Sample records for capillary resistance

  1. Microchannel plate fabrication using glass capillary arrays with Atomic Layer Deposition films for resistance and gain (United States)

    Popecki, M. A.; Adams, B.; Craven, C. A.; Cremer, T.; Foley, M. R.; Lyashenko, A.; O'Mahony, A.; Minot, M. J.; Aviles, M.; Bond, J. L.; Stochaj, M. E.; Worstell, W.; Elam, J. W.; Mane, A. U.; Siegmund, O. H. W.; Ertley, C.; Kistler, L. M.; Granoff, M. S.


    Microchannel plates (MCPs) have been used for many years in space flight instrumentation as fast, lightweight electron multipliers. A new MCP fabrication method combines a glass substrate composed of hollow glass capillary arrays with thin film coatings to provide the resistive and secondary electron emissive properties. Using this technique, the gain, resistance, and glass properties may be chosen independently. Large-area MCPs are available at moderate cost. Secondary emission films of Al2O3 and MgO provide sustained high gain as charge is extracted from the MCP. Long lifetimes are possible, and a total extracted charge of 7 C/cm2 has been demonstrated. Background rates are low because the glass substrate has little radioactive potassium 40. Curved MCPs are easily fabricated with this technique to suit instrument symmetries, simplifying secondary electron steering and smoothing azimuthal efficiency.

  2. Capillary electrophoresis-single strand conformation polymorphism for the detection of multiple mutations leading to tuberculosis drug resistance. (United States)

    Krothapalli, Sowmya; May, Michael K; Hestekin, Christa N


    Drug resistant tuberculosis (TB) is a major health problem in both developed and developing countries. Mutations in the Mycobacterium (M.) tuberculosis bacterial genome, such as those to the rpoB gene and mabA-inhA promoter region, have been linked to TB drug resistance in against rifampicin and isoniazid, respectively. The rapid, accurate, and inexpensive identification of these and other mutations leading to TB drug resistance is an essential tool for improving human health. Capillary electrophoresis (CE) single strand conformation polymorphism (SSCP) can be a highly sensitive technique for the detection of genetic mutation that has not been previously explored for drug resistance mutations in M. tuberculosis. This work explores the potential of CE-SSCP through the optimization of variables such as polymer separation matrix concentration, capillary wall coating, electric field strength, and temperature on resolution of mutation detection. The successful detection of an rpoB gene mutation and two mabA-inhA promoter region mutations while simultaneously differentiating a TB-causing mycobacteria from a non-TB bacteria was accomplished using the optimum conditions of 4.5% (w/v) PDMA in a PDMA coated capillary at 20°C using a separation voltage of 278 V/cm. This multiplexed analysis that can be completed in a few hours demonstrates the potential of CE-SSCP to be an inexpensive and rapid analysis method.

  3. Quartz Capillary Cladding Anthracene and Polycyclic Aromatic Hydrocarbon(PAH)-Core Scintillating/WLS Fibers for High Rates and Radiation Damage Resistance

    CERN Document Server

    Albayrak-Yetkin, A; Corso, J; Jennings, G; Mestvirisvilli, A; Onel, Y; Schmidt, I; Sanzeni, C; Winn, D R; Yetkin, T


    Quartz capillary tube/fibers have been filled with anthracene by a melt and vacuum inbibition process to fabricate a scintillating core fiber. Other polcyclic aromatic hydrocarbons(PAH), such as p-Terphenyl (pTP), stilbene or naphthalene are also well-suited to scintillating/shifting fiber cores. The resulting scintillating core with quartz cladding capillary fibers (250-750 micron cores) had a high specific light output when tested with muons (8 p.e. per MIP). These PAH core quartz capillary cladding scintillating/shifting optical fibers have the potential of high radiation resistance, fast response, and are applicable to many energy and intensity frontier experiments.

  4. Solvent-resistant sol-gel polydimethyldiphenylsiloxane coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. (United States)

    Segro, Scott S; Malik, Abdul


    A sol-gel polydimethyldiphenylsiloxane (PDMDPS) coating was developed for capillary microextraction on-line hyphenated with high-performance liquid chromatography (HPLC). This coating was created using methyltrimethoxysilane (MTMS) as the sol-gel precursor and di-hydroxy-terminated PDMDPS as the sol-gel active polymer. The methyl and phenyl groups on the sol-gel active polymer and the methyl groups on the sol-gel precursor ultimately turned into pendant groups providing the ability to extract non-polar analytes. A 40-cm segment of 0.25 mm I.D. fused silica capillary containing the sol-gel PDMDPS coating was installed as an external sampling loop in an HPLC injection port. Aqueous samples containing polycyclic aromatic hydrocarbons (PAHs), aromatic compounds, ketones, and aldehydes were passed through this capillary wherein the analytes were extracted by the sol-gel coating. The extracted analytes were then transferred to the HPLC column using isocratic or gradient elution with an acetonitrile/water mobile phase. This capillary demonstrated excellent extraction capability for non-polar (e.g., polycyclic aromatic hydrocarbons and aromatic compounds) as well as moderately polar compounds, such as aromatic amines, ketones, and aldehydes. The test results indicate that PDMDPS can be successfully immobilized into a sol-gel network and that the resulting solvent-resistant sol-gel organic-inorganic hybrid coating can be effectively used for on-line hyphenation of capillary microextraction with high-performance liquid chromatography. The test results also indicate that the sol-gel PDMDPS coated capillary is resistant to high-temperature solvents, making it suitable for applications in high-temperature HPLC. To the best of our knowledge, this is the first report on the creation of a silica-based sol-gel PDMDPS coating used in capillary microextraction on-line hyphenated to HPLC.

  5. Capillary sample (United States)

    ... several times a day using capillary blood sampling. Disadvantages to capillary blood sampling include: Only a limited ... do not constitute endorsements of those other sites. Copyright 1997-2017, A.D.A.M., Inc. Duplication ...

  6. Capillary origami


    Py, Charlotte; Reverdy, Paul; Doppler, L.; J. Bico; Roman, B.; Baroud, Charles,


    International audience; The hairs of a wet dog rushing out from a pond assemble into bundles; this is a common example of the effect of capillary forces on flexible structures. From a practical point of the deformation and adhesion of compliant structures induced by interfacial forces may lead to disastrous effects in mechanical microsystems.

  7. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu


    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  8. Impaired skin capillary recruitment in essential hypertension is caused by both functional and structural capillary rarefaction

    NARCIS (Netherlands)

    Serne, EH; Gans, ROB; ter Maaten, JC; Tangelder, GJ; Donker, AJM; Stehouwer, CDA


    Capillary rarefaction occurs in many tissues in patients with essential hypertension and may contribute to an increased vascular resistance and impaired muscle metabolism. Rarefaction may be caused by a structural (anatomic) absence of capillaries, functional nonperfusion, or both. The aim of this s

  9. Leukocytes in capillary flow. (United States)

    Schmid-Schönbein, G W; Lee, J


    During disease, the flow of blood cells through the capillary network is one of the most perilous events in the microcirculation. Capillary distensibility, cytoplasmic activity of endothelial cells, red cells and leukocytes play an important role in capillary perfusion. Occlusion of capillaries is one of the early signs of vascular failure and is encountered in many different conditions and organs. Adhesion of leukocytes to the endothelium via expression of membrane adhesion molecules leads to microvascular entrapment with capillary occlusion.

  10. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient. (United States)

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, Filip; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal


    The electro-osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro-osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin-resistant and methicillin-susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused-silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV-visible detection. First the influence of the electro-osmotic flow on the peak shape of a marker of electro-osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical-water-treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.

  11. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. (United States)

    Barroso, Albert; Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria


    Certain glycoproteins are rather difficult to digest due to compacted tertiary or quaternary structures. In a previous study, a capillary LC coupled to TOF-MS (μLC-TOF-MS) method was developed for the detection and characterization of the glycopeptide glycoforms of human transferrin (Tf), a proteolytic resistant glycoprotein, in serum samples. After immunoaffinity purification, Tf was digested with trypsin in the presence of RapiGest(®) and μLC-TOF-MS analyses permitted to detect the N413 and N611 glycopeptide glycoforms. Conversely, the use of this surfactant, albeit mandatory to quantitatively digest the isolated Tf, proved detrimental to CE-TOF-MS analysis due to its interaction with the inner surface of the silica capillary walls. As CE is usually regarded as an interesting alternative to other separation techniques (low consumption of reagents, excellent separation efficiency, and reduced analysis times), in this work, the undesirable interferences of the surfactant have been removed to allow the correct separation and detection of Tf glycoforms by CE-TOF-MS. Moreover, the digestion protocol described by the RapiGest(®) manufacturer has been modified to minimize desialylation of Tf glycopeptide glycoforms. The new developed CE-TOF-MS methodology has been then compared with the former μLC-TOF-MS by means of sensitivity and separation efficiency of Tf glycopeptide glycoforms in the standard glycoprotein. Additionally, Tf glycopeptide glycoforms from serum of healthy volunteers and patients with congenital disorders of glycosylation have also been analyzed following the developed methodology.

  12. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T


    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  13. Electroviscous effects in capillary filling of nanochannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Kristensen, Anders


    We theoretically examine the widespread hypothesis of an electroviscous origin of the increase in apparent viscosity observed in recent experiments on capillary filling of nanochannels. Including Debye-layer corrections to the hydraulic resistance, we find that the apparent viscosity reaches a ma...

  14. Advances in Capillary Chromatography%毛细管色谱的进展

    Institute of Scientific and Technical Information of China (English)


    Capillary columns are used in both capillary liquid chromatography and capillary electrochromatography. The design for capillary liquid chromatography is discussed in comparison with capillary gas chromatography. The difference of diffusion coefficient in gas and liquid phase is a key role. The study for obtaining a high performance capillary liquid chromatography is discussed. Capillary electrochromatography is recently interesting for its instinct ability to realize a high performance chromatography. Capillary electrochromatography with and without pressurized flow is reviewed briefly. Instrumentation for capillary electrochromatography with pressurized flow is discussed. The port of splitting, and gradient elution of both solution and potential are described. The new findings of both the variation of column resistance and capacity factor according to the value of applied electric voltage are also discussed.

  15. Gas-Filled Capillary Model (United States)

    Steinhauer, L. C.; Kimura, W. D.


    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  16. Derivatization in Capillary Electrophoresis. (United States)

    Marina, M Luisa; Castro-Puyana, María


    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  17. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H


    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  18. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L


    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  19. due to Capillary Forces

    Directory of Open Access Journals (Sweden)

    Hassen M. Ouakad


    Full Text Available We present modeling and analysis for the static behavior and collapse instabilities of doubly-clamped and cantilever microbeams subjected to capillary forces. These forces can be as a result of a volume of liquid trapped underneath the microbeam during the rinsing and drying process in fabrication. The model considers the microbeam as a continuous medium, the capillary force as a nonlinear function of displacement, and accounts for the mid-plane stretching and geometric nonlinearities. The capillary force is assumed to be distributed over a specific length underneath the microbeam. The Galerkin procedure is used to derive a reduced-order model consisting of a set of nonlinear algebraic and differential equations that describe the microbeams static and dynamic behaviors. We study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We calculate the pull-in length that distinguishes the free from the pinned configurations as a function of the beam thickness and gap width for both microbeams. Comparisons are made with analytical results reported in the literature based on the Ritz method for linear and nonlinear beam models. The instability problem, which brings the microbeam from a pinned to adhered configuration is also investigated. For this case, we use a shooting technique to solve the boundary-value problem governing the deflection of the microbeams. The critical microbeam length for this second instability is also calculated.

  20. Sol-gel approach to in situ creation of high pH-resistant surface-bonded organic-inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME). (United States)

    Alhooshani, Khalid; Kim, Tae-Young; Kabir, Abuzar; Malik, Abdul


    A novel zirconia-based hybrid organic-inorganic sol-gel coating was developed for capillary microextraction (CME) (in-tube SPME). High degree of chemical inertness inherent in zirconia makes it very difficult to covalently bind a suitable organic ligand to its surface. In the present work, this problem was addressed from a sol-gel chemistry point of view. Principles of sol-gel chemistry were employed to chemically bind a hydroxy-terminated silicone polymer (polydimethyldiphenylsiloxane, PDMDPS) to a sol-gel zirconia network in the course of its evolution from a highly reactive alkoxide precursor undergoing controlled hydrolytic polycondensation reactions. A fused silica capillary was filled with a properly designed sol solution to allow for the sol-gel reactions to take place within the capillary for a predetermined period of time (typically 15-30 min). In the course of this process, a layer of the evolving hybrid organic-inorganic sol-gel polymer got chemically anchored to the silanol groups on the capillary inner walls via condensation reaction. At the end of this in-capillary residence time, the unbonded part of the sol solution was expelled from the capillary under helium pressure, leaving behind a chemically bonded sol-gel zirconia-PDMDPS coating on the inner walls. Polycyclic aromatic hydrocarbons, ketones, and aldehydes were efficiently extracted and preconcentrated from dilute aqueous samples using sol-gel zirconia-PDMDPS coated capillaries followed by thermal desorption and GC analysis of the extracted solutes. The newly developed sol-gel hybrid zirconia coatings demonstrated excellent pH stability, and retained the extraction characteristics intact even after continuous rinsing with a 0.1 M NaOH solution for 24 h. To our knowledge, this is the first report on the use of a sol-gel zirconia-based hybrid organic-inorganic coating as an extraction medium in solid phase microextraction (SPME).

  1. Ultra-high-stability, pH-resistant sol-gel titania poly(tetrahydrofuran) coating for capillary microextraction on-line coupled to high-performance liquid chromatography. (United States)

    Segro, Scott S; Cabezas, Yaniel; Malik, Abdul


    A sol-gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol-gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol-gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol-gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol-gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol-gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions-even after 18h of exposure to 1M HCl (pH approximately 0.0) and 1M NaOH (pH approximately 14.0).

  2. Tapered capillary optics (United States)

    Hirsch, Gregory


    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  3. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente


    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...

  4. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;


    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...... focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array. © 2008 Elsevier B.V. All rights reserved....

  5. Biomedical applications of capillary electrophoresis (United States)

    Kartsova, L. A.; Bessonova, E. A.


    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  6. Capillaries for use in a multiplexed capillary electrophoresis system (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.


    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  7. Multidimensional capillary electrophoresis. (United States)

    Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P


    Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.

  8. Capillary flow solder wettability test

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.; Rejent, J.A.


    A test procedure was developed to assess the capillary flow wettability of solders inside of a confined geometry. The test geometry was comprised of two parallel plates with a controlled gap of constant thickness (0.008 cm, 0.018 cm, 0.025 cm, and 0.038 cm). Capillary flow was assessed by: (1) the meniscus or capillary rise of the solder within the gap, (2) the extent of void formation in the gap, and (3) the time-dependence of the risen solder film. Tests were performed with the lead-free solders.

  9. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.


    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  10. Selectivity in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Zeeuw, R.A; de Jong, G.J.; Ensing, K


    This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a Chemistry and Toxicology, parti

  11. Manufacturing of flat porous structures for capillary pump applications

    Energy Technology Data Exchange (ETDEWEB)

    Reimbrecht, E.G.; Wendhausen, P.A.P.; Fredel, M.C.; Bazzo, E. [Dept. of Mechanical Engineering, Univ. Federal de Santa Catarina-UFSC, Florianopolis (Brazil)


    A flat porous structure is proposed to be used as wick in capillary pumps to move the working fluid in two-phase heat transfer loops. Capillary pumps have been studied to become a reliable alternative for isothermalization and thermal control of satellites and space stations. Sintered nickel powder is an alternative to produce capillary structures, once it presents appropriate sinterability and it is compatible with current working fluids (e.g. ammonia). The desirable parameters for the capillary structure are a porosity level of about 60% and a mean pore size smaller than 10 {mu}m. The flat porous elements was produced by a loose powder sintering and powder injection molding. Powder size and shape, sintering process, sintering time and sintering temperature, were investigated in order to achieve the desired porosity and mechanical resistance. Analyses were accomplished to characterize the capillary structure, and to determine the appropriate manufacturing route. The porosity was determined by using the method of Arquimedes and the porous structures analyzed by scanning electron microscopy. (orig.)

  12. Two-dimensional capillary electrophoresis using tangentially connected capillaries. (United States)

    Sahlin, Eskil


    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  13. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas


    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  14. Non-Aqueous Capillary Electrophoresis (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  15. Capillary imbibition in parallel tubes (United States)

    McRae, Oliver; Ramakrishnan, T. S.; Bird, James


    In modeling porous media two distinct approaches can be employed; the sample can be examined holistically, using global variables such as porosity, or it can be treated as a network of capillaries connected in series to various intermediate reservoirs. In forced imbibition this series-based description is sufficient to characterize the flow, due to the presence of an externally maintained pressure difference. However, in spontaneous imbibition, flow is driven by an internal capillary pressure, making it unclear whether a series-based model is appropriate. In this talk, we show using numerical simulations the dynamics of spontaneous imbibition in concentrically arranged capillary tubes. This geometry allows both tubes access to a semi-infinite reservoir but with inlets in close enough proximity to allow for interference. We compare and contrast the results of our simulations with theory and previous experiments. Schlumberger-Doll Research.

  16. Image-Based Modeling of Blood Flow and Oxygen Transfer in Feto-Placental Capillaries (United States)

    Brownbill, Paul; Janáček, Jiří; Jirkovská, Marie; Kubínová, Lucie; Chernyavsky, Igor L.; Jensen, Oliver E.


    During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations. PMID:27788214

  17. Capillary interactions in Pickering emulsions (United States)

    Guzowski, J.; Tasinkevych, M.; Dietrich, S.


    The effective capillary interaction potentials for small colloidal particles trapped at the surface of liquid droplets are calculated analytically. Pair potentials between capillary monopoles and dipoles, corresponding to particles floating on a droplet with a fixed center of mass and subjected to external forces and torques, respectively, exhibit a repulsion at large angular separations and an attraction at smaller separations, with the latter resembling the typical behavior for flat interfaces. This change of character is not observed for quadrupoles, corresponding to free particles on a mechanically isolated droplet. The analytical results are compared with the numerical minimization of the surface free energy of the droplet in the presence of spherical or ellipsoidal particles.

  18. Ceramic Wick For Capillary-Pumped Heat Pipe (United States)

    Seidenberg, Benjamin; Swanson, Theodore


    Fibrous ceramic wick allows choice of working fluid and high-temperature fabrication and/or operation. Wick material resists degradation at temperatures from -195 to +1,500 degrees C. Liquid refrigerant fills bore of silica/alumina wick. After flowing by capillary action through pores of wick, refrigerant evaporates from finned outer surface of wick and enters heat pipe, flowing toward condenser section.

  19. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.


    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  20. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter


    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...... and quantified. (C) 1999 The Society of Rheology. [S0148-6055(99)00103-0]....

  1. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger


    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  2. NRL capillary Z-pinch experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sethian, J.D.; Gerber, K.A.; Robson, A.E. [Naval Research Lab., Washington, DC (United States); DeSilva, A.W. [Sachs/Freeman Associates, Inc., Landover, MD (United States)]|[Maryland Univ., College Park, MD (United States)


    The current renewed interest in the dense linear z-pinch is due in large part to a recent Los Alamos Study which concluded that a z- pinch based reactor could produce 4.4 KJ of fusion energy per pulse for the modest input of 140 kJ per pulse, if a straight pinch could be maintained for 2 {mu}sec. Early attempts to achieve suitable high density z-pinches were of the implosion type which produced hollow pressure profiles that quickly resulted in disruptive m = 0 instabilities. These instabilities are not found in the gas embedded pinch in which an initially small diameter plasma is kept in radial equilibrium by following a prescribed current waveform. Unfortunately, these pinches are prone to a rapid accretion of the surrounding gas during the early stages of formation. Our approach is to form the pinch inside small diameter quartz capillaries filled with neutral hydrogen. This fixes the line density. By driving currents through the pinch at a rate that exceeds that necessary for radial equilibrium, we expect the pinch to contract away from the walls and be subject to compressional, as well as ohmic heating. This contraction will, of course, produce a plasma between the pinch and the capillary wall, but we anticipate this ``corona`` will be kept at a low temperature (i.e., high resistance) by radiation and hence shunt only a small fraction of the pinch current. We also expect negligible impurities in the pinch as the classical mixing time will be much longer than the pinch duration at the densities (10{sup 21}- 10{sup 22} ions/cm{sup 3}) and magnetic fields (1 - 10 MG) involved. However, we do expect the presence of the dense corona to reduce the growth rate of the m = 1 instability. Our results demonstrate that a z-pinch can be formed inside a capillary, but our limited current rise rates and peak current have limited our test abilities. Planned improvements in electrical equipment should yield successful testing results.

  3. Mixed Capillary Venous Retroperitoneal Hemangioma

    Directory of Open Access Journals (Sweden)

    Mohit Godar


    Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.

  4. Generalized effective medium resistivity model for low resistivity reservoir

    Institute of Scientific and Technical Information of China (English)


    With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.

  5. Generalized effective medium resistivity model for low resistivity reservoir

    Institute of Scientific and Technical Information of China (English)

    SONG YanJie; TANG XiaoMin


    With the advancement in oil exploration, producible oil and gas are being found in low resistivity reservoirs, which may otherwise be erroneously thought as water zones from their resistivity. However,the evaluation of low resistivity reservoirs remains difficult from log interpretation. Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay, laminated shale, conductive matrix grains, microscopic capillary pores and high saline water, a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations. Herein, a generalized effective medium resistivity model has been proposed for low resistivity reservoirs, based on experimental measurements on artificial low resistivity shaly sand samples, symmetrical anisotropic effective medium theory for resistivity interpretations, and geneses and conductance mechanisms of low resistivity reservoirs. By analyzing effects of some factors on the proposed model, we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses. Also,shale distribution largely affects water saturation predicted by the model. Resistivity index decreases as fraction and conductivity of laminated shale, or fraction of dispersed clay, or conductivity of rock matrix grains increases. Resistivity index decreases as matrix percolation exponent, or percolation rate of capillary bound water increases, and as percolation exponent of capillary bound water, or matrix percolation rate, or free water percolation rate decreases. Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water, dispersed clay, microscopic capillary pores, laminated shale and conductive matrix grains, and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.

  6. Capillary electrophoresis systems and methods (United States)

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.


    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  7. Capillary electrophoresis in food authenticity. (United States)

    Kvasnicka, Frantisek


    Food authenticity is a term which simply refers to whether the food purchased by the consumer matches its description. False description can occur in many forms, from the undeclared addition of water or other cheaper materials, or the wrong declaration of the amount of a particular ingredient in the product, to making false statements about the source of ingredients i.e., their geographic, plant, or animal origin. The aim of this review is to summarize applications of capillary electrophoresis in food authentication.

  8. Capillary Electrophoresis - Optical Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M. J.


    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  9. Capillary stretching of elastic fibers (United States)

    Protiere, Suzie; Stone, Howard A.; Duprat, Camille


    Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.

  10. Critical Capillary Number of Interfacial Film Displacement in a Capillary Tube

    CERN Document Server

    Yan, Changfei


    The role of surface tension and wettability in the dynamics of air-liquid interfaces during immiscible fluid displacement flows in capillary tube driven by pressure has been investigated. The contact angle and capillary number drive the force wetting processes which is controlled by the balance between the capillary and the viscous lubrication forces. The dynamic wetting condition with the critical capillary number is studied analytically and validated experimentally, which demonstrates that the critical capillary number is associated with the contact angle, slip length and capillary radius.

  11. A Simulation of Blood Cells in Branching Capillaries

    CERN Document Server

    Isfahani, Amir H G; Freund, Jonathan B


    The multi-cellular hydrodynamic interactions play a critical role in the phenomenology of blood flow in the microcirculation. A fast algorithm has been developed to simulate large numbers of cells modeled as elastic thin membranes. For red blood cells, which are the dominant component in blood, the membrane has strong resistance to surface dilatation but is flexible in bending. Our numerical method solves the boundary integral equations built upon Green's functions for Stokes flow in periodic domains. This fluid dynamics video is an example of the capabilities of this model in handling complex geometries with a multitude of different cells. The capillary branch geometries have been modeled based upon observed capillary networks. The diameter of the branches varies between 10-20 mum. A constant mean pressure gradient drives the flow. For the purpose of this fluid dynamics video, the red blood cells are initiated as biconcave discs and white blood cells and platelets are initiated as spheres and ellipsoids resp...

  12. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu


    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  13. Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru


    Full Text Available Aim. Diabetic retinopathy resists reversal after good glycemic control (GC is reinitiated, and preexisting damage at the time of intervention is considered as the major factor in determining the outcome of the GC. This study is to investigate the role of peroxynitrite accumulation in the retinal capillaries in the failure of retinopathy to reverse after reestablishment of GC, and to determine the effect of this reversal on the activity of the enzyme responsible for scavenging mitochondrial superoxide, MnSOD. Methods. In streptozotocin-diabetic rats, 6 months of poor glycemic control (PC, glycated hemoglobin, GHb>12.0% was followed by 6 additional months of GC (GHb about 6%. The trypsin-digested retinal microvessels were prepared for immunostaining of nitrotyrosine (a measure of peroxynitrite and for counting the number of acellular capillaries (a measure of histopathology. The retina from the other eye was used to quantify nitrotyrosine concentration, MnSOD activity and the total antioxidant capacity. Results. Reversal of hyperglycemia after 6 months of PC had no significant effect on nitrotyrosine concentration in the retina, on the nitrotyrosine-positive retinal capillary cells and on the number of acellular capillaries; the values were similar in PC-GC and PC groups. In the same rats retinal MnSOD activity remained inhibited and the total antioxidant capacity was subnormal 6 months after cessation of PC. Conclusions. Peroxynitrite accumulation in the retinal microvasculature, the site of histopathology, fails to normalize after reversal of hyperglycemia, and superoxide remains inadequately scavenged. This failure of reversal of peroxynitrite accumulation could be, in part, responsible for the resistance of diabetic retinopathy to reverse after termination of PC.

  14. Capillary pumped loop body heat exchanger (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)


    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  15. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries. (United States)

    Ershov; Zorin; Starov


    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  16. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  17. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger


    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  18. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰


    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  19. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D


    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  20. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7


    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  1. Capillary Bridges between Soft Substrates (United States)

    Wexler, Jason S.; Heard, Tiara M.; Stone, Howard A.


    A wetting droplet trapped in the thin gap between two elastic bodies will deflect the bodies towards one another. The deformation increases the total capillary adhesion force by increasing the contact radius and narrowing the gap height. For flat droplets, with a large ratio of radius to gap height, the Laplace pressure causes surface deformations that are orders of magnitude larger than those induced by a sessile droplet of the same radius. We present experiments, scalings, and closed-form solutions that describe the deformation. Using variational techniques, we also show that the problem exhibits a bifurcation, where the gap spontaneously closes due to an incremental increase in drop volume.

  2. Tangent Resistance of Soil on Moldboard and the Mechanism of Resistance Reduction of Bionic Moldboard

    Institute of Scientific and Technical Information of China (English)

    Deng Shi-qiao; Ren Lu-quan; Liu Yan; Han Zhi-wu


    The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.

  3. Neutrophil crawling in capillaries; a novel immune response to Staphylococcus aureus. (United States)

    Harding, Mark Geoffrey; Zhang, Kunyan; Conly, John; Kubes, Paul


    Methicillin-resistant Staphylococcus aureus (MRSA), particularly the USA300 strain, is a highly virulent pathogen responsible for an increasing number of skin and soft tissue infections globally. Furthermore, MRSA-induced soft tissue infections can rapidly progress into life-threatening conditions, such as sepsis and necrotizing fasciitis. The importance of neutrophils in these devastating soft tissue infections remains ambiguous, partly because of our incomplete understanding of their behaviour. Spinning disk confocal microscopy was used to visualize the behaviour of GR1-labelled neutrophils in subcutaneous tissue in response to GFP-expressing MRSA attached to a foreign particle (agarose bead). We observed significant directional neutrophil recruitment towards the S. aureus agarose bead but not a control agarose bead. A significant increase in neutrophil crawling within the capillaries surrounding the infectious nidus was noted, with impaired capillary perfusion in these vessels and increased parenchymal cell death. No neutrophils were able to emigrate from capillaries. The crawling within these capillaries was mediated by the β(2) and α(4) integrins and blocking these integrins 2 hours post infection eliminated neutrophil crawling, improved capillary perfusion, reduced cell death and reduced lesion size. Blocking prior to infection increased pathology. Neutrophil crawling within capillaries during MRSA soft tissue infections, while potentially contributing to walling off or preventing early dissemination of the pathogen, resulted in impaired perfusion and increased tissue injury with time.

  4. Atomic Force Controlled Capillary Electrophoresis (United States)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham


    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  5. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail:; Lega, J., E-mail:


    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  6. Capillary-Gravity Waves Generated by a Sudden Object Motion

    CERN Document Server

    Closa, Fabien; Raphael, Elie


    We study theoretically the capillary-gravity waves created at the water-air interface by a small object during a sudden accelerated or decelerated rectilinear motion. We analyze the wave resistance corresponding to the transient wave pattern and show that it is nonzero even if the involved velocity (the final one in the accelerated case, the initial one in the decelerated case) is smaller than the minimum phase velocity $c_{min}=23 \\mathrm{cm s^{-1}}$. These results might be important for a better understanding of the propulsion of water-walking insects where accelerated and decelerated motions frequently occur.

  7. Sheathless interface for coupling capillary electrophoresis with mass spectrometry (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.


    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  8. Capillary waveguide optrodes for Medical applications (United States)

    Kieslinger, Dietmar; Weigl, Bernhard H.; Draxler, Sonja; Lippitsch, Max E.


    Glass capillaries with a chemically sensitive coating on the inner surface are used as optical sensors for medical diagnostics. The capillary simultaneously serves as a sample compartment, a sensor element, and an inhomogeneous optical waveguide. Different optical setups have been investigated and compared regarding its waveguiding properties.

  9. Modeling capillary forces for large displacements

    NARCIS (Netherlands)

    Mastrangeli, M.; Arutinov, G.; Smits, E.C.P.; Lambert, P.


    Originally applied to the accurate, passive positioning of submillimetric devices, recent works proved capillary self-alignment as effective also for larger components and relatively large initial offsets. In this paper, we describe an analytic quasi-static model of 1D capillary restoring forces tha

  10. Influence of the nature of interfaces on the capillary transport in layered materials

    DEFF Research Database (Denmark)

    Derluyn, Hannelore; Janssen, Hans; Carmeliet, Jan


    This paper presents an experimental and quantitative analysis of capillary transport across the interface brick–mortar joint in masonry. Moisture profiles are measured with X-ray projection. The influence of curing conditions is analyzed by considering three types of mortars: cured in a mould, be...... simulations reveal the existence of a hydraulic interface resistance between brick and wet/dry cured mortar....

  11. Capillary electrophoresis using core-based hyperbranched polyethyleneimine (CHPEI) static-coated capillaries. (United States)

    Boonyakong, Cheerapa; Tucker, Sheryl A


    With unique 3-D architecture, the application of core-based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, M(w) approximately 5000 and CHPEI25, M(w) approximately 25,000) were physically adsorbed onto the inner surface of bare fused-silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0-9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three-fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (capillary and capillary).

  12. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla


    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  13. Copolymers For Capillary Gel Electrophoresis (United States)

    Liu, Changsheng; Li, Qingbo


    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  14. Two-dimensional capillary origami (United States)

    Brubaker, N. D.; Lega, J.


    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.

  15. Capillary Separation: Micellar Electrokinetic Chromatography (United States)

    Terabe, Shigeru


    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  16. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.


    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  17. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling. (United States)

    Patel, Kevin H; Evenhuis, Christopher J; Cherney, Leonid T; Krylov, Sergey N


    Temperature increase due to resistive electrical heating is an inherent limitation of capillary electrophoresis (CE). Active cooling systems are used to decrease the temperature of the capillary, but their capacity is limited; and in addition, they leave "hot spots" at the detection interface and at the capillary ends. Until recently, the matter was complicated by the lack of a fast and generic method for temperature determination in efficiently and inefficiently cooled regions of the capillary. Our group recently introduced such a method, termed "Universal Method for determining Electrolyte Temperatures" (UMET). UMET is a probe-less approach that requires only measuring current versus voltage for different voltages and processing the data using an iterative algorithm. Here, we apply UMET to develop a Simplified Universal Method of Temperature Determination (SUMET) for a CE instrument with a forced-air cooling system using an Agilent 7100 CE instrument (Agilent Technologies, Saint Laurent, Quebec, Canada) as an example. We collected a wide set of empirical voltage-current data for a variety of buffers and capillary diameters. We further constructed empirical equations for temperature calculation in efficiently and inefficiently cooled parts of the capillary that require only the data from a single 1-min voltage-current measurement. The equations are specific for the Agilent 7100 CE instrument (Agilent Technologies) but can be applied to all kinds of capillaries and buffers. Similar SUMET approaches can be developed for other CE instruments with forced-air cooling using our approach.

  18. Structural optimization of porous media for fast and controlled capillary flows. (United States)

    Shou, Dahua; Fan, Jintu


    A general quantitative model of capillary flow in homogeneous porous media with varying cross-sectional sizes is presented. We optimize the porous structure for the minimization of the penetration time under global constraints. Programmable capillary flows with constant volumetric flow rate and linear evolution of flow distance to time are also obtained. The controlled innovative flow behaviors are derived based on a dynamic competition between capillary force and viscous resistance. A comparison of dynamic transport on the basis of the present design with Washburn's equation is presented. The regulation and maximization of flow velocity in porous materials is significant for a variety of applications including biomedical diagnostics, oil recovery, microfluidic transport, and water management of fabrics.

  19. Manufacturing and microstructural characterization of sintered nickel wicks for capillary pumps

    Directory of Open Access Journals (Sweden)

    Reimbrecht Eduardo Gonçalves


    Full Text Available Sintered nickel powder is proposed to be used as porous wicks in heat pipes and capillary pumps. In this work the manufacturing procedure for tubular wicks for capillary pump application is discussed. The porosity, mechanical resistance and roundness of tubular wicks made of carbonila powder, atomized powder and a powder mixture of both are analyzed. A powder mixture was selected as the best raw material. In this case, pore size in the range of 2 to 24 mm and porosity about 50% were measured. First tests carried out in the laboratory, using acetone as the working fluid, show capillary pumping pressures up to 4 kPa and heat fluxes of about 1 W/cm2 in a two-phase heat transfer loop.

  20. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography. (United States)

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu


    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  1. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling. (United States)

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki


    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  2. Cycloaliphatic epoxy resin coating for capillary electrophoresis. (United States)

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L


    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were methods.

  3. Uptake of water droplets by nonwetting capillaries

    CERN Document Server

    Willmott, Geoff R; Hendy, Shaun C


    We present direct experimental evidence that water droplets can spontaneously penetrate non-wetting capillaries, driven by the action of Laplace pressure due to high droplet curvature. Using high-speed optical imaging, microcapillaries of radius 50 to 150 micron, and water microdroplets of average radius between 100 and 1900 micron, we demonstrate that there is a critical droplet radius below which water droplets can be taken up by hydrophobised glass and polytetrafluoroethylene (PTFE) capillaries. The rate of capillary uptake is shown to depend strongly on droplet size, with smaller droplets being absorbed more quickly. Droplet size is also shown to influence meniscus motion in a pre-filled non-wetting capillary, and quantitative measurements of this effect result in a derived water-PTFE static contact angle between 96 degrees and 114 degrees. Our measurements confirm recent theoretical predictions and simulations for metal nanodroplets penetrating carbon nanotubes (CNTs). The results are relevant to a wide ...

  4. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P


    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.


    The electrophoretic behavior of bensulfuron Me, sulfometuron Me, nicosulfuron (Accent), chlorimuron Et, thifensulfuron Me (Harmony), metsulfuron Me, and chlorsulfuron was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditio...

  6. Capillary electrochromatography using fibers as stationary phases. (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T


    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.

  7. Capillary Optics generate stronger X-rays (United States)


    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  8. Unusual intraosseous capillary hemangioma of the mandible. (United States)

    Dereci, Omur; Acikalin, Mustafa Fuat; Ay, Sinan


    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant literature review.

  9. Unusual intraosseous capillary hemangioma of the mandible


    Dereci, Omur; Acikalin, Mustafa Fuat; Ay, Sinan


    Intraosseous hemangioma is a benign vascular neoplasm, which is mostly seen in vertebrae, maxillofacial bones, and long bones. Intraosseous hemangioma is rarely seen on jaw bones compared to other skeletal bones and usually occurs in the cavernous form. Capillary intraosseous hemangioma of jaws is an uncommon form of intraosseous hemangioma and has not been thoroughly described so far. In this study, a case of capillary intraosseous hemangioma of the mandible was presented with relevant liter...

  10. Bundled capillary electrophoresis using microstructured fibres. (United States)

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D


    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  11. Ion guiding in curved glass capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takao M. [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ikeda, Tokihiro [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kanai, Yasuyuki; Yamazaki, Yasunori [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)


    Straight and curved glass capillaries were tested for the guiding of 8 keV Ar{sup 8+} ion beams. The straight capillary was about 50 mm long and 0.87 mm/1.1 mm in inner/outer diameter. One of the two curved capillaries was similar, but was curved with a 270 mm radius. The other was 53 mm long, had diameters of 2.34 mm/2.99 mm, and was curved with a 150 mm radius. The corresponding bending angles of the two curved capillaries were 9.6° and 17.5°, respectively. Transmission through the straight capillary disappeared when the tilt angle was larger than 5°. The curved capillaries guided the ion beams into their corresponding bending angles, which were much larger than 5°, with transmission efficiencies of a few tens percent. This demonstrates the possibility of developing a new scheme of simple small beam deflectors and related beam optics.

  12. Cell adhesion during bullet motion in capillaries. (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji


    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis.

  13. Characteristics of ac capillary discharge produced in electrically conductive water solution (United States)

    DeBaerdemaeker, F.; Simek, M.; Schmidt, J.; Leys, C.


    Basic electrical, optical and calorimetric characteristics of an ac (50 Hz) driven capillary discharge produced in a water solution were studied for initial water solution conductivity in the range 50-1000 µS cm-1. Typical current and voltage waveforms and emission intensities produced by several electronically excited species were recorded with high time resolution. The evolution of the electrical current, power and capillary resistance was inspected during positive ac half-cycle for various operational regimes. A fast relaxation of the discharge following a breakdown event was observed. Optical measurements indicate that radiative species are mostly generated during the first few hundreds of nanoseconds of plasma generation and that the average duration of plasma emission induced by a discharge pulse is of the order of a few microseconds. Results of calorimetric measurements are in good agreement with average electrical measurements and support the assumption that the discharge is a constant source of heat delivered to the liquid. Assuming that only a fraction of the heat released inside the capillary can be transported by conduction through the capillary wall and via its orifices, the processes of bubble formation, expulsion and re-filling the capillary with 'fresh' water must play a key role in maintaining a thermal balance during long-time steady-state operation of the device. Furthermore, a simplified numerical model and a first order energy deposition calculation prove the plausibility of the bubble breakdown mechanism.

  14. Improvement in Retinal Capillary Rarefaction After Valsartan Treatment in Hypertensive Patients. (United States)

    Jumar, Agnes; Harazny, Joanna M; Ott, Christian; Kistner, Iris; Friedrich, Stefanie; Schmieder, Roland E


    Decreased capillary density influences vascular resistance and perfusion. The authors aimed to investigate the influence of the renin-angiotensin receptor blocker valsartan on retinal capillary rarefaction in hypertensive patients. Retinal vascular parameters were measured noninvasively and in vivo by scanning laser Doppler flowmetry before and after 4 weeks of treatment with valsartan in 95 patients with hypertension stage 1 or 2 and compared with 55 healthy individuals. Retinal capillary rarefaction was determined with the parameters intercapillary distance (ICD) and capillary area (CapA). In hypertensive patients, ICD decreased (23.4±5.5 μm vs 21.5±5.6 μm, PCapA increased (1564±621 vs 1776±795, P=.001) after valsartan treatment compared with baseline. Compared with healthy normotensive controls (ICD 20.2±4.2 μm, CapA 1821±652), untreated hypertensive patients showed greater ICD (PCapA (P=.019), whereas treated hypertensive patients showed no difference in ICD (P=.126) and CapA (P=.728). Therapy with valsartan for 4 weeks diminished capillary rarefaction in hypertensive patients.

  15. Effects of hydrocarbon physical properties on caprock’s capillary sealing ability

    Institute of Scientific and Technical Information of China (English)


    A new mechanics formula of caprock’s capillary sealing ability has been established in this paper, in which the boundary layer resistance was considered and characterized by starting pressure gradient. The formula shows that capillary sealing ability of caprock is determined not only by the capillary force of rock and the buoyancy of hydrocarbon column, but also by the starting pressure gradient of hydrocarbons and the thickness of caprock. The buoyancy of hydrocarbon column, the starting pressure gradient of hydrocarbon, and the capillary force of caprock are affected by hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension respectively. Based on hydrocarbon property data of reservoirs of Jiyang Depression and equations from literature, the effects of hydrocarbon density, hydrocarbon viscosity, and hydrocarbon-water interface tension on the sealing ability of caprock are analyzed. Under formational conditions, the sealing ability of oil caprock can vary up to dozens times because of the variations of the oil density, oil viscosity, and oil-water interface tension. Thus, the physical characters of hydrocarbon should be considered when evaluating the capillary sealing ability of caprocks. Study of the effects of physical characters on sealing ability of caprock can provide guidance to exploring special physical property hydrocarbon resources, such as viscous oils, and hydrocarbon resources in special pressure-temperature environments.

  16. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection. (United States)

    Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J


    CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.

  17. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo


    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  18. Micro-injector for capillary electrophoresis. (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C


    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  19. Restructuring and aging in a capillary suspension. (United States)

    Koos, Erin; Kannowade, Wolfgang; Willenbacher, Norbert


    The rheological properties of capillary suspensions, suspensions with small amounts of an added immiscible fluid, are dramatically altered with the addition of the secondary fluid. We investigate a capillary suspension to determine how the network ages and restructures at rest and under applied external shear deformation. The present work uses calcium carbonate suspended in silicone oil (11 % solids) with added water as a model system. Aging of capillary suspensions and their response to applied oscillatory shear is distinctly different from particulate gels dominated by the van der Waals forces. The suspensions dominated by the capillary force are very sensitive to oscillatory flow, with the linear viscoelastic regime ending at a deformation of only 0.1% and demonstrating power-law aging behavior. This aging persists for long times at low deformations or for shorter times with a sudden decrease in the strength at higher deformations. This aging behavior suggests that the network is able to rearrange and even rupture. This same sensitivity is not demonstrated in shear flow where very high shear rates are required to rupture the agglomerates returning the apparent viscosity of capillary suspensions to the same viscosity as for the pure vdW suspension. A transitional region is also present at intermediate water contents wherein the material response depends very strongly on the type, strength, and duration of the external forcing.

  20. Synthetic Capillaries to Control Microscopic Blood Flow (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.


    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  1. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongjun [Iowa State Univ., Ames, IA (United States)


    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  2. Capillary rise of water in hydrophilic nanopores

    CERN Document Server

    Gruener, Simon; Wallacher, Dirk; Kityk, Andriy V; Huber, Patrick; 10.1103/PhysRevE.79.067301


    We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5nm and 5nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.

  3. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis. (United States)

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong


    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries.

  4. Mach-like capillary-gravity wakes. (United States)

    Moisy, Frédéric; Rabaud, Marc


    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  5. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng


    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  6. Capillary origami and superhydrophobic membrane surfaces (United States)

    Geraldi, N. R.; Ouali, F. F.; Morris, R. H.; McHale, G.; Newton, M. I.


    Capillary origami uses surface tension to fold and shape solid films and membranes into three-dimensional structures. It uses the fact that solid surfaces, no matter how hydrophobic, will tend to adhere to and wrap around the surface of a liquid. In this work, we report that a superhydrophobic coating can be created, which can completely suppress wrapping as a contacting water droplet evaporates. We also show that using a wetting azeotropic solution of allyl alcohol, which penetrates the surface features, can enhance liquid adhesion and create more powerful Capillary Origami. These findings create the possibility of selectively shaping membrane substrates.


    Directory of Open Access Journals (Sweden)

    A. S. Markova


    Full Text Available The paper describes a clinical case of testicular capillary hemangioma in a 24-year-old man undergone a partial resection of the testis with the intraoperative morphological examination. Testicular capillary hemangioma is a rare benign tumor of a vascular origin, which can be similar to malignant testicular tumors on the clinical presentation, as well as on the imaging methods, in particular to seminoma. The intraoperative histological study can assist in avoiding organ-removing surgical interventions in diagnostically ambiguous cases if a benign testicular tumor is diagnosed.

  8. Test and device to evaluate the capillary absorption in soil specimens of adobe and rammed earth


    Cirvini, Silvia Augusta; Gomez Voltan, Jose Alejandro


    The moisture degree of capillary rise is an indicator of the state of conservation of earthen construction and their mechanical response to load cases, especially seismic action, since the buildings diminish resistant capacity where they are more demanding by the base shear. This paper shows a test procedure and a specific device to evaluate the rate of rise and variation of moisture content in samples of soil for use in new or existing walls of adobe and tapia. These parameters allow evalu...

  9. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria


    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  10. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications. (United States)

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf


    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  11. In-capillary detection of fast antibody-peptide binding using fluorescence coupled capillary electrophoresis. (United States)

    Qin, Yuqin; Qiu, Lin; Qin, Haifang; Ding, Shumin; Liu, Li; Teng, Yiwan; Chen, Yao; Wang, Cheli; Li, Jinchen; Wang, Jianhao; Jiang, Pengju


    Herein, we report a technique for detecting the fast binding of antibody-peptide inside a capillary. Anti-HA was mixed and interacted with FAM-labeled HA tag (FAM-E4 ) inside the capillary. Fluorescence coupled capillary electrophoresis (CE-FL) was employed to measure and record the binding process. The efficiency of the antibody-peptide binding on in-capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti-HA-FAM-E4 complex was investigated as well. The results indicated that E4 YPYDVPDYA (E4) or TAMRA-E4 YPYDVPDYA (TAMRA-E4) had the same binding priorities with anti-HA. The addition of excess E4 or TAMRA-E4 could lead to partial dissociation of the complex and take a two-step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.

  12. Preparation approaches of the coated capillaries with liposomes in capillary electrophoresis. (United States)

    Mei, Jie; Tian, Yan-Ping; He, Wen; Xiao, Yu-Xiu; Wei, Juan; Feng, Yu-Qi


    The use of liposomes as coating materials in capillary electrophoresis has recently emerged as an important and popular research area. There are three preparation methods that are commonly used for coating capillaries with liposomes, namely physical adsorption, avidin-biotin binding and covalent coupling. Herein, the three different coating methods were compared, and the liposome-coated capillaries prepared by these methods were evaluated by studying systematically their EOF characterization and performance (repeatability, reproducibility and lifetime). The amount of immobilized phospholipids and the interactions between liposome or phospholipid membrane and neutral compounds for the liposome-coated capillaries prepared by these methods were also investigated in detail. Finally, the merits and disadvantages for each coating method were reviewed.

  13. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  14. Drops: The collapse of capillary jets (United States)

    Cordoba, Antonio; Cordoba, Diego; Fefferman, Charles; Fontelos, Marco A.


    The appearance of fluid filaments during the evolution of a viscous fluid jet is a commonly observed phenomenon. It is shown here that the break-up of such a jet subject to capillary forces is impossible through the collapse of a uniform filament. PMID:12172005

  15. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;


    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  16. Macroscopic theory for capillary-pressure hysteresis. (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry


    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  17. Elastic deformation due to tangential capillary forces

    NARCIS (Netherlands)

    Das, Siddhartha; Marchand, Antonin; Andreotti, Bruno; Snoeijer, Jacco H.


    A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently “soft.” In this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on the solid substrate using a model based on Density Functional Theory. We show that, in addition

  18. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth


    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capi....... The theory can be applied to the description of flocculations in two-dimensional systems of colloids....

  19. Shift dynamics of capillary self-alignment

    NARCIS (Netherlands)

    Arutinov, G.; Mastrangeli, M.; Smits, E.C.P.; Heck, G.V.; Schoo, H.F.M.; Toonder, J.J.M. den; Dietzel, A.H.


    This paper describes the dynamics of capillary self-alignment of components with initial shift offsets from matching receptor sites. The analysis of the full uniaxial self-alignment dynamics of foil-based mesoscopic dies from pre-alignment to final settling evidenced three distinct, sequential regim

  20. Nanoparticles as a tool in capillary electrochromatography


    Ribeiro, Susana


    Two different types of molecularly imprinted nanoparticles against (R)-propranolol were used to separate the enantiomers of propranolol in capillary electrochromatography mode, methacrylic acid based nanoparticles and core-shell molecularly imprinted polymer nanoparticles. Partial filling technique was used to avoid interference of molecularly imprinted polymer nanoparticles in UV detection. With methacrylic acid based nanoparticles it was not possible to obtain enantiomer s...

  1. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang


    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  2. Evaluation of migration behaviour of therapeutic peptide hormones in capillary electrophoresis using polybrene-coated capillaries. (United States)

    Aptisa, Ghiulendan; Benavente, Fernando; Sanz-Nebot, Victoria; Chirila, Elisabeta; Barbosa, José


    Modelling electrophoretic mobility as a function of pH can be simultaneously used for determination of ionization constants and for rapid selection of the optimum pH for separation of mixtures of the modelled compounds. In this work, equations describing the effect of pH on electrophoretic behaviour were used to investigate migration of a series of polyprotic amphoteric peptide hormones between pH 2 and 12 in polybrene-coated capillaries. Polybrene (hexadimethrin bromide) is a polymer composed of quaternary amines that is strongly adsorbed by the fused-silica inner surface, preventing undesired interactions between the peptides and the inner capillary wall. In polybrene-coated capillaries the separation voltage must be reversed, because of the anodic electroosmotic flow promoted by the polycationic polymer attached to the inner capillary wall. The possibility of using polybrene-coated capillaries for determination of accurate ionization constants has been evaluated and the optimum pH for separation of a mixture of the peptide hormones studied has been selected. Advantages and disadvantages of using bare fused-silica and polybrene-coated capillaries for these purposes are discussed.

  3. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman


    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  4. Simultaneous measurements of capillary filtration and diffusion capacities during graded infusions of noradrenaline (NA) and 5-hydroxytryptamine (5-HT) into the rat hindquarter vascular bed. (United States)

    Rippe, B; Folkow, B


    The relationships between capillary diffusion capacity (PS) for Cr-EDTA respective capillary filtration capacity (CFC) and vascular resistance during graded intraarterial infusions of NA and 5-HT into the artificially constant flow perfused rat hindquarter vascular bed were investigated. During maximal vasodilatation PS for Cr-EDTA was some 5.5--5.7 ml/min x 100 g, CFC some 0.04 ml/min x mmHg x 100 g, while vascular resistance was 2.8 mmHg x ml-1 x min x 100 g (PRU100) and isogravimetric capillary pressure 12.8 mmHg on an average. Setting out from maximal vasodilatation, increasing doses of NA and 5-HT produced graded reductions in capillary surface area as reflected by progressive decreases in both PS for Cr-EDTA and CFC. These changes occurred simultaneously with progressive increases in both pre- and postcapillary resistances, causing elevations in both arterial and capillary hydrostatic pressures and hance in capillary fluid filtration at constant flow. Capillary hydrostatic pressure increased maximally to 45 mmHg (calculated for NA) and vascular resistance to some 21 mmHg x ml-1 x min x 100 g on an average. PS for Cr-EDTA decreased maximally to some 0.7--1 ml/min x 100 g for both NA and 5-HT and furthermore, the relationships between PS for Cr-EDTA and PRU100 for NA respective 5-HT were almost identical. This was taken to indicate that capillary surface area for nutritional exchange is affected similarly by both drugs. However, the CFU-PRU100 relationship was shifted towards some 30--50% higher CFC values for 5-HT than for NA at almost every level of vasoconstriction. This might suggest that 5-HT besides reducing capillary surface area also induced moderate increases in capillary permeability though increases in number and/or radius of large pores (gaps) (cf. Rippe, Kamiya & Folkow 1978). Even during NA-induced vasoconstriction, when virtually no changes in capillary permeability occurred, PS for Cr-EDTA was reduced to a relatively greater extent than CFC, the

  5. Capillary Interactions between a Probe Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ning; WANG Le-Feng; RONG Wei-Bin


    To understand capillary interactions between probe tips and nanoparticles under ambient conditions,a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases.It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force.The capillary force decreases with the increasing separation distances,and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances.The applicability of the symmetric meniscus approximation is discussed.

  6. Gold nanoparticles deposited capillaries for in-capillary microextraction capillary zone electrophoresis of monohydroxy-polycyclic aromatic hydrocarbons. (United States)

    Wang, Huiyong; Knobel, Gaston; Wilson, Walter B; Calimag-Williams, Korina; Campiglia, Andres D


    This article presents the first application of gold nanoparticles deposited capillaries as pre-concentration devices for in-capillary microextraction CZE and their use for the analysis of monohydroxy-polycyclic aromatic hydrocarbons in synthetic urine samples. The successful separation of 1-hydroxypyrene, 9-hydroxyphenanthrene, 3-hydroxybenzo[a]pyrene (3-OHbap), 4-hydroxybenzo[a]pyrene and 5-hydroxybenzo[a]pyrene under a single set of electrophoretic conditions is demonstrated as well as the feasibility to obtain competitive ultraviolet absorption LOD with commercial instrumentation. Enrichment factors ranging from 87 (9-OHphe) to 100 (3-OHbap) made it possible to obtain LOD ranging from 9 ng/mL (9-OHphe and 3-OHbap) to 14 ng/mL (4-hydroxybenzo[a]pyrene).

  7. Albuterol Improves Alveolar-Capillary Membrane Conductance in Healthy Humans (United States)

    Taylor, Natalie E.; Baker, Sarah E.; Olson, Thomas P.; Lalande, Sophie; Johnson, Bruce D.; Snyder, Eric M.


    BACKGROUND Beta-2 adrenergic receptors (β2ARs) are located throughout the body including airway and alveolar cells. The β2ARs regulate lung fluid clearance through a variety of mechanisms including ion transport on alveolar cells and relaxation of the pulmonary lymphatics. We examined the effect of an inhaled β2-agonist (albuterol) on alveolar-capillary membrane conductance (DM) and pulmonary capillary blood volume (VC) in healthy humans. METHODS We assessed the diffusing capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) at baseline, 30 minutes, and 60 minutes following nebulized albuterol (2.5 mg, diluted in 3 mL normal saline) in 45 healthy subjects. Seventeen subjects repeated these measures following nebulized normal saline (age = 27 ± 9 years, height = 165 ± 21 cm, weight = 68 ± 12 kg, BMI = 26 ± 9 kg/m2). Cardiac output (Q), heart rate, systemic vascular resistance (SVR), blood pressure, oxygen saturation, forced expiratory volume at one-second (FEV1), and forced expiratory flow at 50% of forced vital capacity (FEF50) were assessed at baseline, 30 minutes, and 60 minutes following the administration of albuterol or saline. RESULTS Albuterol resulted in a decrease in SVR, and an increase in Q, FEV1, and FEF50 compared to saline controls. Albuterol also resulted in a decrease in VC at 60 minutes post albuterol. Both albuterol and normal saline resulted in no change in DLCO or DM when assessed alone, but a significant increase was observed in DM when accounting for changes in VC. CONCLUSION These data suggest that nebulized albuterol improves pulmonary function in healthy humans, while nebulization of both albuterol and saline results in an increase in DM/VC. PMID:27773996

  8. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography. (United States)

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu


    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary.

  9. [Congenital pulmonary capillary hemangiomatosis in a newborn]. (United States)

    Sposito Cavallo, Sandra L; Macias Sobrino, Luciano A; Marenco Altamar, Luifer J; Mejía Alquichire, Andrés F


    Pulmonary capillary hemangiomatosis is a rare entity characterized by the proliferation of capillaries into alveolar walls, interlobular septa, pleura and pulmonary interstitium, without malignant characteristics, with almost constant association with pulmonary hypertension. Until now two cases of congenital presentation have been reported in the literature. This is the third case in a newborn; he has not followed the usual pattern associated with pulmonary hypertension as occurs in most patients with this pathology; the highest incidence is among 20-40 years old. We report a preterm newborn patient of 36 weeks of gestation with progressive respiratory distress requiring mechanical ventilation by constant desaturation during his clinical evolution without clinical, radiological or ultrasonographic signs of pulmonary hypertension.

  10. Capillary droplets on Leidenfrost micro-ratchets

    CERN Document Server

    Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef


    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.

  11. The geometry and wetting of capillary folding

    CERN Document Server

    Péraud, Jean-Philippe


    Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial application provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

  12. Capillary fluid loop developments in Astrium

    Energy Technology Data Exchange (ETDEWEB)

    Figus, C.; Ounougha, L.; Bonzom, P. [Astrium SAS, Toulouse (France); Supper, W. [ESA/ESTEC, Noordwijk (Netherlands); Puillet, C. [CNES, Toulouse (France)


    Over the past decade, Astrium has been involved in the development of capillary pumped fluid loops. In the frame of the French technological demonstrator spacecraft called STENTOR, Astrium has gained experience on capillary fluid loop design and manufacturing. After the STENTOR cylindrical evaporator type was successfully tested and qualified, Astrium has developed miniaturised fluid loops for thermal dissipation of electronic devices. For such applications, the use of a flat shape evaporator is very promising, limiting the volume and the mass of the thermal hardware. Both technologies have been submitted to a comprehensive one-g test program and will be flight-tested in the near future. Through a comparative of the reached performances, some main advantages and drawbacks of each design are listed and a definition of what should be the next generation of Astrium fluid loops is given. (author)

  13. Modeling Microscopic Chemical Sensors in Capillaries

    CERN Document Server

    Hogg, Tad


    Nanotechnology-based microscopic robots could provide accurate in vivo measurement of chemicals in the bloodstream for detailed biological research and as an aid to medical treatment. Quantitative performance estimates of such devices require models of how chemicals in the blood diffuse to the devices. This paper models microscopic robots and red blood cells (erythrocytes) in capillaries using realistic distorted cell shapes. The models evaluate two sensing scenarios: robots moving with the cells past a chemical source on the vessel wall, and robots attached to the wall for longer-term chemical monitoring. Using axial symmetric geometry with realistic flow speeds and diffusion coefficients, we compare detection performance with a simpler model that does not include the cells. The average chemical absorption is quantitatively similar in both models, indicating the simpler model is an adequate design guide to sensor performance in capillaries. However, determining the variation in forces and absorption as cells...

  14. Space-Time Resolved Capillary Wave Turbulence

    CERN Document Server

    Berhanu, Michael


    We report experiments on the full space and time resolved statistics of capillary wave turbulence at the air-water interface. The three-dimensional shape of the free interface is measured as a function of time by using the optical method of Diffusing Light Photography associated with a fast camera. Linear and nonlinear dispersion relations are extracted from the spatio-temporal power spectrum of wave amplitude. When wave turbulence regime is reached, we observe power-law spectra both in frequency and in wave number, whose exponents are found in agreement with the predictions of capillary wave turbulence theory. Finally, the temporal dynamics of the spatial energy spectrum highlights the occurrence of stochastic bursts transferring wave energy through the spatial scales.

  15. Capillary flow through heat-pipe wicks (United States)

    Eninger, J. E.


    Theoretical expressions are obtained for the capillary-pressure limit and permeability of a fibrous wick in terms of the porosity and fiber diameter. Hysteresis in capillary pressure is included through the introduction of an empirical hysteresis constant. A partial-saturation model based on the statistical distribution of local porosity requires an additional empirical constant, the standard deviation. The theory is compared to results of a beta-ray absorption experiment that measured the liquid content of a partially saturated wick and to results of permeability measurements on partially and fully saturated wicks. A simple wick-weighing experiment is described that yields values for the empirical hysteresis constant and the standard deviation. Theoretical results are used to design an optimum wick.

  16. Chemical Power for Microscopic Robots in Capillaries

    CERN Document Server

    Hogg, Tad


    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

  17. Capillary deposition of advected floating particles (United States)

    Dressaire, Emilie; Debaisieux, Aymeric; Gregori, Federico


    The deposition and aggregation of particles flowing through a confined environment can dramatically hinder the transport of suspensions. Yet, the mechanisms responsible for the deposition of particles in shear flow are not fully understood. Here, we use an experimental model system in which floating particles are advected on the surface of a water channel and deposited on fixed obstacles through attractive capillary effects. By varying the flow rate of the liquid, the wetting properties and size of the particles and obstacles, we can tune the magnitude of the capillary and hydrodynamic forces that determine the probability of deposition and the equilibrium position on the substrate. We show that arrays of obstacles can be designed to efficiently capture the floating particles advected by the flow.

  18. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)


    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  19. Capillary Electrophoresis in the Presence of Fosfomycin

    Institute of Scientific and Technical Information of China (English)


    Fosfomyein, a sodim salt of cis-(3-methyloxiranyl) phosphonic acid, was used as electrolyte in binary methanol-water media for capillary electrophoresis. The variety of electroosmotic flow with pH*,methanol concentration and ionic strength was investigated. The migration behavior of nine bases was examined under various conditions, and the separation of thymine, cytosine, 5-flurouracil, 4,6-diamino-pyrimidine, purine was accomplished.

  20. Novel cationic polyelectrolyte coatings for capillary electrophoresis. (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K


    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  1. Capillary condensation for fluids in spherical cavities


    Urrutia, Ignacio; Szybisz, Leszek


    The capillary condensation for fluids into spherical nano-cavities is analyzed within the frame of two theoretical approaches. One description is based on a widely used simplified version of the droplet model formulated for studying atomic nuclei. The other, is a more elaborated calculation performed by applying a density functional theory. The agreement between both models is examined and it is shown that a small correction to the simple fluid model improves the predictions. A connection to ...

  2. Capillary floating and the billiard ball problem


    Gutkin, Eugene


    We establish a connection between capillary floating in neutral equilibrium and the billiard ball problem. This allows us to reduce the question of floating in neutral equilibrium at any orientation with a prescribed contact angle for infinite homogeneous cylinders to a question about billiard caustics for their orthogonal cross-sections. We solve the billiard problem. As an application, we characterize the possible contact angles and exhibit an infinite family of real analytic non-round cyli...

  3. Spatial reconstruction of facial skin capillaries

    Directory of Open Access Journals (Sweden)

    Makarchuk O.I.


    Full Text Available To define structural and functional changes of skin capillaries in women of different age groups in this work intraoperational biopsy material of skin of 205 women at the age from 19 to 75 years, that was taken during standard surgery instrumentations for different defects of face and neck skin correction, was investigated. Skin material of cheek face region, temple region of head and anterior neck region was morphologically processed. To define parameters of dermal capillars and spatial reconstruction of intrapapillary capillary loops, serial sections was investigated with the help of morphometry. It was determined, that microcirculation age changes include structural disorders of intrapapillary capillary loops. Essential struc-tural and functional changes observed in skin of cheek region in women of 33-40 years and in temple region of head and anterior neck region in women of 41-50 years. It is typical at the patients with nicotinic dependence, ischemic heart disease, hypertonic disease, a diabetes, and also adiposity of a different degree essential infringement of microvessels bed structure of a skin that gives the basis for allocation of the given contingent of patients as group high intraoperative and postoperative risk at carrying out of operative interventions for correction of face skin involutive changes.

  4. Improving the sensitivity in chiral capillary electrophoresis. (United States)

    Sánchez-López, Elena; Marina, María Luisa; Crego, Antonio L


    CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Sánchez-Hernández et al. [Electrophoresis 2014, 35, 12-27].

  5. Capillary condensation as a morphological transition. (United States)

    Kornev, Konstantin G; Shingareva, Inna K; Neimark, Alexander V


    The process of capillary condensation/evaporation in cylindrical pores is considered within the idea of symmetry breaking. Capillary condensation/evaporation is treated as a morphological transition between the wetting film configurations of different symmetry. We considered two models: (i) the classical Laplace theory of capillarity and (ii) the Derjaguin model which takes into account the surface forces expressed in terms of the disjoining pressure. Following the idea of Everett and Haynes, the problem of condensation/evaporation is considered as a transition from bumps/undulations to lenses. Using the method of phase portraits, we discuss the mathematical mechanisms of this transition hidden in the Laplace and Derjaguin equations. Analyzing the energetic barriers of the bump and lens formation, it is shown that the bump formation is a prerogative of capillary condensation: for the vapor-liquid transition in a pore, the bump plays the same role as the spherical nucleus in a bulk fluid. We show also that the Derjaguin model admits a variety of interfacial configurations responsible for film patterning at specific conditions.

  6. Capillary condensation of short-chain molecules. (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan


    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  7. Highly conductive, printable pastes from capillary suspensions (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert


    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  8. Capillary adhesion forces between flexible fibers (United States)

    Duprat, Camille; Protière, Suzie


    We consider the capillary adhesion produced by a drop placed between two elastic fibers. We measure the force exerted by the drop as we vary the inter-fiber distance, and report two types of wet adhesion: a weak capillary adhesion, where a liquid drop bridges the fibers, and a strong elastocapillary adhesion where the liquid is spread between two collapsed fibers. The weak adhesion is characterized by a force that increases linearly with the liquid length. With flexible fibers, the force exerted by the drop can induce deformation and rapid collapse, or zipping, of the fibers. This zipping results in a sudden increase of the wetted length and a force that departs from the linear evolution. As the inter-fiber distance is subsequently increased, the liquid length decreases while the fibers deformation increases, and the force actually reaches a plateau, i.e. remains constant until unzipping, or detachment of the fibers occurs. We measure the value of this plateau, i.e. the maximal adhesion force, as we vary the drop volume and the fibers elasticity. We also show that flexibility extends capillary adhesion to inter-fiber distances impossible to reach with rigid fibers, while keeping a constant pull-out force characteristic of the elastocapillary coupling.

  9. Selection of materials for tokamak plasma facing elements based on a liquid tin capillary pore system (United States)

    Lyublinski, I. E.; Vertkov, A. V.; Zharkov, M. Yu; Sevryukov, O. N.; Dzhumaev, P. S.; Shumskiy, V. A.; Ivannikov, A. A.


    Capillary-Pore Systems (CPS) filled by liquid metals are considered as an alternative solution of materials choice for plasma facing component of tokamak reactor. Tin is viewed as one of the candidates for CPS because it has lower corrosiveness than gallium and lower saturated vapour pressure compared to lithium. The corrosion resistance of Mo, Nb and W in pure liquid tin was investigated. The corrosion tests were carried out in the static isothermal conditions at a temperature up to 1050°C. As a result of the corrosion study, it was found that Mo does not corrode in liquid Sn, as opposed to Nb and is compatible with liquid tin in temperatures of up to approx. 1000°C. This allows considering Mo as an alloy base material of the in-vessel tokamak elements based on liquid tin capillary pore systems.

  10. Automated coating procedures to produce poly(ethylene glycol) brushes in fused-silica capillaries

    DEFF Research Database (Denmark)

    Poulsen, Nicklas N.; Østergaard, Jesper; Petersen, Nickolaj J.


    . Flexible and reliable approaches for preventing unwanted protein adsorption in separation science are thus in high demand. We therefore present new coating approaches based on an automated in-capillary surface initiated atom transfer radical polymerization process (covalent coating) as well...... as by electrostatically adsorbing a pre-synthesized polymer leading to functionalized molecular brushes. The electroosmotic flow was measured following each step of the covalent coating procedure providing a detailed characterization and quality control. Both approaches resulted in good fouling resistance against...... the four model proteins cytochrome c, myoglobin, ovalbumin and human serum albumin in the pH range 3.4-8.4. Further, even samples containing 10% v/v plasma derived from human blood did not show signs of adsorbing to the coated capillaries. The covalent as well as the electrostatically adsorbed coating were...

  11. Experimental investigation of bubble formation during capillary filling of SiO2 nanoslits

    DEFF Research Database (Denmark)

    Thamdrup, Lasse Højlund; Persson, Karl Fredrik; Bruus, Henrik;


    Experimental results are presented regarding the influence of bubble formation on the capillary filling speed of water in SiO2 nanoslits with heights ranging from 33 to 158 nm. The formation of an isolated pinned bubble in a nanoslit with a height of 111 nm causes an immediate decrease in the fil......Experimental results are presented regarding the influence of bubble formation on the capillary filling speed of water in SiO2 nanoslits with heights ranging from 33 to 158 nm. The formation of an isolated pinned bubble in a nanoslit with a height of 111 nm causes an immediate decrease...... in the filling speed. In nanoslits with heights below 100 nm, pinned bubbles are continuously formed at the advancing liquid meniscus. This observed increase in bubble density, which increases the fluidic resistance, quantitatively coincides with an observed reduction of the filling speed during filling...

  12. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo


    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  13. Measurement of Capillary Radius and Contact Angle within Porous Media. (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed


    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  14. In-capillary derivatization and capillary electrophoresis separation of amino acid neurotransmitters from brain microdialysis samples. (United States)

    Denoroy, Luc; Parrot, Sandrine; Renaud, Louis; Renaud, Bernard; Zimmer, Luc


    A new in-capillary derivatization method with naphtalene-2,3-dicarboxyaldehyde (NDA)/CN(-) has been developed for capillary electrophoresis with laser-induced fluorescence detection of brain microdialysate amino acids. Samples are sandwiched between two plugs of reagent mixture at the capillary inlet and subsequently separated. Highest derivatization yields are obtained by using a reagent to sample plug length ratio equal to 4, performing a first electrophoretic mixing followed by a zero potential amplification step before applying the separation voltage and using a NaCN to NDA concentration ratio equal to 1. This new single-step methodology allows the analysis of amino acid neurotransmitters in rat brain microdialysis samples.

  15. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng


    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  16. Capillary climb dynamics in the limits of prevailing capillary and gravity force. (United States)

    Bijeljic, B; Markicevic, B; Navaz, H K


    The dynamics of capillary climb of a wetting liquid into a porous medium that is opposed by gravity force is studied numerically. We use the capillary network model, in which an actual porous medium is represented as a network of pores and throats, each following a predefined size distribution function. The liquid potential in the pores along the liquid interface within the network is calculated as a result of capillary and gravity forces. The solution is general, and accounts for changes in the climbing height and climbing velocity. The numerical results for the capillary climb reveal that there are at least two distinct flow mechanisms. Initially, the flow is characterized by high climbing velocity, in which the capillary force is higher than the gravity force, and the flow is the viscous force dominated. For this single-phase flow, the Washburn equation can be used to predict the changes of climbing height over time. Later, for longer times and larger climbing height, the capillary and gravity forces become comparable, and one observes a slower increase in the climbing height as a function of time. Due to the two forces being comparable, the gas-liquid sharp interface transforms into flow front, where the multiphase flow develops. The numerical results from this study, expressed as the climbing height as a power law function of time, indicate that the two powers, which correspond to the two distinct mechanisms, differ significantly. The comparison of the powers with experimental data indicates good agreement. Furthermore, the power value from the Washburn solution is also analyzed, where it should be equal to 1/2 for purely viscous force driven flow. This is in contrast to the power value of ∼0.43 that is found experimentally. We show from the numerical solution that this discrepancy is due to the momentum dissipation on the liquid interface.

  17. Evaluation of Tillandsia capillaris Ruiz amd Pav. f. capillaris as biomonitor of atmospheric pollution in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Pignata, M.L. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales]|[Instituto Multidisciplinario de Biologia Vegetal (IMBIV-UNC), Cordoba (Argentina); Wannaz, E.D.; Martinez, M.S.; Caminotti, G. [Univ. Nacional de Cordoba, Cordoba (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales


    The behaviour of Tillandsia capillaris Ruiz and Pav. f. capillaris, when exposed to atmospheric pollutants, was assessed by measuring chemical parameters indicating foliar damage and the contents of some heavy metals. Samples were transplanted to three sites in the City of Cordoba and were collected back after 15, 30, 60 and 90 days of exposure. At the same time, samples coming from the collection site were analyzed for each of said exposure times. Chlorophylls, hydroperoxy conjugated dienes, water contents, malondialdehyde, sulfur, Cu, Pb, Ni, Co, Mn, Zn and Fe were measured in the samples. A Foliar Damage Index was calculated from some of these parameters. (orig.)

  18. Separation and analysis of triazine herbcide residues by capillary electrophoresis. (United States)

    Elbashir, Abdalla A; Aboul-Enein, Hassan Y


    Triazines are widely used in agriculture around the world as selective pre- and post-emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized.

  19. Fluorescent polymer coated capillaries as optofluidic refractometric sensors. (United States)

    Rowland, Kristopher J; François, Alexandre; Hoffmann, Peter; Monro, Tanya M


    A capillary microresonator platform for refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by whispering gallery mode resonances within the layer. Using a Fourier technique to calculate the spectral resonance shifts, the fabricated capillary resonators exhibited refractometric sensitivities up to approximately 30 nm/RIU upon flowing aqueous glucose through them. These sensors could be readily integrated with existing biological and chemical separation platforms such as capillary electrophoresis and gas chromatography where such thick walled capillaries are routinely used with polymer coatings. A review of the modelling required to calculate whispering gallery eigenmodes of such inverted cylindrical resonators is also presented.

  20. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.A.


    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  1. Colloid Mobilization and Transport during Capillary Fringe Fluctuations (United States)

    Aramrak, Surachet; Flury, Markus


    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead filled column. Confocal images showed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively-charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively-charged colloids did not attach to static air-bubbles, but hydrophobic negatively-charged and hydrophilic positively-charged colloids did.

  2. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu


    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.

  3. Method for analysing glycoprotein isoforms by capillary electrophoresis


    Frutos, Mercedes de; Díez-Masa, José Carlos; Morales-Cid, Gabriel


    [EN] The present invention relates to a new method for the purification, concentration, separation and determination of the isoforms of alpha-1-acid glycoprotein (AGP) in human blood serum samples using capillary electrophoresis. The new method is based on the immunocapture and preconcentration of the sample within the separation capillary by using an immunoadsorbent phase magnetically immobilized within the electrophoresis capillary and the subsequent desorption and separation of the glycopr...

  4. The study of polyoxometalates formation using capillary zone electrophoresis. (United States)

    Zdanov, Artem A; Shuvaeva, Olga V


    The formation process of polyoxometalates [PMo12 O40 ](3-) and [PMo12 - x Vx O40 ](-3-x) has been studied in aqueous solutions of 0.1 M malonate buffer at pH 2.8-3.0 using CZE. Two different approaches, pre-capillary and in-capillary, were examined and compared. In precapillary mode, the reaction mixture of the reactants and reaction products was injected into the capillary followed by the separation procedure. In in-capillary mode, the sequential input of the reagents and running electrolyte into the capillary and the species separation occurs simultaneously. The optimal parameters of in-capillary separation were established as functions of applied voltage and the length of the intermediate buffer zone between the reagents in the capillary. As a result the best-compromise conditions for the separation of the mixtures containing the reactants, intermediates, and reaction products, in order to achieve the best efficiency, symmetry, and peak areas, were achieved at -18 kV and the input parameter of 900 mbar·s. It was also shown that in-capillary mode is more informative than pre-capillary mode for studying the complex compound formation process.

  5. High Performance Wafer-Based Capillary Electrochromatography Project (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  6. Capillary-Condenser-Pumped Heat-Transfer Loop (United States)

    Silverstein, Calvin C.


    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  7. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography ? a high performance and low power...

  8. Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang


    The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.

  9. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography - a high performance and low power...

  10. A Prediction Model of the Capillary Pressure J-Function (United States)

    Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.


    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  11. Effective viscosity of magnetic nanofluids through capillaries. (United States)

    Patel, Rajesh


    The simultaneous effect of magnetic field and temperature on the capillary viscosity of magnetic nanofluid is an important parameter for a new class of applications such as nanoduct flow, nanomotors, micro- and nanofluidic devices, for transformer cooling, magnetic targeted drug delivery, etc. The effective viscosity of a nanofluid is explained based on the rotation of the particles and the effect of torque on it due to an externally applied magnetic field. Two types of fluids are used here, temperature-sensitive and non-temperature-sensitive magnetic nanofluids. In both types of fluids, decrease in effective viscosity with temperature is observed, but in both cases the mechanism for the decrement is quite different. One is due to temperature dependence of the magnetic moment and the other is due to removal of the secondary surfactant. For temperature-sensitive magnetic nanofluids, a Curie temperature of ~80 °C is extracted from this study. For non-temperature-sensitive magnetic nanofluids ~65% of the secondary surfactant is removed for a change in temperature, ΔT = 40 °C. This is analogous with removal of a drug from magnetic particles for targeted drug delivery. Further, a linear dependence of effective viscosity with different capillary size and ξ (angle between magnetic field and flow direction, ξε[0,π/2]) is also observed. This linear dependence can also be a good approximation for the study of magnetic drug targeting, as in the human body the capillaries are of different sizes, and the externally applied magnetic field is not always parallel or perpendicular to the drug flow direction.

  12. Design and evaluation of capillary electrophoresis in dynamically coated capillaries coupled with chemiluminescence detection. (United States)

    Liu, Haiyan; Han, Ning; Zhang, Lingyi; Du, Yiping; Zhang, Weibing


    A dynamic coating capillary electrophoresis coupled with a simplified on-line chemiluminescence detection system was designed and evaluated. In the proposed system, poly-vinylpyrrolidone was used as dynamic coating substance in the separation buffer to reduce the unwanted protein non-specific adsorption, which was first applied in capillary electrophoresis coupling with on-line chemiluminescence detection. In order to avoid complex processing, an ordinary plastic cuvette was modified as a three-way joint. The chemiluminescence reaction conditions and capillary electrophoresis separation conditions were investigated in detail. The results showed that the coated capillary can be injected protein samples at least 30 times continuously with good repeatability. Under optimal conditions, the chemiluminescence relative intensity was linear with the concentration of hemoglobin in the range of 4-1850 μg mL(-1) and the detection limit was 2.0 μg mL(-1) (S/N=3). The relative standard deviation of migration times and peak heights for 40 μg mL(-1) hemoglobin were 2.5% and 4.1% (n=11) respectively. Interference of matrix effects was overcome by the calibration according to standard addition methods. Afterwards, the method was validated successfully and was applied to detect the concentration of hemoglobin in the serum of haemolytic patients.

  13. On-capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis. (United States)

    Glatz, Zdeněk


    Separation technologies play an important role in revealing biological processes at various omic levels, in pharmacological and clinical research. In this context, CE is a strong candidate for analyses of samples with rapidly increasing complexity. Even though CE is well known for its many advantages in this regard, the sensitivity of CE analyses is insufficient for many applications. Accordingly, there are generally three main options for enhancing the sensitivity of CE analyses - using special detection techniques, using sample pre-concentration and derivatisation. Derivatisation is often the method of choice for many laboratories, since it is simple and provides several advantages such as small sample volume demand and the possibility of automation. Although it can be performed in different ways depending on where the reaction takes place, this article reviews one of the simplest and at the same time most useful approaches on-capillary derivatisation. Even if in many cases the use of on-capillary derivatisation alone is enough to improve the detection sensitivity, on other occasions it needs to be employed in combination with the other above-mentioned strategies. After a simple discussion of derivatisation in general, special attention is focused on the on-capillary approach and methodologies available for on-capillary reactant mixing. Its applications in various fields are also described.

  14. Capillary Network, Cancer and Kleiber Law

    CERN Document Server

    Dattoli, G; Licciardi, S; Guiot, C; Deisboeck, T S


    We develop a heuristic model embedding Kleiber and Murray laws to describe mass growth, metastasis and vascularization in cancer. We analyze the relevant dynamics using different evolution equations (Verhulst, Gompertz and others). Their extension to reaction diffusion equation of the Fisher type is then used to describe the relevant metastatic spreading in space. Regarding this last point, we suggest that cancer diffusion may be regulated by Levy flights mechanisms and discuss the possibility that the associated reaction diffusion equations are of the fractional type, with the fractional coefficient being determined by the fractal nature of the capillary evolution.

  15. Capillary-Pumped Heat-Transfer Loop (United States)


    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  16. Intraneural capillary hemangioma of the cauda equina. (United States)

    Mastronardi, L; Guiducci, A; Frondizi, D; Carletti, S; Spera, C; Maira, G


    A case of intraneural capillary hemangioma involving the dorsal root of a spinal nerve of the cauda equina is reported. The patient was a 41-year-old man with a 3-month history of intermittent left lumbosciatalgia. MRI and CT myelography showed a space-occupying mass at the level of the cauda equina. Laminectomy of L5 and complete removal of the lesion were performed without neurological problems. The clinical, diagnostic, and therapeutic aspects of hemangiomas of the cauda equina are analyzed.

  17. Elastic deformation due to tangential capillary forces

    CERN Document Server

    Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H


    A sessile liquid drop can deform the substrate on which it rests if the solid is sufficiently "soft". In this paper we compute the detailed spatial structure of the capillary forces exerted by the drop on the solid substrate using a model based on Density Functional Theory. We show that, in addition to the normal forces, the drop exerts a previously unaccounted tangential force. The resultant effect on the solid is a pulling force near the contact line directed towards the interior of the drop, i.e. not along the interface. The resulting elastic deformations of the solid are worked out and illustrate the importance of the tangential forces.

  18. Capillary floating and the billiard ball problem

    CERN Document Server

    Gutkin, Eugene


    We establish a connection between capillary floating in neutral equilibrium and the billiard ball problem. This allows us to reduce the question of floating in neutral equilibrium at any orientation with a prescribed contact angle for infinite homogeneous cylinders to a question about billiard caustics for their orthogonal cross-sections. We solve the billiard problem. As an application, we characterize the possible contact angles and exhibit an infinite family of real analytic non-round cylinders that float in neutral equilibrium at any orientation with constant contact angles.

  19. Experimental study on capillary filling in nanochannels (United States)

    Yang, Min; Cao, Bing-Yang; Wang, Wei; Yun, He-Ming; Chen, Bao-Ming


    We investigated the capillary filling kinetics of deionized water in nanochannels with heights of 50-120 nm. The measured position of the moving meniscus was proportional to the square root of time, as predicted by the LW equation. However, the extracted slopes were significantly smaller than the predictions based on the bulk properties. This unusual behavior was found to be mainly caused by the electro-viscous effect and dynamic contact angle, which was significantly larger than the static angle. In addition, when the filling distance reached about 600 μm, bubbles tended to be formed, leading to the main meniscus was almost immobile.

  20. Capillary electrophoresis-mass spectrometry of carbohydrates. (United States)

    Zaia, Joseph


    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  1. Gravimetric capillary method for kinematic viscosity measurements (United States)

    Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing


    A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.

  2. Comparison of three modifications of fused-silica capillaries and untreated capillaries for protein profiling of maize extracts by capillary electrophoresis. (United States)

    Pobozy, Ewa; Sentkowska, Aleksandra; Piskor, Anna


    In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused-silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω-iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused-silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples.

  3. Image-based modeling of blood flow and oxygen transfer in feto-placental capillaries (United States)

    Pearce, Philip; Jensen, Oliver


    During pregnancy, oxygen diffuses from maternal to fetal blood through the placenta. At the smallest scale of the feto-placental vasculature are the "terminal villi", bulbous structures that are thought to be the main sites for oxygen transfer in the final trimester of pregnancy. The objective of this study is to investigate blood flow and oxygen transfer in the terminal villi of the placenta. Three-dimensional representations of villous and capillary surfaces, obtained from confocal laser scanning microscopy, are converted to finite-element meshes. Simulations of blood flow and oxygen transfer are performed to calculate the vascular flow resistance of the capillaries and the total oxygen transfer rate from the maternal blood. Scaling arguments, which predict the oxygen transfer across a range of Peclet numbers, are shown to be an efficient tool for quantifying the effect of statistical variability and experimental uncertainty. The effect of commonly observed localised dilations in the fetal vasculature on oxygen transfer is quantified using an idealised model in a simplified geometry. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximised by an optimal shape of the dilation, leading to an increase in oxygen transfer of up to 15%.

  4. Manufacturing of metallic porous structures to be used in capillary pumping systems

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Reimbrecht


    Full Text Available Sintered metallic porous structures have an application as capillary structures in two-phase heat transfer loops. In this work the manufacturing procedure of tubular porous structures for capillary pump application is discussed. The application of porous structures on capillary pumping systems requires porosity higher than 40% and pore size diameter lower than 20 µm. Carbonyl nickel powder with particle diameter between 3 and 7 µm and stainless steel AISI316L powder with particle diameter between 1 and 22 µm were used as raw material. Sintering under hydrogen atmosphere was performed both in a resistive furnace and in a plasma reactor. Temperature and time were the modified parameters to obtain suitable porosity and roundness on the samples. The porosity was measured using the Arquimedes Principle (MPIF-42, the roundness was evaluated using a simplified measurement technique of the sample diameter and the pore size distribution was determined by image analysis techniques. Images obtained by Scanning Electronic Microscopy were employed on the image analysis. The sintering parameters selected to manufacture nickel samples were 700 °C and 30 min resulting in a porosity of about 44%. The sintering parameters selected to manufacture stainless steel samples were 1000 °C and 30 min resulting in a porosity of about 40%.

  5. Rapid capillary filling via ion-water interactions over the nanoscale. (United States)

    Bakli, Chirodeep; Chakraborty, Suman


    Giant frictional resistances are grand challenges against the rapid filling of nanoscale capillaries, as encountered in a wide variety of applications ranging from nature to energy. It is commonly believed that partially wettable charged nanocapillaries fill up considerably slower, compared to completely wettable ones, under the influence of a complex interplay between interfacial tension and electrical interactions. In sharp contrast to this common belief, here we discover a new non-intuitive regime of rapid filling of charged capillaries over the nanometer scale, by virtue of which a partially wettable capillary may fill up comparatively faster than a completely wettable one. We attribute the fundamental origin of this remarkable behavior to ion-water interactions over interfacial scales. The underlying novel electro-hydrodynamic mechanism, as unveiled here, may provide deeper insights into the physico-chemical interactions leading to augmentations in the rates of nanocapillary filling over hydrophobic regimes, bearing far-reaching implications in the transport of biological fluids, enhanced oil recovery, and miniaturized energy harvesting applications.

  6. Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma%Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma

    Institute of Scientific and Technical Information of China (English)

    周素云; 袁孝; 刘明萍


    The laser-induced plasma wakefield in a capillary is investigated on the basis of a simple two-dimensional analytical model. It is shown that as an intense laser pulse reshaped by the capillary wall propagates in capillary plasma, it resonantly excites a strong wakefield if a suitable laser pulse width and capillary radius are chosen for a certain plasma density. The dependence of the laser width and capillary radius on the plasma density for resonance conditions is considered. The wakefield amplitude and longitudinal scale of bubbles in capillary plasma are much larger than those in unbounded plasma, so the capillary guided plasma wakefield is more favorable to electron acceleration.

  7. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles (United States)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong


    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  8. Vesicle dynamics in shear and capillary flows (United States)

    Noguchi, Hiroshi; Gompper, Gerhard


    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape.

  9. Capillary surface discontinuities above reentrant corners (United States)

    Korevaar, H. J.


    A particular configuration of a vertical capillary tube for which S is the equilibrium interface between two fluids in the presence of a downward pointing gravitational field was investigated. S is the graph a function u whose domain is the (horizontal) cross section gamma of the tube. The mean curvature of S is proportional to its height above a fixed reference plane and lambda is a prescribed constant and may be taken between zero and pi/2. Domains gamma for which us is a bounded function but does not extend continuously to d gamma are sought. Simple domains are found and the behavior of u in those domains is studied. An important comparison principle that has been used in the literature to derive many of the results in capillarity is reviewed. It allows one to deduce the approximate shape of a capillary surface by constructing comparison surfaces with mean curvature and contact angle close to those of the (unknown) solution surface. In the context of nonparametric problems the comparison principle leads to height estimates above and below for the function u. An example from the literature where these height estimates have been used successfully is described. The promised domains for which the bounded u does not extend continuously to the boundary are constructed. The point on the boundary at which u has a jump discontinuity will be the vertext of a re-entrant corner having any interior angle theta pi. Using the comparison principle the behavior of u near this point is studied.

  10. Observations of gravity-capillary lump interactions

    CERN Document Server

    Masnadi, Naeem


    In this experimental study, we investigate the interaction of gravity-capillary solitary waves generated by two surface pressure sources moving side by side at constant speed. The nonlinear response of a water surface to a single source moving at a speed just below the minimum phase speed of linear gravity-capillary waves in deep water ($c_{min}\\approx23$ cm s$^{-1}$) consists of periodic generation of pairs of three-dimensional solitary waves (or lumps) in a V-shaped pattern downstream of the source. In the reference frame of the laboratory, these unsteady lumps propagate in a direction oblique to the motion of the source. In the present experiments, the strength of the two sources is adjusted to produce nearly identical responses and the free surface deformations are visualized using photography-based techniques. The first lumps generated by the two sources move in intersecting directions that make a half angle of approximately 15 degrees and collide in the center-plane between the sources. A steep depressi...

  11. Capillary wrinkling of thin bilayer polymeric sheets (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  12. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband


    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  13. Subretinal Hemorrhage after Photodynamic Therapy for Juxtapapillary Retinal Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Takayuki Baba


    Full Text Available A 75-year-old Japanese woman presented with a juxtapapillary retinal capillary hemangioma (RCH in her left eye. Twelve months after the initial examination, the size of the hemangioma had increased and the exudation from the RCH involved the macula. Her best-corrected visual acuity (BCVA had decreased from 0.8 to 0.3. A total of five intravitreal injections of bevacizumab (IVB; 1.25 mg was given but the RCH did not respond. A photodynamic therapy (PDT was done using multiple laser spots to avoid damaging the optic nerve head. After the first PDT, the subfoveal fluid was reduced but not completely gone. One week after the second PDT, a massive subretinal hemorrhage developed. The subretinal hemorrhage was successfully displaced by injecting intraocular sulfur hexafluoride (SF6 gas. At the 3-year follow-up examination, no subretinal hemorrhage or fluid was observed at the macula and the BCVA remained at 0.05. Our case was resistant to the combination of anti-vascular endothelial growth factor (VEGF and PDT and had a rare massive subretinal hemorrhage. A further collection of RCH cases treated with anti-VEGF and PDT that would justify this treatment is necessary.

  14. Fabrication of three-dimensional microstructures using capillary forces

    NARCIS (Netherlands)

    Honschoten, van J.W.; Berenschot, J.W.; Sanders, R.G.P.; Abelmann, L.; Tas, N.R.; Elwenspoek, M.


    In this paper we describe the fabrication of threedimensional microstructures by means of capillary forces. Using an origami-like technique, planar structures are folded to produce 3D-objects. To this purpose use is made of capillary interactions and surface tension forces. Capillarity is a particul

  15. A Simple Double-Source Model for Interference of Capillaries (United States)

    Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua


    A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…

  16. Capillary condensation in porous alumina observed by positronium lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Eugeniu [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania); Center for Advanced Studies in Physics of the Roumanian Academy, Casa Academiei Romane, Calea 13 Septembrie No. 13, Bucharest (Romania); Vata, Ion [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania)], E-mail:; Toderian, Stefan; Dudu, Dorin; Rusen, Ion; Stefan, Nitisor [National Institute for Nuclear Physics and Engineering-Horia Hulubei, Atomistilor Street 407, CP MG 06, Magurele, Bucharest (Romania)


    The PALS method based on time distribution measurements has been used to study capillary condensation of different gases adsorbed in microporous alumina powder. The isotherms exhibit features which are associated with a shifted gas-liquid transition. The sorption and desorption processes are irreversible presenting a hysteresis effect. Suggestions on some new aspects of the capillary condensation dynamics are made.

  17. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.


    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC) wit

  18. The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. (United States)

    Hedlin, Michael A H; Alcoverro, Benoit


    Rosette spatial filters are used at International Monitoring System infrasound array sites to reduce noise due to atmospheric turbulence. A rosette filter consists of several clusters, or rosettes, of low-impedance inlets. Acoustic energy entering each rosette of inlets is summed, acoustically, at a secondary summing manifold. Acoustic energy from the secondary manifolds are summed acoustically at a primary summing manifold before entering the microbarometer. Although rosette filters have been found to be effective at reducing infrasonic noise across a broad frequency band, resonance inside the filters reduces the effectiveness of the filters at high frequencies. This paper presents theoretical and observational evidence that the resonance inside these filters that is seen below 10 Hz is due to reflections occuring at impedance discontinuities at the primary and secondary summing manifolds. Resonance involving reflections at the inlets amplifies noise levels at frequencies above 10 Hz. This paper further reports results from theoretical and observational tests of impedance matching capillaries for removing the resonance problem. Almost total removal of resonant energy below 5 Hz was found by placing impedance matching capillaries adjacent to the secondary summing manifolds in the pipes leading to the primary summing manifold and the microbarometer. Theory and recorded data indicate that capillaries with resistance equal to the characteristic impedance of the pipe connecting the secondary and primary summing manifolds suppresses resonance but does not degrade the reception of acoustic signals. Capillaries at the inlets can be used to remove resonant energy at higher frequencies but are found to be less effective due to the high frequency of this energy outside the frequency band of interest.

  19. In situ observation and analysis of ultrasonic capillary effect in molten aluminium. (United States)

    Tzanakis, I; Xu, W W; Eskin, D G; Lee, P D; Kotsovinos, N


    An in situ synchrotron radiographic study of a molten Al-10 wt% Cu alloy under the influence of an external ultrasonic field was carried out using the Diamond-Manchester Branchline pink X-ray imaging at the Diamond Light Source in UK. A bespoke test rig was used, consisting of an acoustic transducer with a titanium sonotrode coupled with a PID-controlled resistance furnace. An ultrasonic frequency of 30 kHz, with a peak to peak amplitude at 140 microns, was used, producing a pressure output of 16.9 MPa at the radiation surface of the 1-mm diameter sonotrode. This allowed quantification of not only the cavitation bubble formation and collapse, but there was also evidence of the previously hypothesised ultrasonic capillary effect (UCE), providing the first direct observations of this phenomenon in a molten metallic alloy. This was achieved by quantifying the re-filling of a pre-existing groove in the shape of a tube (which acted as a micro-capillary channel) formed by the oxide envelope of the liquid sample. Analytical solutions of the flow suggest that the filling process, which took place in very small timescales, was related to micro-jetting from the collapsing cavitation bubbles. In addition, a secondary mechanism of liquid penetration through the groove, which is related with the density distribution of the oxides inside the groove, and practically to the filtration of aluminium melt from oxides, was revealed. The observation of the almost instantaneous re-filling of a micro-capillary channel with the metallic melt supports the hypothesised sono-capillary effect in technologically important liquids other than water, like metallic alloys with substantially higher surface tension and density.

  20. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng


    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  1. Capillary electrophoretic and mass spectrometric analysis of a polydisperse fluorosurfactant. (United States)

    Al-Jarah, Suhair Yousif; Sjödahl, Johan; Woldegiorgis, Andreas; Emmer, Asa


    A fluorosurfactant has been studied using capillary electrophoresis and mass spectrometry. The fluorosurfactant, FC134, can be used as a buffer additive in capillary electrophoresis in order to decrease wall adsorption of proteins and in micellar electrokinetic chromatography. However, it has been discovered that this fluorosurfactant is polydisperse, thus containing substances with different lengths and structures. In this work, the fluorosurfactant sample components were separated by capillary electrophoresis. An uncoated as well as a poly(vinyl alcohol)-coated capillary were used with running electrolytes containing methanol and acetic acid. Following the capillary electrophoretic separation, fractions were collected for further analysis by MALDI-MS. Non-fractionated samples were also analyzed both by MALDI-MS and by ESI-MS.

  2. Fatal Primary Capillary Leak Syndrome in a Late Preterm Newborn. (United States)

    Kulihova, Katarina; Prochazkova, Martina; Semberova, Jana; Janota, Jan


    Primary capillary leak syndrome is a rare disease of unknown etiology, characterized by episodes of vascular collapse and plasma extravasation, which may lead to multiple organ failure. Primary capillary leak is extremely rare in children. The authors report a case of a late preterm newborn with fatal capillary leak syndrome of unknown etiology, manifesting as hypotension unresponsive to treatment, extravasation leading to generalised edema, disseminated intravascular coagulation and finally, multiple organ dysfunction syndrome. Aggressive volumotherapy and a combination of inotropes and high doses of terlipressin did not influence systemic vascular collapse and plasma extravasation. The newborn developed multiple organ failure and died on day 27 of life. Investigations performed failed to reveal any specific cause of capillary leak. This is the first report of a fatal primary capillary leak syndrome in a newborn.

  3. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)


    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  4. Determination of Amino Acids in Single Human Lymphocytes after On-capillary Derivatization by Capillary Zone Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)


    Amino acids in individual human lymphocytes were determined by capillary zone electrophoresis with electrochemical detection after on-capillary derivatization. In order to inject cells easily, a cell injector was designed. Four amino acids (serine, alanine, taurine, and glycine) in single human lymphocytes have been identified. Quantitation has been accomplished through the use of calibration curves.

  5. Double-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable capillary electrophoresis and capillary electrophoresis with mass spectrometry glycan analysis. (United States)

    Zhang, Yi-Wei; Zhao, Ming-Zhe; Liu, Jing-Xin; Zhou, Ying-Lin; Zhang, Xin-Xiang


    Glycosylation plays an important role in protein conformations and functions as well as many biological activities. Capillary electrophoresis combined with various detection methods provided remarkable developments for high-sensitivity glycan profiling. The coating of the capillary is needed for highly polar molecules from complex biosamples. A poly(vinyl alcohol)-coated capillary is commonly utilized in the capillary electrophoresis separation of saccharides sample due to the high-hydrophilicity properties. A modified facile coating workflow was carried out to acquire a novel multiple-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable analysis of glycans. The migration time fluctuation was used as index in the optimization of layers and a double layer was finally chosen, considering both the effects and simplicity in fabrication. With migration time relative standard deviation less than 1% and theoretical plates kept stable during 100 consecutive separations, the method was presented to be suitable for the analysis of glycosylation with wide linear dynamic range and good reproducibility. The glycan profiling of enzymatically released N-glycans from human serum was obtained by the presented capillary electrophoresis method combined with mass spectrometry detection with acceptable results.

  6. Capillary electrophoresis of intact basic proteins using noncovalently triple-layer coated capillaries. (United States)

    Haselberg, Rob; de Jong, Gerhardus J; Somsen, Govert W


    The usefulness of a noncovalent, positively charged capillary coating for the efficient analysis of intact basic proteins with CE was studied. Capillaries were coated by subsequent flushing with solutions of 10% w/v Polybrene (PB), 3% w/v dextran sulfate (DS), and again 10% w/v PB. Coating characterization studies showed that stable coatings could be produced which exhibited a pH-independent and highly reproducible EOF. The PB-DS-PB coating was evaluated with Tris phosphate BGEs of various pH using the four basic model proteins: alpha-chymotrypsinogen A, ribonuclease A, cytochrome c, and lysozyme. Typical migration time RSDs for the proteins were less than 0.85%, and apparent plate numbers were above 125,000 using a capillary length of 40 cm. The high separation efficiency allowed detection of several minor impurities in the model proteins. Using a BGE of medium pH, the CE system with triple-layer coating appeared to be useful for the repeatable profiling of recombinant humanized mouse monoclonal immunoglobulin G(1) showing a characteristic pattern of glycoforms. The CE system was also applied to the characterization of two llama antibodies, which were produced in Saccharomyces cerevisiae, revealing the presence of a side product in one of the antibodies. The high migration time stability allowed the reliable determination of antibody-antigen binding by monitoring migration time shifts. Finally, the feasibility of using the PB-DS-PB coated capillaries for CE with mass spectrometric detection was shown by the characterization of the impure llama antibody sample.

  7. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals. (United States)

    Haselberg, R; Brinks, V; Hawe, A; de Jong, G J; Somsen, G W


    In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.

  8. Gravity-capillary free-surface flows

    CERN Document Server

    Vanden-Broeck, Jean-Marc


    Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.

  9. Dynamic Stability of Equilibrium Capillary Drops (United States)

    Feldman, William M.; Kim, Inwon C.


    We investigate a model for contact angle motion of quasi-static capillary drops resting on a horizontal plane. We prove global in time existence and long time behavior (convergence to equilibrium) in a class of star-shaped initial data for which we show that topological changes of drops can be ruled out for all times. Our result applies to any drop which is initially star-shaped with respect to a small ball inside the drop, given that the volume of the drop is sufficiently large. For the analysis, we combine geometric arguments based on the moving-plane type method with energy dissipation methods based on the formal gradient flow structure of the problem.

  10. Capillary Pumped Heat Transfer (CHT) Experiment (United States)

    Hallinan, Kevin P.; Allen, J. S.


    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  11. A novel covalent coupling method for coating of capillaries with liposomes in capillary electrophoresis. (United States)

    Mei, Jie; Xu, Jian-Rong; Xiao, Yu-Xiu; Liao, Xiao-Yan; Qiu, Guo-Fu; Feng, Yu-Qi


    A novel covalent coupling method for coating of capillaries with liposomes has been developed, which includes three steps: (i) epoxy-diol coating, (ii) activation with 2,2,2-trifluoroethanesulfonyl chloride, and (iii) liposome coupling. The coating conditions, such as the reaction time and temperature of liposome coupling, the content of dimyristoylphosphatidylethanolamine in liposomes, were optimized. Vesicles were visualized on the inner silica wall as confirmed by atomic force microscopy. The effectiveness of the coating was demonstrated by investigating the effect of pH of BGE on EOF and separating neutral compounds. The intra- and inter-capillary variations in EOF are 4.02% RSD (n=30) and 6.72% RSD (n=4) respectively, and the coated capillaries can be used to perform analysis at least for one month without any performance deterioration when stored at 4 degrees C. A set of drugs with diverse structures was applied into the developed liposome-coated CE. The normalized capacity factor (K) was introduced to quantitatively evaluate drug-membrane interactions. The relationship between log K and the fraction dose absorbed in humans (Fa%) shows that the liposome-coated CE can be utilized for in vitro prediction of Fa% of drugs that follow the transcellular passive transport route.

  12. Capillary dynamics driven by molecular self-layering. (United States)

    Wu, Pingkeng; Nikolov, Alex; Wasan, Darsh


    Capillary dynamics is a ubiquitous everyday phenomenon. It has practical applications in diverse fields, including ink-jet printing, lab-on-a-chip, biotechnology, and coating. Understanding capillary dynamics requires essential knowledge on the molecular level of how fluid molecules interact with a solid substrate (the wall). Recent studies conducted with the surface force apparatus (SFA), atomic force microscope (AFM), and statistical mechanics simulation revealed that molecules/nanoparticles confined into the film/wall surfaces tend to self-layer into 2D layer/s and even 2D in-layer with increased confinement and fluid volume fraction. Here, the capillary rise dynamics of simple molecular fluids in cylindrical capillary is explained by the molecular self-layering model. The proposed model considers the role of the molecular shape on self-layering and its effect on the molecularly thin film viscosity in regards to the advancing (dynamic) contact angle. The model was tested to explain the capillary rise dynamics of fluids of spherical, cylindrical, and disk shape molecules in borosilicate glass capillaries. The good agreement between the capillary rise data and SFA data from the literature for simple fluid self-layering shows the validity of the present model. The present model provides new insights into the design of many applications where dynamic wetting is important because it reveals the significant impact of molecular self-layering close to the wall on dynamic wetting.

  13. Capillary Contact Angle in a Completely Wet Groove (United States)

    Parry, A. O.; Malijevský, A.; Rascón, C.


    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  14. Converging of Argon Cluster Ion Beams with a Glass Capillary (United States)

    Shoji, Kazuhiro; Iuchi, Kensuke; Izumi, Motoki; Moritani, Kousuke; Inui, Norio; Mochiji, Kozo

    We have investigated the converging behavior of argon gas cluster ion beam passed through a glass capillary. The gas cluster ions are attractive as a projectile for SIMS from the view point of minimization of the damages. The cluster ion beam of 5 keV consisting of 500˜3000 argon atoms was injected in the capillary. The inner diameters of the capillary at the inlet and outlet were 0.8 mm and 9.6˜140 μm, respectively. Ion current from the outlet of the all the capillaries were detected. We obtained the converging factor of 2˜7, which depended on the incident ion current. The kinetic energy of the incident ions was found to be reduced by 20˜30% by passing through the capillary. Contrary, the velocity of the ions was not changed. These facts suggest that the cluster becomes 20˜30% smaller in mass by passing through the capillary. As far as we know, this is the first report on the study of the converging of cluster ions by using a glass capillary.

  15. Trapped liquid drop at the end of capillary. (United States)

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong


    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well.

  16. Capillary rise with velocity-dependent dynamic contact angle. (United States)

    Popescu, M N; Ralston, J; Sedev, R


    The classic description of the rate of capillary rise given by the Washburn equation, which assumes that the contact angle preserves the equilibrium value at all times, has been recently questioned in the light of the known experimental dependence of the dynamic contact angle on the velocity of the contact line. For a number of such proposed functions of velocity for the dynamic contact angle, we analyze the resulting dependences of the contact angle and of the time of rise, respectively, on the height of the capillary rise. By applying our results to the particular cases of a high-viscosity silicone oil and water, respectively, in a glass capillary, we show that, in general, strong similarities arise between the various approaches and the classic theory in what concerns the time dependence of the capillary rise, which explains the lack of consistent experimental evidence for deviations in the rate of capillary rise from the Washburn equation. However, for a strong dependency of the contact angle on the velocity in the range of small velocities, as in the case of water on glass, one of the models predicts significant deviations even for the time dependence of the capillary rise. Moreover, our results show that the time or height dependence of the contact angle during the capillary rise can clearly discriminate between the various models.

  17. Plasma Acceleration from RF Discharge in Dielectric Capillary

    Energy Technology Data Exchange (ETDEWEB)

    A. Dunaevsky; Y. Raitses; N. J. Fisch


    Plasma acceleration from rf discharge in dielectric capillary was demonstrated. Observed plasma flow had ion energies of approximately 100 eV and electron energies of approximately 20 eV. The discharge was powered by a MHz-range rf generator and fed by Ar. Experimental results indicate possible validity of assumptions about formation of a potential difference at the open end of the capillary and presence of hot electron fraction in the capillary discharge. Simplicity and small dimensions of the source are attractive for micro-propulsion applications.

  18. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels (United States)

    Allen, Jeffrey S.


    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  19. [Capillary hemangioma of the spinal cord: case report]. (United States)

    Holanda, Maurus Marques de Almeida; Sarmento, Stênio Abrantes; Andrade, Rodrigo Vasconcelos Correia Lima de; Nóbrega, Evaldo de Sousa; Silva, José Alberto Gonçalves da


    We report a rare case of spinal cord capillary hemangioma in a 79-year-old woman, presented with paraparesia that had progressed within 8 months. Radiologically, the lesion resemble other vascular spinal cord tumors. The patient underwent surgery and the outcome was good. Histologically, the lesion resembled capillary hemangioma of skin or soft tissue, composed of lobules of small capillaries with associated feeding vessels, all enveloped by a delicate fibrous capsule. A review of the published cases in the literature is provided as well as a discussion of the clinical, radiological and histological aspects of the lesion and the differential diagnosis. Knowledge of its existence may avoid misdiagnosis of this benign lesion.

  20. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail:; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)


    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  1. Corrugated capillary as THz Cherenkov Smith-Purcell radiator (United States)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.


    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  2. [Immature palpebral capillary angioma. A case commented on]. (United States)

    Robin, H; Hurbli, T; Morax, S


    A three-year-old girl presented a voluminous capillary haemangioma associated with amblyopia. This case failed to respond to steroid treatment. Surgical treatment was necessary. The authors describe evolution, complications and therapeutic management of eyelid angiodysplasia.

  3. Aggregation of frictional particles due to capillary attraction

    CERN Document Server

    Dalbe, Marie-Julie; Berhanu, Michael; Kudrolli, Arshad


    Capillary attraction between identical millimeter sized spheres floating at a liquid-air interface and the resulting aggregation is investigated at low Reynolds number. We show that the measured capillary forces between two spheres as a function of distance can be described by expressions obtained using the Nicolson approximation at low Bond numbers for far greater particle sizes than previously assumed. We find that viscous hydrodynamics interactions between the spheres needs to be included to describe the dynamics close to contact. We then consider the aggregates formed when a third sphere is added after the initial two spheres are already in contact. In this case, we find that linear superposition of capillary forces describes the observed approach qualitatively but not quantitatively. Further, we observe an angular dependence of the structure due to a rapid decrease of capillary force with distance of separation which has a tendency to align the particles before contact. When the three particles come in c...

  4. Carbon nanotube patterning with capillary micromolding of catalyst. (United States)

    Lee, Jaewon; Ryu, Choonghan; Lee, Sungwoo; Jung, Donggeun; Kim, Hyoungsub; Chae, Heeyeop


    Patterning of multi-walled carbon nanotube (MWNT) in a plasma enhanced chemical vapor deposition (PECVD) chamber has been achieved by catalyst patterning using capillary micromolding process. Iron acetate catalyst nanoparticles were dissolved in ethanol and mold was fabricated with polydimethylsiloxane (PDMS). The ethanol solution containing catalyst nanoparticles was filled into the microchannel formed between PDMS mold and Si-wafer by capillary force. The capillary action of different solvents was simulated by commercial CFD-ACE+ simulation code to determine optimal solvents. Simulated result shows that the choice of solvent was critical in this capillary filling process. After the catalyst patterning, MWNT was grown at 700 approximately 800 degrees C by PECVD process using CH4 and Ar gas in a scale of approximately 10 micro-meters in a tubular inductively coupled plasma reactor. Grown CNTs were analyzed by FE-SEM and Raman Spectroscopy.

  5. Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon


    Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.

  6. Study of a heat rejection system using capillary pumping (United States)

    Neal, L. G.; Wanous, D. J.; Clausen, O. W.


    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.

  7. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;


    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood......-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke....

  8. High Performance Wafer-Based Capillary Electrochromatography Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop wafer-based capillary electrochromatography for lab-on-a-chip (LOC) applications. These microfluidic devices will be...

  9. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya


    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  10. Optimization of a Water Window Capillary Discharge Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Stefanovič


    Full Text Available Computer modeling of a fast electrical discharge in a nitrogen-filled alumina capillary was performed in order to discover discharge system parameters that lead to high radiation intensity in the so-called water window range of wavelengths (2–4 nm. The modeling was performed by means of the two-dimensional RMHD code Z*. The time and spatial distribution of plasma quantities were used for calculating the ion level populations and for estimating the absorption of the 2.88 nm radiation line in the capillary plasma, using the FLYCHK code. Optimum discharge parameters for the capillary discharge water window source are suggested. The heating of the electrodes and the role of capillary channel shielding were analyzed according to the Z* code.

  11. 20 Years of Fatty Acid Analysis by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Marcone Augusto Leal de Oliveira


    Full Text Available A review taking into account the literature reports covering 20 years of fatty acid analysis by capillary electrophoresis is presented. This paper describes the evolution of fatty acid analysis using different CE modes such as capillary zone electrophoresis, non-aqueous capillary electrophoresis, micellar electrokinetic capillary chromatography and microemulsion electrokinetic chromatography employing different detection systems, such as ultraviolet-visible, capacitively coupled contactless conductivity, laser-induced fluorescence and mass spectrometry. In summary, the present review signals that CE seems to be an interesting analytical separation technique that is very useful for screening analysis or quantification of the usual fatty acids present in different matrices, offering short analysis times and a simple sample preparation step as inherent advantages in comparison with the classical methodology, making it a separation technique that is very attractive for quality control in industry and government agencies.

  12. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth. (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham


    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an

  13. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)


    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva,the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic sili...

  14. Optimized photonic crystal fibers supporting efficient capillary electrophoresis (United States)

    Calcerrada, M.; García-Ruiz, C.; Roy, P.; Gonzalez-Herraez, M.


    In this paper we present preliminary results on the use of Photonic Crystal Fibers (PCFs) in a conventional capillary electrophoresis system to separate and detect fluorescent species. PCFs show interesting advantages over conventional capillaries for this application, including larger surface-to-volume ratio and potential for higher resolution with comparable sensitivity. Our results illustrate some of these advantages, and we point out the need for stringent tolerances in the fabrication of specific PCFs for this application.

  15. Monitoring of enzymatic reactions using capillary electrophoresis with conductivity detection



    Capillary electrophoresis combined with contactless conductivity detection allows to separate and detect the ionic species, which are neither UV absorbing nor fluorescent. This thesis focuses on the applications of this method on enzymatic reactions in different analytical tasks. First, the non-ionic species ethanol, glucose, ethyl acetate and ethyl butyrate were made accessible for analysis by capillary electrophoresis via charged products or byproducts obtained in enzymati...

  16. Micro-magnetic particles frit for capillary electrochromatography. (United States)

    Oguri, Shigeyuki; Oga, Chiari; Takeda, Haruna


    This paper presents a new method for making frit using soft-ferrite-based micro-magnetic particles (MMPs) in a micro-space, such as in a capillary tube. The MMPs-frit was made by injecting an aliquot of 10 microm (outer diameter; o.d.)-MMPs-suspension in methanol (ca. 1mg/ml) into a capillary tube (75 microm inner diameter (i.d.) x 375 microm o.d. x ca. 35 cm length) that was already sandwiched between a pair of cylindrical Neodium (Nd-Fe-B) magnets (1.5 mm o.d. x 1.5 mm height, 280 mT) at a position where the frit was made. The MMPs were trapped in the capillary tube as a frit due to the attraction of the magnets placed at surface on the capillary tube. With regard to durability, the frit was stable for methanol flow with a flow rate of 400 microl/min at room temperature. Using such a frit, a capillary column (20 cm long) was prepared by injecting a 5 microm (o.d.)-ODS-particle suspension in methanol (ca. 0.4 mg/microl) into the capillary tube. The MMPs-frits-ODS-packed column was stable for methanol for a flow pressure less than 20MPa. When comparing the present column with a conventional sintered-frits-ODS-packed column for the purposes of separating five kinds of biogenic amines by means of an on-column derivatization capillary electrochromatography (CEC), the performance of the MMPs-frits capillary column was almost equivalent to that of the sintered-frits-ODS-packed column.

  17. Stability of capillary gels for automated sequencing of DNA. (United States)

    Swerdlow, H; Dew-Jager, K E; Brady, K; Grey, R; Dovichi, N J; Gesteland, R


    Recent interest in capillary gel electrophoresis has been fueled by the Human Genome Project and other large-scale sequencing projects. Advances in gel polymerization techniques and detector design have enabled sequencing of DNA directly in capillaries. Efforts to exploit this technology have been hampered by problems with the reproducibility and stability of gels. Gel instability manifests itself during electrophoresis as a decrease in the current passing through the capillary under a constant voltage. Upon subsequent microscopic examination, bubbles are often visible at or near the injection (cathodic) end of the capillary gel. Gels have been prepared with the polyacrylamide matrix covalently attached to the silica walls of the capillary. These gels, although more stable, still suffer from problems with bubbles. The use of actual DNA sequencing samples also adversely affects gel stability. We examined the mechanisms underlying these disruptive processes by employing polyacrylamide gel-filled capillaries in which the gel was not attached to the capillary wall. Three sources of gel instability were identified. Bubbles occurring in the absence of sample introduction were attributed to electroosmotic force; replacing the denaturant urea with formamide was shown to reduce the frequency of these bubbles. The slow, steady decline in current through capillary sequencing gels interferes with the ability to detect other gel problems. This phenomenon was shown to be a result of ionic depletion at the gel-liquid interface. The decline was ameliorated by adding denaturant and acrylamide monomers to the buffer reservoirs. Sample-induced problems were shown to be due to the presence of template DNA; elimination of the template allowed sample loading to occur without complications.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis


    Árpád Gyéresi; Eleonora Mircia; Brigitta Simon; Aura Rusu; Gabriel Hancu


    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve...

  19. Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids. (United States)

    Martma, Kert; Lindenburg, Petrus W; Habicht, Kaia-Liisa; Vulla, Kaspar; Resik, Kristiin; Kuut, Gunnar; Shimmo, Ruth


    In this note the feasibility of a polyamine-based capillary coating, polyE-323, for capillary electrophoresis (CE) of lipids is explored. PolyE-323 has previously been demonstrated to be suitable to suppress analyte-wall interaction of proteins in CE. However, the full applicability range of polyE-323 has not been exploited yet and it might be useful in the analysis of hydrophobic analytes, such as lipids. In this study, the stability of polyE-323 when using highly organic background electrolytes (BGEs), which are needed to solubilize the lipid analytes, was studied. For this, we used three different lipid samples: sphingomyelin, cardiolipin and a lipid extract from a cell culture. The highly organic BGEs that were used in this study consisted of 94.5% of organic solvents and 5.5% of an aqueous buffer. First, the influence of pure acetonitrile, methanol, propylene carbonate, isopropanol and chloroform on the polyE-323 coating was investigated. Then BGEs were developed and tested, using sphingomyelin and cardiolipin as test analytes in CE-UV experiments. After establishing the best BGEs (in terms of analysis time and repeatability) by CE-UV, sphingomyelin was used as a test analyte to demonstrate that method was also suitable for CE with mass-spectrometry detection (CE-MS). The LOD of sphingomyelin was estimated to be 100 nM and its migration time repeatability was 1.3%. The CE-MS analysis was further applied on a lipid extract obtained from human glioblastoma cells, which resulted in the separation and detection of a multitude of putative lipids. The results of our feasibility study indicate that CE systems based on polyE-323 coated capillaries and highly organic BGEs are promising for fast electromigration-based analysis of lipids.


    Directory of Open Access Journals (Sweden)

    Erika Cvetko


    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  1. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi


    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  2. Principles of micellar electrokinetic capillary chromatography applied in pharmaceutical analysis. (United States)

    Hancu, Gabriel; Simon, Brigitta; Rusu, Aura; Mircia, Eleonora; Gyéresi, Arpád


    Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  3. Capillary Flow in an Interior Corner (United States)

    Weislogel, Mark Milton


    The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.

  4. Fabricating PFPE Membranes for Capillary Electrophoresis (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason


    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  5. Capillary electrophoretic behavior of seven sulfonylureas. (United States)

    Matchett, W H; Winnik, W; Brumley, W C


    The electrophoretic behavior of seven sulfonylureas (bensulfuron methyl, sulfometuron methyl, nicosulfuron [accent], chlorimuron ethyl, thifensulfuron methyl [harmony], metsulfuron methyl, and chlorsulfuron) was studied under capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) conditions. Mixtures of these compounds were separated with very high efficiencies (2 x 10(5) theoretical plates) in a running buffer consisting of 3 parts acetate buffer (25 mM, pH 5.0) and 1 part acetonitrile. In this buffer system, acetonitrile was shown to be superior to methanol, acetone, and ethanol as a nonpolar additive, but any of these solvents can be used to reduce electroosmotic flow (EOF) and to obtain adequate separation. On-column detection limits at 214 nM were of the order of 80-100 fM. Micellar agents such as sodium dodecyl sulfate (SDS) and sodium cholate (but not monosialoganglioside-Gm1 or starburst dendrimer, generation 2.5) improved separation in phosphate and borate buffers. Implications of these results for the development of methods to detect these compounds on matrices of environmental origin are discussed. In particular, the instability of these compounds in methanol is noted and degradation products are detected using free zone CE. The methanolysis products of sulfometuron are tentatively identified by tandem MS (negative ion conditions) as 2-amino-4,6-dimethylpyrimidine and 2-carboxymethylbenz(N-carboxymethyl)sulfonamide.

  6. Nitromethane as solvent in capillary electrophoresis. (United States)

    Subirats, Xavier; Porras, Simo P; Rosés, Martí; Kenndler, Ernst


    Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.

  7. Compensation for the Effects of Ambient Conditions on the Calibration of Multi-Capillary Pressure Drop Standards

    Directory of Open Access Journals (Sweden)

    Colard S


    Full Text Available Cigarette draw resistance and filter pressure drop (PD are both major physical parameters for the tobacco industry. Therefore these parameters must be measured reliably. For these measurements, specific equipment calibrated with PD transfer standards is used. Each transfer standard must have a known and stable PD value, such standards usually being composed of several capillary tubes associated in parallel. However, PD values are modified by ambient conditions during calibration of such standards, i.e. by temperature and relative humidity (RH of air, and atmospheric pressure. In order to reduce the influence of these ambient factors, a simplified model was developed for compensating the effects of ambient conditions on the calibration of multi-capillary PD standards.

  8. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. (United States)

    Kazarian, Artaches A; Sanz Rodriguez, Estrella; Deverell, Jeremy A; McCord, James; Muddiman, David C; Paull, Brett


    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L(-1) levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min(-1), and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L(-1) for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%.

  9. Analysis of recombinant human growth hormone by capillary electrophoresis with bilayer-coated capillaries using UV and MS detection. (United States)

    Catai, Jonatan R; Sastre Toraño, Javier; Jongen, Peter M J M; de Jong, Gerhardus J; Somsen, Govert W


    The characterization of recombinant human growth hormone (rhGH; somatropin) by capillary electrophoresis (CE) with UV-absorbance and mass spectrometric (MS) detection using capillaries noncovalently coated with polybrene (PB) and poly(vinyl sulfonic acid) (PVS) is demonstrated. Compared with bare fused-silica capillaries, PB-PVS coated capillaries yielded more favorable migration-time reproducibilities and higher separation efficiencies. Optimal separation conditions for the bilayer-coated capillaries comprised a background electrolyte (BGE) of 400 mM Tris phosphate (pH 8.5) yielding migration-time R.S.D.s of less than 1.0% and plate numbers above 300,000 for intact rhGH. The protein was also analyzed using the CE method described in the European Pharmacopoeia (Ph. Eur.) monograph. The pharmacopoeial method gave much longer analysis times (22 min versus 8 min), lower resolution and plate numbers, and consecutive shifts in migration time for rhGH, indicating possible interactions between the protein and the inner capillary wall. Due to stable migration times obtained with the coated capillaries, reliable profiling and quantification of rhGH and its byproducts in time was possible. Analysis of thermally degraded rhGH revealed the formation of two main degradation products. CE-mass spectrometry (MS) of this sample, using a PB-PVS coated capillary and a BGE of 75 mM ammonium formate (pH 8.5), suggests that these products are desamido forms of rhGH. Analyses of expired rhGH preparations with CE-UV and CE-MS indicated the presence of both deamidation and oxidation products.

  10. Resistance-resistant antibiotics. (United States)

    Oldfield, Eric; Feng, Xinxin


    New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.

  11. Spontaneous and forced imbibition of aqueous wettability altering surfactant solution into an initially oil-wet capillary. (United States)

    Hammond, Paul S; Unsal, Evren


    Unforced invasion of wettability-altering aqueous surfactant solutions into an initially oil-filled oil-wet capillary tube has been observed to take place very slowly, and because this system is an analogue for certain methods of improved oil recovery from naturally fractured oil-wet reservoirs, it is important to identify the rate-controlling processes. We used a model for the process published by Tiberg et al. ( Tiberg , F. , Zhmud , B. , Hallstensson , K. and Von Bahr , M. Phys. Chem. Chem. Phys. 2000 , 2 , 5189 - 5196 ) and modified it for forced imbibitions. We show that when applied pressure differences are not too large invasion rates are controlled at large times by the value of the bulk diffusion coefficient for surfactant in the aqueous phase and at early times by the resistance to transfer of surfactant from the oil-water meniscus onto the walls of the capillary. For realistic values of the bulk diffusion coefficient, invasion rates are indeed slow, as observed. The model also predicts that the oil-water-solid contact angle during unforced displacement is close to pi/2, and so, the displacement occurs in a state of near-neutral wettability with the rate of invasion controlled by the rate of surfactant diffusion rather than a balance between capillary forces and viscous resistance. Under forced conditions, the meniscus moves faster, but the same kinds of dynamical balances between the various processes as were found in the spontaneous case operate. Once the capillary threshold pressure for entry into the initial oil-wet tube is exceeded, the effect of pressure on velocity becomes more significant, there is not sufficient time for the surfactant molecules to transfer in great quantity from the meniscus to the solid surface, and wettability alteration is then no longer important.

  12. Toward high-throughput monitoring of metallodrug-protein interaction using capillary electrophoresis in chemically modified capillaries. (United States)

    Shmykov, Alexei Y; Filippov, Vladimir N; Foteeva, Lidia S; Keppler, Bernhard K; Timerbaev, Andrei R


    The performance of capillary electrophoresis (CE) operating with a sulfonated capillary for the separation of protein adducts of anticancer ruthenium(III)-based drugs was evaluated. The coated capillary was shown to yield improved resolution of albumin- and transferrin-bound species of ruthenium compared with that attained with the bare fused-silica capillary. The coating also showed an increased reproducibility of migration times and peak areas and allowed reasonably high efficiency separation of analytes (up to 1300 theoretical plates per meter), which display high affinity toward a fused-silica surface. In addition, due to rather high electroosmotic flow (EOF, > 45 x 10(-5)cm(2)V(-1)s(-1)) in the coated capillary, it enabled fast counter-EOF monitoring of albumin and transferrin adducts. This benefit, together with requiring only a short flush with the background electrolyte to have migration times reproducible (at capillary holding promise for CE examination of fast reactions such as those accompanying protein-drug interactions and biotransformations associated with drug delivery via protein binding.

  13. Novel covalently coated diazoresin/polyvinyl alcohol capillary column for the analysis of proteins by capillary electrophoresis. (United States)

    Yu, Bing; Liu, Peng; Cong, Hailin; Tang, Jianguo; Zhang, Lixin


    A novel method for the preparation of covalently linked capillary coatings of PVA was demonstrated using photosensitive diazoresin (DR) as coupling agents. Layer-by-layer self-assembly film of DR and PVA based on hydrogen bonding was first fabricated on the inner wall of capillary, then the hydrogen bonding was converted into covalent bonding after treatment with UV light through the unique photochemistry reaction of DR. The covalently bonded coatings suppressed basic protein adsorption on the inner surface of capillary, and thus a baseline separation of lysozyme, cytochrome c and BSA was achieved using CE. Compared with bare capillary or noncovalently bonded DR/PVA coatings, the covalently linked DR/PVA capillary coatings not only improved the CE separation performance for proteins, but also exhibited good stability and repeatability. Due to the replacement of highly toxic and moisture-sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide a green and easy way to make the covalently coated capillaries for CE.

  14. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips (United States)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel


    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  15. Fluid trapping during capillary displacement in fractures (United States)

    Yang, Zhibing; Neuweiler, Insa; Méheust, Yves; Fagerlund, Fritjof; Niemi, Auli


    The spatial distribution of fluid phases and the geometry of fluid-fluid interfaces resulting from immiscible displacement in fractures cast decisive influence on a range of macroscopic flow parameters. Most importantly, these are the relative permeabilities of the fluids as well as the macroscopic irreducible saturations. They also influence parameters for component (solute) transport, as it usually occurs through one of the fluid phase only. Here, we present a numerical investigation on the critical role of aperture variation and spatial correlation on fluid trapping and the morphology of fluid phase distributions in a geological fracture. We consider drainage in the capillary dominated regime. The correlation scale, that is, the scale over which the two facing fracture walls are matched, varies among the investigated geometries between L/256 and L (self-affine fields), L being the domain/fracture length. The aperture variability is quantified by the coefficient of variation (δ), ranging among the various geometries from 0.05 to 0.25. We use an invasion percolation based model which has been shown to properly reproduce displacement patterns observed in previous experiments. We present a quantitative analysis of the size distribution of trapped fluid clusters. We show that when the in-plane curvature is considered, the amount of trapped fluid mass first increases with increasing correlation scale Lc and then decreases as Lc further increases from some intermediate scale towards the domain length scale L. The in-plane curvature contributes to smoothening the invasion front and to dampening the entrapment of fluid clusters of a certain size range that depends on the combination of random aperture standard deviation and spatial correlation.

  16. Affinity capillary electrophoresis: the theory of electromigration. (United States)

    Dubský, Pavel; Dvořák, Martin; Ansorge, Martin


    We focus on the state-of-the-art theory of electromigration under single and multiple complexation equilibrium. Only 1:1 complexation stoichiometry is discussed because of its unique status in the field of affinity capillary electrophoresis (ACE). First, we summarize the formulas for the effective mobility in various ACE systems as they appeared since the pioneering days in 1992 up to the most recent theories till 2015. Disturbing phenomena that do not alter the mobility of the analyte directly but cause an unexpected peak broadening have been studied only recently and are also discussed in this paper. Second, we turn our attention to the viscosity effects in ACE. Change in the background electrolyte viscosity is unavoidable in ACE but numerous observations scattered throughout the literature have not been reviewed previously. This leads to an uncritical employment of correction factors that may or may not be appropriate in practice. Finally, we consider the ionic strength effects in ACE, too. Limitations of the current theories are also discussed and the tasks identified where open problems still prevail. Graphical Abstract A weak base (A) undergoes an acidic-basic equilibria (in blue) and migrates with an electrophoretic mobility of [Formula: see text]. Simultaneously, it interacts with a selector (sel) while the analyte-selector complex migrates with an electrophoretic mobility of [Formula: see text]. The strength of the interaction (in orange) is governed by the binding constant, K A , and the concentration of the selector, c sel . This all gives the analyte an effective mobility of [Formula: see text] and moves it out of the zero position (EOF; right top insert). The interaction of the positively charged analyte with the neutral selector slows down the analyte with increasing selector concentration (right bottom insert).

  17. Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease. (United States)

    Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne


    Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (pvolume from 39.7 to 64.1 ml/m2 (pvolume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children.

  18. Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography. (United States)

    Murakami, Jillian N; Thurbide, Kevin B


    The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless-steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless-steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm(2) regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless-steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless-steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless-steel columns were more resistant to etching than 304 stainless-steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless-steel columns used with this supercritical fluid chromatography technique.

  19. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration

    Directory of Open Access Journals (Sweden)

    Bo Wang


    Full Text Available The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al2O3-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  20. YSZ-Reinforced Alumina Multi-Channel Capillary Membranes for Micro-Filtration. (United States)

    Wang, Bo; Lee, Melanie; Li, Kang


    The combined phase-inversion and sintering method not only produces ceramic hollow fibre membranes with much lower fabrication costs than conventional methods, but these membranes can also be designed to have greatly reduced transport resistances for filtration processes. The bottleneck of this technique is the weak mechanical property of the fibres, due to the small dimensions and the brittle nature of the ceramic materials. In this study, yttrium stabilised zirconia (YSZ) reinforced alumina seven-channel capillary microfiltration membranes were prepared with a pore size of ~230 nm and their mechanical property and permeation characteristics were studied. It is found that the addition of YSZ can effectively enhance the mechanical property of the membrane and also increase pure water permeation flux. The Al₂O₃-YSZ seven-channel capillary membranes could reach a fracture load of 23.4 N and a bending extension of 0.54 mm when being tested with a 6 cm span, to meet the requirements for most industrial microfiltration applications.

  1. The capillary hysteresis model HYSTR: User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A.; Bodvarsson, G.S.


    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure {phi} and liquid saturation (S{sub 1}) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions.

  2. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud


    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  3. Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration. (United States)

    Wehling, Julia; Köser, Jan; Lindner, Patrick; Lüder, Christian; Beutel, Sascha; Kroll, Stephen; Rezwan, Kurosch


    Membrane clogging and biofilm formation are the most serious problems during water filtration. Silver nanoparticle (Agnano) coatings on filtration membranes can prevent bacterial adhesion and the initiation of biofilm formation. In this study, Agnano are immobilized via direct reduction on porous zirconia capillary membranes to generate a nanocomposite material combining the advantages of ceramics being chemically, thermally and mechanically stable with nanosilver, an efficient broadband bactericide for water decontamination. The filtration of bacterial suspensions of the fecal contaminant Escherichia coli reveals highly efficient bacterial retention capacities of the capillaries of 8 log reduction values, fulfilling the requirements on safe drinking water according to the U.S. Environmental Protection Agency. Maximum bacterial loading capacities of the capillary membranes are determined to be 3×10(9)bacterialcells/750mm(2) capillary surface until back flushing is recommendable. The immobilized Agnano remain accessible and exhibit strong bactericidal properties by killing retained bacteria up to maximum bacterial loads of 6×10(8)bacterialcells/750mm(2) capillary surface and the regenerated membranes regain filtration efficiencies of 95-100%. Silver release is moderate as only 0.8% of the initial silver loading is leached during a three-day filtration experiment leading to average silver contaminant levels of 100μg/L.

  4. Retinal Capillary Rarefaction in Patients with Type 2 Diabetes Mellitus (United States)

    Jumar, Agnes; Harazny, Joanna M.; Ott, Christian; Friedrich, Stefanie; Kistner, Iris; Striepe, Kristina


    Purpose In diabetes mellitus type 2, capillary rarefaction plays a pivotal role in the pathogenesis of end-organ damage. We investigated retinal capillary density in patients with early disease. Methods This cross-sectional study compares retinal capillary rarefaction determined by intercapillary distance (ICD) and capillary area (CapA), measured non-invasively and in vivo by scanning laser Doppler flowmetry, in 73 patients with type 2 diabetes, 55 healthy controls and 134 individuals with hypertension stage 1 or 2. Results In diabetic patients, ICD was greater (23.2±5.5 vs 20.2±4.2, p = 0.013) and CapA smaller (1592±595 vs 1821±652, p = 0.019) than in healthy controls after adjustment for differences in cardiovascular risk factors between the groups. Compared to hypertensive patients, diabetic individuals showed no difference in ICD (23.1±5.8, p = 0.781) and CapA (1556±649, p = 0.768). Conclusion In the early stage of diabetes type 2, patients showed capillary rarefaction compared to healthy individuals. PMID:27935938

  5. Hybrid integrated PDMS microfluidics with a silica capillary. (United States)

    Dimov, Ivan K; Riaz, Asif; Ducrée, Jens; Lee, Luke P


    To harness the properties of both PDMS and silica, we have demonstrated hybrid integrated PDMS microfluidic systems with fused silica capillaries. The hybrid integrated PDMS microfluidics and silica capillary (iPSC) modules exhibit a novel architecture and method for leakage free CE sample injection merely requiring a single high voltage source and one pair of electrodes. The use of the iPSC device is based on a modular approach which allows the capillary to be reused extensively whilst replacing the attached fluidic module for different experiments. Integrating fused silica capillaries with PDMS microfluidic modules allows the direct application of a wide variety of well established conventional CE protocols for separations of complex analytes. Furthermore it bears the potential for facile coupling to standard electro-spray ionization mass spectrometry (ESI-MS), letting users focus on the sample analysis rather than the development of new separation protocols. The fabrication of the iPSC module consists of a simple and quick three-step method that submerges a fused silica capillary in PDMS prepolymer. After cross linking the prepolymer and punching the inlets, the iPSC module layer can be mounted onto a microfluidic device for CE separation.

  6. On the performance of capillary barriers as landfill cover (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  7. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf


    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  8. Capillary-inertial colloidal catapults upon drop coalescence (United States)

    Chavez, Roger L.; Liu, Fangjie; Feng, James J.; Chen, Chuan-Hua


    Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching.

  9. Fluorescence detection in capillary arrays based on galvanometer step scanning. (United States)

    Xue, G; Yeung, E S


    A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluoresceins is 3 x 10(-11) M (S/N = 3) for 5 mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  10. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis. (United States)

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y


    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange.

  11. Formation and rupture of capillary bridges in atomic scale friction (United States)

    Barel, Itay; Filippov, Aleksander E.; Urbakh, M.


    While formation of capillary bridges significantly contributes to the adhesion and friction at micro- and nanoscales, many key aspects of dynamics of capillary condensation and its effect on friction forces are still not well understood. Here, by analytical model and numerical simulations, we address the origin of reduction of friction force with velocity and increase of friction with temperature, which have been experimentally observed under humid ambient conditions. These observations differ significantly from the results of friction experiments carried out under ultrahigh vacuum, and disagree with predictions of thermal Prandtl-Tomlinson model of friction. Our calculations demonstrate what information on the kinetics of capillary condensation can be extracted from measurements of friction forces and suggest optimal conditions for obtaining this information.

  12. Influence of roughness on capillary forces between hydrophilic surfaces (United States)

    van Zwol, P. J.; Palasantzas, G.; de Hosson, J. Th. M.


    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range 0.2-15nm rms and relative humidity ranging between 2% and 40%. It is found that even for the lowest attainable relative humidity (˜2%±1%) very large capillary forces are still present. The latter suggests the persistence of a nanometers-thick adsorbed water layer that acts as a capillary bridge between contacting surfaces. Moreover, we found a significantly different scaling behavior of the force with rms roughness for materials with different hydrophilicity as compared to gold-gold surfaces.

  13. Capillary Pressure and Contact Line Force on a Soft Solid

    CERN Document Server

    Marchand, Antonin; Snoeijer, Jacco H; Andreotti, Bruno


    The surface free energy, or surface tension, of a liquid interface gives rise to a pressure jump when the interface is curved. Here we show that a similar capillary pressure arises at the interface of soft solids. We present experimental evidence that immersion of a thin elastomeric wire into a liquid induces a substantial elastic compression due to the solid capillary pressure at the bottom. We quantitatively determine the effective surface tension from the elastic displacement field, and find a value comparable to the liquid-vapor surface tension. Most importantly, these results also reveal the way the liquid pulls on the solid close to the contact line: the capillary force is not oriented along the liquid-air interface, nor perpendicularly to the solid surface, as previously hypothesized, but towards the interior of the liquid.

  14. Differential Capillary Effect Model of Fabric and Its Application

    Institute of Scientific and Technical Information of China (English)

    王其; 冯勋伟


    The concept of the differential capillary effect was presented by foreign scholars several years ago, and the principle was used to design sportswear fabrics with good wet permeability and good drying functions for famous sports teams. Because the differential capillary effect model was not established in theory,it was impossible to fulfill the best functions. In this paper, by setting up the differential capillary effect of fabric, the factors to influence wet permeability and drying functions of the model is discussed in theory, and the means to optimize the design of the fabric is presented and proven practically by the experiment. The optimum fabric with good permeability and good drying functions can be designed using the model at last.

  15. Capillary Rise of Magnetohydrodynamics Liquid into Deformable Porous Material

    Directory of Open Access Journals (Sweden)

    Javed I Siddique


    Full Text Available We have developed a mathematical model for capillary rise of magnetohydrodynamic fluids. The liquid starts to imbibe because of capillary suction in an undeformed and initially dry sponge-like porous material. The driving force in our model is a pressure gradient across the evolving porous material that induces a stress gradient which in turn causes deformation that is characterized by a variable solid fraction. The problem is formulated as a non–linear moving boundary problem which we solve using the method of lines approach after transforming to a fixed computational domain. The summary of our finding includes a notable reduction in capillary rise and a decrease in solid deformation due to magnetic effects.

  16. Nonaqueous capillary electrophoresis of dextromethorphan and its metabolites. (United States)

    Pelcová, Marta; Langmajerová, Monika; Cvingráfová, Eliška; Juřica, Jan; Glatz, Zdeněk


    This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability.

  17. Capillary-mediated interface perturbations: Deterministic pattern formation (United States)

    Glicksman, Martin E.


    Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.

  18. Analysis of White Blood Cell Dynamics in Nailfold Capillaries (United States)

    Bourquard, Aurélien; Butterworth, Ian; Sánchez-Ferro, Alvaro; Giancardo, Luca; Soenksen, Luis; Cerrato, Carolina; Flores, Rafael; Castro-González, Carlos


    Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature. PMID:26738019

  19. Numerical simulation of the resonantly excited capillary-gravity waves (United States)

    Hanazaki, Hideshi; Hirata, Motonori; Okino, Shinya


    Capillary gravity waves excited by an obstacle are investigated by a direct numerical simulation. In the flow without capillary effects, it is well known that large-amplitude upstream advancing solitary waves are generated periodically under the resonant condition, i.e., when the phase velocity of the long surface waves and the mean flow velocity agrees. With capillary effects, solutions of the Euler equations show the generation of very short waves further upstream of the solitary waves and also in the depression region downstream of the obstacle. The overall characteristics of these waves agree with the solutions of the forced fifth-order KdV equation, while the weakly nonlinear theory generally overestimates the wavelength of the short waves.

  20. Crystal growth from the melt by capillary shaping techniques (United States)

    Ossipyan, Y. A.; Tatarchenko, V. A.

    A method based on the Lyapunov stability theory has been developed for studying the stability of crystallization by capillary shaping techniques (including Czochralski, Stepanov, EFG, Verneuil and floating zone methods). The preliminary results of the analysis of stability shows that the crystallization by capillary shaping technique under microgravitation conditions is more stable in some cases than under the action of gravitation. To get deeper into details of the capillary shaping technique under microgravitation conditions, we have carried out model experiments using two immiscible liquids of equal density and crystallization of sapphire in terrestrial conditions with small Bond number. The experiments on the copper crystallization were realized in the high-altitude rockets. Our experiments on indium crystallization carried out in the orbital space probe “Salyut” yielded cylindrical specimens.

  1. Three-Dimensional Reconstruction of Erythrocyte in the Capillary

    CERN Document Server

    Fan, Yifang; Li, Zhiyu; Lin, Wentao; Wei, Yuan; Zhong, Xing; Newman, Tony; Lv, Changsheng; Fan, Yuzhou


    The dynamic analysis of erythrocyte deformability is used as an important means for early diagnosis of blood diseases and blood rheology. Yet no effective method is available in terms of three-dimensional reconstruction of erythrocytes in a capillary. In this study, ultrathin serial sections of skeletal muscle tissue are obtained from the ultramicrotome, the tomographic images of an erythrocyte in a capillary are captured by the transmission electron microscope, and then a method to position and restore is devised to demonstrate the physiological relationship between two adjacent tomographic images of an erythrocyte. Both the modeling and the physical verification reveal that this method is effective, which means that it can be used to make three-dimensional reconstruction of an erythrocyte in a capillary. An example of reconstructed deformation of erythrocyte based on the serial ultrathin sections is shown at the end of this paper.

  2. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry. (United States)

    Sánchez-Hernández, Laura; Montealegre, Cristina; Kiessig, Steffen; Moritz, Bernd; Neusüß, Christian


    Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE-MS method for the analysis of mAbs is presented analyzing SDS-complexed samples. To obtain narrow and intensive peaks of SDS-treated antibodies, an in-capillary strategy was developed based on the co-injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in-capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS-containing matrices, including the sieving matrix used in a standard CE-SDS method and gel-buffers applied in SDS-PAGE methods. The developed CE-MS approaches enable fast and reproducible characterization of SDS-complexed antibodies.

  3. Development of a capillary electrophoresis-mass spectrometry method using polymer capillaries for metabolomic analysis of yeast. (United States)

    Tanaka, Yoshihide; Higashi, Tetsuji; Rakwal, Randeep; Wakida, Shin-ichi; Iwahashi, Hitoshi


    Metabolomics is an emerging field in analytical biochemistry, and the development of such a method for comprehensive and quantitative analysis of organic acids, carbohydrates, and nucleotides is a necessity in the era of functional genomics. When a concentrated yeast extract was analyzed by CE-MS using a successive multiple ionic-polymer layer (SMIL)-coated capillary, the adsorption of the contaminants on the capillary wall caused severe problems such as no elution, band-broadening, and asymmetric peaks. Therefore, an analytical method for the analysis of anionic metabolites in yeast was developed by pressure-assisted CE using an inert polymer capillary made from poly(ether etherketone) (PEEK) and PTFE. We preferred to use the PEEK over the PTFE capillary in CE-MS due to the easy-to-use PEEK capillary and its high durability. The separation of anionic metabolites was successfully achieved with ammonium hydrogencarbonate/formate buffer (pH 6.0) as the electrolyte solution. The use of 2-propanol washing after every electrophoresis run not only eliminated wall-adsorption phenomena, but allowed for good repeatability to be obtained for migration times in the metabolomic analysis.

  4. Capillary electrophoresis with noncovalently bilayer-coated capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids. (United States)

    Zheng, Chang; Liu, Youping; Zhou, Qiuhong; Di, Xin


    A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB-PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2-10 and in the presence of 1M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB-PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.

  5. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotube-epoxy composite electrode. (United States)

    Zhang, Luyan; Zhang, Wei; Chen, Gang


    This report describes the fabrication and the application of a novel carbon nanotube (CNT)-epoxy composite electrode as a sensitive amperometric detector for the capillary electrophoresis (CE). The composite electrode was fabricated on the basis of the in situ polycondensation of a mixture of CNTs and 1,2-ethanediamine-containing bisphenol A epoxy resin in the inner bore of a piece of fused silica capillary under heat. It was coupled with CE for the separation and detection of arbutin and bergenin in Bergeniae Rhizoma, a traditional Chinese medicine, to demonstrate its feasibility and performance. The two phenolic constituents were well separated within 10min in a 45cm capillary length at a separation voltage of 12kV using a 50mM borate buffer (pH 9.2). The CNT-based detector offered higher sensitivity, significantly lower operating potential, satisfactory resistance to surface fouling, and lower expense of operation, indicating great promise for a wide range of analytical applications. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15).

  6. Investigation on the characteristics of a two gap capillary discharge based on surface flash over ignition in atmosphere (United States)

    Huang, Dong; Yang, Lanjun; Huo, Peng; Ma, Jiangbo; Guo, Haishan; Xu, Ran; Ding, Weidong


    In this paper, a two gap capillary (TGC) structure is presented and the corresponding driving circuit based on surface flashover ignition is designed to achieve reliable and repetitive discharge in atmosphere. The characteristics of the two gap capillary (TGC) discharge in low energy are investigated, of which the discharge energy is from 27 J to 432 J. With the rise of charging voltage, the delay of the weak capillary discharge and the main discharge both decrease. Meanwhile, the current flowing through the main gap and the plasma jet ejection are enhanced. The main gap resistance is about several hundreds of milliohms in the main discharge and rises gradually with the decay of the current. The long tail extinction is witnessed at the relatively low charging voltage of 0.5 kV and 1.0 kV, by which the pulse width of the discharge is extended. However, the discharge during the long tail extinction contributes little to the plasma jet ejection with negligible plasma jet velocity and low degree of the plasma ionization. The effective energy deposition efficiency on the main gap increases gradually with the charging voltage and reaches approximately 2 times higher than that of the traditional structure at the charging voltage of 2.0 kV. The series inductor in the circuit can restrain the development of the long tail extinction and increase the effective energy deposition efficiency. Thus, the discharge characteristics and the plasma ejection of TGC under the relatively low charging voltage are optimized.

  7. Poor agreement between pulmonary capillary wedge pressure and left ventricular end-diastolic pressure in a veteran population.

    Directory of Open Access Journals (Sweden)

    Abbas Bitar

    Full Text Available BACKGROUND: Accurate determination of left ventricular filling pressure is essential for differentiation of pre-capillary pulmonary hypertension (PH from pulmonary venous hypertension (PVH. Previous data suggest only a poor correlation between left ventricular end-diastolic pressure (LVEDP and its commonly used surrogate, the pulmonary capillary wedge pressure (PCWP. However, no data exist on the diagnostic accuracy of PCWP in veterans. Furthermore, the effects of age and comorbidities on the PCWP-LVEDP relationship remain unknown. METHODS: We investigated the PCWP-LVEDP relationship in 101 patients undergoing simultaneous right and left heart catherization at a large VA hospital. PCWP performance was evaluated using correlation and Bland-Altman analyses. Area under Receiver Operating Characteristics curves (AUROC for PCWP were determined. RESULTS: PCWP-LVEDP correlation was moderate (r = 0.57. PCWP-LVEDP calibration was poor (Bland-Altman limits of agreement -17.2 to 11.4 mmHg; mean bias -2.87 mmHg. 59 patients (58.4% had pulmonary hypertension; 15 (25.4% of those met pre-capillary PH criteria based on PCWP. However, if LVEDP was used instead of PCWP, 7/15 patients (46.6% met criteria for PVH rather than pre-capillary PH. When restricting analysis to patients with a mean pulmonary artery pressure of ≥25 mmHg and pulmonary vascular resistance of >3 Wood units (n = 22, 10 patients (45.4% were classified as pre-capillary PH based on PCWP ≤15 mmHg. However, if LVEDP was used, 4/10 patients (40% were reclassified as PVH. Among patients with any type of pulmonary hypertension, PCWP discriminated moderately between high and normal LVEDP (AUROC, 0.81; 95%CI 0.69-0.94. PCWP-LVEDP correlation was particularly poor in patients with COPD or obesity. CONCLUSION: Reliance on PCWP rather than LVEDP results in misclassification of veterans as having pre-capillary PH rather than PVH in almost 50% of cases. This is clinically relevant, as

  8. Effects of Surface Roughness of Capillary Wall on the Profile of Thin Liquid Film and Evaporation Heat Transfer

    Institute of Scientific and Technical Information of China (English)

    Qu Wei; Ma Tongze


    The surface of capillary wall can be treated to have a periodic microrelief mathematically. The roughness is micro enough compared with the thickness of the liquid film. So, the surface roughness only exerts influence on the adsorptive potential. Macroscopically, the flow field of the liquid film can be considered as that when the rough surface has an equivalent smooth surface, whose position is at the crests of the microrelief. The mechanism of heat transfer is in connection with two resistances: the thermal resistance of the liquid film conduction and the thermal resistance of the interfacial evaporation. The capillary pressure between the two sides of the vapor-liquid interface due to the interfacial curvature and the disjoining pressure owing to the thin liquid film are considered simultaneously. Several micro tubes with different micro rough surfaces are studied. The length of the evaporating interfacial region decreases with the increase of roughness angle and/or the increase of the roughness height. The heat transfer coefficient and the temperature of the vapor-liquid interface will change to fit the constant mass flow rate.

  9. Investigation into the suitability of capillary tubes for microcrystalline testing. (United States)

    Elie, Leonie E; Baron, Mark G; Croxton, Ruth S; Elie, Mathieu P


    A comparison between microcrystalline tests performed on microscope slides and flat capillary tubes with inner diameters ranging from 0.1 to 0.7 mm was carried out to explore the appropriateness of tubes for rapid testing of suspected drugs of abuse in the laboratory as well as in the field. Tests for mephedrone, cocaine, and phencyclidine were chosen as examples to investigate the handling of the capillary tubes, the influence on crystal habit, size, and the effects on the limit of detection. Image stacking software was used to increase the depth of field of micrographs taken from developed microcrystals greatly enhancing the interpretability even months after carrying out the microcrystalline test. Additionally, the potential of seeding capillary tubes with a reagent was studied. Pre-treatment of tubes would allow microcrystalline tests to be carried out quicker and anywhere without the necessity of taking along expensive and hazardous reagents. The sealing of capillary tubes containing developed microcrystalline tests in order to preserve results for a long period of time was successfully done by applying paraffin wax to the open ends. Finally, it was concluded that capillary tubes are suitable vessels for performing microcrystalline tests. The increased portability of the improved set-up allows tests to be safely executed outside laboratories without impairing the quality of the result. Findings were applied to six legal high samples purchased online between May and August 2011. The active ingredients like MDAI as well as cutting agents like caffeine were successfully identified using the microcrystalline test technique in capillary tubes.

  10. Molecular transport through capillaries made with atomic-scale precision (United States)

    Radha, B.; Esfandiar, A.; Wang, F. C.; Rooney, A. P.; Gopinadhan, K.; Keerthi, A.; Mishchenko, A.; Janardanan, A.; Blake, P.; Fumagalli, L.; Lozada-Hidalgo, M.; Garaj, S.; Haigh, S. J.; Grigorieva, I. V.; Wu, H. A.; Geim, A. K.


    Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

  11. Microscale capillary wave turbulence excited by high frequency vibration. (United States)

    Blamey, Jeremy; Yeo, Leslie Y; Friend, James R


    Low frequency (O(10 Hz-10 kHz)) vibration excitation of capillary waves has been extensively studied for nearly two centuries. Such waves appear at the excitation frequency or at rational multiples of the excitation frequency through nonlinear coupling as a result of the finite displacement of the wave, most often at one-half the excitation frequency in so-called Faraday waves and twice this frequency in superharmonic waves. Less understood, however, are the dynamics of capillary waves driven by high-frequency vibration (>O(100 kHz)) and small interface length scales, an arrangement ideal for a broad variety of applications, from nebulizers for pulmonary drug delivery to complex nanoparticle synthesis. In the few studies conducted to date, a marked departure from the predictions of classical Faraday wave theory has been shown, with the appearance of broadband capillary wave generation from 100 Hz to the excitation frequency and beyond, without a clear explanation. We show that weak wave turbulence is the dominant mechanism in the behavior of the system, as evident from wave height frequency spectra that closely follow the Rayleigh-Jeans spectral response η ≈ ω(-17/12) as a consequence of a period-halving, weakly turbulent cascade that appears within a 1 mm water drop whether driven by thickness-mode or surface acoustic Rayleigh wave excitation. However, such a cascade is one-way, from low to high frequencies. The mechanism of exciting the cascade with high-frequency acoustic waves is an acoustic streaming-driven turbulent jet in the fluid bulk, driving the fundamental capillary wave resonance through the well-known coupling between bulk flow and surface waves. Unlike capillary waves, turbulent acoustic streaming can exhibit subharmonic cascades from high to low frequencies; here it appears from the excitation frequency all the way to the fundamental modes of the capillary wave at some four orders of magnitude in frequency less than the excitation frequency

  12. Analysis of phenolic type antioxidants; Capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, S.K. (Indian Inst. of Petroleum, Dehradun (India)); Kapoor, V.B. (Indian Inst. of Petroleum, Dehradun (India)); Vishnoi, S.C. (Indian Inst. of Petroleum, Dehradun (India)); Bhagat, S.D. (Indian Inst. of Petroleum, Dehradun (India))


    A simple gas chromatographic (GC) procedure has been developed to estimate the individual alkylated phenols used as antioxidants to improve the shelf life of fuels and lubricants. Preparative gas chromatography was applied for separation and collection in sufficient quantity of the isomers of tertiary butyl, octyl and dodecyl phenols prepared by catalytic alkylation of phenol with isobutylene or its oligomers. The separated fractions were characterised by Infra-red spectrometry (IR) and paper chromatography. Out of several GC columns studies, a high resolution capillary column of 100% Methyl, Silicone gum (SE-30) as stationary phase gave best results. Data generated on various packed and capillary columns are in good agreement. (orig.)

  13. Bubble deformations in corrugated microchannels at large capillary numbers (United States)

    Cubaud, Thomas; Sauzade, Martin


    Multiphase flows in confined microgeometries display a variety of intriguing dynamics. Here, we experimentally examine trains of monodisperse gas bubbles of different sizes and concentrations passing through a series of extensions and constrictions from low to large capillary numbers. Using highly viscous carrier fluids, we show in particular that bubbles strongly deform in velocity fields set with the channel geometry. We measure the instantaneous front and rear velocities of periodically distorted capillary surfaces and develop functional relationships for predicting the morphology of multiphase flow patterns at the pore scale. This work is supported by NSF (CBET-1150389).

  14. Simple model of capillary condensation in cylindrical pores (United States)

    Szybisz, Leszek; Urrutia, Ignacio


    A simple model based on an approximation of the dropletlike model is formulated for studying adsorption of fluids into cylindrical pores. This model yields a nearly universal description of capillary condensation transitions for noble gases confined by alkali metals. The system's thermodynamical behavior is predicted from the values of two dimensionless parameters: D* (the reduced asymptotic strength of the fluid-adsorber interaction, a function of temperature) and R* (the reduced radius of the pore). The phenomenon of hysteresis inherently related to capillary condensation is discussed. The connection to a previously proposed universality for cylindrical pores is also established.

  15. Vorticity and Capillaries at the Surface of a Jet

    CERN Document Server

    Andre, Matthieu A


    Shear layer instability at the free surface of a water jet is studied. The accompanying video shows experimental data recorded using measurement methods such as Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocity (PIV). These results reveal the mechanisms leading to the formation of capillary waves on the surface due to the roll-up of the shear layer. These capillary waves eventually collide to each other, injecting vorticity in the bulk of the flow. Shear layer and injected vorticity interact to form a counter rotating vortex pair that moves down to the flow.

  16. Laser-driven plasma waves in capillary tubes. (United States)

    Wojda, F; Cassou, K; Genoud, G; Burza, M; Glinec, Y; Lundh, O; Persson, A; Vieux, G; Brunetti, E; Shanks, R P; Jaroszynski, D; Andreev, N E; Wahlström, C-G; Cros, B


    The excitation of plasma waves over a length of up to 8 cm is demonstrated using laser guiding of intense laser pulses through hydrogen-filled glass capillary tubes. The plasma waves are diagnosed by spectral analysis of the transmitted laser radiation. The dependence of the spectral redshift-measured as a function of filling pressure, capillary tube length, and incident laser energy-is in excellent agreement with simulation results. The longitudinal accelerating field inferred from the simulations is in the range of 1-10 GV/m.

  17. Computation of Capillary Interactions among Many Particles at Free Surface (United States)

    Fujita, Masahiro; Koike, Osamu; Yamaguchi, Yukio


    We have developed a new computational method to efficiently estimate capillary interactions among many moving particles at a free surface. A novelty of the method is the immersed free surface (IFS) model that transforms the surface tension exerted on a three-phase contact line on a particle surface into the surface tension exerted on an artificially created virtual free surface in the particle. Using the IFS model along with a level set method and an immersed boundary method, we have reasonably simulated a capillary-force-induced self-assembly of particles that is common in coating-drying of particle suspension.

  18. Intralesional bleomycin for the treatment of periocular capillary hemangiomas

    Directory of Open Access Journals (Sweden)

    Derrick P Smit


    Full Text Available Periocular infantile capillary hemangiomas do not always respond well to conventional treatment modalities such as systemic or intralesional corticosteroids, radiotherapy or debulking surgery. The authors describe the use of intralesional bleomycin injections (IBIs to treat potentially amblyogenic lesions in two cases where other modalities have failed. In both cases monthly IBIs successfully cleared the visual axis of the affected eye before the age of 1 year thus preventing permanent sensory deprivation amblyopia. A total of five and nine injections, respectively, were used and no significant side effects were noted. IBI appears to be a useful alternative in the treatment of periocular capillary hemangiomas refractory to more conventional modalities.

  19. Capillary Electrophoresis in the Analysis of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gabriel Hancu


    Full Text Available The aim of this study to inventory the main electrophoretic methods for identification and quantitative determination of fatty acids from different biological matrices. Critical analysis of electrophoretic methods reported in the literature show that the determination of polyunsaturated fatty acids can be made by: capillary zone electrophoresis, micellar electrokinetic chromatography and microemulsion electrokinetic chromatography using different detection systems such as ultraviolet diode array detection, laser induced fluorescence or mass – spectrometry. Capillary electrophoresis is a fast, low-cost technique used for polyunsaturated fatty acids analysis although their determination is mostly based on gas chromatography.

  20. Development of a Contingency Capillary Wastewater Management Device (United States)

    Thomas, Evan A.


    The Personal Body .Attached Liquid Liquidator (PBALL) is conceived as a passive, capillary driven contingency wastewater disposal device. In this contingency scenario, the airflow system on the NASA Crew Exploration Vehicle (CEV) is assumed to have failed, leaving only passive hardware and vacuum vent to dispose of the wastewater. To meet these needs, the PBALL was conceived to rely on capillary action and urine wetting design considerations. The PBALL is designed to accommodate a range of wetting conditions, from 0deg wastewater to vacuum while minimizing cabin air loss. A sub-scale PBALL test article was demonstrated on NASA's reduced gravity aircraft in April, 2010.

  1. A novel ionic liquids grafted polysiloxane for capillary gas chromatography

    Institute of Scientific and Technical Information of China (English)

    Qing Quan Wei; Mei Ling Qi; Ruo Nong Fu


    A new ionic liquids grafted polysiloxane used as stationary phase for capillary gas chromatography(CGC)is described.The stationary phase of 1-vinyl-3-hexylimidazolium hexafluorophosphate anchored to polysiloxane(PMHS-[VHIm][PF6])was synthesized,characterized and coated onto capillary columns by static coating.The results show that the present stationary phase exhibits a very good chromatographic resolution and selectivity for Grob test mixture and alcohols with baseline resolution and symmetry peaks.The present work suggests that novel stationary phase has a great potential for further development and application.

  2. Laser–capillary interaction for the EXIN project

    Energy Technology Data Exchange (ETDEWEB)

    Bisesto, F.G., E-mail: [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, M.P. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Bacci, A.L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Bellaveglia, M.; Chiadroni, E. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Universit degli studi di Roma Tor Vergata, Via di Tor Vergata, Rome (Italy); Curcio, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A.; Mostacci, A.; Petrarca, M. [Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); INFN – Roma1, P.le Aldo Moro, 2, 00185 Rome (Italy); Pompili, R. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R.; Serafini, L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)


    The EXIN project is under development within the SPARC-LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  3. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T


    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  4. Pharmacological therapy can increase capillary density in post-infarction remodeled rat hearts

    NARCIS (Netherlands)

    Van Kerckhoven, R; van Veghel, R; Saxena, PR; Schoemaker, RG


    Objective: Postinfarction hypertrophied hearts have been shown to display a lower capillary density and reduced mechanical efficiency amplified by tachycardia. We investigated whether pharmacological reduction of postinfarction tachycardia would induce capillary growth by treating myocardial infarct

  5. Capillary growth, ultrastructure remodeling and exercise training in skeletal muscle of essential hypertensive patients

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Buess, Rahel; Nyberg, Michael Permin


    AIM: The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extend exercise training can normalize these parameters. METHODS: To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies we...

  6. Preparation of polyacrylamide gel-filled capillaries with step gradients and low UV-detection background

    Institute of Scientific and Technical Information of China (English)



    Polyacrylamide- filled capillaries with step gradients were designed and prepared with a newly established method,which is also suitable for producing other sorts of capillaries.The resulting capillaries allow the use of any UV light to approach the most sensitive detection and have the features of fast running speed and high separation efficiency In addition,the capillaries can he used continuously for more than two weeks.

  7. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography. (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A


    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.


    Institute of Scientific and Technical Information of China (English)

    SAITOYoshihiro; JINNOKiyokatsu


    Fibrous polymers having an excellent heat-resistance were successfully introduced as the stationary phase in capillary gas chromatography (GC) and the basic separation performance has been investigated. Poly(p-phenylene-26-benzobisoxazole); Zylon, fibers were selected as the stationary phase taking into account the chemical structure, heat resistance, solvent resistance and the physical strength. About 330 filaments of the polymer were packed longitudinally into fused-silica capillaries of 0.32 mm i.d., and the GC separation of several test mixtures, such as n-alkylbenzenes and n-alkanes was carried out with these fiber-packed capillary columns. From the results it has been demonstrated that the fiber-packed capillary columns have a great potential as the separation media for volatile compounds. Polymer coating onto the surface of the packed-filaments has been also studied, and the results clearly showed that the retentivity was significantly improved over a conventional capillary columns of the same length and that the selectivity can be tuned by selecting different types of coating materials selected for the purposes. The applications of polymer-coated fiber-packed capillary as a miniaturized sample preparation device was also investigated for the analysis of environmental pollutants in river water samples.

  9. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  10. New Sorbent for Bilirubin Removal from Human Plasma: Albumin Immobilized Microporous Membranous PTFE Capillaries

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Gu JIN


    In this study, we developed a tailored capillary sorbent for bilirubin removal. For immobilized bioligand, capillaries were grafted with epoxy groups using RIGP. The HSA immobilized capillaries has a high affinity adsorption capacity (71.2 mg bilirubin/g polymer) and a shorter adsorption equilibrium time (about 60 min).

  11. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock...

  12. Analysis of electrokinetic pumping efficiency in capillary tubes. (United States)

    Chein, Reiyu; Liao, Jenchen


    A mathematical model for predicting the maximum pumping efficiency and pressure difference generation by an electrokinetic-driven fluid pumping system through a capillary tube is presented in this study. Both the maximum pumping efficiency and optimum pressure difference generation are found to depend on a single variable. This single variable is termed as the figure of merit since it determines the performance of electrokinetic pumping. The figure of merit is found to depend on three dimensionless parameters, the normalized Debye length, zeta potential, and Levine number indicating the nominal ratio of convective current to conductive current. All three parameters can be related to the pH value and concentration of aqueous salt solution by the introduction of concentration-dependent electrical conductivity and pH-dependent zeta potential. By presenting the maximum pumping efficiency and optimum pressure difference generation as functions of pH value, salt concentration, and capillary tube radius, it is found that both maximum pumping efficiency and optimum pressure difference generation increase with the decrease in capillary radius and salt concentration. The optimum pH values at which the maximum pumping efficiency and optimum pressure difference generation occur are found to be in the range between 6 and 9. For the salt concentration of 10(-6) M, pH 6.9, and a capillary tube radius value of 0.5 micro m, the predicted maximum pumping efficiency is 5.4% which is close to the experimental measurement reported in the literature.

  13. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth


    . Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...

  14. Capillary electrophoresis application in metal speciation and complexation characterization (United States)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  15. Study of Oxidation of Glutathione by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A capillary electrophoresis method for the separation and quantification of reduced glutathione (GSH) and oxidized glutathione (GSSG) was developed. A baseline separation was achieved within five minutes. The effects of time and the concentrations of hydrogen peroxide (H2O2) on the oxidation of GSH were investigated.

  16. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller


    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  17. Influence of roughness on capillary forces between hydrophilic surfaces

    NARCIS (Netherlands)

    van Zwol, P. J.; Palasantzas, G.; De Hosson, J. Th. M.


    Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range 0.2-

  18. CPMG relaxation rate dispersion in dipole fields around capillaries. (United States)

    Kurz, F T; Kampf, T; Buschle, L R; Heiland, S; Schlemmer, H-P; Bendszus, M; Ziener, C H


    Transverse relaxation rates for Carr-Purcell-Meiboom-Gill (CPMG) sequences increase with inter-echo time in presence of microscopic magnetic field inhomogeneities due to nuclear spin diffusion. For a weak field approximation that includes diffusion effects, the CPMG relaxation rate shift for proton diffusion around capillaries in muscle tissue can be expressed in terms of a frequency correlation function and the inter-echo time. The present work provides an analytical expression for the local relaxation rate shift that is dependent on local blood volume fraction, diffusion coefficient, capillary radius, susceptibility difference and inter-echo time. Asymptotic regions of the model are in agreement with previous modeling results of Brooks et al., Luz et al. and Ziener et al. In comparison with simulation data, the model shows an equal or better accuracy than established approximations. Also, model behavior coincides with experimental data for rat heart and skeletal muscle. The present work provides analytical tools to extract sub-voxel information about uniform capillary networks that can be used to study capillary organization or micro-circulatory remodeling.

  19. Capillary Pump Loop (CPL) heat pipe development status report (United States)


    The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.

  20. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai


    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative humidi

  1. Revisiting the Diffusion Problem in a Capillary Tube Geometry

    CERN Document Server

    Sullivan, Eric


    The present work revisits the problem of modeling diffusion above a stagnant liquid interface in a capillary tube geometry. In this revisitation we elucidate a misconception found in the classical model proposed by Bird et. al. Furthermore, we propose alternative explanations for thermally forced diffusion and provide a description of natural convection in the absence of forcing terms.

  2. Use of a fluorosurfactant in micellar electrokinetic capillary chromatography. (United States)

    de Ridder, R; Damin, F; Reijenga, J; Chiari, M


    A fluorosurfactant, the anionic N-ethyl-N-[(heptadecafluorooctyl)sulfonyl]glycine potassium salt, trade name FC-129 [CAS 2991-51-7] was investigated for possible application in micellar electrokinetic capillary chromatography (MEKC). The surfactant was characterized with conductometric titration and test sample mixtures were investigated in MEKC systems, and compared with sodium dodecylsulphate. An increased efficiency and interesting selectivity differences were observed.

  3. Capillary-force measurement on SiC surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.


    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness similar to 4-14 nm mainly

  4. Regulation of skeletal muscle capillary growth in exercise and disease. (United States)

    Haas, Tara L; Nwadozi, Emmanuel


    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.

  5. Investigation of X-ray lasing in a capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; E. Louis,


    Using a new technique of an induced MHD instability in a capillary made of polyacetal we observed an intense spike (signal) of the Balmer-a line of C VI at 18.22 nm during the second half cycle of the discharge. The spike is identified as Amplified Spontaneous Emission (ASE), and enhancements are de

  6. Interstitial capillary changes in lithium nephropathy: effects of antihypertensive treatment. (United States)

    Skyum, Helle; Marcussen, Niels; Nielsen, Steen Horne; Christensen, Sten


    Histopathological changes were investigated in the tubulointerstitium and in the capillaries of male Wistar rats with lithium-induced nephropathy using stereological methods. Two antihypertensive drugs with opposite effects on the renin-angiotensin system, an ACE inhibitor (angiotensin converting enzyme inhibitor) and a thiazide diuretic, modified the nephropathy. Generally, there was a significant positive correlation between the reduction in GFR (glomerular filtration rate) and the reduction in the volume of intact tubular structures and interstitial capillaries. A significant negative correlation was seen between the reduction in GFR and the increase in tubulocapillary distance and the absolute volume of interstitial connective tissue, respectively. Treatment with perindopril, and to some extent hydrochlorothiazide, reversed the rise in systolic blood pressure associated with lithium-induced nephropathy but did not affect the progression to terminal uraemia, the structural renal changes or the mortality. In conclusion, severe tubular and capillary changes are seen in this model of chronic renal failure. Tubular atrophy is associated with a decrease in interstitial capillaries and with an increase in the tubulocapillary distance. Systemic hypertension or activation of the renin-angiotensin system may not be important factors for the progression to terminal renal failure.

  7. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

    NARCIS (Netherlands)

    Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; Surti, U.; Abellar, R.G.; Bateman, D.A.; Wilson, A.L.; Markham, M.H.; Slamon, J.; Santos-Simarro, F.; Palomares, M.; Nevado, J.; Lapunzina, P.; Chung, B.H.; Wong, W.L.; Chu, Y.W.; Mok, G.T.; Kerem, E.; Reiter, J.; Ambalavanan, N.; Anderson, S.A.; Kelly, D.R.; Shieh, J.; Rosenthal, T.C.; Scheible, K.; Steiner, L.; Iqbal, M.A.; McKinnon, M.L.; Hamilton, S.J.; Schlade-Bartusiak, K.; English, D.; Hendson, G.; Roeder, E.R.; DeNapoli, T.S.; Littlejohn, R.O.; Wolff, D.J.; Wagner, C.L.; Yeung, A.; Francis, D.; Fiorino, E.K.; Edelman, M.; Fox, J.; Hayes, D.A.; Janssens, S.; Baere, E. De; Menten, B.; Loccufier, A.; Vanwalleghem, L.; Moerman, P.; Sznajer, Y.; Lay, A.S.; Kussmann, J.L.; Chawla, J.; Payton, D.J.; Phillips, G.E.; Brosens, E.; Tibboel, D.; Klein, A.; Maystadt, I.; Fisher, R.; Sebire, N.; Male, A.; Chopra, M.; Pinner, J.; Malcolm, G.; Peters, G.; Arbuckle, S.; Lees, M.; Mead, Z.; Quarrell, O.; Sayers, R.; Owens, M.; Shaw-Smith, C.; Lioy, J.; McKay, E.; Leeuw, N. de; Feenstra, I.; Spruijt, L.; Elmslie, F.; Thiruchelvam, T.; Bacino, C.A.; Langston, C.; Lupski, J.R.; Sen, P.; Popek, E.; Stankiewicz, P.


    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC0108

  8. Computer modeling of capillary flow with superimposed pulsations (United States)

    Yaganova, A. E.; Marfin, E. A.


    Increasing efficiency of methods of oil production can be achieved by the influence of elastic vibrations. It is a well-known fact that shift viscosity of oil changes under the effect of elastic vibrations. This change depends on properties of the oil and exposure mode. Existing approaches to the research of the way wave exposure impacts on viscosity are based on measuring it after the processing. This article concerns development of methods to measure viscosity of liquid right during its exposure to elastic vibrations. The suggested approach is based on combining numerical and natural experiments. We investigated the pulsating flow of viscid liquid in a capillary numerically in this article. We received allocations of fields of average velocity and pressure in a capillary. It is demonstrated that imposed pulsations in a capillary do not impact on hydrodynamics of the flow. We offered the scheme of an experimental installation for a research of the impact that wave exposure has on the viscosity of liquids. The installation is based on a capillary viscometer.

  9. Drug Resistance (United States)

    HIV Treatment Drug Resistance (Last updated 3/2/2017; last reviewed 3/2/2017) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  10. Antibiotic Resistance (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  11. Graphene/poly(ethylene-co-vinyl acetate) composite electrode fabricated by melt compounding for capillary electrophoretic determination of flavones in Cacumen platycladi. (United States)

    Sheng, Shijun; Liu, Shuang; Zhang, Luyan; Chen, Gang


    In this report, a graphene/poly(ethylene-co-vinyl acetate) composite electrode was fabricated by melt compounding for the amperometric detection of capillary electrophoresis. The composite electrode was fabricated by packing a mixture of graphene and melted poly(ethylene-co-vinyl acetate) in a piece of fused silica capillary under heat. The structure of the composite was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. The results indicated that graphene sheets were well dispersed in the composite to form an interconnected conducting network. The performance of this unique graphene-based detector has been demonstrated by separating and detecting rutin, quercitrin, kaempferol, and quercetin in Cacumen platycladi in combination with capillary electrophoresis. The four flavones have been well separated within 9 min in a 50-cm-long capillary at a separation voltage of 12 kV using a 50 mM sodium borate buffer (pH 9.2). The graphene-based detector offered significantly lower operating potentials, substantially enhanced signal-to-noise characteristics, lower expense of operation, high resistance to surface fouling, and enhanced stability. It showed long-term stability and repeatability with relative standard deviations of <5% for the peak current (n = 15).

  12. Spontaneous oscillations of capillary blood flow in artificial microvascular networks. (United States)

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S


    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon.

  13. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures. (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed


    The mass transport capacity (i.e., the capillary limit,) of homogeneous wicks is limited by the inverse relation between the capillary pressure and permeability. Hybrid wicks with two or more distinct pore sizes have been proposed as alternative geometries to enhance the capillary limit. In this study, the impact of the two hybridization schemes-in-plane and out-of-plane-on the capillary transport of hybrid wicks is studied. Experimental data from in-plane hybrid wicks in conjunction with a theoretical model show that local changes in the curvature of the liquid-vapor meniscus (i.e., pore size) do not result in a higher mass flow rate than that of a comparable homogeneous wick. Instead, a global change in the curvature of the liquid-vapor meniscus (as occurring in out-of-plane hybrid wicks) is necessary for obtaining mass flow rates greater than that of a homogeneous wick. Therefore, the physics of capillary limit and dryout in out-of-plane hybrid wicks is investigated using a hybrid wick consisting of a 1-μm-thick highly porous mesh suspended over a homogeneous array of micropillars. A study of the dryout process within the structure revealed that the presence of the mesh strongly alters the dryout mechanism. Visualization studies showed that out-of-plane hybrid wicks remain operational only as long as the liquid is constrained within the mesh pores; recession of the meniscus just below the mesh results in instantaneous local dryout. To maintain liquid within the mesh structure, the mesh thickness was increased, and it was determined that the mesh thickness plays the key role in the performance of an out-of-plane hybrid wick.

  14. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis. (United States)

    Wang, Jianhao; Li, Jingyan; Li, Jinchen; Qin, Yuqin; Wang, Cheli; Qiu, Lin; Jiang, Pengju


    As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self-assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self-assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self-assembly kinetics of QDs and protein using the Hill equation, the KD value for the self-assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of-capillary method and confirmed the effectiveness of the present method.

  15. Calculation Metho d of Power Law Fluid Equivalent Permeability Considering Capillary Shap e

    Institute of Scientific and Technical Information of China (English)

    YANG Er-long; LI Huan; GAO Hui-juan; GU Ting-ting


    While studying the flow of oil and gas in the reservoir, it is not realistic that capillary with circular section is only used to express the pores. It is more representative to simulate porous media pore with kinds of capillary with triangle or rectangle section etc. In the condition of the same diameter, when polymer for oil displacement flows in the porous medium, there only exists shear flow which can be expressed with power law model. Based on fluid flow-pressure drop equation in single capillary, this paper gives a calculation method of equivalent permeability of power law fluid of single capillary and capillary bundles with different sections.

  16. Capillary method for measuring near-infrared spectra of microlitre volume liquids

    Institute of Scientific and Technical Information of China (English)

    YUAN Bo; MURAYAMA Koichi


    The present study theoretically explored the feasibility of the capillary method for measuring near-infrared (NIR) spectra of liquid or solution samples with microlitre volume, which was proposed in our previous studies. Lambert-Beer absorbance rule was applied to establish a model for the integral absorbance of capillary, which was then implemented in numerical analyses of the effects of capillary on various spectral features and dynamic range of absorption measurement. The theoretical speculations indicated that the capillary method might be used in NIR spectroscopy, which was further supported by the empirical data collected from our experiments by comparison between capillary NIR spectra of several organic solvents and cuvette cell NIR spectra.

  17. Mecanismos de Separação em Eletroforese Capilar Separation Mechanisms in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Marina F. M. Tavares


    Full Text Available Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (free solution, micellar and gel, capillary isoelectric focusing and capillary isotachophoresis are discussed and many representative applications are presented.

  18. Surface initiated polymerization of a cationic monomer on inner surfaces of silica capillaries: analyte separation by capillary electrophoresis versus polyelectrolyte behavior. (United States)

    Witos, Joanna; Karesoja, Mikko; Karjalainen, Erno; Tenhu, Heikki; Riekkola, Marja-Liisa


    [2-(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface-initiated atom transfer radical polymerization method on the inner surface of fused-silica capillaries resulting in a covalently bound poly([2-(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run-to-run repeatability, capillary-to-capillary and day-to-day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β-blockers with the separation efficiencies ranging from 132,000 to 303,000 plates/m, and from 82,000 to 189,000 plates/m, respectively. In addition, challenging high- and low-density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.

  19. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis. (United States)

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan


    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample.

  20. Estimation of the number of alveolar capillaries by the Euler number (Euler-Poincaré characteristic). (United States)

    Willführ, Alper; Brandenberger, Christina; Piatkowski, Tanja; Grothausmann, Roman; Nyengaard, Jens Randel; Ochs, Matthias; Mühlfeld, Christian


    The lung parenchyma provides a maximal surface area of blood-containing capillaries that are in close contact with a large surface area of the air-containing alveoli. Volume and surface area of capillaries are the classic stereological parameters to characterize the alveolar capillary network (ACN) and have provided essential structure-function information of the lung. When loss (rarefaction) or gain (angiogenesis) of capillaries occurs, these parameters may not be sufficient to provide mechanistic insight. Therefore, it would be desirable to estimate the number of capillaries, as it contains more distinct and mechanistically oriented information. Here, we present a new stereological method to estimate the number of capillary loops in the ACN. One advantage of this method is that it is independent of the shape, size, or distribution of the capillaries. We used consecutive, 1 μm-thick sections from epoxy resin-embedded material as a physical disector. The Euler-Poincaré characteristic of capillary networks can be estimated by counting the easily recognizable topological constellations of "islands," "bridges," and "holes." The total number of capillary loops in the ACN can then be calculated from the Euler-Poincaré characteristic. With the use of the established estimator of alveolar number, it is possible to obtain the mean number of capillary loops per alveolus. In conclusion, estimation of alveolar capillaries by design-based stereology is an efficient and unbiased method to characterize the ACN and may be particularly useful for studies on emphysema, pulmonary hypertension, or lung development.

  1. C5b-9 deposits on endomysial capillaries in non-dermatomyositis cases. (United States)

    Braczynski, Anne K; Harter, Patrick N; Zeiner, Pia S; Drott, Ulrich; Tews, Dominique-Suzanne; Preusse, Corinna; Penski, Cornelia; Dunst, Maika; Weis, Joachim; Stenzel, Werner; Mittelbronn, Michel


    Deposits of the terminal-membrane-attack-complex (MAC) C5b-9 on perfascicular endomysial capillaries are generally regarded as diagnostic hallmark of dermatomyositis (DM). Although the pathophysiology is not clear, C5b-9 deposits on capillaries seem to be associated with microinfarctions and vascular damage. Here, we report on a series of 19 patients presenting with C5b-9 accumulation on endomysial capillaries in the absence of features for DM. To decipher differences in the capillary C5b-9 accumulation pattern between DM and non-DM cases, we assessed the extent of endomysial capillary C5b-9 deposits related to capillary density and extent of myofiber necrosis by immunohistochemistry in 12 DM and 8 control patients. We found similar numbers of C5b-9-positive myofibers in both DM and non-DM C5b-9(+) cases. The distribution pattern differed as DM cases showed significantly more perifascicular capillary C5b-9 deposits as compared to non-DM cases, which presented stronger endomysial capillary C5b-9 deposits in a diffuse pattern. While total capillary density was not differing, DM patients displayed significantly more C5b-9(+) necrotic fibers as compared to non-DM C5b-9(+). In summary, endomysial capillary C5b-9 deposits are present in a variety of non-DM cases, however with differing distribution pattern. In conclusion, capillary C5b-9(+) deposits should be assessed critically, taking into consideration the distribution pattern.

  2. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.


    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.


    Directory of Open Access Journals (Sweden)

    John F Bertram


    Full Text Available Focal and segmental glomerulosclerosis (FSGS is a chronic renal disorder characterized by segmental glomerular lesions and widespread podocyte foot process effacement. We have previously shown that glomerular enlargement (hypertrophy precedes the development of FSGS in an animal model not previously thought to involve glomerular hypertrophy. This hypertrophy involved growth of glomerular capillaries. The aim of the present study was to determine whether the capillary growth involved an increase in the number of capillaries per glomerulus, or lengthening of existing capillaries. In addition, we examined the contribution of glomerular cell hyperplasia to the hypertrophy. We found that glomerular capillary growth in this model appears to primarily involve lengthening of existing capillaries rather that sprouting of new capillaries, and that glomerular cell proliferation contributes to the glomerular hypertrophy.


    Directory of Open Access Journals (Sweden)

    Menderes LEVENT


    Full Text Available In this study, design and calibration of a capillary flowmeter set was represented. The capillary flowmeters will be used for measurements of small gas flows having laminar flow regime. The gases (such as, nitrogen, argon, methane, hydrogen and carbon-dioxide supplied from high pressure gas bottles and passed through capillary flowmeters (1 to 3 at various times. Each capillary flowmeter was made of glass and calibrated with one or two gases. Outlet of the capillary flowmeters were connected to the needle valves which have been used for regulating gas flowrates of the capillary flowmeters. Gases individually passed to a bubble flowmeter, and residence time of gases are recorded by using a stop watch. Then, from collected experimental results actual gas flowrates through the capillary flowmeters are calculated by using Hagen-Poiseuille equation.

  5. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)


    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  6. Static Response of Microbeams due to Capillary and Electrostatic Forces

    KAUST Repository

    Bataineh, Ahmad M.


    Micro-sensors or micro-switches usually operate under the effect of electrostatic force and could face some environmental effects like humidity, which may lead to condensation underneath the beams and create strong capillary forces. Those tiny structures are principally made of microbeams that can undergo instabilities under the effect of those created huge capillary forces. In fact, during the fabrication of microbeams, there is an important step to separate the beam from its substrate (wet etching). After this step, the microstructure is dried, which may causes the onset of some droplets of water trapped underneath the beam that could bring about a huge capillary force pulling it toward its substrate. If this force is bigger than the microbeam\\'s restoring force, it will become stuck to the substrate. This paper investigates the instability scenarios of both clamped-clamped (straight and curved) and cantilever (straight and curled) microbeams under the effect of capillary and/or electrostatic forces. The reduced order modeling (ROM) based on the Galerkin procedure is used to solve the nonlinear beam equations. The non-ideal boundaries are modeled by adding springs. The volume of the fluid between the beam and the substrate underneath it is varied and the relation between the volume of the water and the stability of the beam is shown. An analysis for the factors of which should be taken in to consideration in the fabrication processes to overcome the instability due to huge capillary forces is done. Also the size of the electrode for the electrostatic force is varied to show the effect on the micro-switch stability. A variation of the pull-in voltage with some specific beam parameters and with more than one case of electrode size is shown. It is found that capillary forces have a pronounced effect on the stability of microbeams. It is also found that the pull-in length decreases as the electrode size increases. It is also shown that the pull-in voltage decreases

  7. Capillary-driven multiparametric microfluidic chips for one-step immunoassays. (United States)

    Gervais, Luc; Hitzbleck, Martina; Delamarche, Emmanuel


    Here we present a capillary-driven microfluidic chip for "one-step" immunoassays. The chip allows for easy modification of several assay parameters such as the flow rates of sample, the volumes of samples for tests, and the type of reagents and receptors for detecting analytes. We therefore term such a chip a multiparametric chip and illustrate this concept with the integration and release of anti-C-reactive protein (CRP) detection antibodies (dAbs) together with splitting flow of samples containing CRP across lines of anti-CRP capture antibodies (cAbs). The microfluidic chip is fabricated in Si and is sealed with polydimethylsiloxane (PDMS) patterned with cAbs. The microfluidic chip is ∼1.7×3.4 cm(2) and is capable of analyzing 20 μL of human serum in 6 parallel flow paths with a range of flow rates from 3.3 nL s(-1) to 0.46 nL s(-1). An inkjet spotter was used to deposit 10.6 nL of dAb solution in a structure vicinal to the main flow path of the chip. The consequent asymmetric release of dAbs in a stream of human serum is compensated by a Dean flow mixer having 9 mixing loops and a footprint of 2.8 mm × 0.78 mm. The quantity of dAb present in the half of the flow path close to the spotting region decreases from 83% at the entrance of the mixer to 52% in the region after the mixer. The sample is then equally split into 6 reaction chambers and proceeds via connecting channels to 2 μL capillary pumps. The hydraulic resistance of the connecting channels is designed to vary flow rates, and therefore the kinetics of capture of CRP-dAb complexes, from 10 min to 72 min. The increased incubation time leads to a fourfold increase in detection signal in the reaction chamber with the longer incubation time. The concept presented here is flexible and suited for implementing various surface fluorescence immunoassays on a capillary-driven microfluidic chip.

  8. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange


    are conducted. Results were not originally presented in a way, which made comparison possible. Here the amount of scaled material is depicted as function of air voids parameters: total air content, specific surface, spacing factor, and total surface area of air voids. The total surface area of air voids...... is proportional to the product of total air content and specific surface. In all 4 cases, the conclusion is concurrent that the parameter of total surface area of air voids performs equally well or better than the spacing factor when linking air void characteristics to frost resistance (salt frost scaling...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor....

  9. Fluctuations and Stimulus-Induced Changes in Blood Flow Observed in Individual Capillaries in Layers 2 through 4 of Rat Neocortex (United States)

    Kleinfeld, David; Mitra, Partha P.; Helmchen, Fritjof; Denk, Winfried


    Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μ m below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈ 70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

  10. Penicillin G as a novel chiral selector in capillary electrophoresis. (United States)

    Dixit, Shuchi; Park, Jung Hag


    The penicillin sub-class of β-lactam antibiotics has not been examined for its enantiodiscriminating abilities in capillary electrophoresis (CE) until date. The present work was therefore designed to evaluate penicillin G potassium salt (PenG) as an ion-pair chiral selector (CS) using CE for its several attributes, namely, high solubility in water and lower alcohols, structure allowing multiple interactions with analytes and cost-effectiveness. Systematic experiments were performed to investigate the effect of composition of background electrolyte, applied voltage and capillary temperature on chiral separation. Baseline resolutions of enantiomers of five basic chiral drugs (namely, darifenacin, citalopram, sertraline, propranolol and metoprolol) were attained using a background electrolyte composed of water:methanol (90:10, v/v) and consisting of 10.7 or 16.1mM CS at 20°C using an applied voltage of 5kV.

  11. Transient and Capillary Collisional X-ray Laser

    Energy Technology Data Exchange (ETDEWEB)

    Shlyaptsev, V N; Dunn, J; Fournier, K B; Moon, S; Osterheld, A L; Rocca, J J; Detering, F; Rozmus, W; Matte, J P; Fiedorowicz, H; Bartnik, A; Kanouff, M


    In this work we report our numerical modeling results of laser-generated transient inversion and capillary discharge X-ray lasers. In the search for more efficient X-ray lasers we look closely at other approaches in conjunction with experiments at LLNL. In the search for improved X-ray lasers we perform modeling and experimental investigations of low density targets including gas puff targets. We have found the importance of plasma kinetics in transient X-ray lasers by expanding the physical model beyond hydrodynamics approach with Particle In Cell (PIC) and Fokker-Planck codes. The evidence of the Langdon effect was inferred from the recent experimental data obtained with the Ni-like Pd X-ray laser. We continue modeling different kinds of capillary discharge plasma configurations directed toward shorter wavelength X-ray lasers, plasma diagnostics and other applications.

  12. Droplet motion driven by electro-elasto-capillary effects (United States)

    Shah, Jaymeen; Yang, Xin; Sun, Ying


    The motion of droplets on natural and synthetic fibers underlines many technological applications including flexible displays, insulation, and smart filters. However, there is a lack of fundamental understanding of the coupled electrical, elastic, and capillary forces on droplets in fiber networks. In the present study, the motion of a water droplet suspended between two electrically insulated fibers of different Young's modulus, lengths and diameters are examined under electric fields. The results on rigid fibers reveal a critical voltage, under which the droplet remain stationary. Above this critical voltage, droplet self-propulsion is observed as a result of the interplay of electro, elasto and capillary forces on the droplet. The effects of the inter-fiber distance and Young's modulus on droplet motion are also discussed. The controllable motion of droplets can be used to manipulate or transport liquid at small scales.

  13. On the capillary self-focusing in a microfluidic system

    CERN Document Server

    Hein, M; Afkhami, S


    A computational framework is developed to address capillary self-focusing in Step Emulsification. The microfluidic system consists of a single shallow and wide microchannel that merges into a deep reservoir. A continuum approach coupled with a volume of fluid method is used to model the capillary self-focusing effect. The original governing equations are reduced using the Hele-Shaw approximation. We show that the interface between the two fluids takes the shape of a neck narrowing in the flow direction just before entering the reservoir, in agreement with our experimental observations. Our computational model relies on the assumption that the pressure at the boundary, where the fluid exits into the reservoir, is the uniform pressure in the reservoir. We investigate this hypothesis by comparing the numerical results with experimental data. We conjecture that the pressure boundary condition becomes important when the width of the neck is comparable to the depth of the microchannel. A correction to the exit pres...

  14. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)


    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50 μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  15. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)

    许国旺; R.Lehmann; 路鑫; H.M.Liebich; 张玉奎; 卢佩章


    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  16. High-shear-rate capillary viscometer for inkjet inks

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xi [FUJIFILM Dimatix, Inc., Lebanon, New Hampshire 03766 (United States); Carr, Wallace W.; Bucknall, David G. [School of Polymer, Textile, and Fiber Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Morris, Jeffrey F. [Department of Chemical Engineering and Benjamin Levich Institute for Physico-Chemical Hydrodynamics, City College of New York, New York, New York 10031 (United States)


    A capillary viscometer developed to measure the apparent shear viscosity of inkjet inks at high apparent shear rates encountered during inkjet printing is described. By using the Weissenberg-Rabinowitsch equation, true shear viscosity versus true shear rate is obtained. The device is comprised of a constant-flow generator, a static pressure monitoring device, a high precision submillimeter capillary die, and a high stiffness flow path. The system, which is calibrated using standard Newtonian low-viscosity silicone oil, can be easily operated and maintained. Results for measurement of the shear-rate-dependent viscosity of carbon-black pigmented water-based inkjet inks at shear rates up to 2x10{sup 5} s{sup -1} are discussed. The Cross model was found to closely fit the experimental data. Inkjet ink samples with similar low-shear-rate viscosities exhibited significantly different shear viscosities at high shear rates depending on particle loading.

  17. Separation of Aminobenzoic Acids by Gold Nanoparticle modified Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YAN,Hongtao; LI,Tuo; GUO,Yanli


    A novel method for the separation of aminobenzoic acids by capillary electrophoresis was developed.The capillary was modified with gold nanoparticles.The effect of gold nanoparticles on the resolution and selectivity of separation was investigated.The influence of separation voltage,pH and buffer concentration on the separation of aminobenzoic acids was also examined.It was found that the presence of gold nanoparticles improved the precision of the analysis and increased the separation efficiency.Under the optimized experiment conditions,aminobenzoic acids were separated and determined.Linearity was established over the concentration range 0.5-40 μg·mL-1 with correlation coefficients of 0.9978-0.9992.The detection limits (S/N = 3) were from 0.1 to 0.5 μg·mL-1.

  18. Capillary channel flow experiments aboard the International Space Station. (United States)

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A


    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  19. Cold neutron microprobe for materials analysis using tapered capillary optics (United States)

    Sharov, V. A.; Xiao, Q.-F.; Ponomarev, I. Yu.; Mildner, D. F. R.; Chen-Mayer, H. H.


    A prototype monolithic capillary lens for focusing neutrons produced by thermally drawing straight multicapillary bundles has been characterized with cold neutrons, and gives an intensity gain of a factor of 25 at a focal distance of 8 mm, over the focal spot area of width 87 μm. This is over an order of magnitude smaller in area than for the multifiber capillary lens. The spatial resolution available with the lens has been tested with prompt gamma measurements on slivers of dysprosium. Background problems that can affect the spatial resolution of measurements taken at the focal position of the lens are addressed. The boron glass of the tapered monolithic lens provides good shielding from unfocused neutrons in the vicinity of the lens focus.

  20. Single particles accelerate final stages of capillary break up

    CERN Document Server

    Lindner, Anke; Wagner, Christian


    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  1. Periocular capillary hemangiomas: Indications and options for treatment

    Directory of Open Access Journals (Sweden)

    Bang Genie


    Full Text Available Capillary hemangiomas are the most common periocular and orbital tumors of childhood that typically arise in infancy. Though the diagnosis is frequently made on clinical examination, various diagnostic modalities may be helpful in initial evaluation and follow-up. Tests may be necessary in diagnosing suspect cases or aid in the differentiation of potential malignant tumors. In the vast majority of cases these tumors undergo spontaneous involution without sequelae. However, some periocular and orbital capillary hemangiomas require intervention to prevent serious complications. Other tumors require treatment to lessen the surgical burden for cosmetic repair. When treatment is necessary, there are a number of therapeutic options available. As there is no standard, potential risks and benefits must be discussed with the family and treatment should be specific in each case. A complete understanding of the natural history of the tumor, indications for treatment, and response to different therapies is imperative in managing this common lesion.

  2. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails:,,,


    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  3. Dynamics of pre-ionized fast capillary discharge (United States)

    Hübner, J.; Vrba, P.; Straus, J.; Jancarek, A.; Nevrkla, M.


    The goal of this work is to determine the best conditions for pre-ionization of the nitrogen filled capillary plasma column applying an external exponentially damped or high-frequency alternating current. As we supposed, optimal pre-ionization conditions are achieved when the plasma is quiescent, motionless and isothermal, near the local thermodynamical equilibrium. At the time of optimal conditions for the pre-ionization plasma column, the main pulse is applied. This approach enables us to estimate the influence of such prepared plasma on the value of emitted energy during the main current pulse. For modeling of plasma during the pre-pulse and main pulse, the magneto-hydro-dynamics (MHD) NPINCH code [1] and the radiative-MHD Z* code [2] were used. The computer results are used for further improvement of x-ray-ultraviolet-capillary sources designed in IPP ASCR and CTU FNSPE laboratories in Prague.

  4. Capillary channel flow experiments aboard the International Space Station (United States)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.


    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  5. Ultrasensitive quantification of cerebral capillary flow networks and dynamics (United States)

    You, Jiang; Park, Ki; Du, Congwu; Pan, Yingtian


    Ultra-high resolution optical Doppler coherence tomography (μODT) is a promising tool for brain functional imaging. However, its sensitivity for detecting slow flows in capillary beds may limit its utility in visualizing and quantifying subtle changes in brain microcirculation. To address this limitation, we developed a novel method called contrast-enhanced μODT (c-μODT) in which intralipid is injected into mouse tail vein to enhance μODT detection sensitivity. We demonstrate that after intralipid injection, the flow detection sensitivity of μODT is dramatically enhanced by 230% as quantified by the fill factor (FF) of microvasculature. More importantly, we show that c-μODT preserves the quantitative properties for flow imaging, i.e., showing a comparable change ratio of hypercapnia-induced flow increase in the capillary network before and after injecting intralipid.

  6. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering


    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  7. Idiopathic Systemic Capillary Leak Syndrome: A Case Report (United States)

    Yardimci, Bulent; Kazancioglu, Rumeyza


    Introduction Idiopathic systemic capillary leak syndrome (ISCLS) is rarely seen, and presents with recurrent episodes of hypotension, shock, hemoconcentration, and hypoproteinemia. The main pathology is the dysfunction of the vascular endothelium, and it is characterized by an increase of capillary permeability that is accompanied by the loss of intravascular fluid and protein. Case Presentation We present a 58-year-old female who presented with peripheral edema, leg pain, and syncope at the emergency department. Interestingly demyemilising neuropathy, which is a rare finding, ensued on day 4. She is still being treated using intravenous immunoglobulin therapy. Conclusions The early signs and symptoms of ISCLS may be subtle; therefore the diagnosis can easily be missed and prompt treatment of the syndrome may be postponed. Thus, the clinician must consider ISCLS in differential diagnosis in cases of hypotension, hemoconcentration, and hypoalbuminemia. PMID:27195144

  8. Capillary flow of oil in a single foam microchannel

    CERN Document Server

    Piroird, Keyvan


    Under specific physico-chemical conditions, oil droplets are able to invade the liquid network of a foam without damaging it. We study experimentally the capillary suction of oil in a single foam channel, a Plateau border. Oil flows as an unbroken stream with a dynamics that differs from classical wicking in a capillary tube due to the deformability of the foam channel. The oil forms a long and stable liquid slug inside the Plateau border, which does not break into droplets as long as the oil is confined within the Plateau Border. Yet, destabilization occurs when oil is transferred from the Plateau border to a soap film, after the break-up of a soap film as may happen in real foams.

  9. Anomalous capillary filling and wettability reversal in nanochannels

    CERN Document Server

    Gravelle, Simon; Bocquet, Lydéric; Joly, Laurent


    This work revisits capillary filling dynamics in the regime of nanometric to subnanometric channels. Using molecular dynamics simulations of water in carbon nanotubes, we show that for tube radii below one nanometer, both the filling velocity and the Jurin rise vary non-monotonically with the tube radius. Strikingly, with fixed chemical surface properties, this leads to confinement-induced reversal of the tube wettability from hydrophilic to hydrophobic for specific values of the radius. By comparing with a model liquid metal, we show that these effects are not specific to water. Using complementary data from slit channels, we then show that they can be described using the disjoin-ing pressure associated with the liquid structuring in confinement. This breakdown of the standard continuum framework is of main importance in the context of capillary effects in nanoporous media, with potential interests ranging from membrane selectivity to mechanical energy storage.

  10. On the role of capillary instabilities in the sandcastle effect

    Energy Technology Data Exchange (ETDEWEB)

    Du Binyang; Koenig, Alexander Martin; Johannsmann, Diethelm [Institute of Physical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld-Str. 4, D-38678 Clausthal-Zellerfeld (Germany)], E-mail:


    Using acoustic resonators, we have investigated the mechanical stiffness of contacts between rough surfaces. In the first part, the underlying acoustic model is validated with experiments showing a transition from elastic to inertial loading. The second part is concerned with the increase in contact stiffness induced by transient exposure to a humid environment. A novel mode of surface deformation is proposed, which builds on a capillary instability. Under certain conditions, a slight decrease in the mean distance between the two surfaces may induce a rather strong increase in capillary attraction, while leaving the elastic forces of repulsion almost constant. The thus-created negative differential spring constant induces a collapse of the gap in-between neighboring load-bearing asperities. The initial decrease in distance may either be induced by local asperity creep or by distortions of the contacting surfaces on a larger scale, which improve the interlock of the asperities at a small cost of strain energy.

  11. A Note on Viscous Capillary Fluids in Fast Rotation

    Directory of Open Access Journals (Sweden)

    Francesco Fanelli


    Full Text Available The present note is devoted to the study of singular perturbation problems for a Navier-Stokes-Korteweg system with Coriolis force. Such a model describes the motion of viscous compressible capillary fluids under the action of the Earth rotation. We are interested in the asymptotic behavior of a family of weak solutions in the limit for the Mach, the Rossby and the Weber numbers going to 0.

  12. Precise small volume sample handling for capillary electrophoresis. (United States)

    Mozafari, Mona; Nachbar, Markus; Deeb, Sami El


    Capillary electrophoresis is one of the most important analytical techniques. Although the injected sample volume in capillary electrophoresis is only in the nanoliter range, most commercial CE-instruments need approximately 50 μL of the sample in the injection vial to perform the analysis. Hence, in order to fully profit from the low injection volumes, smaller vial volumes are required. Thus experiments were performed using silicone oil which has higher density than water (1.09 g/mL) to replace sample dead volume in the vial. The results were compared to those performed without using the silicone oil in the sample vial. As an example five standard proteins namely beta-lactoglobulin, BSA, HSA, Myoglobin and Ovalbumin, and one of the coagulation cascade involved proteins called vitonectin were investigated using capillary electrophoresis. Mobility ratios and peak areas were compared. However no significant changes were observed (RSDs% for mobility ratios and peak areas were better than 0.9% and 5.8% respectively). Afterwards an affinity capillary electrophoresis method was used to investigate the interactions of two proteins, namely HSA and vitronectin, with three ligands namely enoxaparin sodium, unfractionated heparin and pentosan polysulfate sodium (PPS). Mobility shift precision results showed that the employment of the filling has no noticeable effect on any of the protein-ligand interactions. Using a commercial PrinCE instrument and an autosampler the required sample volume is reduced down to 10 μL, and almost this complete volume can be subsequently injected during repeated experiments. This article is protected by copyright. All rights reserved.

  13. Capillary condensation in a square geometry with surface fields (United States)

    Zubaszewska, M.; Gendiar, A.; Drzewiński, A.


    We study the influence of wetting on capillary condensation for a simple fluid in a square geometry with surface fields, where the reference system is an infinitely long slit. The corner transfer matrix renormalization group method has been extended to study a two-dimensional Ising model confined in an L×L geometry with equal surface fields. Our results have confirmed that in both geometries the coexistence line shift is governed by the same scaling powers, but their prefactors are different.

  14. Thermal expansion pump for capillary high-performance liquid chromatography. (United States)

    Tao, Qian; Wu, Qian; Zhang, Xiangmin


    A thermal expansion pump (TEP) based on a principle of liquid thermal expansion for capillary high-performance liquid chromatography has been developed. The novel pump is capable of generating a continuous flow at high pressure for constant and stable delivery of binary solvents from nanoliters to microliters per minute without splitting. Theoretical equations for controlling fluidic output of this pump have been established and validated by a series of experiments. Factors affecting flow rate, such as density discrepancy, liquid compressibility, and mass loss in output, were taken into account. An assembly of the pump system employing two groups of thermal expansion pumps (TEPs) working in turns were fabricated, and a controlling strategy for the pump system to maintain a continuous delivery without pressure fluctuation even at switching points was also developed. Both isocratic and gradients of binary solvent delivery by the TEPs were performed. Reproducibility and standard deviation at different flow rates were determined. A capillary high-performance liquid chromatography (micro-HPLC) system consisting of the TEPs, an injection valve, a homemade packed capillary column (20 cm x 100 microm i.d. with 5 microm C18), and a laser-induced fluorescence detector was set up, and sample separations were carried out. Results of RSD = 4% for flow and RSD = 2% for retention times at 500 nL/min were achieved. Such a pump system has almost no moving parts except for the solvent switches. Its overall costs of manufacture and running are very low. It is proven that the TEPs system has great potential and competitive capabilities in capillary liquid chromatography.

  15. Numerical Simulation of Unsteady Blood Flow through Capillary Networks. (United States)

    Davis, J M; Pozrikidis, C


    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  16. Myocardial serotonin exchange: negligible uptake by capillary endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, T.C.; Chan, I.S.; Bassingthwaighte, J.B.


    The extraction of serotonin from the blood during transorgan passage through the heart was studied using Langendorff-perfused rabbit hearts. Outflow dilution curves of /sup 131/I- or /sup 125/I-labeled albumin, (/sup 14/C)sucrose, and (3H)serotonin injected simultaneously into the inflow were fitted with an axially distributed blood-tissue exchange model to examine the extraction process. The model fits of the albumin and sucrose outflow dilution curves were used to define flow heterogeneity, intravascular dispersion, capillary permeability, and the volume of the interstitial space, which reduced the degrees of freedom in fitting the model to the serotonin curves. Serotonin extractions, measured against albumin, during single transcapillary passage, ranged from 24 to 64%. The ratio of the capillary permeability-surface area products for serotonin and sucrose, based on the maximum instantaneous extraction, was 1.37 +/- 0.2 (n = 18), very close to the predicted value of 1.39, the ratio of free diffusion coefficients calculated from the molecular weights. This result shows that the observed uptake of serotonin can be accounted for solely on the basis of diffusion between endothelial cells into the interstitial space. Thus it appears that the permeability of the luminal surface of the endothelial cell is negligible in comparison to diffusion through the clefts between endothelial cells. In 18 sets of dilution curves, with and without receptor and transport blockers or competitors (ketanserin, desipramine, imipramine, serotonin), the extractions and estimates of the capillary permeability-surface area product were not reduced, nor were the volumes of distribution. The apparent absence of transporters and receptors in rabbit myocardial capillary endothelium contrasts with their known abundance in the pulmonary vasculature.

  17. Hydrodynamics and evaporation of a sessile drop of capillary size

    CERN Document Server

    Barash, L Yu


    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process is obtained.

  18. Hydrodynamics and evaporation of a sessile drop of capillary size


    Barash, L. Yu.


    Fluid dynamics video of an evaporating sessile drop of capillary size is presented. The corresponding simulation represents the description taking into account jointly time dependent hydrodynamics, vapor diffusion and thermal conduction in an evaporating sessile drop. The fluid convection in the drop is driven by Marangoni forces associated with the temperature dependence of the surface tension. For the first time the evolution of the vortex structure in the drop during an evaporation process...

  19. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG,Ying(王瑛); MO,Jin-Yuan(莫金垣)


    Capillary electrophorsis (CE) is a powerful analytical tool in chemistry. Thus, it is valuable to solve the denoising of CE signals. A new denoising method called MWDA which employs Mexican Hat wavelet is presented. It is an efficient chemometrics technique and has been applied successfully in processing CE signals. Useful information can be extracted even from signals of S/N = 1. After denoising, the peak positions are unchanged and the relative errors of peak height are less than 3%.

  20. Periocular capillary hemangioma: management practices in recent years

    Directory of Open Access Journals (Sweden)

    Hernandez JA


    Full Text Available Jo Anne Hernandez,1,3,4 Audrey Chia,2 Boon Long Quah,1,2 Lay Leng Seah1,2 1Department of Ophthalmology, Kandang Kerbau Women's and Children's Hospital, Singapore; 2Singapore National Eye Centre, Singapore; 3National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; 4Department of Ophthalmology, Cardinal Santos Medical Center, San Juan, Manila, Philippines Purpose: To present a case series on the management options for capillary hemangiomas involving the eyelid and orbit. Methods: This is a retrospective chart review of clinically diagnosed capillary hemangioma cases involving the periocular region treated at two local eye institutions. The patients' demographics and clinical presentation – including visual acuity, refractive error, periorbital and orbital examinations, and ultrasound and magnetic resonance imaging findings – were reviewed. The clinical progression, modalities of treatment, and treatment outcomes were studied. Results: Sixteen cases of capillary hemangiomas involving the eyelid and orbit were studied. The mean age at consultation was 9.6 months (range: 1 month–72 months. The majority were females (75%, with 50% presenting as upper-eyelid hemangiomas and the remaining as lower-eyelid (38% and glabellar (12% lesions. Combined superficial and deep involvement was common (64%. Cases whose lesions were located at the upper eyelid or superior orbit led to amblyopia (25%. Fifty-six percent of cases (9/16 were managed conservatively, and 44% (7/16 underwent treatment with either single-agent (n = 4 or combined treatments (n = 3. Conclusion: Close monitoring of visual development and prompt institution of amblyopia therapy for children with periocular capillary hemangiomas generally preserve vision. Extensive lesions that affect the visual axis require local and systemic treatments, alone or in combination, in order to reduce the size and impact of lesions on the eyeball, to reduce induced refractive error and

  1. Experimental Comparison of Capillary Pinching Discharge in Argon and Nitrogen (United States)

    Jancarek, A.; Pina, L.; Vrbova, M.; Tamas, M.; Havlikova, R.; Palinek, S.; Vrba, P.; Kolacek, K.; Schmidt, J.; Strauss, J.

    Experiments with CAPEX-U apparatus were done to more understand the differences between Ar and N active media created during the pinch compression, respectively. Capillary discharge current, X-ray narrow band radiation and EUV spectrum temporal behavior were measured. Results of laboratory experiments for both gas fillings under various currents and initial pressures are shown. Computer simulations show that current quasi-period shortening and higher amplitude is needed.

  2. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis



    The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange HPLC, reverse or normal phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have be...

  3. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  4. Capillary flow of amorphous metal for high performance electrode


    Se Yun Kim; Suk Jun Kim; Sang Soo Jee; Jin Man Park; Keum Hwan Park; Sung Chan Park; Eun Ae Cho; Jun Ho Lee; In Yong Song; Sang Mock Lee; In Taek Han; Ka Ram Lim; Won Tae Kim; Ju Cheol Park; Jürgen Eckert


    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computation...

  5. Pneumatic capillary gun for ballistic delivery of microparticles

    CERN Document Server

    Rinberg, D; Groisman, A; Rinberg, Dmitry; Simonnet, Claire; Groisman, Alex


    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to completely divert the flow of Helium from the gun nozzle and prevent it from hitting the target. Depths of penetration of micron-sized gold particles into agarose gels and their speeds of ejection from the gun nozzle are measured.

  6. Analysis of roller pen inks by capillary zone electrophoresis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pengcheng; WANG Yanji; XU Yuanyuan; YAO Lijuan


    The analysis of roller pen inks has become more and more important in fraudulent document examination because of the extensive use of roller pens in financial documents.Capillary electrophoresis with powerful resolution was applied for the analysis of roller pen inks.The experiment focused on the optimization of the separation of the extract from commercially available roller pen entries.A better separation electropherogram was obtained when a 20 mM borate buffer at pH 8.5 and a fused silica capillary with an inner diameter of 100 μm with a total length of 47 (40 cm to the detector window)were used.Five inks from roller pens of different manufacturers and countries were analyzed,and their electropherograms showed that most patterns are distinctly different from each other.Capillary with inner diameter of 100 μm increased the intensity of determination;therefore,color dyes were identified in the visible range and were able to provide more information for comparing types of roller pen inks.

  7. Surface-directed capillary system; theory, experiments and applications. (United States)

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques


    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  8. Attempt to run urinary protein electrophoresis using capillary technique. (United States)

    Falcone, Michele


    The study of urinary protein has a predominant place in the diagnosis of kidney disease. The most common technique is agarose gel electrophoresis (AGE). For several years, the technique of choice applied to the analysis of serum proteins has been CE, a system that uses capillary fused silica, subjected to high voltage to separate and measure serum proteins. The purpose of this paper was to perform capillary electrophoresis on urinary proteins which, at present, are not interpretable due to the many nonspecific peaks visible when using gel electrophoresis. In order to carry out our research, we used a capillary V8 analyzer together with an agarose gel system from the same company. AGE was taken as the reference method, for which urine was used without any pretreatment. For the V8 system, urine was subjected to purification on granular-activated carbon and then inserted into the V8 analyzer, selecting a program suitable for liquids with low protein content. We examined 19 urine samples collected over 24 hrs from both hospitalized and external patients with different types of proteinuria plus a serum diluted 1/61 considered as a control to recognize the bands. Both methods showed the same protein fractions and classified the proteinuria in a similar way.

  9. Liquid morphologies and capillary forces between three spherical beads (United States)

    Semprebon, Ciro; Scheel, Mario; Herminghaus, Stephan; Seemann, Ralf; Brinkmann, Martin


    Equilibrium shapes of coalesced pendular bridges in a static assembly of spherical beads are computed by numerical minimization of the interfacial energy. Our present study focuses on generic bead configurations involving three beads, one of which is in contact to the two others while there is a gap of variable size between the latter. In agreement with previous experimental studies, we find interfacial "trimer" morphologies consisting of three coalesced pendular bridges, and "dimers" of two coalesced bridges. In a certain range of the gap opening we observe a bistability between the dimer and trimer morphology during changes of the liquid volume. The magnitude of the corresponding capillary forces in presence of a trimer or dimer depends, besides the gap opening, only on the volume or Laplace pressure of the liquid. For a given Laplace pressure, and for the same gap opening, the capillary forces induced by a trimer are only slightly larger than the corresponding forces in the presence of three pendular bridges. This observation is consistent with a plateau of capillary cohesion in terms of the saturation of a wetting liquid in the funicular regime, as reported in the experimental work [Scheel et al., Nat. Mater. 7, 189 (2008), 10.1038/nmat2117].

  10. Capillary-Inertial Colloidal Catapult upon Drop Coalescence (United States)

    Chavez, Roger; Liu, Fangjie; Feng, James; Chen, Chuan-Hua


    To discharge micron-sized particles such as colloidal contaminants and biological spores, an enormous power density is needed to compete against the strong adhesive forces between the small particles and the supporting surface as well as the significant air friction exerted on the particles. Here, we demonstrate a colloidal catapult that achieves such a high power density by extracting surface energy released upon drop coalescence within an extremely short time period, which is governed by the capillary-inertial process converting the released surface energy into the bulk inertia of the merged drop. When two drops coalesce on top of a spherical particle, the resulting capillary-inertial oscillation is perturbed by the solid particle, giving rise to a net momentum eventually propelling the particle to launch from the supporting surface. The measured launching velocity follows a scaling law that accounts for the redistribution of the momentum of the merged drop onto the particle-drop complex, and is therefore proportional to the capillary-inertial velocity characterizing the coalescing drops. The interfacial flow process associated with the colloidal catapult is elucidated with both high-speed imaging and phase-field simulations.

  11. Effect of Fluorosurfactant on Capillary Instabilities in Nanoimprinted Polymer Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Alvine, Kyle J.; Ding, Yifu; Douglas, Jack F.; Ro, Hyun W.; Okerberg, Brian C.; Karim, Alamgir; Lavery, Kristopher A.; Lin-Gibson, Sheng; Soles, Christopher L.


    Surface forces play a paramount role in most aspects of Nanoimprint Lithography. In particular, subjecting nanoimprinted patterns to moderate heating allows surface tension to smooth out undesirable roughness and defects in the patterns, but this thermal reflow treatment can induce structural decay or even collapse of the patterns by capillary instability if this process is not carefully controlled. Adhesion between the mold and polymer film can also cause the imprinted structure to tear or fracture. Fluorinated surfactants (FS) are attractive for reducing mold adhesion, yet the effects of these additives on nanostructure stability during thermal reflow are not well understood. Here we present thermal stability studies of line-space grating patterns created by Thermal Embossing Nanoimprint Lithography (TENIL) on model polystyrene (PS) films with FS additives. As expected by energy considerations, FS segregates to the air interface where it seems to facilitate mold release. This also reduces the surface energy and thus reduces the driving force for pattern "slumping" (height decay). However, the beneficial effects of the surfactant are counterbalanced by the fact that the FS decreases the effective film viscosity, which accelerates nanopattern leveling. The net effect is that the pattern height decay is strongly a function of FS concentration. This enhanced film fluidity in the presence of FS also makes the pattern more susceptible to an undulatory capillary instability under thermal reflow conditions. Surface phase segregation of FS and PS is also observed in conjunction with both slumping and lateral capillary instabilities, which may be useful for producing chemically patterned surfaces.

  12. Analytical characterization of wine and its precursors by capillary electrophoresis. (United States)

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F


    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.

  13. Capillary isoelectric focusing of native and inactivated microorganisms. (United States)

    Horká, M; Kubícek, O; Růzicka, F; Holá, V; Malinovská, I; Slais, K


    The research of microorganisms includes the development of methods for the inactivation of viruses and other microbes. It also means to efficiently eliminate the infectivity of microorganisms without damage of their integrity and structure. According to the results of the last 5 years the capillary electromigration techniques appear to be very perspective for the comparison of the methods applicable for inactivation in the diagnostics and study of the pathogens. In this paper we suggest the capillary isoelectric focusing of the model microorganisms, Escherichia coli, Staphylococcus epidermidis, Candida albicans and bacteriophage PhiX 174, native or inactivated by different procedures. UV detection and fluorometric detection for the dynamically modified microbes by pyrenebutanoate on the basis of the non-ionogenic tenside were used here. Isoelectric points of native and/or dynamically modified microorganisms and other properties were compared with those obtained after microorganisms inactivation. The segmental injection of the sample pulse enabled the reproducible and efficient capillary isoelectric focusing in different pH gradients. The low-molecular-weight pI markers were used for tracing of the pH gradient.

  14. Capillary leakage syndrome: a case report and a review. (United States)

    Garcês, S; Araújo, F; Rego, F; Soares, J L Ducla; Carlos, A G Palma


    Capillary leakage Syndrome (CLS) is a rare clinical syndrome, that was first described in 1960, characterized by acute episodes of generalized edema, hemoconcentration, hypoproteinemia and monoclonal gammopathy, in the vast majority of cases. We describe a 39-year-old man with anasarca, bilateral pleural and pericardial effusions, ascites and diffuse alveolo-intersticial edema. Clinical and laboratory findings were consistent with an acute episode of CLS. Treatment with prednisone, furosemide and aminophylline was started, which lead to a gradual improvement in 48 hours. Pathophysiologically there is an increase in capillary permeability with the extravasation of fluid and plasmatic proteins to the extravascular space that can lead to hypovolaemic shock. In the second phase there is a reentry of the fluid overload leading to pulmonary edema. The etiology of this hyperpermeability still remains unclear. The role of cytokines has become central in the comprehension of pathophysiology of CLS. Adhesion molecules are probably also involved in the genesis of capillary leakage. CLS treatment remains empirical. However, at present it seems that the association of steroids with furosemide, aminophylline and terbutaline are capable of controlling the clinical manifestation of the acute episodes in most cases. To our knowledge no prophylatic therapy has clearly proven its efficacy. There are only a few series analyzing the long-term evolution of patients with CLS. Further studies are necessary with the objective to collect enough patients with CLS to observe natural history of the disease and evaluate the efficacy of empiric treatments.

  15. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration (United States)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar


    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  16. Flow distributions and spatial correlations in human brain capillary networks (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy


    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  17. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham


    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  18. Decreased capillary permeability and capillary density in patients with systemic sclerosis using large-window sodium fluorescein videodensitometry of the ankle

    NARCIS (Netherlands)

    Hettema, M E; Zhang, D; Stienstra, Y; Oomen, P N H; Smit, Andries; Kallenberg, C G M; Bootsma, H


    OBJECTIVE: Local capillary permeability in patients with SSc has been reported increased when assessed by nail-fold capillaroscopy. We measured capillary permeability at a clinically less affected site by using large-window fluorescein videodensitometry of the ankle. We hypothesized that increased c

  19. Use of neutral capillaries for the enantioseparation of N-benzoylated amino acids by capillary electrophoresis with bromobalhimycin as chiral selector. (United States)

    Peng, Yongbo; Zhang, Tingting; Wang, Tingting; Liu, Zhenghua; Crommen, Jacques; Jiang, Zhengjin


    In this study, the partial filling technique on both polycationic polymer hexadimethrine bromide (HDB) modified capillary and eCAP neutral capillary were systematically compared in order to enhance the enantioseparation ability of bromobalhimycin as CE additive. The separation conditions, such as pH, the plug length, and the concentration of bromobalhimycin, etc., were optimized in order to obtain satisfactory separations. As expected, for all tested 28 N-benzoylated amino acids, up to five times higher enantioresolutions were obtained on the eCAP neutral capillary compared to that on the polycationic polymer hexadimethrine bromide modified capillary. Moreover, 26 of 28 tested racemic compounds were almost baseline- resolved without observing any interference from the front of the plug of bromobalhimycin. Although the limitation of longer running time on the neutral capillary, it allows the use of higher content of bromobalhimycin in the running buffer without any interference on the detection of analytes when enantioseparations are more difficult to obtain.

  20. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms. (United States)

    Farina-Gomez, Noemi; Puerta, Angel; Gonzalez, Monica; Diez-Masa, Jose Carlos; de Frutos, Mercedes


    Glycoproteins expressed in the human body can experience modifications as result of pathological situations. Detection of those changes can be useful as disease biomarkers. As a result of these modifications, size and/or electrical charge of the glycoprotein can be altered. Migration in capillary zone electrophoresis (CZE) is governed by the size to charge ratio of the analyte and therefore this separation technique can be used to monitor those modifications. At its turn, the alteration of the electrophoretical pattern of a given glycoprotein could be used as disease biomarker. To this aim, high repeatability for separation of a large number of peaks for a given glycoprotein is desirable. For prostate cancer, new markers are needed to decrease the high number of false positive results provided by the biomarkers currently used in clinics. In this sense, CZE methods for analysis of the several prostate specific antigen (PSA) peaks which this glycoprotein exhibit, called isoforms and containing one or more glycoforms, could be useful to study the PSA pattern as prostate cancer marker. In this study two complementary strategies to achieve both lot-to-lot capillary repeatability and high resolution of a large number of PSA isoforms are developed. Better performance and precision have been obtained for capillaries conditioned with HCl than for those conditioned with NaOH. Optimization of the background electrolyte (BGE) pH value to 8.0 and inclusion of 3M urea on its composition were the two factors of highest impact for enhancing resolution of the highest number of PSA peaks. Under the optimized conditions for capillary conditioning and BGE pH and composition, long-term resolution of 10 isoforms of PSA was achieved. Inter-day (n=3) %RSD was 0.55 for the ratio tm/tEOF, 1.15 for μeff, and 5.02 for % Acorr of the PSA peaks.

  1. A capillary viscometer designed for the characterization of biocompatible ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, J., E-mail:; Odenbach, S.


    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application. - Highlights: • A capillary viscometer to characterize biocompatible ferrofluids is presented. • Shear rates and capillary diameters

  2. High lung volume increases stress failure in pulmonary capillaries (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.


    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  3. Usage of Capillary Electrophoresis for screening common Hemoglobinopathies

    Directory of Open Access Journals (Sweden)


    Full Text Available Hemoglobinopathies are most common inherited disorders in the world approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. For control of this inherited hemoglobin disorders need to accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid & more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias & hemoglobin variants Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as Gel electrophoresis, High performance liquid chromatography, Isoelectric focusing, Capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two complementary methods for hemoglobinopathies screening. We can analyze by the methods more hemoglobin disorders and decrease more laboratory errors. Moreover

  4. Antibacterial activity and mode of action of the Artemisia capillaris essential oil and its constituents against respiratory tract infection-causing pathogens. (United States)

    Yang, Chang; Hu, Dong-Hui; Feng, Yan


    Inhalation therapy using essential oils has been used to treat acute and chronic sinusitis and bronchitis. The aim of the present study was to determine the chemical composition of the essential oil of Artemisia capillaris, and evaluate the antibacterial effects of the essential oil and its main components, against common clinically relevant respiratory bacterial pathogens. Gas chromatography and gas chromatography‑mass spectrometry revealed the presence of 25 chemical constituents, the main constituents being: α‑pinene, β‑pinene, limonene, 1,8‑cineole, piperitone, β‑caryophyllene and capillin. The antibacterial activities of the essential oil, and its major constituents, were evaluated against Streptococcus pyogenes, methicillin‑resistant Staphylococcus aureus (MRSA), MRSA (clinical strain), methicillin‑gentamicin resistant Staphylococcus aureus (MGRSA), Streptococcus pneumoniae, Klebsiella pneumoniae, Haemophilus influenzae and Escherichia coli. The essential oil and its constituents exhibited a broad spectrum and variable degree of antibacterial activity against the various strains. The essential oil was observed to be much more potent, as compared with any of its major chemical constituents, exhibiting low minimum inhibitory and bacteriocidal concentration values against all of the bacterial strains. The essential oil was most active against S. pyogenes, MRSA (clinical strain), S. pneumoniae, K. pneumoniae, H. influenzae and E. coli. Piperitone and capillin were the most potent growth inhibitors, among the major chemical constituents. Furthermore, the essential oil of A. capillaris induced significant and dose‑dependent morphological changes in the S. aureus bacterial strain, killing >90% of the bacteria when administered at a higher dose; as determined by scanning electron microscopy. In addition, the essential oil induced a significant leakage of potassium and phosphate ions from the S. aureus bacterial cultures. These results indicate that

  5. Very fast capillary electrophoresis with electrochemical detection for high-throughput analysis using short, vertically aligned capillaries. (United States)

    Mark, Jonas Josef Peter; Piccinelli, Paolo; Matysik, Frank-Michael


    A method for conducting fast and efficient capillary electrophoresis (CE) based on short separation capillaries in vertical alignment was developed. The strategy enables for high-throughput analysis from small sample vials (low microliter to nanoliter range). The system consists of a lab-made miniaturized autosampling unit and an amperometric end-column detection (AD) cell. The device enables a throughput of up to 200 separations per hour. CE-AD separations of a dye model system in capillaries of only 4 to 7.5 cm length with inner diameters (ID) of 10 or 15 μm were carried out under conditions of very high electric field strengths (up to 3.0 kV/cm) with high separation efficiency (half peak widths below 0.2 s) in less than 3.5 s migration time. A non-aqueous background electrolyte, consisting of 10 mM ammonium acetate and 1 M acetic acid in acetonitrile, was used. The practical suitability of the system was evaluated by applying it to the determination of dyes in overhead projector pens.

  6. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering


    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  7. Antimicrobial Resistance (United States)

    ... emergence and spread of antibacterial resistance, including optimal use of antibiotics in both humans and animals. A global action plan on antimicrobial resistance was adopted by Member States at the ...

  8. Effects of nitric oxide inhalation on pulmonary serial vascular resistances in ARDS. (United States)

    Rossetti, M; Guénard, H; Gabinski, C


    The pulmonary vasculature site of action of nitric oxide (NO) in patients with acute respiratory distress syndrome (ARDS) is still unknown. Seven patients were studied during the early stage of ARDS. The bedside pulmonary artery single-occlusion technique, which allows estimation of the pulmonary capillary pressure (Pcap) and segmental pulmonary vascular resistance, was used without NO or with increasing inhaled NO concentrations (15 and 25 parts per million [ppm]). Systemic circulatory parameters remained unaltered during 15 ppm NO inhalation, whereas 25 ppm NO inhalation slightly decreased mean systemic arterial pressure from 76.7 +/- 5.1 (mean +/- SEM) to 69 +/- 5.2 mm Hg (p resistance decreased by 28% (p resistance of the capillary-venous compartment fell during 25 ppm NO inhalation from 100 +/- 16 to 47 +/- 16 dyn x s x m(2) x cm(-5) (p resistance was unchanged. In these patients NO inhalation during the early stage of ARDS reduces selectively Ppam and Pcapm by decreasing the pulmonary capillary-venous resistance. This latter effect may reduce the filtration through the capillary bed and hence alveolar edema during ARDS.

  9. A fully automated linear polyacrylamide coating and regeneration method for capillary electrophoresis of proteins. (United States)

    Bodnar, Judit; Hajba, Laszlo; Guttman, Andras


    Surface modification of the inner capillary wall in CE of proteins is frequently required to alter EOF and to prevent protein adsorption. Manual protocols for such coating techniques are cumbersome. In this paper, an automated covalent linear polyacrylamide coating and regeneration process is described to support long-term stability of fused-silica capillaries for protein analysis. The stability of the resulting capillary coatings was evaluated by a large number of separations using a three-protein test mixture in pH 6 and 3 buffer systems. The results were compared to that obtained with the use of bare fused-silica capillaries. If necessary, the fully automated capillary coating process was easily applied to regenerate the capillary to extend its useful life-time.

  10. A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Jakub Hübner


    Full Text Available Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

  11. Determining CO2-brine relative permeability and capillary pressure simultaneously: an insight to capillary entrance and end effects (United States)

    Chen, X.; Kianinejad, A.; DiCarlo, D. A.


    CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches

  12. Affinity capillary electrophoresis method for investigation of bile salts complexation with sulfobutyl ether-ß-cyclodextrin

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Jensen, Henrik; Holm, Rene


    an influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility-shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying...... constant power and ionic strength conditions as well as constant voltage and varying ionic strength were investigated. A new approach for the correction of background electrolyte ionic strength was developed. Mobility-shift affinity capillary electrophoresis experiments obtained at constant voltage...

  13. Evaluation of The Interaction between Netropsin and Double Stranded DNA by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.07±0.10)×105 (mol/L)-1. The binding stoichiometry was 1:1. The use of polyacrylamide coated capillary showed better effect in the analysis of DNA than noncoated capillary.

  14. Comparison of silanization/hydrosilation and organosilanization modification procedures on etched capillaries for electrokinetic chromatography. (United States)

    Matyska, Maria T; Pesek, Joseph J


    Etched capillaries for use in open tubular electrochromatography are modified by silanization/hydrosilation and organosilanization. The migration behavior of both types of capillaries is evaluated with small basic molecules, peptides and proteins. Comparisons of peak symmetry and efficiency are used to measure the effectiveness of the two methods for modifying the etched surface. From this information, the suitability of each method for use with etched capillaries can be determined.

  15. Capillary Rise in Macro and Micro Pores of Jersey Knitting Structure


    Sofien Benltoufa, Ph.D.; Faten Fayala, Ph.D.; Sassi BenNasrallah, Ph.D.


    Wicking in textile materials is a very complicated, multi-faceted phenomena. This paper investigated capillary rise in a jersey knitting structure. A mathematical model was developed based on the industrial construction parameters and the capillary mechanism. The capillary is studied in two pore's scales: macro and micro. In order to validate our model, a series of experiments was conducted on cotton jersey knitting varying the construction parameters. The results showed reasonably good corre...





    The hollow cathode capillary discharge is of great interest as a high brightness, short pulse soft x-ray source. This thesis presents work done in the development, modifications, and subsequent characterization of a compact plasma source comprised of a pulsed capillary discharge exploiting hollow cathode dynamics. The low inductance, low stored energy, source is optimized using optical, electrical, x-ray, and e-beam diagnostics. The effect of parameters on the capillary phys...

  17. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten


    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  18. Measurements of an ion beam diameter extracted into air through a glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Natsuko, E-mail: [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Yamaki, Atsuko [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Ishii, Kunikazu; Ogawa, Hidemi [Department of Physics, Nara Women’s University, Nara, 630 8506 (Japan)


    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect.

  19. New type of capillary for use as ion beam collimator and air-vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Stoytschew, V., E-mail: [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Schulte-Borchers, M. [Laboratory of Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich (Switzerland); Božičević Mihalića, Iva [Ruđer Bošković Institute, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Perez, R.D. [FaMAF, Universidad Nacional de Córdoba, (5000) Ciudad Universitaria, Córdoba (Argentina)


    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  20. Effect of Artemisia capillaries on Gene Expression of Lipid Metabolism in Rat

    Directory of Open Access Journals (Sweden)

    Woo-Seok Jang


    Full Text Available Objective :The purpose of this study is to evaluate the effect of Artemisia capillaries on gene expression of lipid metabolism in rats. Method :The author performed several experimental items to analyze the total cholesterol and triglyceride in liver tissue, the gene expressions of CYP7A1 and HMG-CoA reductase. Results :1. In Artemisia capillaries group, the levels of total cholesterol in liver tissue were significantly decreased. 2. In Artemisia capillaries group, the ratios of CYP7A1, HMG-CoA reductase were as same as the normal group. Conclusion :From the above results, Artemisia capillaries can be used to treat hyperlipidemia.

  1. The dynamics of capillary-driven two-phase flow: the role of nanofluid structural forces. (United States)

    Nikolov, Alex; Zhang, Hua


    Capillary-driven flows are fundamental phenomena and are involved in many key technological processes, such as oil recovery through porous rocks, ink-jet printing, the bubble dynamics in a capillary, microfluidic devices and labs on chips. Here, we discuss and propose a model for the oil displacement dynamics from the capillary by the nanofluid (which is composed of a liquid suspension of nanoparticles); we elucidate the physics of the novelty of the phenomenon and its application. The oil displacement by the nanofluid flow is a multi-stage phenomenon, first leading to the oil film formation on the capillary wall, its break-up, and retraction over the capillary wall; this lead to the formation of the oil double concave meniscus. With time, the process repeats itself, leading to the formation of a regular "necklace" of oil droplets inside the capillary. Finally, the oil droplets are separated by the nanofluid film from the capillary wall. The light reflected differential interferometry technique is applied to investigate the nanofluid interactions with the glass wall. We find nanoparticles tend to self-structure into multiple layers close to the solid wall, which cause the structural forces to arise that lead to the oil displacement from the capillary. This research is expected to benefit the understanding of nanofluid phenomena in a capillary and promote their use in technological applications.

  2. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu


    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  3. Optimization of affinity capillary electrophoresis for routine investigations of protein-metal ion interactions. (United States)

    Alhazmi, Hassan A; Deeb, Sami El; Nachbar, Markus; Redweik, Sabine; Albishri, Hassan M; El-Hady, Deia Abd; Wätzig, Hermann


    To facilitate the implementation of affinity capillary electrophoresis into routine binding screening studies of proteins with metal ions, method acceleration, transfer and precision improvement were investigated. Affinity capillary electrophoresis was accelerated by using shorter capillaries, employing lower sample concentrations and smaller injection volumes. Intra- and inter-instrument method transfers were investigated considering the temperature setting of the capillary cooling system. For intra-instrument method transfer, similar results were obtained when transferring a method from a long (62 cm) to a short (31 cm) capillary. The analysis time was reduced from 9 to 4 min. In case of inter-instrument method transfer, interaction results showed small variation on the capillary electrophoresis instrument with inefficient capillary cooling system. Binding measurement precision was enhanced by slightly pushing the sample above the beginning of the capillary. Changing the buffer vials after each 30 runs and employing extra flushing after each 60 subsequent runs further enhanced the precision. The use of 0.1 molar ethylenediaminetetraacetic acid in the rinsing solution successfully desorbs the remaining metal ions from the capillary wall. Excellent precision for apparent mobility ratio measurements was achieved for different protein-metal ion interactions (relative standard deviation of 0.16-0.89%, 15 series, 12 runs for each).

  4. The impact of capillary dilation on the distribution of red blood cells in artificial networks. (United States)

    Schmid, Franca; Reichold, Johannes; Weber, Bruno; Jenny, Patrick


    Recent studies suggest that pericytes around capillaries are contractile and able to alter the diameter of capillaries. To investigate the effects of capillary dilation on network dynamics, we performed simulations in artificial capillary networks of different sizes and complexities. The unequal partition of hematocrit at diverging bifurcations was modeled by assuming that each red blood cell (RBC) enters the branch with the faster instantaneous flow. Network simulations with and without RBCs were performed to investigate the effect of local dilations. The results showed that the increase in flow rate due to capillary dilation was less when the effects of RBCs are included. For bifurcations with sufficient RBCs in the parent vessel and nearly equal flows in the branches, the flow rate in the dilated branch did not increase. Instead, a self-regulation of flow was observed due to accumulation of RBCs in the dilated capillary. A parametric study was performed to examine the dependence on initial capillary diameter, dilation factor, and tube hematocrit. Furthermore, the conditions needed for an efficient self-regulation mechanism are discussed. The results support the hypothesis that RBCs play a significant role for the fluid dynamics in capillary networks and that it is crucial to consider the blood flow rate and the distribution of RBCs to understand the supply of oxygen in the vasculature. Furthermore, our results suggest that capillary dilation/constriction offers the potential of being an efficient mechanism to alter the distribution of RBCs locally and hence could be important for the local regulation of oxygen delivery.

  5. Characterization of the Basic Operational Properties of the Capillary Plasma Electrode (CPE) Discharge (United States)

    Lopez, Jose; Zhu, Weidong; Figus, Margaret; Becker, Kurt


    Various approaches have been pursued to create stable atmospheric pressure discharges by extending the lifetime of the diffuse phase of the discharge to hundreds of microseconds. Previous research showed that the stability of the diffuse mode is dependent on the frequency (in the kHz range), gas type, power, mode of the excitation, and geometrical confinement. The Capillary Plasma Electrode (CPE) discharge is able to produce stable atmospheric pressure nonequilibrium plasmas. The CPE is similar in design to a barrier-electrode discharge, but has perforated dielectrics. This configuration, aside from exhibiting a diffuse mode of operation, also exhibits the so-called ``capillary jet'' mode, in which the capillaries ``turn on'' and a bright plasma jet emerges from the capillaries. The capillary jets from adjacent capillaries overlap so that the discharge appears uniform when the electrode contains an array of holes. There appears to be a threshold frequency for the capillary jet formation, which is strongly dependent on the L/D ratio of the capillaries, where D is the diameter of a capillary and L its length. This current work explores these modes of operation of the CPE by characterizing the electrical and optical emission properties of this discharge.

  6. On-line cation-exchange preconcentration and capillary electrophoresis coupled by tee joint interface. (United States)

    Zhang, Zhao-Xiang; He, You-Zhao


    An on-line preconcentration method based on ion exchange solid phase extraction was developed for the determination of cationic analytes in capillary electrophoresis (CE). The preconcentration-separation system consisted of a preconcentration capillary bonded with carboxyl cation-exchange stationary phase, a separation capillary for zone electrophoresis and a tee joint interface of the capillaries. Two capillaries were connected closely inside a 0.3 mm i.d. polytetrafluoroethylene tube with a side opening and fixed together by the interface. The preparations of the preconcentration capillaries and interface were described in detail in this paper. The on-line preconcentration and separation procedure of the analysis system included washing and conditioning the capillaries, loading analytes, filling with buffer solution, eluting analytes and separating by capillary zone electrophoresis (CZE). Several analysis parameters, including sample loading flow rate and time, eluting solution and volume, inner diameter and length of preconcentration capillary etc., were investigated. The proposed method enhanced the detection sensitivity of CE-UV about 5000 times for propranolol and metoprolol compared with normally electrokinetic injection. The detection limits of propranolol and metoprolol were 0.02 and 0.1 microg/L with the proposed method respectively, whereas those were 0.1 and 0.5 mg/L with conventional electrokinetic injection. The experiment results demonstrate that the proposed technique can increase the preconcentration factor evidently.

  7. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)


    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  8. Self-assembled and covalently linked capillary coating of diazoresin and cyclodextrin-derived dendrimer for analysis of proteins by capillary electrophoresis. (United States)

    Yu, Bing; Chi, Ming; Han, Yuxing; Cong, Hailin; Tang, Jianbin; Peng, Qiaohong


    Self-assembled and covalently linked capillary coatings of cyclodextrin-derived (CD) dendrimer were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/CD-dendrimer coatings based on ionic bonding was fabricated first on the inner surface of capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. Protein adsorption on the inner surface of capillary was suppressed by the DR/CD-dendrimer coating, and thus a baseline separation of lysozyme (Lys), myoglobin (Mb), bovine serum albumin (BSA) and ribonuclease A (RNase A) was achieved using capillary electrophoresis (CE). Compared with the bare capillary, the DR/CD-dendrimer covalently linked capillary coatings showed excellent protein separation performance with good stability and repeatability. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE.

  9. Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with a -1 capillary ratio in an annular pool (United States)

    Yu, Jia-Jia; Wu, Chun-Mei; Li, You-Rong; Chen, Jie-Chao


    A series of three-dimensional numerical simulations on thermal-solutal capillary-buoyancy flow in an annular pool were carried out. The pool was filled with silicon-germanium melt with an initial silicon mass fraction of 1.99%. The Prandtl number and the Lewis number of the working fluid are 6.37 × 10-3 and 2197.8, respectively. Both the radial temperature gradient and the solute concentration gradient were applied to the annular pool. The capillary ratio was assumed to be -1, which means that the solutal and thermal capillary effects were equal and opposite. Results show that the thermal-solutal capillary-buoyancy flow always occurs at this special case with the capillary ratio of -1, and even in a shallow annular pool with an aspect ratio of 0.05. With the increase of the thermal Marangoni number, four kinds of flow patterns appear orderly, including concentric rolls, petal-like, spoke, and rosebud-like patterns. These flow patterns are strongly influenced by the local interaction between the solutal and thermal capillary effects and the vertical solute concentration gradient near the outer cylinder. A small vortex driven by the dominant solutal capillary effect emerges near the inner cylinder, which is different from the flow pattern in a pure fluid. In addition, the critical thermal Marangoni number of the initial three-dimensional flow decreases with the increase of the aspect ratio of the annular pool.

  10. Self-assembled covalent capillary coating of diazoresin/carboxyl fullerene for analysis of proteins by capillary electrophoresis and a comparison with diazoresin/graphene oxide coating. (United States)

    Yu, Bing; Shu, Xi; Cong, Hailin; Chen, Xin; Liu, Huwei; Yuan, Hua; Chi, Ming


    Self-assembled and covalently linked capillary coatings of carboxyl fullerenes (C60-COOH) were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/C60-COOH coatings based on ionic bonding was fabricated first on the inner surface of silica capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. The covalently bonded coatings had the ability of suppressing protein adsorption on the inner surface of silica capillary, and thus the baseline separation of lysozyme (Lys), cytochrome c (Cyt-c), bovine serum albumin (BSA) and myoglobin (Mb) was achieved within 13min by using capillary electrophoresis (CE). The covalently linked DR/C60-COOH capillary coatings presented good chemical stability and repeatability. The reproducibility of the separation of proteins was less than 1%, 2.5%, and 3.5%, respectively, for run-to-run, day-to-day, capillary-to-capillary, respectively; and the RSD of migration time for the proteins are all less than 2.5% after a continuous 100 times running in a coating column. Compared with DR/graphene oxide (GO) coatings prepared by the same method, the DR/C60-COOH capillary coatings showed excellent protein separation performance due to a self-lubrication based anti-fouling mechanism. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE.

  11. A capillary viscometer designed for the characterization of biocompatible ferrofluids (United States)

    Nowak, J.; Odenbach, S.


    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  12. Capillary blood glucose screening for gestational diabetes: a preliminary investigation. (United States)

    Landon, M B; Cembrowski, G S; Gabbe, S G


    Home glucose monitoring with the use of reflectance meters is an important adjunct in the care of pregnant women with insulin-dependent diabetes. The accuracy of reflectance meters for the assay of capillary glucose specimens has been well documented. The present preliminary study was undertaken to determine the utility of outpatient screening for gestational diabetes mellitus with the use of a reflectance meter (Accu-Chek, Boehringer Mannheim Co.). One hundred twenty-five patients in our high-risk practice had a standard 50 gm glucose load at 26 to 28 weeks' gestation. Capillary glucose values were measured on site with the Accu-Chek. Venous plasma glucose levels were measured by the central laboratory chemistry analyzer. While the laboratory (x) and meter (y) glucose determinations between the two sets of values were highly correlated (R = 0.89, p less than 0.001), there was a significant difference in their average values (x = 111.74, y = 136.35, p less than 0.0001). With the use of a receiver operator characteristic curve, a meter value of 160 mg/dl was determined as the optimal threshold for performing a 3-hour glucose tolerance test. The sensitivity and specificity with the use of a meter value of 160 mg/dl were 93% and 96%, respectively, for detecting an abnormal screening test in venous plasma (greater than or equal to 135 mg/dl). A total of 32 glucose tolerance tests were performed, with four patients included who had venous values less than 135 mg/dl. All eight patients with gestational diabetes mellitus were correctly identified. These data suggest that a glucose reflectance meter can be used for accurate outpatient screening of gestational diabetes mellitus. The potential advantages of capillary blood glucose screening include both cost and efficiency. Patients with abnormal screening values can be promptly identified and scheduled for a follow-up 3-hour glucose tolerance test.

  13. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. (United States)

    Tam, Johnny; Tiruveedhula, Pavan; Roorda, Austin


    Adaptive Optics Scanning Laser Ophthalmoscopy was used to noninvasively acquire videos of single-file flow through live human retinal parafoveal capillaries. Videos were analyzed offline to investigate capillary flow dynamics. Certain capillaries accounted for a clear majority of leukocyte traffic (Leukocyte-Preferred-Paths, LPPs), while other capillaries primarily featured plasma gap flow (Plasma-Gap-Capillaries, PGCs). LPPs may serve as a protective mechanism to prevent inactivated leukocytes from entering exchange capillaries, and PGCs may serve as relief valves to minimize flow disruption due to the presence of a leukocyte in a neighboring LPP.

  14. Capillary-wave description of rapid directional solidification. (United States)

    Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi


    A recently introduced capillary-wave description of binary-alloy solidification is generalized to include the procedure of directional solidification. For a class of model systems a universal dispersion relation of the unstable eigenmodes of a planar steady-state solidification front is derived, which readjusts previously known stability considerations. We moreover establish a differential equation for oscillatory motions of a planar interface that offers a limit-cycle scenario for the formation of solute bands and, taking into account the Mullins-Sekerka instability, of banded structures.

  15. Subtracting Technique of Baselines for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; MO Jin-yuan; CHEN Zuan-guang; GAO Yan


    The drifting baselines of capillary electrophoresis affect the veracity of analysis greatly. This paper presents Threshold Fitting Technique(TFT) so as to subtract the baselines from the original signals and emendate the signals. In TFT, wav elet and curve fitting technique are applied synthetically, thresholds are decided by the computer automatically. Many experiments of signal processing indicate that TFT is simple for being used, there are few man-induced factors, and the results are satisfactory. TFT can be applied for noisy signals without any pre-processing.

  16. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits (United States)

    Jackson, Douglas J.; Roussel, Jr., Thomas J.; Crain, Mark M.; Baldwin, Richard P.; Keynton, Robert S.; Naber, John F.; Walsh, Kevin M.; Edelen, John. G.


    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  17. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis. (United States)

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter


    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  18. Capillary electrophoresis coupled with electrochemiluminescence for determination of cloperastine hydrochloride

    Institute of Scientific and Technical Information of China (English)


    Objective To investigate the electrochemiluminescence (ECL) behavior of cloperastine hydrochloride. Methods ECL intensity of tris (2,2′-bipyridyl) rutheniumo(Ⅱ) was enhanced, the method for the determination of cloperastine hydrochloride was established using capillary electrophoresis (CE) coupled with electrochemilumolinescence (ECL) detection. Results Under the optimum conditions, ECL intensity varied linearly with cloperastine hydrochloride concentration from 7.0×10-6g/mL to 1.0×10-4g/mL. The detection l...

  19. Theory of fluid slip in charged capillary nanopores

    CERN Document Server

    Catalano, J; Biesheuvel, P M


    Based on the capillary pore model (space-charge theory) for combined fluid and ion flow through cylindrical nanopores or nanotubes, we derive the continuum equations modified to include wall slip. We focus on the ionic conductance and streaming conductance, cross-coefficients of relevance for electrokinetic energy conversion and electro-osmotic pumping. We combine the theory with a Langmuir-Stern 1-pK charge regulation boundary condition resulting in a non-monotonic dependence of the cross-coefficients on salt concentration.

  20. Rapid Preparation of Monolithic Columns for Capillary Electrochromatography Separation

    Institute of Scientific and Technical Information of China (English)

    Wen Jun GONG; Yi Jun ZHANG; Yu Ping ZHANG; Seong Ho CHOI


    Fritless packed silica gel columns were prepared using sol-gel technology. The part of a75 μm i.d. capillary was filled with a mixture of methacryloxypropyltrimethoxysilane, toluene and hydrochloric acid. Four different photoinitiators such as benzoin methyl ether, Irgacure 819,Irgacure 1700 and irgacure 1800 were added in the presence or absence of sodium dodecyl sulfate during the polymerization process. The above eight solutions were irradiated at 365 nm about5-10 min to prepare the porous monolithic sol-gel columns by a one-step process.

  1. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    王瑛; 莫金垣


    Capillary electrophoresis(CE) is a powerful analytical tool in chemistry,Thus,it is valuable to solve the denoising of CE signals.A new denoising method called MWDA which emplosy Mexican Hat wavelet is presented ,It is an efficient chemometrics technique and has been applied successfully in processing CE signals ,Useful information can be extractred even from signals of S/N=1 .After denoising,the peak positions are unchanged and the relative errors of peak height are less than 3%.


    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.


    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  3. Enantiomeric Separation of Meptazinol Hydrochloride by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YUYun-qiu; CHENYan; LINi; QIUZhui-bai


    Aim To establish a capillary electrophoresis method for enantiomerie separation of meptazinol hydrochloride. Methods The separation conditions such as cyclodextrin(CD)type, buffer pH, concentration of 2,3,6-O-triInethyl-β-cyclodextrin and organic additives were optimized. An optimum concentration was 30 mmol·L-1 phosphate (pH 7.02)with 10% (W/V) TM-β-CD and 2% acetonitrile. Results Basehne resolution of the enantiomer was readily achieved using 2,3,6-O-trimethyl-β-cyclodextrin. Conclusion This is a convenient method for fast enantiomeric resolution of meptazinol hydrochloride.

  4. Fast & Scalded: Capillary Leidenfrost Droplets in micro-Ratches

    CERN Document Server

    Marin, Alvaro G; Römer, Gert-Willem; Lohse, Detlef


    In this Fluid Dynamics Videos submitted to the 31st Gallery of Fluid Motion, we illustrate the special dynamics of capillary self-propelled Leidenfrost droplets in micrometric Ratchets. In order to be able to propel water droplets of sizes of the order of 1 mm, micro-ratchets were produced by direct material removal using a picosecond pulsed laser source. Surface micro-patterning with picosecond laser pulses allows creating a well controlled topography on a variety of substrates, with a resolution typically in the micron range. More information can be found in references.


    Institute of Scientific and Technical Information of China (English)

    WangMing; LiWei; 等


    Using a standard photolithographical procedure,chenmical wet etching and thermal diffusion bonding technology,a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry.The channels on the microchip substrate are about 50um deep and 150um wide.By employing amino acids derived from 2,4-DiNitroFluoroBenzen(DNFB) on CE chip channels,the sample manipulating system is studied based on the principle of electrodynamics.

  6. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective (United States)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)


    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  7. [Recent advances in capillary scale ion chromatography technology]. (United States)

    Yang, Bingcheng; Diao, Xuefang


    Ion chromatography (IC) has been a well-established technique for the analysis of ionic samples. The aqueous solution used for IC eluent is well suited for bioanalysis in relative to common liquid chromatography. This is especially true for capillary ion chromatography (CIC) due to its advantage of small sample needed. CIC is generally divided into three categories including open tubular, packed and monolithic. In this review, the recent progress of CIC is summarized based on the development of several key components associated with packed column-based system. The development of open tubular ion chromatography is also reviewed.

  8. Capillary electrophoresis with laser-induced fluorescence: environmental applications. (United States)

    Riddick, Lee; Brumley, William C


    Capillary electrophoresis (CE), especially free-zone CE, offers a relatively simple separation with moderate selectivity based on the mobility of ions in solution. Laser-induced fluorescence (LIF) detection, an extremely sensitive technique, can be coupled with a variety of separation conditions to achieve sensitive and quantitative results. When these techniques are combined, CE/LIF provides the sensitivity and increased selectivity that makes trace level environmental analysis of fluorescent compounds possible at or below levels typical for gas chromatography (GC)/mass spectrometry (MS). We offer a panoramic review of the role of these tools in solving environmental and related analytical problems before providing a detailed experimental protocol.


    Institute of Scientific and Technical Information of China (English)

    Wang Ming; Li Wei; Han Jinghong; Cui Dafu


    Using a standard photolithographical procedure, chemical wet etching and thermal diffusion bonding technology, a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry. The channels on the microchip substrate are about 50μm deep and 150μm wide. By employing amino acids derived from 2,4-DiNitroFluoroBenzen (DNFB) on CE chip channels, the sample manipulating system is studied based on the principle of electrodynamics.

  10. Big Hydrophobic Capillary Fluidics; Basically Water Ping Pong in Space (United States)

    Weislogel, Mark; Attari, Babak; Wollman, Andrew; Cardin, Karl; Geile, John; Lindner, Thomas


    Capillary surfaces can be enormous in environments where the effects of gravity are small. In this presentation we review a number of interesting examples from demonstrative experiments performed in drop towers and aboard the International Space Station. The topic then focuses on large length scale hydrophobic phenomena including puddle jumping, spontaneous particle ejections, and large drop rebounds akin to water ping pong in space. Unseen footage of NASA Astronaut Scott Kelly playing water ping pong in space will be shown. Quantitative and qualitative results are offered to assist in the design of experiments for ongoing research. NASA NNX12A047A.

  11. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Zhuo Bin YUAN


    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  12. Entanglement effects in capillary waves on liquid polymer films. (United States)

    Jiang, Zhang; Mukhopadhyay, Mrinmay K; Song, Sanghoon; Narayanan, Suresh; Lurio, L B; Kim, Hyunjung; Sinha, Sunil K


    Overdamped surface capillary wave relaxations on molten polymer films were measured using x-ray photon correlation spectroscopy. We found a transition from a single through a stretched to another single exponential regime as the temperature is decreased from well above to near the bulk glass transition temperature. A universal scaling of the dynamics was discovered over a wide range of film thicknesses, temperatures, and molecular weights (except in the multiple relaxation regime). These observations are justified by hydrodynamic theory and the time-temperature superposition principle by considering an effective viscosity instead of the bulk zero shear viscosity.

  13. Automated polymerase chain reaction in capillary tubes with hot air. (United States)

    Wittwer, C T; Fillmore, G C; Hillyard, D R


    We describe a simple, compact, inexpensive thermal cycler that can be used for the polymerase chain reaction. Based on heat transfer with air to samples in sealed capillary tubes, the apparatus resembles a recirculating hair dryer. The temperature is regulated via thermocouple input to a programmable set-point process controller that provides proportional output to a solid state relay controlling a heating coil. For efficient cooling after the denaturation step, the controller activates a solenoid that opens a door to vent hot air and allows cool air to enter. Temperature-time profiles and amplification results approximate those obtained using water baths and microfuge tubes.

  14. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B


    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  15. An interlaboratory comparison of ITS2-PCR for the identification of yeasts, using the ABI Prism 310 and CEQ8000 capillary electrophoresis systems

    Directory of Open Access Journals (Sweden)

    Verschraegen Gerda


    Full Text Available Abstract Background Currently, most laboratories identify yeasts routinely on the basis of morphology and biochemical reactivity. This approach has quite often limited discriminatory power and may require long incubation periods. Due to the increase of fungal infections and due to specific antifungal resistence patterns for different species, accurate and rapid identification has become more important. Several molecular techniques have been described for fast and reliable identification of yeast isolates, but interlaboratory exchangeability of identification schemes of molecular techniques has hardly been studied. Here, we compared amplified ITS2 fragment length determination by an ABI Prism 310 (Applied Biosystems, Foster City, Ca. capillary electrophoresis system with that obtained by a CEQ8000 (Beckman Coulter, Fullerton, Ca. capillary electrophoresis system. Results Although ITS2 size estimations on both systems differed and separate libraries had to be constructed for each system, both approaches had the same discriminatory power with regard to the 44 reference strains, identical identifications were obtained for 39/ 40 clinical isolates in both laboratories and strains from 51 samples were correctly identified using CEQ8000, when compared to phenotypic identification. Conclusion Identification of yeasts with ITS2-PCR followed by fragment analysis can be carried out on different capillary electrophoresis systems with comparable discriminatory power.

  16. DLVO, hydrophobic, capillary and hydrodynamic forces acting on bacteria at solid-air-water interfaces: Their relative impact on bacteria deposition mechanisms in unsaturated porous media. (United States)

    Bai, Hongjuan; Cochet, Nelly; Pauss, André; Lamy, Edvina


    Experimental and modeling studies were performed to investigate bacteria deposition behavior in unsaturated porous media. The coupled effect of different forces, acting on bacteria at solid-air-water interfaces and their relative importance on bacteria deposition mechanisms was explored by calculating Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as hydrophobic, capillary and hydrodynamic forces. Negatively charged non-motile bacteria and quartz sands were used in packed column experiments. The breakthrough curves and retention profiles of bacteria were simulated using the modified Mobile-IMmobile (MIM) model, to identify physico-chemical attachment or physical straining mechanisms involved in bacteria retention. These results indicated that both mechanisms might occur in both sand. However, the attachment was found to be a reversible process, because attachment coefficients were similar to those of detachment. DLVO calculations supported these results: the primary minimum did not exist, suggesting no permanent retention of bacteria to solid-water and air-water interfaces. Calculated hydrodynamic and resisting torques predicted that bacteria detachment in the secondary minimum might occur. The capillary potential energy was greater than DLVO, hydrophobic and hydrodynamic potential energies, suggesting that film straining by capillary forces might largely govern bacteria deposition under unsaturated conditions.

  17. Camptothecin resistance

    DEFF Research Database (Denmark)

    Brangi, M; Litman, Thomas; Ciotti, M;


    The mitoxantrone resistance (MXR) gene encodes a recently characterized ATP-binding cassette half-transporter that confers multidrug resistance. We studied resistance to the camptothecins in two sublines expressing high levels of MXR: S1-M1-80 cells derived from parental S1 colon cancer cells...... and MCF-7 AdVp3,000 isolated from parental MCF-7 breast cancer cells. Both cell lines were 400- to 1,000-fold more resistant to topotecan, 9-amino-20(S)-camptothecin, and the active metabolite of irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38), than their parental cell lines. The cell lines...... demonstrated much less resistance to camptothecin and to several camptothecin analogues. Reduced accumulation and energy-dependent efflux of topotecan was demonstrated by confocal microscopy. A significant reduction in cleavable complexes in the resistant cells could be observed after SN-38 treatment...

  18. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men

    Directory of Open Access Journals (Sweden)

    W. M. Kilarski


    Full Text Available Muscle fibre profile area (Af, volume density (Vv, capillary-to-fibre ratio (CF and number of capillaries per fibre square millimetre (CD were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean ± SD: age 25.4±5.8 years, height 178.6±5.5 cm, body mass 72.1±7.7 kg of different training background. Seven subjects were untrained students (group A, nine were national and sub-national level endurance athletes (group B with the background of 7.8±2.9 years of specialised training, and eight subjects were sprint-power athletes (group C with 12.8±8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6% and C (50.5%; 26.4%. However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%. There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD was 245 (group A, 308 (group B and 325 (group C. Significant differences (P<0.05 in CF and CD, were found only between group A (1.9; 245 and both groups of trained men, B and C (2.1; 308 and 325. However, endurance athletes (group B, such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance.

  19. Resistance of closely-mown fine fescue and bentgrass species to snow mold pathogens (United States)

    Creeping bentgrass (Agrostis stolonifera) is the primary species used on golf courses in temperate regions but requires prophylactic fungicide treatment to prevent snow mold diseases. We hypothesized that fine fescues (Festuca spp.) and colonial bentgrass (A. capillaris) have superior resistance to...

  20. Elasto-capillary windlass: from spider web to synthetic actuators (United States)

    Elettro, Hervé; Antkowiak, Arnaud; Neukirch, Sébastien; Vollrath, Fritz; Institut D'Alembert Team; Oxford Silk Group Team


    Spiders' threads display a wide range of materials properties. The glue-covered araneid capture silk is unique among all silks because it is self tensing and remains taut even if compressed, allowing both thread and web to be in a constant state of tension. Here we demonstrate how this effect is achieved by unraveling the physics allowing the nanolitre glue droplets straddling the silk thread to induce buckling, coiling and spooling of the core filaments. Our model examines this windlass activation as a structural phase transition, which shows that fibre spooling results from the interplay between elasticity and capillarity. Fibre size is the key as such a capillary windlass requires micrometer-sized fibres in order to function. Our synthetic capillary windlasses point towards design principles for new bioinspired synthetic actuators. The present work was supported by ANR Grant ANR-09-JCJC-0022-01, ``La Ville de Paris - Programme Emergence,'' Royal Society International Exchanges Scheme 2013/R1 Grant IE130506, and the PEPS PTI program from CNRS.

  1. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. (United States)

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław


    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation.

  2. On capillary self-focusing in a microfluidic system (United States)

    Hein, M.; Seemann, R.; Afkhami, S.


    A computational framework is developed to address capillary self-focusing in step emulsification. The microfluidic system consists of a single shallow and wide microchannel that merges into a deep reservoir. A continuum approach coupled with a volume of fluid method is used to model the capillary self-focusing effect. The original governing equations are reduced using the Hele-Shaw approximation. We show that the interface between the two fluids takes the shape of a neck narrowing in the flow direction just before entering the reservoir, in agreement with our experimental observations. Our computational model relies on the assumption that the pressure at the boundary, where the fluid exits into the reservoir, is the uniform pressure in the reservoir. We investigate this hypothesis by comparing the numerical results with experimental data. We conjecture that the pressure boundary condition becomes important when the width of the neck is comparable to the depth of the microchannel. A correction to the exit pressure boundary condition is then proposed, which is determined by comparison with experimental data. We also present the experimental observations and the numerical results of the transitions of breakup regimes.

  3. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis. (United States)

    Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A


    A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).

  4. Evaluation of intralesional propranolol for periocular capillary hemangioma

    Directory of Open Access Journals (Sweden)

    Awadein A


    Full Text Available Ahmed Awadein, Mohamed A FakhryCairo University Faculty of Medicine, Cairo, EgyptBackground: The purpose of this study was to evaluate the use of intralesional propranolol injection in the management of periocular capillary hemangioma.Methods: A prospective study was performed in 22 consecutive patients with periocular hemangioma. Twelve patients underwent intralesional propranolol injection and ten patients underwent intralesional triamcinolone injection. The size of the lesion was measured serially every week during the first month, every 2 weeks for the second month, and then monthly for another 2 months. The refractive error and degree of ptosis if present were measured before injection and at the end of the study.Results: There was reduction in the size of hemangioma, astigmatic error, and degree of ptosis in both groups. The difference in outcome between both groups was not statistically significant. Rebound growth occurred in 25% of the propranolol group and 30% of the steroid group but responded to reinjection. No adverse effects were reported during or after intralesional propranolol injection.Conclusion: Intralesional propranolol injection is an alternative and effective method for treatment of infantile periocular hemangioma.Keywords: propranolol, intralesional, periocular capillary hemangioma

  5. A comparative study of Raman enhancement in capillaries (United States)

    Eftekhari, Fatemeh; Irizar, Juan; Hulbert, Laila; Helmy, Amr S.


    This work reports on the comparative studies of Raman enhancement in liquid core waveguides (LCWs). The theoretical considerations that describe Raman enhancement in LCWs is adapted to analyze and compare the performance of hollow core photonic crystal fibers (HCPCFs) to conventional Teflon capillary tubes. The optical losses in both platforms are measured and used to predict their performance for different lengths. The results show that for an optimal waveguide length, two orders of magnitude enhancement in the Raman signal can be achieved for aqueous solutions using HCPCFs. This length, however, cannot be achieved using normal capillary effects. By integrating the interface of the fluidic pump and the HCPCF into a microfluidic chip, we are able to control fluid transport and fill longer lengths of HCPCFs regardless of the viscosity of the sample. The long-term stability and reproducibility of Raman spectra attained through this platform are demonstrated for naphthalenethiol, which is a well-studied organic compound. Using the HCPCF platform, the detection limit of normal Raman scattering in the range of micro-molars has been achieved. In addition to the higher signal-to-noise ratio of the Raman signal from the HCPCF-platform, more Raman modes of naphthalenethiol are revealed using this platform.

  6. High-current carbon-epoxy capillary cathode (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.


    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  7. Capillary Self-Alignment of Microchips on Soft Substrates

    Directory of Open Access Journals (Sweden)

    Bo Chang


    Full Text Available Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.

  8. Capillary-force measurement on SiC surfaces (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.


    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  9. Directional transport of impinging capillary jet on wettability engineered surfaces (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine


    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  10. Mesodermal Pten inactivation leads to alveolar capillary dysplasia- like phenotype. (United States)

    Tiozzo, Caterina; Carraro, Gianni; Al Alam, Denise; Baptista, Sheryl; Danopoulos, Soula; Li, Aimin; Lavarreda-Pearce, Maria; Li, Changgong; De Langhe, Stijn; Chan, Belinda; Borok, Zea; Bellusci, Saverio; Minoo, Parviz


    Alveolar capillary dysplasia (ACD) is a congenital, lethal disorder of the pulmonary vasculature. Phosphatase and tensin homologue deleted from chromosome 10 (Pten) encodes a lipid phosphatase controlling key cellular functions, including stem/progenitor cell proliferation and differentiation; however, the role of PTEN in mesodermal lung cell lineage formation remains unexamined. To determine the role of mesodermal PTEN in the ontogeny of various mesenchymal cell lineages during lung development, we specifically deleted Pten in early embryonic lung mesenchyme in mice. Pups lacking Pten died at birth, with evidence of failure in blood oxygenation. Analysis at the cellular level showed defects in angioblast differentiation to endothelial cells and an accompanying accumulation of the angioblast cell population that was associated with disorganized capillary beds. We also found decreased expression of Forkhead box protein F1 (Foxf1), a gene associated with the ACD human phenotype. Analysis of human samples for ACD revealed a significant decrease in PTEN and increased activated protein kinase B (AKT). These studies demonstrate that mesodermal PTEN has a key role in controlling the amplification of angioblasts as well as their differentiation into endothelial cells, thereby directing the establishment of a functional gas exchange interface. Additionally, these mice could serve as a murine model of ACD.

  11. Determination of acidity constants of enolisable compounds by capillary electrophoresis. (United States)

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L


    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  12. Compartment Syndrome as a Result of Systemic Capillary Leak Syndrome

    Directory of Open Access Journals (Sweden)

    Kwadwo Kyeremanteng


    Full Text Available Objective. To describe a single case of Systemic Capillary Leak Syndrome (SCLS with a rare complication of compartment syndrome. Patient. Our patient is a 57-year-old male, referred to our hospital due to polycythemia (hemoglobin (Hgb of 220 g/L, hypotension, acute renal failure, and bilateral calf pain. Measurements and Main Results. The patient required bilateral forearm, thigh, and calf fasciotomies during his ICU stay and continuous renal replacement therapy was instituted following onset of acute renal failure and oliguria. Ongoing hemodynamic (Norepinephrine and Milrinone infusion and respiratory (ventilator support in the ICU was provided until resolution of intravascular fluid extravasation. Conclusions. SCLS is an extremely rare disorder characterized by unexplained episodic capillary hyperpermeability, which causes shift of volume and protein from the intravascular space to the interstitial space. Patients present with significant hypotension, hemoconcentration, hypovolemia, and oliguria. Severe edema results from leakage of fluid and proteins into tissue. The most important part of treatment is maintaining stable hemodynamics, ruling out other causes of shock and diligent monitoring for complications. Awareness of the clinical syndrome with the rare complication of compartment syndrome may help guide investigations and diagnoses of these critically ill patients.

  13. Capillary Action may Cool Systems and Precisely balance Chemical Reactions (United States)

    Kriske, Richard


    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  14. Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves (United States)

    Baker, David (Inventor)


    A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.

  15. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis. (United States)

    Sun, Xuefei; Li, Dan; Lee, Milton L


    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  16. Capillary-driven, spatially-directed liquid transport on and through thin porous substrates (United States)

    Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ibrahim, Ali; Ganguly, Ranjan; Megaridis, Constantine; Yu, Lisha; Dodge, Richard


    Thin porous substrates exhibit good wicking properties for liquid distribution. The low cost of such common substrates often makes them useful for point of care biomedical diagnostics. Isotropic and anisotropic liquid transport through porous media has been studied extensively in literature. Moreover, previous research has demonstrated spatially-directed liquid transport on textured surfaces featuring surface-tension confined track. Combining both these features, here we demonstrate and analyze capillary-driven, directional liquid transport both on the surface of, and through, a wettability-patterned, horizontal porous substrate. The vertical (through) penetration is governed by Darcy's law. The horizontal (on surface) transport is driven by the Laplace pressure gradient caused by the geometry of the meniscus on the wettability-confined track. The transport rate on the substrate is found to far exceed the liquid permeation rate through it. Consequently, the penetration resistance can be estimated using a quasi-static approach. Using a semi-analytical model, we analyze the effect of the liquid curvature on the penetration rate of a sessile drop placed on the substrate. The model accounts for the back pressure caused by the liquid on the opposing side. The transport model is validated against the experiments, and the geometry, wettability and substrate porosity parameters causing fastest transport are identified.

  17. Motion of an isolated liquid plug inside a capillary tube: effect of contact angle hysteresis (United States)

    Srinivasan, Vyas; Khandekar, Sameer; Bouamrane, Nathan; Lefevre, Frederic; Bonjour, Jocelyn


    Dynamics of a single, small and isolated partially wetting liquid plug (of known length L and wettability), placed at rest inside a long, dry, circular capillary tube ( D = 1.5 mm), and subsequently quasi-statically pushed from one end by applying air pressure, the other end being kept exposed to atmosphere, are reported. The air pressure first overcomes the `static' friction manifested by the three-phase contact line at the advancing and receding menisci, and then, the plug motion gets initiated, eventually leading to a terminal velocity (Ca ~ 2.8 × 10-5), when pressure force balances net frictional resistance due to viscous and surface forces. It is seen that, under steady motion, the curvature profiles of the advancing and receding menisci of liquid plug, respectively, remain the same, independent of the plug length. Steady-state pressure drop is dominated by the contribution due to contact angle hysteresis, which is also independent of the plug length. Increasing the system wettability drastically decreased the contact angle hysteresis and the associated net pressure drop.

  18. Pulmonary surfactant function studied with the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS). (United States)

    Enhorning, G


    Two instruments, the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS), were constructed for a study of pulmonary surfactant's physical properties. The instruments study spherical surfaces as in alveoli (PBS) and cylindrical surfaces as in terminal conducting airways (CS). Phospholipids, pulmonary surfactant's main components, are amphiphilic and, therefore, spontaneously form a film at air-liquid interfaces. When the film in the PBS is compressed to a reduced area during 'expiration', the molecules come closer together. Thereby, a high surface pressure develops, causing surface tension to be reduced more than bubble radius. If these conditions, observed with the PBS are analogous in lungs, alveolar stability would be promoted. The CS was developed for a study of how surfactant has ability to maintain patency of narrow conducting airways. Provided adsorption is extremely fast, a surfactant film will line the terminal conducting airway as soon as liquid blocking the airway has been extruded. During expiration that film will develop high surface pressure (=low surface tension). This will counteract the tendency for liquid to accumulate in the airway's most narrow section. If surfactant is dysfunctioning, liquid is likely to accumulate and block terminal airways. Airway resistance would then increase, causing FEV(1) to be reduced.

  19. Fast capillary electrophoresis-time-of-flight mass spectrometry using capillaries with inner diameters ranging from 75 to 5 μm. (United States)

    Grundmann, Marco; Matysik, Frank-Michael


    Fast electrophoretic separations in fused silica capillaries (CE) coupled to time-of-flight mass spectrometry (TOF-MS) are presented. CE separations of the model analytes (epinephrine, norepinephrine, dopamine, histidine, and isoproterenol) under conditions of high electric field strengths of up to 1.25 kV cm(-1) are completed in 20 s. Coupling of CE with TOF-MS is accomplished using a coaxial sheath liquid electrospray ionization interface. The influence of parameters inherent to the interface and their effects, including suction pressure and dilution, are discussed. In addition to standard capillaries of 75 and 50 μm inner diameter (ID), separations in capillaries with IDs of 25, 15, and 5 μm have been successfully applied to this setup. The analytical performance is compared over this range of capillary dimensions, and both advantages and disadvantages are discussed.

  20. Stress failure of pulmonary capillaries: role in lung and heart disease (United States)

    West, J. B.; Mathieu-Costello, O.


    Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.

  1. Capillary dysfunction in Alzheimer’s disease correlates with cognitive decline

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban

    Aim: We hypothesized that capillary dysfunction exists in Alzheimer’s disease (AD) and this can be determined by a relative increase in capillary transit time heterogeneity (CTH) in cortical gray matter compared to age-matched controls. Methods: We used dynamic susceptibility contrast (DSC...

  2. Optical sensor instrumentation using absorption- and fluorescence-based capillary waveguide optrodes (United States)

    Weigl, Bernhard H.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, H.; Trettnak, Wolfgang; Wolfbeis, Otto S.; Lippitsch, Max E.


    An analytical instrument comprising absorption- and fluorescence-based capillary waveguide optrodes (CWOs) is described. Glass capillaries with a chemically sensitive coating on the inner surface are used for optical chemical sensing in gaseous and liquid samples. In case of absorption-based CWOs, light from a LED is coupled into and out of the capillary under a defined angle via a rigid waveguide and an immersion coupler. The coated glass capillary forms an inhomogeneous waveguide, in which the light is guided in both the glass and the coating. The portion of the light which is absorbed in the chemically sensitive coating is proportional to a chemcial concentration or activity. This principle is demonstrated with a pCO2-sensitive inner coating. Typical relative light intensity signal changes with this type of optical interrogation are 98%, with an active capillary length of 10 mm. For fluorescence- based CWOs, the excitation light from an LED is coupled diffusely into the glass capillary and the optical sensor layer. A major portion of the excited fluorescence light is then collected within the coated capillary, and guided to the photodiode, which is located on the distal end of the capillary waveguide. Hereby, the excitation light is separated very efficiently from the fluorescent light. As an example, a CWO for pO2 is described. By applying this optical geometry, it was possible to utilize fluorescence decay time of the sensor layer as the transducer signal even when using solid state components (LEDs and photodiodes).

  3. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory (United States)

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.


    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  4. Capillary Action in a Crack on the Surface of Asteroids with an Application to 433 Eros

    CERN Document Server

    Jiang, Yu


    Some asteroids contain water ice, and a space mission landing on an asteroid may take liquid to the surface of the asteroid. Gas pressure is very weak on the surface of asteroids. Here we consider the capillary action in a crack on the surface of irregular asteroids. The crack is modelled as a capillary which has a fixed radius. An asteroid s irregular gravitational potential influences the height of the liquid in the capillary. The height of the liquid in the capillary on the surface of such asteroids is derived from the asteroid s irregular gravitational potential. Capillary mechanisms are expected to produce an inhomogeneaous distribution of emergent liquid on the surface. This result is applied to asteroid 433 Eros, which has an irregular, elongated, and concave shape. Two cases are considered 1) we calculate the height of the liquid in the capillary when the direction of the capillary is perpendicular to the local surface of the asteroid; 2) we calculate the height of the liquid in the capillary when the...

  5. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van


    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  6. Capillary electrophoresis as a versatile tool for the bioanalysis of drugs - a review

    NARCIS (Netherlands)

    Boone, CM; Waterval, JCM; Lingeman, H; Ensing, K; Underberg, WJM


    This review article presents an overview of current research on the use of capillary electrophoretic techniques for the analysis of drugs in biological matrices. The principles of capillary electrophoresis and its various separation and detection modes are briefly discussed. Sample pretreatment meth

  7. Reference values for alveolar membrane diffusion capacity and pulmonary capillary blood volume

    NARCIS (Netherlands)

    Zanen, P; van der Lee, [No Value; van der Mark, T; van den Bosch, JMM


    The reference values for diffusion capacity of the alveolar capillary membrane (Tm,CO) and pulmonary capillary volume (Qc) are scarce, while the standard deviations of the equations are large. New equations and residual standard deviations (RSDs) were determined in a sample of healthy subjects. Tm,C

  8. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Ardhapurkar, P. M. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 India and S. S. G. M. College of Engineering Shegaon, MS 444 203 (India); Sridharan, Arunkumar; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 (India)


    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  9. A many-body dissipative particle dynamics study of forced water-oil displacement in capillary. (United States)

    Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao


    The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.

  10. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L


    single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7...

  11. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)


    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  12. Capillary Micro-flow Through a Fiber Bundle(Part 2)

    Institute of Scientific and Technical Information of China (English)

    ZHU Yingdan; WANG Jihui; TAN Hua; GAO Guoqiang


    A numerical model was proposed to simulate the capillary micro-flow through a fiber bundle.The capillary pressure was predicted by the Young-Laplace equation and the corresponding optimal values of permeability were found by a trial-and-error method. The empirical Kozeny constants which are dependent on fiber volume fraction were recommended for the prediction of permeability.

  13. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  14. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy

    NARCIS (Netherlands)

    Lefrandt, JD; Hoeven, JH; Roon, AM; Smit, AJ; Hoogenberg, K


    Aims/hypothesis. A loss of sympathetic function could lead to changes in capillary fluid filtration in diabetic patients. We investigated whether a decreased sympathetically mediated vasomotion in the skin in diabetic patients with peripheral neuropathy is associated with an abnormal capillary leaka

  15. Carbon Fiber-gold/mercury Dual-electrode Detection for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A carbon fiber-gold/mercury dual-electrode for capillary electrophoresis is constructed. Cysteine, glutathione, ascorbic acid and uric acid can be detected simultaneously and selectively at the dual-electrode, respectively. The capillary electrophoresis / dual-electrode detection system has been used to determine these compounds in human blood samples.


    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  17. Assembling Ellipsoidal Particles at Fluid Interfaces Using Switchable Dipolar Capillary Interactions

    NARCIS (Netherlands)

    Davies, G.B.; Krüger, T.; Coveney, P.V.; Harting, J.D.R.


    How to dynamically tune an assembly of anisotropic colloidal particles adsorbed at fluid-fluid interfaces using dipolar capillary interactions is demonstrated. A previously discovered first-order phase transition is exploited and it is shown how to spontaneously turn off these dipolar capillary inte

  18. Instrumental development of novel detection and separation methods for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Garner, T.


    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  19. [Kartagener syndrome and hemangiomatous proliferation of lung capillaries: case report and literature review]. (United States)

    Słodkowska, J; Słupek, A; Burakowski, J; Bestry, I; Filipecki, S; Radomski, P


    The authors present a case of Kartagener syndrome complicated by pulmonary hypertension accompanied by the lung capillaries haemangiomatous proliferation (post mortem diagnosis). Review of a literature (23 published cases) of the haemangiomatous proliferation of lung capillaries emphasizes clinico-pathological aspects and differential diagnosis. A rarity of Kartagener syndrome is another interesting point of a published case.

  20. Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis. (United States)

    Wang, Liming; McCarthy, Thomas J


    Water capillary bridges are prepared that span hydrophilic pinning features on parallel opposing smooth, flat, and hydrophobic surfaces. These bridges are distorted by shearing the parallel plates at a low rate. The capillary bridges lengthen and distort to balance Laplace pressure (equilibrate mean curvature) as the features are separated and eventually rupture at a distance that is a function of the liquid volume, the advancing and receding contact angles of the surfaces, the separation between the parallel surfaces, and in particular, the shape and orientation of the hydrophilic pinning features. Two modes of capillary bridge failure are observed: (1) tensile, in which the capillary bridge breaks to form sessile drops on both the upper and lower surfaces, and (2) sessile, in which sessile capillary bridge rupture occurs on one surface to form a puddle (contact-line-distorted sessile drop) on the feature and a retained capillary bridge spanning the hydrophobic surface and the hydrophilic feature on the opposing surface. The shape and orientation of the features control the mode of capillary bridge failure as well as the distribution of water between the two separate sessile drops or the retained capillary bridge and the puddle.