these viruses have coat proteins (CP) with a conserved, HK97-like core structure. We used a combination of trypsin digestion, gold labeling, cryo-electron microscopy, 3D image reconstruction, and comparative modeling to derive two independent, pseudoatomic models of bacteriophage P22 CP: before and after maturation. P22 capsid stabilization results from intersubunit interactions among N-terminal helices and an extensive "P loop," which obviate the need for crosslinks or auxiliary proteins. P22 CP also has a telokin-like Ig domain that likely stabilizes the monomer fold so that assembly may proceed via individual subunit addition rather than via preformed capsomers as occurs in HK97. Hence, the P22 CP structure may be a paradigm for understanding how monomers assemble in viruses like phi29 and HSV-1.

  20. Identification of the two rotavirus genes determining neutralization specificities

    Energy Technology Data Exchange (ETDEWEB)

    Offit, P.A.; Blavat, G.

    1986-01-01

    Bovine rotavirus NCDV and simian rotavirus SA-11 represent two distinct rotavirus serotypes. A genetic approach was used to determine which viral gene segments segregated with serotype-specific viral neutralization. There were 16 reassortant rotarviruses derived by coinfection of MA-104 cells in vitro with the SA-11 and NCDV strains. The parental origin of reassortant rotavirus double-stranded RNA segments was determined by gene segment mobility in polyacrylamide gels and by hybridization with radioactively labeled parental viral transcripts. The authors found that two rotavirus gene segments found previously to code for outer capsid proteins vp3 and vp7 cosegreated with virus neutralization specificities.

  1. Assessment of the cross-protective capability of recombinant capsid proteins derived from pig, rat, and avian hepatitis E viruses (HEV) against challenge with a genotype 3 HEV in pigs.

    Science.gov (United States)

    Sanford, Brenton J; Opriessnig, Tanja; Kenney, Scott P; Dryman, Barbara A; Córdoba, Laura; Meng, Xiang-Jin

    2012-09-28

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is primarily transmitted via the fecal-oral route through contaminated water supplies, although many sporadic cases of hepatitis E are transmitted zoonotically via direct contact with infected animals or consumption of contaminated animal meats. Genotypes 3 and 4 HEV are zoonotic and infect humans and other animal species, whereas genotypes 1 and 2 HEV are restricted to humans. There exists a single serotype of HEV, although the cross-protective ability among the animal HEV strains is unknown. Thus, in this study we expressed and characterized N-terminal truncated ORF2 capsid antigens derived from swine, rat, and avian HEV strains and evaluated their cross-protective ability in a pig challenge model. Thirty, specific-pathogen-free, pigs were divided into 5 groups of 6 pigs each, and each group of pigs were vaccinated with 200 μg of swine HEV, rat HEV, or avian HEV ORF2 antigen or PBS buffer (2 groups) as positive and negative control groups. After a booster dose immunization at 2 weeks post-vaccination, the vaccinated animals all seroconverted to IgG anti-HEV. At 4 weeks post-vaccination, the animals were intravenously challenged with a genotype 3 mammalian HEV, and necropsied at 4 weeks post-challenge. Viremia, fecal virus shedding, and liver histological lesions were compared to assess the protective and cross-protective abilities of these antigens against HEV challenge in pigs. The results indicated that pigs vaccinated with truncated recombinant capsid antigens derived from three animal strains of HEV induced a strong IgG anti-HEV response in vaccinated pigs, but these antigens confer only partial cross-protection against a genotype 3 mammalian HEV. The results have important implications for the efficacy of current vaccines and for future vaccine development, especially against the novel zoonotic animal strains of HEV.

  2. Specific determination of selenoaminoacids in whole milk by 2D size-exclusion-ion-paring reversed phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP MS)

    Energy Technology Data Exchange (ETDEWEB)

    Bierla, Katarzyna [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France)], E-mail: katarzyabierla@wp.pl; Szpunar, Joanna [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France); Lobinski, Ryszard [Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, CNRS UMR5254, Helioparc, 2, av. Pr. Angot, 64053 Pau (France); Warsaw Technical University, Department of Analytical Chemistry, Noakowskiego 3, 00-664 Warsaw (Poland)

    2008-08-29

    A procedure was developed for the quantitative recovery of selenomethionine (SeMet) and selenocysteine (SeCys) from whole milk. It was based on the protein unfolding, carbamidomethylation of the aminoacid residues using iodoacetamide and proteolysis using Protease XIV. The selenoaminoacids were specifically determined by ion-paring reversed phase HPLC-ICP MS after their isolation from the post-reaction mixture by size-exclusion LC. Se(IV) present in the sample was derivatized as well and was determined along with the selenoaminoacids. The origin and identity of species were identified by the co-elution with the Se(IV), isotopically labelled selenomethionine, and with the synthetic standard of carbamidomethylated selenocysteine. The method development for SeCys was assisted by using glutathione peroxidise as the SeCys standard. SeMet, SeCys and Se(IV) were quantified by the method of standard additions. The mass balance provided a measure of the method validation. The method was applied to monitoring selenium speciation during supplementation of cows (dose-effect study) with Se-rich yeast containing feed and during milk processing.

  3. Cloning of the rhesus lymphocryptovirus viral capsid antigen and Epstein-Barr virus-encoded small RNA homologues and use in diagnosis of acute and persistent infections.

    Science.gov (United States)

    Rao, P; Jiang, H; Wang, F

    2000-09-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis and is associated with the development of several human malignancies. A closely related herpesvirus in the same lymphocryptovirus (LCV) genera as EBV naturally infects rhesus monkeys and provides an important animal model for studying EBV pathogenesis. We cloned the small viral capsid antigen (sVCA) homologue from the rhesus LCV and developed a peptide enzyme-linked immunosorbent assay (ELISA) to determine whether epitopes in the rhesus LCV sVCA are a reliable indicator of rhesus LCV infection. In order to define a "gold standard" for rhesus LCV infection, we also cloned the EBV-encoded small RNA 1 (EBER1) and EBER2 homologues from rhesus LCV and developed a reverse transcription (RT)-PCR assay to detect persistent LCV infection in rhesus monkey peripheral blood lymphocytes. Animals from a conventional and a hand-reared colony were studied to compare the prevalence of rhesus LCV infection in the two groups. There was a 100% correlation between the peptide ELISA and EBER RT-PCR results for rhesus LCV infection. In addition, specificity for LCV infection and exclusion of potential cross-reactivity to the rhesus rhadinovirus sVCA homologue could be demonstrated using sera from experimentally infected animals. These studies establish two novel assays for reliable diagnosis of acute and persistent rhesus LCV infections. The rhesus LCV sVCA peptide ELISA provides a sensitive and reliable assay for routine screening, and these studies of the hand-reared colony confirm the feasibility of raising rhesus LCV-naive animals.

  4. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential.

    Directory of Open Access Journals (Sweden)

    Philipp Kolb

    Full Text Available Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF, and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC. Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc derived capsid-like particles (CLPs to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.

  5. Sequence Analysis of Segment 8 of Five Chinese Isolates of Rice Gall Dwarf Virus and Expression of a Main Outer Capsid Protein in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The rice gall dwarf disease, caused by the Rice gall dwarf virus (RGDV) is a serious disease occurring in rice in many regions of Guangdong province. As a basis to control the disease we have studied the genomic diversity of a variety of isolates from different locations. Genome segment 8(S8), encoding a main outer capsid protein (Pns8) of RGDV five isolates (BL, CH, DQ, GZ, XY) from Guangdong province was cloned and sequenced. The results revealed that all the S8 segments of the five isolates consisted of 1 578 nucleotides and had a single open reading frame (ORF) extending for 1 301 nucleotides from nucleotide 21 which encoded a polypeptide of 426 amino acids with an estimated molecular weight of 47.4 kDa. The S8 full-length sequence and the ORF sequence shared 97.3%-98.8% and 97.3%-99.1% nucleotide sequence identities within the five Chinese isolates, and shared 94.8%-95.6% and 95.0%-96.0% identities with those of the Thailand isolate respectively. The deduced amino acid sequence of Pns8 in GZ isolate was identical to that in the Thailand isolate, while the amino acid sequence variability of Pns8 within five Chinese isolates ranged from 0.5% to 2.1%. These results indicate that the S8 segment of RGDV is highly conserved in different isolates from different locations. The S8 cDNA from the XY isolate was cloned into the plasmid vector pET-28b(+) and a fused expression protein with an apparent molecular mass of 51kDa was specifically detected in an analysis of Escherichia coli Rossetta(DE3)Ⅱcells. To our knowledge, this is the first report on analysis of the RGDV segment 8 sequence and genetic comparison of different RGDV isolates and their protein expression.

  6. Co-expression of Ubiquitin gene and capsid protein gene enhances the potency of DNA immunization of PCV2 in mice

    Directory of Open Access Journals (Sweden)

    Zhou Yanjun

    2011-05-01

    Full Text Available Abstract A recombinant plasmid that co-expressed ubiquitin and porcine circovirus type 2 (PCV2 virus capsid protein (Cap, denoted as pc-Ub-Cap, and a plasmid encoding PCV2 virus Cap alone, denoted as pc-Cap, were transfected into 293T cells. Indirect immunofluorescence (IIF and confocal microscopy were performed to measure the cellular expression of Cap. Three groups of mice were then vaccinated once every three weeks for a total of three doses with pc-Ub-Cap, pc-Cap or the empty vector pCAGGS, followed by challenging all mice intraperitoneally with 0.5 mL 106.5 TCID50/mL PCV2. To characterize the protective immune response against PCV2 infection in mice, assays of antibody titer (including different IgG isotypes, flow cytometric analysis (FCM, lymphocyte proliferation, cytokine production and viremia were evaluated. The results showed that pc-Ub-Cap and pc-Cap were efficiently expressed in 293T cells. However, pc-Ub-Cap-vaccinated animals had a significantly higher level of Cap-specific antibody and induced a stronger Th1 type cellular immune response than did pc-Cap-vaccinated animals, suggesting that ubiquitin conjugation improved both the cellular and humoral immune responses. Additionally, viral replication in blood was lower in the pc-Ub-Cap-vaccinated group than in the pc-Cap and empty vector groups, suggesting that the protective immunity induced by pc-Ub-Cap is superior to that induced by pc-Cap.

  7. Construction of Prophylactic Human Papillomavirus Type 16 L1 Capsid Protein Vaccine Delivered by Live Attenuated Shigella flexneri Strain sh42

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng YANG; Xin-Zhong QU; Kai WANG; Jin ZHENG; Lü-Sheng SI; Xiao-Ping DONG; Yi-Li WANG

    2005-01-01

    To express human papillomavirus (HPV) L1 capsid protein in the recombinant strain of Shigella and study the potential of a live attenuated Shigella-based HPV prophylactic vaccine in preventing HPV infection, the icsA/virG fragment of Shigella-based prokaryotic expression plasmid pHS3199 was constructed.HPV type 16 L 1 (HPV 16L 1) gene was inserted into plasmid pHS 3199 to form the pHS3199-HPV 16L1construct, and pHS3199-HPV16L1 was electroporated into a live attenuated Shigella strain sh42. Western blotting analysis showed that HPV 16L1 could be expressed stably in the recombinant strain sh42-HPV 16L1.Sereny test results were negative, which showed that the sh42-HPV16L1 lost virulence. However, the attenuated recombinant strain partially maintained the invasive property as indicated by the HeLa cell infection assay. Specific IgG, IgA antibody against HPV16L1 virus-like particles (VLPs) were detected in the sera,intestinal lavage and vaginal lavage from animals immunized by sh42-HPV 16L 1. The number of antibodysecreting cells in the spleen and draining lymph nodes were increased significantly compared with the control group. Sera from immunized animals inhibited murine hemagglutination induced by HPV16L1 VLPs, which indicated that the candidate vaccine could stimulate an efficient immune response in guinea pig's mucosal sites. This may be an effective strategy for the development of an HPV prophylactic oral vaccine.

  8. Capsid proteins from human immunodeficiency virus type 1 and simian immunodeficiency virus SIVmac can coassemble into mature cores of infectious viruses.

    Science.gov (United States)

    Chen, Jianbo; Pathak, Vinay K; Peng, Weiqun; Hu, Wei-Shau

    2008-09-01

    We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5alpha protein from the rhesus monkey (rhTRIM5alpha) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIV(mac) CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5alpha. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5alpha would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.

  9. Enhancing mucosal immunity in mice by recombinant adenovirus expressing major epitopes of porcine circovirus-2 capsid protein delivered with cytosine-phosphate-guanosine oligodeoxynucleotides.

    Science.gov (United States)

    Chang, Hong-Tao; He, Xiu-Yuan; Liu, Yu-Feng; Chen, Lu; Guo, Quan-Hai; Yu, Qiu-Ying; Zhao, Jun; Wang, Xin-Wei; Yang, Xia; Wang, Chuan-Qing

    2014-01-01

    A recombinant replication-defective adenovirus expressing the major epitopes of porcine circovirus-2 (PCV-2) capsid protein (rAd/Cap/518) was previously constructed and shown to induce mucosal immunity in mice following intranasal delivery. In the present study, immune responses induced by intranasal immunization with a combination of rAd/Cap/518 and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) were evaluated in mice. The levels of PCV-2-specific IgG in serum and IgA in saliva, lung, and intestinal fluids were significantly higher in the group immunized with rAd/Cap/518 and CpG ODN than animals immunized with rAd/Cap/518 alone. The frequencies of IL-2-secreting CD4⁺ T cells and IFN-γ-producing CD8⁺ T cells were significantly higher in the combined immunization group than mice immunized with rAd/Cap/518 alone. The frequencies of CD3⁺, CD3⁺CD4⁺CD8⁻, and CD3⁺CD4⁻CD8⁺ T cells in the combined immunization group were similar to that treated with CpG ODN alone, but significantly higher than mice that did not receive CpG ODN. PCV-2 load after challenge in the combined immunization group was significantly lower than that in the phosphate-buffered saline placebo group and approximately 7-fold lower in the group treated with CpG ODN alone. These results indicate that rAd/Cap/518 combined with CpG ODN can enhance systemic and local mucosal immunity in mice, and represent a promising synergetic mucosal vaccine against PCV-2.

  10. A pseudo-atomic model for the capsid shell of bacteriophage lambda using chemical cross-linking/mass spectrometry and molecular modeling.

    Science.gov (United States)

    Singh, Pragya; Nakatani, Eri; Goodlett, David R; Catalano, Carlos Enrique

    2013-09-23

    Bacteriophage lambda is one of the most exhaustively studied of the double-stranded DNA viruses. Its assembly pathway is highly conserved among the herpesviruses and many of the bacteriophages, making it an excellent model system. Despite extensive genetic and biophysical characterization of many of the lambda proteins and the assembly pathways in which they are implicated, there is a relative dearth of structural information on many of the most critical proteins involved in lambda assembly and maturation, including that of the lambda major capsid protein. Toward this end, we have utilized a combination of chemical cross-linking/mass spectrometry and computational modeling to construct a pseudo-atomic model of the lambda major capsid protein as a monomer, as well as in the context of the assembled procapsid shell. The approach described here is generalizable and can be used to provide structural models for any biological complex of interest. The procapsid structural model is in good agreement with published biochemical data indicating that procapsid expansion exposes hydrophobic surface area and that this serves to nucleate assembly of capsid decoration protein, gpD. The model further implicates additional molecular interactions that may be critical to the assembly of the capsid shell and for the stabilization of the structure by the gpD decoration protein.

  11. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    2016-01-01

    in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...

  12. QA prime-boost vaccination strategy in prevent serotype O FMDV infection using a "single-cycle" alphavirus vector and empty capsid particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    alphavirus self-replicating RNA based on Semliki Forest virus (SFV). Purified O1 Manisa empty capsid particles (ECs) have been prepared using a recombinant vaccinia virus expression system. Cattle have been vaccinated with the SFV-FMDV vectors and boosted subsequently with the ECs and then challenged...

  13. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shauna M. [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Zhao, Linbo [Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Bosard, Catherine [Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Imperiale, Michael J., E-mail: imperial@umich.edu [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States)

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  14. Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories (SAT) types using virus neutralization data

    Science.gov (United States)

    Foot-and-mouth disease virus (FMDV) outer capsid proteins 1B, 1C and 1D contribute to the virus serotype distribution and antigenic variants that exist within each of the seven serotypes. This study presents a phylogenetic, genetic and antigenic analysis of the South African Territories (SAT) seroty...

  15. Bacterial surface-displayed GII.4 human norovirus capsid proteins bound to surface of Romaine lettuce through HBGA-like molecules

    Science.gov (United States)

    Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...

  16. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    example of a dominant and variable site. This variability is a problem when designing vaccines against this disease, because it necessitates a close match between vaccine strain and virus in an outbreak. We have introduced a series of mutations into viral capsid proteins with the aim of selectively...

  17. C-terminal domain on the outer surface of the Macrobrachium rosenbergii nodavirus capsid is required for Sf9 cell binding and internalization.

    Science.gov (United States)

    Somrit, Monsicha; Watthammawut, Atthaboon; Chotwiwatthanakun, Charoonroj; Ounjai, Puey; Suntimanawong, Wanida; Weerachatyanukul, Wattana

    2017-01-02

    We have shown that Macrobrachium rosenbergii nodavirus (MrNV) was able to infect Sf9 cells and that MrNV virus-like particles (MrNV-VLPs) were capable nanocontainers for delivering nucleic acid-based materials. Here, we demonstrated that chymotryptic removal of a C-terminal peptide and its truncated variant (F344-MrNV-VLPs) exhibited a drastically reduced ability to interact and internalize into Sf9 cells. Electron microscopic observations revealed that the loss of C-terminal domain either from enzyme hydrolysis or genetic truncation did not affect the generated MrNV-VLPs' icosahedral conformation, but did drastically affect the VLPs' internalization ability into Sf9 cells. Homology-based modelling of the MrNV capsid with other icosahedral capsid models revealed that this chymotrypsin-sensitive C-terminal domain was not only exposed on the capsid surface, but also constituted the core of the viral capsid protrusion. These results therefore suggest the importance of the C-terminal domain as a structure for targeted cell interaction which is presumably localized at the protruding domain. This work thus provided the functional insights into the role of the MrNV C-terminal domain in viral entry into Sf9 cells and lead to the development of strategies in combatting MrNV infection in susceptible cells.

  18. C-Terminal Amino Acids 471-507 of Avian Hepatitis E Virus Capsid Protein Are Crucial for Binding to Avian and Human Cells.

    Science.gov (United States)

    Zhang, Xinquan; Bilic, Ivana; Marek, Ana; Glösmann, Martin; Hess, Michael

    2016-01-01

    The infection of chickens with avian Hepatitis E virus (avian HEV) can be asymptomatic or induces clinical signs characterized by increased mortality and decreased egg production in adult birds. Due to the lack of an efficient cell culture system for avian HEV, the interaction between virus and host cells is still barely understood. In this study, four truncated avian HEV capsid proteins (ORF2-1 - ORF2-4) with an identical 338aa deletion at the N-terminus and gradual deletions from 0, 42, 99 and 136aa at the C-terminus, respectively, were expressed and used to map the possible binding site within avian HEV capsid protein. Results from the binding assay showed that three truncated capsid proteins attached to avian LMH cells, but did not penetrate into cells. However, the shortest construct, ORF2-4, lost the capability of binding to cells suggesting that the presence of amino acids 471 to 507 of the capsid protein is crucial for the attachment. The construct ORF2-3 (aa339-507) was used to study the potential binding of avian HEV capsid protein to human and other avian species. It could be demonstrated that ORF2-3 was capable of binding to QT-35 cells from Japanese quail and human HepG2 cells but failed to bind to P815 cells. Additionally, chicken serum raised against ORF2-3 successfully blocked the binding to LMH cells. Treatment with heparin sodium salt or sodium chlorate significantly reduced binding of ORF2-3 to LMH cells. However, heparinase II treatment of LMH cells had no effect on binding of the ORF2-3 construct, suggesting a possible distinct attachment mechanism of avian as compared to human HEV. For the first time, interactions between avian HEV capsid protein and host cells were investigated demonstrating that aa471 to 507 of the capsid protein are needed to facilitate interaction with different kind of cells from different species.

  19. Interaction study of a novel Macrobrachium rosenbergii effector caspase with B2 and capsid proteins of M. rosenbergii nodavirus reveals their roles in apoptosis.

    Science.gov (United States)

    Youngcharoen, Supak; Senapin, Saengchan; Lertwimol, Tareerat; Longyant, Siwaporn; Sithigorngul, Paisarn; Flegel, Timothy W; Chaivisuthangkura, Parin

    2015-08-01

    Apoptosis is an essential immune response to protect invertebrates from virus infected cells. In shrimp, virus infection has been reported to induce apoptosis. Macrobrachium rosenbergii (Mr) was considered to be a disease-resistant host when compared to penaeid shrimps. Caspase-3 was classified as an executioner caspase which played a key role in virus-induced apoptosis. In this study, an effector caspase gene of M. rosenbergii (Mrcasp) was cloned and characterized. The open reading frame (ORF) of Mrcasp was 957 nucleotide encoding 318 amino acid with a deduced molecular mass of 35.87 kDa. RT-PCR analysis showed the presence of Mrcasp in all examined tissues. The phylogenetic tree indicated that Mrcasp was closely related with caspase 3 of shrimp. The functions of the Mrcasp, B2 and capsid proteins of M. rosenbergii nodavirus (MrNV) were assayed in Sf-9 cells. The results showed that Mrcasp induce apoptotic morphology cells; however, capsid protein of MrNV could inhibit apoptotic cells whereas B2 could neither induce nor inhibit apoptotic cells by DAPI staining. The protein interaction between Mrcasp and viral MrNV structure revealed that Mrcasp did not bind to B2 or capsid protein whereas B2 and capsid proteins could bind directly to each other. This study reported a novel sequence of a full-length Mrcasp and its functional studies indicated that Mrcasp could induce apoptotic cells. Our data is the first report demonstrating the direct protein-protein interaction between capsid protein and B2 protein of MrNV.

  20. Cyclophilin A associates with enterovirus-71 virus capsid and plays an essential role in viral infection as an uncoating regulator.

    Directory of Open Access Journals (Sweden)

    Jie Qing

    2014-10-01

    Full Text Available Viruses utilize host factors for their efficient proliferation. By evaluating the inhibitory effects of compounds in our library, we identified inhibitors of cyclophilin A (CypA, a known immunosuppressor with peptidyl-prolyl cis-trans isomerase activity, can significantly attenuate EV71 proliferation. We demonstrated that CypA played an essential role in EV71 entry and that the RNA interference-mediated reduction of endogenous CypA expression led to decreased EV71 multiplication. We further revealed that CypA directly interacted with and modified the conformation of H-I loop of the VP1 protein in EV71 capsid, and thus regulated the uncoating process of EV71 entry step in a pH-dependent manner. Our results aid in the understanding of how host factors influence EV71 life cycle and provide new potential targets for developing antiviral agents against EV71 infection.

  1. Selective human enterovirus and rhinovirus inhibitors: An overview of capsid-binding and protease-inhibiting molecules.

    Science.gov (United States)

    Shih, Shin-Ru; Chen, Shu-Jen; Hakimelahi, Gholam Hossein; Liu, Hsing-Jang; Tseng, Chen-Tso; Shia, Kak-Shan

    2004-07-01

    The absence of effective vaccines for most viral infections highlights an urgent necessity for the design and development of effective antiviral drugs. Due to the advancement in virology since the late 1980s, several key events in the viral life cycle have been well delineated and a number of molecular targets have been validated, culminating in the emergence of many new antiviral drugs in recent years. Inhibitors against enteroviruses and rhinoviruses, responsible for about half of the human common colds, are currently under active investigation. Agents targeted at either viral protein 1 (VP1), a relatively conserved capsid structure mediating viral adsorption/uncoating process, or 3C protease, which is highly conserved among different serotypes and essential for viral replication, are of great potential to become antipicornavirus drugs.

  2. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA.

    Science.gov (United States)

    Abouhaidar, M G

    1988-01-01

    The nucleotide sequences of cDNA clones corresponding to the 3' OH end of papaya mosaic virus RNA have been determined. The 3'-terminal sequence obtained was 900 nucleotides in length, excluding the poly(A) tail, and contained an open reading frame capable of giving rise to a protein of 214 amino acid residues with an Mr of 22930. This protein was identified as the viral capsid protein. The 3' non-coding region of PMV genome RNA was about 121 nucleotides long [excluding the poly(A) tail] and homologous to the complementary sequence of the non-coding region at the 5' end of PMV RNA. A long open reading frame was also found in the predicted 5' end region of the negative strand.

  3. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity.

    Science.gov (United States)

    Warnes, Sarah L; Summersgill, Emma N; Keevil, C William

    2015-02-01

    Norovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome.

  4. Ideal Body Size as a Mediator for the Gender-Specific Association between Socioeconomic Status and Body Mass Index: Evidence from an Upper-Middle-Income Country in the African Region

    Science.gov (United States)

    Yepes, Maryam; Maurer, Jürgen; Stringhini, Silvia; Viswanathan, Barathi; Gedeon, Jude; Bovet, Pascal

    2016-01-01

    Background: While obesity continues to rise globally, the associations between body size, gender, and socioeconomic status (SES) seem to vary in different populations, and little is known on the contribution of perceived ideal body size in the social disparity of obesity in African countries. Purpose: We examined the gender and socioeconomic…

  5. RECOVIR: An application package to automatically identify some single stranded RNA viruses using capsid protein residues that uniquely distinguish among these viruses

    Directory of Open Access Journals (Sweden)

    Fox George E

    2007-10-01

    Full Text Available Abstract Background Most single stranded RNA (ssRNA viruses mutate rapidly to generate large number of strains having highly divergent capsid sequences. Accurate strain recognition in uncharacterized target capsid sequences is essential for epidemiology, diagnostics, and vaccine development. Strain recognition based on similarity scores between target sequences and sequences of homology matched reference strains is often time consuming and ambiguous. This is especially true if only partial target sequences are available or if different ssRNA virus families are jointly analyzed. In such cases, knowledge of residues that uniquely distinguish among known reference strains is critical for rapid and unambiguous strain identification. Conventional sequence comparisons are unable to identify such capsid residues due to high sequence divergence among the ssRNA virus reference strains. Consequently, automated general methods to reliably identify strains using strain distinguishing residues are not currently available. Results We present here RECOVIR ("recognize viruses", a software tool to automatically detect strains of caliciviruses and picornaviruses by comparing their capsid residues with built-in databases of residues that uniquely distinguish among known reference strains of these viruses. The databases were created by constructing partitioned phylogenetic trees of complete capsid sequences of these viruses. Strains were correctly identified for more than 300 complete and partial target sequences by comparing the database residues with the aligned residues of these sequences. It required about 5 seconds of real time to process each sequence. A Java-based user interface coupled with Perl-coded computational modules ensures high portability of the software. RECOVIR currently runs on Windows XP and Linux platforms. The software generalizes a manual method briefly outlined earlier for human caliciviruses. Conclusion This study shows implementation of

  6. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating

    Science.gov (United States)

    Valbuena, Alejandro; Mateu, Mauricio G.

    2015-09-01

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics (``breathing'') of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications

  7. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization.

    Science.gov (United States)

    Strang, Blair L; Bender, Brian J; Sharma, Mayuri; Pesola, Jean M; Sanders, Rebecca L; Spector, Deborah H; Coen, Donald M

    2012-10-01

    Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.

  8. Cloning of the Rhesus Lymphocryptovirus Viral Capsid Antigen and Epstein-Barr Virus-Encoded Small RNA Homologues and Use in Diagnosis of Acute and Persistent Infections

    OpenAIRE

    Rao, Pasupuleti; Jiang, Hua; Wang, Fred

    2000-01-01

    Epstein-Barr virus (EBV) is the most common cause of infectious mononucleosis and is associated with the development of several human malignancies. A closely related herpesvirus in the same lymphocryptovirus (LCV) genera as EBV naturally infects rhesus monkeys and provides an important animal model for studying EBV pathogenesis. We cloned the small viral capsid antigen (sVCA) homologue from the rhesus LCV and developed a peptide enzyme-linked immunosorbent assay (ELISA) to determine whether e...

  9. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells

    DEFF Research Database (Denmark)

    Polacek, Charlotta; Gullberg, Maria; Li, Jiong;

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor (P1-2A) is processed by the virus-encoded 3C protease (3Cpro) to produce VP0, VP3, VP1 and 2A. Within the virus-encoded polyprotein, the P1-2A and 3Cpro can be expected to be produced at equivalent concentrations. However, using...... production of diagnostic reagents and improved vaccines against foot-and-mouth disease....

  10. Quantification and modification of the equilibrium dynamics and mechanics of a viral capsid lattice self-assembled as a protein nanocoating.

    Science.gov (United States)

    Valbuena, Alejandro; Mateu, Mauricio G

    2015-09-28

    Self-assembling, protein-based bidimensional lattices are being developed as functionalizable, highly ordered biocoatings for multiple applications in nanotechnology and nanomedicine. Unfortunately, protein assemblies are soft materials that may be too sensitive to mechanical disruption, and their intrinsic conformational dynamism may also influence their applicability. Thus, it may be critically important to characterize, understand and manipulate the mechanical features and dynamic behavior of protein assemblies in order to improve their suitability as nanomaterials. In this study, the capsid protein of the human immunodeficiency virus was induced to self-assemble as a continuous, single layered, ordered nanocoating onto an inorganic substrate. Atomic force microscopy (AFM) was used to quantify the mechanical behavior and the equilibrium dynamics ("breathing") of this virus-based, self-assembled protein lattice in close to physiological conditions. The results uniquely provided: (i) evidence that AFM can be used to directly visualize in real time and quantify slow breathing motions leading to dynamic disorder in protein nanocoatings and viral capsid lattices; (ii) characterization of the dynamics and mechanics of a viral capsid lattice and protein-based nanocoating, including flexibility, mechanical strength and remarkable self-repair capacity after mechanical damage; (iii) proof of principle that chemical additives can modify the dynamics and mechanics of a viral capsid lattice or protein-based nanocoating, and improve their applied potential by increasing their mechanical strength and elasticity. We discuss the implications for the development of mechanically resistant and compliant biocoatings precisely organized at the nanoscale, and of novel antiviral agents acting on fundamental physical properties of viruses.

  11. Construction of a novel coarse grain model for simulations of HIV capsid assembly to capture the backbone structure and inter-domain motions in solution

    Directory of Open Access Journals (Sweden)

    Xin Qiao

    2015-12-01

    Full Text Available We show the construction of a novel coarse grain model for simulations of HIV capsid assembly based on four structural models of HIV capsid proteins: isolated hexamer 3H47.pdb, tubular assembly 3J34.pdb, isolated pentamer 3P05.pdb and C-terminus dimer 2KOD.pdb. The data demonstrates the derivation of inter-domain motions from all atom Molecular Dynamics simulations and comparison with the motions derived from the analysis of solution NMR results defined in 2M8L.pdb. Snapshots from a representative Monte Carlo simulation with 128 dimeric subunit proteins based on 3J34.pdb are shown in addition to the quantitative analysis of its assembly pathway. Movies of the assembly process are compiled with snapshots of representative simulations of four structural models. The methods and data in this article were utilized in Qiao et al. (in press [1] to probe the mechanism of polymorphism and curvature control of HIV capsid assembly.

  12. A tetravalent dengue vaccine containing a mix of domain III-P64k and domain III-capsid proteins induces a protective response in mice.

    Science.gov (United States)

    Izquierdo, Alienys; García, Angélica; Lazo, Laura; Gil, Lázaro; Marcos, Ernesto; Alvarez, Mayling; Valdés, Iris; Hermida, Lisset; Guillén, Gerardo; Guzmán, María G

    2014-10-01

    Recombinant fusion proteins containing domain III of the dengue virus envelope protein fused to the P64k protein from Neisseria meningitidis and domain III of dengue virus type 2 (D2) fused to the capsid protein of this serotype were immunogenic and conferred protection in mice against lethal challenge, as reported previously. Combining the domain III-P64k recombinant proteins of dengue virus types 1, 3 and 4 (D1, D3, and D4) with the domain III-capsid protein from D2, we obtained a novel tetravalent formulation containing different antigens. Here, the IgG and neutralizing antibody response, the cellular immune response, and the protective capacity against lethal challenge in mice immunized with this tetravalent formulation were evaluated. The neutralizing antibody response obtained against D1, D2 and D3, together with the high levels of IFNγ secretion induced after stimulation with the four dengue serotypes, supports the strategy of using a new tetravalent formulation containing domain III of the envelope protein fused to the capsid protein of each dengue virus serotype.

  13. Identification of a major intermediate along the self-assembly pathway of an icosahedral viral capsid by using an analytical model of a spherical patch.

    Science.gov (United States)

    Law-Hine, Didier; Zeghal, Mehdi; Bressanelli, Stéphane; Constantin, Doru; Tresset, Guillaume

    2016-08-10

    Viruses are astonishing edifices in which hundreds of molecular building blocks fit into the final structure with pinpoint accuracy. We established a robust kinetic model accounting for the in vitro self-assembly of a capsid shell derived from an icosahedral plant virus by using time-resolved small-angle X-ray scattering (TR-SAXS) data at high spatiotemporal resolution. By implementing an analytical model of a spherical patch into a global fitting algorithm, we managed to identify a major intermediate species along the self-assembly pathway. With a series of data collected at different protein concentrations, we showed that free dimers self-assembled into a capsid through an intermediate resembling a half-capsid. The typical lifetime of the intermediate was a few seconds and yet the presence of so large an oligomer was not reported before. The progress in instrumental detection along with the development of powerful algorithms for data processing contribute to shedding light on nonequilibrium processes in highly complex systems such as viruses.

  14. Effect sizes in memory research.

    Science.gov (United States)

    Morris, Peter E; Fritz, Catherine O

    2013-01-01

    Effect sizes are omitted from many research articles and are rarely discussed. To help researchers evaluate effect sizes we collected values for the more commonly reported effect size measures (partial eta squared and d) from papers reporting memory research published in 2010. Cohen's small, medium, and large generic guideline values for d mapped neatly onto the observed distributions, but his values for partial eta squared were considerably lower than those observed in current memory research. We recommend interpreting effect sizes in the context of either domain-specific guideline values agreed for an area of research or the distribution of effect size estimates from published research in the domain. We provide cumulative frequency tables for both partial eta squared and d enabling authors to report and consider not only the absolute size of observed effects but also the percentage of reported effects that are larger or smaller than those observed.

  15. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    Energy Technology Data Exchange (ETDEWEB)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino (Rutgers); (LBNL); (Connecticut); (TJU); (MSU)

    2017-01-30

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid’) built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging’ is a DNA-dependent symmetrization of portal protein.

  16. Simulations of HIV capsid protein dimerization reveal the effect of chemistry and topography on the mechanism of hydrophobic protein association

    CERN Document Server

    Yu, Naiyin

    2015-01-01

    Recent work has shown that the hydrophobic protein surfaces in aqueous solution sit near a drying transition. The tendency for these surfaces to expel water from their vicinity leads to self assembly of macromolecular complexes. In this article we show with a realistic model for a biologically pertinent system how this phenomenon appears at the molecular level. We focus on the association of the C-terminal domain (CA-C) of the human immunodeficiency virus (HIV) capsid protein. By combining all-atom simulations with specialized sampling techniques we measure the water density distribution during the approach of two CA-C proteins as a function of separation and amino acid sequence in the interfacial region. The simulations demonstrate that CA-C protein-protein interactions sit at the edge of a dewetting transition and that this mesoscopic manifestation of the underlying liquid-vapor phase transition can be readily manipulated by biology or protein engineering to significantly affect association behavior. While ...

  17. Antigenic heterogeneity of capsid protein VP1 in foot-and-mouth disease virus (FMDV serotype Asia1

    Directory of Open Access Journals (Sweden)

    Alam SM

    2013-08-01

    Full Text Available SM Sabbir Alam,1 Ruhul Amin,1 Mohammed Ziaur Rahman,2 M Anwar Hossain,1 Munawar Sultana11Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Dhaka, BangladeshAbstract: Foot and mouth disease virus (FMDV, with its seven serotypes, is a highly contagious virus infecting mainly cloven-hoofed animals. The serotype Asia1 occurs mainly in Asian regions. An in-silico approach was taken to reveal the antigenic heterogeneities within the capsid protein VP1 of Asia1. A total of 47 VP1 sequences of Asia1 isolates from different countries of South Asian regions were selected, retrieved from database, and were aligned. The structure of VP1 protein was modeled using a homology modeling approach. Several antigenic sites were identified and mapped onto the three-dimensional protein structure. Variations at these antigenic sites were analyzed by calculating the protein variability index and finding mutation combinations. The data suggested that vaccine escape mutants have derived from only few mutations at several antigenic sites. Five antigenic peptides have been identified as the least variable epitopes, with just fewer amino acid substitutions. Only a limited number of serotype Asia1 antigenic variants were found to be circulated within the South Asian region. This emphasizes a possibility of formulating synthetic vaccines for controlling foot-and-mouth disease by Asia1 serotypes.Keywords: protein modeling, antigenic sites, sequence variation

  18. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  19. Phylogenetic distribution of the capsid assembly protein gene (g20 of cyanophages in paddy floodwaters in Northeast China.

    Directory of Open Access Journals (Sweden)

    Ruiyong Jing

    Full Text Available Numerous studies have revealed the high diversity of cyanophages in marine and freshwater environments, but little is currently known about the diversity of cyanophages in paddy fields, particularly in Northeast (NE China. To elucidate the genetic diversity of cyanophages in paddy floodwaters in NE China, viral capsid assembly protein gene (g20 sequences from five floodwater samples were amplified with the primers CPS1 and CPS8. Denaturing gradient gel electrophoresis (DGGE was applied to distinguish different g20 clones. In total, 54 clones differing in g20 nucleotide sequences were obtained in this study. Phylogenetic analysis showed that the distribution of g20 sequences in this study was different from that in Japanese paddy fields, and all the sequences were grouped into Clusters α, β, γ and ε. Within Clusters α and β, three new small clusters (PFW-VII∼-IX were identified. UniFrac analysis of g20 clone assemblages demonstrated that the community compositions of cyanophage varied among marine, lake and paddy field environments. In paddy floodwater, community compositions of cyanophage were also different between NE China and Japan.

  20. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  1. Avian hepatitis E virus identified in Russian chicken flocks exhibits high genetic divergence based on the ORF2 capsid gene.

    Science.gov (United States)

    Sprygin, A V; Nikonova, Z B; Zinyakov, N G

    2012-10-01

    A total of 79 liver samples from clinically sick and asymptomatic chickens were tested for avian hepatitis E virus (aHEV). Samples were received from 19 farms, five of which tested positive with primers targeting the ORF2 capsid gene. The phylogenetic analysis of a 242-base-pair fragment demonstrated that the Russian aHEV isolates share between 78.2 and 96.2% over the fragment sequenced, whereas the nucleotide sequence identities between the Russian isolates and the other representatives from GeneBank varied from 76.3 to 96.2%. The homology between the studied hepatitis E viruses and swine hepatitis E virus varied between 46.9 to 48.1%. The most divergent isolate aHEV16050 showed homology of 82.6% as compared with the strains in the dendrogram. The three positive hepatitis E virus samples (aHEV16279, aHEV16050 and aHEV18196) did not cluster with the European genotype 3 as expected due to the close location of Russia to Europe, nor did they with the other two genotypes, separating to a distinct branch. The aHEV16211 grouped together with European and Chinese isolates, and the aHEV18198 with Canadian ones.

  2. [Influence of Japanese enciphalitis virus capsid protein on the self-replicate ability of JEV replicon vectors].

    Science.gov (United States)

    Huang, Ying; Liu, Shan; Yang, Peng; Wang, Chao; Du, Yun; Sun, Zhiwei; Yu, Weiyuan

    2010-08-01

    To optimize a self-replicate Japanese enciphalitis virus (JEV) replicon, and to make it as an efficient vector to express the heterologous protein, we constructed three JEV replicons by PCR-based shortening the length of capsid genes. The vectors remained full or part of C gene, based on the JEV replicon pCTCJEV. Lac Z was selected as the reporter gene to verify the self-replicate ability of these DNA-based replicons. While transfected into the cell lines CME-4, which continuously expressing the JEV structure proteins C-prM-E, the JEV replicons pCMW-2M-1LACZ, pCMW-2M-3LACZ, which remained the first 23aa and 68aa of C protein, can express the reporter protein as the same level as pCMW-2M-LACZ with the full-length C protein. These results illustrated that the JEV replicon vector with 69-nt of the C gene can retain the self-replicate ability, and provide valuable tools to construct a possible vector for a long-lasting JEV RNA virus expression system.

  3. Induction of mucosal immunity by intranasal immunization with recombinant adenovirus expressing major epitopes of Porcine circovirus-2 capsid protein.

    Science.gov (United States)

    Liu, Yu-feng; Guo, Quan-hai; Chen, Lu; Zhao, Jun; Chang, Hong-tao; Wang, Xin-wei; Yang, Xia; Wang, Chuan-qing

    2013-07-15

    Porcine circovirus-2 (PCV-2) is primarily transmitted through mucosa, thus the mucosal immunity may constitute an essential feature of vaccination strategies against PCV-2 infection. Mucosal immunity elicited by recombinant replication-deficient adenovirus expressing the major epitopes of PCV-2 capsid protein (rAd/Cap/518) via intranasal (i.n.), intramuscular (i.m.) or oral routes in mice were evaluated. Immunization with rAd/Cap/518 via i.n. route induced higher titers of IgA in saliva, bronchoalveolar and intestinal lavage fluid compared with those immunized via i.m. route. The proportions of CD3+, CD3+CD4+ and CD3+CD8+ T cells were significantly increased in mice immunized with rAd/Cap/518 via i.n. route compared with the control group. Higher levels of IFN-γ were detected in the spleen and mesenteric lymph nodes of mice immunized with rAd/Cap/518 via i.n. route compared with other groups, yet IL-4 was not detected in any group. Real-time PCR analysis confirmed viral DNA loads in the i.m. or i.n. immunization group was lower than that seen in the rAd immunization. These results indicate that i.n. administration of rAd/Cap/518 can elicit humoral and Th1-type cellular protective immunity in both systemic and mucosal immune compartments in mice, representing a promising mucosal vaccine candidate against PCV-2.

  4. Functional and Structural Characterization of Novel Type of Linker Connecting Capsid and Nucleocapsid Protein Domains in Murine Leukemia Virus.

    Science.gov (United States)

    Doležal, Michal; Hadravová, Romana; Kožíšek, Milan; Bednárová, Lucie; Langerová, Hana; Ruml, Tomáš; Rumlová, Michaela

    2016-09-23

    The assembly of immature retroviral particles is initiated in the cytoplasm by the binding of the structural polyprotein precursor Gag with viral genomic RNA. The protein interactions necessary for assembly are mediated predominantly by the capsid (CA) and nucleocapsid (NC) domains, which have conserved structures. In contrast, the structural arrangement of the CA-NC connecting region differs between retroviral species. In HIV-1 and Rous sarcoma virus, this region forms a rod-like structure that separates the CA and NC domains, whereas in Mason-Pfizer monkey virus, this region is densely packed, thus holding the CA and NC domains in close proximity. Interestingly, the sequence connecting the CA and NC domains in gammaretroviruses, such as murine leukemia virus (MLV), is unique. The sequence is called a charged assembly helix (CAH) due to a high number of positively and negatively charged residues. Although both computational and deletion analyses suggested that the MLV CAH forms a helical conformation, no structural or biochemical data supporting this hypothesis have been published. Using an in vitro assembly assay, alanine scanning mutagenesis, and biophysical techniques (circular dichroism, NMR, microcalorimetry, and electrophoretic mobility shift assay), we have characterized the structure and function of the MLV CAH. We provide experimental evidence that the MLV CAH belongs to a group of charged, E(R/K)-rich, single α-helices. This is the first single α-helix motif identified in viral proteins.

  5. Effect of lipophilicity modulation on inhibition of human rhinovirus capsid binders.

    Science.gov (United States)

    Morley, Andrew; Tomkinson, Nicholas; Cook, Andrew; MacDonald, Catherine; Weaver, Richard; King, Sarah; Jenkinson, Lesley; Unitt, John; McCrae, Christopher; Phillips, Tim

    2011-10-15

    To try and generate broad spectrum human rhinovirus VP1 inhibitors with more attractive physicochemical, DMPK and safety profiles, we explored the current SAR of known VP1 compounds. This lead to the identification of specific structural regions where reduction in polarity can be achieved, so guiding chemistry to analogues with significantly superior profiles to previously reported inhibitors.

  6. Specific Phobias

    Science.gov (United States)

    ... Mental Health This information in Spanish ( en español ) Specific phobias Treatment More information on specific phobias A specific ... targeted psychotherapy. Return to top More information on Specific phobias Explore other publications and websites Phobias (Copyright © American ...

  7. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition.

    Science.gov (United States)

    Goh, Lucas Y H; Hobson-Peters, Jody; Prow, Natalie A; Baker, Kelly; Piyasena, Thisun B H; Taylor, Carmel T; Rana, Ashok; Hastie, Marcus L; Gorman, Jeff J; Hall, Roy A

    2015-06-08

    Chikungunya virus (CHIKV) is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs) previously generated towards the capsid protein (CP) of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1-35 and 140-210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP.

  8. The Chikungunya Virus Capsid Protein Contains Linear B Cell Epitopes in the N- and C-Terminal Regions that are Dependent on an Intact C-Terminus for Antibody Recognition

    Directory of Open Access Journals (Sweden)

    Lucas Y. H. Goh

    2015-06-01

    Full Text Available Chikungunya virus (CHIKV is an arthropod-borne agent that causes severe arthritic disease in humans and is considered a serious health threat in areas where competent mosquito vectors are prevalent. CHIKV has recently been responsible for several millions of cases of disease, involving over 40 countries. The recent re-emergence of CHIKV and its potential threat to human health has stimulated interest in better understanding of the biology and pathogenesis of the virus, and requirement for improved treatment, prevention and control measures. In this study, we mapped the binding sites of a panel of eleven monoclonal antibodies (mAbs previously generated towards the capsid protein (CP of CHIKV. Using N- and C-terminally truncated recombinant forms of the CHIKV CP, two putative binding regions, between residues 1–35 and 140–210, were identified. Competitive binding also revealed that five of the CP-specific mAbs recognized a series of overlapping epitopes in the latter domain. We also identified a smaller, N-terminally truncated product of native CP that may represent an alternative translation product of the CHIKV 26S RNA and have potential functional significance during CHIKV replication. Our data also provides evidence that the C-terminus of CP is required for authentic antigenic structure of CP. This study shows that these anti-CP mAbs will be valuable research tools for further investigating the structure and function of the CHIKV CP.

  9. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen.

    Science.gov (United States)

    Bluemel, Claudia; Hausmann, Susanne; Fluhr, Petra; Sriskandarajah, Mirnalini; Stallcup, William B; Baeuerle, Patrick A; Kufer, Peter

    2010-08-01

    Melanoma chondroitin sulfate proteoglycan (MCSP; also called CSPG4, NG2, HMW-MAA, MSK16, MCSPG, MEL-CSPG, or gp240) is a surface antigen frequently expressed on human melanoma cells, which is involved in cell adhesion, invasion and spreading, angiogenesis, complement inhibition, and signaling. MCSP has therefore been frequently selected as target antigen for development of antibody- and vaccine-based therapeutic approaches. We have here used a large panel of monoclonal antibodies against human MCSP for generation of single-chain MCSP/CD3-bispecific antibodies of the BiTE (for bispecific T cell engager) class. Despite similar binding affinity to MCSP, respective BiTE antibodies greatly differed in their potency of redirected lysis of CHO cells stably transfected with full-length human MCSP, or with various MCSP deletion mutants and fusion proteins. BiTE antibodies binding to the membrane proximal domain D3 of MCSP were more potent than those binding to more distal domains. This epitope distance effect was corroborated with EpCAM/CD3-bispecific BiTE antibody MT110 by testing various fusion proteins between MCSP and EpCAM as surface antigens. CHO cells expressing small surface target antigens were generally better lysed than those expressing larger target antigens, indicating that antigen size was also an important determinant for the potency of BiTE antibody. The present study for the first time relates the positioning of binding domains and size of surface antigens to the potency of target cell lysis by BiTE-redirected cytotoxic T cells. In case of the MCSP antigen, this provides the basis for selection of a maximally potent BiTE antibody candidate for development of a novel melanoma therapy.

  10. Size Matters: Individual Variation in Ectotherm Growth and Asymptotic Size

    Science.gov (United States)

    King, Richard B.

    2016-01-01

    Body size, and, by extension, growth has impacts on physiology, survival, attainment of sexual maturity, fecundity, generation time, and population dynamics, especially in ectotherm animals that often exhibit extensive growth following attainment of sexual maturity. Frequently, growth is analyzed at the population level, providing useful population mean growth parameters but ignoring individual variation that is also of ecological and evolutionary significance. Our long-term study of Lake Erie Watersnakes, Nerodia sipedon insularum, provides data sufficient for a detailed analysis of population and individual growth. We describe population mean growth separately for males and females based on size of known age individuals (847 captures of 769 males, 748 captures of 684 females) and annual growth increments of individuals of unknown age (1,152 males, 730 females). We characterize individual variation in asymptotic size based on repeated measurements of 69 males and 71 females that were each captured in five to nine different years. The most striking result of our analyses is that asymptotic size varies dramatically among individuals, ranging from 631–820 mm snout-vent length in males and from 835–1125 mm in females. Because female fecundity increases with increasing body size, we explore the impact of individual variation in asymptotic size on lifetime reproductive success using a range of realistic estimates of annual survival. When all females commence reproduction at the same age, lifetime reproductive success is greatest for females with greater asymptotic size regardless of annual survival. But when reproduction is delayed in females with greater asymptotic size, lifetime reproductive success is greatest for females with lower asymptotic size when annual survival is low. Possible causes of individual variation in asymptotic size, including individual- and cohort-specific variation in size at birth and early growth, warrant further investigation. PMID

  11. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Erica M. [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Colquhoun, David R.; Schwab, Kellogg J. [Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States); Halden, Rolf U., E-mail: halden@asu.edu [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States)

    2015-04-09

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  12. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly.

    Science.gov (United States)

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-08-25

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

  13. Bacterial Surface-Displayed GII.4 Human Norovirus Capsid Proteins Bound to HBGA-Like Molecules in Romaine Lettuce.

    Science.gov (United States)

    Wang, Ming; Rong, Shaofeng; Tian, Peng; Zhou, Yue; Guan, Shimin; Li, Qianqian; Wang, Dapeng

    2017-01-01

    Human Noroviruses (HuNoVs) are the main cause of non-bacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein on bacterial surface and used it as a new strategy to explore interaction between HuNoV protein and receptor candidates from romaine lettuce. The surface-displayed HuNoV proteins were confirmed on the surface of the transformed bacteria by an immunofluorescence assay. The distribution patterns of the surface-displayed HuNoV proteins in romaine lettuce were identified through a confocal immunofluorescence assay. The surface-displayed HuNoV proteins could be found in the stomata, and the surfaces of vein and leaf of romaine lettuce. The surface-displayed HuNoV proteins could be captured by an ELISA assay utilizing extract from leaf (LE) or vein (VE). The binding of the surface-displayed HuNoV proteins to LE or VE could be competitively blocked by histo-blood group antigens from human saliva. In addition, the binding of the surface-displayed HuNoV proteins to LE or VE could also be attenuated by heat denaturation of lettuce proteins, and abolished by oxidation of lettuce carbohydrates. The results indicated that histo-blood group antigen-like molecules in LE or VE were involved in the binding of the surface-displayed HuNoV proteins to romaine lettuce. All data demonstrated that the surface-displayed HuNoV proteins could be utilized in a new and simple system for investigation of the interaction between the HuNoVs and their candidate ligands.

  14. Phylogenetic analysis of field isolates of feline calcivirus (FCV) in Japan by sequencing part of its capsid gene.

    Science.gov (United States)

    Sato, Y; Ohe, K; Murakami, M; Fukuyama, M; Furuhata, K; Kishikawa, S; Suzuki, Y; Kiuchi, A; Hara, M; Ishikawa, Y; Taneno, A

    2002-04-01

    The molecular epidemiology of the infectious disease caused by feline calcivirus (FCV) in Japan was investigated by analysing the phylogenetic relationship among 21 Japanese field isolates, including the F4 strain, and 30 global isolates. Parts of the capsid gene (B-F) of the isolates were amplified by RT-PCR, and the amino acid sequences were compared with those from the global isolates. Thirty-seven and 14 out of a total of 51 isolates were clustered into two distinct genogroups, I and II respectively, by UPGMA and NJ analysis. Seven of the 21 Japanese isolates (33%) fell into group I together with 30 global isolates, while the other 14 Japanese isolates (67%) belonged to group II. The bootstrap repetition analysis of groups I and II formed by the NJ method gave a value of 99.00%. The 14 latter Japanese isolates were clearly separated from the isolates in group I, and they were different from any previously known FCV, forming a new genogroup, which implies that this lineage has been confined to Japan. Comparing the amino acid sequences shared by groups I and II, the amino acid at position 377 in B region was asparagine (Asn or Asp (NH2)) in group I, while it was lysine (Lys) in all the strains in group II. Similarly, the amino acid at position 539 in the F region was alanine (Ala) or proline (Pro) in group I, while it was valine (Val) in group II; glycine (Gly) at position 557 in group I was serine (Ser) in Group II; and phenylalanine (Phe) or leucine (Leu) at position 566 in genogroup I was tyrosine (Tyr) in group II.

  15. A nuclear fraction of turnip crinkle virus capsid protein is important for elicitation of the host resistance response.

    Science.gov (United States)

    Kang, Sung-Hwan; Qu, Feng; Morris, T Jack

    2015-12-01

    The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV.

  16. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application

    Directory of Open Access Journals (Sweden)

    Mei Shi

    2013-12-01

    Full Text Available The VPl gene of enterovirus 71 (EV71 was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16, A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25% from CA16infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD.

  17. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    Science.gov (United States)

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  18. Sequence analysis of the capsid and polimerase genes of different raspberry bushy dwarf virus (rbdv samples Análisis de la secuencia de nucleótidos del gen de la capside y la polimerasa entre diferentes aislamientos del virus motoso del enanismo de la frambuesa

    Directory of Open Access Journals (Sweden)

    Mayo M.

    1998-12-01

    Full Text Available This work was aimed to find sequence variability between capsid and polymerase gene sequences of five RBDV samples. Capsid and polymerase cDNAs were obtained by reverse transcription and PCR (RT-PCR of RNA extracted from plants inoculated with each of the respective isolated samples. The amplified products were cloned in pGEM-T and sequenced. The results showed that the capsid and polymerase sequences varied less than 1% among the isolated samples. These data suggested that capsid and polymerase transgenic sequences that protect against a particular RBDV sample might protect against the others.Este proyecto tuvo como objetivo determinar el grado de variabilidad existente al interior de las secuencias correspondientes al gen de la cápside y de la polimerasa entre cinco aislamientos de RBDV. Para este propósito, el DNA complementario (cDNA, correspondiente al gen de la cápside y de la polimerasa, fueron obtenidos por transcriptasa reversa y reacción en cadena de la polimerasa (RT-PCR, a partir de RNA de plantas inoculadas con cada uno de los respectivos aislamientos. El cDNA correspondiente al gen de la cápside y de la polimerasa, obtenido de cada aislamiento de RBDV, mediante esta metodología se clonó en el plásmido pGEM-T para ser secuenciado posteriormente. Los resultados mostraron que tanto el gen de la cápside, como el de la polimerasa, variaron menos del 1% entre estos aislamientos. Por lo tanto, se puede esperar que una secuencia transgénica de RBDV (de la cápside o de la polimerasa que proteja contra un aislamiento de RBDV, podría también proteger contra otras cepas de RBDV.

  19. Production of recombinant capsid protein of Macrobrachium rosenbergii nodavirus (r-MCP43) of giant freshwater prawn, M. rosenbergii (de Man) for immunological diagnostic methods.

    Science.gov (United States)

    Farook, M A; Madan, N; Taju, G; Majeed, S Abdul; Nambi, K S N; Raj, N Sundar; Vimal, S; Hameed, A S Sahul

    2014-08-01

    White tail disease (WTD) caused by Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) is a serious problem in prawn hatcheries. The gene for capsid protein of MrNV (MCP43) was cloned into pRSET B expression vector. The MCP43 protein was expressed as a protein with a 6-histidine tag in Escherichia coli GJ1158 with NaCl induction. This recombinant protein, which was used to raise the antiserum in rabbits, recognized capsid protein in different WTD-infected post-larvae and adult prawn. Various immunological methods such as Western blot, dot blot and ELISA techniques were employed to detect MrNV in infected samples using the antiserum raised against recombinant MCP43 of MrNV. The dot blot assay using anti-rMCP43 was found to be capable of detecting MrNV in WTD-infected post-larvae as early as at 24 h post-infection. The antiserum raised against r-MCP43 could detect the MrNV in the infected samples at the level of 100 pg of total protein. The capsid protein of MrNV estimated by ELISA using anti-rMCP43 and pure r-MCP43 as a standard was found to increase gradually during the course of infection from 24 h p.i. to moribund stage. The results of immunological diagnostic methods employed in this study were compared with that of RT-PCR to test the efficiency of antiserum raised against r-MCP43 for the detection of MrNV. The Western blot, dot blot and ELISA detected all MrNV-positive coded samples as detected by RT-PCR.

  20. Systematization of the technical and economic sizing of isolated photovoltaic systems through specific software; Sistematizacao do dimensionamento tecnico e economico de sistemas fotovoltaicos isolados por meio de programa computacional

    Energy Technology Data Exchange (ETDEWEB)

    Marini, Jose A.; Rossi, Luiz A. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Agricola

    2005-01-15

    One of the main referring subjects to the solar energy is how to compare it economically with other sources of energy, as alternative as conventional energy (like electric grid). The purpose of this work was to develop a software which congregates the technical and economic main data to identify, through methods of micro economic analysis, the commercial viability in the sizing of photovoltaic systems, besides considering the benefits proceeding from the proper energy generation. Considering the period of useful life of the components of the generation system of photovoltaic electricity, the costs of the energy proceeding from the conventional grid had been identified. For the comparison of the conventional sources, electric grid and diesel generation, three scenes of costs of photovoltaic panels and two for the factor of availability of diesel generation had been used. The results have shown that if the cost of the panels is low and the place of installation is more distant of the electric grid, the photovoltaic system becomes the best option. (author)

  1. Preparation and Characterization of Three Monoclonal Antibodies against HIV-1 p24 Capsid Protein

    Institute of Scientific and Technical Information of China (English)

    Guangjie Liu; Jianping Wang; Jianchun Xiao; Zhiwei Zhao; Yongtang Zheng

    2007-01-01

    HIV-1 p24 detection provides a means to aid the early diagnosis of HIV-1 infection, track the progression of disease and assess the efficacy of antiretroviral therapy. In the present study, three monoclonal antibodies (mAbs) p3JB9,p5F1 and p6F4 against HIV-1 p24 were generated. All mAbs could detect p24 of HIV-1ⅢB, HIV-1Ada-M, HIV-174v mAbs p5F1 and p6F4 could detect HIV-1KM018, while p3JB9 could not. Three mAbs did not react with HIV-2ROD,HIV-2CBL-20 and SIVagmTyo-1. The recognized epitope of p5F1 was located on the Gag amino acid region DCKTILKALGPAATLEEMMTAC. The p5F1 was used to establish a modified sandwich ELISA with rabbit anti-p24 serum and showed good specificity and high sensitivity, which has been used to measure HIV-1 p24 antigen levels in research.

  2. Production of a recombinant capsid protein VP1 from a newly described polyomavirus (RacPyV for downstream use in virus characterization

    Directory of Open Access Journals (Sweden)

    Molly E. Church

    2016-06-01

    Full Text Available Here we describe the methods for production of a recombinant viral capsid protein and subsequent use in an indirect enzyme linked immunosorbent assay (ELISA, and for use in production of a rabbit polyclonal antibody. These reagents were utilized in development and optimization of an ELISA, which established the extent of exposure of free ranging raccoons to a newly described polyomavirus (RacPyV [1]. Production of a polyclonal antibody has allowed for further characterization of RacPyV, including immunohistochemistry and immunocytochemistry techniques, in order to answer questions about pathogenesis of this virus.

  3. Hail Size Distribution Mapping

    Science.gov (United States)

    2008-01-01

    A 3-D weather radar visualization software program was developed and implemented as part of an experimental Launch Pad 39 Hail Monitor System. 3DRadPlot, a radar plotting program, is one of several software modules that form building blocks of the hail data processing and analysis system (the complete software processing system under development). The spatial and temporal mapping algorithms were originally developed through research at the University of Central Florida, funded by NASA s Tropical Rainfall Measurement Mission (TRMM), where the goal was to merge National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD) volume reflectivity data with drop size distribution data acquired from a cluster of raindrop disdrometers. In this current work, we adapted these algorithms to process data from a cluster of hail disdrometers positioned around Launch Pads 39A or 39B, along with the corresponding NWS radar data. Radar data from all NWS NEXRAD sites is archived at the National Climatic Data Center (NCDC). That data can be readily accessed at . 3DRadPlot plots Level III reflectivity data at four scan elevations (this software is available at Open Channel Software, ). By using spatial and temporal interpolation/extrapolation based on hydrometeor fall dynamics, we can merge the hail disdrometer array data coupled with local Weather Surveillance Radar-1988, Doppler (WSR-88D) radial velocity and reflectivity data into a 4-D (3-D space and time) picture of hail size distributions. Hail flux maps can then be generated and used for damage prediction and assessment over specific surfaces corresponding to structures within the disdrometer array volume. Immediately following a hail storm, specific damage areas and degree of damage can be identified for inspection crews.

  4. Particle sizes from sectional data

    DEFF Research Database (Denmark)

    Pawlas, Zbynek; Nyengaard, Jens Randel; Jensen, Eva Bjørn Vedel

    2009-01-01

    We propose a new statistical method for obtaining information about particle size distributions from sectional data without specific assumptions about particle shape. The method utilizes recent advances in local stereology. We show how to estimate separately from sectional data the variance due t...

  5. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall.

    Directory of Open Access Journals (Sweden)

    Tapani Hovi

    Full Text Available Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2 were compared to those of type 1 and type 3 wild poliovirus (WPV lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv bias and strikingly lower Ts/Tv rate ratios at the 2(nd codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd codon position was also found in the large set of VP1 sequences of Nigerian circulating (cVDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.

  6. Nuclear export and import of human hepatitis B virus capsid protein and particles.

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Li

    Full Text Available It remains unclear what determines the subcellular localization of hepatitis B virus (HBV core protein (HBc and particles. To address this fundamental issue, we have identified four distinct HBc localization signals in the arginine rich domain (ARD of HBc, using immunofluorescence confocal microscopy and fractionation/Western blot analysis. ARD consists of four tight clustering arginine-rich subdomains. ARD-I and ARD-III are associated with two co-dependent nuclear localization signals (NLS, while ARD-II and ARD-IV behave like two independent nuclear export signals (NES. This conclusion is based on five independent lines of experimental evidence: i Using an HBV replication system in hepatoma cells, we demonstrated in a double-blind manner that only the HBc of mutant ARD-II+IV, among a total of 15 ARD mutants, can predominantly localize to the nucleus. ii These results were confirmed using a chimera reporter system by placing mutant or wild type HBc trafficking signals in the heterologous context of SV40 large T antigen (LT. iii By a heterokaryon or homokaryon analysis, the fusion protein of SV40 LT-HBc ARD appeared to transport from nuclei of transfected donor cells to nuclei of recipient cells, suggesting the existence of an NES in HBc ARD. This putative NES is leptomycin B resistant. iv We demonstrated by co-immunoprecipitation that HBc ARD can physically interact with a cellular factor TAP/NXF1 (Tip-associated protein/nuclear export factor-1, which is known to be important for nuclear export of mRNA and proteins. Treatment with a TAP-specific siRNA strikingly shifted cytoplasmic HBc to nucleus, and led to a near 7-fold reduction of viral replication, and a near 10-fold reduction in HBsAg secretion. v HBc of mutant ARD-II+IV was accumulated predominantly in the nucleus in a mouse model by hydrodynamic delivery. In addition to the revised map of NLS, our results suggest that HBc could shuttle rapidly between nucleus and cytoplasm via a novel

  7. Sistematização do dimensionamento técnico e econômico de sistemas fotovoltaicos isolados por meio de programa computacional Systematization of the technical and economic sizing of isolated photovoltaic systems through specific software

    Directory of Open Access Journals (Sweden)

    José A. Marini

    2005-04-01

    Full Text Available Uma das principais questões referentes à energia solar é como compará-la, técnica e economicamente, com outras fontes de energia, tanto alternativas quanto com as convencionais (como a rede elétrica. O propósito deste trabalho foi desenvolver um programa computacional que reúne os principais dados técnicos e econômicos, para identificar, por meio de métodos de análise microeconômica, a viabilidade comercial no dimensionamento de sistemas fotovoltaicos, além de considerar os benefícios provenientes da própria geração energética. Na análise microeconômica da energia solar, foram identificados os custos da energia proveniente da rede convencional durante o período de vida útil dos componentes do sistema gerador de eletricidade fotovoltaica, pelo estudo dos custos de investimentos iniciais e manutenção do sistema. Para comparação com as fontes convencionais - rede elétrica e grupo diesel - foram usados três cenários de custos de painéis fotovoltaicos e dois para o fator de disponibilidade do grupo diesel. Pelos resultados, verifica-se que, quanto mais baixo o custo dos painéis e mais distante o local situar-se da rede elétrica, o sistema fotovoltaico torna-se a opção mais vantajosa.One of the main referring subjects to the solar energy is how to compare it economically with other sources of energy, as much alternatives as with conventionals (like the electric grid. The purpose of this work was to develop a software which congregates the technical and economic main data to identify, through methods of microeconomic analysis, the commercial viability in the sizing of photovoltaic systems, besides considering the benefits proceeding from the proper energy generation. Considering the period of useful life of the components of the generation system of photovoltaic electricity, the costs of the energy proceeding from the conventional grid had been identified. For the comparison of the conventional sources, electric grid

  8. Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette;

    2013-01-01

    the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction...... is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines....

  9. On Effect Size

    Science.gov (United States)

    Kelley, Ken; Preacher, Kristopher J.

    2012-01-01

    The call for researchers to report and interpret effect sizes and their corresponding confidence intervals has never been stronger. However, there is confusion in the literature on the definition of effect size, and consequently the term is used inconsistently. We propose a definition for effect size, discuss 3 facets of effect size (dimension,…

  10. Crystallization and X-ray analysis of the T = 4 particle of hepatitis B capsid protein with an N-terminal extension

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wen Siang [Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); McNae, Iain W.; Ho, Kok Lian; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk [Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR,Scotland (United Kingdom); Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2007-08-01

    Hepatitis B virus capsids have significant potential as carriers for immunogenic peptides. The crystal structure of the T = 4 particle of hepatitis B core protein containing an N-terminal extension reveals that the fusion peptide is exposed on the exterior of the particle. Hepatitis B core (HBc) particles have been extensively exploited as carriers for foreign immunological epitopes in the development of multicomponent vaccines and diagnostic reagents. Crystals of the T = 4 HBc particle were grown in PEG 20 000, ammonium sulfate and various types of alcohols. A temperature jump from 277 or 283 to 290 K was found to enhance crystal growth. A crystal grown using MPD as a cryoprotectant diffracted X-rays to 7.7 Å resolution and data were collected to 99.6% completeness at 8.9 Å. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 352.3, b = 465.5, c = 645.0 Å. The electron-density map reveals a protrusion that is consistent with the N-terminus extending out from the surface of the capsid. The structure presented here supports the idea that N-terminal insertions can be exploited in the development of diagnostic reagents, multicomponent vaccines and delivery vehicles into mammalian cells.

  11. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Science.gov (United States)

    Maree, Francois F; Blignaut, Belinda; de Beer, Tjaart A P; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  12. Efficient production of HIV-1 virus-like particles from a mammalian expression vector requires the N-terminal capsid domain.

    Directory of Open Access Journals (Sweden)

    Pascal Jalaguier

    Full Text Available It is now well accepted that the structural protein Pr55(Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs. This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s is essential to the production of VLPs when Pr55(Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.

  13. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice.

    Science.gov (United States)

    Valdés, Iris; Bernardo, Lidice; Gil, Lázaro; Pavón, Alekis; Lazo, Laura; López, Carlos; Romero, Yaremis; Menendez, Ivón; Falcón, Viviana; Betancourt, Lázaro; Martín, Jorge; Chinea, Glay; Silva, Ricardo; Guzmán, María G; Guillén, Gerardo; Hermida, Lisset

    2009-11-25

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-gamma secretion and protection experiments, mediated by CD4(+) and CD8(+) cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  14. Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability

    Science.gov (United States)

    Maree, Francois F.; Blignaut, Belinda; de Beer, Tjaart A. P.; Rieder, Elizabeth

    2013-01-01

    Foot-and-mouth disease virus (FMDV) initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces. PMID:23717387

  15. Analysis of SAT type foot-and-mouth disease virus capsid proteins and the identification of putative amino acid residues affecting virus stability.

    Directory of Open Access Journals (Sweden)

    Francois F Maree

    Full Text Available Foot-and-mouth disease virus (FMDV initiates infection by adhering to integrin receptors on target cells, followed by cell entry and disassembly of the virion through acidification within endosomes. Mild heating of the virions also leads to irreversible dissociation into pentamers, a characteristic linked to reduced vaccine efficacy. In this study, the structural stability of intra- and inter-serotype chimeric SAT2 and SAT3 virus particles to various conditions including low pH, mild temperatures or high ionic strength, was compared. Our results demonstrated that while both the SAT2 and SAT3 infectious capsids displayed different sensitivities in a series of low pH buffers, their stability profiles were comparable at high temperatures or high ionic strength conditions. Recombinant vSAT2 and intra-serotype chimeric viruses were used to map the amino acid differences in the capsid proteins of viruses with disparate low pH stabilities. Four His residues at the inter-pentamer interface were identified that change protonation states at pH 6.0. Of these, the H145 of VP3 appears to be involved in interactions with A141 in VP3 and K63 in VP2, and may be involved in orientating H142 of VP3 for interaction at the inter-pentamer interfaces.

  16. Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge.

    Science.gov (United States)

    Alberca, Berta; Bachanek-Bankowska, Katarzyna; Cabana, Marta; Calvo-Pinilla, Eva; Viaplana, Elisenda; Frost, Lorraine; Gubbins, Simon; Urniza, Alicia; Mertens, Peter; Castillo-Olivares, Javier

    2014-06-17

    African horse sickness virus (AHSV) is an arthropod-borne pathogen that infects all species of equidae and causes high mortality in horses. Previously, a recombinant modified vaccinia Ankara (MVA) virus expressing the protein VP2 of AHSV serotype 4 was shown to induce virus neutralising antibodies in horses and protected interferon alpha receptor gene knock-out mice (IFNAR -/-) against virulent AHSV challenge. This study builds on the previous work, examining the protective efficacy of MVA-VP2 vaccination in the natural host of AHSV infection. A study group of 4 horses was vaccinated twice with a recombinant MVA virus expressing the major capsid protein (VP2) of AHSV serotype 9. Vaccinated animals and a control group of unvaccinated horses were then challenged with a virulent strain of AHSV-9. The vaccinated animals were completely protected against clinical disease and also against viraemia as measured by standard end-point dilution assays. In contrast, all control horses presented viraemia after challenge and succumbed to the infection. These results demonstrate the potential of recombinant MVA viruses expressing the outer capsid VP2 of AHSV as a protective vaccine against AHSV infection in the field.

  17. Optimum size in grid soil sampling for variable rate application in site-specific management Tamanho ideal em grades de amostragem de solos para aplicação em taxa variável em manejo localizado

    Directory of Open Access Journals (Sweden)

    Marcos Rafael Nanni

    2011-06-01

    Full Text Available The importance of understanding spatial variability of soils is connected to crop management planning. This understanding makes it possible to treat soil not as a uniform, but a variable entity, and it enables site-specific management to increase production efficiency, which is the target of precision agriculture. Questions remain as the optimum soil sampling interval needed to make site-specific fertilizer recommendations in Brazil. The objectives of this study were: i to evaluate the spatial variability of the main attributes that influence fertilization recommendations, using georeferenced soil samples arranged in grid patterns of different resolutions; ii to compare the spatial maps generated with those obtained with the standard sampling of 1 sample ha-1, in order to verify the appropriateness of the spatial resolution. The attributes evaluated were phosphorus (P, potassium (K, organic matter (OM, base saturation (V% and clay. Soil samples were collected in a 100 × 100 m georeferenced grid. Thinning was performed in order to create a grid with one sample every 2.07, 2.88, 3.75 and 7.20 ha. Geostatistical techniques, such as semivariogram and interpolation using kriging, were used to analyze the attributes at the different grid resolutions. This analysis was performed with the Vesper software package. The maps created by this method were compared using the kappa statistics. Additionally, correlation graphs were drawn by plotting the observed values against the estimated values using cross-validation. P, K and V%, a finer sampling resolution than the one using 1 sample ha-1 is required, while for OM and clay coarser resolutions of one sample every two and three hectares, respectively, may be acceptable.A importância de compreender a variabilidade espacial do solo está conectada ao planejamento do manejo das culturas. Este entendimento faz com que seja possível tratar o solo não como uma entidade uniforme, mas variável, e permite o

  18. Species-specific impact of the autophagy machinery on Chikungunya virus infection.

    Science.gov (United States)

    Judith, Delphine; Mostowy, Serge; Bourai, Mehdi; Gangneux, Nicolas; Lelek, Mickaël; Lucas-Hourani, Marianne; Cayet, Nadège; Jacob, Yves; Prévost, Marie-Christine; Pierre, Philippe; Tangy, Frédéric; Zimmer, Christophe; Vidalain, Pierre-Olivier; Couderc, Thérèse; Lecuit, Marc

    2013-06-01

    Chikungunya virus (CHIKV) is a recently re-emerged arbovirus that triggers autophagy. Here, we show that CHIKV interacts with components of the autophagy machinery during its replication cycle, inducing a cytoprotective effect. The autophagy receptor p62 protects cells from death by binding ubiquitinated capsid and targeting it to autophagolysosomes. By contrast, the human autophagy receptor NDP52--but not its mouse orthologue--interacts with the non-structural protein nsP2, thereby promoting viral replication. These results highlight the distinct roles of p62 and NDP52 in viral infection, and identify NDP52 as a cellular factor that accounts for CHIKV species specificity.

  19. Specificity of specific language impairment

    NARCIS (Netherlands)

    GoorhuisBrouwer, SM; WijnbergWilliams, BJ

    1996-01-01

    In children with specific language impairment (SLI) their problems are supposed to be specifically restricted to language. However, both on a theoretical basis as well as on a practical basis it is often difficult to make a sharp distinction between specific and nonspecific language disorders. In a

  20. Experimental determination of size distributions: analyzing proper sample sizes

    Science.gov (United States)

    Buffo, A.; Alopaeus, V.

    2016-04-01

    The measurement of various particle size distributions is a crucial aspect for many applications in the process industry. Size distribution is often related to the final product quality, as in crystallization or polymerization. In other cases it is related to the correct evaluation of heat and mass transfer, as well as reaction rates, depending on the interfacial area between the different phases or to the assessment of yield stresses of polycrystalline metals/alloys samples. The experimental determination of such distributions often involves laborious sampling procedures and the statistical significance of the outcome is rarely investigated. In this work, we propose a novel rigorous tool, based on inferential statistics, to determine the number of samples needed to obtain reliable measurements of size distribution, according to specific requirements defined a priori. Such methodology can be adopted regardless of the measurement technique used.

  1. Size and Political Participation

    DEFF Research Database (Denmark)

    Lassen, David Dreyer; Serritzlew, Søren

    This paper uses a novel research design to re-examine the causal effect of jurisdiction size on political participation. Two waves of municipal consolidation in Denmark, in 1970 and in 2005, provide exogenous variation in jurisdiction size.......This paper uses a novel research design to re-examine the causal effect of jurisdiction size on political participation. Two waves of municipal consolidation in Denmark, in 1970 and in 2005, provide exogenous variation in jurisdiction size....

  2. Genetic identification of avian hepatitis E virus (HEV) from healthy chicken flocks and characterization of the capsid gene of 14 avian HEV isolates from chickens with hepatitis-splenomegaly syndrome in different geographical regions of the United States.

    Science.gov (United States)

    Sun, Z F; Larsen, C T; Dunlop, A; Huang, F F; Pierson, F W; Toth, T E; Meng, X-J

    2004-03-01

    Avian hepatitis E virus (HEV), a novel virus identified from chickens with hepatitis-splenomegaly (HS) syndrome, is genetically and antigenically related to human HEV. Recently, it was found that avian HEV antibody is also prevalent in healthy chickens. A prospective study was done on a known seropositive but healthy chicken farm to identify avian HEV isolates from healthy chickens. Fourteen chickens were randomly selected, tagged and monitored under natural conditions for 19 weeks. All 14 chickens were seronegative at the beginning of the study at 12 weeks of age. By 21 weeks of age, all 14 chickens had seroconverted to avian HEV antibody. None of the chickens had any sign of HS syndrome. Partial helicase gene and capsid gene sequences of avian HEV isolates recovered from a healthy chicken were determined and found to share 75-97 % nucleotide sequence identity with the corresponding regions of avian HEV isolates from chickens with HS syndrome. Thus far, only one strain of avian HEV from a chicken with HS syndrome has been genetically characterized for its capsid gene, therefore the capsid gene region of an additional 14 isolates from chickens with HS syndrome were also characterized. The capsid genes of avian HEV isolates from chickens with HS syndrome were found to be heterogeneic, sharing 76-100 % nucleotide sequence identity with each other. This study indicates that avian HEV is enzootic in chicken flocks and spreads subclinically among chickens in the United States and that the virus is heterogeneic.

  3. Sinorhizobium meliloti Phage ΦM9 Defines a New Group of T4 Superfamily Phages with Unusual Genomic Features but a Common T=16 Capsid

    Science.gov (United States)

    Johnson, Matthew C.; Tatum, Kelsey B.; Lynn, Jason S.; Brewer, Tess E.; Lu, Stephen; Washburn, Brian K.

    2015-01-01

    ABSTRACT Relatively little is known about the phages that infect agriculturally important nitrogen-fixing rhizobial bacteria. Here we report the genome and cryo-electron microscopy structure of the Sinorhizobium meliloti-infecting T4 superfamily phage ΦM9. This phage and its close relative Rhizobium phage vB_RleM_P10VF define a new group of T4 superfamily phages. These phages are distinctly different from the recently characterized cyanophage-like S. meliloti phages of the ΦM12 group. Structurally, ΦM9 has a T=16 capsid formed from repeating units of an extended gp23-like subunit that assemble through interactions between one subunit and the adjacent E-loop insertion domain. Though genetically very distant from the cyanophages, the ΦM9 capsid closely resembles that of the T4 superfamily cyanophage Syn9. ΦM9 also has the same T=16 capsid architecture as the very distant phage SPO1 and the herpesviruses. Despite their overall lack of similarity at the genomic and structural levels, ΦM9 and S. meliloti phage ΦM12 have a small number of open reading frames in common that appear to encode structural proteins involved in interaction with the host and which may have been acquired by horizontal transfer. These proteins are predicted to encode tail baseplate proteins, tail fibers, tail fiber assembly proteins, and glycanases that cleave host exopolysaccharide. IMPORTANCE Despite recent advances in the phylogenetic and structural characterization of bacteriophages, only a small number of phages of plant-symbiotic nitrogen-fixing soil bacteria have been studied at the molecular level. The effects of phage predation upon beneficial bacteria that promote plant growth remain poorly characterized. First steps in understanding these soil bacterium-phage dynamics are genetic, molecular, and structural characterizations of these groups of phages. The T4 superfamily phages are among the most complex phages; they have large genomes packaged within an icosahedral head and a long

  4. Soil fertility controls the size-specific distribution of eukaryotes.

    Science.gov (United States)

    Mulder, Christian

    2010-05-01

    The large range of body-mass values of soil organisms provides a tool to assess the organization of soil ecological communities. Relationships between log-transformed body mass M and log-transformed numerical abundance N of all eukaryotes occurring under organic pastures, mature grasslands, and seminatural heathlands in the Netherlands were investigated. The observed allometry of (M,N) assemblages of below-ground communities strongly reflects the availability of primary macronutrients and essential micronutrients. This log-linear model describes the continuous variation in the allometric slope of animals and fungi along an increasing soil fertility gradient. The aggregate contribution of small invertebrates (M soil explains 72% of these shifts but the nitrogen concentration explains only 36%, with copper and zinc as intermediate predictors (59% and 49%, respectively). Empirical evidence supports common responses of invertebrates to the rates of resource supply and, possibly, to the above-ground primary production of ecosystems.

  5. Strong Attractions with Controllable Size between Hydrophilic Inorganic Macroanions and Reversible Supramolecular Formations

    Science.gov (United States)

    Kistler, Melissa; Bhatt, Anish; Liu, Guang; Liu, Tianbo

    2007-03-01

    The polyoxometalate (POM) hydrophilic macroionic solutions, offer a direct connection between traditional fields of simple inorganic ions, colloidal suspensions, polyelectrolytes, particularly proteins and DNAs. Many types of POM macroanions are highly soluble, but undergo reversible self-assembly to form uniform, stable, soft, single-layer vesicle-like ``blackberry'' structures containing >1000 individual POMs in dilute solutions. Blackberry structures represent a new state of soluble inorganic ions. The driving forces of the POM self-assembly are unlike those of surfactant micelles or colloid aggregates. The POM driving forces are most likely counterion-mediated attraction (like-charge attraction). Blackberry size is controlled by the solvent quality, or the charge density of macroions. Blackberry structures may be analogous to virus shell structures formed by capsid proteins. Unexpected phenomena have been observed in the novel POM systems. References: JACS. 2005, 127, 6942; 2003, 125, 312; 2002, 124, 10942. Nature, 2003, 426, 59. J. Clust. Sci, 2006, 17, 427.

  6. A cucumber mosaic virus based expression system for the production of porcine circovirus specific vaccines.

    Directory of Open Access Journals (Sweden)

    Akos Gellért

    Full Text Available Potential porcine circovirus type 2 (PCV2 capsid protein epitopes, suitable for expression on the surface of cucumber mosaic virus (CMV particles were determined by a thorough analysis of the predicted PCV capsid protein structure. The ab initio protein structure prediction was carried out with fold recognition and threading methods. The putative PCV epitopes were selected on the basis of PCV virion models and integrated into the plant virus coat protein, after amino acid position 131. The recombinants were tested for infectivity and stability on different Nicotiana species and stable recombinant virus particles were purified. The particles were tested for their ability to bind to PCV induced porcine antibodies and used for specific antibody induction in mice and pigs. The results showed that PCV epitopes expressed on the CMV surface were recognized by the porcine antibodies and they were also able to induce PCV specific antibody response. Challenge experiment with PCV2 carried out in immunized pigs showed partial protection against the infection. Based on these results it was concluded that specific antiviral vaccine production for the given pathogen was feasible, offering an inexpensive way for the mass production of such vaccines.

  7. [How to reach the right size?].

    Science.gov (United States)

    Roisin-Bouffay, Céline; Gomer, Richard H

    2004-02-01

    Very little is known about how the size of an organism, or a specific tissue in an organism, is regulated. Coordinating and regulating the size of tissues is necessary for proper development, wound healing, and regeneration. Defects in a tissue-size regulation mechanism could lead to birth defects or cancer. In addition, there is a strong psychological aspect to some areas of tissue size regulation, as many cosmetic surgery procedures involve enlarging or reducing the size of some body parts. This review addresses the little bit that we know about size regulation. A key concept is that the size of a tissue is the size of the component cells multiplied by the number of those cells. This breaks the size regulation problem down to two parts. The size of cells can be regulated by nutrient sensing and secreted factors, and may have an upper limit due to an upper limit of a genome's ability to produce mRNA's and thus proteins. To regulate the number of cells in a tissue, there are several simple theoretical models involving secreted factors. In one case, the cells can secrete a characteristic factor and the concentration of the factor will increase with the number of cells secreting it, allowing the tissue to sense its own size. In another scenario, a specific cell secretes a limited amount of a factor necessary for the survival of a target population, and this then limits the size of the target population. There are currently several examples of secreted factors that regulate tissue size, including myostatin, which regulates the amount of muscles, leptin, which regulates adipose tissue, and growth hormone and insulin-like growth factors which regulate total mass. In addition, there are factors such as the found in Dictyostelium that regulate the breakup of a tissue into sub-groups. A better understanding of how these factors regulate size will hopefully allow us to develop new therapeutic procedures to treat birth defects or diseases that affect tissue size.

  8. HIV-1 evades innate immune recognition through specific cofactor recruitment

    Science.gov (United States)

    Rasaiyaah, Jane; Tan, Choon Ping; Fletcher, Adam J.; Price, Amanda J.; Blondeau, Caroline; Hilditch, Laura; Jacques, David A.; Selwood, David L.; James, Leo C.; Noursadeghi, Mahdad; Towers, Greg J.

    2013-11-01

    Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.

  9. The Oligomerization Domain of VP3, the Scaffolding Protein of Infectious Bursal Disease Virus, Plays a Critical Role in Capsid Assembly

    Science.gov (United States)

    Maraver, Antonio; Oña, Ana; Abaitua, Fernando; González, Dolores; Clemente, Roberto; Ruiz-Díaz, Jose A.; Castón, Jose R.; Pazos, Florencio; Rodriguez, Jose F.

    2003-01-01

    Infectious bursal disease virus (IBDV) capsids are formed by a single protein layer containing three polypeptides, pVP2, VP2, and VP3. Here, we show that the VP3 protein synthesized in insect cells, either after expression of the complete polyprotein or from a VP3 gene construct, is proteolytically degraded, leading to the accumulation of product lacking the 13 C-terminal residues. This finding led to identification of the VP3 oligomerization domain within a 24-amino-acid stretch near the C-terminal end of the polypeptide, partially overlapping the VP1 binding domain. Inactivation of the VP3 oligomerization domain, by either proteolysis or deletion of the polyprotein gene, abolishes viruslike particle formation. Formation of VP3-VP1 complexes in cells infected with a dual recombinant baculovirus simultaneously expressing the polyprotein and VP1 prevented VP3 proteolysis and led to efficient virus-like particle formation in insect cells. PMID:12743301

  10. Structure of the HIV-1 Full-Length Capsid Protein in a Conformationally Trapped Unassembled State Induced by Small-Molecule Binding

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shoucheng; Betts, Laurie; Yang, Ruifeng; Shi, Haibin; Concel, Jason; Ahn, Jinwoo; Aiken, Christopher; Zhang, Peijun; Yeh, Joanne I. (Pitt); (Vanderbilt); (UNC)

    2012-11-26

    The capsid (CA) protein plays crucial roles in HIV infection and replication, essential to viral maturation. The absence of high-resolution structural data on unassembled CA hinders the development of antivirals effective in inhibiting assembly. Unlike enzymes that have targetable, functional substrate-binding sites, the CA does not have a known site that affects catalytic or other innate activity, which can be more readily targeted in drug development efforts. We report the crystal structure of the HIV-1 CA, revealing the domain organization in the context of the wild-type full-length (FL) unassembled CA. The FL CA adopts an antiparallel dimer configuration, exhibiting a domain organization sterically incompatible with capsid assembly. A small compound, generated in situ during crystallization, is bound tightly at a hinge site ('H site'), indicating that binding at this interdomain region stabilizes the ADP conformation. Electron microscopy studies on nascent crystals reveal both dimeric and hexameric lattices coexisting within a single condition, in agreement with the interconvertibility of oligomeric forms and supporting the feasibility of promoting assembly-incompetent dimeric states. Solution characterization in the presence of the H-site ligand shows predominantly unassembled dimeric CA, even under conditions that promote assembly. Our structure elucidation of the HIV-1 FL CA and characterization of a potential allosteric binding site provides three-dimensional views of an assembly-defective conformation, a state targeted in, and thus directly relevant to, inhibitor development. Based on our findings, we propose an unprecedented means of preventing CA assembly, by 'conformationally trapping' CA in assembly-incompetent conformational states induced by H-site binding.

  11. Human hepatitis B virus production in avian cells is characterized by enhanced RNA splicing and the presence of capsids containing shortened genomes.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Experimental studies on hepatitis B virus (HBV replication are commonly done with human hepatoma cells to reflect the natural species and tissue tropism of the virus. However, HBV can also replicate, upon transfection of virus coding plasmids, in cells of other species. In such cross-species transfection experiments with chicken LMH hepatoma cells, we previously observed the formation of HBV genomes with aberrant electrophoretic mobility, in addition to the those DNA species commonly seen in human HepG2 hepatoma cells. Here, we report that these aberrant DNA forms are mainly due to excessive splicing of HBV pregenomic RNA and the abundant synthesis of spliced DNA products, equivalent to those also made in human cells, yet at much lower level. Mutation of the common splice acceptor site abolished splicing and in turn enhanced production of DNA from full-length pgRNA in transfected LMH cells. The absence of splicing made other DNA molecules visible, that were shortened due to the lack of sequences in the core protein coding region. Furthermore, there was nearly full-length DNA in the cytoplasm of LMH cells that was not protected in viral capsids. Remarkably, we have previously observed similar shortened genomes and non-protected viral DNA in human HepG2 cells, yet exclusively in the nucleus where uncoating and final release of viral genomes occurs. Hence, two effects reflecting capsid disassembly in the nucleus in human HepG2 cells are seen in the cytoplasm of chicken LMH cells.

  12. Characterization of the banana streak virus capsid protein and mapping of the immunodominant continuous B-cell epitopes to the surface-exposed N terminus.

    Science.gov (United States)

    Vo, Jenny N; Campbell, Paul R; Mahfuz, Nur N; Ramli, Ras; Pagendam, Daniel; Barnard, Ross; Geering, Andrew D W

    2016-12-01

    This study identified the structural proteins of two badnavirus species, Banana streak MY virus (BSMYV) and Banana streak OL virus (BSOLV), and mapped the distribution of continuous B-cell epitopes. Two diffe