WorldWideScience

Sample records for capillary number two-phase

  1. Generalized network modeling of capillary-dominated two-phase flow.

    Science.gov (United States)

    Raeini, Ali Q; Bijeljic, Branko; Blunt, Martin J

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network-described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312]-which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  2. Generalized network modeling of capillary-dominated two-phase flow

    Science.gov (United States)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  3. A two-angle model of dynamic wetting in microscale capillaries under low capillary numbers with experiments.

    Science.gov (United States)

    Lei, Da; Lin, Mian; Li, Yun; Jiang, Wenbin

    2018-06-15

    An accurate model of the dynamic contact angle θ d is critical for the calculation of capillary force in applications like enhanced oil recovery, where the capillary number Ca ranges from 10 -10 to 10 -5 and the Bond number Bo is less than 10 -4 . The rate-dependence of the dynamic contact angle under such conditions remains blurred, and is the main target of this study. Featuring with pressure control and interface tracking, the innovative experimental system presented in this work achieves the desired ranges of Ca and Bo, and enables the direct optical measurement of dynamic contact angles in capillaries as tiny as 40 × 20 (width × height) μm and 80 × 20 μm. The advancing and receding processes of wetting and nonwetting liquids were tested. The dynamic contact angle was confirmed velocity-independent with 10 -9  contact line velocity V = 0.135-490 μm/s) and it can be described by a two-angle model with desirable accuracy. A modified two-angle model was developed and an empirical form was obtained from experiments. For different liquids contacting the same surface, the advancing angle θ adv approximately equals the static contact angle θ o . The receding angle θ rec was found to be a linear function of θ adv , in good agreement with our and other experiments from the literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A total pressure-saturation formulation of two-phase flow incorporating dynamic effects in the capillary-pressure-saturation relationship

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H K; Celia, M A; Hassanizadeh, S M; Karlsen, K H

    2002-07-01

    New theories suggest that the relationship between capillary pressure and saturation should be enhanced by a dynamic term that is proportional to the time rate of change of saturation. This so-called dynamic capillary pressure formulation is supported by laboratory experiments, and can be included in various forms of the governing equations for two-phase flow in porous media. An extended model of two-phase flow in porous media may be developed based on fractional flow curves and a total pressure - saturation description that includes the dynamic capillary pressure terms. A dimensionless form of the resulting equation set provides an ideal tool to study the relative importance of the dynamic capillary pressure effect. This equation provides a rich set of mathematical research questions, and numerical solutions to the equation provide insights into the behavior of two-phase immiscible flow. For typical two-phase flow systems, dynamic capillary pressure acts to retard infiltration fronts, with responses dependent on system parameters including boundary conditions. Recent theoretical work suggests that the traditional algebraic relationship between capillary pressure and saturation may be inadequate. Instead, a so-called dynamic capillary pressure formulation is needed, where capillary pressure is defined as a thermodynamic variable, and the difference between phase pressures is only equal to the capillary pressure at equilibrium. Under dynamic conditions, the disequilibrium between phase-pressure differences and the capillary pressure is taken to be proportional to the time rate of change of saturation. A recent study by Hassanizadeh et al. presents experimental evidence, culled from the literature, to support this claim. Numerical simulations using dynamic pore-scale network models and upscaling also support the claim. Hassanizadeh et al. also presented numerical solutions for an enhanced version of Richards' equation that included the dynamic terms. A preliminary

  5. Geometry-induced phase transition in fluids: capillary prewetting.

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  6. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  7. New capillary number definition for displacement of residual nonwetting phase in natural fractures

    NARCIS (Netherlands)

    Alquaimi, B.; Rossen, W.R.

    2017-01-01

    We propose a new capillary number for flow in fractures starting with a force balance on a trapped ganglion in a fracture. The new definition is validated with laboratory experiments using five distinctive model fractures. Capillary desaturation curves were generated experimentally using

  8. Capillary condensation between disks in two dimensions

    DEFF Research Database (Denmark)

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial...... capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characterized by the analysis of the coverage of the condensed phase, its stability, and asymptotic behaviors...

  9. Proper Use of Capillary Number in Chemical Flooding

    Directory of Open Access Journals (Sweden)

    Hu Guo

    2017-01-01

    Full Text Available Capillary number theory is very important for chemical flooding enhanced oil recovery. The difference between microscopic capillary number and the microscopic one is easy to confuse. After decades of development, great progress has been made in capillary number theory and it has important but sometimes incorrect application in EOR. The capillary number theory was based on capillary tube bundles and Darcy’s law hypothesis, and this should always be kept in mind when used in chemical flooding EOR. The flow in low permeability porous media often shows obvious non-Darcy effects, which is beyond Darcy’s law. Experiments data from ASP flooding and SP flooding showed that remaining oil saturation was not always decreasing as capillary number kept on increasing. Relative permeability was proved function of capillary number; its rate dependence was affected by capillary end effects. The mobility control should be given priority rather than lowering IFT. The displacement efficiency was not increased as displacement velocity increased as expected in heavy oil chemical flooding. Largest capillary number does not always make highest recovery in chemical flooding in heterogeneous reservoir. Misuse of CDC in EOR included the ignorance of mobility ratio, Darcy linear flow hypothesis, difference between microscopic capillary number and the microscopic one, and heterogeneity caused flow regime alteration. Displacement of continuous oil or remobilization of discontinuous oil was quite different.

  10. Geometry-induced phase transition in fluids: Capillary prewetting

    OpenAIRE

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-01-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangu...

  11. Effect of capillary forces on immiscible two-phase flow in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    van Duijn, C.J.; Molenaar, J.; de Neef, M.J.

    1994-12-31

    We consider the one-dimensional two-phase flow including capillary effects through a heterogeneous porous medium. The heterogeneity is due to the spatial variation of the absolute permeability and the porosity. Both these quantities are assumed to be piecewise constant. At interfaces where the rock properties are discontinuous, we derive, by a regularization technique, conditions to match the values of the saturation on both sides. There are two conditions: a flux condition and an extended pressure condition. Applying these conditions we show that trapping of the wetting phase may occur near hetergeneities. To illustrate the behavior of the saturation we consider a time-dependent diffusion problem without convection, a stationary convection-diffusion problem, and the full time-dependent convection-diffusion problem (numerically). In particular the last two problems explicitly show the trapping behavior.

  12. Generalized nonequilibrium capillary relations for two-phase flow through heterogeneous media.

    Science.gov (United States)

    Amaziane, Brahim; Milišić, Josipa Pina; Panfilov, Mikhail; Pankratov, Leonid

    2012-01-01

    For two-phase flow in porous media, the natural medium heterogeneity necessarily gives rise to capillary nonequilibrium effects. The relaxation to the equilibrium is a slow process which should be introduced in macroscopic flow models. Many nonequilibrium models are based on a phenomenological approach. At the same time there exists a rigorous mathematical way to develop the nonequilibrium equations. Its formalism, developed by Bourgeat and Panfilov [Computational Geosciences 2, 191 (1998)], is based on the homogenization of the microscale flow equations over medium heterogeneities. In contrast with the mentioned paper, in which the case of a sufficiently fast relaxation was analyzed, we consider the case of long relaxation, which leads to the appearance of long-term memory on the macroscale. Due to coupling between the nonlinearity and nonlocality in time, the macroscopic model remains, however, incompletely homogenized, in the general case. At the same time, frequently only the relationship for the nonequilibrium capillary pressure is of interest for applications. In the present paper, we obtain such an exact relationship in two different independent forms for the case of long-term memory. This relationship is more general than that obtained by Bourgeat and Panfilov. In addition, we prove the comparison theorem which determines the upper and lower bounds for the macroscopic model. These bounds represent linear flow models, which are completely homogenized. The results obtained are illustrated by numerical simulations.

  13. A Comprehensive Review on Measurement and Correlation Development of Capillary Pressure for Two-Phase Modeling of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chao Si

    2015-01-01

    Full Text Available Water transport and the corresponding water management strategy in proton exchange membrane (PEM fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to as pc-s correlation, where pc is the capillary pressure and s is the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udell pc-s correlation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing new pc-s correlations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developed pc-s correlations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.

  14. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid; Hassanizadeh, S. Majid

    2012-01-01

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a

  15. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Science.gov (United States)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  16. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  17. Direct Numerical Simulation of Low Capillary Number Pore Scale Flows

    Science.gov (United States)

    Esmaeilzadeh, S.; Soulaine, C.; Tchelepi, H.

    2017-12-01

    The arrangement of void spaces and the granular structure of a porous medium determines multiple macroscopic properties of the rock such as porosity, capillary pressure, and relative permeability. Therefore, it is important to study the microscopic structure of the reservoir pores and understand the dynamics of fluid displacements through them. One approach for doing this, is direct numerical simulation of pore-scale flow that requires a robust numerical tool for prediction of fluid dynamics and a detailed understanding of the physical processes occurring at the pore-scale. In pore scale flows with a low capillary number, Eulerian multiphase methods are well-known to produce additional vorticity close to the interface. This is mainly due to discretization errors which lead to an imbalance of capillary pressure and surface tension forces that causes unphysical spurious currents. At the pore scale, these spurious currents can become significantly stronger than the average velocity in the phases, and lead to unphysical displacement of the interface. In this work, we first investigate the capability of the algebraic Volume of Fluid (VOF) method in OpenFOAM for low capillary number pore scale flow simulations. Afterward, we compare VOF results with a Coupled Level-Set Volume of Fluid (CLSVOF) method and Iso-Advector method. It has been shown that the former one reduces the VOF's unphysical spurious currents in some cases, and both are known to capture interfaces sharper than VOF. As the conclusion, we will investigate that whether the use of CLSVOF or Iso-Advector will lead to less spurious velocities and more accurate results for capillary driven pore-scale multiphase flows or not. Keywords: Pore-scale multiphase flow, Capillary driven flows, Spurious currents, OpenFOAM

  18. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  19. Heat pipes and two-phase loops with capillary pumping; Caloducs et boucles diphasiques a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on heat pipes and two-phase capillary pumping loops was organized by the French society of thermal engineers. The 11 papers presented during this workshop deal with the study of thermal performances of heat pipes and on their applications in power electronics (cooling of components), and their use in satellites, aircrafts and trains. (J.S.)

  20. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  2. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-01-01

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  3. Uniqueness of specific interfacial area-capillary pressure-saturation relationship under non-equilibrium conditions in two-phase porous media flow

    NARCIS (Netherlands)

    Joekar-Niasar, V.; Hassanizadeh, S.M.

    2012-01-01

    The capillary pressure–saturation (P c–S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model

  4. Molecular simulation of capillary phase transitions in flexible porous materials

    Science.gov (United States)

    Shen, Vincent K.; Siderius, Daniel W.; Mahynski, Nathan A.

    2018-03-01

    We used flat-histogram sampling Monte Carlo to study capillary phase transitions in deformable adsorbent materials. Specifically, we considered a pure adsorbate fluid below its bulk critical temperature within a slit pore of variable pore width. The instantaneous pore width is dictated by a number of factors, such as adsorbate loading, reservoir pressure, fluid-wall interaction, and bare adsorbent properties. In the slit pores studied here, the bare adsorbent free energy was assumed to be biparabolic, consisting of two preferential pore configurations, namely, the narrow pore and the large pore configurations. Four distinct phases could be found in the adsorption isotherms. We found a low-pressure phase transition, driven primarily by capillary condensation/evaporation and accompanied by adsorbent deformation in response. The deformation can be a relatively small contraction/expansion as seen in elastic materials, or a large-scale structural transformation of the adsorbent. We also found a high-pressure transition driven by excluded volume effects, which tends to expand the material and thus results in a large-scale structural transformation of the adsorbent. The adsorption isotherms and osmotic free energies can be rationalized by considering the relative free energy differences between the basins of the bare adsorbent free energy.

  5. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    Science.gov (United States)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  6. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection

    Science.gov (United States)

    Dickerson, Jane A.; Ramsay, Lauren M.; Dada, Oluwatosin O.; Cermak, Nathan

    2011-01-01

    Capillary isoelectric focusing and capillary zone electrophoresis are coupled with laser-induced fluorescence detection to create an ultrasensitive two-dimensional separation method for proteins. In this method, two capillaries are joined through a buffer filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second dimension separation. A fraction was transferred to the second dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125. PMID:20603830

  7. Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography.

    Science.gov (United States)

    Bao, Tao; Zhang, Juan; Zhang, Wenpeng; Chen, Zilin

    2015-02-13

    Much attention is being paid to applying metal-organic frameworks (MOFs) as stationary phases in chromatography because of their fascinating properties, such as large surface-to-volume ratios, high levels of porosity, and selective adsorption. HKUST-1 is one of the best-studied face-centered-cubic MOF containing nano-sized channels and side pockets for film growth. However, growth of HKUST-1 framework inside capillary column as stationary phase for capillary electrochromatography is a challenge work. In this work, we carry out the growth of HKUST-1 on the inner wall of capillary by using liquid-phase epitaxy process at room temperature. The fabricated HKUST-1@capillary can be successfully used for the separation of substituted benzene including methylbenzene, ethylbenzene, styrene, chlorobenzene, bromobenzene, o-dichlorobenzene, benzene series, phenolic acids, and benzoic acids derivates. High column efficiency of 1.5×10(5) N/m for methylbenzene was achieved. The formation of HKUST-1 grown in the capillary was confirmed and characterized by scanning electron microscopy images, Fourier transform infrared spectra and X-ray diffraction. The column showed long lifetime and excellent stability. The relative standard deviations for intra-day and inter-day repeatability of the HKUST-1@capillary were lower than 7%. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions

    Science.gov (United States)

    Thomas, Evan A.; Graf, John C.; Weislogel, Mark M.

    2010-01-01

    The invention, a static phase separator (SPS), uses airflow and capillary wetting characteristics to passively separate a two-phase (liquid and air) flow. The device accommodates highly variable liquid wetting characteristics. The resultant design allows for a range of wetting properties from about 0 to over 90 advancing contact angle, with frequent complete separation of liquid from gas observed when using appropriately scaled test conditions. Additionally, the design accommodates a range of air-to-liquid flow-rate ratios from only liquid flow to over 200:1 air-to-liquid flow rate. The SPS uses a helix input section with an ice-cream-cone-shaped constant area cross section (see figure). The wedge portion of the cross section is on the outer edge of the helix, and collects the liquid via centripetal acceleration. The helix then passes into an increasing cross-sectional area vane region. The liquid in the helix wedge is directed into the top of capillary wedges in the liquid containment section. The transition from diffuser to containment section includes a 90 change in capillary pumping direction, while maintaining inertial direction. This serves to impinge the liquid into the two off-center symmetrical vanes by the airflow. Rather than the airflow serving to shear liquid away from the capillary vanes, the design allows for further penetration of the liquid into the vanes by the air shear. This is also assisted by locating the air exit ports downstream of the liquid drain port. Additionally, any droplets not contained in the capillary vanes are re-entrained downstream by a third opposing capillary vane, which directs liquid back toward the liquid drain port. Finally, the dual air exit ports serve to slow the airflow down, and to reduce the likelihood of shear. The ports are stove-piped into the cavity to form an unfriendly capillary surface for a wetting fluid to carryover. The liquid drain port is located at the start of the containment region, allowing for

  9. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    Science.gov (United States)

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  10. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    Science.gov (United States)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled

  11. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    Science.gov (United States)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  12. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  13. Capillary condensation between disks in two dimensions

    OpenAIRE

    Gil, Tamir; Ipsen, John Hjorth

    1997-01-01

    Capillary condensation between two two-dimensional wetted circular substrates (disks) is studied by an effective free energy description of the wetting interface. The interfacial free-energy potential is developed on the basis of the theory for the wetting of a single disk, where interfacial capillary fluctuations play a dominant role. A simple approximative analytical expression of the interfacial free energy is developed and is validated numerically. The capillary condensation is characteri...

  14. Uniqueness of Specific Interfacial Area–Capillary Pressure–Saturation Relationship Under Non-Equilibrium Conditions in Two-Phase Porous Media Flow

    KAUST Repository

    Joekar-Niasar, Vahid

    2012-02-23

    The capillary pressure-saturation (P c-S w) relationship is one of the central constitutive relationships used in two-phase flow simulations. There are two major concerns regarding this relation. These concerns are partially studied in a hypothetical porous medium using a dynamic pore-network model called DYPOSIT, which has been employed and extended for this study: (a) P c-S w relationship is measured empirically under equilibrium conditions. It is then used in Darcy-based simulations for all dynamic conditions. This is only valid if there is a guarantee that this relationship is unique for a given flow process (drainage or imbibition) independent of dynamic conditions; (b) It is also known that P c-S w relationship is flow process dependent. Depending on drainage and imbibition, different curves can be achieved, which are referred to as "hysteresis". A thermodynamically derived theory (Hassanizadeh and Gray, Water Resour Res 29: 3389-3904, 1993a) suggests that, by introducing a new state variable, called the specific interfacial area (a nw, defined as the ratio of fluid-fluid interfacial area to the total volume of the domain), it is possible to define a unique relation between capillary pressure, saturation, and interfacial area. This study investigates these two aspects of capillary pressure-saturation relationship using a dynamic pore-network model. The simulation results imply that P c-S w relation not only depends on flow process (drainage and imbibition) but also on dynamic conditions for a given flow process. Moreover, this study attempts to obtain the first preliminary insights into the global functionality of capillary pressure-saturation-interfacial area relationship under equilibrium and non-equilibrium conditions and the uniqueness of P c-S w-a nw relationship. © 2012 The Author(s).

  15. High Performance Wafer-Based Capillary Electrochromatography, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  16. An immobilized graphene oxide stationary phase for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Wang, Chun; de Rooy, Sergio; Lu, Cheng-Fei; Fernand, Vivian; Moore, Leonard; Berton, Paula; Warner, Isiah M

    2013-04-01

    The research literature currently abounds with studies of graphene-related materials as a result of the extraordinary properties of such materials. On the basis of these citations, it is clear that the range of applications for such materials is substantial. In this manuscript, we report the immobilization of graphene oxide (GO) onto a fused-silica capillary to form a potential stationary phase for use in open-tubular CEC. We successfully incorporated GO through an in situ condensation reaction with (3-aminopropyl)triethoxysilane after silanization with (3-aminopropyl)triethoxysilane on the inner surface of the capillary. This GO-incorporated capillary was then characterized by use of SEM, infrared spectroscopy, and measurements of EOF. The electrochromatographic features of this stationary phase have also been investigated. Evaluation of acquired data indicates high electrochromatographic resolution and good capillary efficiency. Highly reproducible results between runs, days, and capillaries were also obtained. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Determination of phenprocoumon in plasma and urine using at-line solid-phase extraction-capillary electrophoresis.

    NARCIS (Netherlands)

    Veraart, J.R.; Gooijer, C.; Lingeman, H.; Velthorst, N.H.; Brinkman, U.A.T.

    1998-01-01

    The use of capillary electrophoresis (CE) for the analysis of biological samples is rather problematic because of the large number of interferences present in the matrix. One of the possibilities to solve such problems is to couple solid-phase extraction (SPE) at-line with CE, a technique developed

  18. Experimental sizing and assessment of two-phase pressure drop correlations for a capillary tube with transcritical and subcritical carbon dioxide flow

    International Nuclear Information System (INIS)

    Trinchieri, R; Boccardi, G; Calabrese, N; Zummo, G; Celata, G P

    2014-01-01

    In the last years, CO 2 was proposed as an alternative refrigerant for different refrigeration applications (automotive air conditioning, heat pumps, refrigerant plants, etc.) In the case of low power refrigeration applications, as a household refrigerator, the use of too expensive components is not economically sustainable; therefore, even if the use of CO 2 as the refrigerant is desired, it is preferable to use conventional components as much as possible. For these reasons, the capillary tube is frequently proposed as expansion system. Then, it is necessary to characterize the capillary in terms of knowledge of the evolving mass flow rate and the associate pressure drop under all possible operative conditions. For this aim, an experimental campaign has been carried out on the ENEA test loop 'CADORE' to measure the performance of three capillary tubes having same inner diameter (0.55 mm) but different lengths (4, 6 and 8 meters). The test range of inlet pressure is between about 60 and 110 bar, whereas external temperatures are between about 20 to 42 °C. The two-phase pressure drop through the capillary tube is detected and experimental values are compared with the predictions obtained with the more widely used correlations available in the literature. Correlations have been tested over a wide range of variation of inlet flow conditions, as a function of different inlet parameters.

  19. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  20. X-ray Talbot interferometry with capillary plates

    International Nuclear Information System (INIS)

    Momose, Atsushi; Kawamoto, Shinya

    2006-01-01

    An X-ray Talbot interferometer consisting of two capillary plates, which were used as X-ray amplitude gratings, was evaluated for X-ray phase imaging. A theoretical aspect of capillary X-ray Talbot interferometry is presented with a preliminary operation result using synchrotron radiation. A two-dimensional X-ray Talbot effect, or self-imaging effect, which was the basis of Talbot interferometry, was observed with the capillary plate, and moire images formed by the X-ray Talbot interferometer exhibited contrasts corresponding to the differential phase shift caused by phase objects placed in front of the interferometer. Finally, the possibility of quantitative phase measurement with a fringe scanning technique is discussed. (author)

  1. Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media

    KAUST Repository

    El-Amin, Mohamed

    2015-04-01

    In this paper, a mathematical model and numerical simulation are developed to describe the imbibition of nanoparticles-water suspension into two-phase flow in a porous medium. The flow system may be changed from oil-wet to water-wet due to nanoparticles (which are also water-wet) deposition on surface of the pores. So, the model is extended to include the negative capillary pressure and mixed-wet relative permeability correlations to fit with the mixed-wet system. Moreover, buoyancy and capillary forces as well as Brownian diffusion and mechanical dispersion are considered in the mathematical model. An example of countercurrent imbibition in a core of small scale is considered. A dimensional analysis of the governing equations is introduced to examine contributions of each term of the model. Several important dimensionless numbers appear in the dimensionless equations, such as Darcy number Da, capillary number Ca, and Bond number Bo. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles using numerical experiments.

  2. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.

    Science.gov (United States)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A

    2017-10-01

    We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.

  3. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Stephan [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Santos Rolo, Tomy dos; Baumbach, Tilo [Karlsruhe Institute of Technology (KIT), Institute for Photon Science and Synchrotron Radiation (IPS), Eggenstein-Leopoldshafen (Germany); Hampel, Uwe [Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Fluid Dynamics, P.O. Box 510119, Dresden (Germany); Technische Universitaet Dresden (TUD), AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Dresden (Germany)

    2014-07-15

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  4. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    Science.gov (United States)

    Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe

    2014-07-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.

  5. Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow

    International Nuclear Information System (INIS)

    Boden, Stephan; Santos Rolo, Tomy dos; Baumbach, Tilo; Hampel, Uwe

    2014-01-01

    We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-μm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations. (orig.)

  6. Two-dimensional capillary origami

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu

    2016-01-08

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  7. Two-dimensional capillary origami

    International Nuclear Information System (INIS)

    Brubaker, N.D.; Lega, J.

    2016-01-01

    We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.

  8. Assembly for connecting the column ends of two capillary columns

    International Nuclear Information System (INIS)

    Kolb, B.; Auer, M.; Pospisil, P.

    1984-01-01

    In gas chromatography, the column ends of two capillary columns are inserted into a straight capillary from both sides forming annular gaps. The capillary is located in a tee out of which the capillary columns are sealingly guided, and to which carrier gas is supplied by means of a flushing flow conduit. A ''straight-forward operation'' having capillary columns connected in series and a ''flush-back operation'' are possible. The dead volume between the capillary columns can be kept small

  9. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  10. Density functional study of condensation in capped capillaries.

    Science.gov (United States)

    Yatsyshin, P; Savva, N; Kalliadasis, S

    2015-07-15

    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤Tcw) or continuous (at T>Tcw), where Tcw is the capillary wetting temperature. At T>Tcw, the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  11. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  12. The increased number of osteoblasts and capillaries in orthodontic tooth movement post-administration of Robusta coffee extract

    Directory of Open Access Journals (Sweden)

    H. Herniyati

    2017-06-01

    Full Text Available Background: The application of orthodontic forces subjects blood capillaries to considerable pressure, resulting in hypoxia on the pressure side. Vascular endothelial growth factor (VEGF, expressed in osteoblasts represents an important mitogen that induces angiogenesis. Osteoblasts and blood capillaries play an important role in bone formation. Robusta coffee contains chlorogenic acid and caffeic acid both of which produce antioxidant effects capable of reducing oxidative stress in osteoblasts. Purpose: The aim of this study was to analyze the effects of Robusta coffee extract on the number of osteoblasts and blood capillaries in orthodontic tooth movement. Methods: This research constituted a laboratory-based experimental study involving the use of sixteen male rodents divided into two groups, namely; control group (C consisting of eight mice given orthodontic mechanical force (OMF and a treatment group (T containing eight mice administered OMF and dried Robusta coffee extract at a dose of 20mg/ 100 g BW. The OMF was performed by installing a ligature wire on the maxillary right first molar and both maxillary incisors. In the following stage, the maxillary right first molar was moved to the mesial using Tension Gauze with a Nickel Titanium Orthodontic closed coil spring. Observation was subsequently undertaken on the 15th day by extracting the maxillary right first and second molar with their periodontal tissues. Thereafter, histological examination was performed using hematoxylin-eosin (HE staining technique to measure the number of osteoblasts and blood capillaries on the mesial and distal periodontal ligaments of the maxillary right first molar. Results: The administration of Robusta coffee extract increases the number of blood capillaries and osteoblasts on both the pressure and tension sides were found to be significantly higher in the T group compared to the C group (p<0,05. Conclusion: Robusta coffee extract increase the number of

  13. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  14. Capillary contact angle in a completely wet groove.

    Science.gov (United States)

    Parry, A O; Malijevský, A; Rascón, C

    2014-10-03

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θ(cap)(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θ(cap) > 0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θ(cap)(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  15. APPLICABILITY ANALYSIS OF THE PHASE CORRELATION ALGORITHM FOR STABILIZATION OF VIDEO FRAMES SEQUENCES FOR CAPILLARY BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    K. A. Karimov

    2016-05-01

    Full Text Available Videocapillaroscopy is a convenient and non-invasive method of blood flow parameters recovery in the capillaries. Capillaries position can vary at recorded video sequences due to the registration features of capillary blood flow. Stabilization algorithm of video capillary blood flow based on phase correlation is proposed and researched. This algorithm is compared to the known algorithms of video frames stabilization with full-frame superposition and with key points. Programs, based on discussed algorithms, are compared under processing the experimentally recorded video sequences of human capillaries and under processing of computer-simulated sequences of video frames with the specified offset. The full-frame superposition algorithm provides high quality of stabilization; however, the program based on this algorithm requires significant computational resources. Software implementation of the algorithm based on the detection of the key points is characterized by good performance, but provides low quality of stabilization for video sequences capillary blood flow. Algorithm based on phase correlation method provides high quality of stabilization and program realization of this algorithm requires minimal computational resources. It is shown that the phase correlation algorithm is the most useful for stabilization of video sequences for capillaries blood flow. Obtained findings can be used in the software for biomedical diagnostics.

  16. Effect of anti-vertigo granule on the opening number and blood flow of mouse ear capillary network

    Science.gov (United States)

    Li, Chongxian; Liu, Xiaobin; Li, Jun; Hao, Shaojun; Wang, Xidong; Li, Wenjun; Zhang, Zhengchen

    2018-04-01

    To observe the effects of anti-glare particles on the open number and blood flow in the auricle of mice with microcirculation disturbance model. Sixty mice, half male and half female, were randomly divided into 6 groups. The mice were given Kangxuan granule suspension, serum brain granule suspension and normal saline of the same volume, respectively, once a day. The mice were anesthetized by intraperitoneal injection of chloral hydrate at 1 hour after the last administration. The mouse was fixed on the observation platform and the auricle was placed on the transmission stage. BZ-2000 microcirculation microscope and microcirculation analysis system were used to observe the changes of blood velocity and capillary opening volume in auricle of mice before administration. The changes of blood velocity and capillaries opening volume of mouse auricle were observed 2 min after epinephrine injection into tail vein of mice. Bear fruit: Compared with those before epinephrine, the opening number of capillary reticulum of auricle in large dose Kangxuan granule group was significantly decreased (Pgroup and middle group. In the small dose Kangxuan granule group, the opening number of capillary network of auricle decreased significantly (Pgroup, the large dose Kangxuan granule group could significantly increase the opening number of the auricle capillary network in mice (Pgroup could significantly increase the opening number of auricle capillary reticulum in mice (Pgroup by Ridit test. Both Kangxuan granule group and Yangxuannao granule group could significantly improve the auricle hair of mice with microcirculation disorder. The blood flow in fine blood vessels (Pblood flow in mice with microcirculation disorder.

  17. Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube

    International Nuclear Information System (INIS)

    Fukagata, Koji; Kasagi, Nobuhide; Ua-arayaporn, Poychat; Himeno, Takehiro

    2007-01-01

    Numerical simulation of an air and water two-phase flow in a 20 μm ID tube is carried out. A focus is laid upon the flow and heat transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gradient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34-13 and 16-490, respectively, and the capillary number is 0.0087-0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The computed wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number beneath the bubble is found notably higher than that of single-phase flow

  18. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W [European Space Agency / ESTEC. Thermal control and life support division (France)

    1997-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  19. Heat pipes et two-phase loops for spacecraft applications. ESA programmes

    Energy Technology Data Exchange (ETDEWEB)

    Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)

    1996-12-31

    This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)

  20. Convergence of Discontinuous Galerkin Methods for Incompressible Two-Phase Flow in Heterogeneous Media

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2013-01-01

    A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.

  1. Numerical and dimensional investigation of two-phase countercurrent imbibition in porous media

    KAUST Repository

    El-Amin, Mohamed

    2013-04-01

    In this paper, we introduce a numerical solution of the problem of two-phase immiscible flow in porous media. In the first part of this work, we present the general conservation laws for multiphase flows in porous media as outlined in the literature for the sake of completion where we emphasize the difficulties associated with these equations in their primitive form and the fact that they are, generally, unclosed. The second part concerns the 1D computation for dimensional and non-dimensional cases and a theoretical analysis of the problem under consideration. A time-scale based on the characteristic velocity is used to transform the macroscopic governing equations into a non-dimensional form. The resulting dimensionless governing equations involved some important dimensionless physical parameters such as Bond number Bo, capillary number Ca and Darcy number Da. Numerical experiments on the Bond number effect is performed for two cases, gravity opposing and assisting. The theoretical analysis illustrates that common formulations of the time-scale forces the coefficient Da12Ca to be equal to one, while formulation of dimensionless time based on a characteristic velocity allows the capillary and Darcy numbers to appear in the dimensionless governing equation which leads to a wide range of scales and physical properties of fluids and rocks. The results indicate that the buoyancy effects due to gravity force take place depending on the location of the open boundary. © 2012 Elsevier B.V. All rights reserved.

  2. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  3. Experimental and numerical studies of choked flow through adiabatic and diabatic capillary tubes

    International Nuclear Information System (INIS)

    Deodhar, Subodh D.; Kothadia, Hardik B.; Iyer, K.N.; Prabhu, S.V.

    2015-01-01

    Capillary tubes are extensively used in several cooling applications like refrigeration, electronic cooling etc. Local pressure variation in adiabatic straight capillary tube (mini channel) is studied experimentally and numerically with R134a as the working fluid. Experiments are performed on two straight capillary tubes. It is found that the diameter is the most sensitive design parameter of the capillary tube. Experiments are performed on five helically coiled capillary tubes to quantify the effect of pitch and curvature of helically coiled capillary tube on the pressure drop. Non dimensionalized factor to account coiling of capillary tube is derived to calculate mass flow rate in helically coiled capillary tubes. Flow visualization in adiabatic capillary tube confirms the bubbly nature of two phase flow. Numerical and experimental investigations in diabatic capillary tube suggest that the use of positive displacement pump and choking at the exit of the channel ensures flow stability. - Highlights: • Model is developed to design capillary tube in adiabatic and diabatic condition. • Effect of coil curvature on pressure drop is studied experimentally. • Correlation is developed to predict mass flow rate in helical capillary tubes. • Flow visualization is carried out to check the type of two phase flow. • Effect of choked flow on diabatic capillary tubes is studied experimentally.

  4. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qifeng, E-mail: fuqifeng1990@163.com [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Zhang, Kailian; Gao, Die; Wang, Lujun [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Yang, Fengqing; Liu, Yao [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xia, Zhining, E-mail: tcm_anal_cqu@163.com [Innovative Drug Research Centre and School of Pharmaceutical Sciences, Chongqing University, Chongqing 400030 (China); School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)

    2017-05-29

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  5. Escherichia coli adhesive coating as a chiral stationary phase for open tubular capillary electrochromatography enantioseparation

    International Nuclear Information System (INIS)

    Fu, Qifeng; Zhang, Kailian; Gao, Die; Wang, Lujun; Yang, Fengqing; Liu, Yao; Xia, Zhining

    2017-01-01

    Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to

  6. Inverse analyses of effective diffusion parameters relevant for a two-phase moisture model of cementitious materials

    DEFF Research Database (Denmark)

    Addassi, Mouadh; Johannesson, Björn; Wadsö, Lars

    2018-01-01

    Here we present an inverse analyses approach to determining the two-phase moisture transport properties relevant to concrete durability modeling. The purposed moisture transport model was based on a continuum approach with two truly separate equations for the liquid and gas phase being connected...... test, and, (iv) capillary suction test. Mass change over time, as obtained from the drying test, the two different cup test intervals and the capillary suction test, was used to obtain the effective diffusion parameters using the proposed inverse analyses approach. The moisture properties obtained...

  7. The Phase Envelope of Multicomponent Mixtures in the Presence of a Capillary Pressure Difference

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando; Yan, Wei; Michelsen, Michael Locht

    2016-01-01

    for test mixtures with wide ranges of compositions at different capillary radii and vapor fractions. The calculation results show that the phase envelope changes everywhere except at the critical point. The bubble point and the lower branch of the dew point show a decrease in the saturation pressure......, whereas the upper branch of the dew point shows an increase. The cricondentherm is shifted to a higher temperature. We also presented a mathematical analysis of the phase envelope shift due to capillary pressure based on linear approximations. The resulting linear approximation equations can predict...... the magnitude of shift, and the approximation is close for the change in the bubble point pressure....

  8. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    Science.gov (United States)

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    International Nuclear Information System (INIS)

    Brokate, M.; Botkin, N.D.; Pykhteev, O.A.

    2012-01-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcy's law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases.

  10. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography

    International Nuclear Information System (INIS)

    Lu, Cuiming; Liu, Shuqin; Xu, Jianqiao; Ding, Yajuan; Ouyang, Gangfeng

    2016-01-01

    Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m"−"1. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC. - Highlights: • A microporous organic polymer was explored as a novel stationary phase for capillary GC. • The column showed high separation performance for VOCs including the challenging ethylbenzene and xylene isomers. • Thermodynamic and kinetic parameters for BTEXs were determined to study the analyte-stationary phase interaction.

  11. New Liquid Phases for the Gas Chromatographic Separation of Strong Bases on Capillary Columns

    OpenAIRE

    Grob, K.

    2017-01-01

    The current practice of pretreating the solid support with free alkali to increase separation efficiency for basic compounds proved to be unsuitable for capillary columns. Instead of this, homogenous organic materials of high base strength are required. We found polyethylene imine (PEI) and polypropylene imine (PPI) to be very efficient as liquid phases of capillary columns for the separation of bases. The preparation of polymers is mentioned. Silanization or acetylation of the free hydroxyl ...

  12. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  13. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    Science.gov (United States)

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  14. Profile of capillary bridges between two vertically stacked cylindrical fibers under gravitational effect

    Science.gov (United States)

    Sun, Xiaohang; Lee, Hoon Joo; Michielsen, Stephen; Wilusz, Eugene

    2018-05-01

    Although profiles of axisymmetric capillary bridges between two cylindrical fibers have been extensively studied, little research has been reported on capillary bridges under external forces such as the gravitational force. This is because external forces add significant complications to the Laplace-Young equation, making it difficult to predict drop profiles based on analytical approaches. In this paper, simulations of capillary bridges between two vertically stacked cylindrical fibers with gravitational effect taken into consideration are studied. The asymmetrical structure of capillary bridges that are hard to predict based on analytical approaches was studied via a numerical approach based on Surface Evolver (SE). The axial and the circumferential spreading of liquids on two identical fibers in the presence of gravitational effects are predicted to determine when the gravitational effects are significant or can be neglected. The effect of liquid volume, equilibrium contact angle, the distance between two fibers and fiber radii. The simulation results were verified by comparing them with experimental measurements. Based on SE simulations, curves representing the spreading of capillary bridges along the two cylindrical fibers were obtained. The gravitational effect was scaled based on the difference of the spreading on upper and lower fibers.

  15. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cuiming; Liu, Shuqin; Xu, Jianqiao; Ding, Yajuan; Ouyang, Gangfeng, E-mail: cesoygf@mail.sysu.edu.cn

    2016-01-01

    Microporous organic polymers (MOPs) have emerged as a new class of functional porous materials with unique characteristics and potential uses in diverse areas. However, the field of MOPs for gas chromatographic (GC) separations has not been well explored. Herein, a MOP namely KAPs-1 was dynamic coated onto a capillary column for the first time. The fabricated column exhibited a nonpolar nature and the column efficiency for n-dodecane was up to 7769 plates m{sup −1}. The KAPs-1 coated column showed high GC separation performance for a series of volatile organic compounds (VOCs) including the challenging ethylbenzene and xylene isomers, which could not be resolved at baseline on the commercial 5% phenyl polysiloxane stationary phase. Moreover, the relative standard deviations for five replicate determinations of the studied analytes were 0.0–0.6%, 0.9–3.2%, 1.1–5.9%, 0.8–3.7% for retention time, peak area, peak height and peak width, respectively. To investigate the interaction between some analytes and the stationary phase, thermodynamic and kinetic parameters were also evaluated. The results of this study show it is very promising to utilize MOPs as stationary phases for capillary GC. - Highlights: • A microporous organic polymer was explored as a novel stationary phase for capillary GC. • The column showed high separation performance for VOCs including the challenging ethylbenzene and xylene isomers. • Thermodynamic and kinetic parameters for BTEXs were determined to study the analyte-stationary phase interaction.

  16. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.

    2012-05-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.

  17. An experimental and numerical investigation of crossflow effects in two-phase displacements

    DEFF Research Database (Denmark)

    Cinar, Y.; Jessen, Kristian; Berenblyum, Roman

    2006-01-01

    In this paper, we present flow visualization experiments and numerical simulations that demonstrate the combined effects of viscous and capillary forces and gravity segregation on crossflow that occurs in two-phase displacements in layered porous media. We report results of a series of immiscible...... flooding experiments in 2D, two-layered glass bead models. Favorable mobility-ratio imbibition and unfavorable mobility-ratio drainage experiments were performed. We used pre-equilibrated immiscible phases from a ternary isooctane/isopropanol/water system, which allowed control of the interfacial tension....... The experiments also illustrate the complex interplay of capillary, gravity, and viscous forces that controls crossflow. The experimental results confirm that the transition ranges of scaling groups suggested by Zhou et al. (1994) are appropriate/valid. We report also results of simulations of the displacement...

  18. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Neus Jornet-Martínez

    2015-08-01

    Full Text Available In the present work, the performance of carbon nanotubes (c-CNTs functionalized polydimethylsiloxane (PDMS based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME coupled to Capillary LC (CapLC has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs and carboxylic-multi walled carbon nanotubes (c-MWNTs have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS extractive phase has also been evaluated. The extraction capability of the capillary columns has been tested for different organic pollutants, nitrogen heterocyclic compounds and polycyclic aromatic compounds (PAHs. The results indicated that the use of the c-CNTs-PDMS capillary columns improve pyriproxyfen and mainly PAH extraction. Triazines were better extracted by unmodified TRB-35 and modified c-CNTs-PDMSTRB-5. The results showed that the extraction capability of the c-CNT capillary columns depends not only on the polarity of the analytes (as it occurs with PDMS columns but also on the interactions that the analytes can establish with the immobilized c-CNTs on the PDMS columns. The extraction efficiency has been evaluated on the basis of the preconcentration rate that can be achieved, and, in this sense, the best c-CNTs-PDMS capillary column for each group of compounds can be proposed.

  19. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  20. Hierarchical capillary adhesion of microcantilevers or hairs

    International Nuclear Information System (INIS)

    Liu Jianlin; Feng Xiqiao; Xia Re; Zhao Hongping

    2007-01-01

    As a result of capillary forces, animal hairs, carbon nanotubes or nanowires of a periodically or randomly distributed array often assemble into hierarchical structures. In this paper, the energy method is adopted to analyse the capillary adhesion of microsized hairs, which are modelled as clamped microcantilevers wetted by liquids. The critical conditions for capillary adhesion of two hairs, three hairs or two bundles of hairs are derived in terms of Young's contact angle, elastic modulus and geometric sizes of the beams. Then, the hierarchical capillary adhesion of hairs is addressed. It is found that for multiple hairs or microcantilevers, the system tends to take a hierarchical structure as a result of the minimization of the total potential energy of the system. The level number of structural hierarchy increases with the increase in the number of hairs if they are sufficiently long. Additionally, we performed experiments to verify our theoretical solutions for the adhesion of microbeams

  1. On Numerical Methods for Including the Effect of Capillary Pressure Forces on Two-phase, Immiscible Flow in a Layered Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Ersland, B.G.

    1996-05-01

    This mathematical doctoral thesis contains the theory, algorithms and numerical simulations for a heterogeneous oil reservoir. It presents the equations, which apply to immiscible and incompressible two-phase fluid flow in the reservoir, including the effect of capillary pressure forces, and emphasises in particular the interior boundary conditions at the interface between two sediments. Two different approaches are discussed. The first approach is to decompose the computational domain along the interior boundary and iterate between the subdomains until mass balance is achieved. The second approach accounts for the interior boundary conditions in the basis in which the solution is expanded, the basis being discontinuous over the interior boundaries. An overview of the construction of iterative solvers for partial differential equations by means of Schwartz methods is given, and the algorithm for local refinement with Schwartz iterations as iterative solver is described. The theory is then applied to a core plug problem in one and two space dimensions and the results of different methods compared. A general description is given of the computer simulation model, which is implemented in C++. 64 refs., 49 figs., 7 tabs.

  2. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  3. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    International Nuclear Information System (INIS)

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field

  4. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1997-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  5. Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire

    Energy Technology Data Exchange (ETDEWEB)

    Butto, C. [Universite Paul Sabatier, LESETH, 31 - Toulouse (France)

    1996-12-31

    Two-phase fluid loops with capillary pumping are particularly interesting silent devices which allow energy savings and do not create any noise pollution (no mechanical vibrations). In terrestrial environment, the gravity field, when judiciously used, allows to improve their performances and thus, their use in thermal regulation of big computers, power electronic components, transformers, etc, is particularly interesting. In this study, the main results concerning the functioning of such a loop in the gravity field are presented and used to highlight the conditions that allow to take advantage of this field and the improvements obtained. (J.S.) 5 refs.

  6. Effects of intermediate wettability on entry capillary pressure in angular pores.

    Science.gov (United States)

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Loss of Propiconazole and Its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Rebecca D. Miller

    2011-08-01

    Full Text Available Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t1/2 was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC, the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  8. Polycythemia, capillary rarefaction, and focal glomerulosclerosis in two adolescents born extremely low birth weight and premature.

    Science.gov (United States)

    Asada, Nariaki; Tsukahara, Takanori; Furuhata, Megumi; Matsuoka, Daisuke; Noda, Shunsuke; Naganuma, Kuniaki; Hashiguchi, Akinori; Awazu, Midori

    2017-07-01

    Low birthweight infants have a reduced number of nephrons and are at high risk of chronic kidney disease. Preterm birth and/or intrauterine growth restriction (IUGR) may also affect peritubular capillary development, as has been shown in other organs. We report two patients with a history of preterm birth and extremely low birthweight who showed polycythemia and renal capillary rarefaction. Patient 1 and 2, born at 25 weeks of gestation with a birthweight of 728 and 466 g, showed mild proteinuria at age 8 and 6 years, respectively. In addition to increasing proteinuria, hemoglobin levels became elevated towards adolescence and their serum erythropoietin (EPO) was high despite polycythemia. Light microscopic examination of renal biopsy specimens showed glomerular hypertrophy, focal segmental glomerulosclerosis, and only mild tubulointerstitial fibrosis. A decrease in the immunohistochemical staining of CD31 and CD34 endothelial cells in renal biopsy specimens was consistent with peritubular capillary rarefaction. Since kidney function was almost normal and fibrosis was not severe, we consider that the capillary rarefaction and polycythemia associated with elevated EPO levels were largely attributable to preterm birth and/or IUGR.

  9. Evaluation of Carbon Nanotubes Functionalized Polydimethylsiloxane Based Coatings for In-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography

    OpenAIRE

    Neus Jornet-Martínez; Pascual Serra-Mora; Yolanda Moliner-Martínez; Rosa Herráez-Hernández; Pilar Campíns-Falcó

    2015-01-01

    In the present work, the performance of carbon nanotubes (c-CNTs) functionalized polydimethylsiloxane (PDMS) based coatings as extractive phases for in-tube solid phase microextraction (IT-SPME) coupled to Capillary LC (CapLC) has been evaluated. Carboxylic-single walled carbon nanotubes (c-SWNTs) and carboxylic-multi walled carbon nanotubes (c-MWNTs) have been immobilized on the activated surface of PDMS capillary columns. The effect of different percentages of diphenyl groups in the PDMS ex...

  10. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  11. Review on two-phase flow instabilities in narrow spaces

    International Nuclear Information System (INIS)

    Tadrist, L.

    2007-01-01

    Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries

  12. Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2001-01-01

    We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge......, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common...... algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different...

  13. Minimal formulation of the linear spatial analysis of capillary jets: Validity of the two-mode approach

    Science.gov (United States)

    González, H.; Vazquez, P. A.; García, F. J.; Guerrero, J.

    2018-04-01

    A rigorous and complete formulation of the linear evolution of harmonically stimulated capillary jets should include infinitely many spatial modes to account for arbitrary exit conditions [J. Guerrero et al., J. Fluid Mech. 702, 354 (2012), 10.1017/jfm.2012.182]. However, it is not rare to find works in which only the downstream capillary dominant mode, the sole unstable one, is retained, with amplitude determined by the jet deformation at the exit. This procedure constitutes an oversimplification, unable to handle a flow rate perturbation without jet deformation at the exit (the most usual conditions). In spite of its decaying behavior, the other capillary mode (subdominant) must be included in what can be called a "minimal linear formulation." Deformation and mean axial velocity amplitudes at the jet exit are the two relevant parameters to simultaneously find the amplitudes of both capillary modes. Only once these amplitudes are found, the calculation of the breakup length may be eventually simplified by disregarding the subdominant mode. Simple recipes are provided for predicting the breakup length, which are checked against our own numerical simulations. The agreement is better than in previous attempts in the literature. Besides, the limits of validity of the linear formulation are explored in terms of the exit velocity amplitude, the wave number, the Weber number, and the Ohnesorge number. Including the subdominant mode extends the range of amplitudes for which the linear model gives accurate predictions, the criterion for keeping this mode being that the breakup time must be shorter than a given formula. It has been generally assumed that the shortest intact length happens for the stimulation frequency with the highest growth rate. However, we show that this correlation is not strict because the amplitude of the dominant mode has a role in the breakup process and it depends on the stimulation frequency.

  14. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  15. Capillary Structured Suspensions from in Situ Hydrophobized Calcium Carbonate Particles Suspended in a Polar Liquid Media

    NARCIS (Netherlands)

    Dunstan, Timothy S.; Das, Anupam A.K.; Starck, Pierre; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2018-01-01

    We demonstrate that capillary suspensions can be formed from hydrophilic calcium carbonate particles suspended in a polar continuous media and connected by capillary bridges formed of minute amounts of an immiscible secondary liquid phase. This was achieved in two different polar continuous phases,

  16. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  17. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S; Dubois, M; Bekaert, G [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1997-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  18. Test results of reliable and very high capillary multi-evaporators / condenser loop

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, S.; Dubois, M.; Bekaert, G. [Societe Anonyme Belge de Construction Aeronautique - SABCA (Belgium)

    1996-12-31

    The paper present the results of various SABCA activities in the field of two-phase heat transport system. These results have been based on a critical review and analysis of the existing two-phase loop and of the future loop needs in space applications. The research and the development of a high capillary wick (capillary pressure up to 38 000 Pa) are described. These activities have led towards the development of a reliable high performance capillary loop concept (HPCPL), which is discussed in details. Several loop configurations mono/multi-evaporators have been ground tested. The presented results of various tests clearly show the viability of this concept for future applications. Proposed flight demonstrations as well as potential applications conclude this paper. (authors) 7 refs.

  19. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.

    Science.gov (United States)

    Liu, Haihu; Valocchi, Albert J; Kang, Qinjun

    2012-04-01

    We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35number. Finally, we numerically investigate a single bubble rising under buoyancy force in viscous fluids for a wide range of Eötvös and Morton numbers. Numerical results are compared with theoretical predictions and experimental results, and satisfactory agreement is shown.

  20. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    Science.gov (United States)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  1. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-05-10

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  2. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    Science.gov (United States)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  3. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.

    2015-01-01

    the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...... pressures in the whole phase envelope except at the critical point. The bubble point curve shows a negative change while the dew point curve shows positive and negative changes in the upper dew point branch and the lower dew point branch, respectively. In particular, the cricondentherm is also shifted...

  4. A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2010-01-01

    In this paper, we present an efficient numerical method for two-phase immiscible flow in porous media with different capillarity pressures. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressure

  5. Evaluation of ODS-AQ stationary phase for use in capillary electrochromatography.

    Science.gov (United States)

    Djordjevic, N M; Fitzpatrick, F; Houdiere, F

    2001-04-01

    The aim of this study was to evaluate the applicability of ODS-AQ packing material as a stationary phase in capillary electrochromatography (CEC). The electroosmotic flow created on an ODS-AQ stationary phase was measured at different mobile phase compositions and at different column temperatures. It was observed that the electroosmotic flow generated in the column increased by 50% when the temperature of the system was raised from 20 degrees C to 60 degrees C, while all other conditions were kept constant. The electroosmotic flow produced by the ODS-AQ stationary phase was found to be comparable to the flow generated in a column packed with Nucleosil bare-silica material. In addition, a set of polar compounds (D-lysergic acid diethylamide derivatives) was utilized to determine the influence of temperature and mobile phase composition on their chromatographic behavior on an ODS-AQ stationary phase in a CEC mode. A linear relationship between the solute retention factor and column temperatures was seen over the temperature range studied (20 degrees C to 60 degrees C). A quadratic function was used to describe the changes in the solute retention factors with variation of acetonitrile concentration in the mobile phase.

  6. On the nonequilibrium segregation state of a two-phase mixture in a porous column

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1996-01-01

    The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium...

  7. Simulation of capillary bridges between nanoscale particles.

    Science.gov (United States)

    Dörmann, Michael; Schmid, Hans-Joachim

    2014-02-04

    Capillary forces are very important as they exceed in general other adhesion forces. But at the same time the exact calculation of these forces is very complex, so often assumptions and approximations are used. Previous research was done with regard to micrometer sized particles, but the behavior of nanoscale particles is different. Hence, the results for micrometer sized particles cannot be directly transferred when considering nanoscale particles. Therefore, a simulation method was developed to calculate numerically the shape of a rotationally symmetrical capillary bridge between two spherical particles or a particle and a plate. The capillary bridge in the gap between the particles is formed due to capillary condensation and is in thermodynamic equilibrium with the gas phase. Hence the Kelvin equation and the Young-Laplace equation can be used to calculate the profile of the capillary bridge, depending on the relative humidity of the surrounding air. The bridge profile consists of several elements that are determined consecutively and interpolated linearly. After the shape is determined, the volume and force, divided into capillary pressure force and surface tension force, can be calculated. The validation of this numerical model will be shown by comparison with several different analytical calculations for micrometer-sized particles. Furthermore, it is demonstrated that two often used approximations, (1) the toroidal approximation and (2) the use of an effective radius, cannot be used for nanoscale particles without remarkable mistake. It will be discussed how the capillary force and its components depend on different parameters, like particle size, relative humidity, contact angle, and distance, respectively. The rupture of a capillary bridge due to particle separation will also be presented.

  8. Study of the Effect of Heat Supply on the Hydrodynamics of the Flow and Heat Transfer in Capillary Elements of Mixing Heads Jet Thrusters

    Science.gov (United States)

    Nigodjuk, V. E.; Sulinov, A. V.

    2018-01-01

    The article presents the results of experimental studies of hydrodynamics and those of loobman single-phase and two-phase flows in capillary nozzle elements propellant thrusters and the proposed method of their calculation. An experimental study was performed in capillaries with a sharp entrance edge of the internal diameter of 0.16 and 0.33 mm and a relative length 188 and 161, respectively, in pouring distilled water and acetone in the following range of parameters Reynolds number Re = (0,3 ... 10) · 103, Prandtl number Pr = (2 ... 10), pressure p = (0,1 ... 0,3) MPa, the heat flux q = (0...2)×106 W/m2, the difference of temperature under-heating of liquid Δtn = (5 ... 80)K. The dependences for calculation of single phase boundaries, the undeveloped and the developed surface of the bubble and film key singing of subcooled liquid. It is shown theoretically and experimentally confirmed the virtual absence of areas of undeveloped nucleate boiling in laminar flow. The dependence for calculation of hydraulic resistance and heat transfer in the investigated areas of current. It is shown that in the region of nucleate boiling surface in the flow in capillary tubes, influence of the formed vapor phase on the hydrodynamics and heat transfer substantially higher than in larger diameter pipes.

  9. Microtomography and pore-scale modeling of two-phase Fluid Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.

    2010-10-19

    Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.

  10. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  11. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng

    2014-03-22

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  12. Upwind discontinuous Galerkin methods with mass conservation of both phases for incompressible two-phase flow in porous media

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    Discontinuous Galerkin methods with interior penalties and upwind schemes are applied to the original formulation modeling incompressible two-phase flow in porous media with the capillary pressure. The pressure equation is obtained by summing the discretized conservation equations of two phases. This treatment is very different from the conventional approaches, and its great merit is that the mass conservations hold for both phases instead of only one phase in the conventional schemes. By constructing a new continuous map and using the fixed-point theorem, we prove the global existence of discrete solutions under the proper conditions, and furthermore, we obtain a priori hp error estimates of the pressures in L 2 (H 1) and the saturations in L ∞(L 2) and L 2 (H 1). © 2014 Wiley Periodicals, Inc.

  13. Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data

    Science.gov (United States)

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa

    2017-01-01

    Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.

  14. Capillary Flow of Liquid Metals in Brazing

    Science.gov (United States)

    Dehsara, Mohammad

    Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the

  15. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  16. A multi-scale network method for two-phase flow in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-08-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  17. A multi-scale network method for two-phase flow in porous media

    International Nuclear Information System (INIS)

    Khayrat, Karim; Jenny, Patrick

    2017-01-01

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.

  18. NMR studies of granular media and two-phase flow in porous media

    Science.gov (United States)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  19. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media.

    Science.gov (United States)

    Singh, Kamaljit; Menke, Hannah; Andrew, Matthew; Lin, Qingyang; Rau, Christoph; Blunt, Martin J; Bijeljic, Branko

    2017-07-12

    Understanding the pore-scale dynamics of two-phase fluid flow in permeable media is important in many processes such as water infiltration in soils, oil recovery, and geo-sequestration of CO 2 . The two most important processes that compete during the displacement of a non-wetting fluid by a wetting fluid are pore-filling or piston-like displacement and snap-off; this latter process can lead to trapping of the non-wetting phase. We present a three-dimensional dynamic visualization study using fast synchrotron X-ray micro-tomography to provide new insights into these processes by conducting a time-resolved pore-by-pore analysis of the local curvature and capillary pressure. We show that the time-scales of interface movement and brine layer swelling leading to snap-off are several minutes, orders of magnitude slower than observed for Haines jumps in drainage. The local capillary pressure increases rapidly after snap-off as the trapped phase finds a position that is a new local energy minimum. However, the pressure change is less dramatic than that observed during drainage. We also show that the brine-oil interface jumps from pore-to-pore during imbibition at an approximately constant local capillary pressure, with an event size of the order of an average pore size, again much smaller than the large bursts seen during drainage.

  20. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  1. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  2. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    Science.gov (United States)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  3. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93

  4. Solid-Phase Extraction and Large-Volume Sample Stacking-Capillary Electrophoresis for Determination of Tetracycline Residues in Milk

    Directory of Open Access Journals (Sweden)

    Gabriela Islas

    2018-01-01

    Full Text Available Solid-phase extraction in combination with large-volume sample stacking-capillary electrophoresis (SPE-LVSS-CE was applied to measure chlortetracycline, doxycycline, oxytetracycline, and tetracycline in milk samples. Under optimal conditions, the proposed method had a linear range of 29 to 200 µg·L−1, with limits of detection ranging from 18.6 to 23.8 µg·L−1 with inter- and intraday repeatabilities < 10% (as a relative standard deviation in all cases. The enrichment factors obtained were from 50.33 to 70.85 for all the TCs compared with a conventional capillary zone electrophoresis (CZE. This method is adequate to analyze tetracyclines below the most restrictive established maximum residue limits. The proposed method was employed in the analysis of 15 milk samples from different brands. Two of the tested samples were positive for the presence of oxytetracycline with concentrations of 95 and 126 µg·L−1. SPE-LVSS-CE is a robust, easy, and efficient strategy for online preconcentration of tetracycline residues in complex matrices.

  5. Fast separation of enantiomers by capillary electrophoresis using a combination of two capillaries with different internal diameters.

    Science.gov (United States)

    Šebestová, Andrea; Petr, Jan

    2017-12-01

    The combination of capillaries with different internal diameters was used to accelerate the separation of enantiomers in capillary electrophoresis. Separation of R,S-1,1'-binaphthalene-2,2'-diyl hydrogen phosphate using isopropyl derivative of cyclofructan 6 was studied as a model system. The best separation conditions included 500 mM sodium borate pH 9.5 with 60 mM concentration of the chiral selector. Separation lasted approx. 1.5 min using the combination of 50 and 100 μm id capillaries of 9.7 cm and 22.9 cm, respectively. It allowed approx. 12-fold acceleration in comparison to the traditional long-end separation mainly due to the higher electroosmotic flow generated in the connected capillaries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    Directory of Open Access Journals (Sweden)

    Hubbard Alan E

    2010-01-01

    Full Text Available Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL vs. dihydroartemisinin-piperaquine (DP performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Results Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66 and poor agreement in Apac (kappa = 0.24. Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5. However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03. Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Conclusions Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission

  7. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda.

    Science.gov (United States)

    Gupta, Vinay; Dorsey, Grant; Hubbard, Alan E; Rosenthal, Philip J; Greenhouse, Bryan

    2010-01-15

    Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Samples were genotyped using both gel and capillary electrophoresis from randomized trials of artemether-lumefantrine (AL) vs. dihydroartemisinin-piperaquine (DP) performed in two areas of Uganda: Kanungu, where transmission is moderate, and Apac, where transmission is very high. Both gel and capillary methods evaluated polymorphic regions of the merozoite surface protein 1 and 2 and glutamine rich protein genes. Capillary electrophoresis detected more alleles and provided higher discriminatory power than agarose gel electrophoresis at both study sites. There was only moderate agreement between classification of outcomes with the two methods in Kanungu (kappa = 0.66) and poor agreement in Apac (kappa = 0.24). Overall efficacy results were similar when using gel vs. capillary methods in Kanungu (42-day risk of treatment failure for AL: 6.9% vs. 5.5%, p = 0.4; DP 2.4% vs. 2.9%, p = 0.5). However, the measured risk of recrudescence was significantly higher when using gel vs. capillary electrophoresis in Apac (risk of treatment failure for AL: 17.0% vs. 10.7%, p = 0.02; DP: 8.5% vs. 3.4%, p = 0.03). Risk differences between AL and DP were not significantly different whether gel or capillary methods were used. Genotyping with gel electrophoresis overestimates the risk of recrudescence in anti-malarial trials performed in areas of high transmission intensity. Capillary electrophoresis provides more accurate outcomes for such trials and should be performed when possible. In areas of moderate transmission, gel electrophoresis appears adequate to estimate comparative

  8. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: application to the specific lauralkonium chloride determination in water.

    Science.gov (United States)

    Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P

    2012-07-27

    A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A new treatment of capillarity to improve the stability of IMPES two-phase flow formulation

    KAUST Repository

    Kou, Jisheng

    2010-12-01

    In this paper, we present an efficient numerical method for two-phase immiscible flow in porous media with different capillarity pressures. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressure functions. One popular scheme is to split the system into a pressure and a saturation equation, and to apply IMplicit Pressure Explicit Saturation (IMPES) approach for time stepping. One disadvantage of IMPES is instability resulting from the explicit treatment for capillary pressure. To improve stability, the capillary pressure is usually incorporated in the saturation equation which gradients of saturation appear. This approach, however, does not apply to the case of different capillary pressure functions for multiple rock-types, because of the discontinuity of saturation across rock interfaces. In this paper, we present a new treatment of capillary pressure, which appears implicitly in the pressure equation. Using an approximation of capillary function, we substitute the implicit saturation equation into the pressure equation. The coupled pressure equation will be solved implicitly and followed by the explicit saturation equation. Five numerical examples are provided to demonstrate the advantages of our approach. Comparison shows that our proposed method is more efficient and stable than the classical IMPES approach. © 2010 Elsevier Ltd.

  10. Multiple capillary biochemical analyzer

    Science.gov (United States)

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  11. Synchrotron 4-dimensional imaging of two-phase flow through porous media.

    Science.gov (United States)

    Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A

    2016-01-01

    Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.

  12. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  13. Wetting and Capillary Condensation as Means of Protein Organization in Membranes

    DEFF Research Database (Denmark)

    Gil, Tamir; Sabra, Mads Christian; Ipsen, John Hjorth

    1997-01-01

    Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces. Wetting and capillary condensation are here proposed as mechanisms...

  14. Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples

    Energy Technology Data Exchange (ETDEWEB)

    Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.

    2003-07-01

    This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase

  15. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    Science.gov (United States)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  16. Equilibrium capillary forces with atomic force microscopy

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2007-01-01

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin

  17. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  18. Tale of two sites: capillary versus arterial blood glucose testing in the operating room.

    Science.gov (United States)

    Akinbami, Felix; Segal, Scott; Schnipper, Jeffrey L; Stopfkuchen-Evans, Matthias; Mills, Jonathan; Rogers, Selwyn O

    2012-04-01

    Pre- and intraoperative glycemic control has been identified as a putative target to improve outcomes of surgical patients. Glycemic control requires frequent monitoring of blood glucose levels with appropriate adjustments. However, monitoring standards have been called into question, especially in cases in which capillary samples are used. Point-of-care testing (POCT) using capillary samples and glucometers has been noted to give relatively accurate results for critically ill patients. However, the package inserts of most glucometers warn that they should not be used for patients in shock. This has led clinicians to doubt their accuracy in the operating room. The accuracy of capillary samples when tested in patients undergoing surgical procedures has not been proven. This study aims to determine the accuracy of intraoperative blood glucose values using capillary samples relative to arterial samples. A prospective study was conducted by collecting paired capillary and arterial samples of patients undergoing major operations at a tertiary medical center from August 2009 to May 2011. Subjects were a convenience sample of patients who had arterial lines and needed glucose testing while undergoing the procedure. Precision Xceed Pro (Abbott) handheld glucometers were used to obtain the blood glucose values. Our primary outcome of interest was the degree of correlation between capillary and arterial blood glucose values or the degree to which arterial glucose levels can be predicted by capillary glucose samples. We used linear regression and the Student t tests for statistical analyses. Seventy-two-paired samples were collected. Of the cases, 54% were major abdominal operations, whereas 24% were vascular operations. The mean values ± standard deviation for glucose levels were 146 ± 35 mg/dL (capillary) and 147 ± 36 mg/dL (arterial). The mean time ± standard deviation between the collection of both samples was 3.5 ± 1.3 minutes. The regression coefficient showed a

  19. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  20. Dynamics of the liquid film around elongated bubbles rising in vertical capillaries

    Science.gov (United States)

    Magnini, Mirco; Khodaparast, Sepideh; Matar, Omar K.; Stone, Howard A.; Thome, John R.

    2017-11-01

    We performed a theoretical, numerical and experimental study on elongated bubbles rising in vertical tubes in co-current liquid flows. The flow conditions were characterized by capillary, Reynolds and Bond numbers within the range of Ca = 0.005 - 0.1 , Re = 1 - 2000 and Bo = 0 - 20 . Direct numerical simulations of the two-phase flows are run with a self-improved version of OpenFOAM, implementing a coupled Level Set and Volume of Fluid method. A theoretical model based on an extension of the traditional Bretherton theory, accounting for inertia and the gravity force, is developed to obtain predictions of the profiles of the front and rear menisci of the bubble, liquid film thickness and bubble velocity. Different from the traditional theory for bubbles rising in a stagnant liquid, the gravity force impacts the flow already when Bo < 4 . Gravity effects speed up the bubble compared to the Bo = 0 case, making the liquid film thicker and reducing the amplitude of the undulation on the surface of the bubble near its tail. Gravity effects are more apparent in the visco-capillary regime, i.e. when the Reynolds number is below 1.

  1. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  2. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    International Nuclear Information System (INIS)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained

  3. Similarity analysis and scaling criteria for LWRs under single-phase and two-phase natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Kataoka, I.

    1983-03-01

    Scaling criteria for a natural circulation loop under single phase and two-phase flow conditions have been derived. For a single phase case the continuity, integral momentum, and energy equations in one-dimensional area average forms have been used. From this, the geometrical similarity groups, friction number, Richardson number, characteristic time constant ratio, Biot number, and heat source number are obtained. The Biot number involves the heat transfer coefficient which may cause some difficulties in simulating the turbulent flow regime. For a two-phase flow case, the similarity groups obtained from a perturbation analysis based on the one-dimensional drift-flux model have been used. The physical significance of the phase change number, subcooling number, drift-flux number, friction number are discussed and conditions imposed by these groups are evaluated. In the two-phase flow case, the critical heat flux is one of the most important transients which should be simulated in a scale model. The above results are applied to the LOFT facility in case of a natural circulation simulation. Some preliminary conclusions on the feasibility of the facility have been obtained.

  4. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method

    International Nuclear Information System (INIS)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  6. Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime

    Science.gov (United States)

    Mahdi, Yassine; Daoud, Kamel; Tadrist, Lounès

    2017-04-01

    Generating micrometer sized droplets has been studied in a microfluidic system with T-junction geometry 250 μm in internal diameter and with PTFE capillary tubing. Several experiments were conducted by varying the flow rate of the dispersed phase from 2.78 ṡ10-11 m3 /s to 5.28 ṡ10-9 m3 /s and that of the continuous phase from 2.78 ṡ10-10 m3 /s to 1.94 ṡ10-9 m3 /s. The visualization of different flow regimes (drop, plug, and annular) was carried out for three configurations (not inverted in a horizontal position, inverted in a horizontal position, and inverted in a vertical position) for low capillary numbers. The model of Gauss was also chosen for a droplet size distribution in the dispersed phase, with the flow quality x varying from 0.016 to 0.44. The evolution of the drop size distribution as a function of the flow quality in the dispersed phase shows that the variation coefficient of the droplet's diameter is inversely proportional to the flow quality.

  7. Mass flow rate correlation for two-phase flow of R218 through a capillary tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Vacek, V.

    2009-01-01

    Roč. 29, 14-15 (2009), s. 2816-2823 ISSN 1359-4311 Institutional research plan: CEZ:AV0Z20760514 Keywords : artificial neural network * capillary tube * mass flow rate correlation * R218 Subject RIV: BK - Fluid Dynamics Impact factor: 1.922, year: 2009 http://www.sciencedirect.com/science?_ob=PublicationURL&_cdi=5687&_pubType=J&_acct=C000034318&_version=1&_urlVersion=0&_userid=640952&md5=fc314a471a010545ee185394a6c8f5f7&jchunk=29#29

  8. Modeling of the anode of a liquid-feed DMFC: Inhomogeneous compression effects and two-phase transport phenomena

    Science.gov (United States)

    García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada

    2014-01-01

    An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .

  9. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.

    Science.gov (United States)

    Xie, Shengming; Zhang, Junhui; Fu, Nan; Wang, Bangjin; Hu, Cong; Yuan, Liming

    2016-11-08

    Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of ( S , S )-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  10. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Shengming Xie

    2016-11-01

    Full Text Available Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701 was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  11. Breakup Behavior of a Capillary Bridge on a Hydrophobic Stripe Separating Two Hydrophilic Stripes

    Science.gov (United States)

    Hartmann, Maximilian; Hardt, Steffen

    2017-11-01

    The breakup dynamics of a capillary bridge on a hydrophobic area between two liquid filaments occupying two parallel hydrophilic stripes is studied experimentally. In addition calculations with the finite-element software Surface Evolver are performed to obtain the corresponding stable minimal surfaces. Droplets of de-ionized water are placed on substrates with alternating hydrophilic and hydrophobic stripes of different width. Their volume decreases by evaporation. This results in a droplet shaped as the letter ``H'' covering two hydrophilic stripes separated by one hydrophobic stripe. The width of the capillary bridge d(t) on the hydrophobic stripe during the breakup process is observed using a high-speed camera mounted on a bright-field microscope. The results of the experiments and the numerical studies show that the critical width dcrit, indicating the point where the capillary bridge becomes unstable, mainly depends on the width ratio of the hydrophilic and hydrophobic stripes. It is found that the time derivative of d(t) first decreases after dcrit has been reached. The final breakup dynamics then follows a t 2 / 3 scaling. We kindly acknowledge the financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1194 ``Interaction of Transport and Wetting Processes'', Project A02a.

  12. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    Science.gov (United States)

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  13. Droplet Breakup in Asymmetric T-Junctions at Intermediate to Large Capillary Numbers

    Science.gov (United States)

    Sadr, Reza; Cheng, Way Lee

    2017-11-01

    Splitting of a parent droplet into multiple daughter droplets of desired sizes is usually desired to enhance production and investigational efficiency in microfluidic devices. This can be done in an active or passive mode depending on whether an external power sources is used or not. In this study, three-dimensional simulations were done using the Volume-of-Fluid (VOF) method to analyze droplet splitting in asymmetric T-junctions with different outlet lengths. The parent droplet is divided into two uneven portions the volumetric ratio of the daughter droplets, in theory, depends on the length ratios of the outlet branches. The study identified various breakup modes such as primary, transition, bubble and non-breakup under various flow conditions and the configuration of the T-junctions. In addition, an analysis with the primary breakup regimes were conducted to study the breakup mechanisms. The results show that the way the droplet splits in an asymmetric T-junction is different than the process in a symmetric T-junction. A model for the asymmetric breakup criteria at intermediate or large Capillary number is presented. The proposed model is an expanded version to a theoretically derived model for the symmetric droplet breakup under similar flow conditions.

  14. Manufacturing and microstructural characterization of sintered nickel wicks for capillary pumps

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Reimbrecht

    1999-07-01

    Full Text Available Sintered nickel powder is proposed to be used as porous wicks in heat pipes and capillary pumps. In this work the manufacturing procedure for tubular wicks for capillary pump application is discussed. The porosity, mechanical resistance and roundness of tubular wicks made of carbonila powder, atomized powder and a powder mixture of both are analyzed. A powder mixture was selected as the best raw material. In this case, pore size in the range of 2 to 24 mm and porosity about 50% were measured. First tests carried out in the laboratory, using acetone as the working fluid, show capillary pumping pressures up to 4 kPa and heat fluxes of about 1 W/cm2 in a two-phase heat transfer loop.

  15. Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method

    KAUST Repository

    Liu, Lulu

    2013-01-01

    The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.

  16. Nonclassicality in phase-number uncertainty relations

    International Nuclear Information System (INIS)

    Matia-Hernando, Paloma; Luis, Alfredo

    2011-01-01

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  17. Nonclassicality in phase-number uncertainty relations

    Energy Technology Data Exchange (ETDEWEB)

    Matia-Hernando, Paloma; Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)

    2011-12-15

    We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.

  18. Condensation in a capped capillary is a continuous critical phenomenon.

    Science.gov (United States)

    Parry, A O; Rascón, C; Wilding, N B; Evans, R

    2007-06-01

    We show that condensation in a capped capillary slit is a continuous interfacial critical phenomenon, related intimately to several other surface phase transitions. In three dimensions, the adsorption and desorption branches correspond to the unbinding of the meniscus from the cap and opening, respectively, and are equivalent to 2D-like complete-wetting transitions. For dispersion forces, the singularities on the two branches are distinct, owing to the different interplay of geometry and intermolecular forces. In two dimensions we establish precise connection, or covariance, with 2D critical-wetting and wedge-filling transitions: i.e., we establish that certain interfacial properties in very different geometries are identical. Our predictions of universal scaling and covariance in finite capillaries are supported by extensive Ising model simulation studies in two and three dimensions.

  19. Serum protein capillary electrophoresis and measurement of acute phase proteins in a captive cheetah (Acinonyx jubatus) population.

    Science.gov (United States)

    Depauw, Sarah; Delanghe, Joris; Whitehouse-Tedd, Katherine; Kjelgaard-Hansen, Mads; Christensen, Michelle; Hesta, Myriam; Tugirimana, Pierrot; Budd, Jane; Dermauw, Veronique; Janssens, Geert P J

    2014-09-01

    Renal and gastrointestinal pathologies are widespread in the captive cheetah (Acinonyx jubatus) population but are often diagnosed at a late stage, because diagnostic tools are limited to the evaluation of clinical signs or general blood examination. Presently, no data are available on serum proteins and acute-phase proteins in cheetahs during health or disease, although they might be important to improve health monitoring. This study aimed to quantify serum proteins by capillary electrophoresis in 80 serum samples from captive cheetahs, categorized according to health status and disease type. Moreover, serum amyloid A concentrations were measured via a turbidimetric immunoassay validated in domestic cats, whereas haptoglobin and C-reactive protein were determined by non-species-specific functional tests. Cheetahs classified as healthy had serum protein and acute phase protein concentrations within reference ranges for healthy domestic cats. In contrast, unhealthy cheetahs had higher (P cheetahs suffering from chronic kidney disease were significantly greater compared to the reportedly healthy cheetahs. Our study indicates that serum proteins in the cheetah can be analyzed by routine capillary electrophoresis, whereas acute-phase proteins can be measured using available immunoassays or non-species-specific techniques, which are also likely to be applicable in other exotic felids. Moreover, results suggest that serum amyloid A and haptoglobin are important acute-phase proteins in the diseased cheetah and highlight the need to evaluate their role as early-onset markers for disease.

  20. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  1. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2006-04-01

    Full Text Available Abstract Background The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary. Results Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats. Conclusion In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the

  2. A Dynamic Two-Phase Pore-Scale Model of Imbibition

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan

    1998-01-01

    We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle, and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except from the viscosity ratio. We find that contact angle, aspect ratio, and capillary number all have a significant influence on the competition between piston-lice advance, leading to high recovery, and snap-off, causing oil entrapment. Due to significant CPU......-off has been entirely inhibited, in agreement with results obtained by Blunt (1997) who used a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced....

  3. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    Science.gov (United States)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  4. Modelling aspects of two phase flow

    International Nuclear Information System (INIS)

    Mayinger, F.

    1977-01-01

    In two phase flow scaling is much more limited to very narrowly defined physical phenomena than in single phase fluids. For complex and combined phenomena it can be achieved not by using dimensionless numbers alone but in addition a detailed mathematical description of the physical problem - usually in the form of a computer program - must be available. An important role plays the scaling of the thermodynamic data of the modelling fluid. From a literature survey and from own scaling experiments the conclusion can be drawn that Freon is a quite suitable modelling fluid for scaling steam-water mixtures. However, whithout a theoretical description of the phenomena nondimensional numbers for scaling two phase flow must be handled very carefully. (orig.) [de

  5. Design and construction of an experiment for two-phase flow in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, R.E.G.; Aziz, K.

    1993-08-01

    In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.

  6. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  7. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    International Nuclear Information System (INIS)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations

  8. QUANTITATIVE DETERMINATION OF CHIRAL DICHLORPROP AND MECOPROP ENANTIOMERS IN DRINKING AND SURFACE WATERS BY SOLID-PHASE EXTRACTION AND CAPILLARY ELECTROPHORESIS

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Vrchotová, Naděžda

    2002-01-01

    Roč. 11, č. 7 (2002), s. 332-336 ISSN 1018-4619 Institutional research plan: CEZ:AV0Z6087904 Keywords : capillary electrophoresis * solid-phase extraction * chiral herbicides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.309, year: 2002

  9. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    Science.gov (United States)

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  10. Ionization waves in the pre-breakdown phase of a pulsed capillary discharge

    International Nuclear Information System (INIS)

    Favre, M.; Lenero, A.M.; Chuaqui, H.; Mitchell, I.; Wyndham, E.; Choi, P.; Dumitrescu, C.; Mond, M.; Rutkevich, I.; Kaufman, Y.

    2001-01-01

    We present experimental observations of ionization waves in pulsed hollow cathode capillary discharges. When the capillary shield is at the anode potential, an anode directed ionization wave, with characteristic speed ∼10 7 m/s, is observed. When the capillary shield is at the cathode potential, a cathode directed slower ionization wave, with characteristic speed ∼10 4 m/s, is observed. The several orders of magnitude difference in the ionization wave speed can be attributed to the different initial electric field configuration in both polarities

  11. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  12. Theoretical investigation of adiabatic capillary tubes working with propane/n-butane/iso-butane blends

    International Nuclear Information System (INIS)

    Fatouh, M.

    2007-01-01

    In this paper, a theoretical model is developed to predict the refrigerant flow characteristics in adiabatic capillary tubes using propane/n-butane/iso-butane mixtures as working fluids in a domestic refrigerator. This model is based on the mass, energy and momentum conservation equations for a homogeneous refrigerant flow under different inlet conditions, such as subcooled, saturated and two phase flow. The effects of the inlet pressure (8-16 bar), inlet vapor quality (0.001-15%), inlet subcooling degree (1-15 o C), mass flow rate (1-5 kg/h), propane mass fraction (0.5-0.7), capillary tube inner diameter (0.6-1.0 mm) and the tube surface roughness on the capillary tube length are predicted. The results showed that the present model predicts data that are very close to the available experimental data in the literature with an average error of 2.65%. The pressure of the hydrocarbon mixture (HCM) decreases, while its vapor quality, specific volume and Mach number increase along the capillary tube. Also, the results indicated that the capillary tube length is largely dependent on the capillary tube diameter. Other parameters such as mass flow rate, inlet pressure, subcooling degree (or quality) and relative roughness influence the capillary tube length in that order. The capillary tube length as a function of the significant parameters is presented in equation form. Also, capillary tube selection charts either to predict the mass flow rates of propane/n-butane/iso-butane mixtures through adiabatic capillary tubes or to select the capillary tube size according to the required applications are developed. The comparison between R12, R134a and the hydrocarbon mixture (HCM) of propane/n-butane/iso-butane indicated that for a given mass flow rate, the pressure drop per unit length is about 4.13, 5.0 and 12.0 bar/m for R12, R134a and HCM, respectively. The ratios of the average mass flow rate of the HCM with a propane mass fraction of 0.6 to those of R12 and R134a are about

  13. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase.

    Science.gov (United States)

    Darko, Ernest; Thurbide, Kevin B

    2016-09-23

    The use of a pH-adjusted water stationary phase for analyzing organic bases in capillary gas chromatography (GC) is demonstrated. Through modifying the phase to typical values near pH 11.5, it is found that various organic bases are readily eluted and separated. Conversely, at the normal pH 7 operating level, they are not. Sodium hydroxide is found to be a much more stable base than ammonium hydroxide for altering the pH due to the higher volatility and evaporation of the latter. In the basic condition, such analytes are not ionized and are observed to produce good peak shapes even for injected masses down to about 20ng. By comparison, analyses on a conventional non-polar capillary GC column yield more peak tailing and only analyte masses of 1μg or higher are normally observed. Through carefully altering the pH, it is also found that the selectivity between analytes can be potentially further enhanced if their respective pKa values differ sufficiently. The analysis of different pharmaceutical and petroleum samples containing organic bases is demonstrated. Results indicate that this approach can potentially offer unique and beneficial selectivity in such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. On the Dynamics of Two-Dimensional Capillary-Gravity Solitary Waves with a Linear Shear Current

    Directory of Open Access Journals (Sweden)

    Dali Guo

    2014-01-01

    Full Text Available The numerical study of the dynamics of two-dimensional capillary-gravity solitary waves on a linear shear current is presented in this paper. The numerical method is based on the time-dependent conformal mapping. The stability of different kinds of solitary waves is considered. Both depression wave and large amplitude elevation wave are found to be stable, while small amplitude elevation wave is unstable to the small perturbation, and it finally evolves to be a depression wave with tails, which is similar to the irrotational capillary-gravity waves.

  15. Physiological factors influencing capillary growth.

    Science.gov (United States)

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  16. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  17. Electro-capillary effects in capillary filling dynamics of electrorheological fluids.

    Science.gov (United States)

    Dhar, Jayabrata; Ghosh, Uddipta; Chakraborty, Suman

    2015-09-21

    The flow of electrorheological fluids is characterized by an apparent increase in viscosity manifested by the yield stress property of the fluid, which is a function of the applied electric field and the concentration of the suspended solute phase within the dielectric medium. This property of electrorheological fluids generally hinders flow through a capillary if the imposed shear stress is lower than the induced yield stress. This results in a plug-like zone in the flow profile, thus giving the fluid Bingham plastic properties. In the present work, we study such influences of the yield stress on the capillary filling dynamics of an electrorheological fluid by employing a rheologically consistent reduced order formalism. One important feature of the theoretical formalism is its ability to address the intricate interplay between the surface tension and viscous forces, both of which depend sensitively on the electric field. Our analysis reveals that the progress of the capillary front is hindered at an intermediate temporal regime, which is attributable to the increase of the span of the plug-zone across the channel width with time. With a preliminary understanding on the cessation of the capillary front advancement due to the yield stress property of the electrorheological fluids, we further strive to achieve a basic comparison with an experimental study made earlier. Reasonable agreements with the reported data support our theoretical framework. Comprehensive scaling analysis brings further insight to our reported observations over various temporal regimes.

  18. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    KAUST Repository

    Hou, Jiangyong

    2016-02-05

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  19. Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media

    KAUST Repository

    Hou, Jiangyong; Chen, Jie; Sun, Shuyu; Chen, Zhangxin

    2016-01-01

    In this paper, we present a hybrid method, which consists of a mixed-hybrid finite element method and a penalty discontinuous Galerkin method, for the approximation of a fractional flow formulation of a two-phase flow problem in heterogeneous media with discontinuous capillary pressure. The fractional flow formulation is comprised of a wetting phase pressure equation and a wetting phase saturation equation which are coupled through a total velocity and the saturation affected coefficients. For the wetting phase pressure equation, the continuous mixed-hybrid finite element method space can be utilized due to a fundamental property that the wetting phase pressure is continuous. While it can reduce the computational cost by using less degrees of freedom and avoiding the post-processing of velocity reconstruction, this method can also keep several good properties of the discontinuous Galerkin method, which are important to the fractional flow formulation, such as the local mass balance, continuous normal flux and capability of handling the discontinuous capillary pressure. For the wetting phase saturation equation, the penalty discontinuous Galerkin method is utilized due to its capability of handling the discontinuous jump of the wetting phase saturation. Furthermore, an adaptive algorithm for the hybrid method together with the centroidal Voronoi Delaunay triangulation technique is proposed. Five numerical examples are presented to illustrate the features of proposed numerical method, such as the optimal convergence order, the accurate and efficient velocity approximation, and the applicability to the simulation of water flooding in oil field and the oil-trapping or barrier effect phenomena.

  20. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.

    Science.gov (United States)

    Danov, Krassimir D; Georgiev, Mihail T; Kralchevsky, Peter A; Radulova, Gergana M; Gurkov, Theodor D; Stoyanov, Simeon D; Pelan, Eddie G

    2018-01-01

    greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    Science.gov (United States)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  2. Modeling and simulation of nanoparticles transport in a two-phase flow in porous media

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2012-01-01

    In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.

  3. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography.

    Science.gov (United States)

    Ali, Faiz; Cheong, Won Jo

    2015-10-01

    A silica capillary of 50 μm internal diameter and 500 mm length (416 mm effective length) was chemically modified with 4-(trifluoromethoxy) phenyl isocyanate in the presence of dibutyl tin dichloride as catalyst. Sodium diethyl dithiocarbamate was reacted with the terminal halogen of the bound ligand to incorporate the initiator moiety, and in situ polymerization was performed using a monomer mixture of styrene, N-phenylacrylamide, and methacrylic acid. The resultant open tubular capillary column immobilized with the copolymer layer was used for the separation of tryptic digest of cytochrome C in capillary electrochromatography. The sample was well eluted and separated into many components. The elution patterns of tryptic digest of cytochrome C were studied with respect to pH and water content in the mobile phase. This preliminary study demonstrates that open tubular capillary electrochromatography columns with a modified copolymer layer composed of proper nonpolar and polar units fabricated by reversible addition-fragmentation transfer polymerization can be useful as separation media for proteomic analysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of chitosan-graft-(β-cyclodextrin) based sol-gel stationary phase for open-tubular capillary electrochromatography.

    Science.gov (United States)

    Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong

    2013-07-01

    A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.

    Science.gov (United States)

    Ramakrishnan, T S; Goode, P A

    2015-07-01

    The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Determination of Five Major 8-Prenylflavones in Leaves of Epimedium by Solid-Phase Extraction Coupled with Capillary Electrophoresis

    Science.gov (United States)

    Xie, Juan-ping; Xiang, Ji-ming; Zhu, Zhong-liang

    2016-01-01

    A simple, accurate and reproducible method which is based on the capillary electrophoresis, coupled with solid-phase extraction, has been developed for simultaneous determination of multiple 8-prenylflavones from Chinese Herba Epimedii. In this study, the author has mainly illustrated the experimental process and research results of five major components including epimedin C, icariin, diphylloside A, epimedoside A and icarisoside A that have been extracted and identified from Herba Epimedii for the first time. Experimental conditions have been optimized to achieve the best separation efficiency for the following factors: the buffer pH, buffer concentration and applied voltage. The experiment can be conducted through two separable stages: the first stage is to obtain the crude extracts through the solid-phase extraction; and the second stage is to further separate five major components by using the capillary electrophoresis. The separation of the five components and the analysis of the experiment are relatively fast and can be completed within 20 min. The concentration ranges of the construction of standard curves of five major 8-prenylflavones are 32.0–395.0, 23.4–292.0, 42.1–526.0, 18.8–233.5 and 29.7–371.0 µg mL−1 respectively, which have showed acceptable linearity with a correlation coefficient, r ≥ 0.999. The coefficient varies within 2.0% for both intra- and inter-days tests. The recoveries of five components range from 92.3 to 104.1%. The relative standard deviations of recoveries of five components range from 1.2 and 2.8%. This new method will facilitate the extraction and expedite the determination of medical components from Herba Epimedii. PMID:26865656

  7. Upscaling of Two-Phase Immiscible Flows in Communicating Stratified Reservoirs

    DEFF Research Database (Denmark)

    Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan

    2011-01-01

    A semi-analytical method for upscaling two-phase immiscible flows in heterogeneous porous media is described. This method is developed for stratified reservoirs with perfect communication between layers (the case of vertical equilibrium), in a viscous dominant regime, where the effects of capillary...... forces and gravity may be neglected. The method is discussed on the example of its basic application: waterflooding in petroleum reservoirs. We apply asymptotic analysis to a system of two-dimensional (2D) mass conservation equations for incompressible fluids. For high anisotropy ratios, the pressure...... and piston-like displacement, and it presumes non-zero exchange between layers. The method generalizes also the study of Yortsos (Transp Porous Media 18:107–129, 1995), taking into account in a more consistent way the interactions between the layers....

  8. Numerical simulation and experimental validation of coiled adiabatic capillary tubes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (UNAM), Apdo. Postal 34, 62580 Temixco, Morelos (Mexico)

    2007-04-15

    The objective of this study is to extend and validate the model developed and presented in previous works [O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model, Applied Thermal Engineering 22 (2) (2002) 173-182; O. Garcia-Valladares, C.D. Perez-Segarra, A. Oliva, Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies, Applied Thermal Engineering 22 (4) (2002) 379-391] to coiled adiabatic capillary tube expansion devices working with pure and mixed refrigerants. The discretized governing equations are coupled using an implicit step by step method. A special treatment has been implemented in order to consider transitions (subcooled liquid region, metastable liquid region, metastable two-phase region and equilibrium two-phase region). All the flow variables (enthalpies, temperatures, pressures, vapor qualities, velocities, heat fluxes, etc.) together with the thermophysical properties are evaluated at each point of the grid in which the domain is discretized. The numerical model allows analysis of aspects such as geometry, type of fluid (pure substances and mixtures), critical or non-critical flow conditions, metastable regions, and transient aspects. Comparison of the numerical simulation with a wide range of experimental data presented in the technical literature will be shown in the present article in order to validate the model developed. (author)

  9. Comparison of the capillary and agarose electrophoresis based multiple locus VNTR (variable number of tandem repeats) analysis (MLVA) on Mycobacterium bovis isolates.

    Science.gov (United States)

    Jenkins, A O; Venter, E H; Hutamo, K; Godfroid, J

    2010-09-28

    Electrophoretic techniques that can be used for genotyping of bacterial pathogens ranges from manual, low-cost, agarose gels to high-throughput capillary electrophoresis sequencing machines. These two methods are currently employed in the electrophoresis of PCR products used in multiple locus VNTR (variable number of tandem repeats) analysis (MLVA), i.e. the agarose electrophoresis (AE) and the capillary electrophoresis (CE). Some authors have suggested that clusters generated by AE are less reliable than those generated by CE and that the latter is a more sensitive technique than the former when typing Mycobacterium tuberculosis complex (MTC) isolates. Because such a claim could have significant consequences for investigators in this field, a comparison was made on 19 Belgian Mycobacterium bovis strains which had previously been genotyped using CE VNTR analysis. The VNTR profiles of the CE VNTR analysis were compared with those obtained by AE VNTR analysis at 14 VNTR loci. Our results indicated that there were no differences in copy numbers at all loci tested when the copy numbers obtained by the AE VNTR analysis were compared with those obtained by CE VNTR analysis. The use of AE VNTR analysis in mycobacterial genotyping does not alter the sensitivity of the MLVA technique compared with the CE VNTR analysis. The AE VNTR can therefore be regarded as a viable alternative in moderately equipped laboratories that cannot afford the expensive equipment required for CE VNTR analysis and data obtained by AE VNTR analysis can be shared between laboratories which use the CE VNTR method. (c) 2010 Elsevier B.V. All rights reserved.

  10. High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yufeng (BATTELLE (PACIFIC NW LAB)); Tolic, Nikola (BATTELLE (PACIFIC NW LAB)); Zhao, Rui (ASSOC WESTERN UNIVERSITY); Pasa Tolic, Ljiljana (BATTELLE (PACIFIC NW LAB)); Li, Lingjun (Illinois Univ Of-Urbana/Champa); Berger, Scott J.(ASSOC WESTERN UNIVERSITY); Harkewicz, Richard (BATTELLE (PACIFIC NW LAB)); Anderson, Gordon A.(BATTELLE (PACIFIC NW LAB)); Belov, Mikhail E.(BATTELLE (PACIFIC NW LAB)); Smith, Richard D.(BATTELLE (PACIFIC NW LAB))

    2000-12-01

    We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

  11. Capillary hemangioma of adult nasal cavity: a case report

    International Nuclear Information System (INIS)

    Paik, Sang Hyun; Kim, Hyun Sook; Kim, Wan Seop; Cho, Sung Bum; Choi, Yun Sun; Chung, Myung Jin; Kim, Seog Joon; Yoon, Sook Ja; Yoon, Yong Kyu

    2002-01-01

    Capillary hemangioma of the adult nasal cavity is rare. We report a case which occurred in the right nasal cavity of a 25-year-old woman, together with the multiphase enhanced CT findings. The patients who had a history of recurrent nasal bleeding, had experienced nasal obstruction and swelling during the two-month period prior to presentation, and one month before presentation, spontaneous vaginal delivery occurred. Physical examination revealed the presence of a well-defined round mass, with redness in the right nasal vertibule. The mass showed rim enhancement at early arterial-phase CT scanning, increased enhancement at the late arterial phase, and moderately homogeneous enhancement at the delayed phase

  12. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  13. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko

    2018-03-01

    This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.

  14. Meniscus formation in a capillary and the role of contact line friction.

    Science.gov (United States)

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  15. Experimental validation of a numerical model of two-phase displacement in porous medium

    International Nuclear Information System (INIS)

    Genty, A.

    1996-01-01

    Burial in geological layers appears to be an interesting solution to dispose of radioactive wastes. This thesis analyzes and simulates the behaviour of gas produced by waste barrels corrosion. The released contaminated gas drains the water initially present in the host rock and yields a water-gas two phase flow. A literature survey of two phase flow shows that fluid interfaces may display instabilities for definite flow characteristics. When the displacement is stable a smooth interface proceeds through the porous medium. When the interface shows fingering, the displacement is said to be 'viscous-unstable', and when the front is jagged the displacement is called 'capillary' displacement. A dimensional analysis of classical equations governing two phase flow in porous media is combined with a classification of dominant forces to define an original map of flow regimes that includes gravitational forces. The map is based on three dimensionless numbers and predicts a priori the flow type. For typical data describing a radioactive waste repository a 'viscous-unstable' displacement is predicted by the map. We simulate water-gas displacement with a numerical model previously developed; this code, based on the Muskat model, uses the mixed-hybrid finite elements technique and is therefore well adapted for tracking moving interfaces. Fluxes are well conserved, however instabilities cannot be simulated. We assume that there is always a scale to be found where instabilities can be averaged and we try to validate the model with experimental two phase flows. We performed laboratory water-gas flow experiments for a variety of flow conditions. The observed displacement types are consistent with the map of flow regimes. Good agreement with numerical simulations is obtained when precise parameters of the displacements are available, in particular relative permeability curves. We conclude that our model allows a first approach of migration of gas near a radioactive waste repository

  16. Multi-phase imaging of intermittency at steady state using differential imaging method by X-ray micro-tomography

    Science.gov (United States)

    Gao, Y.; Lin, Q.; Bijeljic, B.; Blunt, M. J.

    2017-12-01

    To observe intermittency in consolidated rock, we image a steady state flow of brine and decane in Bentheimer sandstone. We devise an experimental method based on X-ray differential imaging method to examine how changes in flow rate impact the pore-scale distribution of fluids during co-injection flow under dynamic flow conditions at steady state. This helps us elucidate the diverse flow regimes (connected, intermittent break-up, or continual break-up of the non-wetting phase pathways) for two capillary numbers. Also, relative permeability curves under both capillary and viscous limited conditions could be measured. We have performed imbibition sample floods using oil-brine and measured steady state relative permeability on a sandstone rock core in order to fully characterize the flow behaviour at low and high Ca. Two sets of experiments at high and low flow rates are provided to explore the time-evolution of the non-wetting phase clusters distribution under different flow conditions. The high flow rate is 0.5 mL/min, whose corresponding capillary number is 7.7×10-6. The low flow rate is 0.02 mL/min, whose capillary number is 3.1×10-7. A procedure based on using high-salinity brine as the contrast phase and applying differential imaging between the dry scan and that of the sample saturation with a 30 wt% Potassium iodide (KI) doped brine help to make sure there is no non-wetting phase in micro-pores. Then the intermittent phase in multiphase flow image at high Ca can be quantified by obtaining the differential image between the 30 wt% KI brine image and the scans that taken at each fixed fractional flow. By using the grey scale histogram distribution of the raw images at each condition, the oil proportion in the intermittent phase can be calculated. The pressure drops at each fractional flow at low and high Ca can be measured by high-precision pressure differential sensors and utilized to calculate to the relative permeability at pore scale. The relative

  17. A two-dimensional model of the pressing section of a paper machine including dynamic capillary effects

    KAUST Repository

    Iliev, Oleg P.

    2013-05-15

    Paper production is a problem with significant importance for society; it is also a challenging topic for scientific investigation. This study is concerned with the simulation of the pressing section of a paper machine. A two-dimensional model is developed to account for the water flow within the pressing zone. A Richards-type equation is used to describe the flow in the unsaturated zone. The dynamic capillary pressure-saturation relation is adopted for the paper production process. The mathematical model accounts for the coexistence of saturated and unsaturated zones in a multilayer computational domain. The discretization is performed by the MPFA-O method. Numerical experiments are carried out for parameters that are typical of the production process. The static and dynamic capillary pressure-saturation relations are tested to evaluate the influence of the dynamic capillary effect. © 2013 Springer Science+Business Media Dordrecht.

  18. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Hayes, K.F.; Demond, A.H.

    1991-09-01

    The purpose of this project is to investigate how changes in interfacial chemical properties affect two-phase transport relationships. Specifically, the objective is to develop a quantitative means that will enable the prediction of changes in the capillary pressure-saturation relationship, a fundamental constitutive relationship in multiphase flow, from changes in interfacial properties, such as adsorption and electrophoretic mobility, through a knowledge of their effect on wettability. The information presented here summarizes the progress we have made in the past eight months of the second project period. Working with a system composed of air-water-silica-cetyltrimethylammonium bromide (CTAB), we have obtained a relationship between degree of adsorption and the surface charge of silica (as measured by electrophoretic mobility), and the drainage and imbibition capillary pressure relationships of system. The bulk of this report describes the completed set of measurements for the air-water-silica-CTAB system at pH 6. We are currently working on a comparable set of measurements for the xylene-water-silica-CTAB system at pH 6. Described here are the interfacial tension, contact angle and preliminary drainage capillary pressure measurements. Our work to date shows a dependence of surface properties on pH. Consequently, in the coming year, we will also complete a set of measurements at another pH value to show the effect of pH on capillary pressure relationships

  19. Dynamic Modeling of Phase Crossings in Two-Phase Flow

    DEFF Research Database (Denmark)

    Madsen, Søren; Veje, Christian; Willatzen, Morten

    2012-01-01

    by a high resolution finite difference scheme due to Kurganov and Tadmore. The homogeneous formulation requires a set of thermodynamic relations to cover the entire range from liquid to gas state. This leads a number of numerical challenges since these relations introduce discontinuities in the derivative...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...

  20. Capillary density: An important parameter in nailfold capillaroscopy.

    Science.gov (United States)

    Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik

    2017-01-01

    Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Capillary Condensation with a Grain of Salt.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2017-11-21

    Capillary condensation (CC), namely, the formation from the vapor of a stable phase of drops below the saturation pressure, is a prevalent phenomenon. It may occur inside porous structures or between surfaces of particles. CC between surfaces, a liquid "bridge", is of particular practical interest because of its resulting adhesive force. To date, studies have focused on pure water condensation. However, nonvolatile materials, such as salts and surfactants, are prevalent in many environments. In the current study, the effect of these contaminants on CC is investigated from a thermodynamic point of view. This is done by computing the Gibbs energy of such systems and developing the modified Kelvin equation, based on the Kohler theory. The results demonstrate that nonvolatile solutes may have a number of major effects, including an increase in the critical radius and the stabilization of the newly formed phase.

  2. Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices

    Science.gov (United States)

    Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  3. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.

    Science.gov (United States)

    Nakamura, Keita; Kikumoto, Mamoru

    2018-03-15

    The Leverett concept is used conventionally to model the relationship between the capillary pressures and the degrees of saturation in the water-nonaqueous phase liquid (NAPL)-air three-phase system in porous media. In this paper, the limitation of the Leverett concept that the concept is not applicable in the case of nonspreading NAPLs is discussed through microscopic consideration. A new concept that can be applied in the case of nonspreading NAPLs as well as spreading NAPLs is then proposed. The validity of the proposed concept is confirmed by comparing with past experimental data and simulation results obtained using the conventional model based on the Leverett concept. It is confirmed that the proposed concept can correctly predict the observed distributions of NAPLs, including those of nonspreading ones. Copyright © 2018. Published by Elsevier B.V.

  4. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  5. Interaction between blood and solid particles propagating through a capillary with slip effects.

    Science.gov (United States)

    Zeeshan, A; Fatima, A; Khalid, F; Bhatti, M M

    2018-04-18

    This article describes the interaction between solid particles and blood propagating through a capillary. A slip condition is considered on the walls of the capillary. The rheological features of the blood are discussed by considering as a two-phase Newtonian fluid model, i.e., the suspension of cells in plasma. A perturbation method is successfully applied to obtain the series solution of the governing coupled differential equations. The series solution for both fluid and particle phase are presented up to second order approximation. The expressions for the velocity and pressure distributions under slip effects are determined within a tube. Furthermore, the current results are beneficial to understand the rheological features of blood which will be helpful to interpret and analyze more complex blood flow models. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport.

    Science.gov (United States)

    Goldman, D; Popel, A S

    2000-09-21

    The objective of this study was to investigate the effects of capillary network anastomoses and tortuosity on oxygen transport in skeletal muscle, as well as the importance of muscle fibers in determining the arrangement of parallel capillaries. Countercurrent flow and random capillary blockage (e.g. by white blood cells) were also studied. A general computational model was constructed to simulate oxygen transport from a network of blood vessels within a rectangular volume of tissue. A geometric model of the capillary network structure, based on hexagonally packed muscle fibers, was constructed to produce networks of straight unbranched capillaries, capillaries with anastomoses, and capillaries with tortuosity, in order to examine the effects of these geometric properties. Quantities examined included the tissue oxygen tension and the capillary oxyhemoglobin saturation. The computational model included a two-phase simulation of blood flow. Appropriate parameters were chosen for working hamster cheek-pouch retractor muscle. Our calculations showed that the muscle-fiber geometry was important in reducing oxygen transport heterogeneity, as was countercurrent flow. Tortuosity was found to increase tissue oxygenation, especially when combined with anastomoses. In the absence of tortuosity, anastomoses had little effect on oxygen transport under normal conditions, but significantly improved transport when vessel blockages were present. Copyright 2000 Academic Press.

  7. Comprehensive protein profiling by multiplexed capillary zone electrophoresis using cross-linked polyacrylamide coated capillaries.

    Science.gov (United States)

    Liu, Shaorong; Gao, Lin; Pu, Qiaosheng; Lu, Joann J; Wang, Xingjia

    2006-02-01

    We have recently developed a new process to create cross-linked polyacrylamide (CPA) coatings on capillary walls to suppress protein-wall interactions. Here, we demonstrate CPA-coated capillaries for high-efficiency (>2 x 10(6) plates per meter) protein separations by capillary zone electrophoresis (CZE). Because CPA virtually eliminates electroosmotic flow, positive and negative proteins cannot be analyzed in a single run. A "one-sample-two-separation" approach is developed to achieve a comprehensive protein analysis. High throughput is achieved through a multiplexed CZE system.

  8. Two-phase-flow models and their limitations

    International Nuclear Information System (INIS)

    Ishii, M.; Kocamustafaogullari, G.

    1982-01-01

    An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper

  9. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    Science.gov (United States)

    Saurel, Richard; Pantano, Carlos

    2018-01-01

    Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.

  10. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  11. Novel Micro-Capillary Electrochromatography for Mars Organic Detector, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography - a high performance and low power...

  12. Novel Micro-Capillary Electrochromatography for Mars Organic Detector, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography -- a high performance and low power...

  13. Recent advances in the preparation and application of monolithic capillary columns in separation science

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tingting; Yang, Xi; Xu, Yujing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China); Ji, Yibing, E-mail: jiyibing@msn.com [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009 (China); Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009 (China)

    2016-08-10

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  14. Recent advances in the preparation and application of monolithic capillary columns in separation science

    International Nuclear Information System (INIS)

    Hong, Tingting; Yang, Xi; Xu, Yujing; Ji, Yibing

    2016-01-01

    Novel column technologies involving various materials and efficient reactions have been investigated for the fabrication of monolithic capillary columns in the field of analytical chemistry. In addition to the development of these miniaturized systems, a variety of microscale separation applications have achieved noteworthy results, providing a stepping stone for new types of chromatographic columns with improved efficiency and selectivity. Three novel strategies for the preparation of capillary monoliths, including ionic liquid-based approaches, nanoparticle-based approaches and “click chemistry”, are highlighted in this review. Furthermore, we present the employment of state-of-the-art capillary monolithic stationary phases for enantioseparation, solid-phase microextraction, mixed-mode separation and immobilized enzyme reactors. The review concludes with recommendations for future studies and improvements in this field of research. - Highlights: • Preparation of novel monolithic capillary columns have shown powerful potential in analytical chemistry field. • Various materials including ionic liquids and nanoparticles involved into capillary monolithic micro-devices are concluded. • Click chemistry strategy applied for preparing monolithic capillary columns is reviewed. • Recent strategies utilized in constructing different capillary monoliths for enantiomeric separation are summarized. • Advancement of capillary monoliths for complex samples analysis is comprehensively described.

  15. Studies on capillary tube expansion device used in J-T refrigerators operating with nitrogen-hydrocarbon mixtures

    Science.gov (United States)

    Harish Kruthiventi, S. S.; Venkatarathnam, G.

    2017-10-01

    Capillary tube expansion devices are used extensively in small closed cycle J-T refrigerators operating with refrigerant mixtures due to its low cost and the absence of any moving parts. It is possible for J-T refrigerators operating with mixtures that the velocity of refrigerant mixture at capillary tube outlet reaches a value where it equals the speed of sound at certain conditions. The variation of the speed of sound of nitrogen-hydrocarbon mixtures used in J-T refrigerators has been studied in two phase (vapour-liquid) and three-phase (Vapour-liquid-liquid) region as a function of temperature and pressure in this work. Also the conditions under which choking occurs in practical J-T refrigerators is investigated.

  16. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  17. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  18. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  19. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering

    2014-03-31

    , approaching a percolation threshold while non-barrier regions remain numerous. The maximum possible extent of LCT thus occurs at Pc,entrycrit near this threshold. Testing predictions of this simple algorithm against full-physics simulations of buoyancy-driven CO2 migration support the concept of critical capillary entry pressure. However, further research is needed to determine whether a single value of critical capillary entry pressure always applies and how that value can be determined a priori. Simulations of injection into high-resolution (cells 0.3 m on a side) 2D and 3D heterogeneous domains show two characteristic behaviors. At small gravity numbers (vertical flow velocity much less than horizontal flow velocity) the CO2 fills local traps as well as regions that would act as local barriers if CO2 were moving only due to buoyancy. When injection ceases, the CO2 migrates vertically to establish large saturations within local traps and residual saturation elsewhere. At large gravity numbers, the CO2 invades a smaller portion of the perforated interval. Within this smaller swept zone the local barriers are not invaded, but local traps are filled to large saturation during injection and remain during post-injection gravity-driven migration. The small gravity number behavior is expected in the region within 100 m of a vertical injection well at anticipated rates of injection for commercial GCS. Simulations of leakage scenarios (through-going region of large permeability imposed in overlying seal) indicate that LCT persists (i.e. CO2 remains held in a large fraction of the local iv traps) and the persistence is independent of injection rate during storage. Simulations of leakage for the limiting case of CO2 migrating vertically from an areally extensive emplacement in the lower portion of a reservoir showed similar strong persistence of LCT. This research has two broad

  20. Model and Simulation of a Tunable Birefringent Fiber Using Capillaries Filled with Liquid Ethanol for Magnetic Quasiphase Matching In-Fiber Isolator

    Directory of Open Access Journals (Sweden)

    Clint Zeringue

    2010-01-01

    Full Text Available A technique to tune a magnetic quasi-phase matching in-fiber isolator through the application of stress induced by two mutually orthogonal capillary tubes filled with liquid ethanol is investigated numerically. The results show that it is possible to “tune” the birefringence in these fibers over a limited range depending on the temperature at which the ethanol is loaded into the capillaries. Over this tuning range, the thermal sensitivity of the birefringence is an order-of-magnitude lower than conventional fibers, making this technique well suited for magnetic quasi-phase matching.

  1. Interfacial Instability in Two-Phase Flow: Manipulating Coalescence and Condensation

    Data.gov (United States)

    National Aeronautics and Space Administration — Two-phase flow under microgravity conditions presents a number of technical challenges ( and ). Life support and habitation depend on systems that use two-phase flow...

  2. A Phase-Controlled Optical Parametric Amplifier Pumped by Two Phase-Distorted Laser Beams

    International Nuclear Information System (INIS)

    Hong-Yan, Ren; Lie-Jia, Qian; Peng, Yuan; He-Yuan, Zhu; Dian-Yuan, Fan

    2010-01-01

    We theoretically study the phase characteristic of optical parametric amplification (OPA) or chirped pulse OPA (OPCPA) pumped by two phase-distorted laser beams. In the two-beam-pumped optical parametric amplification (TBOPA), due to spatial walk-off, both of the pump phase distortions will be partly transferred to signal in a single crystal so as to degrade the signal beam-quality, which will be more serious in high-energy OPCPA. An OPA configuration with a walkoff-compensated crystal pair is demonstrated for reducing the signal phase distortion experienced in the first stage and ensuring the signal phase independent of two pump phase distortions through the second crystal, hence maintaining the signal beam-quality. Such a TBOPA is similar to the conventional quantum laser amplifier by means of eliminating its sensitivity to the phase and number of the pump beams

  3. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  4. Effective Rheology of Two-Phase Flow in Three-Dimensional Porous Media: Experiment and Simulation.

    Science.gov (United States)

    Sinha, Santanu; Bender, Andrew T; Danczyk, Matthew; Keepseagle, Kayla; Prather, Cody A; Bray, Joshua M; Thrane, Linn W; Seymour, Joseph D; Codd, Sarah L; Hansen, Alex

    2017-01-01

    We present an experimental and numerical study of immiscible two-phase flow of Newtonian fluids in three-dimensional (3D) porous media to find the relationship between the volumetric flow rate ( Q ) and the total pressure difference ([Formula: see text]) in the steady state. We show that in the regime where capillary forces compete with the viscous forces, the distribution of capillary barriers at the interfaces effectively creates a yield threshold ([Formula: see text]), making the fluids reminiscent of a Bingham viscoplastic fluid in the porous medium. In this regime, Q depends quadratically on an excess pressure drop ([Formula: see text]). While increasing the flow rate, there is a transition, beyond which the overall flow is Newtonian and the relationship is linear. In our experiments, we build a model porous medium using a column of glass beads transporting two fluids, deionized water and air. For the numerical study, reconstructed 3D pore networks from real core samples are considered and the transport of wetting and non-wetting fluids through the network is modeled by tracking the fluid interfaces with time. We find agreement between our numerical and experimental results. Our results match with the mean-field results reported earlier.

  5. Determination of ethyl sulfate in human serum and urine by capillary zone electrophoresis.

    Science.gov (United States)

    Jung, Balthasar; Caslavska, Jitka; Thormann, Wolfgang

    2008-10-03

    The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.

  6. Single-phase and two-phase gas-liquid turbulent mixing between subchannels in a simulated rod bundle

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa; Tomino, Takayoshi.

    1996-01-01

    This study is concerned with turbulent mixing which is one of the three mechanisms of cross flows between subchannels in a nuclear fuel rod bundle. The channel used in this experiments was a vertical simulated rod bundle having two subchannels connected through 1 to 3 gaps between two rods and/or rod and channel wall. The number of the gaps was changed to investigate the effect of the number on the turbulent mixing. Turbulent mixing rates of air and water and fluctuations of pressure difference between the subchannels were measured for single-phase and two-phase gas-liquid flows under hydrodynamic equilibrium flow conditions. It has been confirmed that the turbulent mixing rate is affected strongly by the fluctuations especially for liquid phase in two-phase slug or churn flow. (author)

  7. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  8. On Capillary Rise and Nucleation

    Science.gov (United States)

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  9. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  10. A macrothermodynamic approach to the limit of reversible capillary condensation.

    Science.gov (United States)

    Trens, Philippe; Tanchoux, Nathalie; Galarneau, Anne; Brunel, Daniel; Fubini, Bice; Garrone, Edoardo; Fajula, François; Di Renzo, Francesco

    2005-08-30

    The threshold of reversible capillary condensation is a well-defined thermodynamic property, as evidenced by corresponding states treatment of literature and experimental data on the lowest closure point of the hysteresis loop in capillary condensation-evaporation cycles for several adsorbates. The nonhysteretical filling of small mesopores presents the properties of a first-order phase transition, confirming that the limit of condensation reversibility does not coincide with the pore critical point. The enthalpy of reversible capillary condensation can be calculated by a Clausius-Clapeyron approach and is consistently larger than the condensation heat in unconfined conditions. Calorimetric data on the capillary condensation of tert-butyl alcohol in MCM-41 silica confirm a 20% increase of condensation heat in small mesopores. This enthalpic advantage makes easier the overcoming of the adhesion forces by the capillary forces and justifies the disappearing of the hysteresis loop.

  11. Thermally stable dexsil-400 glass capillary columns

    International Nuclear Information System (INIS)

    Maskarinec, M.P.; Olerich, G.

    1980-01-01

    The factors affecting efficiency, thermal stability, and reproducibility of Dexsil-400 glass capillary columns for gas chromatography in general, and for polycyclic aromatic hydrocarbons (PAHs) in particular were investigated. Columns were drawn from Kimble KG-6 (soda-lime) glass or Kimox (borosilicate) glass. All silylation was carried out at 200 0 C. Columns were coated according to the static method. Freshly prepared, degassed solutions of Dexsil-400 in pentane or methylene chloride were used. Thermal stability of the Dexsil 400 columns with respect to gas chromatography/mass spectrometry (GC/MS) were tested. Column-to-column variability is a function of each step in the fabrication of the columns. The degree of etching, extent of silylation, and stationary phase film thickness must be carefully controlled. The variability in two Dexsil-400 capillary column prepared by etching, silylation with solution of hexa methyl disilazone (HMDS), and static coating is shown and also indicates the excellent selectivity of Dexsil-400 for the separation of alkylated aromatic compounds. The wide temperature range of Dexsil-400 and the high efficiency of the capillary columns also allow the analysis of complex mixtures with minimal prefractionation. Direct injection of a coal liquefaction product is given. Analysis by GC/MS indicated the presence of parent PAHs, alkylated PAHs, nitrogen and sulfur heterocycles, and their alkylated derivatives. 4 figures

  12. A capillary-pumped loop (CPL) with microcone-shaped capillary structure for cooling electronic devices

    International Nuclear Information System (INIS)

    Jung, Jung-Yeul; Oh, Hoo-Suk; Kwak, Ho-Young; Lee, Dae Keun; Choi, Kyong Bin; Dong, Sang Keun

    2008-01-01

    A MEMS-based integrated capillary-pumped loop (CPL), which can be used for cooling electronic devices such as the CPU of a personal computer or notebook, was developed. The CPL consists of an evaporator and condenser both with the same size of 30 mm × 30 mm × 5.15 mm, which were fabricated using two layers of glass wafer and one layer of silicon wafer. A key element of the CPL is that the 480 ± 15 µm thickness silicon wafer where an array of 56 × 56 cone-shaped microholes that generates the capillary forces was fabricated and inserted above the compensation cavity for liquid transportation instead of a porous wick in the evaporator. The same cone-shaped microstructure was used in the condenser to create a stable interface between the liquid and vapor phases. The CPL fabricated was tested under various conditions such as different relative heights, fill ratios and heat fluxes. The operation conditions of the CPL were varied according to the relative height and fill ratios. With an allowable temperature of 110 °C on the evaporator surfaces, the CPL can handle a heat flux of about 6.22 W cm −2 for the air-cooled condenser. Steady-state operation conditions were achieved within 10 min. (note)

  13. Characterization of polymer monolithic stationary phases for capillary HPLC

    Czech Academy of Sciences Publication Activity Database

    Moravcová, D.; Jandera, P.; Urban, J.; Planeta, Josef

    2003-01-01

    Roč. 26, č. 11 (2003), s. 1005-1016 ISSN 1615-9306 R&D Projects: GA ČR GA203/02/0023 Institutional research plan: CEZ:AV0Z4031919; CEZ:MSM 253100002 Keywords : monolithic column s * capillary HPLC * column testing Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.108, year: 2003

  14. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    Evander, Mikael; Tenje, Maria

    2014-01-01

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  15. Soluto-capillary convection in micro-encapsulation

    International Nuclear Information System (INIS)

    Subramanian, P.; Zebib, A.

    2005-01-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by micro-encapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluoro-benzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number soluto-capillary convection in the shells. Comparison with results from linear theory and available experiments are made. (authors)

  16. High intensity pulse self-compression in short hollow core capillaries

    OpenAIRE

    Butcher, Thomas J.; Anderson, Patrick N.; Horak, Peter; Frey, Jeremy G.; Brocklesby, William S.

    2011-01-01

    The drive for shorter pulses for use in techniques such as high harmonic generation and laser wakefield acceleration requires continual improvement in post-laser pulse compression techniques. The two most commonly used methods of pulse compression for high intensity pulses are hollow capillary compression via self-phase modulation (SPM) [1] and the more recently developed filamentation [2]. Both of these methods can require propagation distances of 1-3 m to achieve spectral broadening and com...

  17. Reliability of widefield capillary microscopy to measure nailfold capillary density in systemic sclerosis.

    Science.gov (United States)

    Hudson, M; Masetto, A; Steele, R; Arthurs, E; Baron, M

    2010-01-01

    To determine intra- and inter-observer reliability of widefield microscopy to measure nailfold capillary density in patients with systemic sclerosis (SSc). Five SSc patients were examined with a STEMV-8 Zeiss biomicroscope with 50x magnification. The nailfold of the second, third, fourth and fifth fingers of both hands of each patient were photographed twice by each of two observers, once in the morning and again in the afternoon (total of 32 pictures). Two raters reviewed the photographs to produce capillary density readings. Intra- and inter-rater reliability of the readings were computed using intra-class correlations (ICC). Additional analyses were undertaken to determine the impact of other sources of variability in the data, namely patient, finger, technician and time. Intra-and inter-rater reliability were substantial (ICC 0.72-0.84) when raters were reading the same photographs or photographs taken at the same time of day. Agreement was only fair between morning and afternoon density readings (ICC 0.30-0.37). Patients, individual fingers and technician accounted for a large part of the variability in the data (combined variance component of 7.69 out of the total 12.23). The coefficient of variation of widefield microscopy was 24%. Although intra- and inter-rater reliability of nailfold capillary density measurements using widefield microscopy are good, proper standardisation of the conditions under which capillaroscopy is done and better imaging of nailfold capillary abnormalities should be considered if nailfold capillary density is to be used as an outcome measure in multi-centre clinical trials in SSc.

  18. Two-phase flux simulations by robots

    International Nuclear Information System (INIS)

    Barrera, F.D.

    1997-01-01

    Two-Phase flow systems are studied following the statistical formulation, which takes into account the bubble population balances. This is done by means of automata simulation. Geometrical automata are associated to the dispersed phase, and are represented by discs on the plane, resembling bubbles moving in a fluid environment. Following pre-determined rules, the automata evolve, and useful statistical information about their interaction is obtained. This information is applied in the present work to study the mechanisms that induce bubble coalescence. Models for one and two sized automata are presented. It was found that in the case of the model for one size, the probability of interaction among bubbles and the pair correlation function depends not only on the void fraction, but also on the number of elements of the dispersed phase. A correlation for the collision probability between two bubbles is obtained, and this result was extended to the pair correlation function. For the case of systems with two characteristic sizes, a model was formulated for analyzing the interaction among bubbles of the two groups. The interaction of bubbles for one and two sized systems were related by a symmetry factor, which shows the dependence of the interaction among bubbles with the size distribution. By means of the automata simulation, the phenomena of bubble confinement and screening were characterized. It was found that the first phenomenon is stronger in systems with greater distance among bubbles, and that the second effect increases with void fraction and bubble number. (author)

  19. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)

    2014-05-15

    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  20. Parametric study of a capillary tube-suction line heat exchanger in a transcritical CO2 heat pump cycle

    International Nuclear Information System (INIS)

    Agrawal, Neeraj; Bhattacharyya, Souvik

    2008-01-01

    The capillary tube in a transcritical CO 2 system behaves differently as temperature and pressure are two independent parameters unlike those in a sub-critical cycle. A capillary tube-suction line heat exchanger (CL-SLHX) in a transcritical vapour compression cycle considering homogeneous two-phase flow is modelled in this study based on mass, energy and momentum equations. Effects of gas cooler temperature, evaporator temperature and internal diameter of capillary tube are investigated. Heat transfer rate is observed to be influenced by refrigerant quality, mass flow rate and the prevailing temperature difference. Heat transfer rate variation with gas cooler temperature is unique, recording an initial increase followed by a decrease. Frictional pressure drop influences the heat transfer; consequently, chances of re-condensation of refrigerant vapour are very marginal. Larger diameter of capillary tube leads to increase in refrigerant mass flow rate and increase in heat transfer rate as well. Shorter inlet adiabatic capillary length with larger heat exchanger length is better for heat transfer. This study is an attempt to dispel the scepticism prevailing in transcritical CO 2 system community overemphasising the need for a throttle valve to control the optimum discharge pressure

  1. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    Science.gov (United States)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  2. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  3. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men.

    Science.gov (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M

    2005-01-01

    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pski-jumping, volleyball, soccer and modern dance.

  4. Separation of oligopeptides, nucleobases, nucleosides and nucleotides using capillary electrophoresis/electrochromatography with sol-gel modified inner capillary wall.

    Science.gov (United States)

    Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan

    2017-09-29

    The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. 3D capillary valves for versatile capillary patterning of channel walls

    NARCIS (Netherlands)

    Papadimitriou, Vasileios; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    We demonstrate passive capillary patterning of channel walls with a liquid in situ. Patterning is performed using a novel 3D capillary valve system combining three standard capillary stop valves. A range of different patterns is demonstrated in three channel walls. Capillary patterning was designed

  6. Serum protein capillary electrophoresis and measurement of acute phase proteins in a captive cheetah (Acinonyx jubatus) population

    DEFF Research Database (Denmark)

    Depauw, Sarah; Delanghe, Joris; Whitehouse-Tedd, Katherine

    2014-01-01

    Renal and gastrointestinal pathologies are widespread in the captive cheetah (Acinonyx jubatus) population but are often diagnosed at a late stage, because diagnostic tools are limited to the evaluation of clinical signs or general blood examination. Presently, no data are available on serum...... proteins and acute-phase proteins in cheetahs during health or disease, although they might be important to improve health monitoring. This study aimed to quantify serum proteins by capillary electrophoresis in 80 serum samples from captive cheetahs, categorized according to health status and disease type....... Moreover, serum amyloid A concentrations were measured via a turbidimetric immunoassay validated in domestic cats, whereas haptoglobin and C-reactive protein were determined by non-species-specific functional tests. Cheetahs classified as healthy had serum protein and acute phase protein concentrations...

  7. Evaluation and management of Periocular Capillary Hemangioma: A review

    International Nuclear Information System (INIS)

    Al-Motowa, Saeed A.; Chaudhry, Imtiaz A.

    2006-01-01

    To review the salient features of periocular capillary hemangioma, provide the ophthalmologist with clinical, diagnostic and histological features characteristic of the tumor and discuss various methods of management. Methods were literature review of periocular capillary hemangioma, diagnostic evaluation with emphasis on treatment through the presentation of illustrative clinical cases. Capillary hemangioma is the most common benign vascular tumor found on the head and neck area including eyelids and orbit. The lesion typically manifests within the first few weeks of life, grows rapidly in the first year during the proliferative phase, then invariably and slowly regresses over the next 4 to 5 years during the involutional phase. The lesion may resolve without leaving any significant cosmetic sequelae in vast majority of patients, however, the functional defects in the form of amblyopia, squint, facial disfigurement and rarely optic atrophy may persist long after complete resolution of the tumor. The diagnosis of the capillary hemangioma requires a combination of clinical and imaging studies such as ultrasonography, computerized tomography, magnetic resonance imaging and angiography in selected cases. With the advent of less invasive diagnostic techniques, the need for biopsy in capillary hemangioma has decreased. Nevertheless, it should be differentiated from other periocular tumors such as rhabdomyosarcoma, lymphangioma, chloroma, neuroblastoma, orbital cyst, and orbital cellulites. Treatment is indicated to prevent amblyopia or cosmetic disfigurement. If indicated, intra-lesional corticosteroids may be used to enhance resolution of the tumor. Other forms of treatment tried with variable success include systematic and topical corticosteroids, radiation, surgical excision and intravenous embolization of the tumor. Indecent years, laser ablation of the tumor has been found effective in some cases. Interferon-u has been utilized effectively in cases of capillary

  8. Capillary condensation and gelling of microemulsions with clay additives.

    Science.gov (United States)

    Gvaramia, Manuchar; Mangiapia, Gaetano; Falus, Peter; Ohl, Michael; Holderer, Olaf; Frielinghaus, Henrich

    2018-04-22

    The capillary condensation in bicontinuous microemulsions takes place when two parallel surfaces are narrowed that result in a completely lamellar microemulsion. We expected that this phase transition is also observable when the amount of hydrophilic surfaces from clay particles is raised, because hydrophilic surfaces induce lamellar ordering locally. Using small angle neutron scattering, the structure of microemulsions was observed as a function of clay content. The critical concentration is indicated by discontinuous structural changes and depends on the platelet diameter and is explained by the free energy of the platelets competing with the fluctuating medium. The gel phase transition is observed in the spectroscopic measurements where the diffusion motion is widely suppressed in the gel phase, but otherwise superimposes with the membrane undulations. Copyright © 2018. Published by Elsevier Inc.

  9. Two kinds of Phase transitions in a Voting model

    OpenAIRE

    Hisakado, Masato; Mori, Shintaro

    2012-01-01

    In this paper, we discuss a voting model with two candidates, C_0 and C_1. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase trans...

  10. Multianalyte detection using a capillary-based flow immunosensor.

    Science.gov (United States)

    Narang, U; Gauger, P R; Kusterbeck, A W; Ligler, F S

    1998-01-01

    A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused silica capillaries are prepared by coating anti-TNT and anti-RDX antibodies onto the silanized inner walls using a hetero-bifunctional crosslinker. After immobilization, the antibodies are saturated with a suitable fluorophorelabeled antigen. A "T" connector is used to continuously flow the buffer solution through the individual capillaries. To perform the assay, an aliquot of TNT or RDX or a mixture of the two analytes is injected into the continuous flow stream. In each capillary, the target analyte displaces the fluorophore-labeled antigen from the binding pocket of the antibody. The labeled antigen displaced from either capillary is detected downstream using two portable spectrofluorometers. The limits of detection for TNT and RDX in the multi-analyte formate are 44 fmol (100 microliters of 0.1 ng/ml TNT solution) and 224 fmol (100 microliters of 0.5 ng/ml RDX solution), respectively. The entire assay for both analytes can be performed in less than 3 min.

  11. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase.

    Science.gov (United States)

    Stege, Patricia W; Sombra, Lorena L; Messina, Germán; Martinez, Luis D; Silva, María F

    2010-07-01

    The finding of melatonin, the often called "hormone of darkness" in plants opens an interesting perspective associated to the plethora of health benefits related to the moderate consumption of red wine. In this study, the implementation of a new method for the determination of melatonin in complex food matrices by CEC with immobilized carboxylic multi-walled carbon nanotubes as stationary phase is demonstrated. The results indicated high electrochromatographic resolution, good capillary efficiencies and improved sensitivity respect to those obtained with conventional capillaries. In addition, it was demonstrated highly reproducible results between runs, days and columns. The LOD for melatonin was 0.01 ng/mL. The method was successfully applied to the determination of melatonin in red and white wine, grape skin and plant extracts of Salvia officinalis L.

  12. Cell adhesion during bullet motion in capillaries.

    Science.gov (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji

    2016-08-01

    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.

  13. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor

    International Nuclear Information System (INIS)

    Liu Dayu; Liang Guangtie; Lei Xiuxia; Chen Bin; Wang Wei; Zhou Xiaomian

    2012-01-01

    Graphical abstract: An oscillation-flow approach using a droplet reactor was developed to fully explore the potential of continuous-flow PCR. By fully utilizing interfacial chemistry, a water-in-oil (w/o) droplet was automatically generated by allowing an oil–water plug to flow through a polytetrafluoroethylene (PTFE) capillary. Due to the movement of aqueous phase relative to the oil phase, the droplet moves further into the middle of the oil plug with increase in migration distance. The resulting droplet was transported spanning the two heating zones and was employed as the reactor of oscillating-flow PCR. Highlights: ► Droplet formation in a capillary. ► Transport the droplet using oscillation-flow. ► Oscillation droplet PCR. ► Improved reaction efficiency. - Abstract: The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil–water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current

  14. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  15. Grand canonical Monte Carlo simulation study of capillary condensation between nanoparticles.

    Science.gov (United States)

    Kim, Seonmin; Ehrman, Sheryl H

    2007-10-07

    Capillary condensation at the nanoscale differs from condensation in the bulk phase, because it is a strong function of surface geometry and gas-surface interactions. Here, the effects of geometry on the thermodynamics of capillary condensation at the neck region between nanoparticles are investigated via a grand canonical Monte Carlo simulation using a two-dimensional lattice gas model. The microscopic details of the meniscus formation on various surface geometries are examined and compared with results of classical macromolecular theory, the Kelvin equation. We assume that the system is composed of a lattice gas and the surfaces of two particles are approximated by various shapes. The system is modeled on the basis of the molecular properties of the particle surface and lattice gas in our system corresponding to titania nanoparticles and tetraethoxy orthosilicate molecules, respectively. This system was chosen in order to reasonably emulate our previous experimental results for capillary condensation on nanoparticle surfaces. Qualitatively, our simulation results show that the specific geometry in the capillary zone, the surface-surface distance, and the saturation ratio are important for determining the onset and broadening of the liquid meniscus. The meniscus height increases continuously as the saturation ratio increases and the meniscus broadens faster above the saturation ratio of 0.90. The change of the radius of curvature of the particle surface affects the dimensions of the capillary zone, which drives more condensation in narrow zones and less condensation in wide zones. The increase of surface-surface distance results in the decrease of the meniscus height or even the disappearance of the meniscus entirely at lower saturation ratios. These effects are significant at the nanoscale and must be carefully considered in order to develop predictive relationships for meniscus height as a function of saturation conditions.

  16. Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis

    KAUST Repository

    Brokate, M.; Botkin, N.D.; Pykhteev, O.A.

    2012-01-01

    The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic

  17. Capillary evaporation in colloid-polymer mixtures selectively confined to a planar slit

    International Nuclear Information System (INIS)

    Schmidt, Matthias; Fortini, Andrea; Dijkstra, Marjolein

    2004-01-01

    Using density functional theory and Monte Carlo simulations we investigate the Asakura-Oosawa-Vrij mixture of hard sphere colloids and non-adsorbing ideal polymers under selective confinement of the colloids to a planar slab geometry. This is a model for confinement of colloid-polymer mixtures by either two parallel walls with a semi-permeable polymer coating or through the use of laser tweezers. We find that such a pore favours the colloidal gas over the colloidal liquid phase and induces capillary evaporation. A treatment based on the Kelvin equation gives a good account of the location of the capillary binodal for large slit widths. The colloid density profile is found to exhibit a minimum (maximum) at contact with the wall for large (small) slit widths

  18. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    Science.gov (United States)

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  19. Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry.

    Science.gov (United States)

    Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc

    2017-11-08

    Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.

  20. Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space

    Science.gov (United States)

    Lekan, Jack F.; Allen, Jeffrey S.

    1998-01-01

    Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design

  1. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.; Saad, Bilal Mohammed; Saad, Mazen

    2016-01-01

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  2. Numerical study of compositional compressible degenerate two-phase flow in saturated–unsaturated heterogeneous porous media

    KAUST Repository

    Saad, Ali S.

    2016-01-02

    We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.

  3. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  5. Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube

    Science.gov (United States)

    Alok, Praveen; Sahu, Debjyoti

    2018-02-01

    Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.

  6. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    Science.gov (United States)

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  7. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Morris, C.E.; Stormont, J.C.

    1997-01-01

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  8. Two-phase flow models in unbounded two-phase critical flows

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.

    1985-01-01

    With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions

  9. From capillary condensation to interface localization transitions in colloid-polymer mixtures confined in thin-film geometry.

    Science.gov (United States)

    De Virgiliis, Andres; Vink, Richard L C; Horbach, Jürgen; Binder, Kurt

    2008-10-01

    Monte Carlo simulations of the Asakura-Oosawa model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer-to-colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: While the left wall has a hard-core repulsion for both polymers and colloids, at the right-hand wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation type to interface localization type. For very thin films (i.e., for D=3 ) and a suitable choice of the wall-colloid interactions, evidence is found that the critical behavior falls in the universality class of the two-dimensional Ising model. Otherwise, we observe crossover scaling between different universality classes (namely, the crossover from the three-dimensional to the two-dimensional Ising model universality class). The colloid and polymer density profiles across the film in the various phases are discussed, as well as the correlation of interfacial fluctuations in the direction parallel to the confining walls. The broadening of the interface between the coexisting colloid-rich and polymer-rich phases (located parallel to the confining walls) is understood in terms of capillary wave fluctuations. The experimental observability of all these

  10. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  11. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  12. Capillary pressure - saturation relations in quartz and carbonate sands: Limitations for correlating capillary and wettability influences on air, oil, and supercritical CO2 trapping

    Science.gov (United States)

    Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.

    2016-12-01

    Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.

  13. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  14. Pharmacology of post-irradiation damage of blood capillaries

    International Nuclear Information System (INIS)

    Pospisil, J.; Pouckova, P.

    1979-01-01

    Available literature data are summed up on the effect of a number of substances on irradiation damage to blood capillaries. The substances include vitamins, bioflavonoids, serotonine, histamine, bradykinin, ACTH, adrenal hormones, vasopressin, estrogens, prostaglandins, escin 1-butanol, diisopropylfluorophosphate, phenoxybenzamine, 1,4-dihydroxybenzenesulphonic acid derivatives, and xi-aminohexanoic acid. The data include the effects of the substances administered before and after irradiation on blood capillary damage and on mortality. (Ha)

  15. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  16. Two kinds of phase transitions in a voting model

    Science.gov (United States)

    Hisakado, M.; Mori, S.

    2012-08-01

    In this paper, we discuss a voting model with two candidates, C0 and C1. We consider two types of voters—herders and independents. The voting of independents is based on their fundamental values, while the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is an information cascade transition similar to a phase transition seen in the Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist. We compared our results to the conclusions of experiments and identified the phase transitions in the upper limit of the time t by using the analysis of human behavior obtained from experiments.

  17. Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.

    1986-01-01

    This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed

  18. Metabolic cytometry: capillary electrophoresis with two-color fluorescence detection for the simultaneous study of two glycosphingolipid metabolic pathways in single primary neurons.

    Science.gov (United States)

    Essaka, David C; Prendergast, Jillian; Keithley, Richard B; Palcic, Monica M; Hindsgaul, Ole; Schnaar, Ronald L; Dovichi, Norman J

    2012-03-20

    Metabolic cytometry is a form of chemical cytometry wherein metabolic cascades are monitored in single cells. We report the first example of metabolic cytometry where two different metabolic pathways are simultaneously monitored. Glycolipid catabolism in primary rat cerebella neurons was probed by incubation with tetramethylrhodamine-labeled GM1 (GM1-TMR). Simultaneously, both catabolism and anabolism were probed by coincubation with BODIPY-FL labeled LacCer (LacCer-BODIPY-FL). In a metabolic cytometry experiment, single cells were incubated with substrate, washed, aspirated into a capillary, and lysed. The components were separated by capillary electrophoresis equipped with a two-spectral channel laser-induced fluorescence detector. One channel monitored fluorescence generated by the metabolic products produced from GM1-TMR and the other monitored the metabolic products produced from LacCer-BODIPY-FL. The metabolic products were identified by comparison with the mobility of a set of standards. The detection system produced at least 6 orders of magnitude dynamic range in each spectral channel with negligible spectral crosstalk. Detection limits were 1 zmol for BODIPY-FL and 500 ymol for tetramethylrhodamine standard solutions.

  19. Up-scaling of a two-phase flow model including gravity effect in geological heterogeneous media: application to CO2 sequestration

    International Nuclear Information System (INIS)

    Ngo, Tri-Dat

    2016-01-01

    This work deals with the mathematical modeling and the numerical simulation of the migration under gravity and capillarity effects of the supercritical CO 2 injected into a geological heterogeneous sequestration site. The simulations are performed with the code DuMux. Particularly, we consider the up-scaling, from the cell scale to the reservoir scale, of a two-phase (CO 2 -brine) flow model within a periodic stratified medium made up of horizontal low permeability barriers, continuous or discontinuous. The up-scaling is done by the two-scale asymptotic method. First, we consider perfectly layered media. An homogenized model is developed and validated by numerical simulation for different values of capillary number and the incident flux of CO 2 . The homogenization method is then applied to the case of a two-dimensional medium made up of discontinuous layers. Due to the gravity effect, the CO 2 accumulates under the low permeability layers, which leads to a non-standard local mathematical problem. This stratification is modeled using the gravity current approach. This approach is then extended to the case of semi-permeable strata taking into account the capillarity. The up-scaled model is compared with numerical simulations for different types of layers, with or without capillary pressure, and its limit of validity is discussed in each of these cases. The final part of this thesis is devoted to the study of the parallel computing performances of the code DuMux to simulate the injection and migration of CO 2 in three-dimensional heterogeneous media (layered periodic media, fluvial media and reservoir model SPE 10). (author) [fr

  20. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti-malarial trials in Uganda

    OpenAIRE

    Hubbard Alan E; Dorsey Grant; Gupta Vinay; Rosenthal Philip J; Greenhouse Bryan

    2010-01-01

    Abstract Background Molecular genotyping is performed in anti-malarial trials to determine whether recurrent parasitaemia after therapy represents a recrudescence (treatment failure) or new infection. The use of capillary instead of agarose gel electrophoresis for genotyping offers technical advantages, but it is unclear whether capillary electrophoresis will result in improved classification of anti-malarial treatment outcomes. Methods Samples were genotyped using both gel and capillary elec...

  1. A convenient tool for gas derivatization using fine-needle capillary mounting for protein crystals

    International Nuclear Information System (INIS)

    Mizuno, Nobuhiro; Makino, Masatomo; Kumasaka, Takashi

    2013-01-01

    A convenient gas-derivatization tool for protein crystals is presented in combination with a fine-needle capillary and a gas-pressure regulator. Gas derivatization of protein crystals is useful not only to analyse gas-binding proteins but also to solve the phase problem of X-ray crystallography by using noble gases. However, the gas pressurization tools for these experiments are often elaborate and need to release the gas before flash-cooling. To simplify this step, a procedure using a fine-needle capillary to mount and flash-cool protein crystals under the pressurization of gases has been developed. After the crystals are picked up with the capillary, the capillary is sealed with an adhesive and then connected directly to a gas regulator. The quality of the diffraction data using this method is comparable with that of data from conventional pressurization procedures. The preparation of xenon-derivatives of hen egg-white lysozyme using this method was a success. In the derivatives, two new xenon binding sites were found and one of their sites vanished by releasing the gas. This observation shows the availability of flash-cooling under gas pressurization. This procedure is simple and useful for preparing gas-derivative crystals

  2. Numerical analysis of capillary entrapment for effective CO{sub 2} aquifer storage

    Energy Technology Data Exchange (ETDEWEB)

    Uelker, B.; Pusch, G. [Technische Univ. Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; May, F. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    2007-09-13

    The success of underground CO{sub 2} sequestration projects relies on the ability of keeping CO{sub 2} immobilized. The risk of CO{sub 2} leakage into the atmosphere through faults, cap rock formations or wellbore must be evaluated for the long term safety of storage. In case of CO{sub 2} sequestration in a saline aquifer capillary trapping of CO{sub 2} is one of the essential mechanisms controlling the upward and lateral migration of CO{sub 2} plumes after the injection phase. Therefore, assessment of CO{sub 2} immobilization requires accurate modelling of multi phase flow performance. A generic reservoir model was created to examine the impact of the relative permeabilities and capillary forces on capillary trapping. This study reveals how the mechanism of capillary trapping is affected by varying the CO{sub 2} injection rate, hysteresis between drainage and imbibition processes and residual phase saturations. The leakage risk of injected CO{sub 2} in vertical and horizontal wells was also compared to identify the effective injection geometry. Vertical injection across the entire storage formation interval leads to extensive contact with cap rock and leakage through it. Horizontal wells located in the lower part of the formation both increase the aquifer utilization and eliminate contact with cap rock immediately. Thus horizontal wells can be an alternative to inject more CO{sub 2} and minimize leakage. (orig.)

  3. Hybrid-dimensional modelling of two-phase flow through fractured porous media with enhanced matrix fracture transmission conditions

    Science.gov (United States)

    Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre

    2018-03-01

    In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.

  4. Capillary detectors for high resolution tracking

    International Nuclear Information System (INIS)

    Annis, P.; Bay, A.; Bonekaemper, D.; Buontempo, S.; Ereditato, A.; Fabre, J.P.; Fiorillo, G.; Frekers, D.; Frenkel, A.; Galeazzi, F.; Garufi, F.; Goldberg, J.; Golovkin, S.; Hoepfner, K.; Konijn, J.; Kozarenko, E.; Kreslo, I.; Liberti, B.; Martellotti, G.; Medvedkov, A.; Mommaert, C.; Panman, J.; Penso, G.; Petukhov, Yu.; Rondeshagen, D.; Tyukov, V.; Vasilchenko, V.; Vilain, P.; Vischers, J.L.; Wilquet, G.; Winter, K.; Wolff, T.; Wong, H.

    1997-01-01

    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 x 10 5 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on electron bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented. (orig.)

  5. Separation of total lipids on human lipoproteins using surfactant-coated multiwalled carbon nanotubes as pseudostationary phase in capillary electrophoresis.

    Science.gov (United States)

    Su, Mei-Yu; Chen, Yen-Yi; Yang, Jian-Ying; Lin, You-Sian; Lin, Yang-Wei; Liu, Mine-Yine

    2014-04-01

    Surfactant-coated multiwalled carbon nanotubes (MWNTs) were used as pseudostationary phase (PSP) in CE to investigate the total lipids of high-density lipoproteins and low-density lipoproteins. To optimize the CE conditions, several experimental factors including carbon nanotube concentration, bile salt concentration, sodium phosphate (PB) concentration, organic modifier concentration and buffer pH value have been examined. In addition, the CE capillary temperature and applied voltage have also been examined. The optimal separation buffer selected was a mixture of 3.2 mg/L MWNT, 50 mM bile salt, 10 mM PB, 20% 1-propanol, pH 9.5. The optimal capillary temperature and applied voltage selected were 50°C and 20 kV, respectively. Phosphatidyl choline (PC) has been used as a model analyte and investigated by the optimal CE method. The linear range for PC was 0.1-3 mg/mL with a correlation coefficient of 0.9934, and the concentration LOD was 0.055 mg/mL. The optimal CE method has been used to characterize the total lipids of high-density lipoprotein and low-density lipoprotein. At absorbance 200 nm, one major peak and two or three minor peaks showed for the total lipids of lipoproteins within 13 minutes. Resolutions of the total lipids were enhanced using surfactant-coated MWNTs as PSPs in the CE separation buffer. However, resolutions of the total lipids were not enhanced using surfactant-coated single-walled carbon nanotubes as PSPs in the CE separation buffer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Parallel Computing Characteristics of Two-Phase Thermal-Hydraulics code, CUPID

    International Nuclear Information System (INIS)

    Lee, Jae Ryong; Yoon, Han Young

    2013-01-01

    Parallelized CUPID code has proved to be able to reproduce multi-dimensional thermal hydraulic analysis by validating with various conceptual problems and experimental data. In this paper, the characteristics of the parallelized CUPID code were investigated. Both single- and two phase simulation are taken into account. Since the scalability of a parallel simulation is known to be better for fine mesh system, two types of mesh system are considered. In addition, the dependency of the preconditioner for matrix solver was also compared. The scalability for the single-phase flow is better than that for two-phase flow due to the less numbers of iterations for solving pressure matrix. The CUPID code was investigated the parallel performance in terms of scalability. The CUPID code was parallelized with domain decomposition method. The MPI library was adopted to communicate the information at the interface cells. As increasing the number of mesh, the scalability is improved. For a given mesh, single-phase flow simulation with diagonal preconditioner shows the best speedup. However, for the two-phase flow simulation, the ILU preconditioner is recommended since it reduces the overall simulation time

  7. Mixing phases of unstable two-level systems

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Brentano, P. von.

    1993-01-01

    An unstable two-level system decaying into an arbitrary number of channels is considered. It is shown that the mixing phases of the two overlapping resonances can be expressed in the terms of their partial widths and one additional universal mixing parameter. Some applications to a doublet of 2 + resonances in 8 Be and to the ρ-ω systems are considered. 18 refs

  8. Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel

    International Nuclear Information System (INIS)

    Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.

    2014-01-01

    Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)

  9. The impact of intermediate wet states on two-phase flow in porous media, studied by network modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoeiland, Linda Kaada

    2006-04-15

    Reservoir wettability is a measure of a rocks preference for the oil and/or the brine phase. Wettability has a dominant impact on fluid movements in porous media, hence oil displacement in reservoir rocks. Understanding the local wettability and the effect of wettability on the fluid movements are therefore of interest in relation to oil recovery processes. Contrary to the earlier believed homogenous wetted cases where the porous media was strongly oil-wet for carbonate reservoirs or strongly water-wet for clastic reservoirs, it is now believed that most reservoir rocks experience some kind of intermediate wet state. Since wettability affects oil recovery, different classes of intermediate wettability are expected to have different impacts on the fluid flow processes. The major subject treated in this thesis is how different intermediate wet states affect fluid flow parameters which are important for the oil recovery. This is done by use of a capillary dominated network model of two-phase flow, where the network is based on a model of reconstructed sandstone. The existence of different intermediate wet classes is argued in Paper I, while Paper II, III and IV analyse the effect different intermediate wet classes have on wettability indices, residual oil saturation, capillary pressure and relative permeability (author)

  10. Semiflexible polymers confined in a slit pore with attractive walls: two-dimensional liquid crystalline order versus capillary nematization.

    Science.gov (United States)

    Milchev, Andrey; Egorov, Sergei A; Binder, Kurt

    2017-03-01

    Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.

  11. Nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate)-silica hybrid sol immobilized on open tubular capillary column for capillary electrochromatography enantioseparation.

    Science.gov (United States)

    Sun, Yaming; Wu, Qi; Shi, Xiaofeng; Gao, Jie; Dong, Shuqing; Zhao, Liang

    2018-04-01

    The chiral organic-inorganic hybrid materials can exhibit a high loading, and the chiral selector nanoparticles can create efficient stationary phases for open-tubular capillary electrochromatography (OT-CEC). Hence, a novel protocol for the preparation of an OT column coated with nano-amylose-2,3-bis(3,5-dimethylphenylcarbamate) (nano-ABDMPC)-silica hybrid sol through in situ layer-by-layer self-assembly method was developed for CEC enantioseparation. By controlling the assembly cycle number of nano-ABDMPC-silica hybrid sol, a homogeneous, dense and stable coating was successfully prepared, which was confirmed by SEM and elemental analysis. As the main parameter influencing the chiral separating effect, the nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues concentration was investigated. The experimental results showed that 10.0 mg/mL nano-ABDMPC bearing 3-(triethoxysilyl)propyl residues coated OT capillary column possessed chiral recognition ability toward the six enantiomers (phenylalanine, tyrosine, tryptophan, phenethyl alcohol, 1-phenyl-2-propanol, and Tröger's base) at some of the different conditions tested. Additionally, the coated OT column revealed adequate repeatability concerning run-to-run, day-to-day and column-to-column. These results demonstrated the promising applicability of nano-ABDMPC-silica hybrid sol coated OT column in CEC enantioseparations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Planeta, Josef; Wiedmer, S. K.

    2013-01-01

    Roč. 1317, SI (2013), s. 159-166 ISSN 0021-9673 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : monolithic silica capillary column * immobilized liposomes * biomimicking stationary phase Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  13. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  14. Wrapped and unwrapped phase of radiation scattered by a discrete number of particles

    International Nuclear Information System (INIS)

    Watson, Stephen M; Ridley, Kevin D

    2007-01-01

    This paper investigates wrapped and unwrapped phase differences generated by a non-Gaussian scattering model: the two-dimensional random walk. Mean square values for these quantities are obtained for one and two scatterers, as well as the large scatterer limit when the field constitutes a circular complex Gaussian process. Numerical simulation is used to investigate the phase under more general fluctuation conditions, and reveals that the wrapped phase difference correlation converges rapidly to that result predicted for a Gaussian speckle field. Analytical results for the unwrapped phase indicate that this quantity transitions from a stationary process for one and two scatterers to a non-stationary process in the large scatterer limit. The nature of this transition is examined using numerical simulation for arbitrary scatterer number. Phase correlations are of consequence in various phase sensitive detection systems, and this paper examines both Gaussian and non-Gaussian fields

  15. Determination of gabapentin in human plasma by capillary electrophoresis-laser induced fluorescence detection with and without solid-phase extraction

    International Nuclear Information System (INIS)

    Cao, L.; Liang, S.; Tan, X.; Meng, J.

    2012-01-01

    We have developed two methods for the quantitation of gabapentin in human plasma. They are based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) with and without solid-phase extraction (SPE) and the derivatizing reagent 5-(4,6-dichlorotriazinyl)amino fluoresencin. The conditions for derivatization, separation and extraction were investigated in detail, and the optimal labeling conditions include a temperature of 40 0 C, a reaction time of 30 min, and the use of a borate buffer of pH 9.0 as the reaction medium. A borate buffer of pH 9.2 served as a background electrolyte for CE separations. The CE-LIF and SPE-CE-LIF methods have linear ranges of 5-200 nmol L -1 and 0.2-10 nmol L -1 , respectively, and the limits of detection are 0.5 and 0.02 nmol L -1 , respectively. The SPE-CE-LIF method was successfully applied to the determination of gabapentin in blood plasma samples. (author)

  16. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  17. Reverse capillary flow of condensed water through aligned multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Yun, Jongju; Jeon, Wonjae; Alam Khan, Fakhre; Lee, Jinkee; Baik, Seunghyun

    2015-01-01

    Molecular transport through nanopores has recently received considerable attention as a result of advances in nanofabrication and nanomaterial synthesis technologies. Surprisingly, water transport investigations through carbon nanochannels resulted in two contradicting observations: extremely fast transport or rejection of water molecules. In this paper, we elucidate the mechanism of impeded water vapor transport through the interstitial space of aligned multiwalled carbon nanotubes (aligned-MWCNTs)—capillary condensation, agglomeration, reverse capillary flow, and removal by superhydrophobicity at the tip of the nanotubes. The origin of separation comes from the water’s phase change from gas to liquid, followed by reverse capillary flow. First, the saturation water vapor pressure is decreased in a confined space, which is favorable for the phase change of incoming water vapor into liquid drops. Once continuous water meniscus is formed between the nanotubes by the adsoprtion and agglomeration of water molecules, a high reverse Laplace pressure is induced in the mushroom-shaped liquid meniscus at the entry region of the aligned-MWCNTs. The reverse Laplace pressure can be significantly enhanced by decreasing the pore size. Finally, the droplets pushed backward by the reverse Laplace pressure can be removed by superhydrophobicity at the tip of the aligned-MWCNTs. The analytical analysis was also supported by experiments carried out using 4 mm-long aligned-MWCNTs with different intertube distances. The water rejection rate and the separation factor increased as the intertube distance decreased, resulting in 90% and 10, respectively, at an intertube distance of 4 nm. This mechanism and nanotube membrane may be useful for energy-efficient water vapor separation and dehumidification. (paper)

  18. Reversed-phase liquid chromatography coupled on-line with capillary gas chromatography use of an anion-exchange membrane to remove an ion-pair reagent from the eluent.

    NARCIS (Netherlands)

    Brinkman, U.A.T.; Goosens, E.C.; de Jong, D.; de Jong, G.J.; Beerthuizen, I.M.

    1995-01-01

    In order to enable the coupling of reversed-phase liquid chromatography (RPLC) with capillary gas chromatography (GC), the performance of an anion-exchange micromembrane device has been studied to remove the ion-pair reagent methanesulphonic acid from an acetonitrile/water LC eluent. The regenerant

  19. Representation of two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    VAUGHN, PALMER; BEAN, J.E.; HELTON, JON CRAIG; LORD, MICHAEL E.; MACKINNON, ROBERT J.; SCHREIBER, JAMES D.

    2000-01-01

    The following topics related to the representation of two-phase (gas and brine) flow in the vicinity of the repository in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are discussed: (1) system of nonlinear partial differential equations used to model two-phase flow, (2) incorporation of repository shafts into model (3) creep closure of repository. (4) interbed fracturing, (5) gas generation (6) capillary action in waste, (7) borebole model (8) numerical solution and (9) gas and brine flow across specified boundaries. Two-phase flow calculations are a central part of the 1996 WIPP PA and supply results that are subsequently used in the calculation of releases to the surface at the time of a drilling intrusion (i.e., spallings, direct brine releases) and long-term releases due to radionuclide transport by flowing groundwater

  20. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  1. Organics in water contamination analyzer, phase 1

    Science.gov (United States)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  2. 用于高效液相色谱和开管毛细管电色谱的氢化硅胶分离材料%Hydride-Based Separation Materials for High Performance Liquid Chromatography and Open Tubular Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    PESEK Joseph J; MATYSKA Maria T

    2005-01-01

    Silica hydride is a recent development in chromatographic support materials for high performance liquid chromatography (HPLC) where hydride groups replace 95% of the silanols on the surface. This conversion changes many of the fundamental properties of the material as well as the bonded stationary phases that are the result of further chemical modification of the hydride surface. Some unique chromatographic properties of hydride-based phases are described as well as some general application areas where these bonded materials may be used in preference to or have advantages not available from typical stationary phases. The fabrication, properties and applications of etched chemically modified capillaries for electrophoretic analysis are also reviewed. It is shown that the etching process creates a surface that is fundamentally different than a bare fused silica capillary. The new surface matrix produces unique electroosmotic flow properties and is more compatible with basic and biological compounds. After chemical modification of the surface, the bonded organic moiety (stationary phase) contributes to the control of migration of solutes in the capillary. Both electrophoretic and chromatographic processes take place in the etched chemically modified capillaries leading to a variety of experimental variables that can be used to optimize separations. A number of examples of separations on these capillaries are described.

  3. Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.

    Science.gov (United States)

    den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J

    2013-01-07

    We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point

  4. Capillary Condensation of Liquid 4He in Aerogel on Cooling Through λ Point

    International Nuclear Information System (INIS)

    Miyashita, W.; Yoneyama, K.; Kato, H.; Nomura, R.; Okuda, Y.

    2006-01-01

    Capillary condensation of liquid 4He in silica aerogel with a 90% porosity was investigated visually. The initial condition of the experiment was such that liquid 4He was present in the sample cell but not in the aerogel. This situation was realized by introducing the liquid into the cell at a fast rate to avoid liquefaction in the aerogel. The free surface of the liquid rose up in the cell with filling and eventually reached the bottom of the aerogel. Then, the aerogel absorbed the liquid by capillary condensation. The height of the liquid in the aerogel rose with time t roughly as t1/2 in the normal fluid phase. This behavior was consistent with the Washburn model. When the system was cooled through the λ point during the condensation, the liquid height started to rise faster in the superfluid phase with a constant velocity of about 0.3 mm/sec. The dynamics of capillary condensation was strongly dependent on whether the liquid 4He was in the normal or the superfluid phase

  5. Numerical Treatment of Two-phase Flow in Porous Media Including Specific Interfacial Area

    KAUST Repository

    El-Amin, Mohamed

    2015-06-01

    In this work, we present a numerical treatment for the model of two-phase flow in porous media including specific interfacial area. For numerical discretization we use the cell-centered finite difference (CCFD) method based on the shifting-matrices method which can reduce the time-consuming operations. A new iterative implicit algorithm has been developed to solve the problem under consideration. All advection and advection-like terms that appear in saturation equation and interfacial area equation are treated using upwind schemes. Selected simulation results such as pc–Sw–awn surface, capillary pressure, saturation and specific interfacial area with various values of model parameters have been introduced. The simulation results show a good agreement with those in the literature using either pore network modeling or Darcy scale modeling.

  6. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  7. Development of two phase turbulent mixing model for subchannel analysis relevant to BWR

    International Nuclear Information System (INIS)

    Sharma, M.P.; Nayak, A.K.; Kannan, Umasankari

    2014-01-01

    A two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent subchannels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. In this paper, we have defined new dimensionless parameters i.e. liquid mixing number and gas mixing number for two phase turbulent mixing. The liquid mixing number is a function of mixture Reynolds number whereas the gas phase mixing number is a function of both mixture Reynolds number and volumetric fraction of gas. The effect of pressure, geometrical influence of subchannel is also included in this model. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data. (author)

  8. Drainage and impregnation capillary pressure curves calculated by the X-ray CT model of Berea sandstone using Lattice Boltzmann's method

    Science.gov (United States)

    Zakirov, T.; Galeev, A.; Khramchenkov, M.

    2018-05-01

    The study deals with the features of the technique for simulating the capillary pressure curves of porous media on their X-ray microtomographic images. The results of a computational experiment on the immiscible displacement of an incompressible fluid by another in the pore space represented by a digital image of the Berea sandstone are presented. For the mathematical description of two-phase fluid flow we use Lattice Boltzmann Equation (LBM), and phenomena at the fluids interface are described by the color-gradient model. Compared with laboratory studies, the evaluation of capillary pressure based on the results of a computational filtration experiment is a non-destructive method and has a number of advantages: the absence of labor for preparation of fluids and core; the possibility of modeling on the scale of very small core fragments (several mm), which is difficult to realize under experimental conditions; three-dimensional visualization of the dynamics of filling the pore space with a displacing fluid during drainage and impregnation; the possibility of carrying out multivariate calculations for specified parameters of multiphase flow (density and viscosity of fluids, surface tension, wetting contact angle). A satisfactory agreement of the capillary pressure curves during drainage with experimental results was obtained. It is revealed that with the increase in the volume of the digital image, the relative deviation of the calculated and laboratory data decreases and for cubic digital cores larger than 1 mm it does not exceed 5%. The behavior of the non-wetting fluid flow during drainage is illustrated. It is shown that flow regimes under which computational and laboratory experiments are performed the distribution of the injected phase in directions different from the gradient of the hydrodynamic drop, including the opposite ones, is characteristic. Experimentally confirmed regularities are obtained when carrying out calculations for drainage and imbibition at

  9. Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis.

    Science.gov (United States)

    Nowak, Paweł; Olechowska, Paulina; Mitoraj, Mariusz; Woźniakiewicz, Michał; Kościelniak, Paweł

    2015-08-10

    In this work the acid dissociation constants--pKa of warfarin and its all important oxidative metabolites have been determined by capillary electrophoresis-based methods. It has resulted in a complete description of two acid-base dissociation equilibria, yet not investigated experimentally for phase I metabolites of warfarin. The capillary electrophoresis (CE) method based on the relation between effective electrophoretic mobilities and pH has proven to be a suitable tool for pKa determination, while the spectrophotometric (CE-DAD) and the internal standard methods (IS-CE), have appeared to be promising alternative approaches. The CE-DAD approach based on the change in absorbance spectra between the acidic and basic forms is a combination between capillary electrophoresis and spectrophotometric titration, and yields very consistent values of pKa1 with CE. The IS-CE, in turn, enables an estimation of pKa1 and pKa2 from only two analytical runs, however, less accurate than CE and CE-DAD. The Debye-Hückel model has been confirmed experimentally as a good predictor of pKa values at various ionic strengths. Therefore, it has been used in determination of thermodynamic pKa1 and pKa2, referring to the zero ionic strength. The results are important from the analytical, pharmacological, and theoretical points of view. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Experimental study of a quantum random-number generator based on two independent lasers

    Science.gov (United States)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  11. Condensation and evaporation transitions in deep capillary grooves

    International Nuclear Information System (INIS)

    Malijevský, Alexandr; Parry, Andrew O

    2014-01-01

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard–Jones-like potential. We find that below the wetting temperature T w condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above T w both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above T w there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry. (paper)

  12. Condensation and evaporation transitions in deep capillary grooves.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2014-09-03

    We study the order of capillary condensation and evaporation transitions of a simple fluid adsorbed in a deep capillary groove using a fundamental measure density functional theory (DFT). The walls of the capillary interact with the fluid particles via long-ranged, dispersion, forces while the fluid-fluid interaction is modelled as a truncated Lennard-Jones-like potential. We find that below the wetting temperature Tw condensation is first-order and evaporation is continuous with the metastability of the condensation being well described by the complementary Kelvin equation. In contrast above Tw both phase transitions are continuous and their critical singularities are determined. In addition we show that for the evaporation transition above Tw there is an elegant mapping, or covariance, with the complete wetting transition occurring at a planar wall. Our numerical DFT studies are complemented by analytical slab model calculations which explain how the asymmetry between condensation and evaporation arises out of the combination of long-ranged forces and substrate geometry.

  13. Evaporation Limited Radial Capillary Penetration in Porous Media.

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q

    2016-09-27

    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures.

  14. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  15. Two-phase flow in a saliniferous final repository using the example of ERAM. Final report; Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Ingo; Frieling, Gerd; Navarro, Martin

    2016-10-15

    In the frame of the research project ZIESEL the GRS enhanced the state of science and technology for the realization and evaluation of long-term safety cases for the final deposition of radioactive wastes. The superior aim was the improved understanding of two-phase flow processes in a complex final repository system. The consideration of two-phase processes in modeling of final repository systems induces processes and effects that significantly affect the transport behavior of fluid and radionuclides. Two-phase processes include not only capillary pressures and relative permeabilities but also a basic competition of phases with respect to pore volume for storage and transport and density-driven vertical separation of phases. Basically seals have been shown to be essential for the system behavior because of their influence of the gas pressure dependent control function. The system behavior is also influences by the model geometry.

  16. Visualization of Radial Peripapillary Capillaries Using Optical Coherence Tomography Angiography: The Effect of Image Averaging.

    Directory of Open Access Journals (Sweden)

    Shelley Mo

    Full Text Available To assess the effect of image registration and averaging on the visualization and quantification of the radial peripapillary capillary (RPC network on optical coherence tomography angiography (OCTA.Twenty-two healthy controls were imaged with a commercial OCTA system (AngioVue, Optovue, Inc.. Ten 10x10° scans of the optic disc were obtained, and the most superficial layer (50-μm slab extending from the inner limiting membrane was extracted for analysis. Rigid registration was achieved using ImageJ, and averaging of each 2 to 10 frames was performed in five ~2x2° regions of interest (ROI located 1° from the optic disc margin. The ROI were automatically skeletonized. Signal-to-noise ratio (SNR, number of endpoints and mean capillary length from the skeleton, capillary density, and mean intercapillary distance (ICD were measured for the reference and each averaged ROI. Repeated measures analysis of variance was used to assess statistical significance. Three patients with primary open angle glaucoma were also imaged to compare RPC density to controls.Qualitatively, vessels appeared smoother and closer to histologic descriptions with increasing number of averaged frames. Quantitatively, number of endpoints decreased by 51%, and SNR, mean capillary length, capillary density, and ICD increased by 44%, 91%, 11%, and 4.5% from single frame to 10-frame averaged, respectively. The 10-frame averaged images from the glaucomatous eyes revealed decreased density correlating to visual field defects and retinal nerve fiber layer thinning.OCTA image registration and averaging is a viable and accessible method to enhance the visualization of RPCs, with significant improvements in image quality and RPC quantitative parameters. With this technique, we will be able to non-invasively and reliably study RPC involvement in diseases such as glaucoma.

  17. Evaluation of mast cells, eosinophils, blood capillaries in oral lichen planus and oral lichenoid mucositis.

    Science.gov (United States)

    Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G

    2012-01-01

    lichen planus to oral lichenoid mucositis and increase in number of degranulated mast cells as well as capillaries subepithelially in oral lichenoid mucositis to oral lichen planus can be used as reliable criteria for histologic distinction between these two lesions. The increase of eosinophils in oral lichenoid mucositis to oral lichen planus could be used as adjunct histologic criterion in the diagnosis of oral lichenoid mucositis.

  18. Interleaved Buck Converter with Variable Number of Active Phases and a Predictive Current Sharing Scheme

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Garcia, O.; Oliver, J. A.

    2008-01-01

    The efficiency of an interleaved Buck converter is typically low at light load conditions because of the switching losses in each of the switching stages. Improvements in the converter efficiency can be achieved by dynamically changing the number of active phases depending on the load current....... This paper addresses the issues related to the transient response of the converter when the number of active phases is changed by a digital control scheme. The problem arises because the current in the individual phases of the interleaved Buck converter will not be equal immediately after the controller has...... changed the number of active phases. This paper proposes a current equalisation scheme that adjusts the duty cycle of each phase in a manner that ensures equal average inductor current in all active phases in one or two PWM periods. The current equalisation scheme relies on the measurement of the output...

  19. Two-group interfacial area concentration correlations of two-phase flows in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    The reliable empirical correlations and models are one of the important ways to predict the interfacial area concentration (IAC) in two-phase flows. However, up to now, no correlation or model is available for the prediction of the IAC in the two-phase flows in large diameter pipes. This study collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes and presented a systematic way to predict the IAC for two-phase flows from bubbly, cap-bubbly to churn flow in large diameter pipes by categorizing bubbles into two groups (group-1: spherical and distorted bubble, group-2: cap bubble). Correlations were developed to predict the group-1 void fraction from the void fraction of all bubble. The IAC contribution from group-1 bubbles was modeled by using the dominant parameters of group-1 bubble void fraction and Reynolds number based on the parameter-dependent analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. A new drift velocity correlation for two-phase flow with large cap bubbles in large diameter pipes was derived in this study. By comparing the newly-derived drift velocity correlation with the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes and using the characteristics of the representative bubbles among the group 2 bubbles, we developed the model of IAC and bubble size for group 2 cap bubbles. The developed models for estimating the IAC are compared with the entire collected database. A reasonable agreement was obtained with average relative errors of ±28.1%, ±54.4% and ±29.6% for group 1, group 2 and all bubbles respectively. (author)

  20. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  1. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Pressure drop of magnetohydrodynamic two-phase annular flow in rectangular channel

    International Nuclear Information System (INIS)

    Kumamaru, Hiroshige; Fujiwara, Yoshiki; Ogita, Kenji

    1999-01-01

    Numerical calculations have been performed on magnetohydrodynamic (MHD) two-phase annular flow in a rectangular channel with a small aspect ratio, i.e.a small ratio of the channel side perpendicular to the applied magnetic field and the side parallel to the field. Results of the present calculation agree nearly with Inoue et al.'s experimental results in the region of large liquid Reynolds numbers and large Hartmann numbers. Calculation results also show that the pressure drop ratio, i.e. the ratio of pressure drop of two-phase flow to that of single-phase flow under the same liquid flow rate and applied magnetic field, becomes lower than ∼0.02 for conditions of a fusion reactor plant. (author)

  3. Restricted-access media development for direct analysis of drugs in biofluids using capillary liquid chromatography.

    Science.gov (United States)

    Jarmalaviciene, Reda; Kornysova, Olga; Bendokas, Vidmantas; Westerlund, Douglas; Buszewski, Boguslaw; Maruska, Audrius

    2008-07-01

    In analytical sciences the design of novel materials and stationary phases for the sample preparation and separation of analytes from biological fluids is needed. In this work we present different strategies for modification of stationary phases to produce tailored solutions for the analytical problem. In this context a novel shielded polymeric reversed-phase monolithic material was prepared in the presence of different numbers of reactive groups and concentrations of the coating polymer. Chromatographic experiments were performed using benzoic acid propyl ester in order to characterize the hydrophobicity and efficiency of the different restricted-access continuous beds prepared. Inverse size-exclusion chromatography was used for investigation of the pore structure properties of the beds. Capillary columns were applied for nanochromatography of biological fluids containing a mixture of nitrazepamum and medazepamum.

  4. Modeling of two-phase flow in membranes and porous media in microgravity as applied to plant irrigation in space

    Science.gov (United States)

    Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.

    2001-01-01

    In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.

  5. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  6. [Effect of microneedle combined with Lauromacrogol on skin capillary network: experimental study].

    Science.gov (United States)

    Xu, Sida; Wei, Qiang; Fan, Youfen; Chen, Shihai; Liu, Qingfeng; Yin, Guoqiang; Liao, Mingde; Sun, Yu

    2014-11-01

    To explore the effect of microneedle combined with Lauromacrogol on skin capillary network. 24 male Leghone (1.5-2.0 kg in weight) were randomly divided into three groups as group A (microneedle combined with Lauromacrogol), B (microneedle combined with physiological saline) , and C(control). The cockscombs were treated. The specimens were taken on the 7th, 14th, 21th , and 28th day postoperatively. HE staining, immunohistochemical staining and special staining were performed for study of the number of capillary and collagen I/III , as well as elastic fibers. The color of cockscombs in group A became lightening after treatment. The number of capillary decreased as showing by HE staining. The collagen I and III in group B was significantly different from that in group A and C (P microneedle combined with Lauromacrogol could effectively reduce the capillary in cockscomb without any tissue fibrosis. Microneedle can stimulate the proliferation of elastic fiber, so as to improve the skin ageing process.

  7. Heat and mass transfers between two stratified liquid phases in a bubbly flow

    International Nuclear Information System (INIS)

    Lapuerta, C.

    2006-10-01

    During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)

  8. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  9. The Condensation effect on the two-phase flow stability

    International Nuclear Information System (INIS)

    Abdou Mohamed, Hesham Nagah

    2005-01-01

    A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of

  10. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography

    Science.gov (United States)

    Lin, Qingyang; Bijeljic, Branko; Rieke, Holger; Blunt, Martin J.

    2017-08-01

    The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

  11. Quantum phase crossovers with finite atom number in the Dicke model

    International Nuclear Information System (INIS)

    Hirsch, J G; Castaños, O; Nahmad-Achar, E; López-Peña, R

    2013-01-01

    Two-level atoms interacting with a one-mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom–cavity coupling strength. Two popular examples are the number of photons inside the cavity and the number of excited atoms. Coherent states provide a mean field description, which becomes exact in the thermodynamic limit. Employing symmetry-adapted (SA) SU(2) coherent states the quantum crossover, precursor of the critical behavior, can be described for a finite number of atoms. A variation after projection treatment, involving a numerical minimization of the SA energy surface, associates the quantum crossover with a discontinuity in the order parameters, which originates from competition between two local minima in the SA energy surface. Although this discontinuity is not present in finite systems, it provides a good description of 1/N effects in the observables. (paper)

  12. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine.

    Science.gov (United States)

    Piešťanský, Juraj; Maráková, Katarína; Mikuš, Peter

    2017-10-07

    An advanced two-dimensional capillary electrophoresis method, based on on-line combination of capillary isotachophoresis and capillary zone electrophoresis with cyclodextrin additive in background electrolyte, was developed for effective determination of serotonin in human urine. Hydrodynamically closed separation system and large bore capillaries (300-800 µm) were chosen for the possibility to enhance the sample load capacity, and, by that, to decrease limit of detection. Isotachophoresis served for the sample preseparation, defined elimination of sample matrix constituents (sample clean up), and preconcentration of the analyte. Cyclodextrin separation environment enhanced separation selectivity of capillary zone electrophoresis. In this way, serotonin could be successfully separated from the rest of the sample matrix constituents migrating in capillary zone electrophoresis step so that human urine could be directly (i.e., without any external sample preparation) injected into the analyzer. The proposed method was successfully validated, showing favorable parameters of sensitivity (limit of detection for serotonin was 2.32 ng·mL -1 ), linearity (regression coefficient higher than 0.99), precision (repeatability of the migration time and peak area were in the range of 0.02-1.17% and 5.25-7.88%, respectively), and recovery (ranging in the interval of 90.0-93.6%). The developed method was applied for the assay of the human urine samples obtained from healthy volunteers. The determined concentrations of serotonin in such samples were in the range of 12.4-491.2 ng·mL -1 that was in good agreement with literature data. This advanced method represents a highly effective, reliable, and low-cost alternative for the routine determination of serotonin as a biomarker in human urine.

  13. Entropy and baryon number conservation in the deconfinement phase transition

    International Nuclear Information System (INIS)

    Leonidov, A.; Redlich, K.; Satz, H.; Suhonen, E.; Weber, G.

    1994-01-01

    The conservation of entropy and baryon number in the deconfinement phase transition is studied in the framework of the bag model. In the standard construction of the equilibrium phase transition from a quark-gluon plasma into a hadron gas a subsequent dilution and reheating of the system on the phase boundary is necessary to preserve the entropy and baryon number conservation. We propose modifying the bag pressure to depend explicitly on temperature and baryon chemical potential. It is shown that this modification is sufficient to construct a model in agreement with the Gibbs equilibrium criteria for a phase transition, while simultaneously assuring entropy and baryon number conservation on the phase boundary. Within this model the quark-gluon plasma hadronizes at a fixed temperature and chemical potential

  14. Application of the string method to the study of critical nuclei in capillary condensation.

    Science.gov (United States)

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  15. Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays

    Science.gov (United States)

    Moran, Joaquin E.

    flux, and its dependency is a function of void fraction. A dimensional analysis was carried out to investigate the relationship between damping and two-phase flow related parameters. As a result, the inclusion of surface tension in the form of the Capillary number appears to be useful when combined with the two-phase component of the damping ratio (interfacial damping). A strong dependence of damping on flow regime was observed when plotting the interfacial damping versus the void fraction, introducing an improvement over the previous result obtained by normalizing the two-phase damping, which does not exhibit this behaviour. The interfacial velocity model was selected to represent the fluidelastic data in two-phase experiments, due to the inclusion of the tube array geometry and density ratio effects, which does not exist for the pitch velocity approach. An essential component in reliably establishing the velocity threshold for fluidelastic instability, is a measure of the energy dissipation available in the system to balance the energy input from the flow. The present analysis argues that the damping in-flow is not an appropriate measure and demonstrates that the use of quiescent fluid damping provides a better measure of the energy dissipation, which produces a much more logical trend in the stability behaviour. This value of damping, combined with the RAD density and the interfacial velocity, collapses the available data well and provides the expected trend of two-phase flow stability data over the void fraction range from liquid to gas flows. The resulting stability maps represent a significant improvement over existing maps for predicting fluidelastic instability of tube bundles in two-phase flows. This result also tends to confirm the hypothesis that the basic mechanism of fluidelastic instability is the same for single and two-phase flows.

  16. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  17. A coupling modulation model of capillary waves from gravity waves: Theoretical analysis and experimental validation

    Science.gov (United States)

    Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong

    2016-06-01

    According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.

  18. A New Concept of Two-Stage Multi-Element Resonant-/Cyclo-Converter for Two-Phase IM/SM Motor

    Directory of Open Access Journals (Sweden)

    Mahmud Ali Rzig Abdalmula

    2013-01-01

    Full Text Available The paper deals with a new concept of power electronic two-phase system with two-stage DC/AC/AC converter and two-phase IM/PMSM motor. The proposed system consisting of two-stage converter comprises: input resonant boost converter with AC output, two-phase half-bridge cyclo-converter commutated by HF AC input voltage, and induction or synchronous motor. Such a system with AC interlink, as a whole unit, has better properties as a 3-phase reference VSI inverter: higher efficiency due to soft switching of both converter stages, higher switching frequency, smaller dimensions and weight with lesser number of power semiconductor switches and better price. In comparison with currently used conventional system configurations the proposed system features a good efficiency of electronic converters and also has a good torque overloading of two-phase AC induction or synchronous motors. Design of two-stage multi-element resonant converter and results of simulation experiments are presented in the paper.

  19. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  20. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  1. Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3

    International Nuclear Information System (INIS)

    Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.

    2014-11-01

    The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems

  2. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  3. Convergence Analysis of a FV-FE Scheme for Partially Miscible Two-Phase Flow in Anisotropic Porous Media

    KAUST Repository

    Saad, Bilal Mohammed; Saad, Mazen

    2014-01-01

    We study the convergence of a combined finite volume nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phase. The diffusion term,which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of CO2 injection in a water saturated reservoir and nuclear waste management. Numerical results are obtained by in-house numerical code. © Springer International Publishing Switzerland 2014.

  4. Uniaxial creep as a control on mercury intrusion capillary pressure in consolidating rock salt

    Energy Technology Data Exchange (ETDEWEB)

    Dewers, Thomas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Heath, Jason E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leigh, Christi D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as

  5. Identification of two-phase flow regimes by time-series modeling

    International Nuclear Information System (INIS)

    King, C.H.; Ouyang, M.S.; Pei, B.S.

    1987-01-01

    The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling

  6. Measurement of Capillary Radius and Contact Angle within Porous Media.

    Science.gov (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  7. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  8. Fluid flow and radionuclide transport in complex repository mines. Synthesis report part 1/2. Two-phase flow in a saline repository using the example ERAM; Fluidstroemung und Radionuklidtransport in komplexen Endlagerbergwerken. Synthesebericht Teil 1/2. Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Ingo; Frieling, Gerd; Navarro, Martin

    2016-10-15

    The aim of the project is the understanding of two-phase flow processes in a complex final repository system. The consideration of two-phase flow processes for calculations concerning the modeled final repository system induces processes and effects that influence the fluid and radionuclide transport significantly. Two-phase flow processes cover not only capillary pressures and the relative permeability but also a basic competition of phases for the pore volume with respect to storage and transport and density driven vertical phase separation.

  9. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.

    Science.gov (United States)

    Haberer, Christina M; Rolle, Massimo; Liu, Sanheng; Cirpka, Olaf A; Grathwohl, Peter

    2011-03-25

    Oxygen transport across the capillary fringe is relevant for many biogeochemical processes. We present a non-invasive technique, based on optode technology, to measure high-resolution concentration profiles of oxygen across the unsaturated/saturated interface. By conducting a series of quasi two-dimensional flow-through laboratory experiments, we show that vertical hydrodynamic dispersion in the water-saturated part of the capillary fringe is the process limiting the mass transfer of oxygen. A number of experimental conditions were tested in order to investigate the influence of grain size and horizontal flow velocity on transverse vertical dispersion in the capillary fringe. In the same setup, analogous experiments were simultaneously carried out in the fully water-saturated zone, therefore allowing a direct comparison with oxygen transfer across the capillary fringe. The outcomes of the experiments under various conditions show that oxygen transport in the two zones of interest (i.e., the unsaturated/saturated interface and the saturated zone) is characterized by very similar transverse dispersion coefficients. An influence of the capillary fringe morphology on oxygen transport has not been observed. These results may be explained by the narrow grain size distribution used in the experiments, leading to a steep decline in water saturation at the unsaturated/saturated interface and to the absence of trapped gas in this transition zone. We also modeled flow (applying the van Genuchten and the Brooks-Corey relationships) and two-dimensional transport across the capillary fringe, obtaining simulated profiles of equivalent aqueous oxygen concentration that were in good agreement with the observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. A two-dimensional, transient, compressible isothermal and two-phase model for the air-side electrode of PEM fuel cells

    International Nuclear Information System (INIS)

    Khakbaz Baboli, M.; Kermani, M.J.

    2008-01-01

    A two-dimensional, transient, compressible, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) are numerically studied in the present paper. The mixture is composed of four species: oxygen, nitrogen, liquid water and water vapor. The governing PDE's are conservation of the water vapor and oxygen species, momentum equation of the mixture (gas+liquid), mass conservation of the liquid phase, and mass conservation of the mixture. In this study, a separate PDE for the mass conservation of the liquid water is solved to calculate the saturation levels. The capillary pressure was used to determine the slip velocity between the phases. A full compressible form of the momentum equation was used, with the ∇.V preserved in the equation. The Maxwell-Stefan equation was used to model the diffusive fluxes of the multi-component gas mixture. The strongly coupled equations are solved based on a recently developed finite volume SIMPLER scheme of S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., McGraw-Hill Book Company, 1984. The computational domain consists of two regions; an open area (gas delivery channel) linked to a porous gas diffusion layer (GDL). A single (unified) set of the PDE's are used for the whole domain with the corresponding properties of each sub-domain. A polarization curve for the whole spectrum of the dry and wet regions were obtained. The results were compared with the experiments of E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209, and good agreements were achieved

  11. Phase transitions of fluids in heterogeneous pores

    Directory of Open Access Journals (Sweden)

    A. Malijevský

    2016-03-01

    Full Text Available We study phase behaviour of a model fluid confined between two unlike parallel walls in the presence of long range (dispersion forces. Predictions obtained from macroscopic (geometric and mesoscopic arguments are compared with numerical solutions of a non-local density functional theory. Two capillary models are considered. For a capillary comprising two (differently adsorbing walls we show that simple geometric arguments lead to the generalized Kelvin equation locating very accurately capillary condensation, provided both walls are only partially wet. If at least one of the walls is in complete wetting regime, the Kelvin equation should be modified by capturing the effect of thick wetting films by including Derjaguin's correction. Within the second model, we consider a capillary formed of two competing walls, so that one tends to be wet and the other dry. In this case, an interface localized-delocalized transition occurs at bulk two-phase coexistence and a temperature T*(L depending on the pore width L. A mean-field analysis shows that for walls exhibiting first-order wetting transition at a temperature T_{w}, T_{s} > T*(L > T_{w}, where the spinodal temperature Ts can be associated with the prewetting critical temperature, which also determines a critical pore width below which the interface localized-delocalized transition does not occur. If the walls exhibit critical wetting, the transition is shifted below Tw and for a model with the binding potential W(l=A(Tl-2+B(Tl-3+..., where l is the location of the liquid-gas interface, the transition can be characterized by a dimensionless parameter κ=B/(AL, so that the fluid configuration with delocalized interface is stable in the interval between κ=-2/3 and κ ~ -0.23.

  12. Manufacturing of metallic porous structures to be used in capillary pumping systems

    Directory of Open Access Journals (Sweden)

    Eduardo Gonçalves Reimbrecht

    2003-12-01

    Full Text Available Sintered metallic porous structures have an application as capillary structures in two-phase heat transfer loops. In this work the manufacturing procedure of tubular porous structures for capillary pump application is discussed. The application of porous structures on capillary pumping systems requires porosity higher than 40% and pore size diameter lower than 20 µm. Carbonyl nickel powder with particle diameter between 3 and 7 µm and stainless steel AISI316L powder with particle diameter between 1 and 22 µm were used as raw material. Sintering under hydrogen atmosphere was performed both in a resistive furnace and in a plasma reactor. Temperature and time were the modified parameters to obtain suitable porosity and roundness on the samples. The porosity was measured using the Arquimedes Principle (MPIF-42, the roundness was evaluated using a simplified measurement technique of the sample diameter and the pore size distribution was determined by image analysis techniques. Images obtained by Scanning Electronic Microscopy were employed on the image analysis. The sintering parameters selected to manufacture nickel samples were 700 °C and 30 min resulting in a porosity of about 44%. The sintering parameters selected to manufacture stainless steel samples were 1000 °C and 30 min resulting in a porosity of about 40%.

  13. An Iterative Implicit Scheme for Nanoparticles Transport with Two-Phase Flow in Porous Media

    KAUST Repository

    El-Amin, Mohamed

    2016-06-01

    In this paper, we introduce a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium including gravity, capillary forces and Brownian diffusion. Nonlinear iterative IMPES scheme is used to solve the flow equation, and saturation and pressure are calculated at the current iteration step and then the transport equation is solved implicitly. Therefore, once the nanoparticles concentration is computed, the two equations of volume of the nanoparticles available on the pore surfaces and the volume of the nanoparticles entrapped in pore throats are solved implicitly. The porosity and the permeability variations are updated at each time step after each iteration loop. Numerical example for regular heterogenous permeability is considered. We monitor the changing of the fluid and solid properties due to adding the nanoparticles. Variation of water saturation, water pressure, nanoparticles concentration and porosity are presented graphically.

  14. Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.

  15. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men

    Directory of Open Access Journals (Sweden)

    W. M. Kilarski

    2011-08-01

    Full Text Available Muscle fibre profile area (Af, volume density (Vv, capillary-to-fibre ratio (CF and number of capillaries per fibre square millimetre (CD were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean ± SD: age 25.4±5.8 years, height 178.6±5.5 cm, body mass 72.1±7.7 kg of different training background. Seven subjects were untrained students (group A, nine were national and sub-national level endurance athletes (group B with the background of 7.8±2.9 years of specialised training, and eight subjects were sprint-power athletes (group C with 12.8±8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6% and C (50.5%; 26.4%. However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%. There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD was 245 (group A, 308 (group B and 325 (group C. Significant differences (P<0.05 in CF and CD, were found only between group A (1.9; 245 and both groups of trained men, B and C (2.1; 308 and 325. However, endurance athletes (group B, such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance.

  16. Lactic Acid Extraction and Mass Transfer Characteristics in Slug Flow Capillary Microreactors

    NARCIS (Netherlands)

    Susanti, S.; Winkelman, J.G.N.; Schuur, Boelo; heeres, h.j.; Yue, J.

    2016-01-01

    Capillary microreactors operated under the slug flow regime were investigated for the separation of lactic acid from the aqueous phase using liquid–liquid reactive extraction. The experiments were performed at a 1:1 flow ratio of the aqueous to organic phases in a setup consisting of an inlet Y-type

  17. Free energy calculations along entropic pathways. III. Nucleation of capillary bridges and bubbles

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2017-05-01

    Using molecular simulation, we analyze the capillary condensation and evaporation processes for argon confined in a cylindrical nanopore. For this purpose, we define the entropy of the adsorbed fluid as a reaction coordinate and determine the free energy associated with both processes along entropic pathways. For capillary condensation, we identify a complex free energy profile resulting from the multi-stage nature of this phenomenon. We find capillary condensation to proceed through the nucleation of a liquid bridge across the nanopore, followed by its expansion throughout the pore to give rise to the stable phase of high density. In the case of capillary evaporation, the free energy profile along the entropy pathway also exhibits different regimes, corresponding to the initial destabilization of the layered structure of the fluid followed by the formation, and subsequent expansion, of a bubble across the nanopore.

  18. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    International Nuclear Information System (INIS)

    Kazarian, Artaches A.; Sanz Rodriguez, Estrella; Deverell, Jeremy A.; McCord, James; Muddiman, David C.; Paull, Brett

    2016-01-01

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L"−"1 levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min"−"1, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L"−"1 for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  19. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, Artaches A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Sanz Rodriguez, Estrella; Deverell, Jeremy A. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); McCord, James; Muddiman, David C. [W.M. Keck FT-ICR-MS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Paull, Brett, E-mail: Brett.Paull@utas.edu.au [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia); ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001 (Australia)

    2016-01-28

    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L{sup −1} levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min{sup −1}, and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L{sup −1} for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%. - Highlights: • Novel PS-DVB modified photonic crystal fibres for in-capillary micro-extraction. • New method for micro-extraction of PAHs and HPLC-FL detection at sub-ppb levels. • Demonstration of PS-DVB modified photonic crystal fibres for capillary bioseparations.

  20. A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level.

    Science.gov (United States)

    Shams, Mosayeb; Raeini, Ali Q; Blunt, Martin J; Bijeljic, Branko

    2018-07-15

    This paper examines the role of momentum transfer across fluid-fluid interfaces in two-phase flow. A volume-of-fluid finite-volume numerical method is used to solve the Navier-Stokes equations for two-phase flow at the micro-scale. The model is applied to investigate viscous coupling effects as a function of the viscosity ratio, the wetting phase saturation and the wettability, for different fluid configurations in simple pore geometries. It is shown that viscous coupling effects can be significant for certain pore geometries such as oil layers sandwiched between water in the corner of mixed wettability capillaries. A simple parametric model is then presented to estimate general mobility terms as a function of geometric properties and viscosity ratio. Finally, the model is validated by comparison with the mobilities computed using direct numerical simulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Numerical simulation of two-phase flow with front-capturing

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    2000-01-01

    Because of the complexity of two-phase flow phenomena, two-phase flow codes rely heavily on empirical correlations. This approach has a number of serious shortcomings. Advances in parallel computing and continuing improvements in computer speed and memory have stimulated the development of numerical simulation tools that rely less on empirical correlations and more on fundamental physics. The objective of this work is to take advantage of developments in massively parallel computing, single-phase computational fluid dynamics of complex systems, and numerical methods for front capturing in two-phase flows to develop a computer code for direct numerical simulation of two-phase flow. This includes bubble/droplet transport, interface deformation and topology change, bubble-droplet interactions, interface mass, momentum, and energy transfer. In this work, the Navier-Stokes and energy equations are solved by treating both phases as a single fluid with interfaces between the two phases, and a discontinuity in material properties across the moving interfaces. The evolution of the interfaces is simulated by using the front capturing technique of the level-set methods. In these methods, the boundary of a two-fluid interface is modeled as the zero level set of a smooth function φ. The level-set function φ is defined as the signed distance from the interface (φ is negative inside a droplet/bubble and positive outside). Compared to other front-capturing or front-tracking methods, the level-set approach is relatively easy to implement even in three-dimensional flows, and it has been shown to simulate well the coalescence and breakup of droplets/bubbles

  2. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  3. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  4. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography.

    Science.gov (United States)

    Guihen, Elizabeth

    2017-09-01

    To date, alkylthiol gold nanoparticles (AuNPs) have been widely used in electro-chromatographic separation techniques as a viable alternative to traditional stationary phases. This is mainly due to their stability, chemical inertness, ease of functionality, increased phase ratio, ability to form self-assembled monolayers. They also yield versatile stationary phases with highly specific targeted functionalities. At the nanoscale region, the chemical and physical properties of a molecule display different attributes to that of the parent molecules or material, hence these features can be harnessed in electro-driven chromatographic separations. Application areas illustrating the use of AuNPs in separation science continue to grow and expand to cover many different kinds of analysis. The last decade has witnessed a successful trend in miniaturisation of chemical separation systems toward the micro and nanoscale ranges. Nanoparticle-based stationary phases fit well with performing chemical separations on microfluidic and capillary platforms. In this review the theory of the use of alkylthiol gold nanoparticles in electro-chromatographic driven separation methods will be discussed. This will be followed by details of recent and selected applications showing alkylthiol gold nanoparticles in capillary electrophoretic and open-tubular electro-chromatographic separations. This review will focus solely on alkylthiol based gold nanoparticles, therefore other kinds of chemical moieties bonded to gold nanoparticles are outside the scope of this review. Finally the future outlook of this exciting technology will be outlined in some detail in the final section. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  6. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    Science.gov (United States)

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  7. An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase

    Science.gov (United States)

    Li, Tianyi; Schlüter, Steffen; Dragila, Maria Ines; Wildenschild, Dorthe

    2018-04-01

    We present an improved method for estimating interfacial curvatures from x-ray computed microtomography (CMT) data that significantly advances the potential for this tool to unravel the mechanisms and phenomena associated with multi-phase fluid motion in porous media. CMT data, used to analyze the spatial distribution and capillary pressure-saturation (Pc-S) relationships of liquid phases, requires accurate estimates of interfacial curvature. Our improved method for curvature estimation combines selective interface modification and distance weighting approaches. It was verified against synthetic (analytical computer-generated) and real image data sets, demonstrating a vast improvement over previous methods. Using this new tool on a previously published data set (multiphase flow) yielded important new insights regarding the pressure state of the disconnected nonwetting phase during drainage and imbibition. The trapped and disconnected non-wetting phase delimits its own hysteretic Pc-S curve that inhabits the space within the main hysteretic Pc-S loop of the connected wetting phase. Data suggests that the pressure of the disconnected, non-wetting phase is strongly modified by the pore geometry rather than solely by the bulk liquid phase that surrounds it.

  8. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  9. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    Science.gov (United States)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  10. Spin Chern number and topological phase transition on the Lieb lattice with spin–orbit coupling

    International Nuclear Information System (INIS)

    Chen, Rui; Zhou, Bin

    2017-01-01

    We propose that quantum anomalous Hall effect may occur in the Lieb lattice, when Rashba spin–orbit coupling, spin-independent and spin-dependent staggered potentials are introduced into the lattice. It is found that spin Chern numbers of two degenerate flat bands change from 0 to ±2 due to Rashba spin–orbit coupling effect. The inclusion of Rashba spin–orbit coupling and two kinds of staggered potentials opens a gap between the two flat bands. The topological property of the gap is determined by the amplitudes of Rashba spin–orbit coupling and staggered potentials, and thus the topological phase transition from quantum anomalous Hall effect to normal insulator can occur. Finally, the topological phase transition from quantum spin Hall state to normal insulator is discussed when Rashba spin–orbit coupling and intrinsic spin–orbit coupling coexist in the Lieb lattice. - Highlights: • Spin Chern numbers of the bulk states on the Lieb lattice are calculated. • RSOC plays an important role on the topological phase transition on the Lieb lattice. • Quantum anomalous Hall effect can occur due to RSOC and staggered potentials. • Topological phase transition can occur when ISOC and RSOC coexist.

  11. Managment of superficial infantile capillary hemangiomas with topical timolol maleate solution.

    Science.gov (United States)

    Rizvi, Syed Ali Raza; Yusuf, Faraz; Sharma, Rajeev; Rizvi, Syed Wajahat Ali

    2015-01-01

    Capillary hemangioma is the most common benign tumor of eyelids and orbit in children. Recently, a topical beta blocker has been reported as an effective treatment for superficial capillary hemangiomas. We present a case report of two children having large capillary hemangiomas who responded well to topical treatment by 0.5% timolol maleate solution. After 12 months of treatment, the lesion has significantly reduced in size, thickness, and color in both cases. Thus, we conclude that long-term use of topical 0.5% timolol maleate solution is safe and effective in treating superficial capillary hemangiomas.

  12. The hydrodynamics of segmented two-phase flow in a circular tube with rapidly dissolving drops.

    Science.gov (United States)

    Leary, Thomas F; Ramachandran, Arun

    2017-05-03

    This article discusses boundary integral simulations of dissolving drops flowing through a cylindrical tube for large aspect ratio drops. The dynamics of drop dissolution is determined by three dimensionless parameters: λ, the viscosity of the drop fluid relative to the suspending fluid; Ca, the capillary number defining the ratio of the hydrodynamic force to the interfacial tension force; and k, a dissolution constant based on the velocity of dissolution. For a single dissolving drop, the velocity in the upstream region is greater than the downstream region, and for sufficiently large k, the downstream velocity can be completely reversed, particularly at low Ca. The upstream end of the drop travels faster and experiences greater deformation than the downstream end. The film thickness, δ, between the drop and the tube wall is governed by a delicate balance between dissolution and changes in the outer fluid velocity resulting from a fixed pressure drop across the tube and mass continuity. Therefore, δ, and consequently, the drop average velocity, can increase, decrease or be relatively invariant in time. For two drops flowing in succession, while low Ca drops maintain a nearly constant separation distance during dissolution, at sufficiently large Ca, for all values of k, dissolution increases the separation distance between drops. Under these conditions, the liquid segments between two adjacent drops can no longer be considered as constant volume stirred tanks. These results will guide the choices of geometry and operating parameters that will facilitate the characterization of fast gas-liquid reactions via two-phase segmented flows.

  13. Solid phase extraction for sample preparation in trace analysis of ionogenic compounds by capillary isotachophoresis

    International Nuclear Information System (INIS)

    Hutta, M.; Kaniansky, D.; Simunicova, E.; Zelenska, V.; Madajova, V.; Siskova, A.

    1992-01-01

    Various sorbents recommended for solid phase extraction (SPE) in sample preparation procedures were studied for use in combination with capillary isotachophoresis (ITP). They were very efficient in achieving trace concentration levels (low ppb, i.e., low parts per 10 9 ) for different types of ITP analytes present in environmental and biological matrices. A macroporous carbon sorbent was convenient for sample preparation in ITP analysis of short chain fatty acids (C 4 -C 9 ) in drinking water. Chelating sorbents based on hydroxyalkyl methacrylate matrix with salicylate, thioglycolate and 8-hydroxyquinolinate functionalities were found to be very suitable for preconcentration of heavy metals with an inherent sample clean-up. An octadecyl-bonded silica sorbent enabled in ITP a photometric detection of γ-aminobutyrate (labeled with a 2,4,6-trinitrophenyl group) at concentrations considerably lower than required for the determination of this amino acid in cerebrospinal fluid (∼5*10 -8 mol/l). (author) 34 refs.; 3 figs.; 1 tab

  14. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  15. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  16. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...... capillaries was (4.9+/-0.1) x 10(-4) cm2V(-1)s(-1) in a pH-range of 2-10 (ionic strength = 30 mM). When alkaline compounds were used as test substances intracapillary and intercapillary migration time variations (n = 6) were less than 1% relative standard deviation (RSD) and 2% RSD, respectively in the entire...... pH range. The coating was fairly stable in the presence of sodium dodecyl sulfate, and this made it possible to perform fast MEKC separations at low pH. When neutral compounds were used as test substances, the intracapillary migration time variations (n = 6) were less than 2% RSD in a pH range of 2...

  17. The dissipative flow of superfluid helium-3 through capillaries

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1986-01-01

    The equations are obtained which describe the behaviour of the chemical potential (pressure) of the superfluid helium-3 flowing through a narrow capillary, diffusively scattering boundaries being taken into consideration. The possibility is discussed whether the dissipation experimentally observed by Manninen and Pekola can be understood in terms of the phase-slip process

  18. Gas-filled capillaries for plasma-based accelerators

    International Nuclear Information System (INIS)

    Filippi, F; Anania, M P; Brentegani, E; Biagioni, A; Chiadroni, E; Ferrario, M; Pompili, R; Romeo, S; Cianchi, A; Zigler, A

    2017-01-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented. (paper)

  19. Gas-filled capillaries for plasma-based accelerators

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  20. Symmetric and asymmetric capillary bridges between a rough surface and a parallel surface.

    Science.gov (United States)

    Wang, Yongxin; Michielsen, Stephen; Lee, Hoon Joo

    2013-09-03

    Although the formation of a capillary bridge between two parallel surfaces has been extensively studied, the majority of research has described only symmetric capillary bridges between two smooth surfaces. In this work, an instrument was built to form a capillary bridge by squeezing a liquid drop on one surface with another surface. An analytical solution that describes the shape of symmetric capillary bridges joining two smooth surfaces has been extended to bridges that are asymmetric about the midplane and to rough surfaces. The solution, given by elliptical integrals of the first and second kind, is consistent with a constant Laplace pressure over the entire surface and has been verified for water, Kaydol, and dodecane drops forming symmetric and asymmetric bridges between parallel smooth surfaces. This solution has been applied to asymmetric capillary bridges between a smooth surface and a rough fabric surface as well as symmetric bridges between two rough surfaces. These solutions have been experimentally verified, and good agreement has been found between predicted and experimental profiles for small drops where the effect of gravity is negligible. Finally, a protocol for determining the profile from the volume and height of the capillary bridge has been developed and experimentally verified.

  1. A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.

    Science.gov (United States)

    Karadimitriou, N K; Joekar-Niasar, V; Hassanizadeh, S M; Kleingeld, P J; Pyrak-Nolte, L J

    2012-09-21

    In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has been etched in glass by using a dry etching technique. The micro-model was visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously. Quasi-static drainage experiments were conducted in order to obtain equilibrium data points that relate capillary pressure to phase saturation. By measuring the flow rate of water through the flow network for known pressure gradients, the intrinsic permeability of the micro-model's flow network was also calculated. The experimental results were used to calibrate a pore-network model and test its validity. Finally, we show that glass-etched micro-models can be valuable tools in single and/or multi-phase flow studies and their applications.

  2. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul

    2018-01-06

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  3. Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches

    KAUST Repository

    Verma, Rahul; Icardi, Matteo; Prodanović, Maša

    2018-01-01

    Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry

  4. Microstructural aspects of fatigue failure of two-phase titanium alloys

    International Nuclear Information System (INIS)

    Filip, R.; Sieniawski, J.

    1995-01-01

    Investigations conducted in this work were aimed at obtaining information on the influence of the microstructure of the two-phase titanium alloys on fatigue strength. A course of fatigue failure depends on both dispersion and a number of secondary α-phase particles. The lamellar structure is formed during controlled cooling from the temperature range of β-phase stability. The cooling rate influences the geometrical parameters of the microstructure and finally the fatigue strength of the alloy. (author). 20 refs, 12 figs, 2 tabs

  5. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    Science.gov (United States)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit

  6. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  7. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  8. Debris bed coolability using a 3-D two phase model in a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C.; Duval, F.; Fichot, F. [CEA Cadarache, Inst. de Protection et de Surete Nucleaire13 - Saint-Paul-lez-Durance (France); Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France); Parent, M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France)

    2001-07-01

    During a severe nuclear accident, a part of the molten corium resulting from the core degradation may relocate in the lower plenum of the reactor vessel. In order to predict the safety margin of the reactor under such conditions, the coolability of this porous heat-generating medium is evaluated in this study and compared with other investigations. In this work, conservation equations derived for debris beds are implemented in the three dimensional thermal-hydraulic module of the CATHARE code. The coolant flow is a two phase flow with phase change. The momentum balance equation for each fluid phase is an extension of Darcy's law. This extension takes into account the capillary effects between the two phases, the relative permeabilities and passabilities of each phase, the interfacial drag force between liquid and gas, and the porous bed configuration (porosity, particle diameter,... ). The model developed is three-dimensional which is important to better predict the flow in configuration such as counter-current flow or to emphasize preferential ways induced by porous geometry. The energy balance equations of the three phases (liquid, gas and solid phase) are obtained by a volume averaging process of the local conservation equations. In this method, the local thermal non-equilibrium between the three phases is considered and the heat exchanges, the phase change rate as well as the thermal dispersion coefficients are calculated as a function of the local geometry of the porous medium. Such a method allows the numerical estimation of these thermal properties which are very difficult to determine experimentally. This feature is a great advantage of this approach. After a brief description of the thermal-hydraulic model, one-dimensional predictions of critical dryout fluxes are presented and compared with results from the literature. Reasonable agreement is obtained. Then a two-dimensional calculation is presented and shows the influence of the porous medium

  9. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  10. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase.

    Science.gov (United States)

    Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na

    2015-01-01

    In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Phase transitions in two-dimensional uniformly frustrated XY models. II. General scheme

    International Nuclear Information System (INIS)

    Korshunov, S.E.

    1986-01-01

    For two-dimensional uniformly frustrated XY models the group of symmetry spontaneously broken in the ground state is a cross product of the group of two-dimensional rotations by some discrete group of finite order. Different possibilities of phase transitions in such systems are investigated. The transition to the Coulomb gas with noninteger charges is widely used when analyzing the properties of relevant topological excitations. The number of these excitations includes not only domain walls and traditional (integer) vortices, but also vortices with a fractional number of circulation quanta which are to be localized at bends and intersections of domain walls. The types of possible phase transitions prove to be dependent on their relative sequence: in the case the vanishing of domain wall free energy occurs earlier (at increasing temperature) than the dissociation of pairs of ordinary vortices, the second phase transition is to be associated with dissociation of pairs of fractional vortices. The general statements are illustrated with a number of examples

  12. First attempts to combine capillary tubes with photocathodes

    CERN Document Server

    Peskov, Vladimir; Sokolova, T; Radionov, I

    1999-01-01

    We describe our efforts to combine glass capillary plates, operating as a gas amplification structure at approx 1 atm, with photocathodes sensitive to visible light. Such capillary tubes are a by-product of the manufacture of Microchannel Plates and are commercially available. Preliminary tests indicate that gas gains >10 sup 3 could be achieved without photon feedback. With two capillary plates in tandem (double-step multiplication) overall gains up to 10 sup 5 were possible at counting rate <100 Hz/mm sup 2. This approach may open new possibilities for detection of visible photons by gaseous detectors. Potential advantages are: high gains, large sensitive area, high granularity, and insensitivity to magnetic fields.

  13. Stratified steady and unsteady two-phase flows between two parallel plates

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2006-01-01

    To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated

  14. Mechanics of occurrence of critical flow in compressible two-phase flow

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Sudo, Yukio

    1976-01-01

    Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)

  15. π-Extended triptycene-based material for capillary gas chromatographic separations.

    Science.gov (United States)

    Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin

    2017-10-02

    Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  17. Topological phases in frustrated synthetic ladders with an odd number of legs

    Science.gov (United States)

    Barbarino, Simone; Dalmonte, Marcello; Fazio, Rosario; Santoro, Giuseppe E.

    2018-01-01

    The realization of the Hofstadter model in a strongly anisotropic ladder geometry has now become possible in one-dimensional optical lattices with a synthetic dimension. In this work, we show how the Hofstadter Hamiltonian in such ladder configurations hosts a topological phase of matter which is radically different from its two-dimensional counterpart. This topological phase stems directly from the hybrid nature of the ladder geometry and is protected by a properly defined inversion symmetry. We start our analysis by considering the paradigmatic case of a three-leg ladder which supports a topological phase exhibiting the typical features of topological states in one dimension: robust fermionic edge modes, a degenerate entanglement spectrum, and a nonzero Zak phase; then, we generalize our findings—addressable in the state-of-the-art cold-atom experiments—to ladders with a higher number of legs.

  18. Capillary electrophoresis of chitooligosaccharides in acidic solution: simple determination using a quaternary-ammonium-modified column and indirect photometric detection with crystal violet.

    Science.gov (United States)

    Hattori, Toshiaki; Anraku, Nobuhiro; Kato, Ryo

    2010-02-01

    Five chitosan oligosaccharides were separated in acidic aqueous solution by capillary electrophoresis (CE) with indirect photometric detection using a positively coated capillary. Electrophoretic mobility of the chitooligosaccharides (COSs) depended on the number of monomer units in acidic aqueous solution, similar to other polyelectrolyte oligomers. The separation was developed in nitric acid aqueous solution at pH 3.0 with 1 mM Crystal Violet, using a capillary positively coated with N-trimethoxypropyl-N,N,N-trimethylammonium chloride. The limit of the detection for chitooligosaccharides with two to six saccharide chains was less than 5 microM. CE determination of an enzymatically hydrolyzed COS agreed with results from HPLC. 2009 Elsevier B.V. All rights reserved.

  19. Capillary gas-solid chromatography

    International Nuclear Information System (INIS)

    Berezkin, V.G.

    1996-01-01

    Modern state of gas adsorption chromatography in open capillary columns has been analyzed. The history of the method development and its role in gas chromatography, ways to construct open adsorptional capillary columns, foundations of the theory of retention and washing of chromatographic regions in gas adsorption capillary columns have been considered. The fields is extensively and for analyzing volatile compounds of different isotopic composition, inorganic and organic gases, volatile organic polar compounds, aqueous solutions of organic compounds. Separation of nuclear-spin isomers and isotopes of hydrogen is the first illustrative example of practical application of the adsorption capillary chromatography. It is shown that duration of protium and deuterium nuclear isomers may be reduced if the column temperature is brought to 47 K

  20. Capillary condensation hysteresis in overlapping spherical pores: a Monte Carlo simulation study.

    Science.gov (United States)

    Gor, Gennady Yu; Rasmussen, Christopher J; Neimark, Alexander V

    2012-08-21

    The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks.

  1. Qualitative and quantitative assessment of nailfold capillaries by capillaroscopy in healthy volunteers.

    Science.gov (United States)

    Hoerth, Christian; Kundi, Michael; Katzenschlager, Reinhold; Hirschl, Mirko

    2012-01-01

    Nailfold capillaroscopy (NVC) is a diagnostic tool particularly useful in the differential diagnosis of rheumatic and connective tissue diseases. Although successfully applied since many years, little is known about prevalence and distribution of NVC changes in healthy individuals. NVC was performed in 120 individuals (57 men and 63 women; age 18 to 70 years) randomly selected according to predefined age and sex strata. Diseases associated with NVC changes were excluded. The nailfolds of eight fingers were assessed according to standardized procedures. A scoring system was developed based on the distribution of the number of morphologically deviating capillaries, microhaemorrhages, and capillary density. Only 18 individuals (15 %) had no deviation in morphology, haemorrhages, or capillary density on any finger. Overall 67 % had morphological changes, 48 % had microhaemorrhages, and 40 % of volunteers below 40 years of age and 18 % above age 40 had less than 8 capillaries/mm. Among morphological changes tortous (43 %), ramified (47 %), and bushy capillaries (27 %) were the most frequently altered capillary types. A semiquantitative scoring system was developed in such a way that a score above 1 indicates an extreme position (above the 90th percentile) in the distribution of scores among healthy individuals. Altered capillaries occur frequently among healthy individuals and should be interpreted as normal unless a suspicious increase in their frequency is determined by reference to the scoring system. Megacapillaries and diffuse loss of capillaries were not found and seem to be of specific diagnostic value.

  2. Workshop on Two-Phase Fluid Behavior in a Space Environment

    Science.gov (United States)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  3. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  4. A liquid chromatographic method for determination of theophylline in serum and capillary blood--a comparison.

    Science.gov (United States)

    Gartzke, J; Jäger, H; Vins, I

    1991-01-01

    A simple, fast and reliable liquid chromatographic method for the determination of theophylline in serum and capillary blood after a solid phase extraction is described for therapeutic drug monitoring. The employment of capillary blood permits the determination of an individual drug profile and other pharmacokinetic studies in neonates and infants. There were no differences in venous- and capillary-blood levels but these values compared poorly with those in serum. An adjustment of the results by correction of the different volumes of serum and blood by haematocrit was unsuccessful. Differences in the binding of theophylline to erythrocytes could be an explanation for the differences in serum at blood levels of theophylline.

  5. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  6. [Management of inpatient glucose in non-critical care setting: impact of a proactive intervention based on a point-of-care of system with remote viewing of capillary blood glucose].

    Science.gov (United States)

    Amor, Antonio J; Ríos, Paola A; Graupera, Iolanda; Conget, Ignacio; Esmatjes, Enric; Comallonga, Teresa; Vidal, Josep

    2014-05-06

    The management of hyperglycemia in conventional wards is suboptimal. The objective of our study was to evaluate the efficacy of a proactive intervention supported by point-of-care system with remote viewing of capillary blood glucose (CBG) on glycemic control as compared to usual care in non-critical surgical patients. Two sequential periods of 2 months were defined. In the first phase (control, CPh), in which the surgical team was in charge of glycemic control, capillary glucose levels were recorded by StatStrip(®) system, and endocrinological support was provided upon surgeons request. In a second phase (intervention, IPh), the endocrinologist proceeded based on remotely-viewed CBG values. We compared the use of basal-bolus therapy and the degree of glycemic control between the 2 study periods. The IPh was associated with greater use of basal-bolus regimens (21.4 vs. 58.3%; P=.003). The average CBG during the CPh was 161 ± 64 vs. 142 ± 48 mg/dL during the IPh (Premote viewing of CBG is associated with improved glycemic control in non-critical patients, without any further increase in the number of hypoglycaemic recordings. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  7. Foam on troubled water: Capillary induced finite-time arrest of sloshing waves

    Science.gov (United States)

    Viola, Francesco; Brun, P.-T.; Dollet, Benjamin; Gallaire, François

    2016-09-01

    Interfacial forces exceed gravitational forces on a scale small relative to the capillary length—two millimeters in the case of an air-water interface—and therefore dominate the physics of sub-millimetric systems. They are of paramount importance for various biological taxa and engineering processes where the motion of a liquid meniscus induces a viscous frictional force that exhibits a sublinear dependence in the meniscus velocity, i.e., a power law with an exponent smaller than one. Interested in the fundamental implications of this dependence, we use a liquid-foam sloshing system as a prototype to exacerbate the effect of sublinear friction on the macroscopic mechanics of multi-phase flows. In contrast to classical theory, we uncover the existence of a finite-time singularity in our system yielding the arrest of the fluid's oscillations. We propose a minimal theoretical framework to capture this effect, thereby amending the paradigmatic damped harmonic oscillator model. Our results suggest that, although often not considered at the macroscale, sublinear capillary forces govern the friction at liquid-solid and liquid-liquid interfaces.

  8. Design of a welltest for determining two-phase hydraulic properties

    International Nuclear Information System (INIS)

    Finsterle, S.

    1995-01-01

    This report describes the design of a well test to determine two-phase hydraulic properties of a low permeability, low porosity formation. Estimation of gas-related parameters in such formations is difficult using standard pumping tests mainly because of the strong fluctuations in the pressure and flow rate data which are a consequence of gas bubbles evolving in the test interval. Even more important is the fact that the data do not allow distinguishing among alternative conceptual models. The estimated parameters are therefore uncertain, highly correlated, and ambiguous. In this study we examine a test sequence that could be appended to a standard hydraulic testing program. It is shown that performing a series of water and gas injection tests significantly reduces parameter correlations, thus decreasing the estimation error. Moreover, the extended test sequence makes possible the identification of the model that describes relative permeabilities and capillary pressures. This requires, however, that data of high accuracy are collected under controlled test conditions. The purpose of this report is to describe the modeling approach, assumptions and limitations of the procedure, and to provide practical recommendations for future testing

  9. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  10. Capillary-metric surveillance of the personnel professionally exposed to ionizing radiations

    International Nuclear Information System (INIS)

    Perdereau, B.; Brixy, F.; Cosset, J.M.

    1997-01-01

    The aim of this work was to ensure the surveillance of low irradiation doses cumulated at the level of fingers by means of a sensible, reliable and low-cost method. The skin capillary network represents an indicator of high sensibility for alteration caused by ionizing radiations. The capillary-metry is a method which consists in exploiting numerically the parameters deduced from capillary-scopic observation. A stereo-microscope of low magnifying power and large frontal distance permits a tridimensional visualisation of capillary loops after trans-illumination of the skin (immersion oil). The photographic and numerical recording on diskettes is achieved on the pathological zones of all fingers of both hands. The multi-criteria exploitation (the characteristics of capillaries, their environment and populations) allows their interpretation. Twenty-one subjects were controlled in the frame of a radio-pathological surveillance at Institut Curie de Paris. The case study presenting a confirmed chronic irradiation has evidenced alteration in organisation, in the distribution of capillaries and also a decrease in their number and a diminution of their diameter. Finally, the presence of ecstasies and stenoses is frequent as the presence of desert zones. In conclusion, these alterations, although less spectacularly then the acute irradiation are sufficiently marked to be not confounded with the microvascular chronic anomalies observed in chemists, masons or musicians, as those of current vascular pathology

  11. Experimental study on local resistance of two-phase flow through spacer grid with rod bundle

    International Nuclear Information System (INIS)

    Yan Chaoxing; Yan Changqi; Sun Licheng; Tian Qiwei

    2015-01-01

    The experimental study on local resistance of single-phase and two-phase flows through a spacer grid in a vertical channel with 3 × 3 rod bundle was carried out under the normal temperature and pressure. For the case of single-phase flow, the liquid Reynolds number covered the range of 290-18 007. For the case of two-phase flow, the ranges of gas and liquid superficial velocities were 0.013-3.763 m/s and 0.076-1.792 m/s, respectively. A correlation for predicting local resistance of single-phase flow was given based on experimental results. Eight classical two-phase viscosity formulae for homogeneous model were evaluated against the experimental data of two-phase flow. The results show that Dukler model predicts the experimental data well in the range of Re 1 < 9000 while McAdams correlation is the best one for Re 1 ≥ 9000. For all experimental data, Dukler model provides the best prediction with the mean relative error of 29.03%. A new correlation is fitted for the range of Re 1 < 9000 by considering mass quality, two- phase Reynolds number and liquid and gas densities, resulting in a good agreement with the experimental data. (authors)

  12. Phase structure of lattice QCD for general number of flavors

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.

    2004-01-01

    We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6

  13. Capillary concentrators for synchrotron radiation beamlines

    International Nuclear Information System (INIS)

    Heald, S.M.; Brewe, D.L.; Kim, K.H.; Brown, F.C.; Barg, B.; Stern, E.A.

    1996-01-01

    Capillary concentrators condense x-rays by multiple reflections down a gradually tapering capillary. They can provide sub-micron beam spots, and are promising candidates for use in the next generation x-ray microprobe beamlines. The weak energy dependence of their properties make them especially useful for energy scanning applications such as micro-XAFS. This paper examines the potential performance of capillary optics for an x-ray microprobe, as well as some practical issues such as fabrication and alignment. Best performance at third generation sources requires long capillaries, and the authors have been using fiber optics techniques to fabricate capillaries up to one meter in length. The performance of shorter (less than about 0.5 m) capillaries has often been found to agree well with theoretical calculations, indicating the inner surface is a high quality x-ray reflector. These capillaries have been tested at the NSLS for imaging and micro-XAFS down to 2.6 microm resolution with excellent results. On an unfocused bend magnet line flux density approaching 10 6 ph/sec/microm 2 has been achieved. While nearly optimum profiles have been achieved for longer capillaries, the results have been disappointing, and alignment problems are suspected. The dramatic improvement in performance possible at third generation synchrotrons such as the APS is discussed along with improvements possible by using the capillaries in conjunction with coupling optics

  14. Enhanced Peptide Detection Toward Single-Neuron Proteomics by Reversed-Phase Fractionation Capillary Electrophoresis Mass Spectrometry

    Science.gov (United States)

    Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter

    2018-05-01

    The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (organization. [Figure not available: see fulltext.

  15. Identification of thermal degradation products of polymers by capillary gas chromatography

    NARCIS (Netherlands)

    Pacakova, V.; Borecka, M.; Leclercq, P.A.; Kaiser, R.E.

    1981-01-01

    Samples of polyethylene, polypropylene, polystyrene and five styrene copolymers were thermally degraded in a quartz tubular reactor at 5100e in an inert atmosphere. The degradation products were separated on-line on capillary coltmlS coated with squalane, OV-17 and SE-30 as stationary phases. The

  16. Capillary hydrodynamics and transport processes during phase change in microscale systems

    Science.gov (United States)

    Kuznetsov, V. V.

    2017-09-01

    The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.

  17. Two-phase flow characteristics in BWRs

    International Nuclear Information System (INIS)

    Katono, Kenichi; Aoyama, Goro; Nagayoshi, Takuji; Yasuda, Kenichi; Nishida, Koji

    2014-01-01

    Reliable prediction of two-phase flow characteristics is important for safety and economy improvements of BWR plants. We have been developing two-phase flow measurement tools and techniques for BWR thermal hydraulic conditions, such as a 3D time-averaged X-ray CT system, an ultrasonic liquid film sensor and a wire-mesh sensor. We applied the developed items in experiments using the multi-purpose steam-water test facility known as HUSTLE, which can simulate two-phase thermal-hydraulic conditions in a BWR reactor pressure vessel, and we constructed a detailed instrumentation database. We validated a 3D two-phase flow simulator using the database and developed the reactor internal two-phase flow analysis system. (author)

  18. Application of micellar electrokinetic capillary chromatography for routine analysis of different materials

    Directory of Open Access Journals (Sweden)

    Injac Rade

    2008-01-01

    Full Text Available Micellar electrokinetic capillary chromatography (MEKC has become a popular mode among the several capillary electro-migration techniques. Most drug analysis can be performed by using MEKC because of its wide applicability. Separation of very complex mixtures, determination of drugs in the biological materials, etc., can be successfully achieved by MEKC. This review surveys typical applications of MEKC analysis. Recent advances in MEKC, especially with solid-phase extraction and large-volume sample stacking, are described. Modes of electrokinetic chromatography including MEKC, a separation theory of MEKC, environmental friendly analysis, and selectivity manipulation in MEKC are also briefly mentioned.

  19. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  20. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  1. Number-Phase Wigner Representation and Entropic Uncertainty Relations for Binomial and Negative Binomial States

    International Nuclear Information System (INIS)

    Amitabh, J.; Vaccaro, J.A.; Hill, K.E.

    1998-01-01

    We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance

  2. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  3. Moving Boudary Models for Dynamic Simulations of Two-phase Flows

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Tummelscheit, H.

    2002-01-01

    . The Dymola Modelica translator can automatically reduce the DAE index and thus makes efficient simulation possible. Usually the flow entering a dry-expansion evaporator in a refrigeration system is two-phase, and there is thus no liquid region. The general MB model has a number of special cases where only...... model is used. The overall robustness and the simplicity of the MB model, makes it well suited for open loop as well as closed loop simulations of two-phase flows. Simulation results for an evaporator in a refrigeration system are shown. The open loop system is simulated both with the reduced MB...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...

  4. Correlation between enhancement characteristics of MR mammography and capillary density of breast lesions

    International Nuclear Information System (INIS)

    Poellinger, Alexander; El-Ghannam, Sahra; Diekmann, Susanne; Fischer, Thomas; Kristiansen, Glen; Fritzsche, Florian; Fallenberg, Eva; Morawietz, Lars; Diekmann, Felix

    2014-01-01

    Highlights: • We correlate capillary density of breast lesions with MRM. • Capillary density correlates with tumor enhancement for all lesions. • However no such correlation exists for the malignant or benign groups separately. • Mean vessel number of lymphatic vessels do not correlate with tumor enhancement.These results might be of help in the workup of MR-guided breast biopsies. • These results might be of help in the workup of MR-guided breast biopsies. - Abstract: Objective: To correlate capillary density of breast lesions using the markers D2-40, CD31, and CD34 with early and late enhancement of magnetic resonance mammography (MRM). Materials and methods: The local ethics committee approved this study, and informed consent was available from all patients. The study included 64 women with 66 histologically proven breast lesions (41 malignant, 25 benign). MR-enhancement 1 min after contrast medium administration was determined in the tumor (I t1 /I t0 ratio) and in comparison to the surrounding tissue (I t1 /I t1-fat ratio). Capillary density was quantified based on immunohistological staining with D2-40, CD31, and CD34 in breast tumors and surrounding breast tissue. Mean capillary densities were correlated with contrast enhancement in the tumor and surrounding breast tissue. The Kruskal–Wallis test was used to test whether lesions with different MR enhancement patterns differed in terms of capillary density. Results: For CD34, there was statistically significant correlation between capillary density and tumor enhancement (r = 0.329, p = 0.012), however not for the malignant or benign groups separately. Mean vessel number identified by staining with D2-40 and CD31 did not correlate significantly with tumor enhancement (D2-40: r = −0.188, p = 0.130; CD31: r = 0.095, p = 0.448). There were no statistically significant differences in capillary density between breast lesions with delayed enhancement or a plateau and lesions showing washout (Kruskal

  5. Correlation between enhancement characteristics of MR mammography and capillary density of breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Poellinger, Alexander, E-mail: alexander.poellinger@charite.de [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); El-Ghannam, Sahra; Diekmann, Susanne; Fischer, Thomas [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Kristiansen, Glen [Universitätsklinikum Bonn, Department of Pathology, Sigmund-Freud-Str. 25, D-53127 Bonn (Germany); Fritzsche, Florian [Institut für Histologie und Zytologie, Bahnhofplatz 11, Postfach, 9101 Herisau (Switzerland); Fallenberg, Eva [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany); Morawietz, Lars [Diagnostik Ernst von Bergmann GmbH, Charlottenstr. 72, 14467 Potsdam (Germany); Diekmann, Felix [Charité, Universitätsmedizin Berlin, Department of Radiology, Augustenburger Platz 1, 13353 Berlin (Germany)

    2014-12-15

    Highlights: • We correlate capillary density of breast lesions with MRM. • Capillary density correlates with tumor enhancement for all lesions. • However no such correlation exists for the malignant or benign groups separately. • Mean vessel number of lymphatic vessels do not correlate with tumor enhancement.These results might be of help in the workup of MR-guided breast biopsies. • These results might be of help in the workup of MR-guided breast biopsies. - Abstract: Objective: To correlate capillary density of breast lesions using the markers D2-40, CD31, and CD34 with early and late enhancement of magnetic resonance mammography (MRM). Materials and methods: The local ethics committee approved this study, and informed consent was available from all patients. The study included 64 women with 66 histologically proven breast lesions (41 malignant, 25 benign). MR-enhancement 1 min after contrast medium administration was determined in the tumor (I{sub t1}/I{sub t0} ratio) and in comparison to the surrounding tissue (I{sub t1}/I{sub t1-fat} ratio). Capillary density was quantified based on immunohistological staining with D2-40, CD31, and CD34 in breast tumors and surrounding breast tissue. Mean capillary densities were correlated with contrast enhancement in the tumor and surrounding breast tissue. The Kruskal–Wallis test was used to test whether lesions with different MR enhancement patterns differed in terms of capillary density. Results: For CD34, there was statistically significant correlation between capillary density and tumor enhancement (r = 0.329, p = 0.012), however not for the malignant or benign groups separately. Mean vessel number identified by staining with D2-40 and CD31 did not correlate significantly with tumor enhancement (D2-40: r = −0.188, p = 0.130; CD31: r = 0.095, p = 0.448). There were no statistically significant differences in capillary density between breast lesions with delayed enhancement or a plateau and lesions showing

  6. Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness

    Science.gov (United States)

    Soylemez, Emrecan; de Boer, Maarten P.

    2017-12-01

    Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.

  7. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.

    1996-11-01

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58 Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  8. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  9. Phase I (or phase II) dose-ranging clinical trials: proposal of a two-stage Bayesian design.

    Science.gov (United States)

    Zohar, Sarah; Chevret, Sylvie

    2003-02-01

    We propose a new design for phase I (or phase II) dose-ranging clinical trials aiming at determining a dose of an experimental treatment to satisfy safety (respectively efficacy) requirements, at treating a sufficiently large number of patients to estimate the toxicity (respectively failure) probability of the dose level with a given reliability, and at stopping the trial early if it is likely that no dose is safe (respectively efficacious). A two-stage design was derived from the Continual Reassessment Method (CRM), with implementation of Bayesian criteria to generate stopping rules. A simulation study was conducted to compare the operating characteristics of the proposed two-stage design to those reached by the traditional CRM. Finally, two applications to real data sets are provided.

  10. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  11. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Rantamäki, A. H.; Duša, Filip; Wiedmer, S. K.

    2016-01-01

    Roč. 37, 7-8 (2016), s. 880-912 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : capillary electrochromatography * capillary liquid chromatography * mass spec- trometry * monolithic columns Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  12. Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

    Science.gov (United States)

    Li, Xiangyu; Huang, Zhanhua; Zhu, Meng; He, Jin; Zhang, Hao

    2014-12-01

    Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416×416 frame is 30, which indicates a 15λ deformation along the direction of loading.

  13. Oscillatory two-phase flows

    International Nuclear Information System (INIS)

    Boure, J.A.

    1974-12-01

    Two-phase flow instabilities are classified according to three criteria: the static or dynamic nature of the phenomenon, the necessity or not of a triggering phenomenon, and the pure or compound character of the phenomenon. Tables give the elementary instability phenomena, and the practical types of instability. Flow oscillations (or dynamic instabilities) share a number of characteristics which are dealt with, they are caused by the dynamic interactions between the flow parameters (flow rate, density, pressure, enthalpy and their distributions). Oscillation types are discussed: pure oscillations are density wave oscillations, acoustic oscillations may also occur, various compound oscillations involve either the density wave or the acoustic wave mechanism, interacting with some of the boundary conditions in the device. The analysis of slow oscillations has been made either by means of a simplified model (prediction of the thresholds) or of computer codes. Numerous computer codes are available [fr

  14. Evaporation effect on two-dimensional wicking in porous media.

    Science.gov (United States)

    Benner, Eric M; Petsev, Dimiter N

    2018-03-15

    We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Research on one-dimensional two-phase flow

    International Nuclear Information System (INIS)

    Adachi, Hiromichi

    1988-10-01

    In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)

  16. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  17. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: Application and comparison to experiments of CO2 sequestration at pore scale

    Science.gov (United States)

    Fakhari, Abbas; Li, Yaofa; Bolster, Diogo; Christensen, Kenneth T.

    2018-04-01

    We implement a phase-field based lattice-Boltzmann (LB) method for numerical simulation of multiphase flows in heterogeneous porous media at pore scales with wettability effects. The present method can handle large density and viscosity ratios, pertinent to many practical problems. As a practical application, we study multiphase flow in a micromodel representative of CO2 invading a water-saturated porous medium at reservoir conditions, both numerically and experimentally. We focus on two flow cases with (i) a crossover from capillary fingering to viscous fingering at a relatively small capillary number, and (ii) viscous fingering at a relatively moderate capillary number. Qualitative and quantitative comparisons are made between numerical results and experimental data for temporal and spatial CO2 saturation profiles, and good agreement is found. In particular, a correlation analysis shows that any differences between simulations and results are comparable to intra-experimental differences from replicate experiments. A key conclusion of this work is that system behavior is highly sensitive to boundary conditions, particularly inlet and outlet ones. We finish with a discussion on small-scale flow features, such as the emergence of strong recirculation zones as well as flow in which the residual phase is trapped, including a close look at the detailed formation of a water cone. Overall, the proposed model yields useful information, such as the spatiotemporal evolution of the CO2 front and instantaneous velocity fields, which are valuable for understanding the mechanisms of CO2 infiltration at the pore scale.

  18. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  19. Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2013-01-01

    Full Text Available Nasal lobular capillary hemangioma is a rare benign tumor of the paranasal sinuses. This lesion is believed to grow rapidly in size over time. The exact etiopathogenesis is still a dilemma. We discuss a case of nasal lobular capillary hemangioma presenting with a history of epistaxis. Contrast enhanced computed tomography of paranasal sinuses revealed an intensely enhancing soft-tissue mass in the left nasal cavity and left middle and inferior meati with no obvious bony remodeling or destruction. We present imaging and pathologic features of nasal lobular capillary hemangioma and differentiate it from other entities like nasal angiofibroma.

  20. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  1. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates.

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-03-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  2. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates

    Science.gov (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook

    2016-01-01

    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges. PMID:26928329

  3. Particle clustering within a two-phase turbulent pipe jet

    Science.gov (United States)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  4. Comparison of plastic scintillating fibres and capillaries filled with liquid scintillator

    International Nuclear Information System (INIS)

    Cardini, A.; Cavasinni, V.; Girolamo, B. di; Flaminio, V.; Golovkin, S.V.; Gorin, A.M.; Kulichenko, A.V.; Kushnirenko, A.E.; Pyshev, A.I.; Manuilov, I.; Vasilchenko, V.G.

    1994-01-01

    A comparison is made between the light yield, attenuation length, time response and light propagation speed in plastic scintillating fibres (SCSF-38 and Kuraray-3HF) and quartz capillaries filled with liquid scintillator (LS) 1-methilnaphthalene (1MN) doped with new dyes R45 and R39. The inner diameter of capillaries and diameter of plastic fibres is 0.5 mm. The number of photoelectrons detected at the far end (2 m) was 2.9 for capillaries filled with 1MN+3 g/l R45 while it was 1.8 times smaller in the case of SCSF-38 and 3 times smaller in the case of Kuraray 3HF plastic fibres. Taking into account the quantum efficiency of the photodetector used these reduction factors became 3.0 and 2.0, respectively. Good attenuation length, high light output and also excellent radiation resistance of capillaries filled with LS (>60 Mrad, measured elsewhere) show that they are a very promising alternative to plastic scintillating fibres for future applications in tracking detectors and calorimeters. ((orig.))

  5. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  6. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment

    International Nuclear Information System (INIS)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.

    2016-01-01

    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  7. Modeling of bubble coalescence and disintegration in confined upward two-phase flow

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions

  8. Phenomenological Study of Confined Criticality: Insights from the Capillary Condensation of Propane, n-Butane, and n-Pentane in Nanopores.

    Science.gov (United States)

    Barsotti, Elizabeth; Tan, Sugata P; Piri, Mohammad; Chen, Jin-Hong

    2018-04-17

    We use the comparison of experimentally measured isotherms for propane, n-butane, and n-pentane in 2.90, 4.19, and 8.08 nm MCM-41 to show that the current model for the progression of capillary condensation may not hold true for chain molecules, such as normal alkanes. Until now, the capillary condensation of gases in unconnected, uniformly sized and shaped nanopores has been shown to progress in two distinct stages before ending in supercriticality of the confined fluid. First, at relatively low temperatures in isothermal measurements, the phase change is accompanied by hysteresis of adsorption and desorption. Second, as temperature increases, the hysteresis critical temperature is surpassed, and the phase change occurs reversibly. Although propane followed this progression, we observed a new progression for n-butane and n-pentane, in which hysteresis continues into the supercritical region of the confined fluid. We attribute this behavior to the molecular chain lengths of the adsorbates. Through further comparison of the adsorption, desorption, and critical properties of the adsorbates, we discovered new pressure phenomena of the confined supercritical fluids.

  9. Laser doppler anemometry in single- and two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.

    1976-01-01

    The present report gives an introduction into laser-Doppler anemometry and tries to explain the basic physical principles of this measuring technique. Moire fringe patterns are used in order to visually model LDA-signals and to explain the basic difference in optical systems. It is pointed out that LDA measurements in highly turbulent flows and in two-phase flows should be attempted with direction sensitive instruments only. Some of the optical systems developed by the author and his collaborators are introduced and their functioning in measurements is demonstrated. These measurements embrace investigations in a number of single-phase flows including flames. (orig.) [de

  10. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    Science.gov (United States)

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Signal-Pressure Curves of Cascaded Four-Wave Mixing in Gas-Filled Capillary by fs Pulses

    International Nuclear Information System (INIS)

    Chen Baozhen; Huang Zuqia

    2005-01-01

    The theoretical framework for the cascaded four waves mixing (CFWM) in gas-filled capillary by fs pulses is constructed. Based on the theoretical framework, the signal-pressure curves (SPC) of the CFWM in gas-filled capillary by fs pulses are calculated. With a comparison between the theoretical and experimental SPC we have discussed the influence of the walk-off and phase modulation on the SPC. At the same time, we have discussed the possible origin of the first three peaks of the SPC.

  12. Loss of Propiconazole and its Four Stereoisomers from the Water Phase of Two Soil-Water Slurries as Measured by Capillary Electrophoresis

    Science.gov (United States)

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-wa...

  13. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    Science.gov (United States)

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  14. Solid-Phase Microextraction Coupled to Capillary Atmospheric Pressure Photoionization-Mass Spectrometry for Direct Analysis of Polar and Nonpolar Compounds.

    Science.gov (United States)

    Mirabelli, Mario F; Zenobi, Renato

    2018-04-17

    A novel capillary ionization source based on atmospheric pressure photoionization (cAPPI) was developed and used for the direct interfacing between solid-phase microextraction (SPME) and mass spectrometry (MS). The efficiency of the source was evaluated for direct and dopant-assisted photoionization, analyzing both polar (e.g., triazines and organophosphorus pesticides) and nonpolar (polycyclic aromatic hydrocarbons, PAHs) compounds. The results show that the range of compound polarity, which can be addressed by direct SPME-MS can be substantially extended by using cAPPI, compared to other sensitive techniques like direct analysis in real time (DART) and dielectric barrier discharge ionization (DBDI). The new source delivers a very high sensitivity, down to sub parts-per-trillion (ppt), making it a viable alternative when compared to previously reported and less comprehensive direct approaches.

  15. Measurement of pressure fluctuation in gas-liquid two-phase vortex street

    International Nuclear Information System (INIS)

    Sun Zhiqiang; Sang Wenhui; Zhang Hongjian

    2009-01-01

    The pressure fluctuation in the wake is an important parameter to characterize the shedding process of gas-liquid two-phase Karman vortex street. This paper investigated such pressure fluctuations in a horizontal pipe using air and water as the tested fluid media. The dynamic signal representing the pressure fluctuation was acquired by the duct-wall differential pressure method. Results show that in the wake of the gas-liquid two-phase Karman vortex street, the frequency of the pressure fluctuation is linear with the Reynolds number when the volume void fraction is within the range of 18%. Moreover, the mean amplitude of the pressure fluctuation decreases with the volume void fraction, and the mean amplitude is larger at higher water flowrates under the same volume void fraction. These findings contribute to an in-depth understanding of the gas-liquid two-phase Karman vortex street.

  16. [Is the use of plastic capillary tubes justified for blood gases analysis?].

    Science.gov (United States)

    Daurès, Marie-Françoise; Bozonnat, Marie-Cécile; Cristol, Jean-Paul

    2011-01-01

    Some clinical units, such as neonatal or maternity units, preferentially use capillary tubes when analysing blood gases. Using glass tubes is delicate and nurses must recollect blood when breaking. In order to eliminate this problem, we tested flexible, plastic capillary tubes in both the above mentionned units and in our biochemistry laboratory. Each unit, where glass tubes were habitually used, tested 200 flexible, plastic capillary tubes. In addition, the nursing staffed filled out a questionnaire concerned tube usage. Both units clearly preferred using the flexible tubes. In the laboratory, results for blood gas analyses were compared between rigid glass and flexible plastic capillary tubes for 112 patients. Concordance tests did not showed significant differences between the two tube types, except for hematocrit and total haemoglobin. A questionnaire was also presented to the lab technician, who confirmed the easier usability of plastic capillary tubes.

  17. Effect of Initial Hydraulic Conditions on Capillary Rise in a Porous Medium: Pore-Network Modeling

    KAUST Repository

    Joekar-Niasar, V.

    2012-01-01

    The dynamics of capillary rise in a porous medium have been mostly studied in initially dry systems. As initial saturation and initial hydraulic conditions in many natural and industrial porous media can be variable, it is important to investigate the influence of initial conditions on the dynamics of the process. In this study, using dynamic pore-network modeling, we simulated capillary rise in a porous medium for different initial saturations (and consequently initial capillary pressures). Furthermore, the effect of hydraulic connectivity of the wetting phase in corners on the height and velocity of the wetting front was studied. Our simulation results show that there is a trade-off between capillary forces and trapping due to snap-off, which leads to a nonlinear dependence of wetting front velocity on initial saturation at the pore scale. This analysis may provide a possible answer to the experimental observations in the literature showing a non-monotonic dependency between initial saturation and the macroscopic front velocity. © Soil Science Society of America.

  18. Ion guiding and losses in insulator capillaries

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Vikor, Gy.; Biri, S.; Fekete, E.; Ivan, I.; Gall, F.; Toekesi, K.; Matefi-Tempfli, S.; Matefi-Tempfli, M.

    2007-01-01

    Complete text of publication follows. Not long ago it was discovered that insulating capillaries can guide slow ions, so that the ions avoid close contact with the capillary walls and preserve their initial charge state. This phenomenon did not only give a new puzzle for theoreticians but opened the way for new possible applications where ions are manipulated (deflected, focused and directed to different patterns on the irradiated media) with small capillary devices. The most important question for such applications is how large fraction of the ions can be guided to the desired direction. It is already known that the ion guiding is due to the charging up of the inner capillary walls by earlier ion impact events. In tilted capillaries one side of the capillary walls charges up. This deflects the later arriving ions, so that some of them pass through the capillaries nearly parallel with respect to their axes. The angle where the transmission drops to 1/e of the direct transmission at 0 deg is the guiding angle, which characterize the guiding ability. At 0 deg the ideal 100 percent transmission for the ions, which enter the capillaries, is reduced due to the mirror charge attraction and geometrical imperfections. These losses appear in the transmission for tilted capillaries with similar magnitude, since after the deflection region, which usually restricted to the close surroundings of the capillary openings, the guided ions pass through the rest of the capillaries as in non-tilted samples. In our experimental studies with Al 2 O 3 capillaries we found that around 90 percent of the incoming ions are lost. To understand these significant losses, the effects of the mirror charge attraction and geometrical imperfections have been calculated classically. The mirror charge potential was taken from.The model of the capillaries used in the calculations can be seen in Figure 1. The calculations have shown that the effects of mirror charge attraction and the angular

  19. A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks

    Science.gov (United States)

    Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.

    2017-12-01

    Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including

  20. Analytical study of solids-gas two phase flow

    International Nuclear Information System (INIS)

    Hosaka, Minoru

    1977-01-01

    Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)

  1. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  2. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  3. Performance of soft x-ray laser pumped by capillary discharge

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Kakuya, Yuji; Xiao, Yifan

    2005-01-01

    We report the output characteristics of capillary discharge single-pass 46.9 nm Ne-like Ar soft-X-ray laser generated by a capillary z-pinch discharge. The coherence properties of the laser have shown to be improved with the increase of the length of laser amplifier from 20 up to 35 cm. The high degree of the spatial coherence of the laser beam produced by 35 cm long capillary is demonstrated by the results obtained in a classical Young's double-slit experiments. We found that the coherence length of the laser is 50 μm. For the 20 cm-long capillary, the diameter of a laser beam is in a range from 3.2 to 4.0 mm, which is corresponding to a range of divergence from 2.2 to 2.8 mrad. Finally, we introduce two spikes on X-ray diode (XRD) signal observed in a single shot. (author)

  4. Capillary Condensation in Confined Media

    OpenAIRE

    Charlaix, Elisabeth; Ciccotti, Matteo

    2009-01-01

    28 pages - To appear in 2010 in the Handbook of Nanophysics - Vol 1 - Edited by Klaus Sattler - CRC Press; We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and...

  5. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  6. Integrated Solid-Phase Extraction-Capillary Liquid Chromatography (speLC) Interfaced to ESI-MS/MS for Fast Characterization and Quantification of Protein and Proteomes

    DEFF Research Database (Denmark)

    Falkenby, Lasse Gaarde; Such-Sanmartín, Gerard; Larsen, Martin Røssel

    2014-01-01

    min speLC-MS/MS experiment. Analysis by selected reaction monitoring by speLC-SRM-MS/MS of distinct peptides derived from the blood proteins IGF1, IGF2, IBP2, and IBP3 demonstrated protein quantification with CV values below 10% across 96 replicates. The speLC-MS/MS system is ideally suited for fast......The high peptide sequencing speed provided by modern hybrid tandem mass spectrometers enables the utilization of fast liquid chromatographic (LC) separation techniques. We present a robust solid-phase extraction/capillary LC system (speLC) for 5-10 min separation of semicomplex peptide mixtures...

  7. Numerical methods for two-phase flow with contact lines

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Clauido

    2012-07-01

    This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations

  8. Analysis of phase dynamics in two-phase flow using latticegas automata

    International Nuclear Information System (INIS)

    Ohashi, H.; Hashimoto, Y.; Tsumaya, A.; Chen, Y.; Akiyama, M.

    1998-01-01

    In this paper, we describe lattice gas automaton models appropriate for two-phase flow simulation and their applications to study various phase dynamics of two-fluid mixtures. Several algorithms are added to the original immiscible Lattice Gas model to adjust surface tension and to introduce density difference between two fluids. Surface tension is controlled by the collision rules an difference in density is due to nonlocal forces between automaton particles. We simulate the relative motion of the dispersed phase in another continuous fluid. Deformation and disintegration of rising drops are reproduced. The interaction between multiple drops is also observed in calculations. Furutre, we obtain the transition of the two-phase flow pattern from bubbly, slug to annular flow. Density difference of two phase is one of the key ingredients to generate the annular flow pattern

  9. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed; Saad, Mazen Naufal B M

    2014-01-01

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  10. A combined finite volume-nonconforming finite element scheme for compressible two phase flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2014-06-28

    We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.

  11. Capillary pressure and saturation relations for supercritical CO2 and brine in sand: High-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions

    Science.gov (United States)

    Tokunaga, Tetsu K.; Wan, Jiamin; Jung, Jong-Won; Kim, Tae Wook; Kim, Yongman; Dong, Wenming

    2013-08-01

    In geologic carbon sequestration, reliable predictions of CO2 storage require understanding the capillary behavior of supercritical (sc) CO2. Given the limited availability of measurements of the capillary pressure (Pc) dependence on water saturation (Sw) with scCO2 as the displacing fluid, simulations of CO2 sequestration commonly rely on modifying more familiar air/H2O and oil/H2O Pc(Sw) relations, adjusted to account for differences in interfacial tensions. In order to test such capillary scaling-based predictions, we developed a high-pressure Pc(Sw) controller/meter, allowing accurate Pc and Sw measurements. Drainage and imbibition processes were measured on quartz sand with scCO2-brine at pressures of 8.5 and 12.0 MPa (45°C), and air-brine at 21°C and 0.1 MPa. Drainage and rewetting at intermediate Sw levels shifted to Pc values that were from 30% to 90% lower than predicted based on interfacial tension changes. Augmenting interfacial tension-based predictions with differences in independently measured contact angles from different sources led to more similar scaled Pc(Sw) relations but still did not converge onto universal drainage and imbibition curves. Equilibrium capillary trapping of the nonwetting phases was determined for Pc = 0 during rewetting. The capillary-trapped volumes for scCO2 were significantly greater than for air. Given that the experiments were all conducted on a system with well-defined pore geometry (homogeneous sand), and that scCO2-brine interfacial tensions are fairly well constrained, we conclude that the observed deviations from scaling predictions resulted from scCO2-induced decreased wettability. Wettability alteration by scCO2 makes predicting hydraulic behavior more challenging than for less reactive fluids.

  12. Analysis of amplitude-phase disturbances of Wolf's numbers rhythmic structure

    International Nuclear Information System (INIS)

    Vojchishin, K.S.

    1978-01-01

    Statistical analysis of Wolf's number rhythmic structure has been carried out. Wolf's number time series is considered as a stochastic signal with irregular disturbances of rhythmic structure appearing because of random variability of single cycle parameters. A method and an algorythm for transforming the signal, to reduce all quasi-eleven-year cycles of mean-monthly Wolf's numbers to a signal mean duration, to find out and to eliminate rhythmic phase disturbances, are proposed. An estimate of the accuracy of the procedure is given. The results of calculations (on the mean duration range of cycles) of estimates of their mathematical expectation, dispersion and correlation function depending on time and its shift are given. The conclusion that Wolf's number time series may be treated as a sequence of stochastic cycles with randomly varying amplitude, duration and phase is grounded. A possibility for reducing the forecast of smoothed mean-monthly Wolf's numbers for one or more cycles ahead to the forecast of only three abovementioned parameters is pointed out

  13. Phase transition and computational complexity in a stochastic prime number generator

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, L; Luque, B [Departamento de Matematica Aplicada y EstadIstica, ETSI Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Miramontes, O [Departamento de Sistemas Complejos, Instituto de FIsica, Universidad Nacional Autonoma de Mexico, Mexico 01415 DF (Mexico)], E-mail: lucas@dmae.upm.es

    2008-02-15

    We introduce a prime number generator in the form of a stochastic algorithm. The character of this algorithm gives rise to a continuous phase transition which distinguishes a phase where the algorithm is able to reduce the whole system of numbers into primes and a phase where the system reaches a frozen state with low prime density. In this paper, we firstly present a broader characterization of this phase transition, both in analytical and numerical terms. Critical exponents are calculated, and data collapse is provided. Further on, we redefine the model as a search problem, fitting it in the hallmark of computational complexity theory. We suggest that the system belongs to the class NP. The computational cost is maximal around the threshold, as is common in many algorithmic phase transitions, revealing the presence of an easy-hard-easy pattern. We finally relate the nature of the phase transition to an average-case classification of the problem.

  14. Is length an appropriate estimator to characterize pulmonary alveolar capillaries? A critical evaluation in the human lung

    DEFF Research Database (Denmark)

    Mühlfeld, Christian; Weibel, Ewald R.; Hahn, Ute

    2010-01-01

    Stereological estimations of total capillary length have been used to characterize changes in the alveolar capillary network (ACN) during developmental processes or pathophysiological conditions. Here, we analyzed whether length estimations are appropriate to describe the 3D nature of the ACN. Semi...... resulted in a mean of 2,746 km (SD: 722 km). Because of the geometry of the ACN both approaches carry an unpredictable bias. The bias incurred by the design-based approach is proportional to the ratio between radius and length of the capillary segments in the ACN, the number of branching points...... and the winding of the capillaries. The model-based approach is biased because of the real noncylindrical shape of capillaries and the network structure. In conclusion, the estimation of the total length of capillaries in the ACN cannot be recommended as the geometry of the ACN does not fulfill the requirements...

  15. Application of neural networks to prediction of phase transport characteristics in high-pressure two-phase turbulent bubbly flows

    International Nuclear Information System (INIS)

    Yang, A.-S.; Kuo, T.-C.; Ling, P.-H.

    2003-01-01

    The phase transport phenomenon of the high-pressure two-phase turbulent bubbly flow involves complicated interfacial interactions of the mass, momentum, and energy transfer processes between phases, revealing that an enormous effort is required in characterizing the liquid-gas flow behavior. Nonetheless, the instantaneous information of bubbly flow properties is often desired for many industrial applications. This investigation aims to demonstrate the successful use of neural networks in the real-time determination of two-phase flow properties at elevated pressures. Three back-propagation neural networks, trained with the simulation results of a comprehensive theoretical model, are established to predict the transport characteristics (specifically the distributions of void-fraction and axial liquid-gas velocities) of upward turbulent bubbly pipe flows at pressures covering 3.5-7.0 MPa. Comparisons of the predictions with the test target vectors indicate that the averaged root-mean-squared (RMS) error for each one of three back-propagation neural networks is within 4.59%. In addition, this study appraises the effects of different network parameters, including the number of hidden nodes, the type of transfer function, the number of training pairs, the learning rate-increasing ratio, the learning rate-decreasing ratio, and the momentum value, on the training quality of neural networks.

  16. Determination of parabens in sweeteners by capillary electrochromatography

    Directory of Open Access Journals (Sweden)

    Carla Beatriz Grespan Bottoli

    2011-12-01

    Full Text Available Parabens, common food preservatives, were analysed by capillary electrochromatography, using a commercial C18 silica (3 µm, 40 cm × 100 µm i. d. capillary column as separation phase. In order to optimise the separation of these preservatives, the effects of mobile phase composition on the separation were evaluated, as well as the applied voltage and injection conditions. The retention behavior of these analytes was strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the parabens was obtained within 18.5 minutes with a pH 8.0 mobile phase composed of 50:50 v/v tris(hydroxymethylaminomethane buffer and acetonitrile. The method was successfully applied to the quantitative analysis of paraben preservatives in sweetener samples with direct injection.Os parabenos, empregados como conservantes em alimentos, foram analisados por eletrocromatografia capilar, empregando uma coluna comercial recheada com partículas de sílica-C18 (3 µm, 40 cm × 100 µm d. i. como fase estacionária de separação. Para otimizar a separação destes conservantes foram avaliados os efeitos da composição da fase móvel na separação, bem como a voltagem e as condições de injeção. O comportamento de retenção dos analitos foi fortemente influenciado pela proporção de acetonitrila na fase móvel. A separação dos parabenos foi alcançada em 18,5 min com uma fase móvel contendo tampão tris(hidroximetilaminometano e acetonitrila na proporção 50:50 v/v. O método foi aplicado na análise quantitativa de parabenos em adoçantes empregando a injeção direta das amostras.

  17. Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru

    2007-01-01

    Full Text Available Aim. Diabetic retinopathy resists reversal after good glycemic control (GC is reinitiated, and preexisting damage at the time of intervention is considered as the major factor in determining the outcome of the GC. This study is to investigate the role of peroxynitrite accumulation in the retinal capillaries in the failure of retinopathy to reverse after reestablishment of GC, and to determine the effect of this reversal on the activity of the enzyme responsible for scavenging mitochondrial superoxide, MnSOD. Methods. In streptozotocin-diabetic rats, 6 months of poor glycemic control (PC, glycated hemoglobin, GHb>12.0% was followed by 6 additional months of GC (GHb about 6%. The trypsin-digested retinal microvessels were prepared for immunostaining of nitrotyrosine (a measure of peroxynitrite and for counting the number of acellular capillaries (a measure of histopathology. The retina from the other eye was used to quantify nitrotyrosine concentration, MnSOD activity and the total antioxidant capacity. Results. Reversal of hyperglycemia after 6 months of PC had no significant effect on nitrotyrosine concentration in the retina, on the nitrotyrosine-positive retinal capillary cells and on the number of acellular capillaries; the values were similar in PC-GC and PC groups. In the same rats retinal MnSOD activity remained inhibited and the total antioxidant capacity was subnormal 6 months after cessation of PC. Conclusions. Peroxynitrite accumulation in the retinal microvasculature, the site of histopathology, fails to normalize after reversal of hyperglycemia, and superoxide remains inadequately scavenged. This failure of reversal of peroxynitrite accumulation could be, in part, responsible for the resistance of diabetic retinopathy to reverse after termination of PC.

  18. Casimir amplitudes and capillary condensation of near-critical fluids between parallel plates: renormalized local functional theory.

    Science.gov (United States)

    Okamoto, Ryuichi; Onuki, Akira

    2012-03-21

    We investigate the critical behavior of a near-critical fluid confined between two parallel plates in contact with a reservoir by calculating the order parameter profile and the Casimir amplitudes (for the force density and for the grand potential). Our results are applicable to one-component fluids and binary mixtures. We assume that the walls absorb one of the fluid components selectively for binary mixtures. We propose a renormalized local functional theory accounting for the fluctuation effects. Analysis is performed in the plane of the temperature T and the order parameter in the reservoir ψ(∞). Our theory is universal if the physical quantities are scaled appropriately. If the component favored by the walls is slightly poor in the reservoir, there appears a line of first-order phase transition of capillary condensation outside the bulk coexistence curve. The excess adsorption changes discontinuously between condensed and noncondensed states at the transition. With increasing T, the transition line ends at a capillary critical point T=T(c) (ca) slightly lower than the bulk critical temperature T(c) for the upper critical solution temperature. The Casimir amplitudes are larger than their critical point values by 10-100 times at off-critical compositions near the capillary condensation line. © 2012 American Institute of Physics

  19. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Ioannis [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hall, Christopher [Centre for Materials Science and Engineering and School of Engineering and Electronics, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JL (United Kingdom); Wilson, Moira A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Hoff, William D [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom); Carter, Margaret A [Manchester Centre for Civil and Construction Engineering, UMIST, PO Box 88, Manchester M60 1QD (United Kingdom)

    2003-12-21

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 {mu}m. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials.

  20. Direct measurement of the wetting front capillary pressure in a clay brick ceramic

    International Nuclear Information System (INIS)

    Ioannou, Ioannis; Hall, Christopher; Wilson, Moira A; Hoff, William D; Carter, Margaret A

    2003-01-01

    The absorption of a liquid into a rectangular bar of an initially dry porous material that is sealed on all surfaces except the inflow face is analysed in terms of Sharp Front theory. Sharp Front models are developed for both complete and incomplete displacement of air ahead of the advancing wetting front. Experiments are described from which a characteristic capillary potential of the material is obtained by measuring the equilibrium pressure of the air displaced and compressed ahead of the advancing wetting front. Results for the absorption of water and n-heptane by a fired clay brick ceramic suggest that this wetting front capillary pressure (or capillary potential) scales approximately with the surface tension and also that the permeability scales inversely with the liquid viscosity. The pressure of the air trapped in the wetted region is found to be the same as the pressure of the displaced air. For this material the wetting front capillary pressure for water at 20 C is 0.113 MPa, equivalent to a hydraulic tension head of 11.5 m and to a Young-Laplace pore diameter of 2.6 μm. The capillary pressure so measured is apparently a fundamental percolation property of the material that can be interpreted as the air pressure at which liquid phase continuity and unsaturated conductivity both vanish. The method described can be applied generally to porous materials

  1. Capillary leak syndrome: etiologies, pathophysiology, and management.

    Science.gov (United States)

    Siddall, Eric; Khatri, Minesh; Radhakrishnan, Jai

    2017-07-01

    In various human diseases, an increase in capillary permeability to proteins leads to the loss of protein-rich fluid from the intravascular to the interstitial space. Although sepsis is the disease most commonly associated with this phenomenon, many other diseases can lead to a "sepsis-like" syndrome with manifestations of diffuse pitting edema, exudative serous cavity effusions, noncardiogenic pulmonary edema, hypotension, and, in some cases, hypovolemic shock with multiple-organ failure. The term capillary leak syndrome has been used to describe this constellation of disease manifestations associated with an increased capillary permeability to proteins. Diseases other than sepsis that can result in capillary leak syndrome include the idiopathic systemic capillary leak syndrome or Clarkson's disease, engraftment syndrome, differentiation syndrome, the ovarian hyperstimulation syndrome, hemophagocytic lymphohistiocytosis, viral hemorrhagic fevers, autoimmune diseases, snakebite envenomation, and ricin poisoning. Drugs including some interleukins, some monoclonal antibodies, and gemcitabine can also cause capillary leak syndrome. Acute kidney injury is commonly seen in all of these diseases. In addition to hypotension, cytokines are likely to be important in the pathophysiology of acute kidney injury in capillary leak syndrome. Fluid management is a critical part of the treatment of capillary leak syndrome; hypovolemia and hypotension can cause organ injury, whereas capillary leakage of administered fluid can worsen organ edema leading to progressive organ injury. The purpose of this article is to discuss the diseases other than sepsis that produce capillary leak and review their collective pathophysiology and treatment. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. Prostate IMRT fractionation strategies. Two-phase treatment versus simultaneous integrated boost

    International Nuclear Information System (INIS)

    Stavrev, P.; Hristov, D.

    2003-01-01

    Background. The purpose of the study was to investigate the radiobiological effect of the number of fractions, position uncertainties and clonogen spread (microscopic disease) on two different inverse treatment planning alternatives: (a) 2-phase strategy; (b) simultaneous integrated boost (SIB). Material and methods. The tumour control probability (TCP) and normal tissue complication probability (NTCP) were calculated for the 2-phase strategy, which has well defined fractionation scheme and compared to the TCP and NTCP for the SIB strategy calculated as a function of the number of fractions. For a 7-beam IMRT prostate treatment, we have performed inverse treatment planning for the two different strategies following the above method. Results. When the position uncertainties and clonogen spread were accounted for in the TCP calculation a drop as large as 10% was found. A drop of 5-7% in the TCP was obtained for the SIB strategy, if delivered in the same number of fractions as the 2-phased one. Conclusions. The potential of inverse planning to design tight conformal dose distributions is fully revealed in the SIB optimization process. The optimized SIB superior dose distributions require modification of the delivered dose per fraction and therefore careful selection of the fractionation regime. Hence physically optimized SIB treatments may not always lead to better tumour control and tissue sparing. (author)

  3. Long-term gas migration modelling in compacted bentonite using swelling/shrinkage-dependent two phase flow parameters

    International Nuclear Information System (INIS)

    Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Asano, H.; Namiki, K.

    2012-01-01

    inconsistent with those obtained from the gas injection test data. This inconsistency cannot be interpreted by standard hysteresis effect only. Since the moisture conditions of specimens used in the hydration test and the gas injection test were considerably different, we interpreted that swelling and shrinkage of montmorillonite induced the deformation of macro-pores. In order to deal with these phenomena, we proposed a new modelling approach which makes it possible to consider the interaction between pore moisture and macro-pores deformation. It leads to the consistent evaluation of the long-term gas migration behaviors including not only the re-saturation phase but also the gas generation and migration phase. Such mechanical effects are incorporated into the existing TH coupled code 'GETFLOWS' by introducing the saturation-dependent multiple non-linear functions such as porosity, permeability, capillary pressure and so on. Examples of swelling/shrinkage-dependent two phase flow parameters are shown in Figure 1. The shapes of capillary pressure and relative permeability curve are updated by the amount of pore moisture. Furthermore, the pathway dilation is generalized in the same treatments by specifying the water saturation threshold for the development of pathway propagations. Our proposed model has been applied to both laboratory-scaled and field-scaled gas migration problems. In the laboratory-scaled problems, we have confirmed that measured test data can be successfully reproduced by the new modelling approach using consistent parameters. In the field-scaled problems, it has found that the mechanical effect of swelling/shrinkage induced deformation of macro-pores impacts the performance measure, and should be considered in the gas migration analysis. This study includes a part of the result of 'Development of the technique for the evaluation of long-term performance of EBS, FY2011' under a grant from the Japanese Ministry of Economy Trade and Industry. (authors)

  4. Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

    NARCIS (Netherlands)

    Szafranski, P.; Gambin, T.; Dharmadhikari, A.V.; Akdemir, K.C.; Jhangiani, S.N.; Schuette, J.; Godiwala, N.; Yatsenko, S.A.; Sebastian, J.; Madan-Khetarpal, S.; Surti, U.; Abellar, R.G.; Bateman, D.A.; Wilson, A.L.; Markham, M.H.; Slamon, J.; Santos-Simarro, F.; Palomares, M.; Nevado, J.; Lapunzina, P.; Chung, B.H.; Wong, W.L.; Chu, Y.W.; Mok, G.T.; Kerem, E.; Reiter, J.; Ambalavanan, N.; Anderson, S.A.; Kelly, D.R.; Shieh, J.; Rosenthal, T.C.; Scheible, K.; Steiner, L.; Iqbal, M.A.; McKinnon, M.L.; Hamilton, S.J.; Schlade-Bartusiak, K.; English, D.; Hendson, G.; Roeder, E.R.; DeNapoli, T.S.; Littlejohn, R.O.; Wolff, D.J.; Wagner, C.L.; Yeung, A.; Francis, D.; Fiorino, E.K.; Edelman, M.; Fox, J.; Hayes, D.A.; Janssens, S.; Baere, E. De; Menten, B.; Loccufier, A.; Vanwalleghem, L.; Moerman, P.; Sznajer, Y.; Lay, A.S.; Kussmann, J.L.; Chawla, J.; Payton, D.J.; Phillips, G.E.; Brosens, E.; Tibboel, D.; Klein, A.; Maystadt, I.; Fisher, R.; Sebire, N.; Male, A.; Chopra, M.; Pinner, J.; Malcolm, G.; Peters, G.; Arbuckle, S.; Lees, M.; Mead, Z.; Quarrell, O.; Sayers, R.; Owens, M.; Shaw-Smith, C.; Lioy, J.; McKay, E.; Leeuw, N. de; Feenstra, I.; Spruijt, L.; Elmslie, F.; Thiruchelvam, T.; Bacino, C.A.; Langston, C.; Lupski, J.R.; Sen, P.; Popek, E.; Stankiewicz, P.

    2016-01-01

    Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes

  5. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2017-12-01

    Full Text Available Background: Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc. Methods: Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Results: Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Conclusion: Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. Impact of the study: This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing. Keywords: Epoc, Capillary, Transport, Blood gas, Point of care

  6. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Spinler, E.A.; Baldwin, B.A. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  7. Characterization of the two-phase Taylor Couette flow

    International Nuclear Information System (INIS)

    Mehel A; Gabillet B; Djeridi H

    2005-01-01

    The focus of the present study concerns the effects of a dispersed phase on the structure of a quasi periodic Couette Taylor flow. The two phase flow patterns are investigated experimentally for the Taylor number Ta=780. Small bubbles (0.035 times as small as the gap) are generated by agitation of the upper free surface. Larger bubbles (0.15 times as small as the gap) are produced by injection at the bottom of the apparatus associated with a pressure drop. Void fraction, bubble size and velocity are measured, as well as the azimuthal and axial velocity components of the liquid. A premature transition to turbulence is pointed out and discussed according to the bubble size and their localization in the gap. (authors)

  8. Stacking by electroinjection with discontinuous buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Shihabi, Zak K

    2002-08-01

    The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.

  9. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    Science.gov (United States)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  10. Flashing liquid jets and two-phase droplet dispersion

    International Nuclear Information System (INIS)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-01-01

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future

  11. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th|info:eu-repo/dai/nl/31481518X; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-01-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  12. A new linearized theory of laminar film condensation of two phase annular flow in a capillary pumped loop

    Science.gov (United States)

    Hsu, Y. K.; Swanson, T.; Mcintosh, R.

    1988-01-01

    Future large space based facilities, such as Space Station, will require energy management systems capable of transporting tens of kilowatts of heat over a hundred meters or more. This represents better than an order of magnitude improvement over current technology. Two-phase thermal systems are currently being developed to meet this challenge. Condensation heat transfer plays a very important role in this system. The present study attempts an analytic solution to the set of linearized partial differential equations. The axial velocity and temperature functions were found to be Bessel functions which have oscillatory behavior. This result agrees qualitatively with the experimental evidence from tests at both NASA Goddard Space Flight Center and elsewhere.

  13. Comparisons Between Histology and Optical Coherence Tomography Angiography of the Periarterial Capillary-Free Zone.

    Science.gov (United States)

    Balaratnasingam, Chandrakumar; An, Dong; Sakurada, Yoichi; Lee, Cecilia S; Lee, Aaron Y; McAllister, Ian L; Freund, K Bailey; Sarunic, Marinko; Yu, Dao-Yi

    2018-05-01

    To use the capillary-free zone along retinal arteries, a physiologic area of superficial avascularization, as an anatomic paradigm to investigate the reliability of optical coherence tomography angiography (OCTA) for visualizing the deep retinal circulation. Validity analysis and laboratory investigation. Five normal human donor eyes (mean age 69.8 years) were perfusion-labeled with endothelial antibodies and the capillary networks of the perifovea were visualized using confocal scanning laser microscopy. Regions of the capillary-free zone along the retinal artery were imaged using OCTA in 16 normal subjects (age range 24-51 years). Then, 3 × 3-mm scans were acquired using the RTVue XR Avanti (ver. 2016.1.0.26; Optovue, Inc, Fremont, California, USA), PLEX Elite 9000 (ver. 1.5.0.15909; Zeiss Meditec, Inc, Dublin, California, USA), Heidelberg Spectralis OCT2 (Family acquisition module 6.7.21.0; Heidelberg Engineering, Heidelberg, Germany), and DRI-OCT Triton (Ver. 1.1.1; Topcon Corp, Tokyo, Japan). Images of the superficial plexus, deep vascular plexus, and a slab containing all vascular plexuses were generated using manufacturer-recommended default settings. Comparisons between histology and OCTA were performed. Histologic analysis revealed that the capillary-free zone along the retinal artery was confined to the plane of the superficial capillary plexus and did not include the intermediate and deep capillary plexuses. Images derived from OCTA instruments demonstrated a prominent capillary-free zone along the retinal artery in slabs of the superficial plexus, deep plexus, and all capillary plexuses. The number of deep retinal capillaries seen in the capillary-free zone was significantly greater on histology than on OCTA (P zone as an anatomic paradigm, we show that the deep vascular beds of the retina are not completely visualized using OCTA. This may be a limitation of current OCTA techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Phase transitions in two dimensions

    International Nuclear Information System (INIS)

    Henderson, D.

    1980-01-01

    Although a two-dimensional solid with long-range translational order cannot existin the thermodynamic limit (N → ∞, V →∞, N/V finite) macroscopic samples of two-dimensional solids can exist. In this work, stability of the phase was determined by the usuar method of equating the pressure and chemical potential of the phases. (A.C.A.S.) [pt

  15. Validation of capillary blood analysis and capillary testing mode on the epoc Point of Care system.

    Science.gov (United States)

    Cao, Jing; Edwards, Rachel; Chairez, Janette; Devaraj, Sridevi

    2017-12-01

    Laboratory test in transport is a critical component of patient care, and capillary blood is a preferred sample type particularly in children. This study evaluated the performance of capillary blood testing on the epoc Point of Care Blood Analysis System (Alere Inc). Ten fresh venous blood samples was tested on the epoc system under the capillary mode. Correlation with GEM 4000 (Instrumentation Laboratory) was examined for Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pO2, pCO2, and pH, and correlation with serum tested on Vitros 5600 (Ortho Clinical Diagnostics) was examined for creatinine. Eight paired capillary and venous blood was tested on epoc and ABL800 (Radiometer) for the correlation of Na+, K+, Cl-, Ca2+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Capillary blood from 23 apparently healthy volunteers was tested on the epoc system to assess the concordance to reference ranges used locally. Deming regression correlation coefficients for all the comparisons were above 0.65 except for ionized Ca2+. Accordance of greater than 85% to the local reference ranges were found in all assays with the exception of pO2 and Cl-. Data from this study indicates that capillary blood tests on the epoc system provide comparable results to reference method for these assays, Na+, K+, glucose, lactate, hematocrit, hemoglobin, pCO2, and pH. Further validation in critically ill patients is needed to implement the epoc system in patient transport. This study demonstrated that capillary blood tests on the epoc Point of Care Blood Analysis System give comparable results to other chemistry analyzers for major blood gas and critical tests. The results are informative to institutions where pre-hospital and inter-hospital laboratory testing on capillary blood is a critical component of patient point of care testing.

  16. Simulation of two-phase flows by domain decomposition

    International Nuclear Information System (INIS)

    Dao, T.H.

    2013-01-01

    This thesis deals with numerical simulations of compressible fluid flows by implicit finite volume methods. Firstly, we studied and implemented an implicit version of the Roe scheme for compressible single-phase and two-phase flows. Thanks to Newton method for solving nonlinear systems, our schemes are conservative. Unfortunately, the resolution of nonlinear systems is very expensive. It is therefore essential to use an efficient algorithm to solve these systems. For large size matrices, we often use iterative methods whose convergence depends on the spectrum. We have studied the spectrum of the linear system and proposed a strategy, called Scaling, to improve the condition number of the matrix. Combined with the classical ILU pre-conditioner, our strategy has reduced significantly the GMRES iterations for local systems and the computation time. We also show some satisfactory results for low Mach-number flows using the implicit centered scheme. We then studied and implemented a domain decomposition method for compressible fluid flows. We have proposed a new interface variable which makes the Schur complement method easy to build and allows us to treat diffusion terms. Using GMRES iterative solver rather than Richardson for the interface system also provides a better performance compared to other methods. We can also decompose the computational domain into any number of sub-domains. Moreover, the Scaling strategy for the interface system has improved the condition number of the matrix and reduced the number of GMRES iterations. In comparison with the classical distributed computing, we have shown that our method is more robust and efficient. (author) [fr

  17. Spin incommensurability and two phase competition in cobaltites.

    Science.gov (United States)

    Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y

    2006-12-08

    The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.

  18. Baryon number fluctuations and the phase structure in the PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guo-yun; Tang, Zhan-duo; Gao, Xue-yan; He, Wei-bo [Xi' an Jiaotong University, School of Science, Xi' an, Shaanxi (China)

    2018-02-15

    We investigate the kurtosis and skewness of net-baryon number fluctuations in the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model, and discuss the relations between fluctuation distributions and the phase structure of quark-gluon matter. The calculation shows that the traces of chiral and deconfinement transitions can be effectively reflected by the kurtosis and skewness of net-baryon number fluctuations not only in the critical region but also in the crossover region. The contour plot of baryon number kurtosis derived in the PNJL model can qualitatively explain the behavior of net-proton number kurtosis in the STAR beam energy scan experiments. Moreover, the three-dimensional presentations of the kurtosis and skewness in this study are helpful to understand the relations between baryon number fluctuations and QCD phase structure. (orig.)

  19. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio

    2016-02-13

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors\\' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.

  20. Effects of non-unity Lewis number of gas-phase species in turbulent nonpremixed sooting flames

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio; Mueller, Michael E.; Pitsch, Heinz

    2016-01-01

    Turbulence statistics from two three-dimensional direct numerical simulations of planar n-heptane/air turbulent jets are compared to assess the effect of the gas-phase species diffusion model on flame dynamics and soot formation. The Reynolds number based on the initial jet width and velocity is around 15, 000, corresponding to a Taylor scale Reynolds number in the range 100 ≤ Reλ ≤ 150. In one simulation, multicomponent transport based on a mixture-averaged approach is employed, while in the other the gas-phase species Lewis numbers are set equal to unity. The statistics of temperature and major species obtained with the mixture-averaged formulation are very similar to those in the unity Lewis number case. In both cases, the statistics of temperature are captured with remarkable accuracy by a laminar flamelet model with unity Lewis numbers. On the contrary, a flamelet with a mixture-averaged diffusion model, which corresponds to the model used in the multi-component diffusion three-dimensional DNS, produces significant differences with respect to the DNS results. The total mass of soot precursors decreases by 20-30% with the unity Lewis number approximation, and their distribution is more homogeneous in space and time. Due to the non-linearity of the soot growth rate with respect to the precursors' concentration, the soot mass yield decreases by a factor of two. Being strongly affected by coagulation, soot number density is not altered significantly if the unity Lewis number model is used rather than the mixture-averaged diffusion. The dominant role of turbulent transport over differential diffusion effects is expected to become more pronounced for higher Reynolds numbers. © 2016 The Combustion Institute.