WorldWideScience

Sample records for capraia volcano italy

  1. Insights into magmatic evolution and recharge history in Capraia Volcano (Italy) from chemical and isotopic zoning in plagioclase phenocrysts

    DEFF Research Database (Denmark)

    Gagnevin, D.; Waight, Tod Earle; Daly, J.S.;

    2007-01-01

    Plagioclase phenocrysts in dacites from the high-K calc-alkaline CapraiaVolcano were investigated for major, trace element and Sr isotope variations in order to gain better insight into the proposed open-system behaviour of the volcano. Repeated dissolution zone in plagioclases from the early-eru...

  2. Large historical eruptions at subaerial mud volcanoes, Italy

    Directory of Open Access Journals (Sweden)

    M. Manga

    2012-11-01

    Full Text Available Active mud volcanoes in the northern Apennines, Italy, currently have gentle eruptions. There are, however, historical accounts of violent eruptions and outbursts. Evidence for large past eruptions is also recorded by large decimeter rock clasts preserved in erupted mud. We measured the rheological properties of mud currently being erupted in order to evaluate the conditions needed to transport such large clasts to the surface. The mud is well-characterized by the Herschel-Bulkley model, with yield stresses between 4 and 8 Pa. Yield stresses of this magnitude can support the weight of particles with diameters up to several mm. At present, particles larger than this size are not being carried to the surface. The transport of larger clasts to the surface requires ascent speeds greater than their settling speed in the mud. We use a model for the settling of particles and rheological parameters from laboratory measurements to show that the eruption of large clasts requires ascent velocities > 1 m s−1, at least three orders of magnitude greater than during the present, comparatively quiescent, activity. After regional earthquakes on 20 May and 29 May 2012, discharge also increased at locations where the stress changes produced by the earthquakes would have unclamped feeder dikes below the mud volcanoes. The magnitude of increased discharge, however, is less than that inferred from the large clasts. Both historical accounts and erupted deposits are consistent in recording episodic large eruptions.

  3. Fluctuation analysis of the hourly time variability of volcano-magnetic signals recorded at Mt. Etna Volcano, Sicily (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Currenti, Gilda [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy); Del Negro, Ciro [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, 95123 Catania (Italy); Lapenna, Vincenzo [Istituto di Metodologie per l' Analisi Ambientale, Consiglio Nazionale delle Ricerche, IMAA-CNR, C.da S.Loja 5, 85050 Tito, PZ (Italy); Telesca, Luciano [Istituto di Metodologie per l' Analisi Ambientale, Consiglio Nazionale delle Ricerche, IMAA-CNR, C.da S.Loja 5, 85050 Tito, PZ (Italy)]. E-mail: ltelesca@imaa.cnr.it

    2005-03-01

    The time-correlation properties in the hourly time variability of volcano-magnetic data measured at the active volcano Mt. Etna, Sicily (southern Italy), are investigated by using the detrended fluctuation analysis (DFA). DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of nonstationarities. The procedure adopted has revealed unambiguous link between the dynamics of the measured data and the recent eruptive episode of the volcano occurred on October 27, 2002.

  4. The "Mud-volcanoes route" (Emilia Apennines, northern Italy)

    Science.gov (United States)

    Coratza, Paola; Castaldini, Doriano

    2016-04-01

    In the present paper the "Mud-volcanoes route" (MVR), an itinerary unfolds across the districts of Viano, Sassuolo, Fiorano Modenese and Maranello, in which part of the Emilia mud volcanoes fields are located, is presented. The Mud-volanoes route represents an emotional journey that connects places and excellences through the geological phenomenon of mud volcanoes, known with the local name "Salse". The Mud Volcanoes are created by the surfacing of salt water and mud mixed with gaseous and liquid hydrocarbons along faults and fractures of the ground. The name "Salsa"- from Latin salsus - results from the"salt" content of these muddy waters, ancient heritage of the sea that about a million years ago was occupying the current Po Plain. The "Salse" may take the shape of a cone or a level-pool according to the density of the mud. The Salse of Nirano, in the district of Fiorano Modenese, is one of the most important in Italy and among the most complex in Europe. Less extensive but equally charming and spectacular, are the "Salse" located in the districts of Maranello (locality Puianello), Sassuolo (locality Montegibbio) and Viano (locality Casola Querciola and Regnano). These fascinating lunar landscapes have always attracted the interest of researchers and tourist.The presence on the MVR territory of ancient settlements, Roman furnaces and mansions, fortification systems and castles, besides historic and rural buildings, proves the lasting bond between this land and its men. In these places, where the culture of good food has become a resource, we can find wine cellars, dairy farms and Balsamic vinegar factories that enable us to appreciate unique worldwide products. This land gave also birth to some personalities who created unique worldwide famous values, such as the myth of the Ferrrari, the ceramic industry and the mechatronics. The MVR is represented in a leaflet containing, short explanation, photos and a map in which are located areas with mud volcanoes, castles

  5. Delayed earthquake-volcano interactions at Campi Flegrei Caledra, Italy

    Science.gov (United States)

    Lupi, Matteo; Frehner, Marcel; Saenger, Erik H.; Tisato, Nicola; Weis, Philipp; Geiger, Sebastian; Chiodini, Giovanni; Driesner, Thomas

    2015-04-01

    The Campi Flegrei Caldera near Naples, Italy, is arguably one of the world's prime examples of volcanic hazard in a heavily populated area. Over the last centuries the ground of the caldera went through cyclical phases of inflation and deflation. The inflation phase consists of rapid vertical ground movements associated with the emission of volcanic gases marked by a strong magmatic component. Such deformations are suggested to be caused by pulses of CO2-rich fluids injected into the caldera's shallow hydrothermal system or by the intrusion of magmatic bodies at shallow depths. We show that since 1945 the uplift crises occurring at the Campi Flegrei Caldera are caused by large regional earthquakes. Our results point out that maximum uplift rates in the caldera take place about three years after the occurrence of large earthquakes that imposed a log10(PGA[cm s-2]) greater than 0.18. These observations are supported by forward seismic simulations and with a semi-quantitative statistical analysis of ground surface displacements and Peak Ground Accelerations (PGA). Our proposed geomechanical model integrates and simplifies previous empirical concepts of upwelling fluids that pressurize the region beneath the Campi Flegrei causing ground surface uplift. Numerical simulations indicate that passing seismic body waves impose high dynamic strains at the upper boundary of the deep magma reservoir as well as at the brittle/ductile transition at about 3 km depth. Such dynamic strains induce short-lived brittle failure in nominally ductile regions causing the release of magmatic fluids. The approximately 3-years time lag between the earthquake and maximum surface uplift reflects the time during which the lithostatically pressured fluids ascend through hot, nominally ductile lithologies without expanding. After passing the brittle/ductile transition at ~3 km depth the H2O-CO2 mixture can expand and phase-separate, pressurizing the subsurface. This leads to a rapid ground uplift

  6. Features of some paleosols on the flanks of Etna volcano (Italy) and their origin

    OpenAIRE

    Agnelli, A. E.; Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze, Italy; Corti, G.; Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università, Politecnica delle Marche, Ancona, Italy; Agnelli, A.; Dipartimento di Scienze Ambientali e delle Produzioni Vegetali, Università, Politecnica delle Marche, Ancona, Italy; Del Carlo, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Coltelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Ugolini, F. C.; Dipartimento di Scienza del Suolo e Nutrizione della Pianta, Università degli Studi di, Firenze, Italy

    2007-01-01

    Volcano flanks are usually covered by deposits of fine materials (tephra) with variable thickness originated by the explosive activity. The deposits form bedded sequences of tephra layers often alternated with paleosols. Pyroclastic successions on Etna volcano (Italy) are composed of scoria or pumice lapilli and ash deposits, representing separate eruptions, and volcanogenic sediments developed between eruptions. The origin of paleosols cropping out in three pyroclastic successions on Mt Etna...

  7. Isotopic ratio and concentration of sulfur in the undersaturated alkaline magmas of Vulture Volcano (Italy)

    Science.gov (United States)

    Marini, L.; Paiotti, A.; Principe, C.; Ferrara, G.; Cioni, R.

    1994-12-01

    Both the δ34S value and the total S content of products from Vulture Volcano, Italy are mainly controlled by the separation of S gases, predominantly SO2, from high f O2 magmas containing S predominantly as SO2 4. The addition of evaporites to such magmas appears to be a relatively uncommon and limited phenomenon. The total S content of the most primitive product of Vulture Volcano (5600 mg/kg) is very high. The high δ34S value of 4ö indicates an origin through the partial melting of a mantle containing high S, enriched in 34S of unknown origin.

  8. Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy

    Directory of Open Access Journals (Sweden)

    G. Currenti

    2005-01-01

    Full Text Available We applied the Multifractal Detrended Fluctuation Analysis (MF-DFA, which allows to detect multifractality in nonstationary signals, to the hourly means of local geomagnetic field recorded at Mt. Etna volcano (southern Italy. We studied the signal measured at one geomagnetic station, installed at the summit of volcano, which was characterized by a strong eruption on 27 October 2002. We analyzed two frames of signals, one measured before the eruption and the other after, in order to evaluate dynamical changes induced by the eruptive event. Our findings show that: i the geomagnetic time series is multifractal; ii the multifractal degree of the signal decreases after the occurrence of eruption. This study aims to propose another approach to investigate the complex dynamics of volcano-related geomagnetic field.

  9. Vents Pattern Analysis at Etna volcano (Sicily, Italy).

    Science.gov (United States)

    Brancato, Alfonso; Tusa, Giuseppina; Coltelli, Mauro; Proietti, Cristina; Branca, Stefano

    2014-05-01

    Mount Etna is a composite stratovolcano located along the Ionian coast of eastern Sicily. It is characterized by basaltic eruptions, both effusive and explosive, occurred during a complex eruptive history over the last 500 ka. Flank eruptions occur at an interval of decades, mostly concentrated along the NE, S and W rift zones. A vent clustering at various scales is a common feature in many volcanic settings. In order to identify the clusters within the studied area, a spatial point pattern analysis is undertaken using vent positions, both known and reconstructed. It reveals both clustering and spatial regularity in the Etna region at different distances. The visual inspection of the vent spatial distribution suggests a clustering on the rift zones of Etna volcano. To confirm this evidence, a coarse analysis is performed by the application of Ξ2- and t-test simple statistics. Then, a refined analysis is performed by using the Ripley K-function (Ripley, 1976), whose estimator K(d), knowing the area of the study region and the number of vents, allow us to calculate the distance among two different location of events. The above estimator can be easier transformed by using the Besag L-function (Besag, 1977); the peaks of positive L(d)=[K(d)/π]1/2 -d values indicate clustering while troughs of negative values stand for regularity for their corresponding distances d (L(d)=0 indicates complete spatial randomness). Spatial pattern of flank vents is investigated in order to model the spatial distribution of likely eruptive vents for the next event, basically in terms of relative probabilities. For this, a Gaussian kernel technique is used, and the L(d) function is adopted to generate an optimal smoothing bandwidth based on the clustering behaviour of the Etna volcano. A total of 154 vents (among which 36 are reconstructed), related to Etna flank activity of the last 4.0 ka, is used to model future vent opening. The investigated region covers an area of 850 km2, divided

  10. Gas hazard assessment at the Monticchio Mt. Vulture, a volcano in Southern Italy

    OpenAIRE

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Dipartimento Chimica e Fisica della Terra e Applicazioni, Universita` di Palermo, Via Archirafi 36, 90100, Palermo, Italy; Favara, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nicolosi, M.; Dipartimento Chimica e Fisica della Terra e Applicazioni, Universita` di Palermo, Via Archirafi 36, 90100, Palermo, Italy; Paternoster, M.; Dipartimento Scienze Geologiche, Università della Basilicata.

    2009-01-01

    Geochemical investigations have shown that there is a considerable inflow of gas into both crater lakes of Monticchio, Southern Italy. These lakes are located in two maars that formed 140 000 years ago during Mt. Vulture volcano s last eruptive activity. Isotopic analyses suggest that CO2 and helium are of magmatic origin; the latter displays 3He ⁄ 4He isotope ratios similar to those measured in olivines of the maar ejecta. In spite of the fact that the amount of dissolved gases in the wat...

  11. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural.

  12. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy

    Science.gov (United States)

    Paternoster, M.; Liotta, M.; Favara, R.

    2008-01-01

    SummaryA rain gauge network consisting of five sites located at different altitudes, ranging from 320 to 1285 m.a.s.l., was installed at Mt. Vulture volcano (southern Italy). Rain water samples were collected monthly over a two-year period and their isotopic composition (δ 18O and δD) was analyzed. During the same period, circulating groundwater was sampled from 24 springs and wells distributed throughout the study area. Monthly isotopic composition values were used to determine the local meteoric water line (LMWL). Its slope is slightly lower than the relationship defined by Longinelli and Selmo (Longinelli, A., Selmo, E., 2003. Isotopic composition of precipitation in Italy: a first overall map. J. Hydrol. 270, 75-88) for southern Italy. The groundwater samples analyzed were distributed essentially along the LMWL. The weighted local meteoric water line (WLMWL), defined through the mean values weighted by the rainfall amount, however, may define in a short range the meteoric end-member in the local hydrological cycle more precisely. Since most of the groundwater sampling locations do not show seasonal variations in their stable isotope values, the flow system appears to be relatively homogeneous. The mean altitude of the recharge by rainfall infiltration was estimated on the basis of the local vertical isotopic gradient δ 18O. A few springs, which show anomalous isotopic values, reveal more regional circulation systems, associated with tectonic structures responsible for the ascent of deeper water.

  13. Tephrochronology of a late quatternary lacustrine record from the monticchio maar (vulture volcano, southern Italy)

    Science.gov (United States)

    Narcisi, Biancamaria

    With the aim of defining the chronological framework of the 51 m deep sedimentary sequence (core D) from Lago Grande di Monticchio (Mt Vulture volcano), macroscopic, microscopic and geochemical investigations have been carried out on the 14 thickest (at least 3 cm) tephra layers recorded in the core. The results indicate that the tephras are related to the main late Quaternary explosive events from Ischia, Vesuvius and the Phlegrean Fields districts of the Campanian area. Following these results, a usable time scale has been obtained, according to which the sequence spans the last 70 ka. Beyond the chronological information, this investigation has made it possible: (a) to identify widespread time-parallel markers for reliable correlations in the Central Mediterranean; (b) to collect useful data about past powerful eruptions, particularly from Vesuvius, for a better assessment of volcanic hazards in Central and Southern Italy.

  14. Deformation at Stromboli volcano (Italy) revealed by rock mechanics and structural geology

    Science.gov (United States)

    Tibaldi, A.; Corazzato, C.; Apuani, T.; Cancelli, A.

    2003-01-01

    We approach the reconstruction of the recent structural evolution of Stromboli volcano (Italy) and the analysis of the interplay between tectonics, gravity and volcanic deformation. By tying together structural, lithostratigraphic and rock mechanics data, we establish that since 100 ka BP, the edifice has faulted and jointed mainly along NE-striking planes. Faults mostly dip to the NW with normal displacement. Taking also into account the presence of a NW-trending regional least principal stress and of tectonic earthquake hypocenters inside the cone, we suggest that this fracturing can be related to the transmission of tectonic forces from the basement to the cone. Dyking concentrated along a main NE-trending weakness zone (NEZ) across the volcano summit, resembling a volcanic rift, whose geometry is governed by the tectonic field. In the past 13 ka, Stromboli experienced a reorganisation of the strain field, which was linked with the development of four sector collapses affecting the NW flank, alternating with growth phases. The tectonic strain field interplayed with dyking and fracturing related to unbuttressing along the collapse shoulders. We propose that tectonics control the geometry of dykes inside the cone and that these, in turn, contribute to destabilise the cone flanks.

  15. Passive degassing at Nyiragongo (D.R. Congo and Etna (Italy volcanoes

    Directory of Open Access Journals (Sweden)

    Sergio Calabrese

    2015-02-01

    Full Text Available Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Etna (Italy and Nyiragongo (D.R. Congo are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater and their uptake by the surrounding vegetation, with the aim to compare and identify differences and similarities between these two volcanoes. Volcanic emissions were sampled by using active filter-packs for acid gases (sulfur and halogens and specific teflon filters for particulates (major and trace elements. The environmental impact of the volcanogenic deposition in the area surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors’ gauges were used to collect atmospheric bulk deposition, and biomonitoring was carried out to collect gases and particulates by using endemic plant species. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals into the atmosphere, especially considering their persistent state of passive degassing. The large amount of emitted trace elements is clearly reflected on the chemical composition of rainwater collected at the summit areas both for Etna and Nyiragongo. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and de- creases with the distance from the active craters.  

  16. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy

    OpenAIRE

    De Astis, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Kempton, P. D.; Natural Environment Research Council, Polaris House, North Star Avenue, Swindon, SN2 1EU, UK; Peccerillo, A.; Dipartimento di Scienze della Terra, Università di Perugia; Wu, T. W.; Department of Geology, University of Western Ontario, London, ON, Canada N6A 5B7

    2006-01-01

    New Sr–Nd–Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E–W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Pa...

  17. The 15 March 2007 explosive crisis at Stromboli Volcano, Italy: assessing physical parameters through a multidisciplinary approach

    OpenAIRE

    Pistolesi, M.; Delle Donne, D.; Pioli, Laura; Rosi, M.; Ripepe, M.

    2011-01-01

    Basaltic volcanoes are dominated by lava emission and mild explosive activity. Nevertheless, many basaltic systems exhibit, from time to time, poorly documented and little-understood violent explosions. A short-lived, multiblast explosive crisis (paroxysmal explosion) occurred on 15 March 2007 during an effusive eruptive crisis at Stromboli (Italy). The explosive crisis, which started at 20:38:14 UT, had a total duration of ∼5 min. The combined use of multiparametric data collected by the per...

  18. Shear-wave polarization alignment on the eastern flank of Mt. Etna volcano (Sicily, Italy

    Directory of Open Access Journals (Sweden)

    G. Vilardo

    1996-06-01

    Full Text Available Recently, with the improvement of three-component seismic networks, studies revealing anisotropic characteristics in different regions have assumed great interest. In a complex volcanic area like Mt. Etna (Sicily, Italy, the existence of both iso-oriented fault systems and intrusive bodies consisting of olivine and clinopyroxene suggest the presence of anisotropic structures. In order to investigate this we analyzed the physical phenomenon of shear-wave splitting since under certain constraints, shear waves are less sensitive to local heterogeneity. The aims of this paper are: 1 to evaluate if in a structural complex situation like that at Mt. Etna the signal crossing an anisotropic volume could be enhanced in spite of effects due to undirectional properties along the source-receiver path; 2 to investigate the correlations, if any, between polarization direction of the leading shear wave and the patterns of compressive stress acting on the investigated area. Therefore we measured time-delays between the S-onsets on the horizontal components of 3D seismograms to reveal the possible seismic anisotropy in the Etnean region; moreover, we analyzed the polarization vector of shear-waves seismic data recorded during a survey carried out in the spring-summer 1988. We found clear evidence of splitting that we attributed to the presence of an anisotropic volume not homogeneously distributed on the eastern slope of Mt. Etna volcano.

  19. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    Science.gov (United States)

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  20. Volcanoes

    Science.gov (United States)

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  1. Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data

    Science.gov (United States)

    de Fino, M.; La Volpe, L.; Peccerillo, A.; Piccarreta, G.; Poli, G.

    1986-02-01

    The paper presents major and trace element data and mineral compositions for a series of foiditic-tephritic to phonolitic rocks coming from Monte Vulture, Southern Italy, and investigates their origin, evolution and relationship with the other centres of the Roman province. Major and trace element variation in the foiditic to tephritic suite agrees with a hypothesis of evolution by simple crystal/liquid fractionation, whereas the early erupted phonolitic trachytes and phonolites have geochemical characteristics which do not support their derivation from tephritic magma by crystal fractionation. Foiditic and phonolitic rocks have mineral compositions which are interpreted as indicating magma mixing. However geochemical evidence shows that this process did not play an important role during the magma evolution. The Vulture rocks have compositional peculiarities such as high abundance of Na2O, CaO, Cl and S, when compared with other Roman volcanics. Instead, the distribution of incompatible elements is similar to those of Roman rocks, except for a lower content of Rb and K, higher P and lower Th/Ta and Th/Nb ratios which are still close to the values of arc volcanics. The high contents of Na, Ca and of volatile components are tentatively attributed to the interaction of magma with aqueous solutions, rich in calcium sulphate and sodium chloride, related to the Miocene or Triassic evaporites occurring within the sedimentary sequence underlying the volcano. The distribution pattern of the incompatible elements is interpreted as indicative of magma-forming in a subduction modified upper mantle and of the peculiar location of M. Vulture.

  2. Volcanoes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the past thousand years,volcanoes have claimed more than 300,000 lives. Volcanology is ayoung and dangerous science that helps us against the power of the Earth itself.We live on a fiery planet. Nearly 2000 miles beneath our feet, the Earth's inner core reachestemperatures of 12,000 degrees Fahrenheit. Molten rock or magma, rises to the earth's surface. Acold, rigid crust fractured into some twenty plates. When magma breaks through crust it becomes

  3. Mantle CO2 degassing at Mt. Vulture volcano (Italy): Relationship between CO2 outgassing of volcanoes and the time of their last eruption

    Science.gov (United States)

    Caracausi, Antonio; Paternoster, Michele; Nuccio, Pasquale Mario

    2015-02-01

    Mantle volatiles are mainly lost from the Earth to the atmosphere through subaerial and submarine volcanism. Recent studies have shown that degassing of mantle volatiles also occurs from inactive volcanic areas and in tectonically active areas. A new challenge in Earth science is to quantify the mantle-derived flux of volatiles (e.g., CO2) which is important for understanding such diverse issues as the evolution of the atmosphere, the relationships between magma degassing and volcanic activity, gas pressure and seismogenic processes, and the hazards posed by volcanic lakes. Here we present a detailed study of mantle-derived CO2 budget from Mt. Vulture volcano in the Apennines, Italy, whose latest eruption occurred 141 ± 11 kyr ago. The relationship between δ13CCO2 and total dissolved carbon at Mt. Vulture volcano indicates that the emitted CO2 is a mixture of a biogenic end-member with an average δ13CCO2 of about - 17 ‰ and a mantle-derived CO2 end-member with δ13CCO2 values from - 3 ‰ to + 2 ‰. These values of mantle-derived δ13CCO2 are in the range of those for gas emitted from active volcanoes in the Mediterranean. We calculated the contribution of individual components (CO2 in groundwater, in lakes and from main pools) to the total CO2 budget in the area. We used new measurements of water flow, combined with literature data, to calculate the CO2 flux associated with groundwater, and measured the gas flux from the main pools on the volcanic edifice. Finally, we calculated the CO2 flow in the lakes based on the gradient concentration and eddy diffusivity. The total mantle-derived CO2 budget in the area is 4.85 ×108 molyr-1, which is more than double previous estimates. This is higher than those observed in younger volcanic systems elsewhere, thereby supporting the existence of actively degassing mantle melts below Mt. Vulture volcano. A structural map highlights the tectonic control on CO2 flow across the Mt. Vulture volcanic edifice. Indeed, the

  4. Large teleseismic P-wave residuals observed at the Alban Hills volcano, Central Italy

    Directory of Open Access Journals (Sweden)

    H. Mahadeva Iyer

    1994-06-01

    Full Text Available We collected teleseismic waveforms from a digital microseismic network deployed by the Istituto Nazionale di Geofisica (ING in collaboration with the U.S. Geological Survey (USGS, on the Alban Hills Quaternary volcano during the 1989-1990 seismic swann. About 50 events were recorded by the network, 30 of them by at least 4 stations. We analysed the data in order to image crustal heterogeneities beneath the volcano. The results show large delay time residuals up to - 1 second for stations located on the volcano with respect to station CP9 of the National Seismic Network located about 20 km to the east, on the Apennines. This suggests that the whole area overlies a broad low-velocity region. Although the ray coverage is not very dense, we model the gross seismic structure beneath the volcano by inverting the teleseismic relative residuals with the ACH technique. The main features detected by tbc inversion are a low-velocity zone beneath the southwestern fiank of tbc volcano, and a high-velocity region beneath the center. The depth extension of these anomalous zones ranges between 5 and 16 km. The correspondence between the low-velocity region and the most recent activity of the volcano (- 0.027 Ma leads us to infer the presence of a still hot magmatic body in the crust beneath the southwestern side of the volcano, whereas the central part overlies the older and colder high-velocity volcanic roots related to the previous central activity (0.7 to 0.3 Ma.

  5. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    Science.gov (United States)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  6. Annex 1 to: Passive Degassing at Nyiragongo (D.R. Congo and Etna (Italy Volcanoes.

    Directory of Open Access Journals (Sweden)

    Sergio Calabrese

    2015-03-01

    Full Text Available Volcanic EmissionsThe technique for the assessment of the metal output from volcanoes was based on direct (in- plume collection of the plume on filter substrates. Gas and aerosols in the volcanic plume have been sampled from the rims of the active craters. [...

  7. The western submerged sector of the Ischia volcanic island (Tyrrhenian Sea, Italy): new insights into its volcano-tectonic evolution

    Science.gov (United States)

    Passaro, Salvatore; de Alteriis, Giovanni; Milano, Girolamo; Fedi, Maurizio; Florio, Giovanni

    2010-05-01

    The Island of Ischia is a volcanic complex located in the northern boundary of the Gulf of Naples (south-eastern Tyrrhenian Sea, Italy). The island represents only the 30% of a larger, E-W trending, volcanic ridge and likely controlled by a regional tectonic lineament. Despite the many geo-volcanological and geophysical investigations conducted on the island since long time, still little is the knowledge of its offshore. Several marine surveys have been carried out over the past 10 years from IAMC - CNR research institute (Naples, Italy) mostly in the frame of INGV and GNV projects, funded by Italy Civil Protection Department. Such surveys have largely improved the knowledge of the entire volcanic complex. Multibeam bathymetry surveys has revealed several, previously unexpected, morphological and morphostructural features. Moreover some structural patterns and volcano alignments offshore show similarities with those occurring at a regional scale in the Campania region and, locally, between the island of Procida and Phlegrean Fields. Here we report the joint interpretation of geophysical data focused on the western underwater sector of the island. Interpretation was chiefly based on processing/inversion of magnetic data in turn constrained by bathymetry and seismic reflection profiles. Magnetic data, acquired by the IAMC during two different cruises in 2000 and 2002 onboard of the Urania R/V oceanographic vessel, put in evidence that the western seafloor of Ischia is characterized by the presence of a strong residual magnetic anomaly field of complex behaviour, somewhere correlated to local bathymetry. These two last methods allowed to define and distinguish between undersea and subsurface magnetic (i.e. magmatic) basement. Interpretation was also constrained by seismological data.

  8. Methane flux from miniseepage in mud volcanoes of SW Taiwan: Comparison with the data from Italy, Romania, and Azerbaijan

    Science.gov (United States)

    Hong, Wei-Li; Etiope, Giuseppe; Yang, Tsanyao Frank; Chang, Ping-Yu

    2013-03-01

    Mud volcanoes (MVs) are considered important methane (CH4) sources for the atmosphere; gas is not only released from macro-seepage, i.e., from craters and visible gas bubbling manifestations, but also from invisible and pervasive exhalation from the ground, named miniseepage. CH4 flux related to miniseepage was measured only in a few MVs, in Azerbaijan, Italy, Japan, Romania and Taiwan. This study examines in detail the flux data acquired in 5 MVs and 1 "dry" seep in SW Taiwan, and further compares with other 23 MVs in Italy, Romania and Azerbaijan. Miniseepage from the six manifestations in SW Taiwan MVs and seeps annually contribute at least 110 tons of methane directly to the atmosphere, and represents about ˜80% of total degassing during a quiescent period. Combining miniseepage flux and geo-electrical data from the Wu-shan-ding MV revealed a possible link between gas flux and electrical resistivity of the vadose zone. This suggests that unsaturated subsoil is a preferential zone for shallow gas accumulation and seepage to the atmosphere. Besides, miniseepage flux in Chu-huo everlasting fire decreases by increasing the distance from the main gas channeling zone and molecular fractionation (methane/ethane ratio) is higher for lower flux seepage, consistently with what observed in other MVs worldwide. Measurements from Azerbaijan, Italy, Romania, and Taiwan converge to indicate that miniseepage is directly proportional to the vent output and it is a significant component of the total methane budget of a MV. A miniseepage vs. macro-seepage flux equation has been statistically assessed and it can be used to estimate theoretically at least the order of magnitude of the flux of miniseepage for MVs of which only the flux from vents was evaluated, or will be evaluated in future. This will allow a more complete and objective quantification of gas emission in MVs, thus also refining the estimate of the global methane emission from geological sources.

  9. Matching high-resolution seismic and electrical resistivity profiling to infer the shallow structure of Solfatara Volcano (Italy)

    Science.gov (United States)

    Bruno, Pier Paolo; Gresse, Marceau; Maraio, Stefano; Vandemeulebrouck, Jean; Di Fiore, Vincenzo

    2016-04-01

    -surface geological interpretation of Solfatara area and to better understand and relate temporal changes of geophysical and geochemical measurements to the shallow geological structure of the most active volcano of Campi Flegrei Caldera, Italy, which it is presently characterized by an activity renewal, resulting in an enhanced hydrothermal activity and fumarolic emission increase.

  10. Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy

    Science.gov (United States)

    de Astis, G.; Kempton, P. D.; Peccerillo, A.; Wu, T. W.

    2006-03-01

    New Sr-Nd-Pb isotopic ratios and trace element data for volcanic mafic rocks outcropping along a E-W transect in southern Italy, from Mt. Vulture to Neapolitan volcanoes, are reported. The variation of LILE/HFSE, HFSE/HFSE and radiogenic isotopes along this transect indicates that all of these volcanoes contain both intra-plate and subduction-related signatures, with the former decreasing from Mt. Vulture to Campanian volcanoes. New data are also reported for the Paleocene alkaline rocks from Pietre Nere (Apulia foreland), which show isotopic ratios mostly overlapping the values for Mediterranean intra-plate volcanoes as well as the Eocene-Oligocene alkaline mafic lavas from the northern Adria plate. Pietre Nere provides evidence for an OIB mantle composition of FOZO-type, free of subduction influences, that is present beneath the Adria plate (Africa) before its collision with Europe. After this collision, and formation of the southern Apennines, westward inflow of mantle from the Adria plate to the Campanian area occurred, as a consequence of slab break off. Interaction of subduction components with inflowing Adria mantle generated hybrid sources beneath the Vulture-Campania area, which can explain the compositional features of both Mt. Vulture and the Campanian mafic rocks. Therefore, mafic magmas from these volcanoes represent variable degrees of mixing between different mantle components.

  11. Gas hazard assessment at the Monticchio crater lakes of Mt. Vulture, a volcano in Southern Italy

    OpenAIRE

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Dipartimento CFTA, Universita` di Palermo, Palermo, Italy.; R. Favara; Nicolosi, M.; Dipartimento CFTA, Universita` di Palermo, Palermo, Italy.; Paternoster, M.; Dipartimento Scienze Geologiche, Università della Basilicata.

    2008-01-01

    Geochemical investigations have shown that there is a considerable inflow of gas into both crater lakes of Monticchio, Southern Italy. These lakes are located in two maars that formed 140,000 years ago during Mt. Vulture volcano’s last eruptive activity. Isotopic analyses suggest that CO2 and helium are of magmatic origin; the latter displays 3He/4He isotope ratios similar to those measured in olivines of the maar ejecta. In spite of the fact that the amount of dissolved gases in the water is...

  12. Asbestiform tremolite within the Holocene late pyroclastic deposits of Colli Albani volcano (Latium, Italy): Occurrence and crystal-chemistry

    CERN Document Server

    Della Ventura, Giancarlo; Bellatreccia, Fabio; De Benedetti, Arnaldo A; Mottana, Annibale

    2013-01-01

    This work relates the occurrence and the characterization of fibrous tremolite within the latest pyroclastic deposits of the Colli Albani (Alban Hills) volcano, to the south-east of Rome (Italy). These mineralizations were observed during a systematic rock-sampling undertaken to complete the geological survey for the new 1:50 000 map of this volcanic area. The examined specimens were collected inside distal deposits correlated to the last Albano Maar activity, which are geographically located within the boundaries of the Nemi community. Tremolite occurs within both carbonate ejecta and the host pyroclastic rocks. It shows up as whitish to light gray coloured aggregates of crystals with fibrous aspect and sericeous brightness. Due to the extremely small crystal dimensions, never exceeding 0.5 micron in diameter, the micro-chemical composition of the fibres could be obtained only by combining P-XRD, SEM-EDX and FTIR methods. Infrared spectroscopy, in particular, proved to be a valuable technique to characterize...

  13. Episodic slow slip events and seaward flank motion at Mt. Etna volcano (Italy)

    Science.gov (United States)

    Palano, Mimmo

    2016-09-01

    Episodic aseismic slip events have recently been detected at a variety of tectonic and volcanic environments, sparking the curiosity of seismic and geodetic communities. Here, a sequence of 7 slow slip events occurring at Mt. Etna since mid-2009 has been analyzed. Observed displacement fields evidence that the sequence involves two contiguous sectors of the unstable eastern flank, delimited by the Timpe faults. The tectonic control played by these faults can also be recognized on the long-term (2003-2015) velocity field. Elastic modelling of the long-term velocity field infers a sub-horizontal plane slightly dipping eastward and located within the sedimentary basement at shallow depth. Slip distribution models for each slow-slip event highlight how the largest slip values were centred on the SE edge of the sub-horizontal plane during 4 events and on the NE edge during the remaining 3 ones. The recognized events do not appear correlated with volcanic activity, although there is a possible correlation between slow-slip events and inflating episodes of the volcano.

  14. Relevance of the Chiancone volcaniclastic deposit in the recent history of Etna Volcano (Italy)

    Science.gov (United States)

    Calvari, Sonia; Groppelli, Gianluca

    1996-08-01

    occurrence of an important eruptive event at least 7590 yr B.P. which may be associated with the deposition of the huge basal mud flow. This event was followed by fluvial reworking and deposition at a rate of at least 4 mm/yr. Extending this deposition rate to the whole thickness of the CH deposit (300 m) would imply a maximum age of 80,000-70,000 yr B.P. However, the deposition rate of the hidden part of the CH deposit was almost certainly much greater than 4 mm/yr implying an age for the onset of the CH sequence significantly less than 80,000-70,000 yr B.P. This very strongly suggests that the Trifoglietto volcano (which is older than 80,000 yr) was not involved in the opening of the VDB and the formation of the CH deposit. It also suggests that the first event of the opening of the VDB was much older than the 5000 yr proposed by some authors. It is possible that the CH was deposited during, or slightly later than, the life-span of the Ellittico volcano (40,000-15,000 yr B.P.).

  15. Volcano Monitoring and Early Warning on MT Etna, Italy, Using Volcanic Tremor - Methods and Technical Aspects

    Science.gov (United States)

    D'Agostino, Marcello; Di Grazia, Giuseppe; Ferrari, Ferruccio; Langer, Horst; Messina, Alfio; Reitano, Danilo; Spampinato, Salvatore

    2013-04-01

    Recent activity on Mt Etna was characterized by 25 lava fountains occurred on Mt Etna in 2011 and the first semester of 2012. In summer 2012 volcanic activity in a milder form was noticed within the Bocca Nuova crater, before it came to an essential halt in August 2012. Together with previous unrests (e. g., in 2007-08) these events offer rich material for testing automatic data processing and alert issue in the context of volcano monitoring. Our presentation focuses on the seismic background radiation - volcanic tremor - which has a key role in the surveillance of Mt Etna. From 2006 on a multi-station alert system exploiting STA/LTA ratios, has been established in the INGV operative centre of Catania. Besides, also the frequency content has been found to change correspondingly to the type of volcanic activity, and can thus be exploited for warning purposes. We apply Self Organizing Maps and Fuzzy Clustering which offer an efficient way to visualize signal characteristics and its development with time. These techniques allow to identify early stages of eruptive events and automatically flag a critical status before this becomes evident in conventional monitoring techniques. Changes of tremor characteristics are related to the position of the source of the signal. Given the dense seismic network we can base the location of the sources on distribution of the amplitudes across the network. The locations proved to be extremely useful for warning throughout both a flank eruption in 2008 as well as the 2011 lava fountains. During all these episodes a clear migration of tremor sources towards the eruptive centres was revealed in advance. The location of the sources completes the picture of an imminent volcanic unrest and corroborates early warnings flagged by the changes of signal characteristics. Automatic real time data processing poses high demands on computational efficiency, robustness of the methods and stability of data acquisition. The amplitude based multi

  16. Temporal variations of soil and fumarole gases at Mt. Etna Volcano (Italy) during 2000-2002

    Energy Technology Data Exchange (ETDEWEB)

    Giammanco, S.; Pecoraino, G. [Ist. Nazionale di Geofisica e Vulcanologia - Sezione di Palermo, Via Ugo La Malfa, Palermo (Italy)

    2003-07-01

    Gas samples collected during the period July 2000 - December 2002 from six sites on Mt. Etna volcano characterised by anomalous high ground degassing (mainly CO{sub 2}) showed that the origin of CO{sub 2} is largely magmatic and compatible with a source marked by {delta}{sup 13}C values in the range -2 to -1 permille. Concurrent He emissions are characterised by He isotope values in the range 1.02 to 7.61 Ra and suggest a variable contribution of a magmatic component. During the studied period significant variations of CO{sub 2} efflux, CO{sub 2}, He, CO, CH{sub 4} concentrations and C and He isotopes were observed more or less at all sites. Anomalies were observed, in particular, between August and December 2000, between April and November 2001, and between March 2002 and the end of the same year. All of them preceded evident increases in the eruptive activity, including the two large lateral eruptions started in July 2001 and October 2002, respectively. The variations observed are coherent with magma accumulation at depth and its progressive degassing during migration toward the surface. The arrival of each batch of magma at depth (> 10 km) produces anomalies (mainly CO{sub 2} efflux and CO concentration increases) that are best observed at the most peripheral sites (P39, VS). Migration of magma towards the surface (depth < 10 km) produces anomalies that are observed at sites closer to the summit craters (including P78). Short-term anomalies were recognised in anomalous increases of fumarole temperature, which occurred some weeks to some days Etna's eruptions and were due to greater input of high-enthalpy fluids (mainly water vapour) through the major fracture systems that cut the summit of Etna. (orig.)

  17. Chronostratigraphy of Monte Vulture volcano (southern Italy): secondary mineral microtextures and 39Ar-40Ar systematics

    Science.gov (United States)

    Villa, Igor M.; Buettner, Annett

    2009-12-01

    The eruptive history of Monte Vulture has been the subject of several geochronological investigations during the past decades, which reliably dated only a small number of eruptions. Understanding the causes of sub-optimum data yield in the past requires an interdisciplinary approach. We re-analyzed samples from previous works and present new data on samples from the main volcano-stratigraphic units of Monte Vulture, so as to provide an improved, consistent chronostratigraphic database. Imaging of minerals by cathodoluminescence and backscattered electrons reveals that heterochemical, high-temperature deuteric reaction textures are ubiquitous. Such observations are common in metamorphic rocks but had not frequently been reported from volcanic rocks. In view of the mineralogical complexity, we base our chronological interpretation on isochemical steps, defined as steps for which the Cl/K and/or the Ca/K ratios are constant. Isochemical steps carry the isotopic signature of chemically homogeneous mineral phases and therefore allow a well-constrained age interpretation. Comparison of old and new 39Ar-40Ar data proves the reproducibility of age spectra and their shapes. This quantifies the analytical reliability of the irradiation and mass-spectrometric analyses. Anomalous age spectra are a reproducible property of some specific samples and correlate with mineralogical anomalies. The present data allow us to fine-tune the age of the volcanostratigraphic units of Monte Vulture during the known interval of main volcanic activity from ca. 740 to 610 ka. After a very long stasis, the volcanic activity in the Monte Vulture area resumed with diatremic eruptions, one of which (Lago Piccolo di Monticchio, the site of a palynological-paleoclimatological drilling) was dated at ca. 140 ka.

  18. Experimental constraints on the origin of pahoehoe "cicirara" lavas at Mt. Etna Volcano (Sicily, Italy)

    Science.gov (United States)

    Vetere, F.; Mollo, S.; Giacomoni, P. P.; Iezzi, G.; Coltorti, M.; Ferlito, C.; Holtz, F.; Perugini, D.; Scarlato, P.

    2015-05-01

    We present results from phase equilibria experiments conducted on the most primitive pahoehoe "cicirara" trachybasaltic lava flow ever erupted at Mt. Etna Volcano. This lava is characterized by a pahoehoe morphology in spite of its high content of phenocrysts and microphenocrysts (>40 vol%) with the occurrence of centimetre-sized plagioclases (locally named cicirara for their chick-pea-like appearance). Our experiments have been performed at 400 MPa, 1100-1150 °C and using H2O and CO2 concentrations corresponding to the water-undersaturated crystallization conditions of Etnean magmas. Results show that olivine does not crystallize from the melt, whereas titanomagnetite is the liquidus phase followed by clinopyroxene or plagioclase as a function of melt-water concentration. This mineralogical feature contrasts with the petrography of pahoehoe cicirara lavas suggesting early crystallization of olivine and late formation of titanomagnetite after plagioclase and/or in close association with clinopyroxene. The lack of olivine produces MgO-rich melt compositions that do not correspond to the evolutionary behaviour of cicirara magmas. Moreover, in a restricted thermal path of 50 °C and over the effect of decreasing water concentrations, we observe abundant plagioclase and clinopyroxene crystallization leading to trace element enrichments unlikely for natural products. At the same time, the equilibrium compositions of our mineral phases are rather different from those of natural cicirara phenocrysts and microphenocrysts. The comparison between our water-undersaturated data and those from previous degassing experiments conducted on a similar Etnean trachybasaltic composition demonstrates that pahoehoe cicirara lavas originate from crystal-poor, volatile-rich magmas undergoing abundant degassing and cooling in the uppermost part of the plumbing system and at subaerial conditions where most of the crystallization occurs after the development of pahoehoe surface crusts.

  19. Innovative Methodologies for thermal Energy Release Measurement: case of La Solfatara volcano (Italy)

    Science.gov (United States)

    Marfe`, Barbara; Avino, Rosario; Belviso, Pasquale; Caliro, Stefano; Carandente, Antonio; Marotta, Enrica; Peluso, Rosario

    2015-04-01

    This work is devoted to improve the knowledge on the parameters that control the heat flux anomalies associated with the diffuse degassing processes of volcanic and hydrothermal areas. The methodologies currently used to measure heat flux (i.e. CO2 flux or temperature gradient) are either poorly efficient or effective, and are unable to detect short to medium time (days to months) variation trends in the heat flux. A new method, based on the use of thermal imaging cameras, has been applied to estimate the heat flux and its time variations. This approach will allow faster heat flux measurement than already accredited methods, improving in this way the definition of the activity state of a volcano and allowing a better assessment of the related hazard and risk mitigation. The idea is to extrapolate the heat flux from the ground surface temperature that, in a purely conductive regime, is directly correlated to the shallow temperature gradient. We use thermal imaging cameras, at short distances (meters to hundreds of meters), to quickly obtain a mapping of areas with thermal anomalies and a measure of their temperature. Preliminary studies have been carried out throughout the whole of the La Solfatara crater in order to investigate a possible correlation between the surface temperature and the shallow thermal gradient. We have used a FLIR SC640 thermal camera and K type thermocouples to assess the two measurements at the same time. Results suggest a good correlation between the shallow temperature gradient ΔTs and the surface temperature Ts depurated from background, and despite the campaigns took place during a period of time of a few years, this correlation seems to be stable over the time. This is an extremely motivating result for a further development of a measurement method based only on the use of small range thermal imaging camera. Surveys with thermal cameras may be manually done using a tripod to take thermal images of small contiguous areas and then joining

  20. Crystal chemistry of clinopyroxene from alkaline undersaturated rocks of the Monte Vulture Volcano, Italy

    Science.gov (United States)

    Bindi, Luca; Cellai, Daniela; Melluso, Leone; Conticelli, Sandro; Morra, Vincenzo; Menchetti, Silvio

    1999-02-01

    compositional and structural similarities between clinopyroxene of Monte Vulture and Leucite-bearing rocks of the Roman Province (plagioclase-bearing High Potassium Series=HKS) indicate a common petrogenetic affinity. On the other hand, differences between clinopyroxene in feldspar-free rocks from Monte Vulture and that in kamafugites (i.e, olivine melilitites, kalsilitites) from Central Italy, suggest significant magma dissimilarities between these two groups.

  1. Distribution of trace elements in altered pyroclastites from Monte Vulture volcano (southern Italy

    Directory of Open Access Journals (Sweden)

    Piccarreta, G.

    1995-08-01

    Full Text Available Three pyroclastic deposits from Monte Yulture volcanic area (Potenza, southern Italy looking like paleosols in the field were investigated in a previous study for mineralogy and major elements to estimate the stage of the weathering. Here is dealt with the behaviour of sorne trace elements (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr and Nb in the same deposits to give a comprehensive geochemical picture. The distribution of the chemical elements within the whole rock and after its attack with Na-pyrosulfate (residue + solute has been considered. Ba and Sr, as well as their distribution, appear to be controlled by the residual crystals in each of the deposits; La, Ce, Y and Nb are more concentrated in the solute that once was represented by vitric component, allophane, and Fe-Si-Al gels, biotite, carbonates and analcite; Y, Cr, and Ni show similar trends in whole rock and in solute. In particular La, Ce, Y, Y, Cr and Ni in the lowermost unit increase with the depth, as well as the contents of gels and allophane. Probably this behaviour was superimposed by the fluctuation of the water tables, as documented by the occurrence of a carbonate level upon the unit lies. It is concluded that the earliest stage of weathering did not affect the trace element distribution and that interpretations about chemical changes in deeply altered pyroclastic rocks should be always the outcome of careful accurate analyses.En un trabajo previo se estudiaron tres depósitos piroclásticos, considerados como paleosuelos, del área volcánica del Monte Yulture (Potenza, Italia para deducir su grado de meteorización. En el presente trabajo se estudia el comportamiento de algunos elementos traza (Ce, La, Ba, Ni, Cr, Y, Rb, Sr, Y, Zr, Nb en esos depósitos para intentar obtener una imagen geoquímica más completa. Se ha estudiado la distribución de elementos traza en la roca total y después de un ataque con pirosulfato-Na (residuo + solución. Ba y Sr parecen estar controlados

  2. Origin and transport of CH4 in two maar lakes fed by mantle-derived volatiles (Mt. Vulture volcano, Italy)

    Science.gov (United States)

    Caracausi, Antonio; Cosenza, Paolo; Favara, Rocco; Foresta Martin, Luigi; Galli, Nunzio; Grassa, Fausto; Nuccio, Pasquale Mario; Paternoster, Michele; Riccobono, Giuseppe

    2014-05-01

    from previous limnological-geochemical investigations has been joined with isotope signature of gas (CH4 and CO2) collected from sediments at the bottom of LPM, by means of a specially designed robot called "Muddy". Muddy is also able to perform vertical profiles both of pH and of temperature in the water column and in the sediments as well. The obtained results lead us: 1) to assess the production ratio of CH4 through acetoclastic methanogenesis and CO2 reduction in the sediments; 2) to determinate CH4 oxidation; 3) to detect the origin of CO2 involved in methanogenic processes, evaluating the contribution organic-CO2 and the sink of mantle-derived CO2.;4) to discuss the differences in CH4 sources in the water and sediments; 5) to properly define gas hazards assessment. A. Caracausi, M. Nicolosi, P.M. Nuccio, R. Favara, M. Paternoster, A. Rosciglione (2013) Geochemical insight into differences in the physical structures and dynamics of two adjacent maar lakes at Mt. Vulture volcano (southern Italy), G. Cubed, doi: 10.1002/ggge.2011

  3. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    Science.gov (United States)

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  4. Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: Implications for general fluid flow models on volcanoes

    OpenAIRE

    Finizola, A.; Laboratoire GéoSciences Réunion, UR, IPGP, UMR 7154, Saint Denis, La Réunion, France; Ricci, T.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Deiana, R.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy; Barde Cabusson, S.; Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy; Rossi, M.; Dipartimento di Geoscienze, Università di Padova, Italy; Università Milano-Bicocca, Milan, Italy; Praticelli, N.; Dipartimento di Geoscienze, Università degli Studi di Padova, Padova, Italy; Giocoli, A.; Laboratorio di Geofisica, IMAA-CNR, Tito Scalo, Potenza, Italy; Romano, G.; Tito Scalo, Potenza, Italy; Delcher, E.; Suski, B.; Institut de Géophysique, Université de Lausanne, Lausanne, Switzerland; Revil, A.; Colorado School of Mines; Menny, P.; Laboratoire Magmas et Volcans, Université Blaise Pascal, Clermont-Ferrand, France; Di Gangi, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Letort, J.; Ecole et Observatoire des Sciences de la Terre, Universite de Strasbourg, France; Peltier, A.; Institut de Physique du Globe de Paris, France

    2010-01-01

    On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products,mostly lithic blocks, someofwhich impacted the ground as far as down to 200 m a.s.l., about 1.5 kmfaraway fromthe active vents. Two days after the explosion, a newvapouremissionwas discovered on the north-eastern flank of the volcanic edifice, at 560 m a.s.l., just above the area called “Nel Cannestrà”. This new vapour emission was due to a block impact. In ...

  5. Focused and diffuse effluxes of CO2 from mud volcanoes and mofettes south of Mt. Etna (Italy)

    OpenAIRE

    Giammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Parello, F.; DFCTA, University of Palermo; Gambardella, B.; Dip.Ter.Ris., University of Genova; Schifano, R.; DFCTA, University of Palermo; Pizzullo, S.; DFCTA, University of Palermo; Galante, G.; DFCTA, University of Palermo

    2007-01-01

    Several sites with anomalous emissions of carbon dioxide were investigated in the region south of Mt. Etna volcano in order to assess the types of emission (focused and/or diffuse), their surface extension and the total output of CO2. Most of the studied emissions are located on the southwest boundary of Mt. Etna, near the town of Paternò. They consist of three mud volcanoes (known as Salinelle), one spring with bubbling gas (Acqua Grassa) and one area of diffuse degassing (Peschería...

  6. Probabilistic seismic hazard assessment in the Mt. Etna region (Italy): application to local volcano-tectonic earthquakes

    OpenAIRE

    Azzaro, Raffaele; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; D'Amico, Salvatore; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Tuvè, Tiziana; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia

    2014-01-01

    Earthquakes are, by far, the most relevant source of hazard for the densely urbanised areas of Mt. Etna region. Local communities living in the eastern and southern flanks of the volcano continuously suffer social and economic losses due to the very high occurrence of damaging earthquakes, which produce intensities up to degree X EMS despite of low energy (M < 5.0). Seismic hazard in the Mt. Etna region is controlled by two distinct types of earthquakes, namely regional and local ...

  7. The evolution of the Monte Vulture volcano (Southern Italy): Inferences from volcanological, geological and deep dipole electrical soundings data

    Science.gov (United States)

    La Volpe, L.; Patella, D.; Rapisardi, L.; Tramacere, A.

    1984-10-01

    The activity of Monte Vulture started in the Middle Pleistocene; stratigraphic evidence suggests that the volcanic events may have occurred in the following succession: (1) formation of widespread pyroclastic pumice deposits; (2) sporadic and localized explosive and minor extrusive eruptions; (3) highly explosive eruptions with the formation of some tuff cones and of the oldest part of the Monte Vulture central volcano; and (4) activity at the central volcano, initially mainly explosive and successively increasingly effusive. The western part of the composite volcano, and probably also its summit part were affected by caldera collapses. The volcanic activity ended with hydromagmatic explosion, which formed two explosion craters. Monte Vulture was built up on the external units of the Southern Apennines at the western border of the foretrough. The upper part of the sedimentary substratum consists mainly of clayey formations of the Lagonegro and Sannitic units. Beneath these terrains radiolarites and cherty-limestones of the Lagonegro units outcrop west of Monte Vulture. Rocks of the Apulia carbonate platform were drilled east of the volcano. Deep dipole electrical soundings showed a resistant basement at a depth ranging from 0.2 km down to 4.3 km beneath Monte Vulture. Volcanological, geological and geoelectrical data allow us to hypothesize that: (a) the magma chamber could be located at the boundary between the rigid resistant basement and the overlying conductive plastic terrains; (b) the Apulia carbonate platform forms a structural high beneath the Monte Vulture; and (c) the overthrusting of the Lagonegro units on the Apulia platform may be located beneath the floors of the calderas of Monte Vulture.

  8. The occurrence of Mt Barca flank eruption in the evolution of the NW periphery of Etna volcano (Italy)

    Science.gov (United States)

    Branca, S.; Del Carlo, P.; Lo Castro, M. D.; de Beni, E.; Wijbrans, J.

    2009-01-01

    Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.

  9. Real-time measurements of Hg0 and H2S at La Solfatara Crater (Campi Flegrei, Southern Italy) and Mt. Amiata volcano (Siena, Central Italy): a new geochemical approach to estimate the distribution of air contaminants

    Science.gov (United States)

    Cabassi, J.; Calabrese, S.; Tassi, F.; Venturi, S.; Capecchiacci, F.; Di Lonardo, C.; D'Alessandro, W.; Vaselli, O.

    2014-12-01

    The emission of Hg and H2S from natural and anthropogenic sources may have a great environmental impact in urban areas as well as in the surroundings of active and passive degassing volcanoes. Mercury is present in the atmosphere mainly in its elemental form (Hg0~98 %), which has a relatively high volatility, low solubility and chemical inertness. Hydrogen sulfide, one of the most abundant gas species in volcanic fluids, is highly poisoning and corrosive. In this study, an innovative real-time method for the measurements of Hg0 and H2S concentrations in air was carried out at La Solfatara Crater, a hydrothermally altered tuff-cone nested in the town of Pozzuoli (Southern Italy), and at Mt. Amiata volcano (Central Italy), where a world-class Hg mining district abandoned in the seventies and a presently-exploited geothermal field for the production of electrical energy occur. The main aims were (i) to test this new methodological approach and (ii) to investigate Hg0 and H2S concentrations and the chemical-physical parameters regulating their spatial distribution in polluted areas. A portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) was used in combination with a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i) to measure Hg0 and H2S, respectively. The instruments were synchronized and set at high-frequency acquisition (10 sec and 1 min, respectively). Measurements were carried out along pathways (up to 12 km long) at an average speed of <10 km/h and coupled with GPS data and meteorological parameters. In selected sites, passive samplers were positioned to determine the time-integrated Hg0 and H2S concentrations to be compared with the real-time measurements. The results indicate that this approach is highly efficient and effective in providing reliable and reproducible Hg0 and H2S concentrations and can be used to identify and characterize gas emitters in different environments.

  10. Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics - A case study at La Fossa volcano, Vulcano Island, Italy

    Science.gov (United States)

    Biass, Sébastien; Falcone, Jean-Luc; Bonadonna, Costanza; Di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino

    2016-10-01

    We present a probabilistic approach to quantify the hazard posed by volcanic ballistic projectiles (VBP) and their potential impact on the built environment. A model named Great Balls of Fire (GBF) is introduced to describe ballistic trajectories of VBPs accounting for a variable drag coefficient and topography. It relies on input parameters easily identifiable in the field and is designed to model large numbers of VBPs stochastically. Associated functions come with the GBF code to post-process model outputs into a comprehensive probabilistic hazard assessment for VBP impacts. Outcomes include probability maps to exceed given thresholds of kinetic energies at impact, hazard curves and probabilistic isoenergy maps. Probabilities are calculated either on equally-sized pixels or zones of interest. The approach is calibrated, validated and applied to La Fossa volcano, Vulcano Island (Italy). We constructed a generic eruption scenario based on stratigraphic studies and numerical inversions of the 1888-1890 long-lasting Vulcanian cycle of La Fossa. Results suggest a ~ 10- 2% probability of occurrence of VBP impacts with kinetic energies ≤ 104 J at the touristic locality of Porto. In parallel, the vulnerability to roof perforation was estimated by combining field observations and published literature, allowing for a first estimate of the potential impact of VBPs during future Vulcanian eruptions. Results indicate a high physical vulnerability to the VBP hazard, and, consequently, half of the building stock having a ≥ 2.5 × 10- 3% probability of roof perforation.

  11. Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy and its possible relationship with seismic activity

    Directory of Open Access Journals (Sweden)

    P. Madonia

    2011-05-01

    Full Text Available On 11 August 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV, located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy. An associated minor event took place on August 2009. Both the events caused severe damage to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical, and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: (i ground deformations and (ii changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast that occurred at the main paroxysm. Geochemical characterization allowed an estimation of the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events accounted for a possible common trigger for both the phenomena, even with different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading.

  12. Geochemistry and Sr-Nd isotopic compositions of mantle xenoliths from the Monte Vulture carbonatite-melilitite volcano, central southern Italy

    Science.gov (United States)

    Downes, H.; Kostoula, T.; Jones, A. P.; Beard, A. D.; Thirlwall, M. F.; Bodinier, J.-L.

    2002-08-01

    Spinel peridotite xenoliths found in the Monte Vulture carbonatite-melilitite volcano have been derived from the subcontinental lithospheric mantle beneath central southern Italy. Clinopyroxene-poor lherzolites and harzburgites are the most common rock types, with subordinate wehrlites and dunites. Small quantities of phlogopite and carbonate are present in a few samples. The peridotites record a large degree of partial melting and have experienced subsequent enrichment which has increased their LILE and LREE contents, but in most cases their HFSE contents are low. Despite being carried to the surface by a carbonatite-melilitite host, the whole-rock and clinopyroxene compositions of the xenoliths have a trace-element signature more closely resembling that of silicate-melt metasomatised mantle rather than carbonatite-metasomatised peridotites. 87Sr/86Sr and 143Nd/144Nd isotopic ratios for clinopyroxene from the Vulture peridotites are 0.7042-0.7058 and 0.51260-0.5131 respectively. They form a trend away from the depleted mantle to the composition of the host magmas, and show a significant enrichment in 87Sr/86Sr compared with most European mantle samples. The mantle beneath Monte Vulture has had a complex evolution - we propose that the lithosphere had already undergone extensive partial melting before being affected by metasomatism from a silicate melt which may have been subduction-related.

  13. Analysis and quantistic FE modeling of long period impulsive events associated with explosions at Stromboli volcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Kirchdoerfer, M. [Institut fuer Geophysik, Stuttgart (Germany)

    1999-06-01

    Broadband seismic measurements performed in 1995 and 1996 in the summit region of Stromboli (Italy) are analyzed. The experiment in 1995 used an array of four Guralp seismometers and one Wielandt-Streckeisen seismometer. The long-period signals are simple compared to the short period wave forms. Four classes of pulse-shaped seismograms can be distinguished. The radiation pattern is radially symmetric with respect to the crater region. Particle motion analysis indicates that the seismic sources are located between 50 and 200 m below the crater terrace. Hydrostatic model sources were studied by means of finite element calculations with different geometries, i.e. ellipsoids, in a solid cone modeling the topography of Stromboli. The results suggest that the explosive events on Stromboli originate from a shallow vertically elongated volume source.

  14. Decrypting geophysical signals at Stromboli Volcano (Italy): Integration of seismic and Ground-Based InSAR displacement data

    Science.gov (United States)

    Di Traglia, F; Cauchie, L; Casagli, N; Saccorotti, G

    2014-01-01

    We present the integration of seismic and Ground-Based Interferometric Synthetic Aperture Radar system (GBInSAR) displacement data at Stromboli Volcano. Ground deformation in the area of summit vents is positively correlated with both seismic tremor amplitude and cumulative amplitudes of very long period (VLP) signals associated with Strombolian explosions. Changes in VLP amplitudes precede by a few days the variations in ground deformation and seismic tremor. We propose a model where the arrival of fresh, gas-rich magma from depth enhances gas slug formation, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, an increase in volatile content causes a density decrease, expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit, and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different timescales characterizing bulk gas transfer versus slug formation and ascent. PMID:25821278

  15. Reappraisal of the geothermal potential at Colli Albani volcano (Italy): a new approach to the volume method

    Science.gov (United States)

    Giordano, G.; De Benedetti, A. A.; Ramazzotti, P.; Bonamico, A.; Mattei, M.

    2012-04-01

    High enthalpy geothermal reservoirs are usually associated with fractured rocks. Secondary permeability is however difficult to be predicted thus making it difficult to locate the most productive volumes of the reservoirs. The calculation of the energetic potential in geothermal areas suffers of the large uncertainties associated with secondary permeability issues, facing the task of the interplay between stratification and fracturing on the anisotropic distribution of secondary permeability. The object of this work is the research and informatization of available data for the Colli Albani (Latium, Central Italy) geothermal system, in order to propose a qualitative approach and quantitative identification and description of geothermal systems, applied to the Colli Albani area as a case history. The identification of the rock volumes most promising in terms of industrial exploitation needs the definition of an evaluation matrix. The considered data can be placed in a three dimensional matrix with A axis that accounts for the modeling of the depth of the top of the reservoirs based on geophysical and direct data, and a B axis that accounts for the thermal modeling of the crust (i.e. T with depth) based on measured thermal gradients. Both A and B data are strongly influenced by the geological model therefore, as for the case of Colli Albani, there is certainly a lot of scope into revising existing geological reconstructions of the reservoirs in Central Italy and accordingly reconsidering the interpolation and modeling of both thermal and geophysical data. For the scope of this work, we have taken into account the maps descriptive the thermal structure and the deep distribution of the top of the geothermal reservoirs produced by ENEL and AGIP between the 1970s and 1990s for Cental Italy, and we have detailed the internal structure of the substrate, considering more recent direct and indirect data on the nature of the substratum. Finally, we discuss the implementation

  16. Interaction between ultrapotassic magmas and carbonate rocks: Evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy

    Science.gov (United States)

    Peccerillo, Angelo; Federico, Marcella; Barbieri, Mario; Brilli, Mauro; Wu, Tsai-Wan

    2010-05-01

    Magma-carbonate rock interaction is investigated through a geochemical and Sr-Nd-O isotope study of granular lithic clasts ( ejecta) from the Alban Hills ultrapotassic volcano, Central Italy. Some samples (Group-1) basically represent intrusive equivalents of Alban Hills magmas. A few samples (Group-2) are ultramafic, have high MgO (˜30 to 40 wt%) and δ 18O‰, and originated by accumulation of mafic phases that crystallised from ultrapotassic melts during assimilation of dolomitic rocks. Group-3 ejecta consist of dominant K-feldspar, and show major element compositions similar to phonolites, which, however, are absent among the Alban Hills volcanics. Finally, another group (Group-4) contains corroded K-feldspars, surrounded by a microgranular to porphyritic matrix, made of igneous minerals (K-feldspar, foids, clinopyroxene, phlogopite) plus wollastonite, garnet, and some cuspidine. Group-4 ejecta are depleted in SiO 2 and enriched in CaO with respect to Group-3. The analysed ejecta have similar 143Nd/ 144Nd (0.51204-0.51217) as the Alban Hills lavas, whereas 87Sr/ 86Sr (0.70900-0.71067) is similar to lower. Whole rocks δ 18O‰ ranges from +7.0 to +13.2, reaching maximum values in ultramafic samples. A positive correlation with CaO is observed in single rock groups. Large Ion Lithophile Element (LILE) abundances and REE fractionation are generally high, and extreme values of Th, U and LREE are found in some Group-3 and Group-4 rocks. Mineralogical, petrological and geochemical data reveal extensive interaction between magma and carbonate wall rocks, involving both dolostones and limestones. These processes had dramatic effects on magma compositions, especially on phonolites, which were transformed to foidites. Evidence of such a process is found in Group-4 samples, in which K-feldspar is observed to react with a matrix that represents strongly undersaturated melts formed by interaction between silicate magma and carbonates. Trace element data also testify to a

  17. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy)

    Science.gov (United States)

    Brown, R. J.; Civetta, L.; Arienzo, I.; D'Antonio, M.; Moretti, R.; Orsi, G.; Tomlinson, E. L.; Albert, P. G.; Menzies, M. A.

    2014-09-01

    New geochemical and isotopic data on volcanic rocks spanning the period ~75-50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5-10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4-6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr-Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8-12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4-6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.

  18. Geochemical insight into differences in the physical structures and dynamics of two adjacent maar lakes at Mt. Vulture volcano (southern Italy)

    Science.gov (United States)

    Caracausi, A.; Nicolosi, M.; Nuccio, P. M.; Favara, R.; Paternoster, M.; Rosciglione, A.

    2013-05-01

    report on the first geochemical investigation of the Monticchio maar lakes (Mt. Vulture volcano, southern Italy) covering an annual cycle that aimed at understanding the characteristic features of the physical structures and dynamics of the two lakes. We provide the first detailed description of the lakes based on high-resolution conductivity-temperature-depth (CTD) profiles, chemical and isotopic (H and O) compositions of the water, and the amounts of dissolved gases (e.g., He, Ar, CH4, and CO2). The combined data set reveals that the two lakes, which are separated by less than 200 m, exhibit different dynamics: one is a meromictic lake, where the waters are rich in biogenic and mantle-derived gases, while the other is a monomictic lake, which exhibits complete turnover of the water in winter and the release of dissolved gases. Our data strongly suggest that the differences in the dynamics of the two lakes are due to different density profiles affected by dissolved solutes, mainly Fe, which is strongly enriched in the deep water of the meromictic lake. A conceptual model of water balance was constructed based on the correlation between the chemical composition of the water and the hydrogen isotopic signature. Gas-rich groundwaters that feed both of the lakes and evaporation processes subsequently modify the water chemistry of the lakes. Our data highlight that no further potential hazardous accumulation of lethal gases is expected at the Monticchio lakes. Nevertheless, geochemical monitoring is needed to prevent the possibility of vigorous gas releases that have previously occurred in historical time.

  19. Mingling processes at Panarea Volcano (Aeolian Islands, Italy): results from M73/2 cruise drilled cores

    Science.gov (United States)

    De Benedetti, A. A.; De Astis, G.; Raffaele, V.; Esposito, A.; Giordano, G.; Petersen, S.; Monecke, T.

    2012-04-01

    The last Meteor 73/2 cruise drilled several lava cores in the southern Tyrrhenian Sea, close to Panarea Island and surrounding islets (Aeolian archipelago, Italy), at depths comprised between 50 and 70 m bsl. These rocks - unconformably covered by unconsolidated lapilli tuffs - revealed different lithologies and mineralogical assemblages corresponding to different compositions (hereafter A & B), as then evidenced by ICP-MS analyses (major and trace elements) performed on selected rock-samples. The cores also displayed several, cm-sized, rounded enclaves of the A-type dispersed in the B-type. The petrographic study on textures and microprobe analyses on glass shards and mineral phases finally concurred in identifying two magmas with different history and quite complex interaction. Rock A is a holocrystalline shoshonite (SHO) - showing plagioclase (pl - An%=62-74) and clinopyroxene (cpx) as main phases, plus subordinate amphibole and biotite phenocrysts, rare and small olivines (Fo≈89%) - which represents the first magma, usually in form of enclaves. Notably, the SHO shows intersertal vesicularity and scarce glass. Rock B is a porphyritic rhyodacite (RD) characterized by pl (An%=32-52), and biotite phenocrysts, with minor cpx phenocrysts and microphenocrysts. Pl and cpx show both alternate and normal zoning, and the former have frequent K-rich reaction rims. Similar mineral phases and frequent sanidine microlites characterize the alkali-trachyte glassy groundmass of rock B. This rock hosts the SHO and represent the most voluminous magma. Overall, these features indicate a quite complex history of magma interaction(s) as well as a polybaric crystallization, which lead the volatiles abundance and behaviour. From the study of the highly irregular edges observed along their contacts, we argue intrusive and visco-plastic relationships between A and B. Moreover, the presence of irregular vesicles and vugs bounded by pl microlites suggest an emplacement at shallow level

  20. Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy

    Science.gov (United States)

    Panina, Liya; Stoppa, Francesco

    2009-12-01

    Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 - 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform

  1. Volcano Preparedness

    Science.gov (United States)

    ... Home › Get Help › Types of Emergencies › Volcano Preparedness Volcano Preparedness About About Volcano Explosive volcanoes blast hot solid and molten rock ... into action. Prepare How to Prepare for a Volcano Emergency Learn about your community warning systems and ...

  2. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): an innovative approach in the active volcano-tectonic area of Campi Flegrei (Italy)

    Science.gov (United States)

    Caccavale, M.; Matano, F.; Sacchi, M.; Somma, R.; Troise, C.; De Natale, G.

    2013-12-01

    The western coastal sector of Campania region (southern Italy) is characterised by the presence of the active volcano-tectonic area of Campi Flegrei. This area represents a very particular and interesting case-study for a probabilistic seismic hazard analysis (PSHA). The principal seismic source, related with the caldera, is not clearly constrained in the on-shore and off-shore areas. The well-known and monitored phenomenon of bradyseism affecting a large portion of case-study area is not modelled in the standard PSHA approach. From the environmental point of view the presence of very high exposed values in terms of population, buildings, infrastructures and palaces of high archaeological, natural and artistic value, makes this area a strategic natural laboratory to develop new methodologies. Moreover the geomorphological and geo-volcanological features lead to a heterogeneous coastline, made up by both beach and tuff cliffs, rapidly evolving for erosion and landslide (i.e. mainly rock fall and rock slide) phenomena that represent an additional hazard aspect. In the Campi Flegrei the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. In the framework of Italian MON.I.C.A project (sinfrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher tendency of landslide occurrence due to the seismic effect. Resident population reported the occurrence of some small rock falls along tuff quarry slopes during the main shocks of the 1982-84 bradyseismic events. The PSHA methodology, introduced by Cornell (1968), combines the contributions to the hazard from all potential sources of earthquakes and the average activity rates associated to each seismogenic zone considered. The result of the PSHA is represented by the spatial distribution of a ground-motion (GM) parameter A, such as Peak

  3. Magnetic signature of submarine volcanoes in the Phlegrean Fields-Ischia Ridge (North-Western side of the Bay of Naples, Southern Italy

    Directory of Open Access Journals (Sweden)

    M. Secomandi

    2008-06-01

    Full Text Available This paper presents a study of the Phlegrean Fields-Ischia submarine ridge by the analysis and interpretation of high-resolution aeromagnetic data recently acquired in the Western Procida offshore. The investigated area is located along the ridge connecting Ischia to the Phlegrean Fields and is characterized by the existence of several monogenetic volcanoes aligned on a NE-SW system of faults. The high-resolution magnetic data yielded new information on the area, highlighting particularly the signature of a volcanic body located between Pt. Serra and the Ruommoli shoal. This structure has not been clearly described before and we named it as the Pt. Serra submarine volcano. The computation of the analytic signal and horizontal gradient of the data distinctly located this structure and definined the position of its rims. A 2D modeling and 3D inversion of data provided information on the volcano’s thickness, width and magnetization, disclosing a meaningful igneous body extending down to several hundred meters b.s.l.

  4. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy

    Science.gov (United States)

    Conticelli, Sandro; Marchionni, Sara; Rosa, Davide; Giordano, Guido; Boari, Elena; Avanzinelli, Riccardo

    2009-01-01

    The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr-Nd-Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788-18.851 for 206Pb/204Pb, 15.685-15.701 for 207Pb/204Pb, and 39.048-39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc

  5. Slope instability induced by volcano-tectonics as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy)

    Science.gov (United States)

    Della Seta, Marta; Marotta, Enrica; Orsi, Giovanni; de Vita, Sandro; Sansivero, Fabio; Fredi, Paola

    2012-01-01

    Ischia is an active volcanic island in the Gulf of Naples whose history has been dominated by a caldera-forming eruption (ca. 55 ka) and resurgence phenomena that have affected the caldera floor and generated a net uplift of about 900 m since 33 ka. The results of new geomorphological, stratigraphical and textural investigations of the products of gravitational movements triggered by volcano-tectonic events have been combined with the information arising from a reinterpretation of historical chronicles on natural phenomena such as earthquakes, ground deformation, gravitational movements and volcanic eruptions. The combined interpretation of all these data shows that gravitational movements, coeval to volcanic activity and uplift events related to the long-lasting resurgence, have affected the highly fractured marginal portions of the most uplifted Mt. Epomeo blocks. Such movements, mostly occurring since 3 ka, include debris avalanches; large debris flows (lahars); smaller mass movements (rock falls, slumps, debris and rock slides, and small debris flows); and deep-seated gravitational slope deformation. The occurrence of submarine deposits linked with subaerial deposits of the most voluminous mass movements clearly shows that the debris avalanches impacted on the sea. The obtained results corroborate the hypothesis that the behaviour of the Ischia volcano is based on an intimate interplay among magmatism, resurgence dynamics, fault generation, seismicity, slope oversteepening and instability, and eruptions. They also highlight that volcano-tectonically triggered mass movements are a potentially hazardous phenomena that have to be taken into account in any attempt to assess volcanic and related hazards at Ischia. Furthermore, the largest mass movements could also flow into the sea, generating tsunami waves that could impact on the island's coast as well as on the neighbouring and densely inhabited coast of the Neapolitan area.

  6. Relationship between seismicity and eruptive activity at Mt. Etna volcano (Italy as inferred from historical record analysis: the 1883 and 1971 case histories

    Directory of Open Access Journals (Sweden)

    M. S. Barbano

    1996-06-01

    Full Text Available In this paper historical and recent seismological data are analysed in order to investigate the relationship between seismicity and eruptive phenomena at Mt. Etna volcano. The 1883 and 1971 case histories have been proposed because they are significant events in the recent history of the volcano regarding volcanic hazard and show very different evolutions of associated seismic activity and eruption dynamics. The first (1883 represents flank eruptions characterised by high seismic release, short duration and moderate effusion rate whereas the second (1971 can be ascribed to eruptions starting as summit or subterminal events and thereafter developing on the flanks with a minor level of seismicity, higher effusion rate and prolonged duration. The pattern of seismic activity during 1883 and 1971, as inferred from historical record analysis, and the different associated type of eruption may be a result of diverse stress conditions acting on the volcanic system. The interpretation of the seismic behaviour by considering historical eruptions in a systematic fashion will contribute to a clearer understanding of volcanic phenomena at Mt. Etna.

  7. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    Science.gov (United States)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching

  8. How changes in pore pressure affect fluid circulation in volcanoes: three examples from Vulcano Island, Mt. Etna and Mt Vesuvius (Italy)

    Science.gov (United States)

    Federico, C.; Madonia, P.; Capasso, G.; D'Alessandro, W.; Bellomo, S.; Brusca, L.; Cusano, P.; Longo, M.; Paonita, A.; Petrosino, S.

    2013-05-01

    Fluids circulating in volcanic edifices are attracting increasing interest from scientists, mostly because their role in triggering flank instability, phreatic explosions, and eruptions has been documented in several cases worldwide [Newhall et al. 2001, Thomas et al. 2004]. Fluid pore pressure can change as an effect of either external (meteoric recharge, variation of the stress field), or endogenous causes (e.g. internal pressurization of magmatic volatiles and hydrothermal systems). The reciprocal roles of tectonics and magmatic/hydrothermal activity are still under investigation [Gottsman et al. 2007, Roeloffs et al. 2003]. We discuss the results of decennial data records collected in the aquifers of Mt Etna, Vulcano Island and Mt Vesuvius, and get insights on the role of tectonics and volcanic activity on the observed variations of water level and chemical composition. In Vulcano Island, the shallow thermal aquifer is deeply concerned by deep volcanic fluids. The most significant variations were observed during the 1988-96 crisis, due to the large input of steam and acidic gases from depth. In addition, the record of the water table elevation provided remarkable insights on the pressure of the volcano-hydrothermal system, which can be envisaged as the cause for the onset of the phase of higher vapor output in the fumarolic field in late 2004. On Mt. Vesuvius, the geochemical behavior of the aquifer appears strictly controlled by the input of volcanic gases and variations in the stress field. These latter, which were responsible for the seismic crisis of 1999, and the almost simultaneous increased input of CO2-rich vapor, significantly affected water chemistry and temperature, until 2006. The recent observations of low salinity, temperature, and dissolved carbon contents in groundwater provide strong evidence for reduced pressure in the volcano-hydrothermal system. The record of water chemistry available on Mt. Etna since 1994 shows coeval changes in almost all

  9. A functional-oriented assessment of environmental criticality due to anthropic actions along the hillslopes of the Somma-Vesuvio volcano (Naples, Italy).

    Science.gov (United States)

    Romano, Nunzio; De Falco, Melania; Speranza, Giuseppe; Tarolli, Paolo

    2015-04-01

    Mediterranean environments are characterized by a climatic regime with a strong seasonal variability. More uniform precipitations usually occur during the winter season, whereas short and very intense rainfalls occur during the fall and early spring that, in turn, trigger surface runoff and severe soil erosion phenomena. When this typical seasonality interacts with a territory substantially altered by anthropic actions, conditions can easily arise for environmental imbalances with serious risks for flash floods and landslides. Many of the degradation dynamics recorded during the last decades in western countries are also the result of the socio-economic changes after the II world war which yielded land-use changes with the urban sprawl process and the increase in human settlements of the natural environments. We are also witnessing a change in the perception of the natural environment and the relevant values. This study benefits from the availability of historical maps and rainfall time series to analyze the profound landscape changes occurred during the last century along the hillsides of the Somma-Vesuvio volcano, in the renowned piedmont area located at east of Napoli city. We are specifically interested in the changes and disturbances made to the hydrographic network to evaluate the increasing potential risks for flood and landslides along these hillslopes characterized by the presence of highly vulnerable volcanic soils, the construction of roads, and other negative alterations of the natural overland flow patterns.

  10. Dante's volcano

    Science.gov (United States)

    1994-09-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  11. Dante's Volcano

    Science.gov (United States)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  12. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  13. 4D volcano gravimetry

    Science.gov (United States)

    Battaglia, Maurizio; Gottsmann, J.; Carbone, D.; Fernandez, J.

    2008-01-01

    Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/ isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the

  14. Native sulfur, sulfates and sulfides from the active Campi Flegrei volcano (southern Italy): Genetic environments and degassing dynamics revealed by mineralogy and isotope geochemistry

    Science.gov (United States)

    Piochi, Monica; Mormone, Angela; Balassone, Giuseppina; Strauss, Harald; Troise, Claudia; De Natale, Giuseppe

    2015-10-01

    We investigated sulfur-bearing minerals from the Campi Flegrei caldera, southern Italy, in relation to the increase of hydrothermal activity phenomena since 2006, aimed at providing insights into the volcanic system dynamics. Mineral encrustations and muds were sampled between 2013 and 2015 at the long-standing degassing crater of the Solfatara tuff cone and its recently restless north-eastern Pisciarelli slope. Deep-seated sulfides were further separated from two drill cores (AGIP's Mofete boreholes: 1500 m and 2695 m depth). The mineral assemblage and texture of sampled encrustations were determined by X-ray diffraction, optical and scanning electron microscopy and X-ray microanalysis by energy dispersive spectrometry. Native sulfur and alunite dominate among the newly formed mineral phases. Other minerals are mostly alunogen, and locally pickeringite, potassium alum, hematite and pyrite. Mereiterite and amarillite sporadically occur. The mud pools are rich in gypsum, potassium alum and pyrite. Quartz and argillic phases, locally with analcime, are dispersed in the outcropping rocks. δ34S values were determined for shallow subsurface native sulfur (- 5.5 to 0.0‰) and alunite (- 1.7 to - 0.2‰), as well as for the deep-seated pyrite (3.3 to 7.4‰ in the depth range:1500-2695 m). δ18O values were measured for shallow native alunite (4.2 to 7.0‰). Pisciarelli alunite was finally analyzed for its 87Sr/86Sr ratio and 143Nd/144Nd ratios (0.707517 ± 6 and 0.512459 ± 6, respectively). Textural and isotopic data constrain the genesis of alunite at the expense of K-feldspars through rock alteration by hydrothermal fluids. We suggest that the caldera is a low-sulfidation system hosting acid-sulfate deposits in its active degassing area. The acid-sulfate environment developed on an argillitic facies that thins outwards and is characteristic for steam-heated and magmatic-steam environments. These environments developed in relation to the fractured settings that

  15. Spreading volcanoes

    Science.gov (United States)

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  16. A scale for ranking volcanoes by risk

    Science.gov (United States)

    Scandone, Roberto; Bartolini, Stefania; Martí, Joan

    2016-01-01

    We propose a simple volcanic risk coefficient (VRC) useful for comparing the degree of risk arising from different volcanoes, which may be used by civil protection agencies and volcano observatories to rapidly allocate limited resources even without a detailed knowledge of each volcano. Volcanic risk coefficient is given by the sum of the volcanic explosivity index (VEI) of the maximum expected eruption from the volcano, the logarithm of the eruption rate, and the logarithm of the population that may be affected by the maximum expected eruption. We show how to apply the method to rank the risk using as examples the volcanoes of Italy and in the Canary Islands. Moreover, we demonstrate that the maximum theoretical volcanic risk coefficient is 17 and pertains to the large caldera-forming volcanoes like Toba or Yellowstone that may affect the life of the entire planet. We develop also a simple plugin for a dedicated Quantum Geographic Information System (QGIS) software to graphically display the VRC of different volcanoes in a region.

  17. Mud Volcanoes Formation And Occurrence

    Science.gov (United States)

    Guliyev, I. S.

    2007-12-01

    Mud volcanoes are natural phenomena, which occur throughout the globe. They are found at a greater or lesser scale in Azerbaijan, Turkmenistan, Georgia, on the Kerch and Taman peninsulas, on Sakhalin Island, in West Kuban, Italy, Romania, Iran, Pakistan, India, Burma, China, Japan, Indonesia, Malaysia, New Zealand, Mexico, Colombia, Trinidad and Tobago, Venezuela and Ecuador. Mud volcanoes are most well-developed in Eastern Azerbaijan, where more than 30% of all the volcanoes in the world are concentrated. More than 300 mud volcanoes have already been recognized here onshore or offshore, 220 of which lie within an area of 16,000 km2. Many of these mud volcanoes are particularly large (up to 400 m high). The volcanoes of the South Caspian form permanent or temporary islands, and numerous submarine banks. Many hypotheses have been developed regarding the origin of mud volcanoes. Some of those hypotheses will be examined in the present paper. Model of spontaneous excitation-decompaction (proposed by Ivanov and Guliev, 1988, 2002). It is supposed that one of major factors of the movement of sedimentary masses and formation of hydrocarbon deposits are phase transitions in sedimentary basin. At phase transitions there are abnormal changes of physical and chemical parameters of rocks. Abnormal (high and negative) pressure takes place. This process is called as excitation of the underground environment with periodicity from several tens to several hundreds, or thousand years. The relationship between mud volcanism and the generation of hydrocarbons, particularly methane, is considered to be a critical factor in mud volcano formation. At high flow rates the gas and sediment develops into a pseudo-liquid state and as flow increases the mass reaches the "so-called hover velocity" where mass transport begins. The mass of fluid moves as a quasi-uniform viscous mass through the sediment pile in a piston like manner until expelled from the surface as a "catastrophic eruption

  18. Continuous in-situ Measurements of Gases (H2, H2S, CH4, N2, O2, Ar, He, and CO2) at the Fumarole "Soffionissimo" (Solfatara volcano, Southern Italy)

    Science.gov (United States)

    Wiersberg, T.; Somma, R.; Rocco, A.; de Rosa, M.; Zimmer, M.; Quattrocchi, F.; de Natale, G.; de Natale, P.

    2007-05-01

    From November 29th to December 1st 2006, a gas monitoring experiment was carried out at the Solfatara volcano (Pozzuoli, Italy). The primary objectives were to prove that monitoring is possible with the experimental set-up described below, and to compare the new data obtained with those from earlier continuos gas monitoring carried out in November 2001. Temperature measurements and gas extraction were done at the fumarole "Soffionissimo" very close to the "Bocca Grande". The temperature measurements were performed with a temperature probe (K-type thermocouple), which was let about 30 cm into the fumarole. For better comparison of temperature and gas data, the gas tube was directly connected with the temperature probe. After having adjusted a continuous gas flow with a diaphragm pump and a needle valve, the gas was piped through a 10 m Teflon© tube for more than 40 hours. The gas phase primary consists of water gas, which was condensed in a trap, installed in a refrigerator. The amount of water in the trap was determined regulary every 3-4 hours. At the beginning of the monitoring experiment, the Teflon© tube was heated in order to avoid condensation of the water in the tube before getting trapped. Although the tube was not heated for the whole time of the experiment, it turns out that the amount of water, condensed in the water trap per hour, and does not significantly change when the tube was not heated. Hence, the amount of water, condensing in the tube before getting trapped, seems negligible. The remaining, almost water-free gas phase was finally dried over Fe wool in a filter, and then continuously analysed with a quadrupole mass spectrometer (Balzers Omnistar ©) for the following components: H2, H2S, CH4, N2, O2, Ar, He, and CO2. To make sure that the final drying process does not influence the gas composition in particular for H2 and H2S, a comparison measurement was done without the filter, which only revealed somewhat higher water content. During the

  19. Volcano watch

    OpenAIRE

    Loughlin, Sue

    2006-01-01

    On 20 May 2006, the huge lava dome at the summit of the Soufriere Hills volcano on Montserrat in the West Indies collapsed, sending clouds of ash and gas 20 kilometres up into the atmosphere. Pyroclastic flows of hot gas, ash and rock swept out of the horseshoe-shaped crater into the Tar River valley, and small tsunamis hit Antigua and Guadeloupe. There were no casualties because seriously affected areas had been evacuated long ago, though significant damage was caused by massive clo...

  20. Global Volcano Locations Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC maintains a database of over 1,500 volcano locations obtained from the Smithsonian Institution Global Volcanism Program, Volcanoes of the World publication....

  1. Volcano Vents

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 5 May 2003This low-relief shield volcano imaged with the THEMIS visible camera has two large vents which have erupted several individual lava flows. The positions of the origins of many of the flows indicate that it is probable that the vents are secondary structures that formed only after the shield was built up by eruptions from a central caldera.Image information: VIS instrument. Latitude 17.6, Longitude 243.6 East (116.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. A Scientific Excursion: Volcanoes.

    Science.gov (United States)

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  3. Spreading and collapse of big basaltic volcanoes

    Science.gov (United States)

    Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael

    2016-04-01

    Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These

  4. SUBGLACIAL VOLCANO IN ATLANTIC

    OpenAIRE

    Nakamura, Shigehisa

    2010-01-01

    This is a note to satellite monitoring of the subglacial volcano in the Atlantic. The satellite data are obtained by EUMETSAT and NASA An eruption of a subglacial volcano in Iceland had issued volcanic ash, and the winds transferred the ash to the European Union in April 2010. This volcano is one of the volcanoes in the Atlantic. There are volcanoes in the north and south Atlantic. Some of them are in Azores Islands, in Canary Islands and Cape Verde Islands. Iceland is located on the zone of ...

  5. Volcano seismology

    Science.gov (United States)

    Chouet, B.

    2003-01-01

    A fundamental goal of volcano seismology is to understand active magmatic systems, to characterize the configuration of such systems, and to determine the extent and evolution of source regions of magmatic energy. Such understanding is critical to our assessment of eruptive behavior and its hazardous impacts. With the emergence of portable broadband seismic instrumentation, availability of digital networks with wide dynamic range, and development of new powerful analysis techniques, rapid progress is being made toward a synthesis of high-quality seismic data to develop a coherent model of eruption mechanics. Examples of recent advances are: (1) high-resolution tomography to image subsurface volcanic structures at scales of a few hundred meters; (2) use of small-aperture seismic antennas to map the spatio-temporal properties of long-period (LP) seismicity; (3) moment tensor inversions of very-long-period (VLP) data to derive the source geometry and mass-transport budget of magmatic fluids; (4) spectral analyses of LP events to determine the acoustic properties of magmatic and associated hydrothermal fluids; and (5) experimental modeling of the source dynamics of volcanic tremor. These promising advances provide new insights into the mechanical properties of volcanic fluids and subvolcanic mass-transport dynamics. As new seismic methods refine our understanding of seismic sources, and geochemical methods better constrain mass balance and magma behavior, we face new challenges in elucidating the physico-chemical processes that cause volcanic unrest and its seismic and gas-discharge manifestations. Much work remains to be done toward a synthesis of seismological, geochemical, and petrological observations into an integrated model of volcanic behavior. Future important goals must include: (1) interpreting the key types of magma movement, degassing and boiling events that produce characteristic seismic phenomena; (2) characterizing multiphase fluids in subvolcanic

  6. Volcanoes: Nature's Caldrons Challenge Geochemists.

    Science.gov (United States)

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  7. Volcano Instability Induced by Resurgence at the Ischia Island Caldera (Italy), and the Tsunamigenic Potential of the Related Debris Avalanche Deposits: a Complex Source of Hazard at Land-sea Interface

    Science.gov (United States)

    Tinti, S.; Zaniboni, F.; Pagnoni, G.; Marotta, E.; Della Seta, M.; de Vita, S.; Orsi, G.; Sansivero, F.; Fredi, P.

    2009-05-01

    Slope instability is a common feature in the evolution of active volcanic areas. The occurrence of mass movements is doubly linked to volcanism and volcano-tectonism, which act as either preparing factor (through increased topographic gradients or emplacement of unconsolidated deposits on slopes) or triggering factor (through earthquakes and/or eruptions). Debris avalanches and lahars in active volcanic areas are an additional factor of hazard, due to their high destructive power. Moreover, volcanoes located in coastal areas or on islands, may experience lateral collapses with the potential to generate large tsunamis. Ischia is an active volcanic island in the Gulf of Naples. Volcanism begun prior to 150 ka and continued, with periods of quiescence, until the last eruption in 1302 A.D. It has been dominated by a caldera-forming eruption (55 ka), which was followed by resurgence of the caldera floor. Volcanism and gravitational mass movements have been coeval to resurgence, which generated a maximum net uplift of about 900 m over the past 33 ka. Resurgence occurred through intermittent uplifting and tectonic quietness phases. During uplift, volcanism and generation of mass movements were very active. The resurgent area is composed of differentially displaced blocks and has a poligonal shape, resulting from reactivation of regional faults and activation of faults directly related to volcano-tectonism. The western sector is bordered by inward-dipping, high-angle reverse faults, cut by late outward-dipping normal faults due to gravitational readjustment of the slopes. The north-eastern and the south-western sides are bordered by vertical faults with right transtensive and left transpressive movements, respectively. The area located to the east of the most uplifted block is displaced by outward- dipping normal faults. Some giant landslides and their relationships with volcano-tectonism have been recognized at Ischia. Their deposits are intercalated with primary

  8. Muons reveal the interior of volcanoes

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    The MU-RAY project has the very challenging aim of providing a “muon X-ray” of the Vesuvius volcano (Italy) using a detector that records the muons hitting it after traversing the rock structures of the volcano. This technique was used for the first time in 1971 by the Nobel Prize-winner Louis Alvarez, who was searching for unknown burial chambers in the Chephren pyramid.   The location of the muon detector on the slopes of the Vesuvius volcano. Like X-ray scans of the human body, muon radiography allows researchers to obtain an image of the internal structures of the upper levels of volcanoes. Although such an image cannot help to predict ‘when’ an eruption might occur, it can, if combined with other observations, help to foresee ‘how’ it could develop and serves as a powerful tool for the study of geological structures. Muons come from the interaction of cosmic rays with the Earth's atmosphere. They are able to traverse layers of ro...

  9. Volcanoes: observations and impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  10. Volcanoes, Observations and Impact

    Science.gov (United States)

    Thurber, Clifford; Prejean, Stephanie

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  11. A seismic survey at Colima volcano (Mexico)

    OpenAIRE

    Del Pezzo, E.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; La Rocca, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Galluzzo, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Petrosino, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Cusano, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Bianco, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Breton, M.; Observatorio Vulcanologico de Colima – Università di Colima (Mexico); Orozco-Rojas, J.; Observatorio Vulcanologico de Colima – Università di Colima, (Mexico); Ibanez, J.; Instituto Andaluz de Geofisica - Universidad de Granada (Spain); Veneruso, M.; Centro Regionale di Competenza “Analisi e Monitoraggio del Rischio Ambientale” (AMRA)

    2008-01-01

    In the period 2-6 April 2007 a seismic survey was carried out at Solfatara Volcano, (Campi Flegrei, Southern Italy) with the aim of inferring the shallow structure and evaluating local site effects. Five circular seismic arrays equipped with 1-Hz 3-component Mark LE3Dlite sensors, were installed in the Solfatara crater. Each array consisted of 4 sensors, 3 of them evenly spaced (120°) around the circumference and the fourth placed at its center. The arrays were designed with radii of 5, 10...

  12. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    Science.gov (United States)

    Piochi, M.; de Vivo, B.; Ayuso, R.A.

    2006-01-01

    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18erupted both during interplinian (i.e. 1906 AD) and sub-plinian (472 AD, 1631 AD) events. The shallowest level of magma storage at about 5 km was the site of magma chambers for the Pompei and Avellino plinian eruptions. New investigations are necessary to verify the proposed magma feeding system. ?? 2006 Elsevier B.V. All rights reserved.

  13. 150 Years of Seismological Monitoring of Mount Vesuvius (Italy).

    OpenAIRE

    Giudicepietro, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; D’Auria, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Scarpato, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Peluso, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Orazi, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Ricciolino, P.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; De Cesare, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Lo Bascio, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Esposito, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Borriello, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Capello, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Caputo, A.; Buonocunto, C.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Vilardo, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Martini, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia

    2010-01-01

    Mt. Vesuvius (southern Italy) is one of the volcanoes with the greatest risk in the World because of its highly explosive eruptive style and its proximity to densely populated areas. The urbanization around Mt. Vesuvius began in ancient times and the impact of eruptions on human activities has been very hard...

  14. Eruption patterns of parasitic volcanoes

    OpenAIRE

    Izumi Yokoyama

    2015-01-01

    Eruption patterns of parasitic volcanoes are discussed in order to study their correlation to the activities of their parental polygenetic volcanoes. The distribution density of parasitic vents on polygenetic volcanoes is diversified, probably corresponding to the age and structure of parental volcanoes. Describing existing parasitic cones contextually in relation to parental volcanoes is as indispensable as collecting observational data of their actual formations. In the present paper, spati...

  15. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte dei Porri volcano, Salina, Aeolian Islands, southern Italy

    Science.gov (United States)

    Doherty, Angela L.; Bodnar, Robert J.; De Vivo, Benedetto; Bohrson, Wendy A.; Belkin, Harvey E.; Messina, Antonia; Tracy, Robert J.

    2012-01-01

    The Aeolian Islands are an arcuate chain of submarine seamounts and volcanic islands, lying just north of Sicily in southern Italy. The second largest of the islands, Salina, exhibits a wide range of compositional variation in its erupted products, from basaltic lavas to rhyolitic pumice. The Monte dei Porri eruptions occurred between 60 ka and 30 ka, following a period of approximately 60,000 years of repose. The bulk rock composition of the Monte dei Porri products range from basaltic-andesite scoria to andesitic pumice in the Grey Porri Tuff (GPT), with the Monte dei Porri lavas having basaltic-andesite compositions. The typical mineral assemblage of the GPT is calcic plagioclase, clinopyroxene (augite), olivine (Fo72−84) and orthopyroxene (enstatite) ± amphibole and Ti-Fe oxides. The lava units show a similar mineral assemblage, but contain lower Fo olivines (Fo57−78). The lava units also contain numerous glomerocrysts, including an unusual variety that contains quartz, K-feldspar and mica. Melt inclusions (MI) are ubiquitous in all mineral phases from all units of the Monte dei Porri eruptions; however, only data from olivine-hosted MI in the GPT are reported here. Compositions of MI in the GPT are typically basaltic (average SiO2 of 49.8 wt %) in the pumices and basaltic-andesite (average SiO2 of 55.6 wt %) in the scoriae and show a bimodal distribution in most compositional discrimination plots. The compositions of most of the MI in the scoriae overlap with bulk rock compositions of the lavas. Petrological and geochemical evidence suggest that mixing of one or more magmas and/or crustal assimilation played a role in the evolution of the Monte dei Porri magmatic system, especially the GPT. Analyses of the more evolved mineral phases are required to better constrain the evolution of the magma.

  16. Volcanoes - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, that are within an extended area of the northern...

  17. Italian active volcanoes

    Institute of Scientific and Technical Information of China (English)

    RobertoSantacroce; RenawCristofolini; LuigiLaVolpe; GiovanniOrsi; MauroRosi

    2003-01-01

    The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.

  18. Shaking up volcanoes

    Science.gov (United States)

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  19. Cook Inlet and Kenai Peninsula, Alaska ESI: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the locations of volcanos in Cook Inlet and Kenai Peninsula, Alaska. Vector points in the data set represent the location of the volcanos....

  20. Volcanoes: Coming Up from Under.

    Science.gov (United States)

    Science and Children, 1980

    1980-01-01

    Provides specific information about the eruption of Mt. St. Helens in March 1980. Also discusses how volcanoes are formed and how they are monitored. Words associated with volcanoes are listed and defined. (CS)

  1. Organizational changes at Earthquakes & Volcanoes

    Science.gov (United States)

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  2. Hawaii's volcanoes revealed

    Science.gov (United States)

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  3. Lake Garda, Italy

    Science.gov (United States)

    2000-01-01

    This ASTER image was acquired on July 29, 2000 and covers an area of 30 by 57 km in northern Italy. Lake Garda was formed by glaciers during the last Ice Age, and is Italy's largest lake. Lago di Garda lies in the provinces of Verona, Brescia, and Trento, and is 51 kilometers (32 miles) long and from 3 to 18 kilometers (2 to 11 miles) wide. The Sarca is its chief affluent, and the lake is drained southward by the Mincio, which discharges into the Po River. Many villas are situated on its shores. On the peninsula of Sirmione, at the southern end of the lake, are the ruins of a Roman villa and a castle of the Scaligers, an Italian family of the 16th century. The RIGHT image has the land area masked out, and a harsh stretch was applied to the lake values to display variations in sediment load. Also visible are hundreds of boats and their wakes, criss-crossing the lake.The image is centered at 45.6 degrees north latitude, 10.6 degrees east longitude. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping

  4. The diversity of mud volcanoes in the landscape of Azerbaijan

    Science.gov (United States)

    Rashidov, Tofig

    2014-05-01

    As the natural phenomenon the mud volcanism (mud volcanoes) of Azerbaijan are known from the ancient times. The historical records describing them are since V century. More detail study of this natural phenomenon had started in the second half of XIX century. The term "mud volcano" (or "mud hill") had been given by academician H.W. Abich (1863), more exactly defining this natural phenomenon. All the previous definitions did not give such clear and capacious explanation of it. In comparison with magmatic volcanoes, globally the mud ones are restricted in distribution; they mainly locate within the Alpine-Himalayan, Pacific and Central Asian mobile belts, in more than 30 countries (Columbia, Trinidad Island, Italy, Romania, Ukraine, Georgia, Azerbaijan, Turkmenistan, Iran, Pakistan, Indonesia, Burma, Malaysia, etc.). Besides it, the zones of mud volcanoes development are corresponded to zones of marine accretionary prisms' development. For example, the South-Caspian depression, Barbados Island, Cascadia (N.America), Costa-Rica, Panama, Japan trench. Onshore it is Indonesia, Japan, and Trinidad, Taiwan. The mud volcanism with non-accretionary conditions includes the areas of Black Sea, Alboran Sea, the Gulf of Mexico (Louisiana coast), Salton Sea. But new investigations reveal more new mud volcanoes and in places which were not considered earlier as the traditional places of mud volcanoes development (e.g. West Nile Rive delta). Azerbaijan is the classic region of mud volcanoes development. From over 800 world mud volcanoes there are about 400 onshore and within the South-Caspian basin, which includes the territory of East Azerbaijan (the regions of Shemakha-Gobustan and Low-Kura River, Absheron peninsula), adjacent water area of South Caspian (Baku and Absheron archipelagoes) and SW Turkmenistan and represents an area of great downwarping with thick (over 25 km) sedimentary series. Generally, in the modern relief the mud volcanoes represent more or less large uplifts

  5. Anatomy of a volcano

    NARCIS (Netherlands)

    Wassink, J.

    2011-01-01

    The Icelandic volcano Eyjafjallajökull caused major disruption in European airspace last year. According to his co-author, Freysteinn Sigmundsson, the reconstruction published in Nature six months later by aerospace engineering researcher, Dr Andy Hooper, opens up a new direction in volcanology. “W

  6. Italy: An Open Air Museum

    Science.gov (United States)

    Pizzorusso, Ann

    2016-04-01

    Imagine if you could see the River Styx, bathe in the Fountain of Youth, collect water which enhances fertility, wear a gem that heals bodily ailments, understand how our health is affected by geomagnetic fields, venture close to the flames of Hell on Earth and much, much, more. Know something? These things exist - on Earth - today - in Italy and you can visit them because Italy is an open air museum. Ann C. Pizzorusso, in her recent book, reveals how Italy's geology has affected its art, literature, architecture, religion, medicine and just about everything else. She explores the geologic birth of the land, describing the formation of the Alps and Apennines, romantic bays of Tuscany and Lazio, volcanoes of the south and Caribbean-like beaches of Puglia. But that's not all, from the first pages of this visually stunning book, the reader has the impression of being in an art museum, where one can wander from page to page to satisfy one's curiosity-- guided from time to time by the Etruscan priests, Virgil, Dante, Goethe or Leonardo da Vinci himself. Pizzorusso stitches together widely diverse topics - such as gemology, folk remedies, grottoes, painting, literature, physics and religion - using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. Wonderfully illustrated with many photos licensed from Italian museums, HRH Elizabeth II and the Ministero Beni Culturali the book highlights the best works in Italian museums and those outside in the "open air museums." This approach can be used in any other country in the world and can be used for cultural tourism (a tour following the book has been organized for cultural and university groups), an ideal way of linking museums to the surrounding landscape.

  7. Catalogue of Icelandic Volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun

    2016-04-01

    The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various

  8. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    Science.gov (United States)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  9. Earthquakes - Volcanoes (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2015-04-01

    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  10. EARTHQUAKES - VOLCANOES (Causes - Forecast - Counteraction)

    Science.gov (United States)

    Tsiapas, Elias

    2014-05-01

    going to be, when we know the record of specific earthquakes and the routes they have followed towards the East. For example, to foresee an earthquake in the Mediterranean region, we take starting point earthquakes to Latin America (0°-40°).The aforementioned elements will reach Italy in an average time period of 49 days and Greece in 53 days. The most reliable preceding phenomenon to determine the epicenter of an earthquake is the rise of the crust's temperature at the area where a large quantity of elements is concentrated, among other phenomena that can be detected either by instruments or by our senses. When there is an active volcano along the route between the area where the "starting-point" earthquake occurred and the area where we expect the same elements to cause a new earthquake, it is possible these elements will escape through the volcano's crater, carrying lava with them. We could contribute to that end, nullifying earthquakes that might be triggered by these elements further to the east, by using manmade resources, like adequate quantities of explosives at the right moment.

  11. Expert Systems for Real-Time Volcano Monitoring

    Science.gov (United States)

    Cassisi, C.; Cannavo, F.; Montalto, P.; Motta, P.; Schembra, G.; Aliotta, M. A.; Cannata, A.; Patanè, D.; Prestifilippo, M.

    2014-12-01

    In the last decade, the capability to monitor and quickly respond to remote detection of volcanic activity has been greatly improved through use of advanced techniques and semi-automatic software applications installed in most of the 24h control rooms devoted to volcanic surveillance. Ability to monitor volcanoes is being advanced by new technology, such as broad-band seismology, microphone networks mainly recording in the infrasonic frequency band, satellite observations of ground deformation, high quality video surveillance systems, also in infrared band, improved sensors for volcanic gas measurements, and advances in computer power and speed, leading to improvements in data transmission, data analysis and modeling techniques. One of the most critical point in the real-time monitoring chain is the evaluation of the volcano state from all the measurements. At the present, most of this task is delegated to one or more human experts in volcanology. Unfortunately, the volcano state assessment becomes harder if we observe that, due to the coupling of highly non-linear and complex volcanic dynamic processes, the measurable effects can show a rich range of different behaviors. Moreover, due to intrinsic uncertainties and possible failures in some recorded data, precise state assessment is usually not achievable. Hence, the volcano state needs to be expressed in probabilistic terms that take account of uncertainties. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we have developed an expert system approach to estimate the ongoing volcano state from all the available measurements and with minimal human interaction. The approach is based on hidden markov model and deals with uncertainties and probabilities. We tested the proposed approach on data coming from the Mt. Etna (Italy) continuous monitoring networks for the period 2011-2013. Results show that this approach can be a valuable tool to aid the

  12. Catalogue of Icelandic volcanoes

    Science.gov (United States)

    Ilyinskaya, Evgenia; Larsen, Gudrun; Vogfjörd, Kristin; Tumi Gudmundsson, Magnus; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Barsotti, Sara; Karlsdottir, Sigrun

    2015-04-01

    Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene. In the last 100 years, over 30 eruptions have occurred displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and their distribution. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in scientific papers and other publications. In 2010, the International Civil Aviation Organisation funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland (commenced in 2012), and the EU FP7 project FUTUREVOLC (2012-2016), establishing an Icelandic volcano Supersite. The Catalogue is a collaborative effort between the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Icelandic Civil Protection, with contributions from a large number of specialists in Iceland and elsewhere. The catalogue is scheduled for opening in the first half of 2015 and once completed, it will be an official publication intended to serve as an accurate and up to date source of information about active volcanoes in Iceland and their characteristics. The Catalogue is an open web resource in English and is composed of individual chapters on each of the volcanic systems. The chapters include information on the geology and structure of the volcano; the eruption history, pattern and products; the known precursory signals

  13. Volcano-hazard zonation for San Vicente volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  14. Shiveluch and Klyuchevskaya Volcanoes

    Science.gov (United States)

    2007-01-01

    A distance of about 80 kilometers (50 miles) separates Shiveluch and Klyuchevskaya Volcanoes on Russia's Kamchatka Peninsula. Despite this distance, however, the two acted in unison on April 26, 2007, when the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite caught them both erupting simultaneously. ASTER 'sees' a slightly different portion of the light spectrum than human eyes. Besides a portion of visible light, ASTER detects thermal energy, meaning it can detect volcanic activity invisible to human eyes. Inset in each image above is a thermal infrared picture of the volcano's summit. In these insets, dark red shows where temperatures are coolest, and yellowish-white shows where temperatures are hottest, heated by molten lava. Both insets show activity at the crater. In the case of Klyuchevskaya, some activity at the crater is also visible in the larger image. In the larger images, the landscapes around the volcanoes appear in varying shades of blue-gray. Dark areas on the snow surface are likely stains left over from previous eruptions of volcanic ash. Overhead, clouds dot the sky, casting their shadows on the snow, especially southeast of Shiveluch and northeast of Klyuchevskaya. To the northwest of Klyuchevskaya is a large bank of clouds, appearing as a brighter white than the snow surface. Shiveluch (sometimes spelled Sheveluch) and Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) are both stratovolcanoes composed of alternating layers of hardened lava, solidified ash, and rocks from earlier eruptions. Both volcanoes rank among Kamchatka's most active. Because Kamchatka is part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Large-scale plate tectonic activity causing simultaneous volcanic eruptions in Kamchatka is not uncommon.

  15. GlobVolcano Project Overview

    OpenAIRE

    Borgström, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia; Seifert, F. M.; Science, Application and Future Technologies Department ESA/ESRIN, Frascati, Italy; Tampellini, L.; Application department Carlo Gavazzi Space S.p.A. Milan, Italy; Ratti, R.; Application department Carlo Gavazzi Space S.p.A. Milan, Italy

    2008-01-01

    The GlobVolcano project is part of the ESA DUE programme. The project aims at demonstrating EO-based services to support the Volcanological Observatories and other mandate users (e.g. Civil Protection authorities, scientific communities of volcanoes) in their monitoring activities. During the project a worldwide selection of user organizations will cooperate with the GlobVolcano team in order to harmonize user’s requirements and to evaluate the EO-based services . The ...

  16. Pairing the Volcano

    CERN Document Server

    Ionica, Sorina

    2011-01-01

    Isogeny volcanoes are graphs whose vertices are elliptic curves and whose edges are $\\ell$-isogenies. Algorithms allowing to travel on these graphs were developed by Kohel in his thesis (1996) and later on, by Fouquet and Morain (2001). However, up to now, no method was known, to predict, before taking a step on the volcano, the direction of this step. Hence, in Kohel's and Fouquet-Morain algorithms, many steps are taken before choosing the right direction. In particular, ascending or horizontal isogenies are usually found using a trial-and-error approach. In this paper, we propose an alternative method that efficiently finds all points $P$ of order $\\ell$ such that the subgroup generated by $P$ is the kernel of an horizontal or an ascending isogeny. In many cases, our method is faster than previous methods. This is an extended version of a paper published in the proceedings of ANTS 2010. In addition, we treat the case of 2-isogeny volcanoes and we derive from the group structure of the curve and the pairing ...

  17. The Agro Pontino region, refuge after the Early Bronze Age Avellino eruption of Mount Vesuvius, Italy?

    NARCIS (Netherlands)

    C. Bakels; J. Sevink; W. Kuijper; H. Kamermans

    2015-01-01

    In recent years it was discovered that the Middle to Late Holocene infi ll of the Agro Pontino graben (Central Italy) held a tephra layer originating from the Avellino eruption of the Vesuvius volcano. The eruption is dated to 1995 ± 10 calBC and took therefore place during the Early Bronze Age. Thi

  18. On the origin of Mount Etna eruptive cycles and Stromboli volcano paroxysms: implications for an alternative mechanism of volcanic eruption

    CERN Document Server

    Nechayev, Andrei

    2014-01-01

    New mechanism of imbalance between magma column and fluid volume, accumulated in the magmatic system, is considered as a driving force of the volcanic eruption. Conditions of eruption based on this mechanism are used to explain main features of the volcanic activity (eruptive cycles and paroxysms) of the volcanoes Etna and Stromboli (Italy).

  19. Current and future trends of Volcanology in Italy and abroad

    Science.gov (United States)

    Papale, P.

    2010-12-01

    Volcanology in Italy and in the world has rapidly developed during last decades. In the Seventies, stratigraphy and petrology provided the basic knowledge on the volcanic activities that still forms the root for modern volcano research. During the Eighties and Nineties the interest was more on the quantitative description of the volcanic processes, with enormous progresses in different but complementary fields including laboratory measurements and experiments, physico-mathematical modeling and numerical simulations, geophysical surveys and inverse analysis, and volcano monitoring and surveillance. In year 2000 a large number of magma properties and magmatic and volcanic processes was characterized at a first or higher order. Volcano research in Italy during the first decade of the new millennium has further developed along those lines. To-date, the very high risk Campi Flegrei and Vesuvius volcanoes, and the less risky but permanently active Etna and Stromboli volcanoes, are among the best monitored and more deeply investigated worldwide. The last decade has also seen coordinated efforts aimed at exploring exploitation of knowledge and skills for the benefit of the society. A series of projects focused on volcanic hazard and risk have joined >1000 researchers from Italian and foreign (Europe, US, Japan) Universities and Research Centers, on themes and objectives jointly defined by scientists from INGV and end-users from the national Civil Protection Department. These projects provide a global picture of volcano research in year 2010, that appears to be evolving through i) further rapid developments in the fields of investigation listed above, ii) their merging into effective multidisciplinary approaches, and iii) the full inclusion of the concepts of uncertainty and probabilities in volcanic scenario predictions and hazard forecast. The latter reflects the large inaccessibility of the volcanic systems, the extreme non-linear behaviour of volcanic processes put in

  20. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  1. Elementary analysis of data from Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    LIU Guo-ming; ZHANG Heng-rong; KONG Qing-jun; WU Cheng-zhi; GUO Feng; ZHANG Chao-fan

    2004-01-01

    Tianchi Volcano is the largest potential erupticve volcano in China. Analyzing these data on seismic monitoring, deformation observation and water chemistry investigation gained from the Tianchi Volcano Observatory (TVO), the authors consider that the Tianchi Volcano is in going into a new flourishing time.

  2. The California Volcano Observatory: Monitoring the state's restless volcanoes

    Science.gov (United States)

    Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.

    2014-01-01

    Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.

  3. Continuous gravity observations at active volcanoes through superconducting gravimeters

    Science.gov (United States)

    Carbone, Daniele; Greco, Filippo

    2016-04-01

    Continuous gravity measurements at active volcanoes are usually taken through spring gravimeters that are easily portable and do not require much power to work. However, intrinsic limitations dictate that, when used in continuous, these instruments do not provide high-quality data over periods longer than some days. Superconducting gravimeters (SG), that feature a superconducting sphere in a magnetic field as the proof mass, provide better-quality data than spring gravimeters, but are bigger and need mains electricity to work, implying that they cannot be installed close to the active structures of high volcanoes. An iGrav SG was installed on Mt. Etna (Italy) in September 2014 and has worked almost continuously since then. It was installed about 6km from the active craters in the summit zone of the volcano. Such distance is normally too much to observe gravity changes due to relatively fast (minutes to days) volcanic processes. Indeed, mass redistributions in the shallowest part of the plumbing system induce short-wavelength gravity anomalies, centered below the summit craters. Nevertheless, thanks to the high precision and long-term stability of SGs, it was possible to observe low-amplitude changes over a wide range of timescales (minutes to months), likely driven by volcanic activity. Plans are in place for the implementation of a mini-array of SGs at Etna.

  4. Terrestrial Real-Time Volcano Monitoring

    Science.gov (United States)

    Franke, M.

    2013-12-01

    well as, system hardening backup centers. Moreover, Antelope, as typical middleware, allows the scientist and software developer to focus on the specific purpose of their application by providing well defined input/output interfaces. This will spur the development of original and inventive real-time processing schemes in the realm of volcano monitoring. Whatever the underlying data and information engine is, it is only as good as the frontend. Such a frontend has to accommodate the dual purpose of putting data and information in a form that is conducive for scientist and the emergency responder. Current projects in Italy and Abu Dhabi with multiple display centers gave us insights into how difficult it is to develop a multipurpose situation room. Currently, we are experimenting with sophisticated emergency management software that ties strong-motion measurement, structural behavior, and loss estimation to a situation-driven response plan. Although different in content and timeline, this can be adapted for developing volcano eruptions. A final word on remote sensing data, e.g. infrared imaging from an airplane: If the data can be streamed, there is a way to time tag them and include them in the broader real-time process. At least, batch processing should be considered in order to improve the overall information status pre- or post-event.

  5. Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Founded in 1912 at the edge of the caldera of Kīlauea Volcano, HVO was the vision of Thomas A. Jaggar, Jr., a geologist from the Massachusetts Institute of Technology, whose studies of natural disasters around the world had convinced him that systematic, continuous observations of seismic and volcanic activity were needed to better understand—and potentially predict—earthquakes and volcanic eruptions. Jaggar summarized the aim of HVO by stating that “the work should be humanitarian” and have the goals of developing “prediction and methods of protecting life and property on the basis of sound scientific achievement.” These goals align well with those of the USGS, whose mission is to serve the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage natural resources; and enhance and protect our quality of life.

  6. DEWI partnership in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Durante, F.; Dutilleux, P.; Klug, H.; Winkler, W. [DEWI, Wilhelmshaven (Germany)

    2006-02-15

    DEWI already has offices in Germany, France, Spain and Brazil. In order to cooperate with a local partner on the fast growing market of Italy, DEWI has signed a partnership contract with Fichtner Italia. In DEWI's main office in Wilhelmshaven the Italian micro siting specialist Francesco Durante is the contact person for Italy. (orig.)

  7. Volcanoes in Eruption - Set 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or...

  8. Volcanoes in Eruption - Set 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The word volcano is used to refer to the opening from which molten rock and gas issue from Earth's interior onto the surface, and also to the cone, hill, or...

  9. USGS Volcano Notification Service (VNS)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides a subscription service to receive an email when changes occur in the activity levels for monitored U.S. volcanoes and/or when information releases...

  10. GLACIERS OF THE KORYAK VOLCANO

    Directory of Open Access Journals (Sweden)

    T. M. Manevich

    2012-01-01

    Full Text Available The paper presents main glaciological characteristics of present-day glaciers located on the Koryaksky volcano. The results of fieldwork (2008–2009 and high-resolution satellite image analysis let us to specify and complete information on modern glacial complex of Koryaksky volcano. Now there are seven glaciers with total area 8.36 km2. Three of them advance, two are in stationary state and one degrades. Moreover, the paper describes the new crater glacier.

  11. Mahukona: The missing Hawaiian volcano

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.O.; Muenow, D.W. (Univ. of Hawaii, Honolulu (USA)); Kurz, M.D. (Woods Hole Oceanographic Institution, MA (USA))

    1990-11-01

    New bathymetric and geochemical data indicate that a seamount west of the island of Hawaii, Mahukona, is a Hawaiian shield volcano. Mahukona has weakly alkalic lavas that are geochemically distinct. They have high {sup 3}He/{sup 4}He ratios (12-21 times atmosphere), and high H{sub 2}O and Cl contents, which are indicative of the early state of development of Hawaiian volcanoes. The He and Sr isotopic values for Mahukona lavas are intermediate between those for lavas from Loihi and Manuna Loa volcanoes and may be indicative of a temporal evolution of Hawaiian magmas. Mahukona volcano became extinct at about 500 ka, perhaps before reaching sea level. It fills the previously assumed gap in the parallel chains of volcanoes forming the southern segment of the Hawaiian hotspot chain. The paired sequence of volcanoes was probably caused by the bifurcation of the Hawaiian mantle plume during its ascent, creating two primary areas of melting 30 to 40 km apart that have persisted for at least the past 4 m.y.

  12. Active volcanoes observed through Art: the contribution offered by the social networks

    Science.gov (United States)

    Neri, Marco; Neri, Emilia

    2015-04-01

    Volcanoes have always fascinated people for the wild beauty of their landscapes and also for the fear that they arouse with their eruptive actions, sometimes simply spectacular, but other times terrifying and catastrophic for human activities. In the past, volcanoes were sometimes imagined as a metaphysical gateway to the otherworld; they have inspired the creation of myths and legends ever since three thousand years ago, also represented by paintings of great artistic impact. Modern technology today offers very sophisticated and readily accessed digital tools, and volcanoes continue to be frequently photographed and highly appreciated natural phenomena. Moreover, in recent years, the spread of social networks (Facebook, Twitter, YouTube, Instagram, etc.) have made the widespread dissemination of graphic contributions even easier. The result is that very active and densely inhabited volcanoes such as Etna, Vesuvius and Aeolian Islands, in Italy, have become among the most photographed subjects in the world, providing a popular science tool with formidable influence and usefulness. The beauty of these landscapes have inspired both professional artists and photographers, as well as amateurs, who compete in the social networks for the publication of the most spectacular, artistic or simply most informative images. The end result of this often frantic popular scientific activity is at least two-fold: on one hand, it provides geoscientists and science communicators a quantity of documentation that is almost impossible to acquire through the normal systems of volcano monitoring, while on the other it raises awareness and respect for the land among the civil community.

  13. Impact of volcanic fluoride and SO/sub 7/ emissions from moderated activity volcanoes on the surrounding vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Garrec, J.P.; Plebin, R.; Faivre-Pierret, R.X.

    1984-01-01

    Studies in the regions of the volcanoes Etna (Italy) and Masaya (Nicaragua) show that the continuous emissions of gaseous pollutants (HF and SO/sub 2/) from moderated activity volcanoes causes a chronic pollution in the surrounding vegetation with certain economical and ecological consequences. Reciprocally the measure of the pollutants in the plants growing in volcanic regions may be a simple and fast method to investigate some characteristics of the volcanic plume: for example, intensity of the emissions of gas, direction and extent of the plume. 12 references.

  14. Holocene lahar history of Villarrica Volcano

    OpenAIRE

    Llurba Ruiz, Mateu

    2014-01-01

    Villarrica Volcano is one of the most active volcanoes in south-central Chile. There are many hazards related to the volcano, but its main hazard for humans through Villarrica’s history have been the lahars. Since the arrival of the Spanish colonists (1550) to the towns beside the volcano, it have been reported hundreds to thousands of casualties and the towns were repeatedly destroyed by lahars. From the necessity to understand its behaviour for future events and reconstr...

  15. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  16. Systematic radon survey over active volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, J.L.; Monnin, M.; Garcia Vindas, J.R. [Centre National de la Recherche Cientifique, Montpellier (France). Lab. GBE; Ricard, L.P.; Staudacher, T. [Observatoire Volcanologique Du Pitou de la Fournaise, La Plaine des Cafres (France)

    1999-08-01

    Data obtained since 1993 on Costa Rica volcanos are presented and radon anomalies recorded before the eruption of the Irazu volcano (December 8, 1994) are discussed. The Piton de la Fournaise volcano is inactive since mid 1992. The influence of the external parameters on the radon behaviour is studied and the type of perturbations induced on short-term measurements are individuate.

  17. Field Geothermal Volcano Azufral (CO)

    International Nuclear Information System (INIS)

    The field geothermal Volcano Azufral is located to 60 km of Pasto City. It discharges waters chlorine-bicarbonates, diluted and of neuter pH. The riolitics of low k20, andesites, dacites as well as lava flows, hydro volcanic deposits due to events volcanic past and the influence of calcium like main component in the layer stamp are the main ones characteristic geologic of the volcanic area of Azufral. The layer stamp heats waters of the underground and it reacts until producing bicarbonates waters, more common type in the region. Glasses of sulfur toward the crater of the volcano are presented close to a sour lagoon. Thermal activity has been detected toward the southwest of the volcano with an area of covering of 1.47 there are, approximately. Changes in the last 14 years were determined by comparison of last chemical analysis with those obtained by INEA in 1996

  18. Remote Sensing of Active Volcanoes

    Science.gov (United States)

    Francis, Peter; Rothery, David

    The synoptic coverage offered by satellites provides unparalleled opportunities for monitoring active volcanoes, and opens new avenues of scientific inquiry. Thermal infrared radiation can be used to monitor levels of activity, which is useful for automated eruption detection and for studying the emplacement of lava flows. Satellite radars can observe volcanoes through clouds or at night, and provide high-resolution topographic data. In favorable conditions, radar inteferometery can be used to measure ground deformation associated with eruptive activity on a centimetric scale. Clouds from explosive eruptions present a pressing hazard to aviation; therefore, techniques are being developed to assess eruption cloud height and to discriminate between ash and meterological clouds. The multitude of sensors to be launched on future generations of space platforms promises to greatly enhance volcanological studies, but a satellite dedicated to volcanology is needed to meet requirements of aviation safety and volcano monitoring.

  19. Multiphase modelling of mud volcanoes

    Science.gov (United States)

    Colucci, Simone; de'Michieli Vitturi, Mattia; Clarke, Amanda B.

    2015-04-01

    Mud volcanism is a worldwide phenomenon, classically considered as the surface expression of piercement structures rooted in deep-seated over-pressured sediments in compressional tectonic settings. The release of fluids at mud volcanoes during repeated explosive episodes has been documented at numerous sites and the outflows resemble the eruption of basaltic magma. As magma, the material erupted from a mud volcano becomes more fluid and degasses while rising and decompressing. The release of those gases from mud volcanism is estimated to be a significant contributor both to fluid flux from the lithosphere to the hydrosphere, and to the atmospheric budget of some greenhouse gases, particularly methane. For these reasons, we simulated the fluid dynamics of mud volcanoes using a newly-developed compressible multiphase and multidimensional transient solver in the OpenFOAM framework, taking into account the multicomponent nature (CH4, CO2, H2O) of the fluid mixture, the gas exsolution during the ascent and the associated changes in the constitutive properties of the phases. The numerical model has been tested with conditions representative of the LUSI, a mud volcano that has been erupting since May 2006 in the densely populated Sidoarjo regency (East Java, Indonesia), forcing the evacuation of 40,000 people and destroying industry, farmland, and over 10,000 homes. The activity of LUSI mud volcano has been well documented (Vanderkluysen et al., 2014) and here we present a comparison of observed gas fluxes and mud extrusion rates with the outcomes of numerical simulations. Vanderkluysen, L.; Burton, M. R.; Clarke, A. B.; Hartnett, H. E. & Smekens, J.-F. Composition and flux of explosive gas release at LUSI mud volcano (East Java, Indonesia) Geochem. Geophys. Geosyst., Wiley-Blackwell, 2014, 15, 2932-2946

  20. Volcanoes: effusions and explosions. Interactive exhibits to understand how volcanoes work.

    Science.gov (United States)

    Nostro, C.; Freda, L.; Castellano, C.; Arcoraci, L.; Baroux, E.

    2009-04-01

    The Educational & Outreach Group (EOG) of the Istituto Nazionale di Geofisica & Vulcanologia created a portable museum to provide educational opportunities in volcanology, volcanic risk and Earth science for students and visitors. The EOG developed this project for the "Festival della Scienza", organized in Genoa, Italy, in October - November, 2007, which was a parade of over 200 events, including scientific and technological exhibitions, workshops, meetings, lectures, books and video presentations. In this museum visitors can successively see many posters and movies and play with interactive exhibits. A little 3D-movie shows the Big Bang, the formation of Solar System and, in particular the formation of the Earth. Many interactive exhibits illustrate why, where and when earthquakes and volcanic eruptions occur around the world and allow to introduce the visitor to the plate tectonics theory. A 3D magnetic plate tectonic puzzle can be put down and reconstructed by visitors to understand the Earth's surface configuration. Then two other 3D Earth models show what drives the plates and the inner Earth structure. An interactive program illustrates where and when earthquakes and volcanic eruptions occur in accelerated time on maps of various areas around the world. Playing with a block diagram it is possible to produce an earthquake along a 1 meter long strike slip fault in a destroying all the man-made constructions close to it. A little movie introduces to volcanoes' world. Two small interactive exhibits allow visitors to understand the mechanism for the explosive and the effusive eruptions. Two other exciting interactive exhibits allow visitors to "create" two different eruptions: the explosive and the effusive ones. It is possible to get inside a volcano (a 2 meter high interactive exhibit) to attend an eruption from the magmatic chamber to the Earth surface. A big hall is completed dedicated to Italian volcanoes (Vesuvio, Campi Flegrei, Etna, Stromboli, Vulcano

  1. Alaska volcanoes guidebook for teachers

    Science.gov (United States)

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  2. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    Science.gov (United States)

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  3. Infrared surveys of Hawaiian volcanoes

    Science.gov (United States)

    Fischer, W. A.; Moxham, R.M.; Polcyn, F.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs issuing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  4. Infrared science of Hawaiian volcanoes

    Science.gov (United States)

    Fischer, William A.; Moxham, R.M.; Polcyn, R.C.; Landis, G.H.

    1964-01-01

    Aerial infrared-sensor surveys of Kilauea volcano have depicted the areal extent and the relative intensity of abnormal thermal features in the caldera area of the volcano and along its associated rift zones. Many of these anomalies show correlation with visible steaming and reflect convective transfer of heat to the surface from subterranean sources. Structural details of the volcano, some not evident from surface observation, are also delineated by their thermal abnormalities. Several changes were observed in the patterns of infrared emission during the period of study; two such changes show correlation in location with subsequent eruptions, but the cause-and-effect relationship is uncertain. Thermal anomalies were also observed on the southwest flank of Mauna Loa; images of other volcanoes on the island of Hawaii, and of Haleakala on the island of Maui, revealed no thermal abnormalities. Approximately 25 large springs is- suing into the ocean around the periphery of Hawaii have been detected. Infrared emission varies widely with surface texture and composition, suggesting that similar observations may have value for estimating surface conditions on the moon or planets.

  5. Tracing the boundaries of Cenozoic volcanic edifices from Sardinia (Italy): a geomorphometric contribution

    OpenAIRE

    Melis, M. T.; F. Mundula; DessÌ, F.; Cioni, R; Funedda, A.

    2014-01-01

    Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene–Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices...

  6. The structural setting of the Ischia Island Caldera (Italy): first evidence from seismic and gravity data

    Science.gov (United States)

    Capuano, Paolo; De Matteis, Raffaella; Russo, Guido

    2015-09-01

    Ischia Island is one of the active volcanoes of the Neapolitan area (Italy). Hazard assessment of active, densely populated volcano is primarily based on knowledge of the volcano's past behaviour and of its present state. As a contribution to the definition of the present structural setting of Ischia Island, we constructed a new model of the shallow crust using geophysical data: seismic wave travel times and Bouguer anomaly data. We analysed these data sets through seismic tomography and gravity data inversion. The main results inferable from the 3D seismic and gravity images are the definition of the caldera rim along the perimeter of the island, as hypothesized by many authors, and the presence of a high velocity and density area inside the caldera consistent with extension of the resurgent block that characterizes the recent deformation of the island.

  7. Aerial monitoring in active mud volcano by UAV technique

    Science.gov (United States)

    Pisciotta, Antonino; Capasso, Giorgio; Madonia, Paolo

    2016-04-01

    UAV photogrammetry opens various new applications in the close range domain, combining aerial and terrestrial photogrammetry, but also introduces low-cost alternatives to the classical manned aerial photogrammetry. Between 2014 and 2015 tree aerial surveys have been carried out. Using a quadrotor drone, equipped with a compact camera, it was possible to generate high resolution elevation models and orthoimages of The "Salinelle", an active mud volcanoes area, located in territory of Paternò (South Italy). The main risks are related to the damages produced by paroxysmal events. Mud volcanoes show different cyclic phases of activity, including catastrophic events and periods of relative quiescence characterized by moderate activity. Ejected materials often are a mud slurry of fine solids suspended in liquids which may include water and hydrocarbon fluids, the bulk of released gases are carbon dioxide, with some methane and nitrogen, usually pond-shaped of variable dimension (from centimeters to meters in diameter). The scope of the presented work is the performance evaluation of a UAV system that was built to rapidly and autonomously acquire mobile three-dimensional (3D) mapping data in a volcanic monitoring scenario.

  8. Wine tourism in Italy

    OpenAIRE

    Cinelli Colombini D

    2015-01-01

    Donatella Cinelli Colombini Orcia Doc Wine Consortium, Rocca d’Orcia , Italy Abstract: This text includes the history of wine tourism in Italy since 1993, when the first edition of the event “Cantine Aperte” (Open Cellars), Wine Day, took place. The movement grew from the initial 25 wineries to the 21,000 that participate today in opening their doors to the public, while visitors grew in numbers from a couple of hundred, 20 years ago, to the current 4 to 6 milli...

  9. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  10. Italy. [CME Country Reports].

    Science.gov (United States)

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    Ever since 1946, increased emigration in Italy has been paralleled by a slow but steady increase in educational activity. In 1971, Law No. 153 was adopted which provides for special educational arrangements to be made for migrant workers and their spouses adopted by the Italian Government are based on the need for Italian children to: (1) be…

  11. Collection for Italy

    CERN Multimedia

    Fabiola Gianotti, Director-General, and Ghislain Roy, President of the Staff Association

    2016-01-01

    Following the earthquake of 24 August in central Italy, many of you have expressed your solidarity. The collection to support the victims raised a total of 10 000 CHF, which was transferred in its entirety to Italy’s civil protection through the Italian delegation to the CERN Council. The CERN Directorate and the CERN Staff Association sincerely thank you for your generosity.

  12. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    Science.gov (United States)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  13. Aleutian Islands Coastal Resources Inventory and Environmental Sensitivity Maps: VOLCANOS (Volcano Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains point locations of active volcanoes as compiled by Motyka et al., 1993. Eighty-nine volcanoes with eruptive phases in the Quaternary are...

  14. Subcircular conduits and dikes offshore the Somma-Vesuvius volcano revealed by magnetic and seismic data

    Science.gov (United States)

    Paoletti, V.; Passaro, S.; Fedi, M.; Marino, C.; Tamburrino, S.; Ventura, G.

    2016-09-01

    We analyzed new magnetic, bathymetric, and seismic data acquired in the offshore sector of Somma-Vesuvius volcano (Italy). We detected a group of high-intensity, short wavelength magnetic anomalies corresponding to partly buried volcanic dome-like structures located by seismic data. The magnetic anomalies are aligned along a NW-SE strike that is the preferential orientation of an eruptive fracture of the pre-19 ka activity of Vesuvius. Three cones emplaced before the Last Glacial Maximum, whereas a fourth one emplaced after 19 ka suggesting a rejuvenation of the eruptive system offshore the volcano in historical times. We also identified a NE-SW elongated magnetic anomaly consistent with a dike-like body associated to an on-land tectonic structure that was active in recent times at Vesuvius. A delta-like area with diffuse low-intensity magnetic anomalies reflects the seaward fronts of lava flows that entered the sea mainly during the Middle Ages.

  15. A volcano at work: the rapidly evolving landforms of Mt Etna documented through DEMs analysis

    Science.gov (United States)

    Tarquini, Simone; Favalli, Massimiliano; Fornaciai, Alessandro

    2016-04-01

    Volcanoes are characterized by rapid morphological changes in a continuously evolving landscape. In recent years, airborne LIDAR surveys have been repeatedly carried out to document the constructive and the destructive processes which modify the topography at Mount Etna (Italy), one of the most active volcanoes on Earth. In a few cases, time series of high resolution topographies have been acquired during ongoing effusive eruptions, and this extraordinary data allowed the systematic characterization of the morphology of active lava channels and the identification of a distinctive pulsating dynamic in lava flux. Furthermore, time series of topographies spaced several years allowed the quantification of the growth and of local collapses of summit craters, as well as the erosion of cinder cones formed during flank eruptions in 2001-2002. Overall, the availability of high resolution topographies boosted dramatically our understanding of volcanic processes, also allowing a better assessment of the related hazard. The present contribution is a review of several works spanning nearly a decade.

  16. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    Science.gov (United States)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  17. Modeling of Gravity Changes on Merapi Volcano

    OpenAIRE

    Setiawan, Ari

    2003-01-01

    Merapi volcano, located in Central Java, is one of the most active volcanoes in Indonesia. 2 million people are living in its immediate neighborhood. Therefore Merapi was selected within the International Decade of Natural Disaster Reduction (IDNDR) of UNESCO as one of 15 so called high risk volcanoes in the world. National and International research groups from Indonesia, France, Netherlands, Japan, USA and Germany are working on Merapi. Different methods are applied on Merapi to study the v...

  18. Earthquakes - Volcanoes (Causes and Forecast)

    Science.gov (United States)

    Tsiapas, E.

    2009-04-01

    EARTHQUAKES - VOLCANOES (CAUSES AND FORECAST) ELIAS TSIAPAS RESEARCHER NEA STYRA, EVIA,GREECE TEL.0302224041057 tsiapas@hol.gr The earthquakes are caused by large quantities of liquids (e.g. H2O, H2S, SO2, ect.) moving through lithosphere and pyrosphere (MOHO discontinuity) till they meet projections (mountains negative projections or projections coming from sinking lithosphere). The liquids are moved from West Eastward carried away by the pyrosphere because of differential speed of rotation of the pyrosphere by the lithosphere. With starting point an earthquake which was noticed at an area and from statistical studies, we know when, where and what rate an earthquake may be, which earthquake is caused by the same quantity of liquids, at the next east region. The forecast of an earthquake ceases to be valid if these components meet a crack in the lithosphere (e.g. limits of lithosphere plates) or a volcano crater. In this case the liquids come out into the atmosphere by the form of gasses carrying small quantities of lava with them (volcano explosion).

  19. Campgrounds in Hawaii Volcanoes National Park

    Data.gov (United States)

    National Park Service, Department of the Interior — This dataset provides campground locations in Hawaii Volcanoes National Park. Information about facilities, water availability, permit requirements and type of...

  20. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2013-04-01

    In response to the EC call ENV.2012.6.4-2 (Long-term monitoring experiments in geologically active regions of Europe prone to natural hazards: the Supersite concept - FP7-ENV-2012-two-stage) a wide community of volcanological institutions proposed the project Mediterranean Supersite Volcanoes (MED-SUV), which is in the negotiation phase at the time of writing. The Consortium is composed by 18 European University and research institutes, four Small or Medium Enterprises (SME) and two non-European University and research institutes. MED-SUV will improve the consortium capacity of assessment of volcanic hazards in Supersites of Southern Italy by optimising and integrating existing and new observation/monitoring systems, by a breakthrough in understanding of volcanic processes and by increasing the effectiveness of the coordination between the scientific and end-user communities. More than 3 million of people are exposed to potential volcanic hazards in a large region in the Mediterranean Sea, where two among the largest European volcanic areas are located: Mt. Etna and Campi Flegrei/Vesuvius. This project will fully exploit the unique detailed long-term in-situ monitoring data sets available for these volcanoes and integrate with Earth Observation (EO) data, setting the basic tools for a significant step ahead in the discrimination of pre-, syn- and post-eruptive phases. The wide range of styles and intensities of volcanic phenomena observed on these volcanoes, which can be assumed as archetypes of 'closed conduit ' and 'open conduit' volcano, together with the long-term multidisciplinary data sets give an exceptional opportunity to improve the understanding of a very wide spectrum of geo-hazards, as well as implementing and testing a large variety of innovative models of ground deformation and motion. Important impacts on the European industrial sector are expected, arising from a partnership integrating the scientific community and SMEs to implement together new

  1. Preparing for Routine Satellite Global Volcano Deformation Observations: The Volcano Deformation Database Task Force

    Science.gov (United States)

    Pritchard, M. E.; Jay, J.; Andrews, B. J.; Cooper, J.; Henderson, S. T.; Delgado, F.; Biggs, J.; Ebmeier, S. K.

    2014-12-01

    Satellite Interferometric Synthetic Aperture Radar (InSAR) has greatly expanded the number volcanoes that can be monitored for ground deformation - the number of known deforming volcanoes has increased almost five-fold since 1997 (to more than 213 volcanoes in 2014). However, from 1992-2014, there are still gaps in global volcano surveillance and only a fraction of the 1400 subaerial Holocene volcanoes have frequent observations in this time period. Starting in 2014, near global observations of volcano deformation should begin with the Sentinel satellites from the European Space Agency, ALOS-2 from the Japanese Space Agency, and eventually NISAR from the Indian Space Agency and NASA. With more frequent observations, more volcano deformation episodes are sure to be observed, but evaluating the significance of the observed deformation is not always straightforward -- how can we determine if deformation will lead to eruption? To answer this question, an international task force has been formed to create an inventory of volcano deformation events as part of the Global Volcano Model (http://globalvolcanomodel.org/gvm-task-forces/volcano-deformation-database/). We present the first results from our global study focusing on volcanoes that have few or no previous studies. In some cases, there is a lack of SAR data (for example, volcanoes of the South Sandwich Islands). For others, observations either show an absence of deformation or possible deformation that requires more data to be verified. An example of a deforming volcano that has few past studies is Pagan, an island in the Marianas Arc comprised of 2 stratovolcanoes within calderas. Our new InSAR measurements from both the ALOS and Envisat satellites show deformation near the 1981 May VEI 4 lava flow eruption on North Pagan at 2-3 cm/year between 2004-2010. Another example of a newly observed volcano is Karthala volcano in the Comoros. InSAR observations between 2004-2010 span four eruptions, only one of which is

  2. Research on Methods for Building Volcano Disaster Information System--taking Changbai Mountain as an example

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuexia; BO Liqun; LU Xingchang

    2001-01-01

    Volcano eruption is one of the most serious geological disasters in the world. There are volcanoes in every territory on the earth, about a thousand in China, among which Changbai Mountain Volcano, Wudalianchi Volcano and Tengchong Volcano are the most latent catastrophic eruptive active volcanoes. The paper, following an instance of Changbai Mountain Volcano, expounds that monitoring, forecasting and estimating volcano disaster by building Volcano Disaster Information System (VDIS) is feasible to alleviate volcano disaster.

  3. The geo dynamics of Mt. Etna volcano during and after the 1984 eruption

    Energy Technology Data Exchange (ETDEWEB)

    La Delfa, S.; Patane' , G. [Catania Univ., Catania (Italy). Ist. di Geologia e Geofisica; Centamore, C. [Neaples Univ. Federico II, Neaples (Italy). Dipt. di Geofisica e Vulcanologia

    1999-06-01

    Data concerning M(>)2.5 earthquakes that occurred at Mt. Etna volcano (Sicily region, Italy) during the period April-October 1984 are here presented and discussed. Only those events with reliable focal mechanisms have been considered. The results obtained support the hypothesis that the seisimicity and the volcanic activity at Mt. Etna are related to a complex stress field, due to the combined effects of the tectonics associated with the interaction between the African and Eurasian plates and the movement of magma into the crust. In particular, it hypothesizes that the tectonic forces caused the end of the 1984 eruption, by means of a local mechanisms.

  4. Cost containment: Europe. Italy.

    Science.gov (United States)

    Apolone, G; Melotti, R; Repetto, F; Iapichino, G

    1994-08-01

    Through prepaid compulsory insurance managed by the central government, Italy's National Health Service (NHS) provides full coverage, free accessibility, and no or limited copayment by individuals when receiving health services. Although Italy spends less than other countries on health care (product), the present NHS faces considerable difficulties, and its performance regarding quality, outcome, and spending has come under question. ICUs account for mix, and outcomes when compared with data from other countries. Important changes in the financial and institutional framework of the NHS are underway, yielding an unpredictable scenario for the future. Innovations focus mostly on cost containment and quality initiatives. These innovations will likely produce a new health service in which regions will have a more important role than in the past. Actions planned in a large Italian region by the local government are used as an example to explain the potential impact of this new trend on critical care medicine. PMID:8087596

  5. Italy: pluralism takes root.

    Science.gov (United States)

    Mori, Maurizio

    1987-06-01

    Mori gives an overview of biomedical ethics in Italy in one of four Hastings Center Report country reports. Public policy on issues like in vitro fertilization, sterilization and abortion, passive euthanasia, and organ transplantation reflects the declining influence of the Catholic Church and the increasing cultural pluralism of Italian society. The government has appointed advisory bodies on reproductive technologies and AIDS to study the issues and make recommendations. Bills regulating technologies such as in vitro fertilization or liberalizing restrictive laws such as those on contraception are introduced regularly in Parliament, if not always enacted. Mori concludes that general interest in and formal study and discussion of biomedical ethics is increasing in Italy. He sees a danger that the field of bioethics will develop a dual identity, with little progress made in resolving the issues, unless serious dialogue between Catholics and non-Catholics increases. PMID:11644031

  6. Smithsonian Volcano Data on Google Earth

    Science.gov (United States)

    Venzke, E.; Siebert, L.; Luhr, J. F.

    2006-12-01

    Interactive global satellite imagery datasets such as hosted by Google Earth provide a dynamic platform for educational outreach in the Earth Sciences. Users with widely varied backgrounds can easily view geologic features on a global-to-local scale, giving access to educational background on individual geologic features or events such as volcanoes and earthquakes. The Smithsonian Institution's Global Volcanism Program (GVP) volcano data became available as a Google Earth layer on 11 June 2006. Locations for about 1550 volcanoes with known or possible Holocene activity are shown as red triangles with associated volcano names that appear when zooming in to a regional-scale view. Clicking on a triangle opens an informational balloon that displays a photo, geographic data, and a brief paragraph summarizing the volcano's geologic history. The balloon contains links to a larger version of the photo with credits and a caption and to more detailed information on the volcano, including eruption chronologies, from the GVP website. Links to USGS and international volcano observatories or other websites focusing on regional volcanoes are also provided, giving the user ready access to a broad spectrum of volcano data. Updates to the GVP volcano layer will be provided to Google Earth. A downloadable file with the volcanoes organized regionally is also available directly from the GVP website (www.volcano.si.edu) and provides the most current volcano data set. Limitations of the implied accuracy of spacially plotted data at high zoom levels are also apparent using platforms such as Google Earth. Real and apparent mismatches between plotted locations and the summits of some volcanoes seen in Google Earth satellite imagery occur for reasons including data precision (deg/min vs. deg/min/sec) and the GVP convention of plotting the center-point of large volcanic fields, which often do not correspond to specific volcanic vents. A more fundamental problem originates from the fact that

  7. Volcanic hazards at Atitlan volcano, Guatemala

    Science.gov (United States)

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  8. Restructuring in SMEs: Italy

    OpenAIRE

    Salvatore, Lidia

    2013-01-01

    Based on information derived from 85 case studies across all EU Member States and other sources, the project outlines the features peculiar to SMEs in their anticipation and management of restructuring, explores the main drivers of change and analyses the factors influencing successful restructuring. It offers some insight into how restructuring impacts on workers and the company itself and sets out several policy pointers for future action. This is the country report for Italy.

  9. Age Discrimination in Italy

    OpenAIRE

    Olga Rymkevitch; Claudia Villosio

    2007-01-01

    The Framework Directive on Equal Treatment in Employment and Occupation (2000/78/EC) included age as one of its prohibited grounds of discrimination. Member States were required to transpose this Directive by December 2003. In Italy age discrimination was explicitly regulated by means of Legislative Decree no. 216, 9 July 2003. The Decree introduced the new specific prohibition of discrimination, defining its application, exceptions and remedies. The purpose of this paper is to explore, in a ...

  10. Group Psychotherapy in Italy.

    Science.gov (United States)

    Giannone, Francesca; Giordano, Cecilia; Di Blasi, Maria

    2015-10-01

    This article describes the history and the prevailing orientations of group psychotherapy in Italy (psychoanalytically oriented, psychodrama, CBT groups) and particularly group analysis. Provided free of charge by the Italian health system, group psychotherapy is growing, but its expansion is patchy. The main pathways of Italian training in the different group psychotherapy orientations are also presented. Clinical-theoretical elaboration on self development, psychopathology related to group experiences, and the methodological attention paid to objectives and methods in different clinical groups are issues related to group therapy in Italy. Difficulties in the relationship between research and clinical practice are discussed, as well as the empirical research network that tries to bridge the gap between research and clinical work in group psychotherapy. The economic crisis in Italy has led to massive cuts in health care and to an increasing demand for some forms of psychological treatment. For these reasons, and because of its positive cost-benefit ratio, group psychotherapy is now considered an important tool in the national health care system to expand the clinical response to different forms of psychological distress. PMID:26401793

  11. Predictability of Volcano Eruption: lessons from a basaltic effusive volcano

    CERN Document Server

    Grasso, J R

    2003-01-01

    Volcano eruption forecast remains a challenging and controversial problem despite the fact that data from volcano monitoring significantly increased in quantity and quality during the last decades.This study uses pattern recognition techniques to quantify the predictability of the 15 Piton de la Fournaise (PdlF) eruptions in the 1988-2001 period using increase of the daily seismicity rate as a precursor. Lead time of this prediction is a few days to weeks. Using the daily seismicity rate, we formulate a simple prediction rule, use it for retrospective prediction of the 15 eruptions,and test the prediction quality with error diagrams. The best prediction performance corresponds to averaging the daily seismicity rate over 5 days and issuing a prediction alarm for 5 days. 65% of the eruptions are predicted for an alarm duration less than 20% of the time considered. Even though this result is concomitant of a large number of false alarms, it is obtained with a crude counting of daily events that are available fro...

  12. Fiscal Forecasting in Italy

    OpenAIRE

    Carabotta, Laura

    2015-01-01

    [eng] The thesis “Fiscal forecasting in Italy” is comprised of three main chapters in which is analyzed, from an empirical point of view, several issues related to public finance forecasts, with an application to Italy. Chapter II, “Accuracy of fiscal forecasts in Italy” is focused on one of the most important aspects of the new Treaty: it requires that the decisions and recommendations taken by the European Commission are no longer be based on outcomes but on forecasts. In this chapter, I e...

  13. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    Science.gov (United States)

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  14. Unzipping of the volcano arc, Japan

    Science.gov (United States)

    Stern, R.J.; Smoot, N.C.; Rubin, M.

    1984-01-01

    A working hypothesis for the recent evolution of the southern Volcano Arc, Japan, is presented which calls upon a northward-progressing sundering of the arc in response to a northward-propagating back-arc basin extensional regime. This model appears to explain several localized and recent changes in the tectonic and magrnatic evolution of the Volcano Arc. Most important among these changes is the unusual composition of Iwo Jima volcanic rocks. This contrasts with normal arc tholeiites typical of the rest of the Izu-Volcano-Mariana and other primitive arcs in having alkaline tendencies, high concentrations of light REE and other incompatible elements, and relatively high silica contents. In spite of such fractionated characteristics, these lavas appear to be very early manifestations of a new volcanic and tectonic cycle in the southern Volcano Arc. These alkaline characteristics and indications of strong regional uplift are consistent with the recent development of an early stage of inter-arc basin rifting in the southern Volcano Arc. New bathymetric data are presented in support of this model which indicate: 1. (1) structural elements of the Mariana Trough extend north to the southern Volcano Arc. 2. (2) both the Mariana Trough and frontal arc shoal rapidly northwards as the Volcano Arc is approached. 3. (3) rugged bathymetry associated with the rifted Mariana Trough is replaced just south of Iwo Jima by the development of a huge dome (50-75 km diameter) centered around Iwo Jima. Such uplifted domes are the immediate precursors of rifts in other environments, and it appears that a similar situation may now exist in the southern Volcano Arc. The present distribution of unrifted Volcano Arc to the north and rifted Mariana Arc to the south is interpreted not as a stable tectonic configuration but as representing a tectonic "snapshot" of an arc in the process of being rifted to form a back-arc basin. ?? 1984.

  15. Library system of Italy

    Directory of Open Access Journals (Sweden)

    Nataša Gerbec

    2003-01-01

    Full Text Available In the European extent, Italy is the cradle of libraries and library sciences. In the past, Italian national public libraries played an important role through their vast book treasury. But only during the last thirty years have public libraries been developed following the Anglo-American public library model. Italy does not have any uniform or general legislation concerning libraries. On the state level, this area is regulated by some separate acts, while on the regional level there is a collection of various acts and regulations. Libraries are not strictly divided into general categories. It is required that the professionals engaged in Italian libraries should have secondary or university education. The level of their professional tasks depends on the type of library and its capacity. The competency for the development in the field of librarianship is assigned to The Ministry of Cultural and Environment Heritage as well as to its subordinate institutions (Central Institute for the Union catalogue of Italian Libraries and for Bibliographic Information, Central Institute for Book Pathology, Observatory for International Libraries Programmes.

  16. [Occupational epidemiology in Italy].

    Science.gov (United States)

    Assennato, G; Bisceglia, L

    2003-01-01

    The development of Occupational Epidemiology in Italy is closely correlated with the political and social awareness of the needs of preventive strategies in the workplace. In the late '60s the Trade Unions supported a model of intervention based on the involvement of the so-called "Homogeneous group of workers" in the validation of the preventive measures taken on the workplace. In spite of the shortcomings of the model, it was extremely effective resulting in enhanced perception of the priority of preventive strategies and in the formation within the National Health Service of the Occupational Health Services. In Italy over the period 1973-2002 there has been an impressive trend of research in field of occupational epidemiology (a search on Medline shows an increasing trend over the years and, in terms of international comparison, higher figures than in Germany, France and Spain). Occupational Epidemiology is now present in the activities of the local Occupational Health Services and in the teaching activities of the Medical Schools throughout the country. PMID:14582235

  17. Smithsonian traveling exhibition highlights two active volcanoes

    Science.gov (United States)

    Hill, L.; Harney, T.

    1989-01-01

    Over time, active volcanoes have captured human fascination, not only because of their strange and dramatic beauty, but also because of their power to destroy. Two active U.S volcanoes-one on the Big Island of Hawaii, the other part of the Cascade Range in the Pacific Northwest-will be the focus of "Inside Active Volcanoes: Kilauea and Mount St. Helens." This major exhibit opened July 6 in the Evans Gallery of the Smithsonian's National Museum of Natural history in Washington, D.C, and continued through September 24.

  18. Volcanoes

    Science.gov (United States)

    ... High-Pressure Water Injection Injury Trench Foot or Immersion Foot Emergency Wound Care Wound Management for Healthcare ... Pets Resources for Emergency Health Professionals Training and Education Social Media What CDC is Doing Blog: Public ...

  19. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    Science.gov (United States)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  20. Continuous SO2 flux measurements for Vulcano Island, Italy

    Directory of Open Access Journals (Sweden)

    Fabio Vita

    2012-06-01

    Full Text Available The La Fossa cone of Vulcano Island (Aeolian Archipelago, Italy is a closed conduit volcano. Today, Vulcano Island is characterized by sulfataric activity, with a large fumarolic field that is mainly located in the summit area. A scanning differential optical absorption spectroscopy instrument designed by the Optical Sensing Group of Chalmers University of Technology in Göteborg, Sweden, was installed in the framework of the European project "Network for Observation of Volcanic and Atmospheric Change", in March 2008. This study presents the first dataset of SO2 plume fluxes recorded for a closed volcanic system. Between 2008 and 2010, the SO2 fluxes recorded showed average values of 12 t.d–1 during the normal sulfataric activity of Vulcano Island, with one exceptional event of strong degassing that occurred between September and December, 2009, when the SO2 emissions reached up to 100 t.d–1.

  1. Dynamic Deformation of ETNA Volcano Observed by GPS and SAR Interferometry

    Science.gov (United States)

    Lundgren, P.; Rosen, P.; Webb, F.; Tesauro, M.; Lanari, R.; Sansosi, E.; Puglisi, G.; Bonforte, A.; Coltelli, M.

    1999-01-01

    Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.

  2. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  3. Volcano Monitoring Using Google Earth

    Science.gov (United States)

    Cameron, W.; Dehn, J.; Bailey, J. E.; Webley, P.

    2009-12-01

    At the Alaska Volcano Observatory (AVO), remote sensing is an important component of its daily monitoring of volcanoes. AVO’s remote sensing group (AVORS) primarily utilizes three satellite datasets; Advanced Very High Resolution Radiometer (AVHRR) data, from the National Oceanic and Atmospheric Administration’s (NOAA) Polar Orbiting Satellites (POES), Moderate Resolution Imaging Spectroradiometer (MODIS) data from the National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites, and NOAA’s Geostationary Operational Environmental Satellites (GOES) data. AVHRR and MODIS data are collected by receiving stations operated by the Geographic Information Network of Alaska (GINA) at the University of Alaska’s Geophysical Institute. An additional AVHRR data feed is supplied by NOAA’s Gilmore Creek satellite tracking station. GOES data are provided by the Naval Research Laboratory (NRL), Monterey Bay. The ability to visualize these images and their derived products is critical for the timely analysis of the data. To this end, AVORS has developed javascript web interfaces that allow the user to view images and metadata. These work well for internal analysts to quickly access a given dataset, but they do not provide an integrated view of all the data. To do this AVORS has integrated its datasets with Keyhole Markup Language (KML) allowing them to be viewed by a number of virtual globes or other geobrowsers that support this code. Examples of AVORS’ use of KML include the ability to browse thermal satellite image overlays to look for signs of volcanic activity. Webcams can also be viewed interactively through KML to confirm current activity. Other applications include monitoring the location and status of instrumentation; near real-time plotting of earthquake hypocenters; mapping of new volcanic deposits using polygons; and animated models of ash plumes, created by a combination of ash dispersion modeling and 3D visualization packages.

  4. Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents

    Science.gov (United States)

    Dvorak, J.J.; Dzurisin, D.

    1997-01-01

    Routine geodetic measurements are made at only a few dozen of the world's 600 or so active volcanoes, even though these measurements have proven to be a reliable precursor of eruptions. The pattern and rate of surface displacement reveal the depth and rate of pressure increase within shallow magma reservoirs. This process has been demonstrated clearly at Kilauea and Mauna Loa, Hawaii; Long Valley caldera, California; Campi Flegrei caldera, Italy; Rabaul caldera, Papua New Guinea; and Aira caldera and nearby Sakurajima, Japan. Slower and lesser amounts of surface displacement at Yellowstone caldera, Wyoming, are attributed to changes in a hydrothermal system that overlies a crustal magma body. The vertical and horizontal dimensions of eruptive fissures, as well as the amount of widening, have been determined at Kilauea, Hawaii; Etna, Italy; Tolbachik, Kamchatka; Krafla, Iceland; and Asal-Ghoubbet, Djibouti, the last a segment of the East Africa Rift Zone. Continuously recording instruments, such as tiltmeters, extensometers, and dilatometers, have recorded horizontal and upward growth of eruptive fissures, which grew at rates of hundreds of meters per hour, at Kilauea; Izu-Oshima, Japan; Teishi Knoll seamount, Japan; and Piton de la Fournaise, Re??union Island. In addition, such instruments have recorded the hour or less of slight ground movement that preceded small explosive eruptions at Sakurajima and presumed sudden gas emissions at Galeras, Colombia. The use of satellite geodesy, in particular the Global Positioning System, offers the possibility of revealing changes in surface strain both local to a volcano and over a broad region that includes the volcano.

  5. Development and field-testing of the BENTO box: A new satellite-linked data collection system for volcano monitoring

    Science.gov (United States)

    Roman, D. C.; Behar, A.; Elkins-Tanton, L. T.; Fouch, M. J.

    2013-12-01

    'i; Etna Volcano, Italy, and Hengill Volcano, Iceland. Together, the data from these BENTO boxes and previously established volcano monitoring instruments are allowing us to test and refine the system design and deployment strategy. 'BENTO 2' boxes, equipped with broadband seismic sensors, are currently undergoing bench testing, and will be deployed on active volcanoes for field-testing beginning in early 2014.

  6. Geomagnetic anomalies observed at volcano Popocatepetl, Mexico

    Directory of Open Access Journals (Sweden)

    A. Kotsarenko

    2008-01-01

    Full Text Available Results of the ULF geomagnetic monitoring of the volcano Popocatepetl (Mexico and their analysis are summarized and presented for the period 2003–2006. Our analysis reveals some anomalies which are considered to be of local volcanic origin: the EM background in the vicinity of the volcano was found to be significantly noisier than at other reference stations; sporadic strong noise-like geomagnetic activity was observed in the H-component; some geomagnetic pulsations were observed only at the Tlamacas station (located at 4 km near the volcano. The results are discussed in terms of a physical mechanism involving the presence of a second magmatic chamber within the volcano and, finally, further perspective directions to study volcanic geodynamical processes besides the traditional ones are given.

  7. Lahar hazards at Agua volcano, Guatemala

    Science.gov (United States)

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  8. Volcanoes muon imaging using Cherenkov telescopes

    CERN Document Server

    Catalano, Osvaldo; Mineo, Teresa; Cusumano, Giancarlo; Maccarone, Maria Concetta; Pareschi, Giovanni

    2015-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energ...

  9. A field guide to Newberry Volcano, Oregon

    Science.gov (United States)

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  10. Seismic footprints of shallow dyke propagation at Etna, Italy

    Science.gov (United States)

    Falsaperla, Susanna; Neri, Marco

    2015-01-01

    One of the key issues in forecasting volcanic eruptions is to detect signals that can track the propagation of dykes towards the surface. Continuous monitoring of active volcanoes helps significantly in achieving this goal. The seismic data presented here are unique, as they document surface faulting processes close (tens to a few hundred meters) to their source, namely the dyke tip. They originated nearby - and under - a seismic station that was subsequently destroyed by lava flows during eruptive activity at Etna volcano, Italy, in 2013. On February 20, a ~600 m-long and ~120 m wide NW-SE fracture field opened at an altitude between 2750 and 2900 m. The consequent rock dislocation caused the station to tilt and offset the seismic signal temporarily. Data acquisition continued until the arrival of the lava flow that led to the breakdown of the transmission system. Shallow ground fracturing and repeated low-frequency oscillations occurred during two stages in which the seismic signal underwent a maximum offset ~2.57 × 104 nm/s. Bridging instrumental recordings, fieldwork and conceptual modelling, these data are interpreted as the seismic footprints of a magmatic dyke intrusion that moved at speed ~0.02 m/s (first stage) and 0.46 m/s (second stage). PMID:26173557

  11. Chinese Investment in Italy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    At the 12th China International Fair for Investment and Trade (CIFIT) held on September 8-11 in Xiamen, Fujian Province, government officials and entrepreneurs from all over the world canvassed Chinese entrepreneurs and investors to invest in their countries. Foreign countries and regions rented 16,000 square meters of exhibition space, an increase of more than 50 percent from last year. Among the 74 participating countries and regions, more than 50 held seminars about their invest- ment environments. Besides the Caribbean countries and underdeveloped African nations that are actively attracting investment, developed countries such as the Untied States, Germany, France, Italy and Sweden also showed extraordinary enthusiasm in trying to win over Chinese investors. Beijing Review interviewed Marinella Loddo, Director of the Industrial Cooperation Division of the Italian Institute for Foreign Trade which is also known as the Italian Trade Commission (ICE).

  12. Italy at CERN

    CERN Multimedia

    Caroline Laignel

    2005-01-01

    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology.   The exhibition is being organised by the INFN in Padua. The exhibitors are listed below.   A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Keno...

  13. ITALY AT CERN

    CERN Multimedia

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows : - the list of exhibitors. A detailed programme will be available in due course at : - your Divisional secretariat, - the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Andalo' Gianni Srl15 Finsys...

  14. ITALY AT CERN

    CERN Multimedia

    2003-01-01

    23 - 26 June 2003 Main Building Bldg 60 - ground and 1st floor 09.30 hrs - 17.30 hrs Twenty-four companies will present their latest technology at the "Italy at CERN" exhibition. The Italian industry will exhibit products and technologies which are related to the field of particle physics. The main subjects are: cryogenics and vacuum technologies, electric power and power electronics, mechanical components, small and precision machined mechanical components, engineering, industrial plants, industrial machinery, automation, telecommunication, instrumentation, data processing and electronics. The exhibition is being organised by the INFN of Padova. There follows: - the list of exhibitors. A detailed programme will be available in due course: - from your Divisional secretariat, - at the exhibition, - on the SPL homepage http://spl-div.web.cern.ch/spl-div/member_states/exhibitions_visits.htm LISTE DES EXPOSANTS / LIST OF EXHIBITORS 1 Aerimpianti Spa13 Europa Metalli - LMI spa 2 AERSAT Spa14 FBM ICOSS srl 3 Anda...

  15. Italy at CERN

    CERN Multimedia

    2011-01-01

    Nineteen companies will present their latest technology at the industrial exhibition “Italy at CERN”. Italian industries will exhibit products and technologies related to the field of particle physics. The full event programme is available here.   Individual interviews will take place at either the companies’ exhibition stands or in the Main Building’s conference rooms. The firms will be in contact with relevant users and technicians, but anyone wishing to speak with a particular firm is welcome to visit the exhibition or to get in touch with organiser Karin Robert. Italian Industries will also be sponsoring a free concert in the Main Auditorium on Tuesday 11 October at 8:00 pm. The "Trio Poem" concert will feature music by Beethoven and A. Dvořák, with Alberto Torin on the piano, Enrico Carraro on the violin, and Davide Bernardi on the cello.

  16. Major Martian Volcanoes from MOLA - Olympus Mons

    Science.gov (United States)

    2000-01-01

    Two views of Olympus Mons, shown as topography draped over a Viking image mosaic. MOLA's regional topography has shown that this volcano sits off to the west of the main Tharsis rise rather than on its western flank. The topography also clearly shows the relationship between the volcano's scarp and massive aureole deposit that was produced by flank collapse. The vertical exaggeration is 10:1.

  17. A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy

    Science.gov (United States)

    Cassinis, R.; Lechi, G. M.

    1973-01-01

    The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.

  18. Italy: health system review.

    Science.gov (United States)

    Ferre, Francesca; de Belvis, Antonio Giulio; Valerio, Luca; Longhi, Silvia; Lazzari, Agnese; Fattore, Giovanni; Ricciardi, Walter; Maresso, Anna

    2014-01-01

    Italy is the sixth largest country in Europe and has the second highest average life expectancy, reaching 79.4 years for men and 84.5 years for women in 2011. There are marked regional differences for both men and women in most health indicators, reflecting the economic and social imbalance between the north and south of the country. The main diseases affecting the population are circulatory diseases, malignant tumours and respiratory diseases. Italy's health care system is a regionally based national health service that provides universal coverage largely free of charge at the point of delivery. The main source of financing is national and regional taxes, supplemented by copayments for pharmaceuticals and outpatient care. In 2012, total health expenditure accounted for 9.2 percent of GDP (slightly below the EU average of 9.6 percent). Public sources made up 78.2 percent of total health care spending. While the central government provides a stewardship role, setting the fundamental principles and goals of the health system and determining the core benefit package of health services available to all citizens, the regions are responsible for organizing and delivering primary, secondary and tertiary health care services as well as preventive and health promotion services. Faced with the current economic constraints of having to contain or even reduce health expenditure, the largest challenge facing the health system is to achieve budgetary goals without reducing the provision of health services to patients. This is related to the other key challenge of ensuring equity across regions, where gaps in service provision and health system performance persist. Other issues include ensuring the quality of professionals managing facilities, promoting group practice and other integrated care organizational models in primary care, and ensuring that the concentration of organizational control by regions of health-care providers does not stifle innovation. PMID:25471543

  19. Italy; 2013 Article IV Consultation

    OpenAIRE

    International Monetary Fund

    2013-01-01

    This 2013 Article IV Consultation highlights Italy’s assesses measures undertaken to revive economic growth. Italy is vulnerable to a renewal of euro area tension and risks from domestic policy slippages, stalling of structural reforms, and banking distress that could undermine confidence. The government has taken steps to liberalize services, open the energy sector, and improve the labor market, but more is needed to boost productivity and raise Italy’s low employment rate. The IMF repor...

  20. Lahar-hazard zonation for San Miguel volcano, El Salvador

    Science.gov (United States)

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Chesner, C.A.; Howell, M.M.

    2001-01-01

    San Miguel volcano, also known as Chaparrastique, is one of many volcanoes along the volcanic arc in El Salvador. The volcano, located in the eastern part of the country, rises to an altitude of about 2130 meters and towers above the communities of San Miguel, El Transito, San Rafael Oriente, and San Jorge. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and the PanAmerican and coastal highways cross the lowermost northern and southern flanks of the volcano. The population density around San Miguel volcano coupled with the proximity of major transportation routes increases the risk that even small volcano-related events, like landslides or eruptions, may have significant impact on people and infrastructure. San Miguel volcano is one of the most active volcanoes in El Salvador; it has erupted at least 29 times since 1699. Historical eruptions of the volcano consisted mainly of relatively quiescent emplacement of lava flows or minor explosions that generated modest tephra falls (erupted fragments of microscopic ash to meter sized blocks that are dispersed into the atmosphere and fall to the ground). Little is known, however, about prehistoric eruptions of the volcano. Chemical analyses of prehistoric lava flows and thin tephra falls from San Miguel volcano indicate that the volcano is composed dominantly of basalt (rock having silica content

  1. A new active volcano in the Tyrrhenian Sea?

    Directory of Open Access Journals (Sweden)

    M. Sedita

    2006-06-01

    Full Text Available A strong earthquake occurred in 2002 offshore from the northern coast of Sicily in the Southern Tyrrhenian Sea (Italy, and was followed by a series of hundreds of aftershocks. Communications through the fibre-optic cable between Palermo and Rome were interrupted a few hours after the occurrence of the main shock. After the required technical checks, the failure point was found a few kilometres away from the seismic sequence area. A few days later, a specialised cable ship reached the failure area. One side of the cable was completely burnt, while about three kilometres of cable was found locked. Tests on slices of cable showed that the temperature at which the cable was heated went well above 700oC. We can speculate that the earthquakes triggered off the emission of a submarine lava flow that buried, trapped and burnt the fibre-optic cable. The revising of the bathymetric survey made before the cable’s deployment allowed for the identification of a seamount in the vicinity of the rupture. This structure could represent the lava flow’s source volcano.

  2. Italy INAF Data Center Report

    Science.gov (United States)

    Negusini, M.; Sarti, P.

    2013-01-01

    This report summarizes the activities of the Italian INAF VLBI Data Center. Our Data Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics.

  3. Nyiragongo Volcano before the Eruption

    Science.gov (United States)

    2002-01-01

    Nyiragongo is an active stratovolcano situated on the Eastern African Rift; it is part of Africa's Virunga Volcanic Chain. In a massive eruption that occurred on January 17, 2002, Nyiragongo sent a vast plume of smoke and ash skyward, and three swifly-moving rivers of lava streaming down its western and eastern flanks. Previous lava flows from Nyiragongo have been observed moving at speeds of up to 40 miles per hour (60 kph). The lava flows from the January 17 eruption destroyed more than 14 villages in the surrounding countryside, forcing tens of thousands to flee into the neighboring country of Rwanda. Within one day the lava ran to the city of Goma, situated on the northern shore of Lake Kivu about 12 miles (19 km) south of Nyiragongo. The lava cut a 200 foot (60 meter) wide swath right through Goma, setting off many fires, as it ran into Lake Kivu. Goma, the most heavily populated city in eastern Democratic Republic of Congo, is home to about 400,000 people. Most of these citizens were forced to flee, while many have begun to return to their homes only to find their homes destroyed. This true-color scene was captured by the Enhanced Thematic Mapper Plus (ETM+), flying aboard the Landsat 7 satellite, on December 11, 2001, just over a month before the most recent eruption. Nyiragongo's large crater is clearly visible in the image. As recently as June 1994, there was a large lava lake in the volcano's crater which had since solidified. The larger Nyamuragira Volcano is located roughly 13 miles (21 km) to the north of Nyiragongo. Nyamuragira last erupted in February and March 2001. That eruption was also marked by columns of erupted ash and long fluid lava flows, some of which are apparent in the image as dark greyish swaths radiating away from Nyamuragira. Both peaks are also notorious for releasing large amounts of sulfur dioxide, which presents another health hazard to people and animals living in close proximity. Image by Robert Simmon, based on data supplied

  4. Modeling eruptions of Karymsky volcano

    CERN Document Server

    Ozerov, A; Lees, J

    2001-01-01

    A model is proposed to explain temporal patterns of activity in a class of periodically exploding Strombolian-type volcanos. These patterns include major events (explosions) which follow each other every 10-30 minutes and subsequent tremor with a typical period of 1 second. This two-periodic activity is thought to be caused by two distinct mechanisms of accumulation of the elastic energy in the moving magma column: compressibility of the magma in the lower conduit and viscoelastic response of the almost solid magma plug on the top. A release of the elastic energy happens when a stick-slip dynamic phase transition in a boundary layer along the walls of the conduit occurs; this phase transition is driven by the shear stress accumulated in the boundary layer. The first-order character and intrinsic hysteresis of this phase transition explains the long periods of inactivity in the explosion cycle. Temporal characteristics of the model are found to be qualitatively similar to the acoustic and seismic signals recor...

  5. Italy au CERN

    CERN Multimedia

    FI Department

    2008-01-01

    4 – 6 March 2008 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Nineteen companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies related to the field of particle physics. The main subjects are civil engineering and buildings, data processing, electrical engineering, electronics, industrial support, mechanical engineering, particle detectors and vacuum and low-temperature technology. The exhibition is being organised by the INFN of Padova. The exhibitors are listed below. More details on the firms can be found at the following link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS Boffetti Impianti S.r.l. Bozzi & Figli S.r.l. C.A.E.N. S.p.A. Cavicel S.p.A. Comecer S.p.A. E.E.I. Elettronica Conduttori S.r.l. Euromec S.r.l. Eurotech S.p.A. IRST Fondazione Bruno Kessler IVG Colbacchini S.p.A. Krohne Italia S.r.l. Luvata For...

  6. ITALY AT CERN

    CERN Multimedia

    FI Department

    2008-01-01

    4 – 6 March 2008 Main Building Bldg 60 - ground and 1st floor 09.00 hrs - 17.30 hrs Nineteen companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies related to the field of particle physics. The main subjects are civil engineering and buildings, data processing, electrical engineering, electronics, industrial support, mechanical engineering, particle detectors and vacuum and low-temperature technology. The exhibition is being organised by the INFN of Padova. The exhibitors are listed below. More details on the firms can be found at the following link: http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS Boffetti Impianti S.r.l. Bozzi & Figli S.r.l. C.A.E.N. S.p.A. Cavicel S.p.A. Comecer S.p.A. E.E.I. Elettronica Conduttori S.r.l. Euromec S.r.l. Eurotech S.p.A. IRST Fondazione Bruno Kessler IVG Colbacchini S.p.A. Krohne Italia S.r.l. Luvata For...

  7. Italy at CERN

    CERN Multimedia

    Caroline Laignel

    2005-01-01

    15 - 17 November 2005 Main Building Bldg 60 - ground and 1st floor 09:00 - 17:30 Twenty-six companies will present their latest technology at the "Italy at CERN" exhibition. Italian industry will exhibit products and technologies which are related to the field of particle physics.The main subjects are: electrical engineering, electronics, logistics, mechanical engineering, vacuum and low-temperature technology. The exhibition is being organised by the INFN in Padua.The exhibitors are listed below.A detailed programme will be available in due course : from your Departmental secretariat, at the exhibition, on the FI homepage http://fi-dep.web.cern.ch/fi-dep/structure/memberstates/exhibitions_visits.htm LIST OF EXHIBITORS  Ansaldo Superconduttori Spa CAEN Spa CECOM Snc Consorzio Canavese Export CPE Italia Spa Criotec Impianti Srl CTE Sistemi Srl Carpenteria S. Antonio Spa E.E.I. Equipaggiamenti Elettronici Industriali Elettronica Conduttori Srl Goma Elettronica Spa ICAR Spa Intercond Spa Kenotec Srl O...

  8. Seismic unrest at Katla Volcano- southern Iceland

    Science.gov (United States)

    jeddi, zeinab; Tryggvason, Ari; Gudmundsson, Olafur; Bödvarsson, Reynir; SIL Seismology Group

    2014-05-01

    Katla volcano is located on the propagating Eastern Volcanic Zone (EVZ) in South Iceland. It is located beneath Mýrdalsjökull ice-cap which covers an area of almost 600 km2, comprising the summit caldera and the eruption vents. 20 eruptions between 930 and 1918 with intervals of 13-95 years are documented at Katla which is one of the most active subglacial volcanoes in Iceland. Eruptions at Katla are mainly explosive due to the subglacial mode of extrusion and produce high eruption columns and catastrophic melt water floods (jökulhlaups). The present long Volcanic repose (almost 96 years) at Katla, the general unrest since 1955, and the 2010 eruption of the neighbouring Eyjafjallajökull volcano has prompted concerns among geoscientists about an imminent eruption. Thus, the volcano has been densely monitored by seismologists and volcanologists. The seismology group of Uppsala University as a partner in the Volcano Anatomy (VA) project in collaboration with the University of Iceland and the Icelandic Meteorological Office (IMO) installed 9 temporary seismic stations on and around the Mýrdalsjökull glacier in 2011. Another 10 permanent seismic stations are operated by IMO around Katla. The project's data collection is now finished and temporary stations were pulled down in August 2013. According to seismicity maps of the whole recording period, thousands of microearthquakes have occurred within the caldera region. At least three different source areas are active in Katla: the caldera region, the western Godaland region and a small cluster at the southern rim of Mýrdalsjökull near the glacial stream of Hafursarjökull. Seismicity in the southern flank has basically started after June 2011. The caldera events are mainly volcano-tectonic, while western and southern events are mostly long period (lp) and can be related to glacial or magmatic movement. One motivation of the VA Katla project is to better understand the physical mechanism of these lp events. Changes

  9. Interferometric Synthetic Aperture radar studies of Alaska volcanoes

    Science.gov (United States)

    Lu, Zhong; Wicks, Charles W., Jr.; Dzurisin, Daniel; Power, John A.; Thatcher, Wayne R.; Masterlark, Timothy

    2003-01-01

    In this article, we summarize our recent InSAR studies of 13 Alaska volcanoes, including New Trident, Okmok, Akutan, Kiska, Augustine, Westdahl, Peulik, Makushin, Seguam, Shishaldin, Pavlof, Cleveland, and Korovin volcanoes.

  10. USGS U.S. Volcanoes with Elevated Status

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides list of elevated status volcanoes with access to activity updates and/or information releases for changes in activity at the volcanoes. activity at...

  11. Volcanoes in the Classroom--an Explosive Learning Experience.

    Science.gov (United States)

    Thompson, Susan A.; Thompson, Keith S.

    1996-01-01

    Presents a unit on volcanoes for third- and fourth-grade students. Includes demonstrations; video presentations; building a volcano model; and inviting a scientist, preferably a vulcanologist, to share his or her expertise with students. (JRH)

  12. Tephrochronology offshore Ischia Island, Tyrrhenian sea, Italy

    Science.gov (United States)

    Insinga, Donatella; Sulpizio, Roberto; de Alteriis, Giovanni; Morabito, Simona; Morra, Vincenzo; Sprovieri, Mario; di Benedetto, Claudia; Lubritto, Carmine; Zanchetta, Giovanni

    2010-05-01

    the coring site. The definition of the source area of these two major events is still a matter of debate. However, the Somma-Vesuvius complex reasonably sourced the Schiava deposits while a Campi Flegrei provenance for the Codola deposits cannot be ruled out (Di Vito et al., 2008). These latters, known as C10 tephra in the Tyrrhenian and Adriatic sea (Paterne et al., 1988; Giaccio et al., 2008), in particular, represent reliable regional markers for the whole central Mediterranean area. References De Vivo, B., Rolandi, G., Gans, P.B., Calvert, A., Bohrson,W.A., Spera, F.J., Belkin, H.E., 2001. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineralogy and Petrology 73, 47-65. Di Vito,M.A., Sulpizio, R., Zanchetta, G., D'Orazio, M., 2008. The late Pleistocene pyroclastic deposits of the Campanian Plain: newinsights into the explosive activity of Neapolitan volcanoes. J. Volcanol. Geotherm. Res.177, 19-48. Giaccio, B., Isaia, R., Fedele, F.G., Di Canzio, E., Hoffecker, J., Ronchitelli, A., Sinitsyn, A., Anikovich, M., Lisitsyn, S.N., 2008. The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the Early Upper Palaeloithic in southern Italy and eastern Europe. J. Volcanol. Geotherm. Res. 177, 210-228. Paterne M., Guichard F. & Labeyrie J., 1988. Explosive activity of the south Italian volcanoes during the past 80.000 years as determined by marine tephrochronology. J. Volcanol. Geother. Res. 34, 153-172. Paterne, M., Guichard, F., 1993. Triggering of volcanic pluses in the Campanian area, south Italy, by periodic deep magma in.ux. Journal of Geophysical Research 98 (B2), 1861-1873. Rio, D., Raffi, I., Villa, G., 1990. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the western Mediterranean. In: Kastens, K.A. (Ed.), Proceedings of the Ocean Drilling Program. Scientific Results, vol. 107. Ocean Drilling Program, College Station, TX, pp. 513-533. Sulpizio, R., Zanchetta, G

  13. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    OpenAIRE

    Gabriele Giovanetti; Stephen Monna; Nadia Lo Bue; Davide Embriaco; Francesco Frugoni; Giuditta Marinaro; Mariagrazia De Caro; Tiziana Sgroi; Caterina Montuori; Angelo De Santis; Gianfranco Cianchini; Laura Beranzoli; Paolo Favali

    2016-01-01

    The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with ...

  14. Predicting the Timing and Location of the next Hawaiian Volcano

    Science.gov (United States)

    Russo, Joseph; Mattox, Stephen; Kildau, Nicole

    2010-01-01

    The wealth of geologic data on Hawaiian volcanoes makes them ideal for study by middle school students. In this paper the authors use existing data on the age and location of Hawaiian volcanoes to predict the location of the next Hawaiian volcano and when it will begin to grow on the floor of the Pacific Ocean. An inquiry-based lesson is also…

  15. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    Science.gov (United States)

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  16. How Do Volcanoes Affect Human Life? Integrated Unit.

    Science.gov (United States)

    Dayton, Rebecca; Edwards, Carrie; Sisler, Michelle

    This packet contains a unit on teaching about volcanoes. The following question is addressed: How do volcanoes affect human life? The unit covers approximately three weeks of instruction and strives to present volcanoes in an holistic form. The five subject areas of art, language arts, mathematics, science, and social studies are integrated into…

  17. Soil radon response around an active volcano

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N. E-mail: msa@nuclear.inin.mx; Valdes, C.; Pena, P.; Mena, M.; Tamez, E

    2001-06-01

    Soil radon behavior related to the volcanic eruptive period 1997-1999 of Popocatepetl volcano has been studied as a function of the volcanic activity. Since the volcano is located 60 km from Mexico City, the risk associated with an explosive eruptive phase is high and an intense surveillance program has been implemented. Previous studies in this particular volcano showed soil radon pulses preceding the initial phase of the eruption. The radon survey was performed with LR-115 track detectors at a shallow depth and the effect of the soil moisture during the rainy season has been observed on the detectors response. In the present state of the volcanic activity the soil radon behavior has shown more stability than in previous eruptive stages.

  18. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  19. Nuclear power in Italy

    International Nuclear Information System (INIS)

    As is known to most of this audience in November of 1987 a referendum determined a rejection of nuclear power in Italy. The referendum may be taken into consideration here as a large scale experiment which offers points of interest to this conference and problems to be aware of, in approaching a severe confrontation with the public. To give a synopsis of the Italian perspective I will examine: first the public acceptance in the situation before Chernobyl, then the most disturbing and sensitive factors of Chernobyl's consequences; how the opposition to nuclear energy worked with the support of most media and the strong pressures of an anti-nuclear political party, the syllogism of the opponents and the arguments used, the causes of major weakness of the defenders and how a new perception of nuclear risk was generated in the public. I will come to the topic of utility acceptance by mentioning that ENEL, as the National Utility, in its role is bound to a policy of compliance with Government decisions. It is oriented today to performance of feasibility studies and development of requirements for the next generation of reactors in order to maintain an updated proposal for a future recovery of the nuclear option. I will then try to identify in general terms the factors determining the future acceptance of nuclear power. They will be determined in the interdisciplinary area of politics, media and public interactions with the utilities the uses of the technology are forced to follow, by political constraints, two main directives: working only in new projects to achieve, if possible, new safety goals

  20. Italy seeks a strategy.

    Science.gov (United States)

    Owen, M

    1988-01-01

    Italy now ranks 8th in the list of countries worst hit by AIDS. The relatively low figures for homosexual AIDS cases give no cause for complacency. It is not known yet if the message about 'safe sex' has got across to homosexuals, or if there has been underreporting and the numbers with AIDS will start soon to show the same rising curve as that for drug users. The Vatican, as was always expected, has said 'no' to the use of condoms to combat the spread of HIV, even though its use would not be to avoid conception but to prevent disease. Many doctors working in the field resent the lack of consultation and communication between Rome and the regions. But Italian health services are decentralized; the 21 regional health authorities are autonomous bodies. They have never looked to central government for specific directions, but they do desperately need extra funding. Their literature has been important as means of countering 'disinformation' from the press, often prone to sensationalism. Discrimination against children of parents infected with HIV has occured in schools and frequently seropositive employees have been fired. Local authorities are now making great efforts to impart the correct information. The Italian family planning association, UNICEMP, plays a supportive role in the education and information campaign. Many voluntary organizations provide counseling. The government national commission on AIDS set up a free telephone service where experts are available to answer questions from the public. But although 18,000 calls were made in the 1st 6 weeks of opening, hardly any inqueries at all came from those most at risk--the drug users. PMID:12281142

  1. Fatto in Italia: Refashioning Italy

    Directory of Open Access Journals (Sweden)

    Tiziana Ferrero-Regis

    2008-09-01

    Full Text Available This article discusses how the Made in Italy brand helped Italy to recover from economic recession in the 1980s, but also how it redefined the country's identity after the traumatic years of terrorism and especially after the murder of the Christian Democratic Party Secretary, Aldo Moro, at the hands of the Red Brigades. In this period cinema as a form of artistic achievement declined, while fashion and industrial design moved at the centre stage of economic and creative success. The rampant consumerism of the 1980s, fuelled by tax reforms that favoured a wider urban middle class, the retreat of unionism, the abandonment of collective bargaining in many industrial sectors, industrial restructuring with the consequent growth of black market economy in the provincial areas of the so-called Third Italy first and the South later, were all factors that contributed to a social and economic shift within Italy itself. Commercial consumption, propagated by the proliferation of local commercial television networks, hedonism and a re-articulation of identity through appearance replaced the 1970s' political activism and ideological opposition to fashion. Ultimately, 'Made in Italy' was a multidimensional phenomenon that presented itself as a new cultural model for the country’s political tribes of the 1970s.

  2. Volcanoes muon imaging using Cherenkov telescopes

    Science.gov (United States)

    Catalano, O.; Del Santo, M.; Mineo, T.; Cusumano, G.; Maccarone, M. C.; Pareschi, G.

    2016-01-01

    A detailed understanding of a volcano inner structure is one of the key-points for the volcanic hazards evaluation. To this aim, in the last decade, geophysical radiography techniques using cosmic muon particles have been proposed. By measuring the differential attenuation of the muon flux as a function of the amount of rock crossed along different directions, it is possible to determine the density distribution of the interior of a volcano. Up to now, a number of experiments have been based on the detection of the muon tracks crossing hodoscopes, made up of scintillators or nuclear emulsion planes. Using telescopes based on the atmospheric Cherenkov imaging technique, we propose a new approach to study the interior of volcanoes detecting of the Cherenkov light produced by relativistic cosmic-ray muons that survive after crossing the volcano. The Cherenkov light produced along the muon path is imaged as a typical annular pattern containing all the essential information to reconstruct particle direction and energy. Our new approach offers the advantage of a negligible background and an improved spatial resolution. To test the feasibility of our new method, we have carried out simulations with a toy-model based on the geometrical parameters of ASTRI SST-2M, i.e. the imaging atmospheric Cherenkov telescope currently under installation onto the Etna volcano. Comparing the results of our simulations with previous experiments based on particle detectors, we gain at least a factor of 10 in sensitivity. The result of this study shows that we resolve an empty cylinder with a radius of about 100 m located inside a volcano in less than 4 days, which implies a limit on the magma velocity of 5 m/h.

  3. The origin of the Hawaiian Volcano Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, John [University of Hawaii' s Institute for Astronomy (United States)

    2011-05-15

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  4. Venus small volcano classification and description

    Science.gov (United States)

    Aubele, J. C.

    1993-03-01

    The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep

  5. The origin of the Hawaiian Volcano Observatory

    International Nuclear Information System (INIS)

    I first stepped through the doorway of the Hawaiian Volcano Observatory in 1976, and I was impressed by what I saw: A dozen people working out of a stone-and-metal building perched at the edge of a high cliff with a spectacular view of a vast volcanic plain. Their primary purpose was to monitor the island's two active volcanoes, Kilauea and Mauna Loa. I joined them, working for six weeks as a volunteer and then, years later, as a staff scientist. That gave me several chances to ask how the observatory had started.

  6. About the mud volcano's roots on isotope - mineralogical data. Example of the Bahar mud volcano, Azerbaijan

    International Nuclear Information System (INIS)

    Full text : In this paper on the isotopic carbon composition data, stage and formation temperature of bassanite mineral determined in the products of the Baharmud volcano activity is made estimation of depth and stratigraphic location of its hearth. Mud volcanoes of Azerbaijan have been investigated for many decades, but the problem on depth location, products of their activity up to now is still debatable. The most objective estimation of the stratigraphic depth of solid products of mud volcanoes activity is made on the basis of paleontological researches. Accrding to the studiesof isotopic hydrocarbon composition of oil and organic matter of rocks and oil-rock correlation was determined that part of studied mud volcanoes bring out to the surface Pliocene-Miocene oil, others mainly Paleogene oil. Many scientists have different opinions about the stratigraphic location of hydrocarbon gases that plays a great role in mud volcanism processes.

  7. Interconnection France-Italy; Interconnexion France-Italie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    These documents presents the rules, defined by RTE, of the attribution of electric power transportation capacity between France and Italy. The contract form and the general principles are given in annexes. A guide to the application form is provided. (A.L.B.)

  8. Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The 19 known shield volcanoes of the main Hawaiian Islands—15 now emergent, 3 submerged, and 1 newly born and still submarine—lie at the southeast end of a long-lived hot spot chain. As the Pacific Plate of the Earth’s lithosphere moves slowly northwestward over the Hawaiian hot spot, volcanoes are successively born above it, evolve as they drift away from it, and eventually die and subside beneath the ocean surface.

  9. Tracking in Real-Time Pyroclastic Flows at Soufriere Hills Volcano, Montserrat, by infrasonic array.

    Science.gov (United States)

    Ripepe, M.; de Angelis, S.; Lacanna, G.; Poggi, P.; Williams, C.

    2008-12-01

    Active volcanoes produce infrasonic airwaves, which provide valuable insight into the eruption dynamics and the level of volcanic activity. On open conduit volcanoes, infrasound can be used to monitor the gas overpressure in the magma and the degassing rate of active volcanic vents. On volcanoes characterized by dome growth, infrasound can also be generated by non-explosive sources related to dome collapses and pyroclastic flows. In March 2008, the Department of Earth Science (DST) of Firenze (Italy) in cooperation with Montserrat Volcano Observatory (MVO) has installed a small-aperture infrasonic array at a distance of ~3000 m from the dome of the Soufriere Hill Volcano (SHV). The array has an aperture of 200 m and a "star" geometry, with 3 satellite stations at 100 m distance from the receiving central station. Each element of the array is linked to the receiver station by fiber optics cable, and the signal is acquired with a resolution of 16 bits at a rate of 50 samples/sec. The data collected by the array are sent via a radio modem link to the MVO offices, on Montserrat, where they are archived and processed in real-time. Real-time location of infrasonic events are obtained and displayed on computer monitors for use in monitoring of volcanic activity. After a period of very low levels of activity, starting from the end of May 2008, SHV has produced several small explosions without any short-term precursory sign. Some of these events have generated ash plumes reaching up to a few thousands of meters above the sea level, and were accompanied by moderate-to-large size pyroclastic flows that descended the western flanks of the volcanic edifice. The array was able to detect and locate in real-time the clear infrasound associated both with the explosions and the pyroclastic flows. In the latter case, the array estimated the speed and the direction of the flux revealing the presence of several pulses within the same flow. The variable azimuth of the signal during the

  10. The geodynamics of Mt. Etna volcano during and after the 1984 eruption

    Directory of Open Access Journals (Sweden)

    C. Centamore

    1999-06-01

    Full Text Available Data concerning M > 2.5 earthquakes that occurred at Mt. Etna volcano (Sicily, Italy during the period April 15th - October 29th, 1984 are here presented and discussed. Only those events with reliable focal mechanisms (at least eight polarities have been considered. Instrumental information comes from local seismic networks run by the University of Catania and the CNRS (Grenoble, France. The results obtained support the hypothesis that the seismicity and the volcanic activity at Mt. Etna are related to a complex stress field, due to the combined effects of the tectonics associated with the interaction between the African and Eurasian plates and the movement of magma into the crust. In particular, we hypothesize that the tectonic forces caused the end of the 1984 eruption, by means of a "locking mechanism".

  11. Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Maurizio; Morotti, Marco

    2003-01-01

    This paper describes the results of a study that was conducted to determine the relationship between hydrogeochemical composition and {sup 87}Sr/{sup 86}Sr isotope ratios of the Mt. Vulture spring waters. Forty samples of spring waters were collected from local outcrops of Quaternary volcanites. Physico-chemical parameters were measured in the field and analyses completed for major and minor elements and {sup 87}Sr/{sup 86}Sr isotopic ratios. A range of water types was distinguished varying from alkaline-earth bicarbonate waters, reflecting less intense water-rock interaction processes to alkali bicarbonate waters, probably representing interaction with volcanic rocks of Mt. Vulture and marine evaporites. The average {sup 87}Sr/{sup 86}Sr isotope ratios suggest at least 3 different sources. However, some samples have average Sr isotope ratios (0.70704-0.70778) well above those of the volcanites. These ratios imply interaction with other rocks having higher {sup 87}Sr/{sup 86}Sr ratios, probably Triassic evaporites, which is substantiated by their higher content of Na, SO{sub 4} and Cl. The Sr isotope ratios for some samples (e.g. Toka and Traficante) are intermediate between the value for the Vulture volcanites and that for the local Mesozoic rocks. The salt content of these samples also lies between the value for waters interacting solely with the volcanites and the value measured in the more saline samples. These waters are thus assumed to result from the mixing of waters circulating in volcanic rocks with waters presumably interacting with the sedimentary bedrock (marine evaporites)

  12. Atmospheric sources and sinks of volcanogenic elements in a basaltic volcano (Etna, Italy)

    OpenAIRE

    Calabrese, S.; Università di Palermo, Dipartimento DiSTeM, Italy; Aiuppa, A.; Università di Palermo, Dipartimento CFTA; Allard, P.; Institut de Physique du Globe, Sorbonne-Paris Cité, UMR CNRS 7154, Univ. Paris Diderot, Paris, France; Bagnato, E.; Università di Palermo, Dipartimento CFTA; Bellomo, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Brusca, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; D'Alessandro, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Parello, F.; Università di Palermo, Dipartimento CFTA

    2011-01-01

    This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was c...

  13. Hydrogeochemistry and strontium isotopes of spring and mineral waters from Monte Vulture volcano, Italy

    International Nuclear Information System (INIS)

    This paper describes the results of a study that was conducted to determine the relationship between hydrogeochemical composition and 87Sr/86Sr isotope ratios of the Mt. Vulture spring waters. Forty samples of spring waters were collected from local outcrops of Quaternary volcanites. Physico-chemical parameters were measured in the field and analyses completed for major and minor elements and 87Sr/86Sr isotopic ratios. A range of water types was distinguished varying from alkaline-earth bicarbonate waters, reflecting less intense water-rock interaction processes to alkali bicarbonate waters, probably representing interaction with volcanic rocks of Mt. Vulture and marine evaporites. The average 87Sr/86Sr isotope ratios suggest at least 3 different sources. However, some samples have average Sr isotope ratios (0.70704-0.70778) well above those of the volcanites. These ratios imply interaction with other rocks having higher 87Sr/86Sr ratios, probably Triassic evaporites, which is substantiated by their higher content of Na, SO4 and Cl. The Sr isotope ratios for some samples (e.g. Toka and Traficante) are intermediate between the value for the Vulture volcanites and that for the local Mesozoic rocks. The salt content of these samples also lies between the value for waters interacting solely with the volcanites and the value measured in the more saline samples. These waters are thus assumed to result from the mixing of waters circulating in volcanic rocks with waters presumably interacting with the sedimentary bedrock (marine evaporites)

  14. Permeability estimates from artificial drawdown and natural refill experiments at Solfatara volcano, Italy

    Science.gov (United States)

    Woith, Heiko; Chiodini, Giovanni; Mangiacapra, Annarita; Wang, Rongjiang

    2016-04-01

    The hydrothermal system beneath Campi Flegrei is strongly affected by sub-surface processes as manifested by a geothermal "plume" below Solfatara, associated with the formation of mud-pools (Fangaia), fumaroles (Bocca Grande, Pisciarelli), and thermal springs (Agnano). Within the frame of MED-SUV (The MED-SUV project has received funding from the European Union Seventh Framework Programme FP7 under Grant agreement no 308665), pressure transients in the hydrothermal system of Campi Flegrei are being continuously monitored at fumaroles, mudpools, hot springs, and geothermal wells. In total, waterlevel and temperature is recorded at 8 sites across the hydrothermal plume along a profile aligned between Agnano Termal in the East and Fangaia in the West. Autonomous devices are used to record the water level and water temperature at 10 minute intervals. At Fangaia mudpool water level and water temperature are dominantly controlled by rain water. Thus, the pool is refilled episodically. Contrary, the water level at a well producing hot water (82°C) for the Pisciarelli tennis club drops and recovers at nearly regular intervals. The induced water level changes are of the order of 1-2m and 3-4m in case of the mudpool and the hot-water-well, respectively. At first glance, both monitoring sites might seem to be fully useless to access natural changes in the Campi Flegrei fluid system. At a second thought, both timeseries provide a unique opportunity to monitor potential permeability changes in the aquifer system. A similar approach had been proposed to deduce earthquake-related permeability changes from Earth tide variations. Contrary to the indirect Earth tide approach, we have the chance to estimate the hydraulic aquifer properties from our monitoring data directly, since each time series contains a sequence of discrete hydraulic tests - namely drawdown tests and refill experiments. Although our Cooper-Jacob approach is really crude, we obtained reasonable permeability estimates for both sites. Preliminary permeability timeseries are presented.

  15. Exact bound states in volcano potentials

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Ratna [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721 302 (India)]. E-mail: ratna@cts.iitkgp.ernet.in; Kar, Sayan [Department of Physics and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721 302 (India)]. E-mail: sayan@cts.iitkgp.ernet.in

    2007-04-09

    Quantum mechanics in a one-parameter family of volcano potentials is investigated. After a discussion on their construction and classical mechanics, we obtain exact, normalizable bound states for specific values of the energy. The nature of the wave functions and probability densities, as well as some curious features of the solutions are highlighted.

  16. Exact bound states in volcano potentials

    CERN Document Server

    Koley, R; Kar, Sayan; Koley, Ratna

    2006-01-01

    Quantum mechanics in a one--parameter family of volcano potentials is investigated. After a discussion on their construction and classical mechanics, we obtain exact, normalisable bound states for specific values of the energy. The nature of the wave functions and probability densities, as well as some curious features of the solutions are highlighted.

  17. Geophysical monitoring of the Purace volcano, Colombia

    Directory of Open Access Journals (Sweden)

    M. Arcila

    1996-06-01

    Full Text Available Located in the extreme northwestern part of the Los Coconucos volcanic chain in the Central Cordillera, the Purace is one of Colombia's most active volcanoes. Recent geological studies indicate an eruptive history of mainly explosive behavior which was marked most recently by a minor ash eruption in 1977. Techniques used to forecast the renewal of activity of volcanoes after a long period of quiescence include the monitoring of seismicity and ground deformation near the volcano. As a first approach toward the monitoring of the Purace volcano, Southwest Seismological Observatory (OSSO, located in the city of Cali, set up one seismic station in 1986. Beginning in June 1991, the seismic signals have also been transmitted to the Colombian Geological Survey (INGEOMINAS at the Volcanological and Seismological Observatory (OVS-UOP, located in the city of Popayan. Two more seismic stations were installed early in 1994 forming a minimum seismic network and a geodetic monitoring program for ground deformation studies was established and conducted by INGEOMINAS.

  18. Bathymetry of southern Mauna Loa Volcano, Hawaii

    Science.gov (United States)

    Chadwick, William W.; Moore, James G.; Garcia, Michael O.; Fox, Christopher G.

    1993-01-01

    Manua Loa, the largest volcano on Earth, lies largely beneath the sea, and until recently only generalized bathymetry of this giant volcano was available. However, within the last two decades, the development of multibeam sonar and the improvement of satellite systems (Global Positioning System) have increased the availability of precise bathymetric mapping. This map combines topography of the subaerial southern part of the volcano with modern multibeam bathymetric data from the south submarine flank. The map includes the summit caldera of Mauna Loa Volcano and the entire length of the 100-km-long southwest rift zone that is marked by a much more pronounced ridge below sea level than above. The 60-km-long segment of the rift zone abruptly changes trend from southwest to south 30 km from the summit. It extends from this bend out to sea at the south cape of the island (Kalae) to 4 to 4.5 km depth where it impinges on the elongate west ridge of Apuupuu Seamount. The west submarine flank of the rift-zone ridge connects with the Kahuku fault on land and both are part of the ampitheater head of a major submarine landslide (Lipman and others, 1990; Moore and Clague, 1992). Two pre-Hawaiian volcanic seamounts in the map area, Apuupuu and Dana Seamounts, are apparently Cretaceous in age and are somewhat younger than the Cretaceous oceanic crust on which they are built.

  19. Carbonate assimilation at Merapi volcano, Java Indonesia

    DEFF Research Database (Denmark)

    Chadwick, J.P; Troll, V.R; Ginibre,, C.;

    2007-01-01

    Recent basaltic andesite lavas from Merapi volcano contain abundant, complexly zoned, plagioclase phenocrysts, analysed here for their petrographic textures, major element composition and Sr isotope composition. Anorthite (An) content in individual crystals can vary by as much as 55 mol% (An40...

  20. Volcano deformation and gravity workshop synopsis and outcomes: the 2008 volcano deformation and temporal gravity change workshop

    Science.gov (United States)

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  1. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  2. Volcanic conduit migration over a basement landslide at Mount Etna (Italy)

    Science.gov (United States)

    Nicolosi, I.; Caracciolo, F. D'ajello; Branca, S.; Ventura, G.; Chiappini, M.

    2014-06-01

    The flanks of volcanoes may slide in response to the loading of the edifice on a weak basement, magma push, and/or to tectonic stress. However, examples of stratovolcanoes emplaced on active landslides are lacking and the possible effects on the volcano dynamics unknown. Here, we use aeromagnetic data to construct a three-dimensional model of the clay-rich basement of Etna volcano (Italy). We provide evidence for a large stratovolcano growing on a pre-existing basement landslide and show that the eastern Etna flank, which slides toward the sea irrespective of volcanic activity, moves coherently with the underlying landslide. The filling of the landslide depression by lava flows through time allows the formation of a stiffness barrier, which is responsible for the long-term migration of the magma pathways from the coast to the present-day Etna summit. These unexpected results provide a new interpretation clue on the causes of the volcanic instability processes and of the mechanisms of deflection and migration of volcanic conduits.

  3. Seafloor doming driven by active mantle degassing offshore Naples (Italy)

    Science.gov (United States)

    Ventura, Guido; Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Caliro, Stefano; Chiodini, Giovanni; Sacchi, Marco; Rizzo, Andrea

    2016-04-01

    Structures and processes associated with shallow water hydrothermal fluid discharges on continental shelves are poorly known. We report geomorphological, geophysical, and geochemical evidences of a 5.5 x 5.3 km seabed doming located 5 km offshore the Naples harbor (Italy). The dome lies between 100 and 170 m of water depth and it is 15-20 m higher than the surrounding seafloor. It is characterized by a hummocky morphology due to 280 sub-circular to elliptical mounds, about 660 cones, and 30 pockmarks. The mounds and pockmarks alignments follow those of the main structural discontinuity affecting the Gulf of Naples. The seafloor swelling and breaching require relatively low pressures (about 2-3 MPa), and the sub-seafloor structures, which consists of 'pagodas' affecting the present-day seabed, record the active upraise, pressurization, and release of magmatic fluids. The gas composition of the sampled submarine emissions is consistent with that of the emissions from the hydrothermal systems of Ischia, CampiFlegrei and Somma-Vesuvius active volcanoes, and CO2 has a magmatic/thermometamorphic origin. The 3He/4He ratios (1.66-1.96 Ra) are slightly lower than in the Somma-Vesuvius and Campi Flegrei volcanoes (~2.6-3.0 Ra) indicating the contamination of fluids originated from the same magmatic source by crustal-derived radiogenic 4He. All these evidences concur to hypothesize an extended magmatic reservoir beneath Naples and its offshore. Seabed doming, faulting, and hydrothermal discharges are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. We conclude that seabed deformations and hydrothermal discharge must be included in the coastal hazard studies.

  4. Fiber Bragg grating strain sensors to monitor and study active volcanoes

    Science.gov (United States)

    Sorrentino, Fiodor; Beverini, Nicolò; Carbone, Daniele; Carelli, Giorgio; Francesconi, Francesco; Gambino, Salvo; Giacomelli, Umberto; Grassi, Renzo; Maccioni, Enrico; Morganti, Mauro

    2016-04-01

    Stress and strain changes are among the best indicators of impending volcanic activity. In volcano geodesy, borehole volumetric strain-meters are mostly utilized. However, they are not easy to install and involve high implementation costs. Advancements in opto-electronics have allowed the development of low-cost sensors, reliable, rugged and compact, thus particularly suitable for field application. In the framework of the EC FP7 MED-SUV project, we have developed strain sensors based on the fiber Bragg grating (FBG) technology. In comparison with previous implementation of the FBG technology to study rock deformations, we have designed a system that is expected to offer a significantly higher resolution and accuracy in static measurements and a smooth dynamic response up to 100 Hz, implying the possibility to observe seismic waves. The system performances are tailored to suit the requirements of volcano monitoring, with special attention to power consumption and to the trade-off between performance and cost. Preliminary field campaigns were carried out on Mt. Etna (Italy) using a prototypal single-axis FBG strain sensor, to check the system performances in out-of-the-lab conditions and in the harsh volcanic environment (lack of mains electricity for power, strong diurnal temperature changes, strong wind, erosive ash, snow and ice during the winter time). We also designed and built a FBG strain sensor featuring a multi-axial configuration which was tested and calibrated in the laboratory. This instrument is suitable for borehole installation and will be tested on Etna soon.

  5. Laboratory simulations of fluid/gas induced micro-earthquakes: application to volcano seismology.

    Directory of Open Access Journals (Sweden)

    Philip Michael Benson

    2014-11-01

    Full Text Available Understanding different seismic signals recorded in active volcanic regions allows geoscientists to derive insight into the processes that generate them. A key type is known as Low Frequency or Long Period (LP event, generally understood to be generated by different fluid types resonating in cracks and faults. The physical mechanisms of these signals have been linked to either resonance/turbulence within fluids, or as a result of fluids ‘sloshing’ due to a mixture of gas and fluid being present in the system. Less well understood, however, is the effect of the fluid type (phase on the measured signal. To explore this, we designed an experiment in which we generated a precisely controlled liquid to gas transition in a closed system by inducing rapid decompression of fluid-filled fault zones in a sample of basalt from Mt. Etna Volcano, Italy. We find that fluid phase transition is accompanied by a marked frequency shift in the accompanying microseismic dataset that can be compared to volcano seismic data. Moreover, our induced seismic activity occurs at pressure conditions equivalent to hydrostatic depths of 200 to 750 meters. This is consistent with recently measured dominant frequencies of LP events and with numerous models.

  6. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    Science.gov (United States)

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  7. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2010-03-01

    Full Text Available The composition of non-methane organic volatile compounds (VOCs determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  8. Crystal recycling in the steady-state system of the active Stromboli volcano : a 2.5-ka story inferred from in situ Sr-isotope and trace element data.

    OpenAIRE

    Francalanci, Lorella; Avanzinelli, Riccardo; Nardini, Isabella; Tiepolo, Massimo; Davidson, Jon P.; Vannucci, Riccardo

    2011-01-01

    In situ Sr-isotope data by microdrilling, cou- pled with major and trace element analyses, have been performed on plagioclase and clinopyroxene from seven samples collected during the 2002–2003 eruptive crisis at Stromboli volcano (Aeolian Islands, Italy). On 28 December 2002, the persistent moderate explosive activity was broken by an effusive event lasting about 7 months. A more violent explosion (paroxysm) occurred on 5 April 2003. Two magma types were erupted, namely a volatile- poor and ...

  9. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    Science.gov (United States)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and

  10. Common processes at unique volcanoes – a volcanological conundrum

    Directory of Open Access Journals (Sweden)

    Katharine eCashman

    2014-11-01

    Full Text Available An emerging challenge in modern volcanology is the apparent contradiction between the perception that every volcano is unique, and classification systems based on commonalities among volcano morphology and eruptive style. On the one hand, detailed studies of individual volcanoes show that a single volcano often exhibits similar patterns of behaviour over multiple eruptive episodes; this observation has led to the idea that each volcano has its own distinctive pattern of behaviour (or personality. In contrast, volcano classification schemes define eruption styles referenced to type volcanoes (e.g. Plinian, Strombolian, Vulcanian; this approach implicitly assumes that common processes underpin volcanic activity and can be used to predict the nature, extent and ensuing hazards of individual volcanoes. Actual volcanic eruptions, however, often include multiple styles, and type volcanoes may experience atypical eruptions (e.g., violent explosive eruptions of Kilauea, Hawaii1. The volcanological community is thus left with a fundamental conundrum that pits the uniqueness of individual volcanic systems against generalization of common processes. Addressing this challenge represents a major challenge to volcano research.

  11. Cladistic analysis applied to the classification of volcanoes

    Science.gov (United States)

    Hone, D. W. E.; Mahony, S. H.; Sparks, R. S. J.; Martin, K. T.

    2007-11-01

    Cladistics is a systematic method of classification that groups entities on the basis of sharing similar characteristics in the most parsimonious manner. Here cladistics is applied to the classification of volcanoes using a dataset of 59 Quaternary volcanoes and 129 volcanic edifices of the Tohoku region, Northeast Japan. Volcano and edifice characteristics recorded in the database include attributes of volcano size, chemical composition, dominant eruptive products, volcano morphology, dominant landforms, volcano age and eruptive history. Without characteristics related to time the volcanic edifices divide into two groups, with characters related to volcano size, dominant composition and edifice morphology being the most diagnostic. Analysis including time based characteristics yields four groups with a good correlation between these groups and the two groups from the analysis without time for 108 out of 129 volcanic edifices. Thus when characters are slightly changed the volcanoes still form similar groupings. Analysis of the volcanoes both with and without time yields three groups based on compositional, eruptive products and morphological characters. Spatial clusters of volcanic centres have been recognised in the Tohoku region by Tamura et al. ( Earth Planet Sci Lett 197:105 106, 2002). The groups identified by cladistic analysis are distributed unevenly between the clusters, indicating a tendency for individual clusters to form similar kinds of volcanoes with distinctive but coherent styles of volcanism. Uneven distribution of volcano types between clusters can be explained by variations in dominant magma compositions through time, which are reflected in eruption products and volcanic landforms. Cladistic analysis can be a useful tool for elucidating dynamic igneous processes that could be applied to other regions and globally. Our exploratory study indicates that cladistics has promise as a method for classifying volcanoes and potentially elucidating dynamic

  12. Perspective View, Mt. Etna, Italy & the Aeolian Islands

    Science.gov (United States)

    2002-01-01

    Italy's Mount Etna and the Aeolian Islands are the focus of this perspective view made from an Advanced Spaceborne Thermal and Emission Radiometer (ASTER) image from NASA's Terra spacecraft overlaid on Shuttle Radar Topography Mission (SRTM) topography. The image is looking south with the islands of Lipari and Vulcano in the foreground and Etna with its dark lava flows on the skyline. Vulcano also hosts an active volcano, the cone of which is prominent. In late October 2002, Etna erupted again, sending lava flows down the north and south sides of the volcano. The north flows are near the center of this view, but the ASTER image is from before the eruption.In addition to the terrestrial applications of these data for understanding active volcanoes and hazards associated with them such as lava flows and explosive eruptions, geologists studying Mars find these data useful as an analog to martian landforms and geologic processes. In late September 2002, a field conference with the theme of Terrestrial Analogs to Mars focused on Mount Etna allowing Mars geologists to see in person the types of features they can only sample remotely.Elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise, Washington, D

  13. A Benthic Invertebrate Survey of Jun Jaegyu Volcano: An active undersea volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Quinones, G.; Brachfeld, S.; Gorring, M.; Prezant, R. S.; Domack, E.

    2005-12-01

    Jun Jaegyu volcano, an Antarctic submarine volcano, was dredged in May 2004 during cruise 04-04 of the RV Laurence M. Gould to determine rock, sediment composition and marine macroinvertebrate diversity. The objectives of this study are to examine the benthic assemblages and biodiversity present on a young volcano. The volcano is located on the continental shelf of the northeastern Antarctic Peninsula, where recent changes in surface temperature and ice shelf stability have been observed. This volcano was originally swath-mapped during cruise 01-07 of the Research Vessel-Ice Breaker Nathaniel B. Palmer. During LMG04-04 we also studied the volcano using a SCUD video camera, and performed temperature surveys along the flanks and crest. Both the video and the dredge indicate a seafloor surface heavily colonized by benthic organisms. Indications of fairly recent lava flows are given by the absence of marine life on regions of the volcano. The recovered dredge material was sieved, and a total of thirty-three invertebrates were extracted. The compilation of invertebrate community data can subsequently be compared to other benthic invertebrate studies conducted along the peninsula, which can determine the regional similarity of communities over time, their relationship to environmental change and health, if any, and their relationship to geologic processes in Antarctic Sound. Twenty-two rock samples, all slightly weathered and half bearing encrusted organisms, were also analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES). Except for one conglomerate sample, all are alkali basalts and share similar elemental compositions with fresh, unweathered samples from the volcano. Two of the encrusted basalt samples have significantly different compositions than the rest. We speculate this difference could be due to water loss during sample preparation, loss of organic carbon trapped within the vesicles of the samples and/or elemental uptake by the

  14. Darwin's triggering mechanism of volcano eruptions

    Science.gov (United States)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a

  15. Active degassing of mantle-derived fluid: A geochemical study along the Vulture line, southern Apennines (Italy

    OpenAIRE

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Martelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Nuccio, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Paternoster, M.; Università della Basilicata; Fin, S.; Isotope Geosciences Unit, Scottish Universities Environmental Research Centre,

    2013-01-01

    We report the results of a geochemical study of gas emissions along a NE–SW transect in southern Italy in order to test the hypothesis that the region around Monte Vulture is affected by degassing of mantle-derived fluids through a lithospheric discontinuity. We also investigated lavas from the Monte Vulture volcano displaying 3He/4He (up to ~6.0 Ra) and Sr isotopes that are consistent with an origin inmantle that has hadminimal pollution from subducted Adriatic slab. Similar 3He/...

  16. Voluminous submarine lava flows from Hawaiian volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, R.T.; Moore, J.G.; Lipman, P.W.; Belderson, R.H.

    1988-05-01

    The GLORIA long-range sonar imaging system has revealed fields of large lava flows in the Hawaiian Trough east and south of Hawaii in water as deep as 5.5 km. Flows in the most extensive field (110 km long) have erupted from the deep submarine segment of Kilauea's east rift zone. Other flows have been erupted from Loihi and Mauna Loa. This discovery confirms a suspicion, long held from subaerial studies, that voluminous submarine flows are erupted from Hawaiian volcanoes, and it supports an inference that summit calderas repeatedly collapse and fill at intervals of centuries to millenia owing to voluminous eruptions. These extensive flows differ greatly in form from pillow lavas found previously along shallower segments of the rift zones; therefore, revision of concepts of volcano stratigraphy and structure may be required.

  17. Italy's Prime Minister visits CERN

    CERN Multimedia

    Stefania Pandolfi

    2015-01-01

    On Tuesday, 7 July 2015, the Prime Minister of the Italian Republic, Matteo Renzi, visited CERN. He was accompanied by a delegation that included Italy's Minister for Education, University and Research, Stefania Giannini.   From left to right: Fernando Ferroni, President of the Istituto Nazionale di Fisica Nucleare (INFN); Sergio Bertolucci, CERN Director for Research and Scientific Computing; Stefania Giannini, Italy's Minister of Education, University and Research; Matteo Renzi, Prime Minister of the Italian Republic; Fabiola Gianotti, CERN Director-General Designate; Rolf Heuer, CERN Director-General.   The Prime Minister was welcomed by members of the CERN Management together with former CERN Director-General and Senator for Life of the Italian Republic, Carlo Rubbia. After a brief general introduction to CERN’s activities by Rolf Heuer, the Italian delegation visited LHC Point 1. After a tour of the ATLAS control room, they donned helmets to visit th...

  18. Renaissance Neurosurgery: Italy's Iconic Contributions.

    Science.gov (United States)

    Nanda, Anil; Khan, Imad Saeed; Apuzzo, Michael L

    2016-03-01

    Various changes in the sociopolitical milieu of Italy led to the increasing tolerance of the study of cadavers in the late Middle Ages. The efforts of Mondino de Liuzzi (1276-1326) and Guido da Vigevano (1280-1349) led to an explosion of cadaver-centric studies in centers such as Bologna, Florence, and Padua during the Renaissance period. Legendary scientists from this era, including Leonardo Da Vinci, Andreas Vesalius, Bartolomeo Eustachio, and Costanzo Varolio, furthered the study of neuroanatomy. The various texts produced during this period not only helped increase the understanding of neuroanatomy and neurophysiology but also led to the formalization of medical education. With increased understanding came new techniques to address various neurosurgical problems from skull fractures to severed peripheral nerves. The present study aims to review the major developments in Italy during the vibrant Renaissance period that led to major progress in the field of neurosurgery. PMID:26585723

  19. Renaissance Neurosurgery: Italy's Iconic Contributions.

    Science.gov (United States)

    Nanda, Anil; Khan, Imad Saeed; Apuzzo, Michael L

    2016-03-01

    Various changes in the sociopolitical milieu of Italy led to the increasing tolerance of the study of cadavers in the late Middle Ages. The efforts of Mondino de Liuzzi (1276-1326) and Guido da Vigevano (1280-1349) led to an explosion of cadaver-centric studies in centers such as Bologna, Florence, and Padua during the Renaissance period. Legendary scientists from this era, including Leonardo Da Vinci, Andreas Vesalius, Bartolomeo Eustachio, and Costanzo Varolio, furthered the study of neuroanatomy. The various texts produced during this period not only helped increase the understanding of neuroanatomy and neurophysiology but also led to the formalization of medical education. With increased understanding came new techniques to address various neurosurgical problems from skull fractures to severed peripheral nerves. The present study aims to review the major developments in Italy during the vibrant Renaissance period that led to major progress in the field of neurosurgery.

  20. Publications of the Volcano Hazards Program 2014

    Science.gov (United States)

    Nathenson, Manuel

    2016-04-08

    The Volcano Hazards Program of the U.S. Geological Survey (USGS) is part of the Natural Hazards activity, as funded by Congressional appropriation. Investigations are carried out by the USGS and with cooperators at the Alaska Division of Geological and Geophysical Surveys, University of Alaska Fairbanks Geophysical Institute, University of Hawaiʻi Mānoa and Hilo, University of Utah, and University of Washington Geophysics Program. This report lists publications from all of these institutions.

  1. Imaging Magma Plumbing Beneath Askja Volcano, Iceland

    Science.gov (United States)

    Greenfield, T. S.; White, R. S.

    2015-12-01

    Using a dense seismic network we have imaged the plumbing system beneath Askja, a large central volcano in the Northern Volcanic Zone, Iceland. Local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km around the depth of the brittle-ductile transition. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. We use relationships between mineralogy and seismic velocities to estimate that this region contains ~10% partial melt, similar to observations made at other volcanoes such as Kilauea. This low-velocity body is deeper than the depth range suggested by geodetic studies of a deflating source beneath Askja. Beneath the large low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with seismicity in the lower crust. This is suggestive of a high temperature channel into the lower crust which could be the pathway for melt rising from the mantle. This melt either intrudes into the lower crust or stalls at the brittle-ductile boundary in the imaged body. Above this, melt can travel into the fissure swarm through large dikes or erupt within the Askja caldera itself.We generate travel time tables using a finite difference technique and the residuals used to simultaneously solve for both the earthquake locations and velocity structure. The 2014-15 Bárðarbunga dike intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions.hhhh

  2. Buried caldera of mauna kea volcano, hawaii.

    Science.gov (United States)

    Porter, S C

    1972-03-31

    An elliptical caldera (2.1 by 2.8 kilometers) at the summit of Mauna Kea volcano is inferred to lie buried beneath hawaiite lava flows and pyroclastic cones at an altitude of approximately 3850 meters. Stratigraphic relationships indicate that hawaiite eruptions began before a pre-Wisconsin period of ice-cap glaciation and that the crest of the mountain attained its present altitude and gross form during a glaciation of probable Early Wisconsin age.

  3. Pharmacovigilance in Italy: An overview

    OpenAIRE

    Carmela Mazzitello; Stefania Esposito; Adele E De Francesco; Annalisa Capuano; Emilio Russo; Giovambattista De Sarro

    2013-01-01

    Introduction: Spontaneous reporting of adverse drug reactions (ADRs) is the basis of pharmacovigilance. In fact, ADRs are associated with a high degree of morbidity and mortality. However, underreporting by all healthcare professionals remains the major problem in Italy and in the rest of the world. The dissemination of pharmacovigilance knowledge among Italian healthcare professionals, and the new pharmacovigilance regulations may promote the early detection and reporting of ADRs. This revie...

  4. Italy INAF Analysis Center Report

    Science.gov (United States)

    Negusini, M.; Sarti, P.

    2013-01-01

    This report summarizes the activity of the Italian INAF VLBI Analysis Center. Our Analysis Center is located in Bologna, Italy and belongs to the Institute of Radioastronomy, which is part of the National Institute of Astrophysics. IRA runs the observatories of Medicina and Noto, where two 32-m VLBI AZ-EL telescopes are situated. This report contains the AC's VLBI data analysis activities and shortly outlines the investigations into the co-locations of space geodetic instruments.

  5. The Upper Miocene magmatism of the Island of Elba (Central Italy): compositional characteristics, petrogenesis and implications for the origin of the Tuscany Magmatic Province

    Science.gov (United States)

    Poli, Giampiero; Peccerillo, Angelo

    2016-08-01

    Late Miocene intrusive magmatism of the Island of Elba, Tuscany (central Italy), consists of stocks, laccoliths, sills, and dikes showing dominant monzogranite and granodiorite compositions, with minor leucogranitic dike-sill complexes, aplites and pegmatites. A few mafic rocks occur as dikes, and as microgranular enclaves hosted inside the main intrusions. The Elba magmatism belongs to the Tuscan Magmatic Province, an 8.5 to 0.3 Ma old association of mafic to felsic rocks, of mantle and crustal origin, cropping out in Tuscany and northern Latium. Major and trace element abundances of Elba rocks are extremely variable, testifying to complex origin and evolutionary history for magmas. 87Sr/86Sr (~ 0.708-0.723) and 143Nd/144Nd (~0.5121-0.5124) are close or within the field of upper continental crust, with mafic dikes showing the lowest Sr- and the highest Nd-isotope ratios. Petrological, geochemical and textural data of Elba igneous rocks are better explained by invoking a leading role for multiple mixing processes between crust-derived felsic magmas and mafic-intermediate melts of ultimate mantle origin, accompanied by fractional crystallisation. Proxies of crustal anatectic melts are represented by some highly radiogenic-Sr rocks from northern Monte Capanne pluton. Crustal magmas were formed by melting of sedimentary rocks, likely metagreywakes, at pressures exceeding 0.3 GPa. Mafic-intermediate magmas have calcalkaline to shoshonitic compositions and originated in an anomalous mantle, moderately contaminated by siliceous sediments. Selective enrichments in Sr, Ba and LREE are shown by some intermediate rocks (Orano dikes), revealing the occurrence of a distinct magma type at Elba. Similar compositions are also observed at Capraia island, San Vincenzo and Campiglia (southern Tuscany), suggesting a regional relevance for this magma type. Sr-Ba-LREE-rich rocks do not show obvious genetic relationships with other Tuscany magmas and may represent a distinct end

  6. A new permanent geomagnetic station at Colima volcano observatory, Mexico

    OpenAIRE

    Esteban Hernández Quintero; Gerardo Cifuentes Nava; Enrique Cabral Cano; Jaime Urrutia Fucugauchi; René Chávez; Francisco Correa Mora; Ricardo Becerril; Juan José Ramírez

    2000-01-01

    The first geomagnetic station (COV) has been installed near Colima volcano by the Geophysics Institute of the National Autonomous University of Mexico, and Colima Volcano Observatory at the University of Colima. This station measure the scalar magnetic field and belongs to the geomagnetic monitoring network of active volcanoes in Mexico. Comparison between COV, IGRF (International Geomagnetic Reference Field) and TEO (Teoloyucan Geomagnetic Observatory) data shows a high correlation with a co...

  7. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    Science.gov (United States)

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  8. Pharmacovigilance in Italy: An overview

    Directory of Open Access Journals (Sweden)

    Carmela Mazzitello

    2013-01-01

    Full Text Available Introduction: Spontaneous reporting of adverse drug reactions (ADRs is the basis of pharmacovigilance. In fact, ADRs are associated with a high degree of morbidity and mortality. However, underreporting by all healthcare professionals remains the major problem in Italy and in the rest of the world. The dissemination of pharmacovigilance knowledge among Italian healthcare professionals, and the new pharmacovigilance regulations may promote the early detection and reporting of ADRs. This review examines the legislative framework concerning the pharmacovigilance in Italy. Materials and Methods: The information was collected from scientific articles and the websites of the Italian Ministry of Health and the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA. Results: The pharmacovigilance system, both in Italy and Europe, has undergone profound changes. European legislation on pharmacovigilance has been changed in 2010 according to the EU Regulation 1235/2010 and Directive 2010/84/EU. Basically, the changes tend to increase the efficiency, speed and transparency of pharmacovigilance activities. The new Regulation (1235/2010 and the Directive (2010/84/EU aim to strengthen the system of pharmacovigilance, establish more precisely who is obliged to do what, and allow faster and easier circulation and retrieval of information about ADRs. Conclusion: A greater knowledge on what is the Italian pharmacovigilance legislation will be useful to improve the status of ADRs reporting and spread the culture of spontaneous reporting.

  9. Seismic risk perception in Italy

    Science.gov (United States)

    Crescimbene, Massimo; La Longa, Federica; Camassi, Romano; Pino, Nicola Alessandro; Peruzza, Laura

    2014-05-01

    Risk perception is a fundamental element in the definition and the adoption of preventive counter-measures. In order to develop effective information and risk communication strategies, the perception of risks and the influencing factors should be known. This paper presents results of a survey on seismic risk perception in Italy conducted from January 2013 to present . The research design combines a psychometric and a cultural theoretic approach. More than 7,000 on-line tests have been compiled. The data collected show that in Italy seismic risk perception is strongly underestimated; 86 on 100 Italian citizens, living in the most dangerous zone (namely Zone 1), do not have a correct perception of seismic hazard. From these observations we deem that extremely urgent measures are required in Italy to reach an effective way to communicate seismic risk. Finally, the research presents a comparison between groups on seismic risk perception: a group involved in campaigns of information and education on seismic risk and a control group.

  10. BIOITALY: NATURE 2000 IN ITALY

    Directory of Open Access Journals (Sweden)

    C. BLASI

    1996-01-01

    Full Text Available

    The author recalls goals and deadlines of the Europena Community Habitats Directive 94/43/EEC and of the Natura 2000 Network. After saying that Italy has up to now only marginally took part in the definition of habitats and species to be included in the Annexes I, II, II e IV of the Habitat Directive, he underlines that only the collaboration between the Italian Botanical Society and the Italian Ministry of Environment – Nature Conservation Services, has allowed Italy to fill the gap with other countries. Furthermore, he relates the ongoing progress of Natura 2000 in Italy (Bioitaly: about 2700 sites collected, a useful collaboration between botanists, zoologists and ecologists, the constitution of a list of new habitats and species to be included into the Annexes of the Directive. Finally, he wishes a closer working relationship among phytosociologists, botanists and ecologists, in order to avoid the risk of replacing in the CORINE project the phytosociological approach with a less satisfactory physiognomic classification.

  11. Detecting Blackholes and Volcanoes in Directed Networks

    CERN Document Server

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  12. Geothermal Exploration of Newberry Volcano, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, Albert F. [Columbia Geoscience, Pasco, WA (United States); Frone, Zachary S. [Southern Methodist Univ., Dallas, TX (United States); Blackwell, David D. [Southern Methodist Univ., Dallas, TX (United States)

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  13. Monitoring active volcanoes: The geochemical approach

    Directory of Open Access Journals (Sweden)

    Takeshi Ohba

    2011-06-01

    Full Text Available

    The geochemical surveillance of an active volcano aims to recognize possible signals that are related to changes in volcanic activity. Indeed, as a consequence of the magma rising inside the volcanic "plumbing system" and/or the refilling with new batches of magma, the dissolved volatiles in the magma are progressively released as a function of their relative solubilities. When approaching the surface, these fluids that are discharged during magma degassing can interact with shallow aquifers and/or can be released along the main volcano-tectonic structures. Under these conditions, the following main degassing processes represent strategic sites to be monitored.

    The main purpose of this special volume is to collect papers that cover a wide range of topics in volcanic fluid geochemistry, which include geochemical characterization and geochemical monitoring of active volcanoes using different techniques and at different sites. Moreover, part of this volume has been dedicated to the new geochemistry tools.

  14. Citizen empowerment in volcano monitoring, communication and decision-making at Tungurahua volcano, Ecuador

    Science.gov (United States)

    Bartel, B. A.; Mothes, P. A.

    2013-12-01

    Trained citizen volunteers called vigías have worked to help monitor and communicate warnings about Tungurahua volcano, in Ecuador, since the volcano reawoke in 1999. The network, organized by the scientists of Ecuador's Instituto Geofísico de la Escuela Politécnica Nacional (Geophysical Institute) and the personnel from the Secretaría Nacional de Gestión de Riesgos (Risk Management, initially the Civil Defense), has grown to more than 20 observers living around the volcano who communicate regularly via handheld two-way radios. Interviews with participants conducted in 2010 indicate that the network enables direct communication between communities and authorities; engenders trust in scientists and emergency response personnel; builds community; and empowers communities to make decisions in times of crisis.

  15. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    International Nuclear Information System (INIS)

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcano logy were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented

  16. Geologic map of Medicine Lake volcano, northern California

    Science.gov (United States)

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  17. The critical role of volcano monitoring in risk reduction

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2008-01-01

    Full Text Available Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks – ground-based as well space-based – has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. elens (Washington, USA in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines in 1991. However, even with the ever-improving state-of-the-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  18. Volcano Deformation and Modeling on Active Volcanoes in the Philippines from ALOS InSAR Time Series

    Science.gov (United States)

    Morales Rivera, Anieri M.; Amelung, Falk; Eco, Rodrigo

    2015-05-01

    Bulusan, Kanlaon, and Mayon volcanoes have erupted over the last decade, and Taal caldera showed signs of volcanic unrest within the same time range. Eruptions at these volcanoes are a threat to human life and infrastructure, having over 1,000,000 people living within 10 km from just these 4 volcanic centers. For this reason, volcano monitoring in the Philippines is of extreme importance. We use the ALOS-1 satellite from the Japanese Aerospace Exploration Agency (JAXA) to make an InSAR time series analysis over Bulusan, Kanlaon, Mayon, and Taal volcanoes for the 2007-2011 period. Time-dependent deformation was detected at all of the volcanoes. Deformation related to changes in pressurization of the volcanic systems was found on Taal caldera and Bulusan volcanoes, with best fitting Mogi sources located at half-space depths of 3.07 km and 0.5 km respectively.

  19. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    Science.gov (United States)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  20. Magma Supply System at Batur Volcano Inferred from Volcano-Tectonic Earthquakes and Their Focal Mechanism

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i2.159The Volcano-Tectonic (VT earthquakes occurring during September - November 2009 were analyzed. The result shows that the epicentres aligning in NE- SW direction coincided with the weak zone of Batur Volcano Complex. The focal zone is located at the depth around 1.5 - 5.5 km beneath the summit. Migration of magma was detected by ground deformation measured by GPS and focal mechanism. Mechanism of VT earthquake shows mostly normal fault types during the swarm in November 2009.

  1. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  2. Instability of Hawaiian volcanoes: Chapter 4 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Denlinger, Roger P.; Morgan, Julia K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Hawaiian volcanoes build long rift zones and some of the largest volcanic edifices on Earth. For the active volcanoes on the Island of Hawai‘i, the growth of these rift zones is upward and seaward and occurs through a repetitive process of decades-long buildup of a magma-system head along the rift zones, followed by rapid large-scale displacement of the seaward flank in seconds to minutes. This large-scale flank movement, which may be rapid enough to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern characterizes currently active Kīlauea Volcano, where periods of upward and seaward growth along rift zones were punctuated by large (>10 m) and rapid flank displacements in 1823, 1868, 1924, and 1975. At the much larger Mauna Loa volcano, rapid flank movements have occurred only twice in the past 200 years, in 1868 and 1951.

  3. The gypsum karst of Italy

    OpenAIRE

    Forti P.; Sauro U.

    1996-01-01

    Gypsum karst has been studied in Italy since the last decades of the l9th Century. In 1917 the geographer Olinto Marinelli published �Fenomeni carsici delle regioni gessose d�Italia�, a fundamental synthesis of the early research. He distinguished 56 different morpho-karstic gypsum units and/or areas, which are all different in size and character, and described them, paying special attention to their surface morphology and hydrology. Marinelli listed all the main gypsum units and only a few s...

  4. Legionnaires’ disease Surveillance in Italy

    Directory of Open Access Journals (Sweden)

    Maria Luisa Ricci

    2004-12-01

    Full Text Available

    In the report presented, data on legionellosis diagnosed in the year 2003 in Italy and notified to the National Surveillance System are analysed. Overall, 617 cases were notified, of which 517 were confirmed and 46 were presumptive.

    The characteristics of the patients are very similar to those reported in the previous years in terms of male/female ratio, age–specific distribution, occupation, etc. Legionella pneumophila serogroup 1 was responsible for approximately 90% of the cases.

  5. Using Google Earth to Study the Basic Characteristics of Volcanoes

    Science.gov (United States)

    Schipper, Stacia; Mattox, Stephen

    2010-01-01

    Landforms, natural hazards, and the change in the Earth over time are common material in state and national standards. Volcanoes exemplify these standards and readily capture the interest and imagination of students. With a minimum of training, students can recognize erupted materials and types of volcanoes; in turn, students can relate these…

  6. 36 CFR 7.25 - Hawaii Volcanoes National Park.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hawaii Volcanoes National Park. 7.25 Section 7.25 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.25 Hawaii Volcanoes National Park....

  7. Volcano ecology: Disturbance characteristics and assembly of biological communities

    Science.gov (United States)

    Volcanic eruptions are powerful expressions of Earth’s geophysical forces which have shaped and influenced ecological systems since the earliest days of life. The study of the interactions of volcanoes and ecosystems, termed volcano ecology, focuses on the ecological responses of organisms and biolo...

  8. Space Radar Image of Kiluchevskoi, Volcano, Russia

    Science.gov (United States)

    1994-01-01

    This is an image of the area of Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the blue triangular peak in the center of the image, towards the left edge of the bright red area that delineates bare snow cover. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 88th orbit on October 5, 1994. The image shows an area approximately 75 kilometers by 100 kilometers (46 miles by 62 miles) that is centered at 56.07 degrees north latitude and 160.84 degrees east longitude. North is toward the bottom of the image. The radar illumination is from the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the recent activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In addition to Kliuchevskoi, two other active volcanoes are visible in the image. Bezymianny, the circular crater above and to the right of Kliuchevskoi, contains a slowly growing lava dome. Tolbachik is the large volcano with a dark summit crater near the upper right edge of the red snow covered area. The Kamchatka River runs from right to left across the bottom of the image. The current eruption of Kliuchevskoi included massive ejections of gas, vapor and ash, which reached altitudes of 15,000 meters (50,000 feet). Melting snow mixed with volcanic ash triggered mud flows on the

  9. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  10. Lahar Hazard Modeling at Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Sorensen, O. E.; Rose, W. I.; Jaya, D.

    2003-04-01

    Tungurahua Volcano (Lat. 01^o28'S; Long. 78^o27'W), located in the central Ecuadorian Andes, is an active edifice that rises more than 3 km above surrounding topography. Since European settlement in 1532, Tungurahua has experienced four major eruptive episodes: 1641-1646, 1773-1781, 1886-1888 and 1916-1918 (Hall et al, JVGR V91; p1-21, 1999). In September 1999, Tungurahua began a new period of activity that continues to the present. During this time, the volcano has erupted daily, depositing ash and blocks on its steep flanks. A pattern of continuing eruptions, coupled with rainfall up to 28 mm in a 6 hour period (rain data collected in Baños at 6-hr intervals, 3000 meters below Tungurahua’s summit), has produced an environment conducive to lahar mobilization. Tungurahua volcano presents an immediate hazard to the town of Baños, an important tourist destination and cultural center with a population of about 25,000 residents located 8 km from the crater. During the current eruptive episode, lahars have occurred as often as 3 times per week on the northern and western slopes of the volcano. Consequently, the only north-south trending highway on the west side of Tungurahua has been completely severed at the intersection of at least ten drainages, where erosion has exceeded 10 m since 1999. The La Pampa quebrada, located 1 km west of Baños, is the most active of Tungurahua's drainages. At this location, where the slope is moderate, lahars continue to inundate the only highway linking Baños to the Pan American Highway. Because of steep topography, the conventional approach of measuring planimetric inundation areas to determine the scale of lahars could not be employed. Instead, cross sections were measured in the channels using volume/cross-sectional inundation relationships determined by (Iverson et al, GSABull V110; no. 8, p972-984, 1998). After field observations of the lahars, LAHARZ, a program used in a geographic information system (GIS) to objectively map

  11. Copahue volcano and its regional magmatic setting

    Science.gov (United States)

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  12. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  13. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, Wendell A.; Tilling, Robert I.; Canul, Rene

    1984-03-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chichón, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, México. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chichón is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chichón is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chichón consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chichón in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent pyroclastic

  14. Lava Flows On Ascraeus Mons Volcano

    Science.gov (United States)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.(1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.(2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form lava tubes. As it is being emplaced, the outer

  15. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  16. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  17. Geology of El Chichon volcano, Chiapas, Mexico

    Science.gov (United States)

    Duffield, W.A.; Tilling, R.I.; Canul, R.

    1984-01-01

    The (pre-1982) 850-m-high andesitic stratovolcano El Chicho??n, active during Pleistocene and Holocene time, is located in rugged, densely forested terrain in northcentral Chiapas, Me??xico. The nearest neighboring Holocene volcanoes are 275 km and 200 km to the southeast and northwest, respectively. El Chicho??n is built on Tertiary siltstone and sandstone, underlain by Cretaceous dolomitic limestone; a 4-km-deep bore hole near the east base of the volcano penetrated this limestone and continued 770 m into a sequence of Jurassic or Cretaceous evaporitic anhydrite and halite. The basement rocks are folded into generally northwest-trending anticlines and synclines. El Chicho??n is built over a small dome-like structure superposed on a syncline, and this structure may reflect cumulative deformation related to growth of a crustal magma reservoir beneath the volcano. The cone of El Chicho??n consists almost entirely of pyroclastic rocks. The pre-1982 cone is marked by a 1200-m-diameter (explosion?) crater on the southwest flank and a 1600-m-diameter crater apparently of similar origin at the summit, a lava dome partly fills each crater. The timing of cone and dome growth is poorly known. Field evidence indicates that the flank dome is older than the summit dome, and K-Ar ages from samples high on the cone suggest that the flank dome is older than about 276,000 years. At least three pyroclastic eruptions have occurred during the past 1250 radiocarbon years. Nearly all of the pyroclastic and dome rocks are moderately to highly porphyritic andesite, with plagioclase, hornblende and clinopyroxene the most common phenocrysts. Geologists who mapped El Chicho??n in 1980 and 1981 warned that the volcano posed a substantial hazard to the surrounding region. This warning was proven to be prophetic by violent eruptions that occurred in March and April of 1982. These eruptions blasted away nearly all of the summit dome, blanketed the surrounding region with tephra, and sent

  18. Lava Flows On Ascraeus Mons Volcano

    Science.gov (United States)

    1998-01-01

    Ascraeus Mons Volcano: Like Earth, Mars has many volcanoes and volcanic features. This high-resolution view shows some of the lava flows near the summit of Ascraeus Mons, one of the three giant shield volcanoes known as the 'Tharsis Montes'. Volcanoes form when magma (molten rock) erupts out onto the surface of a planet. Based on Viking-era observations, Ascraeus Mons is considered to be one of the tallest volcanoes on Mars... its summit is more than 11 km (6.8 miles) above the surrounding plain. The summit is more than 23 km (14 miles) higher in elevation than the place where Mars Pathfinder landed in July 1997.Description of MOC Image: This picture shows an area that is about 20 km (12 miles) higher in elevation than the Mars Pathfinder landing site. The picture shows three main features: (1) a crater at the center-right, (2) a sinuous, discontinuous channel across the upper half, and (3) a rough and pitted, elevated surface across the lower half of the image.(1) Crater at center right. Distinguishing meteor craters from volcanic craters can sometimes be a challenge on Mars. This particular crater was most likely formed by meteor impact because it has a raised rim and a faint radial ejecta pattern around the outside of it. This crater is 600 m (2000 feet) across, about 3/4 the size of the famous 'Meteor Crater' near Winslow, Arizona.(2) Sinuous channel. The type of discontinuous channel running across the upper half of the image is sometimes referred to as a 'sinuous rille'. These are common on the volcanic plains of the Moon and among volcanoes and volcanic plains on Earth. Such a channel was once a lava tube. It is running down the middle of an old lava flow. The 'tube' looks like a 'channel' because its roof has collapsed. The discontinuous nature of this channel is the result of the collapse, or 'cave-in' of what was once the roof of the lava tube. It is common for certain types of relatively fluid lavas to form lava tubes. As it is being emplaced, the outer

  19. Mud Volcanoes as Exploration Targets on Mars

    Science.gov (United States)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2010-01-01

    Tens of thousands of high-albedo mounds occur across the southern part of the Acidalia impact basin on Mars. These structures have geologic, physical, mineralogic, and morphologic characteristics consistent with an origin from a sedimentary process similar to terrestrial mud volcanism. The potential for mud volcanism in the Northern Plains of Mars has been recognized for some time, with candidate mud volcanoes reported from Utopia, Isidis, northern Borealis, Scandia, and the Chryse-Acidalia region. We have proposed that the profusion of mounds in Acidalia is a consequence of this basin's unique geologic setting as the depocenter for the tune fraction of sediments delivered by the outflow channels from the highlands.

  20. Mud Volcanoes of Trinidad as Astrobiological Analogs for Martian Environments

    Directory of Open Access Journals (Sweden)

    Riad Hosein

    2014-10-01

    Full Text Available Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i Digity; (ii Piparo and (iii Devil’s Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  1. Mud volcanoes of trinidad as astrobiological analogs for martian environments.

    Science.gov (United States)

    Hosein, Riad; Haque, Shirin; Beckles, Denise M

    2014-01-01

    Eleven onshore mud volcanoes in the southern region of Trinidad have been studied as analog habitats for possible microbial life on Mars. The profiles of the 11 mud volcanoes are presented in terms of their physical, chemical, mineralogical, and soil properties. The mud volcanoes sampled all emitted methane gas consistently at 3% volume. The average pH for the mud volcanic soil was 7.98. The average Cation Exchange Capacity (CEC) was found to be 2.16 kg/mol, and the average Percentage Water Content was 34.5%. Samples from three of the volcanoes, (i) Digity; (ii) Piparo and (iii) Devil's Woodyard were used to culture bacterial colonies under anaerobic conditions indicating possible presence of methanogenic microorganisms. The Trinidad mud volcanoes can serve as analogs for the Martian environment due to similar geological features found extensively on Mars in Acidalia Planitia and the Arabia Terra region.

  2. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    Science.gov (United States)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  3. The volcanoes and clouds of Venus

    Science.gov (United States)

    Prinn, R. G.

    1985-03-01

    One of the earth's most intriguing features is its geologic activity. However, volcanic eruptions have not been observed on any other body in the solar system, except for a detection of such eruptions on Jupiter's moon Io. As in a number of respects Venus is similar to earth, questions arise regarding the presence of active volcanoes on Venus. In the past, the study of such questions was made difficult or impossible by the layer of clouds surrounding the Venusian surface. In the past half decade the situation has changed. These changes are mainly related to studies based on a utilization of radio waves and microwaves which can pass through the cloud layer. Such studies have been conducted with the aid of terrestrial radio telescopes, the Pioneer Venus satellite orbiting Venus, and two Russian spacecraft. The results of these studies are discussed in detail. It appears that there are active volcanoes on Venus. This volcanism is a key link in the chemical cycle which produces the clouds. The levels of volcanic activity on Venus and earth seem to be roughly comparable.

  4. Igneous Petrogenesis of Tequila Volcano, Western Mexico

    Science.gov (United States)

    Vázquez-Duarte, A.; Gómez-Tuena, A.; Díaz-Bravo, B.

    2011-12-01

    Tequila volcano belongs to a Quaternary volcanic chain that runs in parallel to the Middle American Trench, but that have been constructed within the so-called Tepic-Zacoalco rift: an extensional tectonic structure that has been active for the past 3.5 Ma. This unusual tectonic setting, and the existence of a high-resolution stratigraphy for the Tequila Volcanic Field (Lewis-Kenedi, 2005, Bull Volcanol), provide an excellent opportunity to study andesite petrogenesis. New comprehensive geochemical data allow the recognition of at least four different magmatic series around Tequila: 1) The Santa Rosa intraplate basalts (1.0 - 0.2 Ma), a volcanic plateau constructed along the Santiago River Fault north of Tequila volcano. These Na-alkaline basalts are olivine-phyric, have negligible subduction signatures (Ba/Nb= 11.75 - 49.36), and display Sr-Nd-Pb isotopic compositions that correlate with fractionation indexes, probably indicating melt-crust interactions. 2) A group of vitreous domes and flows of dacitic to rhyolitic compositions, mostly contemporaneous to the Santa Rosa basalts, that were emplaced on the periphery of Tequila volcano. These rocks can have very low Sr and Eu contents but their isotopic compositions are remarkably constant and similar to the Santa Rosa basalts, probably indicating a genetic link through low pressure fractionation in the stability field of plagioclase. 3) The main edifice of Tequila volcano (~0.2 Ma) is made of two pyroxene andesites and dacites with strong subduction signatures (Ba/Nb= 53-112), that inversely correlate with MgO contents, but that follow a diverging evolutionary trend as the rest of the sequences. The isotopic compositions of Tequila main edifice can extend to slightly more enriched values, but do not correlate with fractionation indexes, thus indicating provenance from a different source. 4) The youngest activity on Tequila volcano (~0.09 Ma) is represented by amphibole bearing andesites that erupted through the

  5. Space Radar Image of Karisoke & Virunga Volcanoes

    Science.gov (United States)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  6. Microtremor study of Gunung Anyar mud volcano, Surabaya, East Java

    Science.gov (United States)

    Syaifuddin, Firman; Bahri, Ayi Syaeful; Lestari, Wien; Pandu, Juan

    2016-05-01

    The existence of mud volcano system in East Java is known from the ancient period, especially in Surabaya. Gunung Anyar mud volcano is one of the mud volcano system manifestation was appeared close to the residence. Because of this phenomenon we have to learn about the impact of this mud volcano manifestation to the neighbourhood. The microtremor study was conducted to evaluate the possible influence effect of the mud volcano to the environment and get more information about the subsurface condition in this area. Microtremor is one of the geophysical methods which measure the natural tremor or vibration of the earth, the dominant frequency of the tremor represent thickness of the soft sediment layer overlay above the bed rock or harder rock layer beneath our feet. In this study 90 stations was measured to record the natural tremor. The result from this study shows the direct influenced area of this small mud volcano system is close to 50m from the centre of the mud volcano and bed rock of this area is range between 66 to 140 meter.

  7. Chemical compositions of lavas from Myoko volcano group

    International Nuclear Information System (INIS)

    In the volcanic rocks produced in island arc and continental margin arc, the phenomena of magma mixing is observed considerably generally. The research on these phenomena has been carried out also in Japan, and the periodically refilled magma chamber model has been proposed. In this report, the results of the photon activation analysis for the volcanic rock samples of Myoko volcano, for which the magma chamber model that the supply of basalt magma is periodically received was proposed, and of which the age of eruption and the stratigraphy are clearly known, are shown, and the above model is examined together with the published data of fluorescent X-ray analysis and others. The history of activities and the rate of magma extrusion of Myoko volcano group are described. The modal compositions of the volcanic rock samples of Myoko and Kurohime volcanos, for which photon activation analysis was carried out, are shown and discussed. The results of the analysis of the chemical composition of 39 volcanic rock samples from Myoko, Kurohime and Iizuna volcanos are shown. The primary magma in Myoko volcano group, the crystallization differentiation depth and moisture content of magma in Myoko and Kurohime volcanos, the presumption of Felsic and Mafic end-members in R type andesite in Myoko volcano group, and the change of magma composition with lapse of time are described. (K.I.)

  8. Acoustic scattering from mud volcanoes and carbonate mounds.

    Science.gov (United States)

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  9. Pattern of geochemical variations within the volcanic system of Mt Etna, Italy, from 1995 to 2013

    Science.gov (United States)

    Corsaro, Rosa Anna; Falsaperla, Susanna; Langer, Horst

    2016-04-01

    Dynamic and evolution of magma in the plumbing system are key aspects in the evaluation of volcanic hazard. Eruptive phenomena involve indeed processes of magma upraise and storage, which may change in time and space, and mirror in the composition of volcanic products. In this study, we analyze the pattern of geochemical variations at Etna, Italy, from 1995 to 2013. In this time span, volcanic activity affected all the four craters close to the summit of the volcano (located at about 3300 m above the sea level), and fed eruptive fissures along its upper flanks. In addition, a new crater formed and rapidly built up, giving rise to spectacular lava fountains from 2011 on. Based on a dataset containing the geochemical composition of volcanic products collected over 18 years, we explored the application of data mining methods in the framework of the European MEDiterrranean Supersite Volcanoes (MED­-SUV) project. In the present application, we discuss the relationships among the composition of volcanic products sampled from all the afore-mentioned eruptive centers. Our results highlight differences in magma evolution, dynamic and eruptive style even within a single eruptive center.

  10. Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy)

    Science.gov (United States)

    D'Orazio, Massimo; Innocenti, Fabrizio; Tonarini, Sonia; Doglioni, Carlo

    2007-10-01

    We report here, for the first time, on the new finding of extrusive calciocarbonatite (alvikite) rocks from the Pleistocene Mt. Vulture volcano (southern Italy). These volcanic rocks, which represent an outstanding occurrence in the wider scenario of the Italian potassic magmatism, form lavas, pyroclastic deposits, and feeder dikes exposed on the northern slope of the volcano. The petrography, mineralogy and whole-rock chemistry attest the genuine carbonatitic nature of these rocks, that are characterized by high to very high contents of Sr, Ba, U, LREE, Nb, P, F, Th, high Nb/Ta and LREE/HREE ratios, and low contents of Ti, Zr, K, Rb, Na and Cs. The O-C isotope compositions are close to the "primary igneous carbonatite" field and, thus, are compatible with an ultimate mantle origin for these rocks. The Sr-Nd-Pb-B isotope compositions, measured both in the alvikites and in the silicate volcanic rocks, indicate a close genetic relationship between the alvikites and the associated melilitite/nephelinite rocks. Furthermore, these latter products are geochemically distinct from the main foiditic-phonolitic association of Mt. Vulture. We propose a petrogenetic/geodynamic interpretation which has important implications for understanding the relationships between carbonatites and orogenic activity. In particular, we propose that the studied alvikites are generated through liquid unmixing at crustal levels, starting from nephelinitic or melilititic parent liquids. These latter were produced in a hybrid mantle resulting from the interaction through a vertical slab window, between a metasomatized mantle wedge, moving eastward from the Tyrrhenian/Campanian region, and the local Adriatic mantle. The occurrence of carbonatite rocks at Mt. Vulture, that lies on the leading edge of the Southern Apennines accretionary prism, is taken as an evidence for the carbonatation of the mantle sources of this volcano. We speculate that mantle carbonatation is related to the introduction of

  11. Geologic Map of the Summit Region of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Neal, Christina A.; Lockwood, John P.

    2003-01-01

    This report consists of a large map sheet and a pamphlet. The map shows the geology, some photographs, description of map units, and correlation of map units. The pamphlet gives the full text about the geologic map. The area covered by this map includes parts of four U.S. Geological Survey 7.5' topographic quadrangles (Kilauea Crater, Volcano, Ka`u Desert, and Makaopuhi). It encompasses the summit, upper rift zones, and Koa`e Fault System of Kilauea Volcano and a part of the adjacent, southeast flank of Mauna Loa Volcano. The map is dominated by products of eruptions from Kilauea Volcano, the southernmost of the five volcanoes on the Island of Hawai`i and one of the world's most active volcanoes. At its summit (1,243 m) is Kilauea Crater, a 3 km-by-5 km collapse caldera that formed, possibly over several centuries, between about 200 and 500 years ago. Radiating away from the summit caldera are two linear zones of intrusion and eruption, the east and the southwest rift zones. Repeated subaerial eruptions from the summit and rift zones have built a gently sloping, elongate shield volcano covering approximately 1,500 km2. Much of the volcano lies under water; the east rift zone extends 110 km from the summit to a depth of more than 5,000 m below sea level; whereas the southwest rift zone has a more limited submarine continuation. South of the summit caldera, mostly north-facing normal faults and open fractures of the Koa`e Fault System extend between the two rift zones. The Koa`e Fault System is interpreted as a tear-away structure that accommodates southward movement of Kilauea's flank in response to distension of the volcano perpendicular to the rift zones.

  12. Turtles to Terabytes: The Ongoing Revolution in Volcano Geodesy

    Science.gov (United States)

    Dzurisin, D.

    2015-12-01

    Volcano geodesy is in the midst of a revolution. GPS and InSAR, together with extensive ground-based sensor networks, have enabled major advances in understanding how and why volcanoes deform. Surveying techniques that produced a few bytes of information per benchmark per year have been replaced by continuously operating deformation networks and imaging radar satellites that generate terabytes of data at resolutions unattainable only a few decades ago. These developments have enabled more detailed assessments of volcano hazards, more accurate forecasts of volcanic activity, and better insights into how volcanoes behave over a variety of spatial and temporal scales. Forty years ago, repeated leveling surveys showed that the floor of the Yellowstone caldera had risen more than 70 cm in the past 5 decades. Today a network of GPS stations tracks surface movements continuously with millimeter-scale accuracy and the entire deformation field is imaged frequently by a growing number of SAR satellites, revealing a far more complex style of deformation than was recognized previously. At Mount St. Helens, the 1980-1986 eruption taught us that a seemingly quiescent volcano can suddenly become overtly restless, and that accurate eruption predictions are possible at least in some limited circumstances given sufficient observations. The lessons were revisited during the volcano's 2004-2008 eruption, during which a new generation of geodetic sensors and methods detected a range of co-eruptive changes that enabled new insights into the volcano's magma storage and transport system. These examples highlight volcano deformation styles and scales that were unknown just a few decades ago but now have been revealed by a growing number of data types and modeling methods. The rapid evolution that volcano geodesy is currently experiencing provides an ongoing challenge for geodesists, while also demonstrating that geodetic unrest is common, widespread, and illuminating. Vive la révolution!

  13. CAS Introductory Course in Italy

    CERN Multimedia

    2008-01-01

    The CERN Accelerator School’s introductory course is a great success. This year the CERN Accelerator School held its "Introduction to Accelerator Physics" course in Frascati, Italy, from 2-14 November in collaboration with the University of Rome "La Sapienza" and the INFN Frascati National Laboratory. The Introductory level course is particularly important since, for the majority of participants, it is the first opportunity to discover the various aspects of accelerator physics. For this school the programme had been significantly revised in order to take into account the new trends currently being developed in the field, thus putting more emphasis on linacs, synchrotron light sources and free-electron lasers. The school was a resounding success with 115 participants of more than 23 nationalities. Feedback from the students praised the expertise of the lecturers, the high standard of the lectures as well as the excellent organizati...

  14. SAR interferometry applications on active volcanoes. State of the art and perspectives for volcano monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, G.; Coltelli, M. [Istituto Nazionale di Geofisica e Vulcanologia, Catania (Italy)

    2001-02-01

    In this paper the application of the Synthetic Aperture Radar Interferometry (INSAR) on volcanology is analysed. Since it is not a real novelty among the different applications of INSAR in Earth Observation activities, at the beginning of this paper it is analysed the state of the art of the researches in this field. During the discussion, the point of view of volcanologists is favoured because it is considered that the first applications were often badly aimed. Consequently, the initial INSAR performances in volcanology were overrated with respect to the real capabilities of this technique. This fact lead to discover some unexpected limitations in INSAR usage in volcano monitoring, but, at the same time, spurred on scientists to overcome these drawbacks. The results achieved recently allow to better apply SAR to volcanology; in the paper a possible operative work-plan aimed at introducing INSAR in the volcano monitoring system is presented.

  15. The volcano in a gravel pit: Volcano monitoring meets experimental volcanology

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibargüengoitia, M. A.; Hort, M.; Kremers, S.; Meier, K.; Scarlato, P. G.; Scheu, B.; Taddeucci, J.; Wagner, R.; Walk, F.; Dingwell, D. B.

    2012-04-01

    Volcanic eruptions are an inevitable natural threat. During explosive eruptions, gas and pyroclasts are ejected at high speed over variable time spans and at variable intensity. As magma fragmentation inside a volcanic edifice defies direct observation, our mechanistic and quantitative understanding of the syn-eruptive processes is still incomplete. In an attempt to bridge this gap, we used a supra-disciplinary approach and combined experimental volcanology and volcano monitoring devices. We performed 34 field-based fragmentation experiments using cylindrical samples, drilled from natural volcanic rock samples. Decompression and particle ejection were monitored with (1) Doppler Radar (DR), (2) high-speed and high-definition cameras, (3) high-speed thermal camera, (4) acoustic and infrasound sensors and (5) pressure transducers. The experiments were performed at controlled sample porosity (25 to 75 vol.%) and size (60 mm height and 25 mm and 60 mm diameter, respectively), confinement geometry, applied pressure (4 to 18 MPa) and temperature (25 and 850 °C). We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast ejection, giving coherent results of up to 130 m/s. Close and high-resolution volcano monitoring, spiced with results from our experiments, will allow for "calibrating volcanoes". An enhanced understanding of the pressurisation state of a volcano is an essential factor in ballistic hazard evaluation and eruption energy estimation and will contribute to adequate risk mitigation.

  16. Studies of volcanoes of Alaska by satellite radar interferometry

    Science.gov (United States)

    Lu, Zhiming; Wicks, C.; Dzurisin, D.; Thatcher, W.; Power, J.; ,

    2000-01-01

    Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite

  17. Progresses in geology and hazards analysis of Tianchi Volcano

    Institute of Scientific and Technical Information of China (English)

    WEI Hai-quan; JIN Bo-lu; LIU Yong-shun

    2004-01-01

    A number of different lahars have been recognized from a systematic survey of a mapping project. The high setting temperature feature of the deposits indicates a relationship between the lahar and the Millennium eruption event of Tianchi Volcano. The lahars caused a dramatic disaster. Recognize of the huge avalanche scars and deposits around Tianchi Volcano imply another highly destructive hazard. Three types of different texture of the avalanche deposits have been recognized. There was often magma mixing processes during the Millennium eruption of Tianchi Volcano, indicating a mixing and co-eruption regime of the eruption.

  18. Isotopic evolution of Mauna Loa volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, M.D.; Kammer, D.P. (Chemistry Dept., Woods Hole Oceanographic Institution, MA (USA))

    1991-04-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high {sup 3}He/{sup 4}He ({approx equal} 16-20 times atmospheric), higher {sup 206}Pb/{sup 204}Pb ({approx equal} 18.2), and lower {sup 87}Sr/{sup 86}Sr({approx equal} 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with {sup 3}He/{sup 4}He ratios similar to the other young Kau basalt ({approx equal} 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL).

  19. Magma Plumbing beneath Askja Volcano, Iceland

    Science.gov (United States)

    Greenfield, T. S.; White, R. S.

    2013-12-01

    Through a combination of accurate earthquake locations and tomography we have imaged the melt feeding network beneath Askja, a large central volcano, in the Northern Volcanic Zone, Iceland. We have deployed and operated a dense network of 3-component, broadband seismometers around the volcano since 2006 and have recorded a large number of events (on the order of 150 a day). The majority of these are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes situated in three distinct areas within the volcanic system. These have a lower frequency content to the shallower events which may be the result of highly attenuating lower crust. The deep earthquakes extend from 12-25 km depth, significantly below a well defined brittle-ductile boundary at 8-9 km. These earthquakes indicate the presence of melt moving or degassing at depth as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. To image the structure beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations and velocity structure. Results showed a pronounced low-velocity anomaly beneath the caldera at a depth of ~5 km. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. The body is unlikely to be entirely melt as S-waves are still detected at stations directly above the anomaly. This low-velocity body is slightly deeper than the depth range suggested by InSAR and GPS studies of a deflating source beneath

  20. Large-N in Volcano Settings: Volcanosri

    Science.gov (United States)

    Lees, J. M.; Song, W.; Xing, G.; Vick, S.; Phillips, D.

    2014-12-01

    We seek a paradigm shift in the approach we take on volcano monitoring where the compromise from high fidelity to large numbers of sensors is used to increase coverage and resolution. Accessibility, danger and the risk of equipment loss requires that we develop systems that are independent and inexpensive. Furthermore, rather than simply record data on hard disk for later analysis we desire a system that will work autonomously, capitalizing on wireless technology and in field network analysis. To this end we are currently producing a low cost seismic array which will incorporate, at the very basic level, seismological tools for first cut analysis of a volcano in crises mode. At the advanced end we expect to perform tomographic inversions in the network in near real time. Geophone (4 Hz) sensors connected to a low cost recording system will be installed on an active volcano where triggering earthquake location and velocity analysis will take place independent of human interaction. Stations are designed to be inexpensive and possibly disposable. In one of the first implementations the seismic nodes consist of an Arduino Due processor board with an attached Seismic Shield. The Arduino Due processor board contains an Atmel SAM3X8E ARM Cortex-M3 CPU. This 32 bit 84 MHz processor can filter and perform coarse seismic event detection on a 1600 sample signal in fewer than 200 milliseconds. The Seismic Shield contains a GPS module, 900 MHz high power mesh network radio, SD card, seismic amplifier, and 24 bit ADC. External sensors can be attached to either this 24-bit ADC or to the internal multichannel 12 bit ADC contained on the Arduino Due processor board. This allows the node to support attachment of multiple sensors. By utilizing a high-speed 32 bit processor complex signal processing tasks can be performed simultaneously on multiple sensors. Using a 10 W solar panel, second system being developed can run autonomously and collect data on 3 channels at 100Hz for 6 months

  1. A GIS-based Spatial Analysis of Volcanoes in the Central Andes: Insights Into Factors Controlling Volcano Spacing.

    Science.gov (United States)

    Savant, S. S.; de Silva, S. L.

    2005-12-01

    Volcano spacing has received little attention since the mid-70's when studies undertaken by Vogt (1974; EPSL) and then Marsh (1979; J Geol) suggested a regular spacing of volcanoes in arcs that ranged from 50 to 75 km for different arcs. The spacing was thought to be influenced by the thickness of the lithosphere or gravitational (Rayleigh-Taylor) instabilities related to source layer thickness and viscosity respectively. We have revisited these ideas through a detailed study of volcano distribution in the Central Volcanic Zone (CVZ) of the Andes where volcano spacing was thought to be around 70 km. The CVZ was selected as it is the type example of continental arc volcanism, built on an extremely thick crust of up to 70 km. The availability of a comprehensive dataset describing the relative age, location, and geomorphic characteristics of each volcano (Volcanoes of the Central Andes, de Silva and Francis, 1990, Springer Verlag) made this a compelling case study. The ready availability of ARC GIS Geographic Information Systems software and the geospatial analysis tools therein, allowed a comprehensive spatial analysis of the volcanoes to be conducted. Of the 1,118 volcanoes of ages from 23Ma to active in the CVZ, we focused on the 106 active and potentially active large composite volcanoes that define the modern arc. These volcanoes are related in time and thus to a consistent set of tectonic factors. The frequency distribution of inter-volcano distances shows a peak frequency in the 10 - 30 km range (71%) with subordinate between 40-80 km (19%) and 80 - 120 km (10%). The characteristic spacing is thus much smaller than the characteristic spacing of 70 km found previously and is consistent with Baker (1974; EPSL). The primary cause appears to be clustering of volcanoes into groups. The density of volcanoes is variable along the arc with regularly spaced clusters of two to three volcanoes in northern and southern parts of the arc (13 r°S to 19 r°S and 24 r° to 27

  2. Risk analysis and perception of an hypothetic volcanogenic tsunami along the Tyrrhenian coast of Calabria (Southern Italy)

    Science.gov (United States)

    Mari, Nicola; Gravina, Teresita

    2016-04-01

    The Marsili volcano is the largest and active seamount in Europe, located in the Marsili Basin back-arc basin (Aeolian Arc, Italy). Its flanks are unstables and a large collapse could originate a disastrous tsunami that will strike the tyrrhenian coasts of Southern Italy. In this work we used a GIS methodology in order to calculate the tsunami travel time starting from Marsili volcano, in particular the time that the wave needs to arrive on the tyrrhenian coasts of Calabria (South Italy). Although, we made a qualitative risk perception analysis by distributing a questionnaire at the population from different parts of Calabria. As a result, we obtained a tsunami travel time of 20-25 minutes for almost all the Calabria coasts and a tsunami celerity above the normal because of the great sea depth near the analysed coasts. The majority of the population declare to know the meaning of "tsunami" and a great number of them retain to be affected by a tsunami risk in the place where they live, but they are no instructed about this risk. A great quantity of people links the tsunami generation to a submarine volcanic eruption. In conclusion, by looking at the tsunami travel time calculated through GIS, the installation of an alert system need along the tyrrhenian coast of Calabria, with an alert advise of around 10 minutes and an evacuation plan of 10 minutes. More integration within GIS and the questionnaire data needs in order to create right evacuation plans and to conduct formative activities for each area.

  3. Some observations regarding the thermal flux from Earth's erupting volcanoes for the period of 2000 to 2014

    Science.gov (United States)

    Wright, Robert; Blackett, Matthew; Hill-Butler, Charley

    2015-01-01

    present satellite measurements of the thermal flux observed from 95 active volcanoes, based on observations made daily over the past 15 years by NASA's Terra and Aqua Moderate Resolution Imaging Spectroradiometer sensors. Excursions from an apparent baseline level of thermal emission are attributable to episodic lava-flow-forming eruptions. Highest average intensity was associated with the July 2001 eruption of Etna, Italy, which radiated an average of 2.5 × 109 W over 23 days. However, recent fissure eruptions in the Afar Rift have attained higher average intensities of 2.4-4.4 × 109 W, albeit for days, not weeks. The largest magnitude eruption was the ongoing eruption of Bardarbunga, Iceland, which radiated 2.6 × 1016 J. Kīlauea, Hawai'i, has radiated the most energy since 2000, although the lava lake at Nyiragongo, Democratic Republic of Congo, comes a close second. Time series analysis reveals evidence for periodicity in radiant flux at some volcanoes but not at others.

  4. Volcano/net electronic mail network

    Science.gov (United States)

    Fink, Jonathan

    To promote rapid communication and data exchange among volcanologists, an international list of researchers and their electronic mail addresses is being compiled. If you are currently an electronic mail user on a non-commercial network (e.g., BITNET , SPAN, ARPANET, CSNET, UUCP, JANET, OZ, etc.) or on one of the networks that uses GTE Mail or Telemail (such as Kosmos, Pi-mail, or Omnet) and would like to be added to the list, send your name, title, user identification, node, network name, and a brief (one-line maximum) description of your volcano-related research interests to Jonathan Fink, Department of Geology, Arizona State University, Tempe , AZ 85287 (tel.: 602-965-3195) (BITNET: AIJHF@ ASUACAD).

  5. Space Radar Image of Kliuchevskoi Volcano, Russia

    Science.gov (United States)

    1994-01-01

    This is an image of the Kliuchevskoi volcano, Kamchatka, Russia, which began to erupt on September 30, 1994. Kliuchevskoi is the bright white peak surrounded by red slopes in the lower left portion of the image. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 25th orbit on October 1, 1994. The image shows an area approximately 30 kilometers by 60 kilometers (18.5 miles by 37 miles) that is centered at 56.18 degrees north latitude and 160.78 degrees east longitude. North is toward the top of the image. The Kamchatka volcanoes are among the most active volcanoes in the world. The volcanic zone sits above a tectonic plate boundary, where the Pacific plate is sinking beneath the northeast edge of the Eurasian plate. The Endeavour crew obtained dramatic video and photographic images of this region during the eruption, which will assist scientists in analyzing the dynamics of the current activity. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). The Kamchatka River runs from left to right across the image. An older, dormant volcanic region appears in green on the north side of the river. The current eruption included massive ejections of gas, vapor and ash, which reached altitudes of 20,000 meters (65,000 feet). New lava flows are visible on the flanks of Kliuchevskoi, appearing yellow/green in the image, superimposed on the red surfaces in the lower center. Melting snow triggered mudflows on the north flank of the volcano, which may threaten agricultural zones and other settlements in the valley to the north. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  6. Modeling Secular Deformation of Kilauea Volcano, Hawaii

    Science.gov (United States)

    Sinnett, D. K.; Montgomery-Brown, E. D.; Casu, F.; Segall, P.; Fukushima, Y.; Miklius, A.; Poland, M. P.

    2010-12-01

    Kilauea volcano, Hawaii, is a dynamic volcanic and tectonic system that hosts rift intrusions and eruptions, summit inflation/deflation and eruptions, flank earthquakes and slow slip events, as well as quasi-steady flank motion. We seek to identify and characterize the actively deforming structures on Kilauea and study their interactions using a combination of GPS, InSAR, and seismic data. In addition we examine whether the change from summit subsidence to inflation in 2003, led to changes elsewhere in the volcano. We begin by modeling velocities of 16 continuous GPS and 28 campaign GPS sites and mean velocities from three ENVISAT tracks (T93 ascending: 10 acquisitions from 20030120 to 20041115; T200 descending: 13 acquisitions from 20030127 to 20041122, T429 descending: 10 acquisitions from 20030212 to 20041103) between 2003 and 2004, a period lacking major episodic events. We use triangular dislocations to mesh the curving rift zones and décollement. The southwest and east rift zones are continuous through the summit caldera area, where we also include a point center of dilatation beneath the southwest caldera. A décollement beginning about 12 km offshore at seven km depth dips approximately eight degrees northwest to achieving a depth of nine kilometers beneath the summit/rift zone. The décollement mesh continues at a shallower dip beneath the north flank of Kilauea reaching a final depth of 9.5 km beneath the north flank of Kilauea/south flank of Mauna Loa. Kinematic constraints enforce that opening at the base of the rift equal the differential décollement slip across the rift. Future modeling will include tests of Koae and Hilina fault geometries as well as time-dependent modeling of the deformation field.

  7. Newberry Volcano EGS Demonstration - Phase I Results

    Energy Technology Data Exchange (ETDEWEB)

    William L. Osborn, Susan Petty, Trenton T. Cladouhos, Joe Iovenitti, Laura Nofziger, Owen Callahan, Douglas S. Perry and Paul L. Stern

    2011-10-23

    Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project'™s water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly inform stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a

  8. Submarine sand volcanos: experiments and numerical modelling

    Science.gov (United States)

    Philippe, P.; Ngoma, J.; Delenne, J.

    2012-12-01

    Fluid overpressure at the bottom of a soil layer may generate fracturation in preferential paths for a cohesive material. But the case of sandy soils is rather different: a significant internal flow is allowed within the material and can potentially induce hydro-mechanical instabilities whose most common example is fluidization. Many works have been devoted to fluidization but very few have the issue of initiation and development of a fluidized zone inside a granular bed, prior entire fluidization of the medium. In this contribution, we report experimental results and numerical simulations on a model system of immersed sand volcanos generated by a localized upward spring of liquid, injected at constant flow-rate at the bottom of a granular layer. Such a localized state of fluidization is relevant for some industrial processes (spouted bed, maintenance of navigable waterways,…) and for several geological issues (kimberlite volcano conduits, fluid venting, oil recovery in sandy soil, More precisely, what is presented here is a comparison between experiments, carried out by direct visualization throughout the medium, and numerical simulations, based on DEM modelling of the grains coupled to resolution of NS equations in the liquid phase (LBM). There is a very good agreement between the experimental phenomenology and the simulation results. When the flow-rate is increased, three regimes are successively observed: static bed, fluidized cavity that does not extend to the top of the layer, and finally fluidization over the entire height of layer that creates a fluidized chimney. A very strong hysteretic effect is present here with an extended range of stability for fluidized cavities when flow-rate is decreased back. This can be interpreted in terms force chains and arches. The influences of grain diameter, layer height and injection width are studied and interpreted using a model previously developed by Zoueshtiagh [1]. Finally, growing rate of the fluidized zone and

  9. Embedded multiparametric system for volcano monitoring

    Science.gov (United States)

    Moure, David; Torres, Pedro A.; Meletlidis, Stavros; Lopez, Carmen; José Blanco, María

    2014-05-01

    A low cost and low power consumption multiparametric system designed for volcano monitoring is presented. Once tested with various sensors, at present it is installed in two locations in Tenerife, Canary Islands, acquiring and transmitting data in real time. The system is based on a commercial board (Raspberry Pi®, RPi®) that uses an embedded ARMTM processor with a Debian (Wheezy-Raspbian) Linux Operating System. This configuration permits different standard communication systems between devices as USB and ETHERNET, and also communication with integrated circuits is possible. The whole system includes this platform and self-developed hardware and software. Analog signals are acquired at an expansion board with an ADC converter with three 16 bits channels. This board, which is powered directly from the RPi®, provides timing to the sampling data using a Real Time Clock (RTC). Two serial protocols (I2C and SPI) are responsible for communications. Due to the influence of atmospheric phenomena on the volcano monitoring data, the system is complemented by a self-developed meteorological station based on ArduinoCC and low cost commercial sensors (atmospheric pressure, humidity and rainfall). It is powered with the RPi® and it uses a serial protocol for communications. Self-developed software run under Linux OS and handles configuration, signal acquisition, data storage (USB storage or SD card) and data transmission (FTP, web server). Remote configuration, data plotting and downloading is available through a web interface tool. Nowadays, the system is used for gravimetric and oceanic tides data acquisition in Tenerife and soon it will be applied for clinometric data.

  10. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The characteristics of magma supply, storage, and transport are among the most critical parameters governing volcanic activity, yet they remain largely unconstrained because all three processes are hidden beneath the surface. Hawaiian volcanoes, particularly Kīlauea and Mauna Loa, offer excellent prospects for studying subsurface magmatic processes, owing to their accessibility and frequent eruptive and intrusive activity. In addition, the Hawaiian Volcano Observatory, founded in 1912, maintains long records of geological, geophysical, and geochemical data. As a result, Hawaiian volcanoes have served as both a model for basaltic volcanism in general and a starting point for many studies of volcanic processes.

  11. Demoiselles and Drafts from Italy and France.

    Science.gov (United States)

    Picard, M. Dane

    1988-01-01

    Recounts the adventures of a journey taken through France and Italy. Makes an analogy of this trip to that of the one Charles Dickens took in 1844. Describes silicified horizons of the southern Paris Basin, moraines, outcrops, and "Hoodoos." (RT)

  12. Gate to Italy; Das Tor zu Italien

    Energy Technology Data Exchange (ETDEWEB)

    Roepcke, Ina

    2008-07-01

    Increasingly, German businesses are setting up workshops in Southern Tyrol. This region of Northern Italy offers ideal conditions, as well as German-speaking partners. However, to be successful they will also need Italian partners. (orig.)

  13. Viscosity controlled magma-carbonate interaction: a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia).

    Science.gov (United States)

    Blythe, L. S.; Misiti, V.; Masotta, M.; Taddeucci, J.; Freda, C.; Troll, V. R.; Deegan, F. M.; Jolis, E. M.

    2012-04-01

    Magma-carbonate interaction is increasingly seen as a viable and extremely important cause of magma contamination, and the generation of a crustally sourced CO2 phase (Goff et al., 2001; Freda et al., 2010). Even though the process is well recognized at certain volcanoes e.g. Popocatépetl, (Mexico); Merapi, (Indonesia); and Colli Albani, (Italy) (Goff et al., 2001; Deegan et al., 2010; Freda et al., 2010), neither the kinetics of carbonate assimilation nor its consequences for controlling the explosivity of eruptions have been constrained. Here we show the results of magma-carbonate interaction experiments conducted at 1200 °C and 0.5 GPa for varying durations (0 s, 60 s, 90 s and 300 s) for the Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) volcanic systems. We performed experiments using glassy starting materials specific to each volcano (shoshonite for Mt. Vesuvius, basaltic-andesite for Mt. Merapi) with different degrees of hydration (anhydrous vs hydration with ~ 2 wt % water) and using carbonate fragments of local origin; see Deegan et al., (2010) and Jolis et al., (2011). Experimental products include a gas phase (CO2-rich) and two melt phases, one pristine (Ca-normal) and one contaminated (Ca-rich) separated by a 'contamination front' which propagates outwards from the carbonate clast. Vesicles appear to nucleate in the contaminated glass and then migrate into the pristine one. Both contamination front propagation and bubble migration away from the carbonate are slower in anhydrous basaltic-andesite (Merapi anhydrous series) than in hydrated basaltic-andesite and shoshonite (Merapi and Vesuvius hydrated series), suggesting that assimilation speed is strongly controlled by the degree of hydration and the SiO2 content, both of which influence melt viscosity and hence diffusivity. As the carbonate dissolution proceeds in our experiments, initially dissolved and eventually exsolved CO2 builds up in the contaminated Ca-rich melt phase. Once melt volatile

  14. Economic insecurity and cohabitation strategies in Italy

    OpenAIRE

    Christin Schröder

    2008-01-01

    A particular aspect of demographic behavior among young people in Italy is postponement of entering first union. High youth unemployment, a tense housing situation, and a passive welfare state are currently creating a precarious economic situation, in which most young adults are unable to choose cohabitation. Thus, not surprisingly, previous studies found evidence that in Italy cohabitation was only a choice for people who were economically independent. Also of interest is that the percentage...

  15. Corruption and health expenditure in Italy

    OpenAIRE

    Lagravinese, Raffaele; Paradiso, Massimo

    2012-01-01

    The vulnerability of health sector to corruption lies in the complex interaction between the social environment and the institutional setting of health systems. We investigate this interaction in the case of Italy, speci�cally looking at the impact of corruption on health expenditure. In Italy corruption is a social phenomenon. Health sector has been often involved in corruption o¤ences and decentralized health expenditure is considerably out of control. We show that the impact of corrupti...

  16. Foreign children with cancer in Italy

    OpenAIRE

    Zecca Marco; Casazza Gabriella; Tamaro Paolo; Vasconcelos Carivaldo; Aricò Maurizio; Bisogno Gianni; Quarello Paola; De Rosa Marisa; Dini Giorgio; Rondelli Roberto; De Laurentis Clementina; Porta Fulvio; Pession Andrea

    2011-01-01

    Abstract Background There has been a noticeable annual increase in the number of children coming to Italy for medical treatment, just like it has happened in the rest of the European Union. In Italy, the assistance to children suffering from cancer is assured by the current network of 54 centres members of the Italian Association of Paediatric Haematology and Oncology (AIEOP), which has kept records of all demographic and clinical data in the database of Mod.1.01 Registry since 1989. Methods ...

  17. 3He/4He Ratio in Olivines from Linosa, Ustica, and Pantelleria Islands (Southern Italy

    Directory of Open Access Journals (Sweden)

    Elise Fourré

    2012-01-01

    Full Text Available We report helium isotope data for 0.03–1 Ma olivine-bearing basaltic hawaiites from three volcanoes of the southern Italy magmatic province (Ustica, Pantelleria, and Linosa Islands. Homogenous 3He/4He ratios (range: 7.3–7.6 Ra for the three islands, and their similarity with the ratio of modern volcanic gases on Pantelleria, indicate a common magmatic end-member. In particular, Ustica (7.6±0.2 Ra clearly differs from the nearby Aeolian Islands Arc volcanism, despite its location on the Tyrrhenian side of the plate boundary. Although limited in size, our data set complements the large existing database for helium isotope in southern Italy and adds further constraints upon the spatial extent of intraplate alkaline volcanism in southern Mediterranea. As already discussed by others, the He-Pb isotopic signature of this magmatic province indicates a derivation from a mantle diapir of a OIB-type that is partially diluted by the depleted upper mantle (MORB mantle at its periphery.

  18. Chasing lava: a geologist's adventures at the Hawaiian Volcano Observatory

    Science.gov (United States)

    Duffield, Wendell A.

    2003-01-01

    A lively account of the three years (1969-1972) spent by geologist Wendell Duffield working at the Hawaiian Volcano Observatory at Kilauea, one of the world's more active volcanoes. Abundantly illustrated in b&w and color, with line drawings and maps, as well. Volcanologists and general readers alike will enjoy author Wendell Duffield's report from Kilauea--home of Pele, the goddess of fire and volcanoes. Duffield's narrative encompasses everything from the scientific (his discovery that the movements of cooled lava on a lava lake mimic the movements of the earth's crust, providing an accessible model for understanding plate tectonics) to the humorous (his dog's discovery of a snake on the supposedly snake-free island) to the life-threatening (a colleague's plunge into molten lava). This charming account of living and working at Kilauea, one of the world's most active volcanoes, is sure to be a delight.

  19. Single-station monitoring of volcanoes using seismic ambient noise

    Science.gov (United States)

    De Plaen, Raphael S. M.; Lecocq, Thomas; Caudron, Corentin; Ferrazzini, Valérie; Francis, Olivier

    2016-08-01

    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-station" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multidisciplinary continuous monitoring. Over the past decade, this volcano has been increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single three-component seismometer.

  20. Temporary seismic networks on active volcanoes of Kamchatka (Russia)

    Science.gov (United States)

    Jakovlev, Andrey; Koulakov, Ivan; Abkadyrov, Ilyas; Shapiro, Nikolay; Kuznetsov, Pavel; Deev, Evgeny; Gordeev, Evgeny; Chebrov, Viktor

    2016-04-01

    We present details of four field campaigns carried out on different volcanoes of Kamchatka in 2012-2015. Each campaign was performed in three main steps: (i) installation of the temporary network of seismic stations; (ii) autonomous continuous registration of three component seismic signal; (III) taking off the network and downloading the registered data. During the first campaign started in September 2012, 11 temporary stations were installed over the Avacha group of volcanoes located 30 km north to Petropavlovsk-Kamchatsky in addition to the seven permanent stations operated by the Kamchatkan Branch of the Geophysical Survey (KBGS). Unfortunately, with this temporary network we faced with two obstacles. The first problem was the small amount of local earthquakes, which were detected during operation time. The second problem was an unexpected stop of several stations only 40 days after deployment. Nevertheless, after taking off the network in August 2013, the collected data appeared to be suitable for analysis using ambient noise. The second campaign was conducted in period from August 2013 to August 2014. In framework of the campaign, 21 temporary stations were installed over Gorely volcano, located 70 km south to Petropavlovsk-Kamchatsky. Just in time of the network deployment, Gorely Volcano became very seismically active - every day occurred more than 100 events. Therefore, we obtain very good dataset with information about thousands of local events, which could be used for any type of seismological analysis. The third campaign started in August 2014. Within this campaign, we have installed 19 temporary seismic stations over Tolbachik volcano, located on the south side of the Klyuchevskoy volcano group. In the same time on Tolbachik volcano were installed four temporary stations and several permanent stations operated by the KBGS. All stations were taking off in July 2015. As result, we have collected a large dataset, which is now under preliminary analysis

  1. Volcano collapse along the Aleutian Ridge (western Aleutian Arc)

    OpenAIRE

    Montanaro, C.; J. Beget

    2011-01-01

    The Aleutian Ridge, in the western part of the Aleutian Arc, consists of a chain of volcanic islands perched atop the crest of a submarine ridge with most of the active Quaternary stratocones or caldera-like volcanoes being located on the northern margins of the Aleutian Islands. Integrated analysis of marine and terrestrial data resulted in the identification and characterization of 17 extensive submarine debris avalanche deposits from 11 volcanoes. Two morphological types of deposits are re...

  2. Sulfur dioxide contributions to the atmosphere by volcanoes.

    Science.gov (United States)

    Stoiber, R E; Jepsen, A

    1973-11-01

    The first extensive measurements by remote-sensing correlation spectrometry of the sulfur dioxide emitted by volcanic plumes indicate that on the order of 10(3) metric tons of sulfur dioxide gas enter the atmosphere daily from Central American volcanoes. Extrapolation gives a minimum estimate of the annual amount of sulfur dioxide emitted from the world's volcanoes of about 10(7) metric tons.

  3. Mantle CO2 degassing at Mt. Vulture volcano (Italy): Relationship between CO2 outgassing of volcanoes and the time of their last eruption

    OpenAIRE

    Caracausi, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Paternoster, M.; Dipartimento di Scienze, Università della Basilicata, Potenza, Italy; Nuccio, P. M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia

    2015-01-01

    Mantle volatiles are mainly lost from the Earth to the atmosphere through subaerial and submarine volcanism. Recent studies have shown that degassing of mantle volatiles also occurs from inactive volcanic areas and in tectonically active areas. A new challenge in Earth science is to quantify the mantle-derived flux of volatiles (e.g., CO2) which is important for understanding such diverse issues as the evolution of the atmosphere, the relationships between magma degassing and volcanic activit...

  4. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10

    Science.gov (United States)

    Kim, K. J.; Baskaran, M.; Jweda, J.; Feyzullayev, A. A.; Aliyev, C.; Matsuzaki, H.; Jull, A. J. T.

    2013-01-01

    We collected and analyzed five sediments from three mud volcano (MV) vents and six suspended and bottom sediment samples from the adjoining river near the Dashgil mud volcano in Azerbaijan for 10Be. These three MV are found among the 190 onshore and >150 offshore MV in this region which correspond to the western flank of the South Caspian depression. These MVs overlie the faulted and petroleum-bearing anticlines. The 10Be concentrations and 10Be/9Be ratios are comparable to the values reported for mud volcanoes in Trinidad Island. It appears that the stable Be concentrations in Azerbaijan rivers are not perturbed by anthropogenic effects and are comparable to the much older sediments (mud volcano samples). The 10Be and 9Be concentrations in our river sediments are compared to the global data set and show that the 10Be values found for Kura River are among the lowest of any river for which data exist. We attribute this low 10Be concentration to the nature of surface minerals which are affected by the residual hydrocarbon compounds that occur commonly in the study area in particular and Azerbaijan at large. The concentrations of 40K and U-Th-series radionuclides (234Th, 210Pb, 226Ra, and 228Ra) indicate overall homogeneity of the mud volcano samples from the three different sites. Based on the 10Be concentrations of the mud volcano samples, the age of the mud sediments could be at least as old as 4 myr.

  5. Identification of a potential monogenetic volcano using seismology

    Science.gov (United States)

    Legrand, Denis; Bataille, Klaus; Cembrano, Jose; Pavez, Andres; Bashkar, Kundu; Gahalaut, Vineet; Perez, Raul

    2014-05-01

    Some monogenetic volcano fields are very close to cities, such as in New Zealand or in México. A new monogenetic volcano may appear at any place and at any time, which could be potentially hazardous for nearby regions. The ability to detect a new one in advance is obviously very important and challenging. The existence of nearby seismometers may help for such detection. Magma sometimes reaches the surface with the birth of a volcano which can be monogenetic, but in other cases the magma does not reach the surface How to detect such movements? How to be sure the magma will reach the surface? Some observations may detect them, such as seismicity which is distributed as a swarm, with a very peculiar distribution in time and magnitudes. In particular, it is important to distinguish between a tectonic swarm and a volcanic swarm. Scaling laws of seismicity in magnitude and time help to perform such a distinction. We show three cases: a seismic swarm in Chile, in the 2007 Aysen crisis, corresponding to an aborted birth of a monogenetic volcano; a seismic swarm triggered after the 2004 great Mw~9.2 Sumatra-Andaman earthquake over an old monogenetic volcano; and a spatial study of monogenetic volcanoes in Mexico (Michoacán) showing the difficulty to forecast the place and time of the birth of a monogenetic cone without seismological records.

  6. Petrologic insights into basaltic volcanism at historically active Hawaiian volcanoes: Chapter 6 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Helz, Rosalind L.; Clague, David A.; Sisson, Thomas W.; Thornber, Carl R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Study of the petrology of Hawaiian volcanoes, in particular the historically active volcanoes on the Island of Hawai‘i, has long been of worldwide scientific interest. When Dr. Thomas A. Jaggar, Jr., established the Hawaiian Volcano Observatory (HVO) in 1912, detailed observations on basaltic activity at Kīlauea and Mauna Loa volcanoes increased dramatically. The period from 1912 to 1958 saw a gradual increase in the collection and analysis of samples from the historical eruptions of Kīlauea and Mauna Loa and development of the concepts needed to evaluate them. In a classic 1955 paper, Howard Powers introduced the concepts of magnesia variation diagrams, to display basaltic compositions, and olivine-control lines, to distinguish between possibly comagmatic and clearly distinct basaltic lineages. In particular, he and others recognized that Kīlauea and Mauna Loa basalts must have different sources.

  7. Small-scale volcanoes on Mars: distribution and types

    Science.gov (United States)

    Broz, Petr; Hauber, Ernst

    2015-04-01

    Volcanoes differ in sizes, as does the amount of magma which ascends to a planetary surface. On Earth, the size of volcanoes is anti-correlated with their frequency, i.e. small volcanoes are much more numerous than large ones. The most common terrestrial volcanoes are scoria cones (active over most (if not all) of its history, a similar distribution of volcano size might be expected. Martian small-scale volcanoes were not intensely studied for a long time due to a lack of high-resolution data enabling their proper identification; however their existence and basic characteristics were predicted on theoretical grounds. Streams of new high-resolution images now enable discovering and studying kilometer-size volcanoes with various shapes in unprecedented detail. Several types of small-scale volcanoes in various regions on Mars were recently described. Scoria cones provide a record of magmatic volatile content and have been identified in Tharsis (Ulysses Colles), on flanks of large volcanoes (e.g., Pavonis Mons), in the caldera of Ulysses Patera, in chaotic terrains or other large depressions (Hydraotes Colles, Coprates Chasma) and in the northern lowlands. Tuff rings and tuff cones, formed as a result of water-magma interaction, seem to be relatively rare on Mars and were only tentatively identified in three locations (Nepenthes/Amenthes region, Arena Colles and inside Lederberg crater), and alternative interpretations (mud volcanoes) seem possible. Other relatively rare volcanoes seem to be lava domes, reported only from two regions (Acracida Planitia and Terra Sirenum). On the other hand, small shields and rootless cones (which are not primary volcanic landforms) represent widely spread phenomena recognized in Tharsis and Elysium. Based on these new observations, the distribution of small volcanoes on Mars seems to be much more widespread than anticipated a decade ago. There are sometimes significant differences in the final morphologies between Martian hypothesized

  8. How volcano monitoring in New Zealand can contribute to a global volcano dataset: The GeoNet Project

    Science.gov (United States)

    Jolly, G. E.; Scott, B.

    2009-12-01

    Volcanism plays an important role in New Zealand. Much of the landscape of the central North Island owes its shape to volcanism, with the soils supporting forestry and farming economies, geothermal systems providing renewable electricity production and the spectacular landscape supporting tourism and adventure. However volcanism also has it disadvantages: eruptive activity brings physical damage and economic losses and, sometimes, tragically the loss of life. Historically, in New Zealand, volcanoes represent the largest single source of fatalities from natural disasters. To better mitigate the hazard from New Zealand’s volcanoes, a multidisciplinary approach is applied. In 2001 the NZ Earthquake Commission (EQC) commenced funding the GeoNet project, providing the first totally national modern geological hazard monitoring system in New Zealand. The GeoNet project is responsibly for monitoring and assessing all of the active volcanoes (and other geological hazards) in New Zealand. The volcano monitoring programme is integrated into the national seismograph and geodetic networks. The volcano monitoring covers active volcanic cones, resting calderas, volcanic fields, and submarine volcanoes. Monitoring techniques include volcano seismology, geodesy, gas and water chemistry, remote sensing and other geophysical techniques, producing a wide variety of data sets, with both temporal and spatial distribution. These data sets form the basis for detailed research to achieve in depth understanding of these volcanoes and will contribute to the global knowledge of volcanic processes. However to achieve this the data sets need to be accessible by a range of end users, so that they can be used to underpin fundamental research and applied hazard assessments. This presentation will outline the NZ data sets and the problems of presenting and sharing them globally.

  9. Position of fuel cells in Italy; Situation des piles a combustible en Italie

    Energy Technology Data Exchange (ETDEWEB)

    Janot-Giorgetti, M.; Mottini, N.

    2000-02-01

    The main researches concerning the fuel cells in Italy are the PEFC (Polymer Electrolyte Fuel Cell) and the MCFC (Molten Carbonate Fuel Cell). This reports takes stock of these two techniques in Italy, explaining the running of these two types of cells and relating the Italian situation (development and research program, development programs of fuel cells vehicles). (O.M.)

  10. Spatial Analysis of Volcanoes at Convergent Margins on Earth

    Science.gov (United States)

    Roberts, R. V.; de Silva, S. L.; Meyers, M.

    2009-12-01

    One of the most obvious patterns seen on the surface of the terrestrial planets is the distribution of volcanoes. On Earth, most volcanoes are distributed in volcanic “arcs” that signal the primary relationship between subduction and volcanism. The distributions of major composite volcanoes in volcanic arcs are thought to reflect the primary magmatic pathways from source to surface. Understanding these patterns therefore may allow fundamental controls on the organization of magmatic plumbing in arcs to be identified. Using a control dataset from the Central Volcanic Zone of the Andes (de Silva and Francis, 1991; Springer-Verlag) we have examined several popular approaches to spatial analysis of volcano distribution in several volcanic arcs (Aleutian, Alaskan, Central American, Northern and Southern volcanic zones of the Andes). Restricting our analysis to major volcanoes of similar age, we find that while clustering is visually obvious in many volcanic arcs it has been rejected as a primary signal by previous analytical efforts (e.g. Bremont d'Ars et al (1995)). We show that the fractal box or grid counting method used previously does not detect clusters and statistical methods such as the Kernel Density Analysis or Single-link Cluster Analysis are better suited for cluster detection. Utilizing both ARC GIS and Matlab to conduct density analyses in combination with statistical software SPlus for the appropriate hypothesis testing methods such as the pooled variance t-test, the Welch Modified two sample t-test, and the f-test we find evidence of clustering in four volcanic arcs whose crustal thickness is greater than or equal to 40 kilometres (Central America, CVZ, NVZ, SVZ). We suggest that clustering is the surface manifestation of upper crustal diffusion of primary magmatic pathways, which in other places manifests as a single volcano. The inter-cluster distance is a thus reflection of primary magmatic pathways and thus equivalent to inter-volcano distance

  11. Foreign children with cancer in Italy

    Directory of Open Access Journals (Sweden)

    Zecca Marco

    2011-09-01

    Full Text Available Abstract Background There has been a noticeable annual increase in the number of children coming to Italy for medical treatment, just like it has happened in the rest of the European Union. In Italy, the assistance to children suffering from cancer is assured by the current network of 54 centres members of the Italian Association of Paediatric Haematology and Oncology (AIEOP, which has kept records of all demographic and clinical data in the database of Mod.1.01 Registry since 1989. Methods We used the information stored in the already mentioned database to assess the impact of immigration of foreign children with cancer on centres' activity, with the scope of drawing a map of the assistance to these cases. Results Out of 14,738 cases recorded by all centres in the period from 1999 to 2008, 92.2% were born and resident in Italy, 4.1% (608 were born abroad and living abroad and 3.7% (538 were born abroad and living in Italy. Foreign children cases have increased over the years from 2.5% in 1999 to. 8.1% in 2008. Most immigrant children came from Europe (65.7%, whereas patients who came from America, Asia and Oceania amounted to 13.2%, 10.1%, 0.2%, respectively. The immigrant survival rate was lower compared to that of children who were born in Italy. This is especially true for acute lymphoblastic leukaemia patients entered an AIEOP protocol, who showed a 10-years survival rate of 71.0% vs. 80.7% (p Conclusions Children and adolescents are an increasingly important part of the immigration phenomenon, which occurs in many parts of the world. In Italy the vast majority of children affected by malignancies are treated in AIEOP centres. Since immigrant children are predominantly treated in northern Italy, these centres have developed a special expertise in treating immigrant patients, which is certainly very useful for the entire AIEOP network.

  12. Volcano surveillance by ACR silver fox

    Science.gov (United States)

    Patterson, M.C.L.; Mulligair, A.; Douglas, J.; Robinson, J.; Pallister, J.S.

    2005-01-01

    Recent growth in the business of unmanned air vehicles (UAVs) both in the US and abroad has improved their overall capability, resulting in a reduction in cost, greater reliability and adoption into areas where they had previously not been considered. Uses in coastal and border patrol, forestry and agriculture have recently been evaluated in an effort to expand the observed area and reduce surveillance and reconnaissance costs for information gathering. The scientific community has both contributed and benefited greatly in this development. A larger suite of light-weight miniaturized sensors now exists for a range of applications which in turn has led to an increase in the gathering of information from these autonomous vehicles. In October 2004 the first eruption of Mount St Helens since 1986 caused tremendous interest amoUg people worldwide. Volcanologists at the U.S. Geological Survey rapidly ramped up the level of monitoring using a variety of ground-based sensors deployed in the crater and on the flanks of the volcano using manned helicopters. In order to develop additional unmanned sensing methods that can be used in potentially hazardous and low visibility conditions, a UAV experiment was conducted during the ongoing eruption early in November. The Silver Fox UAV was flown over and inside the crater to perform routine observation and data gathering, thereby demonstrating a technology that could reduce physical risk to scientists and other field operatives. It was demonstrated that UAVs can be flown autonomously at an active volcano and can deliver real time data to a remote location. Although still relatively limited in extent, these initial flights provided information on volcanic activity and thermal conditions within the crater and at the new (2004) lava dome. The flights demonstrated that readily available visual and infrared video sensors mounted in a small and relatively low-cost aerial platform can provide useful data on volcanic phenomena. This was

  13. The 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.

    2012-01-01

    Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72

  14. Magma hybridisation at Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Humphreys, Madeleine; Edmonds, Marie; Christopher, Thomas; Hards, Vicky

    2010-05-01

    Arc volcanoes commonly show evidence of mingling between mafic and silicic magma. For example, the Soufrière Hills Volcano, Montserrat typically erupts andesitic magma containing basaltic to basaltic-andesite inclusions. However, the andesite also contains a wide variety of phenocryst textures as well as strongly zoned microlites, suggesting that more intimate physical mixing also occurs. Analysis of minor elements in both phenocrysts and microlites allows the discrimination of different crystal populations, and provides insight into their origins. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, they are indistinguishable from the compositions of these phases in the mafic inclusions. Microlite compositions also give anomalously high temperatures using standard geothermometry techniques, similar to those of the mafic inclusions. Compositions of clinopyroxene from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. This implies that the mafic component of the system is greater than previously determined from the volume proportion of mafic enclaves. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments. Melt inclusions and matrix glasses in the erupted include an anomalously K2O-rich population which overlaps with residual (high-K2O, high-TiO2) mafic inclusion glass. These glasses represent the effects of physical mixing with mafic magma, both during ascent and by diffusive exchange during the formation of mafic

  15. Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico

    Science.gov (United States)

    Taran, Yuri; Fischer, Tobias P.; Pokrovsky, Boris; Sano, Yuji; Armienta, Maria Aurora; Macias, Jose Luis

    The 1982 eruption of El Chichón volcano ejected more than 1km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges / 20kg/s of Cl-rich ( 15 000mg/kg) and sulphur-poor ( / 200mg/kg of SO4), almost neutral (pHup to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=-15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted ( 3000mg/kg of Cl vs 24 030mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200mg/kg of SO4, vs 3550mg/kg) with δ34S=0.5-4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100kg/s of 71 °C Na-Ca-Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S

  16. The BENTO Box: Development and field-testing of a new satellite-linked data collection system for multiparameter volcano monitoring

    Science.gov (United States)

    Roman, D. C.; Behar, A.; Elkins-Tanton, L. T.

    2014-12-01

    Predicting volcanic activity requires continuous monitoring for signals of magmatic unrest in harsh, often remote environments. BENTO is a next-generation monitoring system, currently in prototype testing, that is highly portable, low-cost, rapidly deployable, and entirely autonomous. Such a system could be used to provide critical monitoring and data collection capabilities during rapid-onset eruptions, or to provide a crude baseline monitor at large numbers of remote volcanoes to 'flag' the onset of unrest so that costlier resources such as specialized instrumentation can be deployed in the appropriate place at the appropriate time. The BENTO 1 (low-rate data) prototype currently comprises off-the-shelf volcanic gas sensors (SO2, CO2, Fl, Cl, and Br), a weather station (temperature, wind speed, wind direction, rainfall, humidity, pressure), and telemetry via Iridium modem. In baseline mode, BENTO 1 takes a measurement from all of its sensors every two hours and automatically sends the measurements through Iridium to a server that posts them to a dedicated and customizable web page. The measurement interval and other sensor parameters (pumping time, sensor constants) can be adjusted directly or remotely (through the Iridium network) as needed. Currently, BENTO 1 is deployed at Mt. Etna, Italy; Telica Volcano, Nicaragua, Hengill Volcano, Iceland; and Hekla Volcano, Iceland. The BENTO 2 (high-rate) system is motivated by a need to avoid having to telemeter raw seismic data, which at 20-100 Hz/channel is far too voluminous for cost- and power-effective transmission through satellite networks such as Iridium. Our solution is to regularly transmit only state-of-health information and descriptions of the seismic data (e.g., 'triggered' seismic event rates and amplitudes), rather than the data itself. The latter can be accomplished through on-board data analysis and reduction at the installation site. Currently, it is possible to request specific time segments of raw

  17. MATLAB tools for improved characterization and quantification of volcanic incandescence in Webcam imagery; applications at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Patrick, Matthew R.; Kauahikaua, James P.; Antolik, Loren

    2010-01-01

    Webcams are now standard tools for volcano monitoring and are used at observatories in Alaska, the Cascades, Kamchatka, Hawai'i, Italy, and Japan, among other locations. Webcam images allow invaluable documentation of activity and provide a powerful comparative tool for interpreting other monitoring datastreams, such as seismicity and deformation. Automated image processing can improve the time efficiency and rigor of Webcam image interpretation, and potentially extract more information on eruptive activity. For instance, Lovick and others (2008) provided a suite of processing tools that performed such tasks as noise reduction, eliminating uninteresting images from an image collection, and detecting incandescence, with an application to dome activity at Mount St. Helens during 2007. In this paper, we present two very simple automated approaches for improved characterization and quantification of volcanic incandescence in Webcam images at Kilauea Volcano, Hawai`i. The techniques are implemented in MATLAB (version 2009b, Copyright: The Mathworks, Inc.) to take advantage of the ease of matrix operations. Incandescence is a useful indictor of the location and extent of active lava flows and also a potentially powerful proxy for activity levels at open vents. We apply our techniques to a period covering both summit and east rift zone activity at Kilauea during 2008?2009 and compare the results to complementary datasets (seismicity, tilt) to demonstrate their integrative potential. A great strength of this study is the demonstrated success of these tools in an operational setting at the Hawaiian Volcano Observatory (HVO) over the course of more than a year. Although applied only to Webcam images here, the techniques could be applied to any type of sequential images, such as time-lapse photography. We expect that these tools are applicable to many other volcano monitoring scenarios, and the two MATLAB scripts, as they are implemented at HVO, are included in the appendixes

  18. Volcano-tectonic interactions at Sabancaya and other Peruvian volcanoes revealed by InSAR and seismicity

    Science.gov (United States)

    Jay, J.; Pritchard, M. E.; Aron, F.; Delgado, F.; Macedo, O.; Aguilar, V.

    2013-12-01

    An InSAR survey of all 13 Holocene volcanoes in the Andean Central Volcanic Zone of Peru reveals previously undocumented surface deformation that is occasionally accompanied by seismic activity. Our survey utilizes SAR data spanning from 1992 to the present from the ERS-1, ERS-2, and Envisat satellites, as well as selected data from the TerraSAR-X satellite. We find that the recent unrest at Sabancaya volcano (heightened seismicity since 22 February 2013 and increased fumarolic output) has been accompanied by surface deformation. We also find two distinct deformation episodes near Sabancaya that are likely associated with an earthquake swarm in February 2013 and a M6 normal fault earthquake that occurred on 17 July 2013. Preliminary modeling suggests that faulting from the observed seismic moment can account for nearly all of the observed deformation and thus we have not yet found clear evidence for recent magma intrusion. We also document an earlier episode of deformation that occurred between December 2002 and September 2003 which may be associated with a M5.3 earthquake that occurred on 13 December 2002 on the Solarpampa fault, a large EW-striking normal fault located about 25 km northwest of Sabancaya volcano. All of the deformation episodes between 2002 and 2013 are spatially distinct from the inflation seen near Sabancaya from 1992 to 1997. In addition to the activity at Sabancaya, we also observe deformation near Coropuna volcano, in the Andagua Valley, and in the region between Ticsani and Tutupaca volcanoes. InSAR images reveal surface deformation that is possibly related to an earthquake swarm near Coropuna and Sabancaya volcanoes in December 2001. We also find persistent deformation in the scoria cone and lava field along the Andagua Valley, located 40 km east of Corpuna. An earthquake swarm near Ticsani volcano in 2005 produced surface deformation centered northwest of the volcano and was accompanied by a north-south elongated subsidence signal to the

  19. Pollen-related allergy in Italy.

    Science.gov (United States)

    D'Amato, G; Dal Bo, S; Bonini, S

    1992-05-01

    Pollen-related allergies are very common in Italy and pollinosis is the commonest allergic disease. The type of allergenic plants and the prevalence of hay fever varies among regions. In the Mediterranean area there are characteristic climatic conditions (mildness of winter, summer dryness) that facilitate the growth of a typical vegetation with its associated various types of allergenic pollen grains, some of them very different from those of central and northern Europe. Italy has a central position in the Mediterranean basin, but because of its geographic characteristics, there are different climatic aspects with different vegetation between northern, central, and southern areas. Gramineae are the most common allergenic plants in northern and central Italy, where more than 60% of patients with pollinosis are grass-pollen sensitive. Parietaria is the most important pollinating plant in southern Italy and Liguria. Olea europaea, the olive tree with cultivation widespread in the whole Mediterranean basin, is responsible for frequently severe pollinosis, particularly in some regions of the southern Italy.

  20. Newberry Volcano EGS Demonstration Stimulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Trenton T. Cladouhos, Matthew Clyne, Maisie Nichols,; Susan Petty, William L. Osborn, Laura Nofziger

    2011-10-23

    As a part of Phase I of the Newberry Volcano EGS Demonstration project, several data sets were collected to characterize the rock volume around the well. Fracture, fault, stress, and seismicity data has been collected by borehole televiewer, LiDAR elevation maps, and microseismic monitoring. Well logs and cuttings from the target well (NWG 55-29) and core from a nearby core hole (USGS N-2) have been analyzed to develop geothermal, geochemical, mineralogical and strength models of the rock matrix, altered zones, and fracture fillings (see Osborn et al., this volume). These characterization data sets provide inputs to models used to plan and predict EGS reservoir creation and productivity. One model used is AltaStim, a stochastic fracture and flow software model developed by AltaRock. The software's purpose is to model and visualize EGS stimulation scenarios and provide guidance for final planning. The process of creating an AltaStim model requires synthesis of geologic observations at the well, the modeled stress conditions, and the stimulation plan. Any geomechanical model of an EGS stimulation will require many assumptions and unknowns; thus, the model developed here should not be considered a definitive prediction, but a plausible outcome given reasonable assumptions. AltaStim is a tool for understanding the effect of known constraints, assumptions, and conceptual models on plausible outcomes.

  1. The September 2008 five-day multiparameter experiment at Stromboli volcano

    Science.gov (United States)

    Carbone, D.; Privitera, E.; Zuccarello, L.; Rapisarda, S.; Rymer, H.; Cannata, A.; Montalto, P.

    2009-04-01

    Between the 1st and 5th of September 2008, a multiparameteric experiment was performed at the summit of Stromboli (Aeolian Islands, Italy). This volcano exhibits persistent degassing at its summit craters, punctuated by weak to mild explosions yielding gas jets and throwing ash, scoriae and lava lumps in the vicinity of the source crater 5-10 times an hour. This "normal" background activity can be interrupted by more violent, "major" explosions which can eject hot material several hundred meters from the craters. Such explosions represent a threat for tourists, guides and scientists in the summit area. Improved understanding of the processes controlling the explosive activity at Stromboli is thus a high priority for civil defense agencies. In spite of many theoretical and field-based studies on the subject, the mechanisms governing persistently activity and also the factors that may tip Stromboli volcano out of its dynamic equilibrium into paroxysm are still not fully understood. The main unresolved issues concern: (i) the mechanism allowing bubble coalescence; (ii) the level at which the gas accumulation occurs within the magmatic system prior to an explosive event and the timing of the process; (iii) the quantitative relationships between the amount of gas accumulated and the energy involved in the explosive event and (iv) the main difference in the overall process dynamics leading to either strombolian or paroxysmal explosions. In order to better constrain the "normal" explosive activity at Stromboli we took a multiparameteric approach, with the aim of improving our understanding of (i) the mechanisms driving the persistent activity and (ii) the geometrical characteristics of the upper plumbing system of Stromboli. The most challenging aspect of our experiment was to couple the observations usually accomplished to study persistently active volcanoes with continuous measurements of the gravity field. We thus installed a spring gravimeter (LaCoste and Romberg D

  2. Microbial communities imposed by different geochemical contexts in Sicilian mud volcanoes

    Science.gov (United States)

    Wang, Pei-Ling; Chiu, Yi-Ping; Lin, Li-Hung; Italiano, Francesco

    2016-04-01

    Mud volcanoes and seeps are prominent surface manifestation of fluid channels connected to fluid/gas reservoirs in deep subsurface environments. While methane and carbon dioxide constitute the main components of exsolved gases, the discharge of these gases into the atmosphere have been estimated to exert profound effects on greenhouse over contemporary and geological time scales. How microbial processes and what community compositions imposed by different geochemical contexts near surface regulate the exact quantity of gas emission remain poorly constrained. In this study, porewater, gas and sediment geochemistry, and 16S rRNA genes for samples collected from mud volcanoes in Sicily of Italy were analyzed to investigate the changes of methane cycling and compositions of methanotrophic populations in response to different methane/CO2 ratios and other geochemical characteristics in gas bubbling environments. The analyses yielded contrast patterns of solute and gas geochemistry, and gene assemblages and abundances between sites related to different tectonic regimes. For sites located at the southern flank of Mt. Etna, methane and other hydrocarbons were low (less than tens of μM) in concentrations, whereas fluids were more saline than seawater and enriched with various solutes. No apparent methane consumption could be identified from geochemical profiles. Cell abundances were low, varying between 104 - 106 cells g‑1 with anaerobic methanotrophs being generally less than 104 cells g‑1. Communities were primarily composed of Halobacteriales, Gamma-Proteobacteria, Defferibacteres, Chloroflexi, and Delta-Proteobacteria. The dominant OTUs were related to heterotrophic halophiles, and sulfide oxidizers. While a fraction of sequences related to aerobic methanotrophs were detected, anaerobic methanotrophs and methanogens were rarely present. In contrast, methane and other hydrocarbons were high (generally more than 0.4 mM) at sites located within accretionary wedge

  3. A Broadly-Based Training Program in Volcano Hazards Monitoring at the Center for the Study of Active Volcanoes

    Science.gov (United States)

    Thomas, D. M.; Bevens, D.

    2015-12-01

    The Center for the Study of Active Volcanoes, in cooperation with the USGS Volcano Hazards Program at HVO and CVO, offers a broadly based volcano hazards training program targeted toward scientists and technicians from developing nations. The program has been offered for 25 years and provides a hands-on introduction to a broad suite of volcano monitoring techniques, rather than detailed training with just one. The course content has evolved over the life of the program as the needs of the trainees have changed: initially emphasizing very basic monitoring techniques (e.g. precise leveling, interpretation of seismic drum records, etc.) but, as the level of sophistication of the trainees has increased, training in more advanced technologies has been added. Currently, topics of primary emphasis have included volcano seismology and seismic networks; acquisition and modeling of geodetic data; methods of analysis and monitoring of gas geochemistry; interpretation of volcanic deposits and landforms; training in LAHARZ, GIS mapping of lahar risks; and response to and management of volcanic crises. The course also provides training on public outreach, based on CSAV's Hawaii-specific hazards outreach programs, and volcano preparedness and interactions with the media during volcanic crises. It is an intensive eight week course with instruction and field activities underway 6 days per week; it is now offered in two locations, Hawaii Island, for six weeks, and the Cascades volcanoes of the Pacific Northwest, for two weeks, to enable trainees to experience field conditions in both basaltic and continental volcanic environments. The survival of the program for more than two decades demonstrates that a need for such training exists and there has been interaction and contribution to the program by the research community, however broader engagement with the latter continues to present challenges. Some of the reasons for this will be discussed.

  4. Studying monogenetic volcanoes with Terrestrial Laser Scanner: Case study at Croscat volcano (Garrotxa Volcanic Zone, Spain)

    Science.gov (United States)

    Geyer Traver, A.; Garcia-Selles, D.; Peddrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J.

    2013-12-01

    Monogenetic basaltic zones are common in many volcanic environments and may develop under very different geodynamic conditions. Despite existing clear similarities between the eruptive activity of different monogenetic volcanic fields, important distinctions may arise when investigating in detail the individual eruptive sequences. Interpretation of the deposits and consequently, the reconstruction and characterization of these eruptive sequences is crucial to evaluate the potential hazard in case of active areas. In diverse occasions, erosional processes (natural and/or anthropogenic) may partly destroy these relatively small-sized volcanic edifices exposing their internal parts. Furthermore, despite human activity in volcanic areas is sometimes unimportant due to the remote location of the monogenetic cones, there are places where this form of erosion is significant, e.g. Croscat volcano (Catalan Volcanic Field, Spain). In any case, when studying monogenetic volcanism, it is usual to find outcrops where the internal structure of the edifices is, for one or other reason, well exposed. However, the access to these outcrops may be extremely difficult or even impossible. During the last years, it has been demonstrated that the study of outcrops with problematic or completely restricted access can be carried out by means of digital representations of the outcrop surface. Digital outcrops make possible the study of those areas with natural access limitations or safety issues and may facilitate visualization of the features of interest over the entire outcrop, as long as the digital outcrop can be analysed while navigated in real- time, with optional displays for perspective, scale distortions, and attribute filtering. In particular, Terrestrial Laser Scanning (TSL) instruments using Light Detection And Ranging technology (LIDAR) are capable of capturing topographic details and achieve modelling accuracy within a few centimetres. The data obtained enables the creation of

  5. The incidence of fragility fractures in Italy.

    Science.gov (United States)

    Ratti, Chiara; Vulcano, Ettore; La Barbera, Giuseppe; Canton, Gianluca; Murena, Luigi; Cherubino, Paolo

    2013-10-01

    Osteoporosis can significantly impact on the risk of developing a fracture. Thus, fragility fractures represent a challenge for health professionals and decision makers of the twenty-first century. The aim of this work is to review the literature concerning osteoporotic fractures in Italy in terms of incidence, rate of hospitalization, relative risk of a new fragility fracture, and costs for the national health system. It was estimated that the costs of treating proximal femur fragility fractures in 2002 summed up to 1 billion Euros. The number of fragility fractures in Italy was calculated as follows: 91.494 hip fractures, 61.009 clinical vertebral fractures, 57.401 humeral fragility fractures, and 94.045 forearm/wrist fragility fractures. The incidence of fragility fractures in Italy is very high, and osteoporosis is the leading cause of morbidity in the Italian population. PMID:24046040

  6. A critical review of seismotectonic setting of the Campanian Plain (Southern Italy) in GIS environment.

    Science.gov (United States)

    Gaudiosi, Germana; Alessio, Giuliana; Luiso, Paola; Nappi, Rosa; Ricciolino, Patrizia

    2010-05-01

    The Plio-Pleistocene Campanian Plain is a structural depression of the Southern Italy located between the eastern side of the Tyrrhenian Sea and the Southern Apennine chain. It is surrounded to the North, East and South by the Mesozoic carbonate massifs of the Apennine chain and, to the West, by the Tyrrhenian Sea. The graben origin is similar to other peri-Tyrrhenian regions and is related to a stretching and thinning of the continental crust by the counterclockwise rotation of the Italian peninsula and the contemporaneous opening of the Tyrrhenian sea. The consequent subsidence of the Campanian carbonate platform took place along the Tyrrhenian coast during the Plio-Pleistocene with a maximum vertical extent of 5 km. The plain is filled by volcanic and clastic, continental and marine deposits. Voluminous volcanic activity of Roccamonfina, Campi Flegrei, Ischia, Procida and Vesuvio occurred in the Plain during the Quaternary. In the middle of the plain lies the city of Naples, bordered by the two active volcanoes of Campi Flegrei and Vesuvio. It is a very densely inhabited area that is exposed to high potential volcanic risk. The stress field acting in the Campanian area is poorly known. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW- SE-trending faults and normal to dextral for the NE-SW-trending structures. These movements are consistent with those of the structures affecting the inner margin of the Southern Apennines. The Campanian Plain is characterized by seismicity of energy lower than the seismic activity of the Southern Apennine chain. The earthquakes mainly occur along the margin of the plain, in the volcanic areas and a minor seismicity spreads out inside the Plain. The aim of this paper is an attempt to identify active, outcropping and buried fault systems of the Campanian plain through the correlation between seismicity and tectonic structures. Seismic, geologic and geomorphologic data have been

  7. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    Science.gov (United States)

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  8. Principal Component Analysis for pattern recognition in volcano seismic spectra

    Science.gov (United States)

    Unglert, Katharina; Jellinek, A. Mark

    2016-04-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we have developed a pattern recognition technique based on a combination of Principal Component Analysis and hierarchical clustering applied to volcano seismic spectra. This technique can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. Preliminary results from applying our method to volcanic tremor from a range of volcanoes including K¯ı lauea, Okmok, Pavlof, and Redoubt suggest that spectral patterns from K¯ı lauea and Okmok are similar, whereas at Pavlof and Redoubt spectra have their own, distinct patterns.

  9. Pattern recognition in volcano seismology - Reducing spectral dimensionality

    Science.gov (United States)

    Unglert, K.; Radic, V.; Jellinek, M.

    2015-12-01

    Variations in the spectral content of volcano seismicity can relate to changes in volcanic activity. Low-frequency seismic signals often precede or accompany volcanic eruptions. However, they are commonly manually identified in spectra or spectrograms, and their definition in spectral space differs from one volcanic setting to the next. Increasingly long time series of monitoring data at volcano observatories require automated tools to facilitate rapid processing and aid with pattern identification related to impending eruptions. Furthermore, knowledge transfer between volcanic settings is difficult if the methods to identify and analyze the characteristics of seismic signals differ. To address these challenges we evaluate whether a machine learning technique called Self-Organizing Maps (SOMs) can be used to characterize the dominant spectral components of volcano seismicity without the need for any a priori knowledge of different signal classes. This could reduce the dimensions of the spectral space typically analyzed by orders of magnitude, and enable rapid processing and visualization. Preliminary results suggest that the temporal evolution of volcano seismicity at Kilauea Volcano, Hawai`i, can be reduced to as few as 2 spectral components by using a combination of SOMs and cluster analysis. We will further refine our methodology with several datasets from Hawai`i and Alaska, among others, and compare it to other techniques.

  10. A wireless sensor network for monitoring volcano-seismic signals

    Science.gov (United States)

    Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.

    2014-12-01

    Monitoring of volcanic activity is important for learning about the properties of each volcano and for providing early warning systems to the population. Monitoring equipment can be expensive, and thus the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a wireless sensor network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy-to-deploy and easy-to-maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array in an area of tens of thousands of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for later analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses. We present a set of tests that validate different aspects of our WSN, including a deployment on a suspended bridge for measuring its vibration.

  11. Seismic vulnerability of historical arch type bridge structures in Italy

    OpenAIRE

    Qadir Bhatti, Abdul

    2009-01-01

    Italy is located on a earthquake prone area and old bridges were desinged without any seismic provision. In the years (2009), tremors were felt in Italy due to the strong earthquakes at Abruzzo, which highlight the earthquake threat to Italy. This study focuses on seismic vulnerability of arch type masonry bridge structures in Italy, designed primarily for gravity loads, when they are subjected to earthquakes. A case study has been carried out for the vulnerability study for a ...

  12. Predation on dormice in Italy

    Directory of Open Access Journals (Sweden)

    Dino Scaravelli

    1995-05-01

    Full Text Available Abstract The authors analyse available data on the impact of predators on Dormouse populations in Italy. Dormice are found in the diet of 2 snakes (Vipera berus and V. aspis, 2 diurnal birds of prey (Buteo buteo and Aquila chrysaetos, 6 owls (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo and Glaucidium passerinum and 9 mammals (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M. foina, Meles meles, Felis silvestris and Sus scrofa in a variable percentage of the prey taken. Only Dryomys nitedula was never encountered as a prey item. The most common prey is Muscardinus avellanarius. There are significative regional differences in predation between bioclimatic areas of the Italian peninsula. The contribution of studies on predation to knowledge of Myoxid distribution is discussed. Riassunto Predazione di Mioxidi in Italia - Sono analizzati i dati pubblicati sull'impatto dei predatori sulle popolazioni di Myoxidae in Italia. Myoxidae sono stati riscontrati nelle diete di 2 serpenti (Vipera berus e V. aspis, 2 rapaci diurni (Buteo buteo e Aquila chrysaetos, 6 notturni (Tyto alba, Strix aluco, Asio otus, Athene noctua, Bubo bubo e Glaucidium passerinum e 9 mammiferi (Rattus rattus, Ursus arctos, Canis lupus, Vulpes vulpes, Martes martes, M foina, Meles meles, Felis silvestris e Sus scrofa in percentuale variabile nella comunità di prede. Solo Dryomys nitedula non è mai stato incontrato come preda. La specie piu comunemente predata risulta Muscardinus avellanarius. Sono discusse le

  13. TOMO-ETNA MED-SUV.ISES an active seismic and passive seismic experiment at Mt. Etna volcano. An integrated marine and onland geophysical survey.

    Science.gov (United States)

    Ibáñez, Jesus. M.; Patane, Domenico; Puglisi, Guisseppe; Zuccarello, Lucciano; Bianco, Francesca; Luehr, Birger; Diaz-Moreno, Alejandro; Prudencio, Janire; Koulakov, Ivan; Del Pezzo, Edoardo; Cocina, Ornella; Coltelli, Mauro; Scarfi, Lucciano; De Gori, Pascuale; Carrion, Francisco

    2014-05-01

    An active seismic experiment to study the internal structure of Etna Volcano is going to carried out on Sicily and Aeolian islands. The main objective of the TOMO-ETNA MED-SUV.ISES experiment, beginning in summer 2014, is to perform a high resolution seismic tomography, in velocity and attenuation, in Southern Italy, by using active and passive seismic data, in an area encompassing outstanding volcanoes as Mt. Etna, and Aeolian volcanoes. The achievement of this objective is based on the integration and sharing of the in-situ marine and land experiments and observations and on the implementation of new instruments and monitoring systems. For the purpose, onshore and offshore seismic stations and passive and active seismic data generated both in marine and terrestrial environment will be used. Additionally, other geophysical data, mainly magnetic and gravimetric data will be considered to obtain a joint Upper Mantle-Crust structure that could permit to make progress in the understanding of the dynamic of the region. This multinational experiment which involves institutions from Spain, Italy, Germany, United Kingdom, Ireland, France, Malta, Portugal, Russia, USA and Mexico. During the experiment more than 6.600 air gun shots performed by the Spanish Oceanographic vessel "Sarmiento de Gamboa" will be recorder on a dense local seismic network consisting of 100 on land non-permanent stations, 70 on land permanent stations and 20-25 OBSs. Contemporaneously other marine geophysical measures will be performed using a marine Gravimeter LaCoste&Romberg Air-Sea Gravity System II and a Marine Magnetometer SeaSPY. The experiments will provide a unique data set in terms of data quantity and quality, and it will provide a detailed velocity and attenuation structural image of volcano edifice. The results will be essential in the development and interpretation of future volcanic models. It is noteworthy that this project is fully transversal, multidisciplinary and crosses several

  14. 76 FR 39896 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy Determination On the basis of the record \\1... antidumping duty order on granular polytetrafluoroethylene resin from Italy would be likely to lead to... Granular Polytetrafluoroethylene Resin from Italy: Investigation No. 731-TA-385 (Third Review). By order...

  15. 76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-01-27

    ... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1, 2010... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy....

  16. Investigating the potential for volcano flank instability triggered by recent dike intrusions at Fogo volcano, Cape Verde

    Science.gov (United States)

    Bagnardi, Marco; González, Pablo; Hooper, Andrew; Wright, Tim

    2015-04-01

    Gravitational flank-collapses at volcanoes are rare but catastrophic events that have rarely been witnessed by humans (e.g., Mount St. Helens in 1980). It has been proposed that gravitationally unstable volcanic flanks can be classified in two different types based on the flanks slope: volcanoes characterized by gentle slopes (Hawaiian-like) and that have very dynamic flanks exhibiting high rates of deformation and, conversely, steep-sided volcanoes (Macaronesian-like) showing minimal ground deformation. The two types of volcanoes could therefore reach the stable-state through different mechanisms and experience different mass-wasting processes. Numerous giant debris-avalanche deposits have been identified offshore the volcanoes of the Canary Islands and Cape Verde. Given the steep slopes of these volcanoes, the mass-wasting events may have occurred suddenly and with minimal precursory signals. Several mechanisms have been proposed as potential triggers and among these the intrusion of shallow dikes feeding fissure eruptions is one of the best candidates. In this work, we investigate this hypothesis in the light of new and revised results derived from the analysis of geodetic observations at Fogo volcano (Cape Verde). Fogo has erupted twice in the last 20 years (1995 and 2014-2015) and in both occasions the volcano erupted along fissures that seem to be fed by dykes intruding the shallow crust and the volcanic edifice. We re-process radar data from the ERS satellite to obtain state-of-the-art deformation maps spanning the 1995 eruption and revisit previously proposed models of the magmatic system. Our results indicate that both eruptions were fed by sub-vertical dikes, steeply dipping to the SE, and radiating from the Pico do Fogo volcanic cone to the SW. We also study the effect of such magmatic intrusions in terms of the stress regime that they generate and analyze whether the 1995 and 2014 intrusions could potentially destabilize the structures along which a

  17. Hunting remnants of maar-diatreme-volcanoes

    Science.gov (United States)

    Kroner, Corinna; Kämpf, Horst; Matthes, Heidrun; Jahr, Thomas; Markwart, David; Hermann, Tobias; Mrlina, Jan

    2010-05-01

    In the area of the Rostock-Leipzig-Regensburg fault zone (Germany) several centres of seismic activity are found with seismicity manifesting itself in swarm earthquakes. The occurrence of these earthquakes is globally linked to ascending magma and magmatic fluids. Information is scarce regarding the depth and geometry of the magmatic source, dynamics in the sub-Moho/lower crust region and fluid-tectonic processes in the upper crust in this area. From studies of maar structures located in the seismic active section of the fault zone magma-tectonic phenomena can be reconstructed. For this purpose two relicts of maar volcanoes of different age within a distance of 60 km are investigated by geophysical surveys. Both structures are located in a distance of a few 10 km from recent swarm earthquake centres. The diatreme structure near Ebersbrunn/W-Saxony which is probably of tertiary age is known for several years, the late Quaternary, volcanic palaeo-lake near Mýtina close to the Czech-German border was only recently discovered. Both structures are characterized by distinct gravimetric and magnetic anomalies of about -2 mGal and several 100 nT resp. indicating steeply dipping structures as well as electrical conductivity anomalies. The magnetic total field anomaly of the Ebersbrunn structure has an uncommon rugged appearance. The hypothesis of an origin related to a redistribution of material with high magnetic susceptibility values and saponification of magnetic minerals due to melt water run-off after the last glacial period could not be confirmed. Thus the heterogeneous anomaly character appears to be mainly associated with the degree of weathering of the volcanic material within the diatreme with depth. From 3D gravimetric and magnetic modelling information is gained on geometry and structural composition. Drilling results were used as additional boundary conditions. In both cases modelling reveals an inner zone of significantly reduced density and increased

  18. Newberry Volcano EGS Demonstration Induced Seismicity Modeling

    Science.gov (United States)

    Cladouhos, T. T.; Petty, S.; Osborn, W.; Clyne, M.; Nichols, M. L.; Nofziger, L.

    2011-12-01

    An Enhanced Geothermal System (EGS) reservoir is created by injecting water under pressure into a geothermal well which induces shear slip on existing fractures ("hydroshearing"). The shear slip increases fracture permeability and induces microseismicity that can be detected by seismometers and used to map EGS reservoir growth. Most induced seismic events have a magnitude less than 2.0 and are not felt at the surface. However, some EGS projects have generated events large enough to be felt and cause minor damage. As a part of Phase I of the Newberry Volcano EGS Demonstration project, several data sets were collected to characterize the rock volume around the target well (NWG 55-29 on the NW flank of the volcano) and understand the induced seismicity potential. Fracture, fault, stress, and seismicity data has been collected by a borehole televiewer (BHTV), LiDAR elevation maps, and microseismic monitoring. Well logs and cuttings from the well and core from a nearby core hole (Geo N-2) have been analyzed to develop geothermal, geochemical, mineralogical and strength models of the rock matrix, altered zones, and fracture fillings. These characterization data sets provide inputs to AltaStim, a proprietary software model developed by AltaRock to plan and predict EGS induced seismicity, reservoir creation and productivity. The software is used to create a discrete fracture network (DFN) model, visualize EGS stimulation scenarios, and provide guidance for final planning. The process of creating an AltaStim model requires synthesis of geologic observations at the well, the modeled stress conditions, and the stimulation plan. The open-hole portion of the well was divided into five distinct zones defined by the contacts between various extrusive and intrusive volcanic units and variations in fracture intensity. The DFN model was constructed with fracture orientations and intensities bootstrapped from data interpreted from BHTV images and sliding friction coefficients based

  19. Gas geochemical survey of long dormant Ciomadul volcano (South Harghita Mts., Romania): constraints on the flux and origin of fluids

    Science.gov (United States)

    Kis, Boglárka-Mercedesz; Ionescu, Artur; Harangi, Szabolcs; Palcsu, László; Etiope, Giuseppe; Baciu, Cǎlin

    2016-04-01

    The Ciomadul, located in the South Harghita Mountains (Eastern Carpathians, Romania) is the youngest volcano built by the Neogene volcanism in the Carpathian-Pannonian Region. The volcanic activity was characterized by an initial extrusive lava dome building period from about 200 ka to 100 ka followed by a more explosive eruption stage from 57 to 32 ka. Although the volcano seems to be inactive, several features (e.g. geophysical anomalies in the crust; fast remobilization of near solidus long lasting crystal mush prior to the past eruptions) suggest that melt-bearing magmatic body could still exist beneath the Ciomadul. This is supported by the abundance of dry gas emanations (CO2, CH4, H2S), CO2 rich mineral water springs and bubbling pools. The long-term observation of seemingly inactive, dormant volcanoes has become important in the past years (Ontake volcano-Japan, Colli Albani volcano-Italy). Gas-geochemical survey and monitoring (noble gases, isotopic composition of carbon species, flux measurements) of such volcanoes is an adequate tool in detecting changes in their volcanic plumbing system. Starting from 2015 we commenced a gas-monitoring study to constrain the origin of fluids at Ciomadul by measuring the flux of two gas-species and collecting the gas-phase from several mofettes and mineral water springs. A total of 46 sites have been surveyed, including 29 gas emanations (mofettes and bubbling pools), 3 drilled wells, 11 springs and 3 surface water sites. We provide the first complex CO2 and CH4 flux measurements in the area considering mofettes and bubbling pools. The CO2 flux values range between 10 and 264 kg/day while the CH4 flux has a range between 125 and 4723 g/day. Estimates of total CO2 and CH4 output into the atmosphere are ~229 and ~1.3 t/year, respectively. These values are consistent with other geothermal systems in Europe. The chemical composition of samples indicate CO2 content of up to 96.77%, CH4 content up to 1.42% and He content up to

  20. The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice- and snow-clad volcano

    Science.gov (United States)

    Waythomas, Christopher F.; Haney, Matthew M.; Fee, David; Schneider, David J.; Wech, Aaron G.

    2014-01-01

    The 2013 eruption of Pavlof Volcano, Alaska began on 13 May and ended 49 days later on 1 July. The eruption was characterized by persistent lava fountaining from a vent just north of the summit, intermittent strombolian explosions, and ash, gas, and aerosol plumes that reached as high as 8 km above sea level and on several occasions extended as much as 500 km downwind of the volcano. During the first several days of the eruption, accumulations of spatter near the vent periodically collapsed to form small pyroclastic avalanches that eroded and melted snow and ice to form lahars on the lower north flank of the volcano. Continued lava fountaining led to the production of agglutinate lava flows that extended to the base of the volcano, about 3–4 km beyond the vent. The generation of fountain-fed lava flows was a dominant process during the 2013 eruption; however, episodic collapse of spatter accumulations and formation of hot spatter-rich granular avalanches was a more efficient process for melting snow and ice and initiating lahars. The lahars and ash plumes generated during the eruption did not pose any serious hazards for the area. However, numerous local airline flights were cancelled or rerouted, and trace amounts of ash fall occurred at all of the local communities surrounding the volcano, including Cold Bay, Nelson Lagoon, Sand Point, and King Cove.

  1. Basaltic cannibalism at Thrihnukagigur volcano, Iceland

    Science.gov (United States)

    Hudak, M. R.; Feineman, M. D.; La Femina, P. C.; Geirsson, H.

    2014-12-01

    Magmatic assimilation of felsic continental crust is a well-documented, relatively common phenomenon. The extent to which basaltic crust is assimilated by magmas, on the other hand, is not well known. Basaltic cannibalism, or the wholesale incorporation of basaltic crustal material into a basaltic magma, is thought to be uncommon because basalt requires more energy than higher silica rocks to melt. Basaltic materials that are unconsolidated, poorly crystalline, or palagonitized may be more easily ingested than fully crystallized massive basalt, thus allowing basaltic cannibalism to occur. Thrihnukagigur volcano, SW Iceland, offers a unique exposure of a buried cinder cone within its evacuated conduit, 100 m below the main vent. The unconsolidated tephra is cross-cut by a NNE-trending dike, which runs across the ceiling of this cave to a vent that produced lava and tephra during the ~4 Ka fissure eruption. Preliminary petrographic and laser ablation inductively coupled mass spectrometry (LA-ICP-MS) analyses indicate that there are two populations of plagioclase present in the system - Population One is stubby (aspect ratio 2.1), subhedral to euhedral, and has much higher Ba/Sr ratios. Population One crystals are observed in the cinder cone, dike, and surface lavas, whereas Population Two crystals are observed only in the dike and surface lavas. This suggests that a magma crystallizing a single elongate population of plagioclase intruded the cinder cone and rapidly assimilated the tephra, incorporating the stubbier population of phenocrysts. This conceptual model for basaltic cannibalism is supported by field observations of large-scale erosion upward into the tephra, which is coated by magma flow-back indicating that magma was involved in the thermal etching. While the unique exposure at Thrihnukagigur makes it an exceptional place to investigate basaltic cannibalism, we suggest that it is not limited to this volcanic system. Rather it is a process that likely

  2. Radioactivity in waters of Mt. Etna (Italy)

    OpenAIRE

    Kozlowska, B.; University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, ul. Uniwersytecka 4, 40007 Katowice, Poland; Morelli, D.; Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Italy; Walencik, A.; University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, ul. Uniwersytecka 4, 40007 Katowice, Poland; Dorda, J.; University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, ul. Uniwersytecka 4, 40007 Katowice, Poland; Altamore, I.; Dipartimento di Fisica e Astronomia, Universita` di Catania, via S. Sofia, 64 I-95123 Catania, Italy; Chieffalo, V.; Dipartimento di Fisica e Astronomia, Universita` di Catania, via S. Sofia, 64 I-95123 Catania, Italy; Giammanco, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Catania, Catania, Italia; Imme, G.; Dipartimento di Fisica e Astronomia, Universita` di Catania, via S. Sofia, 64 I-95123 Catania, Italy; Zipper, W.; University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, ul. Uniwersytecka 4, 40007 Katowice, Poland

    2009-01-01

    Radioactivity in underground waters from Mt. Etna was investigated on the basis of 13 samples. The samples were collected from springs, wells and galleries around the volcano. Water from nine out of thirteen intakes is used for consumption. Activity concentration of uranium isotopes 234,238U, radium isotopes 226,228Ra and radon 222Rn were determined with the use different nuclear spectrometry techniques. The measurements of radium and radon activity concentration were performed wi...

  3. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    Science.gov (United States)

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  4. Attendance in cancer screening programmes in Italy

    Directory of Open Access Journals (Sweden)

    Grazia Grazzini

    2008-06-01

    Full Text Available

    Background: The European Community recommends mammography, cervical and colorectal cancer screening programmes. In Italy, cancer screening programmes have been included in the Basic Healthcare Parameters (Livelli Essenziali di Assistenza since 2001. Full national coverage of a population-based organized screening programme has been planned for in Italy and is being implemented. Since 2005, the Ministry of Health - Department of Prevention has formally charged The National Centre for Screening Monitoring (Osservatorio Nazionale Screening –ONS- with monitoring and promoting screening programmes nationwide. Participation of target populations is a key indicator of the impact and efficacy of a screening programme in reducing cancer mortality.

    Methods: Attendance of invitees is one of the indicators calculated every year in the quality control of Italian screening programmes. Data collection is organized by means of a structured questionnaire, sent by ONS to the referent for data collection in each Region, who then returns the completed questionnaires to the Regional Centre. Questionnaires are then sent to the National Centre. Logical and epidemiologic checks are performed at both levels. Every year ONS publishes reports on the results of the surveys. A feasibility study for a National data warehouse based on individual records is in progress. The national survey “Multiscopo sulle famiglie” and the Passi Study (Progetti delle Aziende Sanitarie per la Salute in Italia provided additional information regarding spontaneous preventive health care activities in the Italian population.

    Results: Mammography screening: In 2006, 78.2% of Italian women aged 50-69 lived in areas where organised screening was in place (theoretical extension, however, the distribution of the screening activity is not uniform (higher in Northern/Central Italy compared with Southern

  5. Multiple Active Volcanoes in the Northeast Lau Basin

    Science.gov (United States)

    Baker, E. T.; Resing, J. A.; Lupton, J. E.; Walker, S. L.; Embley, R. W.; Rubin, K. H.; Buck, N.; de Ronde, C. E.; Arculus, R. J.

    2010-12-01

    The northeast Lau Basin occupies a complex geological area between the Tafua arc front, the E-W trending Tonga Trench, and the Northeast Lau Spreading Center. These boundaries create multiple zones of extension and thus provide abundant opportunities for magma to invade the crust. The 25-km-long chain of “Mata” volcanoes lies near the center of this area, separated from both the arc front and the spreading ridge. In 2008 we discovered hydrothermal venting on the largest and most southerly of these volcanoes, W and E Mata. In 2010 we visited the 7 smaller volcanoes that form a 15-km-long arcuate sweep to the north from W and E Mata (the “North Matas”). We also revisited W and E Mata. Over each volcano we conducted CTD tows to map plumes and collect water samples. Based on the CTD results, camera tows searched for seafloor sources on three volcanoes. The N Mata volcanoes, extending from Mata Taha (1) in the south to Mata Fitu (7) in the north, lie within a prominent gap in the shallow bathymetry along the southern border of the Tonga trench. Northward from E Mata the Mata volcanoes degrade from large symmetrical cones to smaller and blocky volcanic edifices. Summit depths range from 1165 m (W Mata) to 2670 m (Mata Nima (5)). The most active volcano in the chain is the erupting W Mata, with an intense plume that extended 250 m above the summit. Hydrothermal temperature anomalies (Δθ, corrected for hydrographic masking effects) reached ˜1.7°C, with light-scattering values as high as 2-5 ΔNTU. The 2010 surveys now show that 6 of the 7 N Mata volcanoes are also hydrothermally active. Along the N Matas, Δθ and ΔNTU signals ranged from robust to weak, but distinct oxidation-reduction potential (aka Eh) anomalies confirmed active venting in each case. The most concentrated plumes were found near Mata Ua (2) and Mata Fitu (7), with Δθ and ΔNTU maxima of 0.1-0.17°C and 0.3, respectively. Despite the variability in plume strength, however, ΔNTU/Δθ ratios

  6. Expert elicitation for a national-level volcano hazard model

    Science.gov (United States)

    Bebbington, Mark; Stirling, Mark; Cronin, Shane; Wang, Ting; Jolly, Gill

    2016-04-01

    The quantification of volcanic hazard at national level is a vital pre-requisite to placing volcanic risk on a platform that permits meaningful comparison with other hazards such as earthquakes. New Zealand has up to a dozen dangerous volcanoes, with the usual mixed degrees of knowledge concerning their temporal and spatial eruptive history. Information on the 'size' of the eruptions, be it in terms of VEI, volume or duration, is sketchy at best. These limitations and the need for a uniform approach lend themselves to a subjective hazard analysis via expert elicitation. Approximately 20 New Zealand volcanologists provided estimates for the size of the next eruption from each volcano and, conditional on this, its location, timing and duration. Opinions were likewise elicited from a control group of statisticians, seismologists and (geo)chemists, all of whom had at least heard the term 'volcano'. The opinions were combined via the Cooke classical method. We will report on the preliminary results from the exercise.

  7. Linking petrology and seismology at an active volcano.

    Science.gov (United States)

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology. PMID:22628652

  8. Volcano structure in atomic resolution core-loss images

    Energy Technology Data Exchange (ETDEWEB)

    D' Alfonso, A.J.; Findlay, S.D. [School of Physics, University of Melbourne, Victoria, 3010 (Australia); Oxley, M.P. [Materials Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, L.J. [School of Physics, University of Melbourne, Victoria, 3010 (Australia)], E-mail: lja@physics.unimelb.edu.au

    2008-06-15

    A feature commonly present in simulations of atomic resolution electron energy loss spectroscopy images in the scanning transmission electron microscope is the volcano or donut structure. In the past this has been understood in terms of a geometrical perspective using a dipole approximation. It is shown that the dipole approximation for core-loss spectroscopy begins to break down as the probe forming aperture semi-angle increases, necessitating the inclusion of higher order terms for a quantitative understanding of volcano formation. Using such simulations we further investigate the mechanisms behind the formation of such structures in the single atom case and extend this to the case of crystals. The cubic SrTiO{sub 3} crystal is used as a test case to show the effects of nonlocality, probe channelling and absorption in producing the volcano structure in crystal images.

  9. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  10. The Unexpected Awakening of Chaitén Volcano, Chile

    Science.gov (United States)

    Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo

    2009-06-01

    On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.

  11. Bathymetry of the southwest flank of Mauna Loa Volcano, Hawaii

    Science.gov (United States)

    Chadwick, William W.; Moore, James G.; Fox, Christopher G.

    1994-01-01

    Much of the seafloor topography in the map area is on the southwest submarine flank of the currently active Mauna Loa Volcano. The benches and blocky hills shown on the map were shaped by giant landslides that resulted from instability of the rapidly growing volcano. These landslides were imagined during a 1986 to 1991 swath sonar program of the United States Hawaiian Exclusive Economic Zone, a cooperative venture by the U.S. Geological Survey and the British Institute of Oceanographic Sciences (Lipman and others, 1988; Moore and others, 1989). Dana Seamount (and probably also the neighboring Day Seamount) are apparently Cretaceous in age, based on paleomagnetic studies, and predate the growth of the Hawaiian Ridge volcanoes (Sager and Pringle, 1990).

  12. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  13. Diverse deformation patterns of Aleutian volcanoes from InSAR

    Science.gov (United States)

    Lu, Zhiming; Dzurisin, D.; Wicks, C.; Power, J.

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) is capable of measuring ground-surface deformation with centimeter-to-subcentimeter precision at a spatial resolution of tens of meters over an area of hundreds to thousands of square kilometers. With its global coverage and all-weather imaging capability, InSAR has become an increasingly important measurement technique for constraining magma dynamics of volcanoes over remote regions such as the Aleutian Islands. The spatial pattern of surface deformation data derived from InSAR images enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper summarizes the diverse deformation patterns of the Aleutian volcanoes observed with InSAR and demonstrates that deformation patterns and associated magma supply mechanisms in the Aleutians are diverse and vary between volcanoes. These findings provide a basis for improved models and better understanding of magmatic plumbing systems.

  14. A Study of the Source Processes of Colima Volcano Explosions

    Science.gov (United States)

    Nunez-Cornu, F. J.; Vargas-Bracamontes, D.; Sanchez, J. J.; Suarez-Plascencia, C.

    2007-12-01

    Colima volcano, considered as Mexico's most active volcano, has presented several intermittent effusive and explosive phases in recent years. During 2005, a sequence of explosive events with VEI less than or equal to 3 occurred. This activity presented the most intense explosions since the seismic network was deployed. Many of the explosive events were recorded by the digital three-component seismic stations operated by the University of Guadalajara and Jalisco State Civil Defense. These signals were recorded not only by stations located on the volcanic edifice, but also by stations on the northern coast of Jalisco (MCUJ, BSSJ) and Ceboruco Volcano at 184, 182 and 200 km distance, respectively. A study of these signals will be presented. Each explosion was preceded by a seismic event. Nevertheless, the located earthquakes preceding the explosions did not show a common source under the volcano structure, which suggests the existence of a complex structure with possibly more than one conduit, this is also confirmed from a first motion analysis for station F03J, located 12 km at north of the volcano. From analysis of the first ten seconds of the seismic signal on F03J using different representations of the seismic signals, such as waveforms, spectra, time-frequency and time-scale analysis, it is suggested that the source processes are non-stationary, implying that for the case of this period, a general model of the source process of the Colima volcano explosions can not be formulated. The size of the events is evaluated using different criteria. A clear relation between the magnitude of the seismic signals and the amplitude of the sonic and infrasonic waves was not observed.

  15. Investigation of the Dashigil mud volcano (Azerbaijan) using beryllium-10

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.J., E-mail: kjkim@kigam.re.kr [Korea Geological Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Baskaran, M.; Jweda, J. [Department of Geology, Wayne State University, Detroit, MI 48202 (United States); Feyzullayev, A.A.; Aliyev, C. [Geology Institute of the Azerbaijan National Academy of Sciences (ANAS), Baku, AZ 1143 (Azerbaijan); Matsuzaki, H. [MALT, University of Tokyo, Tokyo (Japan); Jull, A.J.T. [NSF Arizona AMS Lab, University of Arizona, AZ 85721 (United States)

    2013-01-15

    We collected and analyzed five sediments from three mud volcano (MV) vents and six suspended and bottom sediment samples from the adjoining river near the Dashgil mud volcano in Azerbaijan for {sup 10}Be. These three MV are found among the 190 onshore and >150 offshore MV in this region which correspond to the western flank of the South Caspian depression. These MVs overlie the faulted and petroleum-bearing anticlines. The {sup 10}Be concentrations and {sup 10}Be/{sup 9}Be ratios are comparable to the values reported for mud volcanoes in Trinidad Island. It appears that the stable Be concentrations in Azerbaijan rivers are not perturbed by anthropogenic effects and are comparable to the much older sediments (mud volcano samples). The {sup 10}Be and {sup 9}Be concentrations in our river sediments are compared to the global data set and show that the {sup 10}Be values found for Kura River are among the lowest of any river for which data exist. We attribute this low {sup 10}Be concentration to the nature of surface minerals which are affected by the residual hydrocarbon compounds that occur commonly in the study area in particular and Azerbaijan at large. The concentrations of {sup 40}K and U-Th-series radionuclides ({sup 234}Th, {sup 210}Pb, {sup 226}Ra, and {sup 228}Ra) indicate overall homogeneity of the mud volcano samples from the three different sites. Based on the {sup 10}Be concentrations of the mud volcano samples, the age of the mud sediments could be at least as old as 4 myr.

  16. Schoolyard Volcanoes: A Unit in Volcanology and Hazards

    Science.gov (United States)

    Lechner, H. N.; Gochis, E. E.; Brill, K. A.

    2014-12-01

    How do you teach volcanology and volcanic hazards to students when there is no volcano nearby? You bring the volcano to them! At Michigan Technological University we have developed a four-lesson-unit for middle and high school students which incorporates virtual, analogue and numerical models to increase students' interests in geosciences while simultaneously expanding the community of earth-science-literate individuals necessary for a disaster resilient society. The unit aims to build on students' prior geoscience knowledge by examining the physical properties that influence volcanic eruptions and introduces them to challenges and methods of communicating hazards and risk. Lesson one engages students in a series of hands-on investigations that explore the "3-Vs" of volcanology: Viscosity, Volatiles and Volume. The students learn about the relationship between magma composition and viscosity and the influence on eruption style, behavior and morphology of different volcanoes. Lesson two uses an analogue model of a volcano to demonstrate the forces involved in an explosive eruption and associated hazards. Students think critically about the factors that affect hazards and risk as well as the variables (such as topography) that affect the eruption and the hazard. During lesson three students use Google Earth for a virtual field trip to Pacaya volcano, Guatemala to examine changes in the landscape over time and other evidence of volcanic activity to make interpretations about the volcano. The final lesson has the students use numerical models and GIS to create hazard maps based on probabilistic lahar scenarios. Throughout the unit students are engaged in an inquiry-based exploration that covers several Next Generation Science Standards (NGSS) content and practices. This four lesson unit has been field tested in two school districts and during a summer engineering program. Results from student work and post-surveys show that this strategy raises interests in and

  17. Use of SAR data to study active volcanoes in Alaska

    Science.gov (United States)

    Dean, K.G.; Engle, K.; Lu, Zhiming; Eichelberger, J.; Near, T.; Doukas, M.

    1996-01-01

    Synthetic Aperture Radar (SAR) data of the Westdahl, Veniaminof, and Novarupta volcanoes in the Aleutian Arc of Alaska were analysed to investigate recent surface volcanic processes. These studies support ongoing monitoring and research by the Alaska Volcano Observatory (AVO) in the North Pacific Ocean Region. Landforms and possible crustal deformation before, during, or after eruptions were detected and analysed using data from the European Remote Sensing Satellites (ERS), the Japanese Earth Resources Satellite (JERS) and the US Seasat platforms. Field observations collected by scientists from the AVO were used to verify the results from the analysis of SAR data.

  18. Experimental simulation and morphological quantification of volcano growth

    Science.gov (United States)

    Grosse, Pablo; Kervyn, Matthieu; Gallland, Olivier; Delcamp, Audray; Poppe, Sam

    2016-04-01

    Volcanoes display very diverse morphologies as a result of a complex interplay of several constructive and destructive processes. Here the role played by the spatial distribution of eruption centre and by an underlying strike-slip fault in controlling the long term growth of volcanoes is investigated with analogue models. Volcano growth was simulated by depositing loads of granular material (sand-kaolin mixtures) from a point source. An individual load deposited at a fixed location produces a simple symmetrical cone with flank slopes at the angle of repose of the granular material (~33°) that can be considered as the building-block for the experiments. Two sets of experiments were undertaken: (1) the location of deposition of the granular material (i.e. the volcano growth location) was shifted with time following specific probability density functions simulating shifts or migrations in vent location; (2) the location of deposition was kept fixed, but the deposition rate (i.e. the volcano growth rate) was varied coupled with the movement of a basal plate attached to a step-motor simulating a strike-slip displacement under the growing cone (and hence deformation of the cone). During the progression of the experiments, the models were photographed at regular time intervals using four digital cameras positioned at slightly different angles over the models. The photographs were used to generate synthetic digital elevation models (DEMs) with 0.2 mm spatial resolution of each step of the models by applying the MICMAC digital stereo-photogrammetry software. Morphometric data were extracted from the DEMs by applying two IDL-language algorithms: NETVOLC, used to automatically calculate the volcano edifice basal outline, and MORVOLC, used to extract a set of morphometric parameters that characterize the volcano edifice in terms of size, plan shape, profile shape and slopes. Analysis of the DEM-derived morphometric parameters allows to quantitatively characterize the growth

  19. Methane emission from mud volcanoes in eastern Azerbaijan

    OpenAIRE

    Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Feyzullaiev, A.; Geology Institute of Azerbaijan; Baciu, C. L.; Babes Bolyai University; Milkov, A. V.; British Petroleum, Texas

    2004-01-01

    Methane (CH4) flux to the atmosphere was measured from gas vents and, for the first time, from soil microseepage at four quiescent mud volcanoes and one ‘‘everlasting fire’’ in eastern Azerbaijan. Mud volcanoes show different activity of venting craters, gryphons, and bubbling pools, with CH4 fluxes ranging from less than one to hundreds of tons per year. Microseepage CH4 flux is generally on the order of hundreds of milligrams per square meter per day, even far away from the a...

  20. Return migration to Italy and labour migration.

    Science.gov (United States)

    Calvaruso, C

    1983-01-01

    The problems caused by large-scale return migration to Italy in recent years are considered. The importance of the additional skills and capital acquired by these migrants while abroad is stressed. Extensive data on the volume of return migration in the 1970s are included.

  1. Stated locational preferences of entrepreneurs in Italy

    NARCIS (Netherlands)

    Musolino, Dario Antonino

    2015-01-01

    The objective of the thesis is to study and analyse the stated locational preferences of entrepreneurs in Italy: that is, their mental maps, their characteristics (pattern, shape, etc.), and their explanatory factors. The research was undertaken following the conceptual, theoretical and methodologic

  2. Kleine bijenkastkever aangetroffen in Italië

    NARCIS (Netherlands)

    Cornelissen, B.; Pelgrim, W.

    2014-01-01

    Voor de tweede keer in 10 jaar heeft de kleine bijenkastkever (Aethina tumida) voet aan de grond gekregen in Europa. Een eerste uitbraak in Portugal in 2004 werd snel ingedamd, maar een nieuwe uitbraak in het zuiden van Italië lijkt van permanente aard.

  3. Education for Older People in Italy

    Science.gov (United States)

    Principi, Andrea; Lamura, Giovanni

    2009-01-01

    This article provides information on trends in formal and informal adult education in Italy, with a particular focus on the older learners (over 65). Main providers, programs, objectives/motivations, and financial and legal framework are described. In general, over-65-year-old people were found to be underrepresented in participation. They were…

  4. Neutrinos make a splash in Italy

    CERN Multimedia

    Nosengo, Nicola

    2006-01-01

    "A long-awaited beam of neutrinos has finally made it from Switzerland to a laboratory 730kilometers away in central Italy. The scientists involved hope the project, first sketched out 25 years ago, will address one of the big unsolved problems in particle physics." (2 pages)

  5. Travelling in Italy during Turner's lifetime

    OpenAIRE

    Balzaretti, Ross; Piana, Pietro; Watkins, Charles

    2015-01-01

    The number of British travellers to Italy in search of health, education and increasingly leisure grew substantially during Turner’s lifetime. Like Turner, travellers recorded their observations in journals and diaries, and some turned their experiences into printed books and guidebooks. This essay examines this material and provides a vivid insight into the rich environment that shaped Turner’s artistic development.

  6. Monitoring quiescent volcanoes by diffuse He degassing: case study Teide volcano

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; Asensio-Ramos, María; Padrón, Eleazar; Hernández, Pedro A.; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Calvo, David; Alonso, Mar

    2016-04-01

    Tenerife (2,034 km2), the largest of the Canary Islands, is the only island that has developed a central volcanic complex (Teide-Pico Viejo stratovolcanoes), characterized by the eruption of differentiated magmas. This central volcanic complex has been built in the intersection of the three major volcanic rift-zones of Tenerife, where most of the historical volcanic activity has taken place. The existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide (Pérez et al., 2013). Diffuse emission studies of non-reactive and/or highly mobile gases such as helium have recently provided promising results to detect changes in the magmatic gas component at surface related to volcanic unrest episodes (Padrón et al., 2013). The geochemical properties of He minimize the interaction of this noble gas on its movement toward the earth's surface, and its isotopic composition is not affected by subsequent chemical reactions. It is highly mobile, chemically inert, physically stable, non-biogenic, sparingly soluble in water under ambient conditions, almost non-adsorbable, and highly diffusive with a diffusion coefficient ˜10 times that of CO2. As part of the geochemical monitoring program for the volcanic surveillance of Teide volcano, yearly surveys of diffuse He emission through the surface of the summit cone of Teide volcano have been performed since 2006. Soil He emission rate was measured yearly at ˜130 sampling sites selected in the surface environment of the summit cone of Teide volcano (Tenerife, Canary Islands), covering an area of ˜0.5 km2, assuming that He emission is governed by convection and diffusion. The distribution of the sampling sites was carefully chosen to homogeneously cover the target area, allowing the computation of the total He emission by sequential Gaussian simulation (sGs). Nine surveys have been

  7. Societal landslide and flood risk in Italy

    Directory of Open Access Journals (Sweden)

    P. Salvati

    2010-03-01

    Full Text Available We assessed societal landslide and flood risk to the population of Italy. The assessment was conducted at the national (synoptic and at the regional scales. For the assessment, we used an improved version of the catalogue of historical landslide and flood events that have resulted in loss of life, missing persons, injuries and homelessness in Italy, from 1850 to 2008. This is the recent portion of a larger catalogue spanning the 1941-year period from 68 to 2008. We started by discussing uncertainty and completeness in the historical catalogue, and we performed an analysis of the temporal and geographical pattern of harmful landslide and flood events, in Italy. We found that sites affected by harmful landslides or floods are not distributed evenly in Italy, and we attributed the differences to different physiographical settings. To determine societal risk, we investigated the distribution of the number of landslide and flood casualties (deaths, missing persons, and injured people in Italy, and in the 20 Italian Regions. Using order statistics, we found that the intensity of a landslide or flood event – measured by the total number of casualties in the event – follows a general negative power law trend. Next, we modelled the empirical distributions of the frequency of landslide and flood events with casualties in Italy and in each Region using a Zipf distribution. We used the scaling exponent s of the probability mass function (PMF of the intensity of the events, which controls the proportion of small, medium, and large events, to compare societal risk levels in different geographical areas and for different periods. Lastly, to consider the frequency of the events with casualties, we scaled the PMF obtained for the individual Regions to the total number of events in each Region, in the period 1950–2008, and we used the results to rank societal landslide and flood risk in Italy. We found that in the considered period societal landslide

  8. Societal landslide and flood risk in Italy

    Science.gov (United States)

    Salvati, P.; Bianchi, C.; Rossi, M.; Guzzetti, F.

    2010-03-01

    We assessed societal landslide and flood risk to the population of Italy. The assessment was conducted at the national (synoptic) and at the regional scales. For the assessment, we used an improved version of the catalogue of historical landslide and flood events that have resulted in loss of life, missing persons, injuries and homelessness in Italy, from 1850 to 2008. This is the recent portion of a larger catalogue spanning the 1941-year period from 68 to 2008. We started by discussing uncertainty and completeness in the historical catalogue, and we performed an analysis of the temporal and geographical pattern of harmful landslide and flood events, in Italy. We found that sites affected by harmful landslides or floods are not distributed evenly in Italy, and we attributed the differences to different physiographical settings. To determine societal risk, we investigated the distribution of the number of landslide and flood casualties (deaths, missing persons, and injured people) in Italy, and in the 20 Italian Regions. Using order statistics, we found that the intensity of a landslide or flood event - measured by the total number of casualties in the event - follows a general negative power law trend. Next, we modelled the empirical distributions of the frequency of landslide and flood events with casualties in Italy and in each Region using a Zipf distribution. We used the scaling exponent s of the probability mass function (PMF) of the intensity of the events, which controls the proportion of small, medium, and large events, to compare societal risk levels in different geographical areas and for different periods. Lastly, to consider the frequency of the events with casualties, we scaled the PMF obtained for the individual Regions to the total number of events in each Region, in the period 1950-2008, and we used the results to rank societal landslide and flood risk in Italy. We found that in the considered period societal landslide risk is largest in Trentino

  9. Research and Activism about Girls' Education for Global Democracy: The Case of the Campaign "Etna, Volcano of Peace," Catania, Italy

    Science.gov (United States)

    Cristaldi, Melita; Pampanini, Giovanni

    2016-01-01

    According to a progressive interpretation of human development, girls' education should form an integral part of a full democratic system. Nevertheless, girls' education is threatened and attacked in many ways in current societies, be they authoritarian or democratic societies, developing or developed ones. In this article the two authors, both…

  10. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    Energy Technology Data Exchange (ETDEWEB)

    Di Filippo, Michele; Lombardi, Salvatore; Toro, Beniamino [Universita di Roma ' La Sapienza' , Dip. di Scienze della Terra, Roma (Italy); Nappi, Giovanni; Renzulli, Alberto [Universita di Urbino, Ist. di Mineralogia e Petrologia, Urbino (Italy); Reimer, G. Michael [U.S. Geological Survey, Federal Center, Denver, CO (United States)

    1999-06-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of 100degC/km, and by widespread hydrothermal mineralisation, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth. (Author)

  11. ACTIVITY AND Vp/Vs RATIO OF VOLCANO-TECTONIC SEISMIC SWARM ZONES AT NEVADO DEL RUIZ VOLCANO, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Londoño B. John Makario

    2010-06-01

    Full Text Available An analysis of the seismic activity for volcano-tectonic earthquake (VT swarms zones at Nevado del Ruiz Volcano (NRV was carried out for the interval 1985- 2002, which is the most seismic active period at NRV until now (2010. The swarm-like seismicity of NRV was frequently concentrated in very well defined clusters around the volcano. The seismic swarm zone located at the active crater was the most active during the entire time. The seismic swarm zone located to the west of the volcano suggested some relationship with the volcanic crises. It was active before and after the two eruptions occurred in November 1985 and September 1989. It is believed that this seismic activity may be used as a monitoring tool of volcanic activity. For each seismic swarm zone the Vp/Vs ratio was also calculated by grouping of earthquakes and stations. It was found that each seismic swarm zone had a distinct Vp/Vs ratio with respect to the others, except for the crater and west swarm zones, which had the same value. The average Vp/Vs ratios for the seismic swarm zones located at the active crater and to the west of the volcano are about 6-7% lower than that for the north swarm zone, and about 3% lower than that for the south swarm zone. We suggest that the reduction of the Vp/Vs ratio is due to degassing phenomena inside the central and western earthquake swarm zones, or due to the presence of microcracks inside the volcano. This supposition is in agreement with other studies of geophysics, geochemistry and drilling surveys carried out at NRV.

  12. Volcaniclastic stratigraphy of Gede volcano in West Java

    Science.gov (United States)

    Belousov, A.; Belousova, M.; Zaennudin, A.; Prambada, O.

    2012-12-01

    Gede volcano (2958 m a.s.l.) and the adjacent Pangrango volcano (3019 m a.s.l.) form large (base diameter 35 km) volcanic massif 60 km south of Jakarta. While Pangrango has no recorded eruptions, Gede is one of the most active volcanoes in Indonesia: eruptions were reported 26 times starting from 1747 (Petroeschevsky 1943; van Bemmelen 1949). Historic eruptions were mildly explosive (Vulcanian) with at least one lava flow. Modern activity of the volcano includes persistent solfataric activity in the summit crater and periodic seismic swarms - in 1990, 1991, 1992, 1995, 1996, 1997, 2000, 2010, and 2012 (CVGHM). Lands around the Gede-Pangrango massif are densely populated with villages up to 1500-2000 m a.s.l. Higher, the volcano is covered by rain forest of the Gede-Pangrango Natural Park, which is visited every day by numerous tourists who camp in the summit area. We report the results of the detailed reinvestigation of volcaniclastic stratigraphy of Gede volcano. This work has allowed us to obtain 24 new radiocarbon dates for the area. As a result the timing and character of activity of Gede in Holocene has been revealed. The edifice of Gede volcano consists of main stratocone (Gumuruh) with 1.8 km-wide summit caldera; intra-caldera lava cone (Gede proper) with a 900 m wide summit crater, having 2 breaches toward N-NE; and intra-crater infill (lava dome/flow capped with 3 small craters surrounded by pyroclastic aprons). The Gumuruh edifice, composed mostly of lava flows, comprises more than 90% of the total volume of the volcano. Deep weathering of rocks and thick (2-4 m) red laterite soil covering Gumuruh indicates its very old age. Attempts to get 14C dates in 4 different locations of Gumuruh (including a large debris avalanche deposit on its SE foot) provided ages older than 45,000 years - beyond the limit for 14C dating. Outside the summit caldera, notable volumes of fresh, 14C datable volcaniclastic deposits were found only in the NNE sector of the volcano

  13. Anomalous crustal movements with low seismic efficiency - Campi Flegrei, Italy and some examples in Japan

    Directory of Open Access Journals (Sweden)

    A. Nazzaro

    2002-06-01

    Full Text Available Campi Flegrei is a unique volcanic region located near Naples, Italy. Anomalous crustal movements at Pozzuoli in Campi Flegrei have been documented since the Roman period. The movements were gradual and have continued to the present, occasionally accompanying swarms of local earthquakes and volcanic eruptions. Generally the movements proceed with low seismicity. After the 1538 eruption of Monte Nuovo, Pozzuoli had subsided monotonously, but it changed to uplift abruptly in 1969. The uplift accelerated in 1983 and 1984 reaching more than 2 m, and thereafter began to subside. Many discussions of this event have been published. In Japan, we have examples of deformations similar to those at Campi Flegrei, mainly in volcanic areas, and rarely in non-volcanic areas. The former includes Iwojima, Miyakejima and Aira caldera while the latter is represented by Cape Omaezaki. Iwojima is a volcano island, and its secular uplifts since the 18th century are recognized as an unusual event. Miyakejima volcano and Aira caldera exhibited anomalous movements with low seismicity after their eruptions. Cape Omaezaki is not situated in volcanic zone but near a subduction zone, and gradually and continuously subsides as a precursor to a large earthquake. In such cases as Campi Flegrei and the Japanese localities, we would question whether the deformations are accompanied by normal seismicity or low seismicity. To examine quantitatively the relationship between seismicity and related deformation, seismic efficiency is generally useful. The crustal deformations in all the regions cited above are characterized by exceptionally low seismic efficiencies. In the present paper, the deformations at Pozzuoli and Iwojima are mainly described and a comparative discussion among these and other localities in Japan is supplemented. It is concluded that such anomalous phenomena in volcanic areas are attributable to peculiar rheological aspects of the material composing the local

  14. Morpho-structural criteria for the identification of volcano deformation processes from analogue modeling

    Science.gov (United States)

    Rincon, Marta; Marquez, Alvaro; van Wyk de Vries, Benjamin; Herrera, Raquel; Granja Bruña, Jose Luis; Llanes, Pilar

    2014-05-01

    The morphology of volcanoes provides important information about edifice evolution. Volcanoes can deform by gravitational instability and intrusions. This deformation can compromise volcano structural stability, promoting flank collapse even at dormant edifices. Identification of past/active deformation processes is therefore important not only for the understanding of volcano evolution but also for volcanic hazards. Both deformation due to the flank spreading of a volcano over its weak core and due to the intrusion of a cryptodome in the volcano edifice can produce faulting and changes in the morphology of volcano flanks. These morpho-structural changes in the volcano open the possibility to identify potential deformed and unstable volcanoes using remote sensing techniques and DEMs. We have used analogue models of flank spreading and intrusion processes to make progress in the morpho-structural identification of deformation features which can provide criteria for distinguishing processes. We have geometrically and mechanically scaled two different sets of experiments using a sand-plaster mixture for volcano materials, silicone putty for weak core rocks and Golden Syrup for magma intrusions. For monitoring changes in the volcano morphology we have used a Kinect sensor (Microsoft), which provides us vertical displacements of volcano flanks several times per second with a 1 mm precision. We have synchronized the Kinect sensor with a digital camera for monitoring the spatio-temporal evolution of tectonic structures together with morphology. All experiments produce asymmetrical changes in volcano morphology, developing convex-concave geometries in the deformed flank. However, the spatial relationships of structures with changes in volcano flank curvature are different for the two processes, as noted by previous authors. The morphometric tools developed for analyzing volcano topography allow us to identify intrusion processes due to volcano volume increase. We have

  15. Deformation Study of Papandayan Volcano using GPS Survey Method and Its Correlation with Seismic Data Observation

    Directory of Open Access Journals (Sweden)

    Dina A. Sarsito

    2006-11-01

    Full Text Available Papandayan volcano located in the southern part of Garut regency, around 70 km away from Bandung city, West Java. Many methods carried out to monitoring the activities of volcano, both continuously or periodically, one of the monitoring method is periodically GPS survey. Basically those surveys are carried out to understand the pattern and velocity of displacement which occurred in the volcano body, both horizontally and vertically, and also others deformation elements such as; translation, rotation and dilatation. The Mogi modeling was also used to determine the location and volume of the pressure source which caused deformation of volcano body. By comparing seismic activity and the deformation reveal from GPS measurement, before, during and after eruption, it could be understood there is a correlation between the seismicity and its deformation. These studies is hoping that GPS measurement in Papandayan volcano could be one of supported method to determine the volcano activities, at least in Papandayan volcano.

  16. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  17. A Preliminary Study of Hazus-MH Volcano for Korea

    Science.gov (United States)

    Yu, S.; An, H.; Oh, J.

    2013-12-01

    This presentation will introduce our design to develop a volcano risk modeling capacity within the Hazus-MH loss estimation framework. In particular, we will present how to build fragility curves within the Hazus-MH framework for loss estimation from volcanoes. This capability is designed to analyze the risk from volcanic hazards in Korea. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to some volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption, in particular to South Korea. There are several types of hazards related to volcanic eruption, including ash, pyroclastic flows, volcanic floods and earthquakes. However, our initial efforts focus on modeling losses from volcanic ash. The proposed volcanic ash model is anticipated to be used to estimate losses caused by yellow dust in East Asia as well. Also, many countries, which are exposed to potentially dangerous volcanoes, can benefit from the proposed Hazus-MH Volcano risk model. Acknowledgement: this research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea. We would like to thank Federal Emergency Management Agency which develops Hazus-MH and allows the international use of Hazus-MH.

  18. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  19. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    Science.gov (United States)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  20. Search for shallow magma accumulations at Augustine Volcano

    Energy Technology Data Exchange (ETDEWEB)

    Kienle, J.; Lalla, D.J.; Pearson, C.F.; Barrett, S.A.

    1979-05-01

    A search was made for shallow magma accumulations beneath Augustine Volcano using primarily three geophysical techniques: (1) temperature and heat flow measurements, (2) active and passive seismic refraction, and (3) three-dimensional modeling of aeromagnetic data. With these studies it was hoped to gain insight into the interval structure of Augustine Volcano, to delineate, if possible, the size and shape of near surface magma bodies and to assess the potential of the volcano as a natural laboratory for hot rock and magma geothermal energy research. Augustine was chosen because it is a very young and very active volcano with several historic eruptions in 1812, 1883, 1935, 1964/64. One of the main targets for the geophysical studies was a summit lava dome of about 0.05 km/sup 3/ volume, extruded in 1963/64 and suspected to still contain considerable residual heat, perhaps be still partially molten years after its intrusion. Five months after the field work in 1975 this dome was exploded in January 1976. One month later, a hot (about 650 to 800/sup 0/C) viscous dome was intruded into the January summit crater.

  1. Observing Volcanoes from the Seafloor in the Central Mediterranean Area

    Directory of Open Access Journals (Sweden)

    Gabriele Giovanetti

    2016-04-01

    Full Text Available The three volcanoes that are the object of this paper show different types of activity that are representative of the large variety of volcanism present in the Central Mediterranean area. Etna and Stromboli are sub-aerial volcanoes, with significant part of their structure under the sea, while the Marsili Seamount is submerged, and its activity is still open to debate. The study of these volcanoes can benefit from multi-parametric observations from the seafloor. Each volcano was studied with a different kind of observation system. Stromboli seismic recordings are acquired by means of a single Ocean Bottom Seismometer (OBS. From these data, it was possible to identify two different magma chambers at different depths. At Marsili Seamount, gravimetric and seismic signals are recorded by a battery-powered multi-disciplinary observatory (GEOSTAR. Gravimetric variations and seismic Short Duration Events (SDE confirm the presence of hydrothermal activity. At the Etna observation site, seismic signals, water pressure, magnetic field and acoustic echo intensity are acquired in real-time thanks to a cabled multi-disciplinary observatory (NEMO-SN1 . This observatory is one of the operative nodes of the European Multidisciplinary Seafloor and water-column Observatory (EMSO; www.emso-eu.org research infrastructure. Through a multidisciplinary approach, we speculate about deep Etna sources and follow some significant events, such as volcanic ash diffusion in the seawater.

  2. SSMILes: Investigating Various Volcanic Eruptions and Volcano Heights.

    Science.gov (United States)

    Wagner-Pine, Linda; Keith, Donna Graham

    1994-01-01

    Presents an integrated math/science activity that shows students the differences among the three types of volcanoes using observation, classification, graphing, sorting, problem solving, measurement, averages, pattern relationships, calculators, computers, and research skills. Includes reproducible student worksheet. Lists 13 teacher resources.…

  3. Volcanic tremor associated with erupted activity at Bromo volcano

    Energy Technology Data Exchange (ETDEWEB)

    Gottschaemmer, E. [Karlsruhe Univ., Karlsruhe (Germany). Geophysical Inst.

    1999-06-01

    Three broadband stations were deployed on Bromo volcano, Indonesia, from September to December 1995. The present paper shows the analysis of the seismograms, whose signals produced by volcanic sources cover the frequency range at least Hz down to periods of several minutes. The importance of broadband recordings is discussed.

  4. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    Science.gov (United States)

    Thelen, Weston A.

    2014-01-01

    The seismic network operated by the U.S. Geological Survey’s Hawaiian Volcano Observatory (HVO) is the main source of authoritative data for reporting earthquakes in the State of Hawaii, including those that occur on the State’s six active volcanoes (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, Haleakalā, Lō‘ihi). Of these volcanoes, Kīlauea and Mauna Loa are considered “very high threat” in a report on the rationale for a National Volcanic Early Warning System (NVEWS) (Ewert and others, 2005). This seismic instrumentation plan assesses the current state of HVO’s seismic network with respect to the State’s active volcanoes and calculates the number of stations that are needed to upgrade the current network to provide a seismic early warning capability for forecasting volcanic activity. Further, the report provides proposed priorities for upgrading the seismic network and a cost assessment for both the installation costs and maintenance costs of the improved network that are required to fully realize the potential of the early warning system.

  5. Deep structure and origin of active volcanoes in China

    Institute of Scientific and Technical Information of China (English)

    Dapeng Zhao; Lucy Liu

    2010-01-01

    We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi) are caused by hot upwelling in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate).The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab-plume interactions.

  6. Ice and water on Newberry Volcano, central Oregon

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Jensen, Robert A.; O'Connor, Jim; Madin, Ian P.; Dorsey, Rebecca

    2009-01-01

    Newberry Volcano in central Oregon is dry over much of its vast area, except for the lakes in the caldera and the single creek that drains them. Despite the lack of obvious glacial striations and well-formed glacial moraines, evidence indicates that Newberry was glaciated. Meter-sized foreign blocks, commonly with smoothed shapes, are found on cinder cones as far as 7 km from the caldera rim. These cones also show evidence of shaping by flowing ice. In addition, multiple dry channels likely cut by glacial meltwater are common features of the eastern and western flanks of the volcano. On the older eastern flank of the volcano, a complex depositional and erosional history is recorded by lava flows, some of which flowed down channels, and interbedded sediments of probable glacial origin. Postglacial lava flows have subsequently filled some of the channels cut into the sediments. The evidence suggests that Newberry Volcano has been subjected to multiple glaciations.

  7. Topography and Volcanology of the Huangtsuishan Volcano Subgroup, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Yu-Ming Lai

    2010-01-01

    Full Text Available Combining the shaded relief topography model and the slope map from the Digital Terrain Model (DTM images, toporaphical map, field occurrences and petrography, the volcanic sequences of the Huangtsuishan Volcano Subgroup (HVS can be constructed. Two types of volcanic centers can be identified in this area. One is the Tachienhou volcanic dome, which may be located in the center of an older caldera. The other is the Huangtsui composite volcano, which is composed of interbedding lava flows and pyroclastic deposits with a volcanic crater named the Huangtsui pond at the summit. Eight lava plateaus radiated from Mts. Huangtsui and Tachienhou to the north and the east can be distinguished based on the DTM images. The volcanic deposits are comprised of four lithofacies, the lava flows, pyroclastic breccias, tuffs and lahars on the base of field occurrences. At least thirteen layers of lava flow, named the H1 to H13 can be recognized in the HVS and can be reconstructed and categorized into four stages. An old and large volcano erupted lava flows to form the products of stages one and two, then collapsed to form a caldera with a dome for the third stage. The latest stage of lava flow was poured out from the Huangtsui volcano, which formed a crater at the summit.

  8. The first days of the new submarine volcano near Krakatoa

    NARCIS (Netherlands)

    Umbgrove, J.H.F.

    1926-01-01

    The geological history of the Krakatoa volcano, especially the eruption of 1883, is amply described in the great work “Krakatau” by R. D. M. Verheer (1885), the Report of the Krakatoa Committee (Royal Soc. London 1888) and in the publications of B. G. Escher (Handel. 1e Nederl. Indisch Natuurwet ens

  9. Collaborative Monitoring and Hazard Mitigation at Fuego Volcano, Guatemala

    Science.gov (United States)

    Lyons, J. J.; Bluth, G. J.; Rose, W. I.; Patrick, M.; Johnson, J. B.; Stix, J.

    2007-05-01

    A portable, digital sensor network has been installed to closely monitor changing activity at Fuego volcano, which takes advantage of an international collaborative effort among Guatemala, U.S. and Canadian universities, and the Peace Corps. The goal of this effort is to improve the understanding shallow internal processes, and consequently to more effectively mitigate volcanic hazards. Fuego volcano has had more than 60 historical eruptions and nearly-continuous activity make it an ideal laboratory to study volcanic processes. Close monitoring is needed to identify base-line activity, and rapidly identify and disseminate changes in the activity which might threaten nearby communities. The sensor network is comprised of a miniature DOAS ultraviolet spectrometer fitted with a system for automated plume scans, a digital video camera, and two seismo-acoustic stations and portable dataloggers. These sensors are on loan from scientists who visited Fuego during short field seasons and donated use of their sensors to a resident Peace Corps Masters International student from Michigan Technological University for extended data collection. The sensor network is based around the local volcano observatory maintained by Instituto National de Sismologia, Vulcanologia, Metrologia e Hidrologia (INSIVUMEH). INSIVUMEH provides local support and historical knowledge of Fuego activity as well as a secure location for storage of scientific equipment, data processing, and charging of the batteries that power the sensors. The complete sensor network came online in mid-February 2007 and here we present preliminary results from concurrent gas, seismic, and acoustic monitoring of activity from Fuego volcano.

  10. Mercury concentration, speciation and budget in volcanic aquifers: Italy and Guadeloupe (Lesser Antilles)

    Science.gov (United States)

    Bagnato, E.; Aiuppa, A.; Parello, F.; D'Alessandro, W.; Allard, P.; Calabrese, S.

    2009-01-01

    Quantifying the contribution of volcanism to global mercury (Hg) emissions is important to understand the pathways and the mechanisms of Hg cycling through the Earth's geochemical reservoirs and to assess its environmental impacts. While previous studies have suggested that degassing volcanoes might contribute importantly to the atmospheric budget of mercury, little is known about the amount and behaviour of Hg in volcanic aquifers. Here we report on detailed investigations of both the content and the speciation of mercury in aquifers of active volcanoes in Italy and Guadeloupe Island (Lesser Antilles). In the studied groundwaters, total Hg (THg) concentrations range from 10 to 500 ng/l and are lower than the 1000 ng/l threshold value for human health protection fixed by the World Health Organization [WHO (1993): WHO Guidelines for Drinking Water Quality- http://www.who.int/water_sanitation_health/GDWQ/index.htlm]. Positive co-variations of (THg) with sulphate indicate that Hg-SO 4-rich acid groundwaters receive a direct input of magmatic/hydrothermal gases carrying mercury as Hg 0(gas). Increasing THg in a volcanic aquifer could thus be a sensitive tracer of magmatic gas input prior to an eruption. Since the complex behaviour and toxicity of mercury in waters depend on its chemical speciation, we carefully determined the different aqueous forms of this element in our samples. We find that dissolved elemental Hg 0(aq) and particulate-bound Hg (Hg P) widely prevail in volcanic aquifers, in proportions that highlight the efficiency of Hg adsorption onto colloidal particles. Moreover, we observe that dissolved Hg 0aq and Hg(II) forms coexist in comparable amount in most of the waters, in stark contrast to the results of thermodynamic equilibrium modelling. Therefore, chemical equilibrium between dissolved mercury species in volcanic waters is either prevented by natural kinetic effects or not preserved in collected waters due to sampling/storage artefacts. Finally, we

  11. Volcano geodesy: Challenges and opportunities for the 21st century

    Science.gov (United States)

    Dzurisin, D.

    2000-01-01

    Intrusions of magma beneath volcanoes deform the surrounding rock and, if the intrusion is large enough, the overlying ground surface. Numerical models generally agree that, for most eruptions, subsurface volume changes are sufficient to produce measurable deformation at the surface. Studying this deformation can help to determine the location, volume, and shape of a subsurface magma body and thus to anticipate the onset and course of an eruption. This approach has been successfully applied at many restless volcanoes, especially basaltic shields and silicic calderas, using various geodetic techniques and sensors. However, its success at many intermediate-composition strato-volcanoes has been limited by generally long repose intervals, steep terrain, and structural influences that complicate the history and shape of surface deformation. These factors have made it difficult to adequately characterize deformation in space and time at many of the world's dangerous volcanoes. Recent technological advances promise to make this task easier by enabling the acquisition of geodetic data of high spatial and temporal resolution from Earth-orbiting satellites. Synthetic aperture radar interferometry (InSAR) can image ground deformation over large areas at metre-scale resolution over time-scales of a month to a few years. Global Positioning System (GPS) stations can provide continuous information on three-dimensional ground displacements at a network of key sites -information that is especially important during volcanic crises. By using InSAR to determine the shape of the displacement field and GPS to monitor temporal changes at key sites, scientists have a much better chance to capture geodetic signals that have so far been elusive at many volcanoes. This approach has the potential to provide longer-term warnings of impending volcanic activity than is possible with other monitoring techniques.

  12. A Preliminary Study of Seismicity at Ceboruco, Volcano, Nayarit, Mexico

    Science.gov (United States)

    Sanchez, J. J.; Nunez-Cornu, F. J.; Suarez-Plascencia, C.; Trejo-Gomez, E.

    2007-12-01

    Ceboruco Volcano is located northwestern of Tepic-Zacoalco graben (Jalisco, Mexico). Its volcanic activity can be divided in four eruptive cycles differentiated by their volcano explosivity index (VEI) and chemical variations as well. As a result of andesitic effusive activity, during the first cycle the "paleo-Ceboruco" edifice was constructed. The end of this cycle is defined by a plinian eruption (VEI is estimated between 3 and 4) which occurred some 1020 years ago and formed the external caldera. During the second cycle an andesitic dome extruded in the interior of the caldera. The dome, called Dos Equis, collapsed and formed the internal caldera. The third cycle is represented by andesitic lava flows which partially cover the northern and south-southwestern part of the edifice. The last cycle is represented by historic andesitic lava flows located in the southwestern flank of the volcano. In February 2003 as part of an agreement with Nayarit Civil Defense a seismic station was installed in the SW flank of the volcano. The station is equipped with a Marslite (lennartz) digitizer with a 3DLe 1Hz. seismic sensor. Detection system is based on a STA/LTA recording algorithm. More than 2000 small earthquakes have been attributed to various local sources, and some of this earthquakes are possibly located beneath Ceboruco volcano. A preliminary classification separates high frequency and low frequency seismic events. The sources of high frequency earthquakes appear to be distributed as evidenced from waveforms variety and changing S-P arrivals separations. The low frequency seismic events also show varying signatures and some of them exhibit extended coda, including some monochromatic character.

  13. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  14. A Versatile Time-Lapse Camera System Developed by the Hawaiian Volcano Observatory for Use at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Hoblitt, Richard P.

    2008-01-01

    Volcanoes can be difficult to study up close. Because it may be days, weeks, or even years between important events, direct observation is often impractical. In addition, volcanoes are often inaccessible due to their remote location and (or) harsh environmental conditions. An eruption adds another level of complexity to what already may be a difficult and dangerous situation. For these reasons, scientists at the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory (HVO) have, for years, built camera systems to act as surrogate eyes. With the recent advances in digital-camera technology, these eyes are rapidly improving. One type of photographic monitoring involves the use of near-real-time network-enabled cameras installed at permanent sites (Hoblitt and others, in press). Time-lapse camera-systems, on the other hand, provide an inexpensive, easily transportable monitoring option that offers more versatility in site location. While time-lapse systems lack near-real-time capability, they provide higher image resolution and can be rapidly deployed in areas where the use of sophisticated telemetry required by the networked cameras systems is not practical. This report describes the latest generation (as of 2008) time-lapse camera system used by HVO for photograph acquisition in remote and hazardous sites on Kilauea Volcano.

  15. Towards a multidisciplinary e-infrastructure for the Mediterranean Supersite Volcanoes (MED-SUV) project

    Science.gov (United States)

    Nativi, Stefano; Mathieu, Pierre Philippe; Cossu, Roberto; Santoto, Mattia; Martini, Marcello; Puglisi, Giuseppe

    2014-05-01

    The MED-SUV European project (http://med-suv.eu/) aims to design and implement a multidisciplinary infrastructure for the volcanic risk management life-cycle in southern Italy. The MED-SUV infrastructure will rely upon the improvements of the understanding of geophysical processes underlying the volcanic systems of Vesuvius / Campi Flegrei and Mt. Etna. It will also achieve the integration of existing components, such as monitoring systems and data bases, novel sensors for the measurements of volcanic parameters, and tools for data analysis and process modelling. This effort will contribute to GEOSS (Global Earth Observation System of Systems - http://www.earthobservations.org/geoss.shtml) as one the volcano Supersite recognized by GEO (Group on Earth Observation) -see http://supersites.earthobservations.org/. To achieve its goals, MED-SUV needs an advanced e-infrastructure allowing: (a) heterogeneous data and processing systems to provide and share their resources, and (b) supersite Users to run their workflows and generate significant products. This presentation discusses the general interoperability approach and architecture characterizing the MED-SUV e-infrastructure. The MED-SUV e-infrastructure considered the concepts and solutions adopted by the GEOSS Common Infrastructure (GCI). The architecture requirements and system technologies builds on the experience done by relevant European projects in the framework of GEOSS and ESFRI (e.g. EuroGEOSS, GENESI, GEOWOW). MED-SUV e-infrastructure adopts three-tiers approach distinguishing among: (a) local and distributed Data/Information Providers; (b) the MED-SUV Brokering framework for harmonization and interoperability; (c) the MED-SUV e-collaboration environment for the generation and publication of advanced products. MED-SUV e-infrastructure development considers interoperability with the other two FP7 supersite projects: MARSITE and FUTUREVOLC, as well as EPOS.

  16. Fire Fountains At Etna Volcano: What Do We Learn From Acoustic Measurements?

    Science.gov (United States)

    Vergniolle, S.

    Acoustic measurements were performed on Etna volcano (Italy) in July 2001, during two episodes of quasi fire fountains. They last about 4 h, are separated by quiet peri- ods of a few days and consist in a serie of explosions, whose intermittency increases in time from several minutes to several seconds. The waveform of every explosion is very similar to explosions at Stromboli, suggesting that the sound at Etna is also pro- duced by bursting large bubbles. The model for bubble vibration, at work at Stromboli, gives a very good fit between data and theory. When the eruptive episode reaches its climax, a bubble at Etna has a radius of 5 m, a length of 8 m for an overpressure of 0.39 MPa. Rising large expanding bubbles in a conduit distorts the top of the lava column and sloshing waves can be produced. The theoretical frequency is between 0.3 and 0.7 Hz for a radius of 5 m. Recorded acoustic pressure shows these frequen- cies. Their intensity is directly correlated to the intensity for bubble bursting (2 Hz), showing that frequencies between 0.3 Hz and 0.7 Hz are sloshing waves in a conduit radius of 5 m. Furthermore if the source of sound is monopole, gas and ejecta ve- locity is estimated at 92 m/s during episode climax, assuming a conduit radius of 5 m. Simultaneous measurements done with a radar produce exactly the same estimate [Duboclard et al., 2001]. The very good agreement between the synthetic waveform, the theoretical sloshing waves and the estimate of gas velocity shows that fire foun- tains at Etna correspond to a serie of bursting bubbles of radius 5 m, colliding during its climax to form an inner gas jet. The alternance between fire fountains and quiet periods is totally similar between Etna and Kilauea volcanoes (Hawaii). Therefore fire fountains at Etna might also be generated at depth by coalescence of a foam layer trapped at the top of the magma chamber. The total gas volume released by one fire fountain is equal to 7.4 × 106 m3 and has been

  17. A New Statistical Model for Eruption Forecasting at Open Conduit Volcanoes: an Application to Mt Etna and Kilauea Volcanoes

    Science.gov (United States)

    Passarelli, Luigi; Sanso, Bruno; Laura, Sandri; Marzocchi, Warner

    2010-05-01

    One of the main goals in volcanology is to forecast volcanic eruptions. A trenchant forecast should be made before the onset of a volcanic eruption, using the data available at that time, with the aim of mitigating the volcanic risk associated to the volcanic event. In other words, models implemented with forecast purposes have to take into account the possibility to provide "forward" forecasts and should avoid the idea of a merely "retrospective" fitting of the data available. In this perspective, the main idea of the present model is to forecast the next volcanic eruption after the end of the last one, using only the data available at that time. We focus our attention on volcanoes with open conduit regime and high eruption frequency. We assume a generalization of the classical time predictable model to describe the eruptive behavior of open conduit volcanoes and we use a Bayesian hierarchical model to make probabilistic forecast. We apply the model to Kilauea volcano eruptive data and Mt. Etna volcano flank eruption data. The aims of this model are: 1) to test whether or not the Kilauea and Mt Etna volcanoes follow a time predictable behavior; 2) to discuss the volcanological implications of the time predictable model parameters inferred; 3) to compare the forecast capabilities of this model with other models present in literature. The results obtained using the MCMC sampling algorithm show that both volcanoes follow a time predictable behavior. The numerical values of the time predictable model parameters inferred suggest that the amount of the erupted volume could change the dynamics of the magma chamber refilling process during the repose period. The probability gain of this model compared with other models already present in literature is appreciably greater than zero. This means that our model performs better forecast than previous models and it could be used in a probabilistic volcanic hazard assessment scheme. In this perspective, the probability of

  18. Is marriage loosing its centrality in Italy?

    Directory of Open Access Journals (Sweden)

    2004-09-01

    Full Text Available Unlike the countries of north-western Europe, marriage in Italy has maintained a crucial role in the process of family formation. This raise doubts about the possibility that the theory of "second demographic transition" could adequately account for the behaviour of the European population living south of the Alps. The aim of this paper is twofold: to provide some empirical evidence that cohabitation is now spreading in Italy; and to propose an explanation of the delay of its diffusion until the 1990s. The hypothesis proposed here explains the delay, not so much in terms of limited interest of the Italian youth towards this type of union, but with the convenience of the children in the Mediterranean area to avoid choices which are openly clashing with the values of parents.

  19. CERN Neutrinos search for sunshine in Italy!

    CERN Multimedia

    Wednesday, 18th June 2008. The CNGS (CERN Neutrinos to Gran Sasso) beam has re-started, shooting muon neutrinos towards Italy. The neutrino beam should run this year until mid November.The aim of CNGS is to understand the oscillation of neutrinos, for example their transformation from muon into tau neutrinos over long distances.Edda Gschwendtner, the liaison physicist of the CNGS beam, describes the progress of the project, “We did a lot of modifications this year to CNGS, which was a huge amount of work, with many groups and services involved. In parallel the OPERA detector in Italy made an enormous progress in completing their detector and we are looking forward to seeing tau neutrinos soon.”

  20. Real time earthquake forecasting in Italy

    OpenAIRE

    Murru, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Console, R.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia; Falcone, G.; Earth Science Department, Messina University

    2008-01-01

    We have applied an earthquake clustering epidemic model to real time data at the Italian Earthquake Data Center operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for short-term forecasting of moderate and large earthquakes in Italy. In this epidemic-type model every earthquake is regarded, at the same time, as being triggered by previous events and triggering following earthquakes. The model uses earthquake data only, with no explicit use of tectonic, geologic, or geodetic...

  1. Adaptively smoothed seismicity earthquake forecasts for Italy

    OpenAIRE

    Kagan, Yan Y.; Jackson, David D.; Agnes Helmstetter; Werner, Maximilian J.; Stefan Wiemer

    2010-01-01

    We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered...

  2. Social Capital and Labour Productivity in Italy

    OpenAIRE

    Sabatini, Fabio

    2006-01-01

    This paper carries out an empirical assessment of the relationship between social capital and labour productivity in small and medium enterprises in Italy. By means of structural equations models, the analysis investigates the effect of different aspects of the multifaceted concept of social capital. The bonding social capital of strong family ties and the bridging social capital shaped by informal ties connecting friends and acquaintances are proved to exert a negative effect on labour produ...

  3. International franchising in Italy: trends and perspectives

    OpenAIRE

    Majocchi Antonio; Pavione Enrica

    2002-01-01

    In Italy, the recent gradual liberalization of the retail market has led to an increase in competition and innovation. In this context, new and more flexible forms of organization have emerged, and franchising in particular has undergone a strong expansion. The main purpose of this work is to present a complete framework of the Italian franchising and to analyse its role, structural characteristics, trend and development in the context of the European market.

  4. Experience of plutonium recycle in Italy

    International Nuclear Information System (INIS)

    This paper describes the experimental work undertaken in Italy on the irradiation of plutonium bearing fuel in thermal reactors. 16 MOX fuel assemblies were initially loaded into the Garigliano BWR and a further 46, a full reload, were loaded in 1975. Eight assemblies were loaded into the PWR at Trino Vercellese in 1976. Details of the fuel rod composition, burn up and post-irradiation examination results are given, together with a safety analysis

  5. Cohabitation in Italy: do parents matter?

    OpenAIRE

    Christin Schröder

    2005-01-01

    Over the last two decades, Europe has witnessed the spreading of a new phenomenon: cohabitation. Whereas this modern living arrangement has become relatively widespread in most European countries, it has been rather hesitant in developing in Italy. The welfare state structure of this country, a high rate of unemployment, and tight housing is hampering the diffusion of cohabitation. Researchers so far have assumed that traditionally strong family ties between parents and their adult children h...

  6. Italy and gas: dependence and geopolitical problems

    International Nuclear Information System (INIS)

    The increase in world energy demand is making natural gas a leading player, yet its supply in Italy is still inefficient because of internal and external factors of its geopolitical diversification. On the contrary, thanks to its geographical position and morphology our Country could represent the major point of gas exchange in central-southern Europe and transform itself from a country at the risk of emergency into one of the greatest gas hub in Europe

  7. CPAFFC Delegation Visits Italy and Portugal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>At the invitation of the Italian Union of Provinces (Unione delle Province d’Italia—UPI) and the League of Portugal-China Lasting Friendship (LPCLF),the Chinese People’s Friendship Delegation led by Chen Haosu,president of the CPAFFC,and Shi Zuofeng,vice chairman of the Standing Committee of the Gansu Provincial People’s Congress,paid friendly visits to Italy and Portugal from June 15 to 24.

  8. The process of services liberalization in Italy

    OpenAIRE

    Argentati Anna

    2012-01-01

    The paper addresses the great difficulties and uncertainties that have characterizedthe process of services liberalization in Italy in recent years. After having analyzed the implementation of directive 2006/123/Ce, including the limits of the discipline introduced by legislative decree n. 59/2010, the paper explores the content of recent new regulations which, after the economic crisis, have again modified the existing legislation: First, law decree n. 138/2011 introduced only marginal chang...

  9. Radioactivity in honey of the central Italy.

    Science.gov (United States)

    Meli, Maria Assunta; Desideri, Donatella; Roselli, Carla; Feduzi, Laura; Benedetti, Claudio

    2016-07-01

    Natural radionuclides and (137)Cs in twenty seven honeys produced in a region of the Central Italy were determined by alpha ((235)U, (238)U, (210)Po, (232)Th and (228)Th) and gamma spectrometry ((137)Cs, (40)K, (226)Ra and (228)Ra). The study was carried out in order to estimate the background levels of natural ((40)K, (238)U and (232)Th and their progeny) and artificial radionuclides ((137)Cs) in various honey samples, as well as to compile a data base for radioactivity levels in that region. (40)K showed a mean activity of 28.1±23.0Bqkg(-1) with a range of 7.28-101Bqkg(-1). The mean of (210)Po activity resulted 0.40±0.46Bqkg(-1) with a range of 0.03-1.98Bqkg(-1). The mean of (238)U activity resulted 0.020±0.010Bqkg(-1). (226)Ra and (228)Ra resulted always natural radiation exposure in Italy. The honeys produced in Central Italy were of good quality in relation to the studied parameters, confirming the general image of a genuine and healthy food associated to this traditional products. PMID:26920304

  10. Biodiversity of entomopathogenic nematodes in Italy.

    Science.gov (United States)

    Tarasco, E; Clausi, M; Rappazzo, G; Panzavolta, T; Curto, G; Sorino, R; Oreste, M; Longo, A; Leone, D; Tiberi, R; Vinciguerra, M T; Triggiani, O

    2015-05-01

    An investigation was carried out on the distribution and biodiversity of steinernematid and heterorhabdtid entomopathogenic nematodes (EPN) in nine regions of Italy in the period 1990-2010. More than 2000 samples were collected from 580 localities and 133 of them yielded EPN specimens. A mapping of EPN distribution in Italy showed 133 indigenous EPN strains belonging to 12 species: 43 isolates of Heterorhabditis bacteriophora, 1 of H. downesi, 1 of H. megidis, 51 of Steinernema feltiae, 12 of S. affine, 4 of S. kraussei, 8 of S. apuliae, 5 of S. ichnusae, 3 of S. carpocapsae, 1 of S. vulcanicum, 3 of Steinernema 'isolate S.sp.MY7' of 'S. intermedium group' and 1 of S. arenarium. Steinernematids are more widespread than heterorhabditids and S. feltiae and H. bacteriophora are the most commonly encountered species. Sampling sites were grouped into 11 habitats: uncultivated land, orchard, field, sea coast, pinewood, broadleaf wood, grasslands, river and lake borders, caves, salt pan and moist zones; the soil texture of each site was defined and the preferences of habitat and soil texture of each species was assessed. Except for the two dominant species, S. feltiae and H. bacteriophora, EPN occurrence tends to be correlated with a specific vegetation habitat. Steinernema kraussei, H. downesi and H. megidis were collected only in Sicily and three of the species recently described - S. apuliae, S. ichnusae and S. vulcanicum - are known only from Italy and seem to be endemic.

  11. Integration of measurements and model simulations to characterize Eyjafjallajökull volcanic aerosols over south-eastern Italy

    Directory of Open Access Journals (Sweden)

    M. R. Perrone

    2012-10-01

    Full Text Available Volcanic aerosols resulting from the Eyjafjallajökull eruption were detected in south-eastern Italy from 20 to 22 April 2010, at a distance of approximately 4000 km from the volcano, and have been characterized by lidar, sun/sky photometer, and surface in-situ measurements. Volcanic particles added to the pre-existing aerosol load and measurement data allow quantifying the impact of volcanic particles on the aerosol vertical distribution, lidar ratios, the aerosol size distribution, and the ground-level particulate-matter concentrations. Lidar measurements reveal that backscatter coefficients by volcanic particles were about one order of magnitude smaller over south-eastern Italy than over Central Europe. Mean lidar ratios at 355 nm were equal to 64 ± 5 sr inside the volcanic aerosol layer and were characterized by smaller values (47 ± 2 sr in the underlying layer on 20 April, 19:30 UTC. Lidar ratios and their dependence with the height reduced in the following days, mainly because of the variability of the volcanic particle contributions. Size distributions from sun/sky photometer measurements reveal the presence of volcanic particles with radii r > 0.5 μm on 21 April and that the contribution of coarse volcanic particles increased from 20 to 22 April. The aerosol fine mode fraction from sun/sky photometer measurements varied between values of 0.85 and 0.94 on 20 April and decreased to values between 0.25 and 0.82 on 22 April. Surface measurements of particle size distributions were in good accordance with column averaged particle size distributions from sun/sky photometer measurements. PM1/PM2.5 mass concentration ratios of 0.69, 0.66, and 0.60 on 20, 21, and 22 April, respectively, support the increase of super-micron particles at ground. Measurements from the Regional Air Quality Agency show that PM10 mass concentrations on 20, 21, and 22 April 2010 were enhanced in the entire Apulia Region. More

  12. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  13. An Overview of Italy's Energy Mix

    International Nuclear Information System (INIS)

    In Italy, the issue of energy supply is always of great interest because this country depends on foreign imports for 83% of its primary energy needs. This is due to the limited availability of domestic mineral resources, combined with a strong dependence of the electricity production on fossil fuels. The present situation should be viewed in the light of the decision to freeze the nuclear program following the referendum of 1987. Italy's energy strategy subsequently turned back to the thermoelectric sector, which was updated, during the latter part of the 1990's, with several modern and efficient plants, mainly based on a combined cycle structure and fed by natural gas. In addition, the Italian government has started to fund renewables, in compliance with the European regulations, and these forms of energy have experienced a significant increase, especially in recent years. The current energy-mix makes the Italian economy more exposed to the global geopolitical instabilities of the oil- and gas-producing countries, compared to northern European countries. Moreover, with the shift of economic activities towards the service sector, the demand of electric energy is increasing and its costs, weighted also by renewable incentives, are becoming more and more significant for Italian users and the economy in general. These issues, coupled with the constraints set by the European 20-20-20 plan, in particular in terms of polluting gas emissions and energy savings, led the Berlusconi government (2008-2011) to resort to a new nuclear program. This relied on the construction of 4 EPR power plants (at least) in order to cover 25% of Italy's entire electricity needs. But the program was stopped by another referendum in June 2011, whose result was strongly influenced by the Fukushima tragedy. However, a new national energy strategy has not yet been defined. This paper analyses the present energy mix, with particular attention to the electricity production system, in order to

  14. The nuclear in Italy - state of the art; Le nucleaire en Italie - etat des lieux

    Energy Technology Data Exchange (ETDEWEB)

    Schifano, F.; Ziller, T

    2007-02-15

    This report aims to evaluate the italian situation in matter of the nuclear, following the referendum of 1987 which decided to stop the nuclear power plants in the country. The first part is devoted to the historical aspects of the nuclear sector in Italy. The second chapter presents the institutional and legislative framework. The third chapter discusses the today situation and the italian actors of the nuclear, from the radioactive wastes management and the dismantling of nuclear installations to the engineering service realized in other countries. It discusses also the research and development programs. The last chapter proposes perspectives of the debate around a possible restart of the nuclear activity in Italy.

  15. The velocity structure of crust and upper mantle in the Wudalianchi volcano area inferred from the receiver function

    Institute of Scientific and Technical Information of China (English)

    贺传松; 王椿镛; 吴建平

    2003-01-01

    The Wudalianchi volcano is a modern volcano erupted since the Holocene. Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano. The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area. The results show that the low velocity structure of S wave is widely distributed underneath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area. The low velocity structure is related to the seismicity. The Moho interface is not clear underneath the volcano area, which may be regard to be an necessary condition for the lava upwelling. Therefore, we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.

  16. Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy)

    Science.gov (United States)

    Rosatelli, Gianluigi; Wall, Frances; Stoppa, Francesco

    2007-12-01

    At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5-150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2-20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO 2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8-5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr-Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate-carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.

  17. Explosion craters associated with shallow submarine gas venting off Panarea island, Italy

    Science.gov (United States)

    Monecke, Thomas; Petersen, Sven; Hannington, Mark D.; Anzidei, Marco; Esposito, Alessandra; Giordano, Guido; Garbe-Schönberg, Dieter; Augustin, Nico; Melchert, Bernd; Hocking, Mike

    2012-11-01

    Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100 m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000 years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70 Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.

  18. 76 FR 42114 - Granular Polytetrafluoroethylene Resin From Italy: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-07-18

    ... Granular Polytetrafluoroethylene Resin From Italy, 76 FR 39896 (July 7, 2011), and USITC Publication 4240... International Trade Administration Granular Polytetrafluoroethylene Resin From Italy: Continuation of... the antidumping duty order on granular polytetrafluoroethylene resin (``PTFE resin'') from Italy...

  19. Volcano plots in hydrogen electrocatalysis – uses and abuses

    Science.gov (United States)

    Quaino, Paola; Juarez, Fernanda; Santos, Elizabeth

    2014-01-01

    Summary Sabatier’s principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier’s principle is only one of several factors that determine the rate. With the exception of nickel and cobalt, the reaction rate does not decrease for highly exothermic hydrogen adsorption as predicted, because the reaction passes through more suitable intermediate states. The case of nickel is given special attention; since it is a 3d metal, its orbitals are compact and the overlap with hydrogen is too low to make it a good catalyst. PMID:24991521

  20. Volcano plots in hydrogen electrocatalysis - uses and abuses.

    Science.gov (United States)

    Quaino, Paola; Juarez, Fernanda; Santos, Elizabeth; Schmickler, Wolfgang

    2014-01-01

    Sabatier's principle suggests, that for hydrogen evolution a plot of the rate constant versus the hydrogen adsorption energy should result in a volcano, and several such plots have been presented in the literature. A thorough examination of the data shows, that there is no volcano once the oxide-covered metals are left out. We examine the factors that govern the reaction rate in the light of our own theory and conclude, that Sabatier's principle is only one of several factors that determine the rate. With the exception of nickel and cobalt, the reaction rate does not decrease for highly exothermic hydrogen adsorption as predicted, because the reaction passes through more suitable intermediate states. The case of nickel is given special attention; since it is a 3d metal, its orbitals are compact and the overlap with hydrogen is too low to make it a good catalyst. PMID:24991521

  1. Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland

    Science.gov (United States)

    Heimisson, Elías Rafn; Einarsson, Páll; Sigmundsson, Freysteinn; Brandsdóttir, Bryndís.

    2015-10-01

    The Krafla rifting episode in 1975-1984, consisted of around 20 inflation-deflation events within the Krafla caldera, where magma accumulated during inflation periods and was intruded into the transecting fissure swarm during brief periods of deflation. We reanalyze geodetic and seismic data from the rifting episode and perform a time-dependent inversion of a leveling time series for a spherical point source in an elastic half-space. Using the volume change as a proxy for stress shows that during inflation periods the seismicity rate remains low until the maximum inflation of previous cycles is exceeded thus exhibiting the Kaiser effect. Our observations demonstrate that this phenomenon, commonly observed in small-scale experiments, is also produced in kilometer-scale volcanic deformation. This behavior sheds new light on the relationship between deformation and seismicity of a deforming volcano. As a consequence of the Kaiser effect, a volcano may inflate rapidly without significant changes in seismicity rate.

  2. The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview

    Science.gov (United States)

    Puglisi, Giuseppe

    2014-05-01

    The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are

  3. Geomagnetism, volcanoes, global climate change, and predictability. A progress report

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    1994-06-01

    Full Text Available A model is investigated, by which the encounters of the solar system with dense interstellar clouds ought to trigger either geomagnetic field reversals or excursions, that produce extra electric currents within the Earth dynamo, that cause extra Joule's heating, that supplies volcanoes and endogenous processes. Volcanoes increase the Earth degassing into the atmosphere, hence the concentration of the minor atmospheric constituents, including the greenhouse gases, hence they affect climate temperature, glacier melting, sea level and global change. This investigation implies both theoretical studies and observational data handling on different time scales, including present day phenomena, instrumental data series, historical records, proxy data, and geological and palaeontological evidences. The state of the art is briefly outlined, mentioning some already completed achievements, investigations in progress, and future perspectives.

  4. Volcano monitoring using short wavelength infrared data from satellites

    Science.gov (United States)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    It is shown that Landsat TM and MSS data provide useful and sometimes unique information on magmatic and fumarolic events at poorly monitored active volcanoes. The digital number data recorded in each spectral band by TM and MSS can be converted into spectral radiance, measured in W/sq m per micron per sr, using calibration data such as those provided by Markham and Barker (1986) and can provide temperature information on the lava fountain, lava lakes, pahoehoe flows, blocky lava, pyroclastic flow, and fumarole. The examples of Landsat data documenting otherwise unobserved precursors and/or activity include the September 1986 eruption of Lascar volcano, Chile; the continued presence of lava lakes at Erta 'Ale, Ethiopia (in the absence of any ground-based observations); and minor eruptions at Mount Erebus, Antarctica.

  5. Eruption Forecasting: Success and Surprise at Kasatochi and Okmok Volcanoes

    Science.gov (United States)

    Prejean, S.; Power, J.; Brodsky, E.

    2008-12-01

    In the summer of 2008, the Alaska Volcano Observatory (AVO) successfully forecast eruption at an unmonitored volcano, Kasatochi, and was unable to forecast eruption at a well monitored volcano, Okmok. We use these case studies to explore the limitations and opportunities of seismically monitored and unmonitored systems and to evaluate situations when we can expect to succeed and when we must expect to fail in eruption forecasting. Challenges in forecasting eruptions include interpreting seismicity in context of volcanic history, developing a firm understanding of distance scales over which pre- and co-eruptive seismic signals are observed, and improving our ability to discriminate processes causing tremor. Kasatochi Volcano is a 3 km wide island in the central Aleutian Islands with no confirmed historical activity. Little is known about the eruptive history of the volcano. It was not considered an immediate threat until 3 days prior to eruption. A report of ground shaking by a biology field crew on the island on August 4 was the first indication of unrest. On August 6 a vigorous seismic swarm became apparent on the nearest seismic stations 40 km distant. The aviation color code/volcano alert level at Kasatochi was increased to Yellow/Advisory in response to increasing magnitude and frequency of earthquakes. The color code/alert level was increased to Orange/Watch on August 7 when volcanic tremor was observed in the wake of the largest earthquake in the sequence, a M 5.6. Three hours after the onset of volcanic tremor, eruption was confirmed by satellite data and the color code/alert level increased to Red/Warning. Eruption forecasting was possible only due to the exceptionally large moment release of pre-eruptive seismicity. The key challenge in evaluating the situation was distinguishing between tectonic activity and a volcanic swarm. It is likely there were weeks to months of precursory seismicity, however little instrumental record exists due to the lack of a

  6. Volcanoes and carcinoma of the thyroid: a possible association.

    Science.gov (United States)

    Kung, T M; Ng, W L; Gibson, J B

    1981-01-01

    Environmental factors contributing to incidences of thyroid carcinoma are re-evaluated and emphasized in this study. Thyroid cancers appear to occur independent of endemic goiter, based on epidemiologic and histologic evidence. While environmental factors appear to be important, the specific etiologic agent has not yet been identified or suggested. The number of thyroid cancer incidences available from cancer registries are analyzed in an attempt to identify a specific environmental carcinogenic agent. The presence of active volcanoes that produce abundant lava is found to be the common denominator of Iceland and Hawaii, where the incidence of thyroid cancer is outstandingly high. Comparison with other areas with active volcanoes is made. The presence of a carcinogenic agent in the lava is postulated and its possible mode of action on humans through fish products is hypothesized.

  7. Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica

    Science.gov (United States)

    Knox, H. A.; Aster, R. C.; Kyle, P. R.

    2010-12-01

    Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.

  8. Seismic Hazards at Kilauea and Mauna LOA Volcanoes, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Fred W.

    1994-04-22

    A significant seismic hazard exists in south Hawaii from large tectonic earthquakes that can reach magnitude 8 and intensity XII. This paper quantifies the hazard by estimating the horizontal peak ground acceleration (PGA) in south Hawaii which occurs with a 90% probability of not being exceeded during exposure times from 10 to 250 years. The largest earthquakes occur beneath active, unbuttressed and mobile flanks of volcanoes in their shield building stage.

  9. Volcano Gas Measurements from UAS - Customization of Sensors and Platforms

    Science.gov (United States)

    Werner, C. A.; Dahlgren, R. P.; Kern, C.; Kelly, P. J.; Fladeland, M. M.; Norton, K.; Johnson, M. S.; Sutton, A. J.; Elias, T.

    2015-12-01

    Volcanic eruptions threaten not only the lives and property of local populations, but also aviation worldwide. Volcanic gas release is a key driving force in eruptive activity, and monitoring gas emissions is critical to assessing volcanic hazards, yet most volcanoes are not monitored for volcanic gas emission. Measuring volcanic gas emissions with manned aircraft has been standard practice for many years during eruptive crises, but such measurements are quite costly. As a result, measurements are typically only made every week or two at most during periods of unrest or eruption, whereas eruption dynamics change much more rapidly. Furthermore, very few measurements are made between eruptions to establish baseline emissions. Unmanned aerial system (UAS) measurements of volcanic plumes hold great promise for both improving temporal resolution of measurements during volcanic unrest, and for reducing the exposure of personnel to potentially hazardous conditions. Here we present the results of a new collaborative effort between the US Geological Survey and NASA Ames Research Center to develop a UAS specific for volcano gas monitoring using miniaturized gas sensing systems and a custom airframe. Two miniaturized sensing systems are being built and tested: a microDOAS system to quantify SO2 emission rates, and a miniature MultiGAS system for measuring in-situ concentrations of CO2, SO2, and H2S. The instruments are being built into pods that will be flown on a custom airframe built from surplus Raven RQ-11. The Raven is one of the smallest UAS (a SUAS), and has the potential to support global rapid response when eruptions occur because they require less crew for operations. A test mission is planned for fall 2015 or spring 2016 at the Crows Landing Airfield in central California. Future measurement locations might include Kilauea Volcano in Hawaii, or Pagan Volcano in the Marianas.

  10. Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Seung Bae; Hahn, Jae Ryang [Chonbuk National Univ., Jeonju (Korea, Republic of); Miao, Qing; Shin, Jiyoung; Dolphin, David [Univ. of British Columbia, Columbia (Canada)

    2014-06-15

    Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

  11. Geochemistry of mud volcano fluids in the Taiwan accretionary prism

    Energy Technology Data Exchange (ETDEWEB)

    You Chenfeng; Gieskes, Joris M.; Lee, Typhoon; Yui Tzenfu; Chen Hsinwen

    2004-05-01

    Taiwan is located at the collision boundary between the Philippine Sea Plate and the Asian Continental Plate and is one of the most active orogenic belts in the world. Fluids sampled from 9 sub-aerial mud volcanoes distributed along two major geological structures in southwestern Taiwan, the Chishan fault and the Gutingkeng anticline, were analyzed to evaluate possible sources of water and the degree of fluid-sediment interaction at depth in an accretionary prism. Overall, the Taiwanese mud volcano fluids are characterized by high Cl contents, up to 347 mM, suggesting a marine origin from actively de-watering sedimentary pore waters along major structures on land. The fluids obtained from the Gutingkeng anticline, as well as from the Coastal Plain area, show high Cl, Na, K, Ca, Mg and NH{sub 4}, but low SO{sub 4} and B concentrations. In contrast, the Chishan fault fluids are much less saline (1/4 seawater value), but show much heavier O isotope compositions ({delta}{sup 18}O=5.1-6.5 %o). A simplified scenario of mixing between sedimentary pore fluids and waters affected by clay dehydration released at depth can explain several crucial observations including heavy O isotopes, radiogenic Sr contents ({sup 87}Sr/{sup 86}Sr=0.71136-0.71283), and relatively low salinities in the Chishan fluids. Gases isolated from the mud volcanoes are predominantly CH{sub 4} and CO{sub 2}, where the CH{sub 4}-C isotopic compositions show a thermogenic component of {delta}{sup 13}C=-38 %o. These results demonstrate that active mud volcano de-watering in Taiwan is a direct product of intense sediment accretion and plate collision in the region.

  12. Thermal mapping of Hawaiian volcanoes with ASTER satellite data

    Science.gov (United States)

    Patrick, Matthew R.; Witzke, Coral-Nadine

    2011-01-01

    Thermal mapping of volcanoes is important to determine baseline thermal behavior in order to judge future thermal activity that may precede an eruption. We used cloud-free kinetic temperature images from the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor obtained between 2000 and 2010 to produce thermal maps for all five subaerial volcanoes in Hawai‘i that have had eruptions in the Holocene (Kīlauea, Mauna Loa, Hualālai, Mauna Kea, and Haleakalā). We stacked the images to provide time-averaged thermal maps, as well as to analyze temperature trends through time. Thermal areas are conspicuous at the summits and rift zones of Kīlauea and Mauna Loa, and the summit calderas of these volcanoes contain obvious arcuate, concentric linear thermal areas that probably result from channeling of rising gas along buried, historical intracaldera scarps. The only significant change in thermal activity noted in the study period is the opening of the Halema‘uma‘u vent at Kīlauea's summit in 2008. Several small thermal anomalies are coincident with pit craters on Hualālai. We suspect that these simply result from the sheltered nature of the depression, but closer inspection is warranted to determine if genuine thermal activity exists in the craters. Thermal areas were not detected on Haleakalā or Mauna Kea. The main limitation of the study is the large pixel size (90 m) of the ASTER images, which reduces our ability to detect subtle changes or to identify small, low-temperature thermal activity. This study, therefore, is meant to characterize the broad, large-scale thermal features on these volcanoes. Future work should study these thermal areas with thermal cameras and thermocouples, which have a greater ability to detect small, low-temperature thermal features.

  13. Evidence for dike emplacement beneath Iliamna Volcano, Alaska in 1996

    Science.gov (United States)

    Roman, D.C.; Power, J.A.; Moran, S.C.; Cashman, K.V.; Doukas, M.P.; Neal, C.A.; Gerlach, T.M.

    2004-01-01

    Two earthquake swarms, comprising 88 and 2833 locatable events, occurred beneath Iliamna Volcano, Alaska, in May and August of 1996. Swarm earthquakes ranged in magnitude from -0.9 to 3.3. Increases in SO2 and CO2 emissions detected during the fall of 1996 were coincident with the second swarm. No other physical changes were observed in or around the volcano during this time period. No eruption occurred, and seismicity and measured gas emissions have remained at background levels since mid-1997. Earthquake hypocenters recorded during the swarms form a cluster in a previously aseismic volume of crust located to the south of Iliamna's summit at a depth of -1 to 4 km below sea level. This cluster is elongated to the NNW-SSE, parallel to the trend of the summit and southern vents at Iliamna and to the regional axis of maximum compressive stress determined through inversion of fault-plane solutions for regional earthquakes. Fault-plane solutions calculated for 24 swarm earthquakes located at the top of the new cluster suggest a heterogeneous stress field acting during the second swarm, characterized by normal faulting and strike-slip faulting with p-axes parallel to the axis of regional maximum compressive stress. The increase in earthquake rates, the appearance of a new seismic volume, and the elevated gas emissions at Iliamna Volcano indicate that new magma intruded beneath the volcano in 1996. The elongation of the 1996-1997 earthquake cluster parallel to the direction of regional maximum compressive stress and the accelerated occurrence of both normal and strike-slip faulting in a small volume of crust at the top of the new seismic volume may be explained by the emplacement and inflation of a subvertical planar dike beneath the summit of Iliamna and its southern satellite vents. ?? 2003 Elsevier B.V. All rights reserved.

  14. Hawaiian Volcano Observatory seismic data, January to March 2009

    Science.gov (United States)

    Nakata, Jennifer S.; Okubo, Paul G.

    2010-01-01

    This U.S. Geological Survey (USGS), Hawaiian Volcano Observatory (HVO) summary presents seismic data gathered during January–March 2009. The seismic summary offers earthquake hypocenters without interpretation as a source of preliminary data and is complete in that most data for events of M≥1.5 are included. All latitude and longitude references in this report are stated in Old Hawaiian Datum.

  15. ASTER temperature and emissivity validation on volcano Teide

    OpenAIRE

    Amici, Stefania; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Piscini, Alessandro; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia; Buongiorno, Fabrizia; Istituto Nazionale di Geofisica e Vulcanologia, Sezione CNT, Roma, Italia

    2010-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER ) has operated since 19 December 1999 from NASA’s Terra Earth-orbiting, sun synchronous satellite. Emissivity and temperature standard products are based on the TES algorithms and require periodical validation campaign. In the frame of the EC project PREVIEW (http://www.preview-risk.com/) a field campaign on Volcano Teide was carried on, from the 16th to 24th of September 2007, to validate and to integrate the satellite...

  16. Determining dyke-propagation paths at Santorini volcano, Greece

    Science.gov (United States)

    Drymoni, Kyriaki; Browning, John; Lecoeur, Nora; Gudmundsson, Agust

    2016-04-01

    The volcanic Island of Santorini constitutes a complex of collapse calderas which has experienced a range of explosive and effusive volcanic eruptions and is still active. Numerous stratigraphic horizons which constitute the upper part of the volcano have widely different mechanical properties, resulting in local stresses that may act as dyke-traps, preventing the dykes from reaching the surface to erupt. Several caldera collapses (arrested and some feeders) within a section of the northern caldera wall, allowing detailed examination. This ongoing study will (1) document the petrological and structural characteristics of feeder and non-feeder (arrested) dykes and estimate their frequency; (2) determine the physiochemical and mechanical conditions that control dyke arrest/dyke penetration at contacts between layers; (3) explore the fluid and mechanical conditions of the associated magma chamber(s) that must be satisfied for chamber rupture and dyke injection to occur; (4) make numerical and probabilistic models as to the likely dyke paths in heterogeneous and anisotropic crustal segments/volcanoes (such as Santorini), including the likelihood of injected dykes reaching the surface during an unrest period in a volcano of a given type; (5) compare the data collected from Santorini with existing data on dykes worldwide, particularly those on dykes in Tenerife and Iceland. The principal aim of the study is to provide models that, during an unrest period in Santorini and other similar volcanoes, allow us to forecast (a) the condition for magma-chamber rupture and dyke injection, and (b) the likely path of the resulting dyke. The latter includes assessment of the likelihood as to dyke arrest versus dyke propagation to the surface, the latter resulting in an eruption. For dyke-fed eruptions, the study will also provide methods for forecasting the likely volumetric flow rates and eruption magnitudes.

  17. Abundance, degassing and chemistry of halogens at Kilauea Volcano

    Science.gov (United States)

    Edmonds, M.

    2007-12-01

    The source concentration of halogens in the mantle, as well as other volatiles, is heterogeneous and related to tectonic setting. Intra-plate magmas, which give rise to ocean island basalts and are derived from a mantle plume source, are typically enriched in halogens relative to mid-oceanic ridge basalts but depleted relative to arc magmas. Fourier Transform Infra Red (FTIR) spectroscopy measurements of volcanic gases were supplemented with electron microprobe analyses of glasses in erupted products from Kilauea Volcano, Hawaii, to provide the first detailed picture of the abundance, degassing and plume chemistry of halogens at this volcano. This study reveals that typical fluxes of both HCl and HF are 50-100 t/d; Cl/S ranges from 0.01 to 0.07 and F/S from 0.01 to 0.05. SiF4 and HBr are below detection. The abundance of halogens in melt inclusions and matrix glasses in the lavas allow formulation of their degassing path prior to eruption. Kilauea volcanic gases have lower Cl/S than volcanoes in arc settings, but are similar to those measured at other volcanoes in plume settings. F/S, on the other hand, is within range of that measured at Soufriere Hills, Masaya and Etna, indicating that there is a higher degree of homogeneity in the mantle distribution of F. The relative proportion of Cl, F and S in the volcanic plume varies considerably over time and space. This variability may be due to a number of factors: the depth of vapour-melt separation in the conduit; the degree of degassing of shallow, stagnant magma (S-rich gases exsolve first); interaction between vapour and a hydrothermal system; the relative rates of diffusion between the species; or processes occurring in the plume such as adsorption of or reaction between acidic gases and silicate particles.

  18. Observing ground surface change series at active volcanoes in Indonesia using backscattering intensity of SAR data

    Science.gov (United States)

    Saepuloh, Asep; Trianaputri, Mila Olivia

    2015-04-01

    Indonesia contains 27 active volcanoes passing the West through the East part. Therefore, Indonesia is the most hazard front due to the volcanic activities. To obtain the new precursory signals leading to the eruptions, we applied remote sensing technique to observe ground surface change series at the summit of Sinabung and Kelud volcanoes. Sinabung volcano is located at Karo Region, North Sumatra Province. This volcano is a strato volcano type which is re-activated in August 2010. The eruption continues to the later years by ejecting volcanic products such as lava, pyroclastic flow, and ash fall deposits. This study is targeted to observe ground surface change series at the summit of Sinabung volcano since 2007 to 2011. In addition, we also compared the summit ground surface changes after the eruptions of Kelud volcano in 2007. Kelud volcano is also strato volcano type which is located at East Java, Indonesia. The Synthetic Aperture Radar (SAR) remotely sensed technology makes possible to observe rapidly a wide ground surface changes related to ground surface roughness. Detection series were performed by extracting the backscattering intensity of the Phased Array type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS). The intensity values were then calculated using a Normalized Radar Cross-Section (NRCS). Based on surface roughness criterion at the summit of Sinabung volcano, we could observe the ground surface changes prior to the early eruption in August 2010. The continuous increment of NRCS values showed clearly at window size 3×3 pixel of the summit of Sinabung volcano. The same phenomenon was also detected at the summit of Kelud volcano after the 2007 eruptions. The detected ground surface changes were validated using optical Landsat-8, backscattering intensity ratio for volcanic products detection, and radial component of a tilt-meter data.

  19. Heat and SO2 Emission Rates at Active Volcanoes – The Case Study of Masaya, Nicaragua

    OpenAIRE

    Spampinato, Letizia; Salerno, Giuseppe

    2011-01-01

    The necessity of understanding volcanic phenomena, so as to assist hazard assessment and risk management, has led to development of a number of techniques for the tracking of volcanic events so as to support forecasting efforts. Since 1980s scientific community has progressively drifted research and surveillance at active volcanoes by integrated approach. Nowadays, volcano observatories over the world record and integrate real or near-real time data for monitoring and understanding volcano be...

  20. Analytical results for non-Hermitian parity–time-symmetric and Hermitian asymmetric volcano potentials

    Indian Academy of Sciences (India)

    XIE QIONGTAO; YAN LINA; WANG LINMAO; FU JUN

    2016-05-01

    We investigate both the non-Hermitian parity–time-(PT-)symmetric and Hermitianasymmetric volcano potentials, and present the analytical solution in terms of the confluent Heun function. Under certain special conditions, the confluent Heun function can be terminated as a polynomial, thereby leading to certain exact analytical results. It is found that the non-Hermitian PTsymmetric volcano potentials support the normalizable and non-normalizable reflectionless stateswith real energies. The Hermitian asymmetric volcano potentials allow normalizable reflectionless states with complex energies.

  1. Linking subsurface to surface degassing at active volcanoes: A thermodynamic model with applications to Erebus volcano

    Science.gov (United States)

    Iacovino, Kayla

    2015-12-01

    Volcanic plumbing systems are the pathways through which volatiles are exchanged between the deep Earth and the atmosphere. The interplay of a multitude of processes occurring at various depths in the system dictates the composition and quantity of gas eventually erupted through volcanic vents. Here, a model is presented as a framework for interpreting surface volcanic gas measurements in terms of subsurface degassing processes occurring throughout a volcanic plumbing system. The model considers all possible sources of fluid from multiple depths, including degassing of dissolved volatiles during crystallization and/or decompression as recorded in melt inclusions plus any co-existing fluid phase present in a magma reservoir. The former is achieved by differencing melt inclusion volatile contents between groups of melt inclusions saturated at discrete depths. The latter is calculated using a thermodynamic model, which computes the composition of a C-O-H-S fluid in equilibrium with a melt given a minimum of five thermodynamic parameters commonly known for natural systems (T, P, fO2, either fH2 or one parameter for H2O, and either fS2 or one parameter for CO2). The calculated fluids are thermodynamically decompressed and run through a mixing model, which finds all possible mixtures of subsurface fluid that match the chemistry of surface gas within ±2.0 mol%. The method is applied to Mount Erebus (Antarctica), an active, intraplate volcano whose gas emissions, which emanate from an active phonolitic lava lake, have been well quantified by FTIR, UV spectroscopy, and multi-gas sensors over the last several decades. In addition, a well-characterized suite of lavas and melt inclusions, and petrological interpretations thereof, represent a wealth of knowledge about the shallow, intermediate, and deep parts of the Erebus plumbing system. The model has been used to calculate the compositions of seven C-O-H-S fluids that originate from four distinct regions within the Erebus

  2. A repeatable seismic source for tomography at volcanoes

    Directory of Open Access Journals (Sweden)

    A. Ratdomopurbo

    1999-06-01

    Full Text Available One major problem associated with the interpretation of seismic signals on active volcanoes is the lack of knowledge about the internal structure of the volcano. Assuming a 1D or a homogeneous instead of a 3D velocity structure leads to an erroneous localization of seismic events. In order to derive a high resolution 3D velocity model ofMt. Merapi (Java a seismic tomography experiment using active sources is planned as a part of the MERAPI (Mechanism Evaluation, Risk Assessment and Prediction Improvement project. During a pre-site survey in August 1996 we tested a seismic source consisting of a 2.5 l airgun shot in water basins that were constructed in different flanks of the volcano. This special source, which in our case can be fired every two minutes, produces a repeatable, identical source signal. Using this source the number of receiver locations is not limited by the number of seismometers. The seismometers can be moved to various receiver locations while the source reproduces the same source signal. Additionally, at each receiver location we are able to record the identical source signal several times so that the disadvantage of the lower energy compared to an explosion source can be reduced by skipping disturbed signals and stacking several recordings.

  3. Electrical conductivity of intermediate magmas from Uturuncu Volcano (Bolivia)

    Science.gov (United States)

    Laumonier, Mickael; Gaillard, Fabrice; Sifre, David

    2015-04-01

    Magmas erupted at Uturuncu volcano (South Bolivia) comes from the Altiplano-Puna Magma Body (APMB, Chile-Bolivia), a crustal massive body of 80 km long by 10 km thick located at ~ 35 km depth named. Recent magneto telluric surveys reveal a resistivity lower than 1 ohm.m due to the presence of melt which could result in the reactivation of the volcano. In order to better constrain the resistivity profiles and thus the conditions of magma storage of the APMB, we have performed in situ electrical measurements on natural dacites and andesites from Uturuncu with a 4-wire set up in a piston cylinder and internally heated pressure vessel. The range of temperature (500 to 1300°C), pressure (0.3 to 2 Gpa), and the various water contents covers the respective ranges occurring at natural conditions. The results show that the conductivity increases with the temperature and the water content but slightly decreases with the pressure. Then a model was built from these results so as to help in (i) interpreting the electrical signature of natural magmas, (ii) constraining their conditions (chemical composition, temperature, pressure, water content, melt fraction) from the source to the storage location and (iii) providing information on the interior structure of a volcano and its reservoir.

  4. Volcano-related materials in concretes: a comprehensive review.

    Science.gov (United States)

    Cai, Gaochuang; Noguchi, Takafumi; Degée, Hervé; Zhao, Jun; Kitagaki, Ryoma

    2016-04-01

    Massive volcano-related materials (VRMs) erupted from volcanoes bring the impacts to natural environment and humanity health worldwide, which include generally volcanic ash (VA), volcanic pumice (VP), volcanic tuff (VT), etc. Considering the pozzolanic activities and mechanical characters of these materials, civil engineers propose to use them in low carbon/cement and environment-friendly concrete industries as supplementary cementitious materials (SCMs) or artificial/natural aggregates. The utilization of VRMs in concretes has attracted increasing and pressing attentions from research community. Through a literature review, this paper presents comprehensively the properties of VRMs and VRM concretes (VRMCs), including the physical and chemical properties of raw VRMs and VRMCs, and the fresh, microstructural and mechanical properties of VRMCs. Besides, considering environmental impacts and the development of long-term properties, the durability and stability properties of VRMCs also are summarized in this paper. The former focuses on the resistance properties of VRMCs when subjected to aggressive environmental impacts such as chloride, sulfate, seawater, and freezing-thawing. The latter mainly includes the fatigue, creep, heat-insulating, and expansion properties of VRMCs. This study will be helpful to promote the sustainability in concrete industries, protect natural environment, and reduce the impacts of volcano disaster. Based on this review, some main conclusions are discussed and important recommendations regarding future research on the application of VRMs in concrete industries are provided. PMID:26865491

  5. Satellite monitoring of African volcanoes by means of RSTVOLC

    Science.gov (United States)

    Pergola, Nicola; Coviello, Irina; Falconieri, Alfredo; Filizzola, Carolina; Lacava, Teodosio; Liuzzi, Mariangela; Marchese, Francesco; Paciello, Rossana; Tramutoli, Valerio

    2015-04-01

    RSTVOLC is an algorithm for volcanic hot spot detection from space based on the Robust Satellite Techniques (RST) multi-temporal approach. This algorithm was firstly tested on Mt. Etna area, analyzing a long-term time series of infrared Advanced Very High Resolution Radiometer (AVHRR) satellite records, and was then implemented on data provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) to study a number of volcanoes in different geographic areas, including Asamayama (Japan) and Eyjafjallajökull (Iceland). Recently, RSTVOLC has been exported on data provided by geostationary sensors such as the Spinning Enhanced Visible and Infrared Imager (SEVIRI), onboard Meteosat Second Generation (MSG) satellites, allowing for the timely detection and real time monitoring of thermal volcanic phenomena. In this work, recent results achieved studying some important African volcanoes by means of polar and geostationary satellite data are presented. Outcomes and results achieved by RSTVOLC studying some past Ol Donyo Lengai (Tanzania) eruptions and the recent Nyamuragira (Congo) activity are reported and discussed, also for comparison with other independent hot spot detection techniques. This study confirms that RSTVOLC may be successfully used to monitor volcanoes at a global scale and to detect low level thermal activities, thanks to its intrinsic self-adaptivity to different observational/environmental conditions as well as to its high sensitivity to sublte hot spots, contributing to volcanic risk mitigation.

  6. InSAR observations of active volcanoes in Latin America

    Science.gov (United States)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  7. Volcano collapse along the Aleutian Ridge (western Aleutian Arc

    Directory of Open Access Journals (Sweden)

    C. Montanaro

    2011-03-01

    Full Text Available The Aleutian Ridge, in the western part of the Aleutian Arc, consists of a chain of volcanic islands perched atop the crest of a submarine ridge with most of the active Quaternary stratocones or caldera-like volcanoes being located on the northern margins of the Aleutian Islands. Integrated analysis of marine and terrestrial data resulted in the identification and characterization of 17 extensive submarine debris avalanche deposits from 11 volcanoes. Two morphological types of deposits are recognizable, elongate and lobate, with primary controls on the size and distribution of the volcanic debris being the volume and nature of material involved, proportion of fine grained material, depth of emplacement and the paleo-bathymetry. Volume calculations show the amount of material deposited in debris avalanches is as much as three times larger than the amount of material initially involved in the collapse, suggesting the incorporation of large amounts of submarine material during transport. The orientation of the collapse events is influenced by regional fault systems underling the volcanoes. The western Aleutian Arc has a significant tsunamigenic potential and communities within the Aleutian Islands and surrounding areas of the North Pacific as well as shipping and fishing fleets that cross the North Pacific may be at risk during future eruptions in this area.

  8. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-01-01

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano. PMID:26507183

  9. Volcano hazards assessment for the Lassen region, northern California

    Science.gov (United States)

    Clynne, Michael A.; Robinson, Joel E.; Nathenson, Manuel; Muffler, L.J. Patrick

    2012-01-01

    The Lassen region of the southernmost Cascade Range is an active volcanic area. At least 70 eruptions have occurred in the past 100,000 years, including 3 in the past 1,000 years, most recently in 1915. The record of past eruptions and the present state of the underlying magmatic and hydrothermal systems make it clear that future eruptions within the Lassen Volcanic Center are very likely. Although the annual probability of an eruption is small, the consequences of some types of eruptions could be severe. Compared to those of a typical Cascade composite volcano, eruptive vents at Lassen Volcanic Center and the surrounding area are widely dispersed, extending in a zone about 50 km wide from the southern boundary of Lassen Volcanic National Park north to the Pit River. This report presents a discussion of volcanic and other geologic hazards in the Lassen area and delineates hazards zones for different types of volcanic activity. Owing to its presence in a national park with significant visitorship, its explosive behavior, and its proximity to regional infrastructure, the Lassen Volcanic Center has been designated a "high threat volcano" in the U.S. Geological Survey National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity and ground deformation, and the Lassen area has a network of seismometers and Global Positioning System stations in place to monitor for early warning of volcanic activity.

  10. Design of Deformation Monitoring System for Volcano Mitigation

    Science.gov (United States)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  11. Monitoring Active Volcanos Using Aerial Images and the Orthoview Tool

    Directory of Open Access Journals (Sweden)

    Maria Marsella

    2014-12-01

    Full Text Available In volcanic areas, where it can be difficult to perform direct surveys, digital photogrammetry techniques are rarely adopted for routine volcano monitoring. Nevertheless, they have remarkable potentialities for observing active volcanic features (e.g., fissures, lava flows and the connected deformation processes. The ability to obtain accurate quantitative data of definite accuracy in short time spans makes digital photogrammetry a suitable method for controlling the evolution of rapidly changing large-area volcanic phenomena. The systematic acquisition of airborne photogrammetric datasets can be adopted for implementing a more effective procedure aimed at long-term volcano monitoring and hazard assessment. In addition, during the volcanic crisis, the frequent acquisition of oblique digital images from helicopter allows for quasi-real-time monitoring to support mitigation actions by civil protection. These images are commonly used to update existing maps through a photo-interpretation approach that provide data of unknown accuracy. This work presents a scientific tool (Orthoview that implements a straightforward photogrammetric approach to generate digital orthophotos from single-view oblique images provided that at least four Ground Control Points (GCP and current Digital Elevation Models (DEM are available. The influence of the view geometry, of sparse and not-signalized GCP and DEM inaccuracies is analyzed for evaluating the performance of the developed tool in comparison with other remote sensing techniques. Results obtained with datasets from Etna and Stromboli volcanoes demonstrate that 2D features measured on the produced orthophotos can reach sub-meter-level accuracy.

  12. Volcano-related materials in concretes: a comprehensive review.

    Science.gov (United States)

    Cai, Gaochuang; Noguchi, Takafumi; Degée, Hervé; Zhao, Jun; Kitagaki, Ryoma

    2016-04-01

    Massive volcano-related materials (VRMs) erupted from volcanoes bring the impacts to natural environment and humanity health worldwide, which include generally volcanic ash (VA), volcanic pumice (VP), volcanic tuff (VT), etc. Considering the pozzolanic activities and mechanical characters of these materials, civil engineers propose to use them in low carbon/cement and environment-friendly concrete industries as supplementary cementitious materials (SCMs) or artificial/natural aggregates. The utilization of VRMs in concretes has attracted increasing and pressing attentions from research community. Through a literature review, this paper presents comprehensively the properties of VRMs and VRM concretes (VRMCs), including the physical and chemical properties of raw VRMs and VRMCs, and the fresh, microstructural and mechanical properties of VRMCs. Besides, considering environmental impacts and the development of long-term properties, the durability and stability properties of VRMCs also are summarized in this paper. The former focuses on the resistance properties of VRMCs when subjected to aggressive environmental impacts such as chloride, sulfate, seawater, and freezing-thawing. The latter mainly includes the fatigue, creep, heat-insulating, and expansion properties of VRMCs. This study will be helpful to promote the sustainability in concrete industries, protect natural environment, and reduce the impacts of volcano disaster. Based on this review, some main conclusions are discussed and important recommendations regarding future research on the application of VRMs in concrete industries are provided.

  13. Tephra hazard assessment at Concepción Volcano, Nicaragua

    Science.gov (United States)

    Scaini, C.; Folch, A.; Navarro, M.

    2012-03-01

    Concepción volcano in Ometepe Island, Nicaragua, is a highly active volcano with a rich historical record of explosive eruptions. Tephra fallout from Concepción jeopardizes the surrounding populations, whereas volcanic ash clouds threat aerial navigation at a regional level. The assessment of these hazards is important for territorial planning and adoption of mitigation measures. Here we compute probabilistic hazard maps for Concepción volcano considering three different eruptive scenarios based on past reference events. Previous geological analysis is used to quantify the eruption parameters of the reference events. We account for uncertainties in the definition of the scenarios trough probability density functions. A representative meteorological dataset is created for each scenario by running the WRF-ARW mesoscale meteorological model over a typical meteorological year, defined in terms of wind speed and direction at a given atmospheric height. Tephra transport and deposition under different eruption and wind conditions is modelled using the FALL3D dispersion model. For each scenario, simulations are combined to build probabilistic hazard maps for critical values of tephra load and for threshold values of airborne ash concentration at relevant flight levels. Results are useful to identify the expected impacts for each eruption type and aim at improving the assessment and management of risk in the region.

  14. Geology and geothermal potential of the tecuamburro volcano area, Guatemala

    Science.gov (United States)

    Duffield, W.A.; Heiken, G.H.; Wohletz, K.H.; Maassen, L.W.; Dengo, G.; McKee, E.H.; Castaneda, O.

    1992-01-01

    Tecuamburro, an andesitic stratovolcano in southeastern Guatemala, is within the chain of active volcanoes of Central America. Though Tecuamburro has no record of historic eruptions, radiocarbon ages indicate that eruption of this and three other adjacent volcanoes occurred within the past 38,300 years. The youngest eruption produced a dacite dome. Moreover, powerful steam explosions formed a 250 m wide crater about 2900 years ago near the base of this dome. The phreatic crater contains a pH-3 thermal lake. Fumaroles are common along the lake shore, and several other fumaroles are located nearby. Neutral-chloride hot springs are at lower elevations a few kilometers away. All thermal manifestations are within an area of about 400 km2 roughly centered on Tecuamburro Volcano. Thermal implications of the volume, age, and composition of the post-38.3 ka volcanic rocks suggest that magma, or recently solidified hot plutons, or both are in the crust beneath these lavas. Chemical geothermometry carried out by other workers suggests that a hydrothermal-convection system is centered over this crustal heat source. Maximum temperatures of about 300??C are calculated for samples collected in the area of youngest volcanism, whereas samples from outlying thermal manifestations yield calculated temperatures <- 165??C. An 808 m deep drill hole completed in 1990 to partly test the geothermal model developed from surface studies attained a maximum temperature of almost 240??C. Thus, the possibility of a commercial-grade hydrothermal resource in the area seems high. ?? 1992.

  15. Gypsum karst in Italy: a review

    Science.gov (United States)

    De Waele, Jo; Chiarini, Veronica; Columbu, Andrea; D'Angeli, Ilenia M.; Madonia, Giuliana; Parise, Mario; Piccini, Leonardo; Vattano, Marco; Vigna, Bartolomeo; Zini, Luca; Forti, Paolo

    2016-04-01

    Although outcropping only rarely in Italy, gypsum karst has been described in detail since the early XXth century (Marinelli, 1917). Gypsum caves are now known from almost all Italian regions (Madonia & Forti, 2003), but are mainly localised along the northern border of the Apennine chain (Emilia Romagna and Marche regions), Calabria, and Sicily, where the major outcrops occur. Recently, important caves have also been discovered in the underground gypsum quarries in Piedmont (Vigna et al., 2010). During the late 80s and 90s several multidisciplinary studies have been carried out in many gypsum areas. All this work converged into a comprehensive overview in 2003 (Madonia & Forti, 2003). Further detailed studies focused on the gypsum areas of Emilia Romagna (Chiesi et al., 2010; Forti & Lucci, 2010; Demaria et al., 2012; De Waele & Pasini, 2013; Ercolani et al., 2013; Columbu et al., 2015; Lucci & Piastra, 2015; Tedeschi et al., 2015) and of Sicily (Madonia & Vattano, 2011). Sinkholes related to Permo-Triassic gypsum have been studied in Friuli Venezia Giulia (Zini et al., 2015). This presentation will review the state of the art regarding different aspects of evaporite karst in Italy focusing on the main new results. References Chiesi M., et al. (2010) - Origin and evolution of a salty gypsum/anhydrite karst spring: the case of Poiano (Northern Apennines, Italy). Hydrogeology Journal, 18, pp. 1111-1124. Columbu A. et al. (2015) - Gypsum caves as indicators of climate-driven river incision and aggradation in a rapidly uplifting region. Geology, 43(6), 539-542. Demaria D. et al. (Eds.) (2012), Le Grotte Bolognesi, GSB-USB, 431 p. De Waele J., Pasini G. (2013) - Intra-messinian gypsum palaeokarst in the northern Apennines and its palaeogeographic implications. Terra Nova 25, pp. 199-205. Ercolani M., et al. (Eds.) (2013), I Gessi e la Cave i Monte Tondo. Studio multidisciplinare di un'area carsica nella Vena del Gesso Romagnola. Memorie Ist. It. Spel. II(26), 559 p

  16. Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border

    Science.gov (United States)

    Liu, Jia-qi; Chen, Shuang-shuang; Guo, Zheng-fu; Guo, Wen-feng; He, Huai-yu; You, Hai-tao; Kim, Hang-min; Sung, Gun-ho; Kim, Haenam

    2015-11-01

    The intense Cenozoic volcanism of Mt. Changbai provides a natural laboratory for investigating the characteristics of volcanism and the dynamical evolution of the Northeast Asian continental margin. Mt. Changbai volcanoes predominantly consist of Wangtian'e volcano in China, Tianchi volcano spanning China and DPR Korea, and Namphothe volcano in DPR Korea. Geochronology data and historical records of volcanism indicate that the three eruption centers were formed in the following sequence: Wangtian'e volcano to Namphothe and Tianchi volcano, advancing temporally and spatially from southwest to northeast. The three eruption centers of Mt. Changbai volcano are located close together, have similar magma evolution trends, bimodal volcanic rock distribution, and an enriched mantle source, etc. Although the Cenozoic volcanism in Mt. Changbai is thought to be somewhat related to the subduction of the Western Pacific Plate, the regularity of volcanic activity and petrography characteristics have continental rift affinity. We therefore conclude that the occurrence of synchronous and similar volcanic activity on both sides of the Japan Sea (i.e., the Japan Arc and Northeast China) likely respond to the rift expansion and the back-arc spreading of Japan Sea. From many perspectives, Mt. Changbai volcano is a giant active volcano with hidden potentially eruptive risks.

  17. Volcano monitoring using GPS: Developing data analysis strategies based on the June 2007 Kīlauea Volcano intrusion and eruption

    Science.gov (United States)

    Larson, Kristine M.; Poland, Michael; Miklius, Asta

    2010-01-01

    The global positioning system (GPS) is one of the most common techniques, and the current state of the art, used to monitor volcano deformation. In addition to slow (several centimeters per year) displacement rates, GPS can be used to study eruptions and intrusions that result in much larger (tens of centimeters over hours-days) displacements. It is challenging to resolve precise positions using GPS at subdaily time intervals because of error sources such as multipath and atmospheric refraction. In this paper, the impact of errors due to multipath and atmospheric refraction at subdaily periods is examined using data from the GPS network on Kīlauea Volcano, Hawai'i. Methods for filtering position estimates to enhance precision are both simulated and tested on data collected during the June 2007 intrusion and eruption. Comparisons with tiltmeter records show that GPS instruments can precisely recover the timing of the activity.

  18. Anthrax phylogenetic structure in Northern Italy

    Directory of Open Access Journals (Sweden)

    Corrò Michela

    2011-07-01

    Full Text Available Abstract Background Anthrax has almost disappeared from mainland Europe, except for the Mediterranean region where cases are still reported. In Central and South Italy, anthrax is enzootic, but in the North there are currently no high risk areas, with only sporadic cases having been registered in the last few decades. Regional genetic and molecular characterizations of anthrax in these regions are still lacking. To investigate the potential molecular diversity of Bacillus anthracis in Northern Italy, canonical Single nucleotide polymorphism (canSNP and Multilocus variable number tandem repeat analysis (MLVA genotyping was performed against all isolates from animal outbreaks registered in the last twenty years in the region. Findings Six B. anthracis strains were analyzed. The canSNP analysis indicates the presence of three sublineages/subgroups each of which belong to one of the 12 worldwide CanSNP genotypes: B.Br.CNEVA (3 isolates, A.Br.005/006 (1 isolates and A.008/009 (2 isolate. The latter is the dominant canSNP genotype in Italy. The 15-loci MLVA analysis revealed five different genotypes among the isolates. Conclusions The major B branch and the A.Br.005/006 were recovered in the Northeast region. The genetic structure of anthrax discovered in this area differs from the rest of the country, suggesting the presence of a separate and independent B. anthracis molecular evolution niche. Although the isolates analyzed in this study are limited in quantity and representation, these results indicate that B. anthracis genetic diversity changes around the Alps.

  19. The promotion of energy efficiency in Italy

    International Nuclear Information System (INIS)

    In 2004 Italy introduced an obligation for electricity and gas distribution companies to reach specific objectives regarding the improvement of energy efficiency in final energy consumption. The scope of the provision is to promote investments in energy efficiency in order to meet the greenhouse gases reduction target set by the Kyoto protocol. The adoption of binding targets of energy efficiency will also lead to the development of an energy services market, modifying the traditional relation between energy dealers and final consumers, thus leading to a more efficient use of the available resources. Similar mechanisms have already been applied in other European countries (as France and United Kingdom) and will be likely introduced in other countries with the implementation of European Directive on energy end-use efficiency and energy services. This paper describes and analyzes both the measures adopted in Italy and the results obtained after the first year of operation of the mechanism. The paper is divided in six different sections. In the first part we highlight the main problems related to the development of system based on tradable white certificates. In the second part we provide a brief description of the Italian regulatory context. In the third part there is an economic analysis of investments in energy efficiency. The fourth part considers the different options that distribution companies face in order to reach the energy efficiency targets. The fifth part shows the results obtained after the first year of operation of the mechanism. Finally, we propose some possible modifications to the scheme adopted in Italy considering the results obtained and the alternative solutions already applied in France and United Kingdom

  20. Genome characterization of feline morbillivirus from Italy.

    Science.gov (United States)

    Marcacci, Maurilia; De Luca, Eliana; Zaccaria, Guendalina; Di Tommaso, Morena; Mangone, Iolanda; Aste, Giovanni; Savini, Giovanni; Boari, Andrea; Lorusso, Alessio

    2016-08-01

    Feline morbillivirus (FeMV) has been recently identified by RT-PCR in the urine sample of a nephropathic cat in Italy. In this report, we describe the whole genome sequence of strain Piuma/2015 obtained by combination of sequence independent single primer amplification method (SISPA) and next generation sequencing (NGS) starting from RNA purified from the infected urine sample. The existence in Germany and Turkey of FeMVs from cats divergent from Piuma/2015, suggests the presence of FeMV heterogeneity in Europe as it has been described previously in Japan and China. PMID:27155238