WorldWideScience

Sample records for capillary electrophoresis separation

  1. Separation and analysis of triazine herbcide residues by capillary electrophoresis.

    Science.gov (United States)

    Elbashir, Abdalla A; Aboul-Enein, Hassan Y

    2015-06-01

    Triazines are widely used in agriculture around the world as selective pre- and post-emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized.

  2. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth

    2003-01-01

    . Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...

  3. Separation of Aminobenzoic Acids by Gold Nanoparticle modified Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YAN,Hongtao; LI,Tuo; GUO,Yanli

    2009-01-01

    A novel method for the separation of aminobenzoic acids by capillary electrophoresis was developed.The capillary was modified with gold nanoparticles.The effect of gold nanoparticles on the resolution and selectivity of separation was investigated.The influence of separation voltage,pH and buffer concentration on the separation of aminobenzoic acids was also examined.It was found that the presence of gold nanoparticles improved the precision of the analysis and increased the separation efficiency.Under the optimized experiment conditions,aminobenzoic acids were separated and determined.Linearity was established over the concentration range 0.5-40 μg·mL-1 with correlation coefficients of 0.9978-0.9992.The detection limits (S/N = 3) were from 0.1 to 0.5 μg·mL-1.

  4. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  5. Enantiomeric Separation of Meptazinol Hydrochloride by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YUYun-qiu; CHENYan; LINi; QIUZhui-bai

    2004-01-01

    Aim To establish a capillary electrophoresis method for enantiomerie separation of meptazinol hydrochloride. Methods The separation conditions such as cyclodextrin(CD)type, buffer pH, concentration of 2,3,6-O-triInethyl-β-cyclodextrin and organic additives were optimized. An optimum concentration was 30 mmol·L-1 phosphate (pH 7.02)with 10% (W/V) TM-β-CD and 2% acetonitrile. Results Basehne resolution of the enantiomer was readily achieved using 2,3,6-O-trimethyl-β-cyclodextrin. Conclusion This is a convenient method for fast enantiomeric resolution of meptazinol hydrochloride.

  6. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  7. Separation of enantiomers by capillary electrophoresis using pentosan polysulfate.

    Science.gov (United States)

    Wang, X; Lee, J T; Armstrong, D W

    1999-01-01

    Pentosan polysulfate, a semisynthetic polysaccharide, was employed as a chiral run buffer additive in capillary electrophoresis. Twenty-eight racemic analytes were resolved. The separations were successful only at low pH when the analytes were significantly protonated. This suggests that ionic interactions were the dominant associative interactions between the anionic pentosan polysulfate and the positively charged analytes. Compared to other linear, carbohydrate-based chiral selectors (i.e., chondroitin sulfates, heparin and dextran sulfate) pentosan polysulfate has some characteristics common of anionic polysaccharides; yet it has several differences in its structure and properties which account for its unusual enantioselectivity. The effects of pH, concentration of phosphate buffer, concentration of pentosan polysulfate and the type and concentration of organic modifier on the enantiomeric separations were investigated. The optimization of these separations were dependent on the nature of the analytes and could be achieved by the proper choice of experimental conditions.

  8. Separation of cold medicine ingredients by capillary electrophoresis.

    Science.gov (United States)

    Suntornsuk, L

    2001-01-01

    This study demonstrates the separation of cold medicine ingredients (e.g., phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol) by capillary zone electrophoresis and micellar electrokinetic chromatography. Factors affecting their separations were the buffer pH and the concentrations of buffer, surfactant and organic modifiers. Optimum results were obtained with a 10 mM sodium dihydrogen-phosphate-sodium tetraborate buffer containing 50 mM sodium dodecyl sulfate (SDS) and 5% methanol (MeOH), pH 9.0. The carrier electrolyte gave a baseline separation of phenylpropanolamine, dextromethorphan, chlorpheniramine maleate, and paracetamol with a resolution of 1.2, and the total migration time was 11.38 min.

  9. Mecanismos de Separação em Eletroforese Capilar Separation Mechanisms in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Marina F. M. Tavares

    1997-10-01

    Full Text Available Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (free solution, micellar and gel, capillary isoelectric focusing and capillary isotachophoresis are discussed and many representative applications are presented.

  10. In-capillary derivatization and capillary electrophoresis separation of amino acid neurotransmitters from brain microdialysis samples.

    Science.gov (United States)

    Denoroy, Luc; Parrot, Sandrine; Renaud, Louis; Renaud, Bernard; Zimmer, Luc

    2008-09-26

    A new in-capillary derivatization method with naphtalene-2,3-dicarboxyaldehyde (NDA)/CN(-) has been developed for capillary electrophoresis with laser-induced fluorescence detection of brain microdialysate amino acids. Samples are sandwiched between two plugs of reagent mixture at the capillary inlet and subsequently separated. Highest derivatization yields are obtained by using a reagent to sample plug length ratio equal to 4, performing a first electrophoretic mixing followed by a zero potential amplification step before applying the separation voltage and using a NaCN to NDA concentration ratio equal to 1. This new single-step methodology allows the analysis of amino acid neurotransmitters in rat brain microdialysis samples.

  11. Instrumental development of novel detection and separation methods for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Garner, T.

    1993-07-01

    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  12. Capillary electrophoresis: Biotechnology for separation of DNA and chromosomes

    Science.gov (United States)

    Williams, George O., Jr.

    1994-01-01

    Electrophoresis has been used for the separation of particles, ions, and molecules for a number of years. The technology for separation and detection of the results has many applications in the life sciences. One of the major goals of the scientific community is to separate DNA molecules and intact chromosomes based upon their different lengths or number of base pairs. This may be achieved by using some of the commercially available and widely used methods, but these processes require a considerable amount of time. The challenge is to achieve separation of intact chromosomes in a short time, preferably in a matter of minutes.

  13. Self-assembly of cellulose nanoparticles as electrolyte additive for capillary electrophoresis separation.

    Science.gov (United States)

    Huang, Dihui; Yang, Qin; Jin, Shanxia; Deng, Qianchun; Zhou, Ping

    2014-11-07

    In this work, a new cellulose derivative, octadecyl modified quaternized cellulose (ODMQC), was synthesized and used as additive in the background electrolyte for capillary electrophoresis. The derivative bearing hydrophobic groups and hydrophilic groups can self-assemble into a stable nano-scaled micelle structure in aqueous solution. When ODMQC was added in running buffer, the capillaries were shown to generate applicable anodal EOF over the investigated range of pH 3.0-12.0. Due to the lack of UV active groups, the ODMQC did not disturb the UV detection. It is shown that ODMQC-added capillaries allow the separation of basic proteins by reducing their adsorption onto the capillary wall. Also, the addition of ODMQC provides adequate separation of aromatic acids with low pKa values and improved separation of sulfa drugs. Moreover, it is demonstrated that the addition of ODMQC can incorporate an additional reversed-phase mechanism that improves the separation of neutral analytes.

  14. Chiral Separation of Ibuprofen and Terbutaline by Nonaqueous Capillary Electrophoresis with Conductance Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the nonaqueous N,N-dimethylformamide medium, the chiral drugs ibuprofen and terbutaline were successfully separated with sulfonyl-β-cyclodextrin(s-β-CD) as the chiral selector by capillary electrophoresis with conductance detection. The comparison of the effects of three CDS(β-CD, diethylic-β-CD, sulfonyl-β-CD) on the chiral separation was made and the resolution mechanism was proposed.

  15. DNA Separation by Capillary Electrophoresis with Ultraviolet Detection using Mixed Synthetic Polymers

    Institute of Scientific and Technical Information of China (English)

    Qian WANG; Xu XU

    2003-01-01

    The mixtures of two polymers, poly (N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP) were synthesized and used as the separation medium for double-stranded and single-stranded DNA fragments by capillary electrophoresis with UV detector. On optimal conditions, 2%w/v PDMA ( 2%w/v PVP can be used to separate the doublet 123/124bp in pBR322/Hae III Markers.

  16. Development of novel separation techniques for biological samples in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huan -Tsung [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  17. Separation of multiply charged anions by capillary electrophoresis using alkyl phosphonium pairing agents.

    Science.gov (United States)

    Feng, Qing; Wanigasekara, Eranda; Breitbach, Zachary S; Armstrong, Daniel W

    2012-04-01

    Two newly developed UV transparent phosphonium-based cationic reagents were evaluated as background electrolyte additives for capillary electrophoresis for the separation of multiply charged anions, including several complex anions. These cationic reagents showed moderate suppression of the electroosmotic flow, interacted with the analytes to improve their separation and often improved the peak shape. The effects of the additives and their concentration on the separation were studied, as well as the buffer type, pH, and voltage. The dicationic reagent effectively separated eight divalent anions within 17 min and the tetracationic reagent best separated nine trivalent anions, as well as a mixture of all the anions.

  18. Derivatization in Capillary Electrophoresis.

    Science.gov (United States)

    Marina, M Luisa; Castro-Puyana, María

    2016-01-01

    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS).

  19. Separation and characterisation of detonation nanodiamond by capillary zone electrophoresis.

    Science.gov (United States)

    Duffy, Emer; Mitev, Dimitar P; Nesterenko, Pavel N; Kazarian, Artaches A; Paull, Brett

    2014-07-01

    A new method for the characterisation of purified detonation nanodiamond (DND) using CZE has been developed. The influence of BGE conditions on electrophoretic mobility, peak shape and particle aggregation was investigated, with resultant observations supported by zeta potential approximations and particle size measurements. Sodium tetraborate (pH 9.3), Tris (pH 9.3) and sodium phosphate (pH 7) were used in studying the BGE concentration effect on a commercial source of chemically stabilised DND. The BGE concentration had a strong effect on the stability of DND in suspension. The formation of aggregates of various sizes was observed as BGE concentration increased. The effect of pH on the electromigration of DND was examined using sodium phosphate (pH 8 and 10). The CZE method was subsequently applied to four different DND samples, which had undergone different routes of purification following detonation synthesis. Each sample produced a unique electrophoretic peak or profile in sodium tetraborate buffer (pH 9.3), such that the actual separation of DND samples from different sources could be achieved.

  20. Optimized Separation of Pharmacologically Active Xanthones from Secuidaca inappendiculata by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    TaoBO; XueDongYANG; 等

    2002-01-01

    A capillary electrophoresis (CE) method has been firstly used for the separation of the therapeutically important xanthones from Securidaca inappendiculata. The separation of the nine xanthones was systematically optimized with respect to pH, concentration of running buffers,addition of sulfated β-CD,applied voltage and column temperature.Baseline separation was achieved for the nine xanthones in less than 15 minutes using a background electrolyte consisting of 200 mmol/L borate (pH9.5) and 10 mmol/L sulfated β-CD.

  1. Optimization of separation and detection schemes for DNA with pulsed field slab gel and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, D.A.

    1993-07-01

    The purpose of the Human Genome Project is outlined followed by a discussion of electrophoresis in slab gels and capillaries and its application to deoxyribonucleic acid (DNA). Techniques used to modify electroosmotic flow in capillaries are addressed. Several separation and detection schemes for DNA via gel and capillary electrophoresis are described. Emphasis is placed on the elucidation of DNA fragment size in real time and shortening separation times to approximate real time monitoring. The migration of DNA fragment bands through a slab gel can be monitored by UV absorption at 254 nm and imaged by a charge coupled device (CCD) camera. Background correction and immediate viewing of band positions to interactively change the field program in pulsed-field gel electrophoresis are possible throughout the separation. The use of absorption removes the need for staining or radioisotope labeling thereby simplifying sample preparation and reducing hazardous waste generation. This leaves the DNA in its native state and further analysis can be performed without de-staining. The optimization of several parameters considerably reduces total analysis time. DNA from 2 kb to 850 kb can be separated in 3 hours on a 7 cm gel with interactive control of the pulse time, which is 10 times faster than the use of a constant field program. The separation of {Phi}X174RF DNA-HaeIII fragments is studied in a 0.5% methyl cellulose polymer solution as a function of temperature and applied voltage. The migration times decreased with both increasing temperature and increasing field strength, as expected. The relative migration rates of the fragments do not change with temperature but are affected by the applied field. Conditions were established for the separation of the 271/281 bp fragments, even without the addition of intercalating agents. At 700 V/cm and 20{degrees}C, all fragments are separated in less than 4 minutes with an average plate number of 2.5 million per meter.

  2. Chiral separation of benzoporphyrin derivative mono- and diacids by laser induced fluorescence-capillary electrophoresis.

    Science.gov (United States)

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2002-01-01

    A method for the separation of benzoporphyrin derivative mono- and diacid (BPDMA, BPDDA) enantiomers by laser induced fluorescence-capillary electrophoresis (LIF-CE) has been developed. By using 300 mM borate buffer, pH 9.2, 25 mM sodium cholate and 10% acetronitrile as electrolyte, +10 kV electrokinetic sampling injection of 2 s and an applied +20 kV voltage across the ends of a 37 cm capillary (30 cm to the detector, 50 microm ID), all six BPD stereoisomers were baseline-separated within 20 min. Formation constants, free electrophoretic and complexation mobilities with borate and cholate were determined based on dynamic complexation capillary electrophoresis theory. The BPD enantiomers can be quantitatively determined in the range of 10(-2)-10(-5) mg mL(-1). The correlation coefficients (r2) of the least-squares linear regression analysis of the BPD enantiomers are in the range of 0.9914-0.9997. Their limits of detection are 2.18-3.5 x 10(-3) mg mL(-1). The relative standard deviations for the separation were 2.90-4.64% (n = 10). In comparison with high-performance liquid chromatography (HPLC), CE has better resolution and efficiency. This separation method was successfully applied to the BPD enantiomers obtained from a matrix of bovine serum and from liposomally formulated material as well as from studies with rat, dog and human microsomes.

  3. Electrostatic interaction mechanism on the separation of phenols by non-aqueous capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    WEI WeiLi; YIN YongGuang; XIA ZhiNing; CHEN ZhiTao; LIU WeiQi

    2007-01-01

    The electrostatic interaction between additive and analyte is of great importance to non-aqueous capillary electrophoresis (NACE) separation. Three tetraalkylammonium bromides and acetonitrile were applied as additives and running solvent respectively. The effect of alkyl chain length and concentration of additive on electrostatic interactions was investigated by the separation of phenols. The separation ability was found to increase with decreasing alkyl chain length of the additive, and the resolution values were increased with increasing additive concentration. The separation was seriously deteriorated after a little amount of water was added in the running solution. Furthermore, the electrostatic interaction is strong under the conditions of low electron cloud density, weak steric hindrance and multi-interaction sites. Thus, the separation result can be predicted by theoretical analysis, which is helpful for the separation of other substances in NACE based on electrostatic interaction.

  4. Biomedical applications of capillary electrophoresis

    Science.gov (United States)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  5. Separation of chiral drugs with β-CD phosphate by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    β -Cyclodextrin phosphate (β -CD-phosphate) was used as a selector for separating chiral drugs by capillary electrophoresis (CE). A solution comprising of 120 mmol/L Britton-Robinson buffer (BRB) containing 10 mmol/L β -CD phosphate with the pH adjusted to 7.0 was used as the background electrolyte (BGE), and a small amount of analyte was injected (600v/1s). Triethylamine, diethylamine, triethanolamine, diethanolamine, Tris added as modifier were compared. Isoprenaline, methoxamine, oxprenolol, practolol were successfully resolved.

  6. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Beutner, Andrea; Kochmann, Sven; Mark, Jonas Josef Peter; Matysik, Frank-Michael

    2015-03-17

    The separation of complex mixtures such as biological or environmental samples requires high peak capacities, which cannot be established with a single separation technique. Therefore, multidimensional systems are in demand. In this work, we present the hyphenation of the two most important (orthogonal) techniques in ion analysis, namely, ion chromatography (IC) and capillary electrophoresis (CE), in combination with mass spectrometry. A modulator was developed ensuring a well-controlled coupling of IC and CE separations. Proof-of-concept measurements were performed using a model system consisting of nucleotides and cyclic nucleotides. The data are presented in a multidimensional contour plot. Analyte stacking in the CE separation could be exploited on the basis of the fact that the suppressed IC effluent is pure water.

  7. Quality criterion to optimize separations in capillary electrophoresis: Application to the analysis of harmala alkaloids.

    Science.gov (United States)

    Tascon, Marcos; Benavente, Fernando; Castells, Cecilia B; Gagliardi, Leonardo G

    2016-08-19

    In capillary electrophoresis (CE), resolution (Rs) and selectivity (α) are criteria often used in practice to optimize separations. Nevertheless, when these and other proposed parameters are considered as an elementary criterion for optimization by mathematical maximization, certain issues and inconsistencies appear. In the present work we analyzed the pros and cons of using these parameters as elementary criteria for mathematical optimization of capillary electrophoretic separations. We characterized the requirements of an ideal criterion to qualify separations within the framework of mathematical optimizations and, accordingly, propose: -1- a new elementary criterion (t') and -2- a method to extend this elementary criterion to compose a global function that simultaneously qualifies many different aspects, also called multicriteria optimization function (MCOF). In order to demonstrate this new concept, we employed a group of six alkaloids with closely related structures (harmine, harmaline, harmol, harmalol, harmane and norharmane). On the basis of this system, we present a critical comparison between the new optimization criterion t' and the former elementary criteria. Finally, aimed at validating the proposed methods, we composed an MCOF in which the capillary-electrophoretic separation of the six model compounds is mathematically optimized as a function of pH as the unique variable. Experimental results subsequently confirmed the accuracy of the model.

  8. Chiral separation of benzothiazole derivatives of amino acids using capillary zone electrophoresis.

    Science.gov (United States)

    Nováková, Zuzana; Pejchal, Vladimír; Fischer, Jan; Česla, Petr

    2017-02-01

    A method for the separation of enantiomers of leucine and phenylalanine benzothiazole derivatives as potential antimicrobial agents was developed using capillary zone electrophoresis with a dual cyclodextrin (CD) system. The best resolution of enantiomers was achieved in 100 mmol/L phosphate background electrolyte (pH 3.5) with the dual CD system consisting of 10 mmol/L of β-CD with 10 mmol/L of 2-hydroxypropyl-β-cyclodextrin for leucine derivative and 10 mmol/L of 2-hydroxypropyl-γ-cyclodextrin for phenylalanine derivative, respectively. Under the optimal conditions, the highest enantioresolution of 1.25 was achieved in a noncoated-fused silica capillary at 17°C and 24 kV applied voltage.

  9. Effect of polyamines on the separation of ovalbumin glycoforms by capillary electrophoresis.

    Science.gov (United States)

    Legaz, M E; Pedrosa, M M

    1996-01-05

    The successful separation of ovalbumin (M(r) 45,000; pI 4.7) glycoforms by capillary electrophoresis in an uncoated fused-silica capillary with different buffer additives is reported. The optimum conditions for obtaining the resolution of glycoforms were 25 mM borate (pH 9.0) containing 0.87 mM spermidine or 0.14 mM spermine. The effects of different concentrations of putrescine, cadaverine, spermidine, spermine and some monoamines or diamines are compared in terms of selectivity factors of ovalbumin peaks. Addition of sodium dodecyl sulfate at a concentration below the critical micelle concentration increased the resolution between the three main peaks of ovalbumin but did not permit their microheterogeneity to be expressed.

  10. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wenwan Zhong

    2003-08-05

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  11. Capillary electrophoresis separation of neutral organic compounds, pharmaceutical drugs, proteins and peptides, enantiomers, and anions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wei -Liang [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Addition of a novel anionic surfactant, namely lauryl polyoxyethylene sulfate, to an aqueous-acetonitrile electrolyte makes it possible to separate nonionic organic compounds by capillary electrophoresis. Separation is based on differences in the association between analytes and the surfactant. Highly hydrophobic compounds such as polyaromatic hydrocarbons are well separated by this new surfactant. Migration times of analytes can be readily changed over an unusually large range by varying the additive concentration and the proportion of acetonitrile in the electrolyte. Several examples are given, including the separation of four methylbenz[a]anthracene isomers and the separation of normal and deuterated acetophenone. The effect of adding this new surfactant to the acidic electrolyte was also investigated. Incorporation of cetyltrimethylammonium bromide in the electrolyte is shown to dynamically coat the capillary and reverse electroosmotic flow. Chiral recognition mechanism is studied using novel synthetic surfactants as chiral selectors, which are made from amino acids reacting with alkyl chloroformates. A satisfactory separation of both inorganic and organic anions is obtained using electrolyte solutions as high as 5 M sodium chloride using direct photometric detection. The effect of various salts on electrophoretic and electroosmotic mobility is further discussed. Several examples are given under high-salt conditions.

  12. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  13. Separation and determination of cefotaxime enantiomers in injections by capillary zone electrophoresis.

    Science.gov (United States)

    Wang, Rong; Jia, Zheng-Ping; Fan, Jun-Jie; Ma, Jun; Hua, Xie; Zhang, Qiang; Wang, Juan

    2009-03-01

    Cefotaxime enantiomers have specific effects on Gram-negative bacteria. For quality control of cefotaxime it was necessary to establish a method for enantioseparation by capillary zone electrophoresis (CZE) using cyclodextrin (CD) as a chiral selector. The effects of various parameters on enantioseparation were studied. A fused silica capillary (40 cm effective length x 75 microm ID) was used. The cefotaxime enantiomers were separated on the baseline under conditions of 0.5 mmol/L CM-beta-CD, 75 mmol/L NaH2PO4 buffer at pH 7.0 using UV detection at 280 nm. Applied voltage and capillary temperature were 20 kV and 25 degrees C, respectively. Under these conditions for enantioseparation, linear calibration curves were obtained in the range 2 approximately 160 microg/mL. The limit of detection for both isomers was less than 0.5 microg/mL. The method was used for analysis of pharmaceutical preparations (dosage forms) of cefotaxime from various factories. A simple and specific CZE method was successfully demonstrated for the separation of cefotaxime enantiomers. The enantioseparation method should be established and this method should be used to control the quality of cefotaxime.

  14. Chiral Separation by Capillary Zone Electrophoresis Used Cyclodextrins and Their Derivatives as Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3

  15. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.

    Science.gov (United States)

    Pedrosa, M M; Legaz, M E

    1995-04-01

    Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.

  16. Separation and identification of neuropeptide Y, two of its fragments and their degradation products using capillary electrophoresis mass spectrometry

    NARCIS (Netherlands)

    Ensing, K; de Boer, Theo; Schreuder, N; de Zeeuw, RA

    1999-01-01

    This paper describes the development of an analytical method for the separation and identification of neuropeptide Y (NPY) and two important NPY fragments by capillary electrophoresis (CE) arid mass spectrometry (MS). A satisfactory separation and the highest sensitivity were obtained with formic ac

  17. Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis

    NARCIS (Netherlands)

    Boone, C.M; Douma, J.W; Franke, J.P.; de Zeeuw, R.A; Ensing, K

    2001-01-01

    Capillary electrophoresis (CE) is a modern separation technique that has some distinct advantages for toxicological analysis, such as a high efficiency, fast analysis, flexibility, and complementary separation mechanisms to chromatographic methods. CE can be applied in various modes, which each have

  18. Protein analysis by membrane preconcentration-capillary electrophoresis: systematic evaluation of parameters affecting preconcentration and separation.

    Science.gov (United States)

    Rohde, E; Tomlinson, A J; Johnson, D H; Naylor, S

    1998-08-25

    Fast and efficient analysis of proteins in physiological fluids is of great interest to researchers and clinicians alike. Capillary electrophoresis (CE) has proven to be a potentially valuable tool for the separation of proteins in specimens. However, a generally acknowledged drawback of this technique is the limited sample volumes which can be loaded onto the CE capillary which results in a poor concentration limit of detection. In addition, matrix components in samples may also interfere with separation and detection of analytes. Membrane preconcentration-CE (mPC-CE) has proved to be effective in overcoming these problems. In this report, we describe the systematic evaluation of parameters affecting on-line preconcentration/clean-up and separation of protein mixtures by mPC-CE. Method development was carried out with a standard mixture of proteins (lysozyme, myoglobin, carbonic anhydrase, and human serum albumin). First, using MALDI-TOF-MS, membrane materials with cation-exchange (R-SO3H) or hydrophobic (C2, C8, C18, SDB) characteristics were evaluated for their potential to retain proteins in mPC cartridges. Hydrophobic membranes were found most suitable for this application. Next, all mPC-CE analysis of protein samples were performed in polybrene coated capillaries and parameters affecting sample loading, washing and elution, such as the composition and volume of the elution solvent were investigated. Furthermore, to achieve optimal mPC-CE performance for the separation of protein mixtures parameters affecting postelution focusing and electrophoresis, including the composition of the background electrolyte and a trailing stacking buffer were varied. Optimal conditions for mPC-CE analysis of proteins using a C2 impregnated membrane preconcentration (mPC) cartridge were achieved with a background electrolyte of 5% acetic acid and 2 mM ammonium acetate, 60 nl of 80% acetonitrile in H2O as an elution solvent, and 60 nl of 0.5% ammonium hydroxide as a trailing

  19. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  20. Is pulsed electric field still effective for RNA separation in capillary electrophoresis?

    Science.gov (United States)

    Li, Zhenqing; Dou, Xiaoming; Ni, Yi; Chen, Qinmiao; Cheng, Shuyi; Yamaguchi, Yoshinori

    2012-03-16

    Pulsed field capillary electrophoresis (PFCE) is a predominant technique to cope with difficulties in resolving large DNA strands, yet it is still unclear whether pulsed electric field is effective for the separation of higher mass RNA. In this paper we focused on the role of pulsed electric field in large RNA fragments analysis by comparing RNA separation performance in PFCE with that in constant field CE. Separation performance in terms of migration mobility, plate numbers, resolution, and selectivity has been tested for the analysis of RNA from 0.1 to 10.0 kilo nucleotide (knt) under different electrophoretic conditions. Denaturation, important to obtain uniform and identifiable peaks, was accomplished by heating the sample in 4.0M urea prior to analysis and the presence of 4.0M urea in the electrophoresis buffer. Results demonstrate that unlike DNA in PFCE, the pulsed electric field mainly affects the separation performance of RNA between 0.4 and 2.0 knt. The migration mobility of long RNA fragments is not a strong function of modulation depth and pulsed frequency. Moreover, the logarithm of RNA mobility is almost inversely proportional to the logarithm of molecule size up to 6.0 knt with correlation coefficient higher than 0.99 in all the polymer concentrations measured here. Resonance frequency of RNA in PFCE was also observed. While these initial experiments show no distinct advantages of using PFCE for RNA separation, they do take further step toward characterizing the migration behavior of RNA under pulsed field conditions.

  1. Chemometrics optimization of six antihistamines separations by capillary electrophoresis with electrochemiluminescence detection.

    Science.gov (United States)

    Zhu, Derong; Li, Xia; Sun, Jinying; You, Tianyan

    2012-01-15

    This work expanded the knowledge of the use of chemometric experimental design in optimizing of six antihistamines separations by capillary electrophoresis with electrochemiluminescence detection. Specially, central composite design was employed for optimizing the three critical electrophoretic variables (Tris-H(3)PO(4) buffer concentration, buffer pH value and separation voltage) using the chromatography resolution statistic function (CRS function) as the response variable. The optimum conditions were established from empirical model: 24.2mM Tris-H(3)PO(4) buffer (pH 2.7) with separation voltage of 15.9 kV. Applying theses conditions, the six antihistamines (carbinoxamine, chlorpheniramine, cyproheptadine, doxylamine, diphenhydramine and ephedrine) could be simultaneous separated in less than 22 min. Our results indicate that the chemometrics optimization method can greatly simplify the optimization procedure for multi-component analysis. The proposed method was also validated for linearity, repeatability and sensitivity, and was successfully applied to determine these antihistamine drugs in urine.

  2. Chiral Separation by Capillary Zone Electrophoresis Used Cyclodextrins and Their Derivatives as Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    HOU; JingGuo

    2001-01-01

    Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3]  ……

  3. Tuning of the selectivity in capillary electrophoresis by cyclodextrins illustrated by the separation of some structurally related phenothiazine

    NARCIS (Netherlands)

    de Boer, T; Bijma, R; Ensing, K

    1998-01-01

    Cyclodextrins were used to affect the selectivity of the capillary electrophoresis system in the separation of 10 widely used phenothiazines. It was shown that the addition of cyclodextrins substantially improved the selectivity. The effect of temperature and cyclodextrin concentration was studied o

  4. Enantiomeric Separation of Antidepressant Trimipramine by Capillary Electrophoresis Combined with Electrochemiluminescence Detection in Aqueous-organic Media

    Institute of Scientific and Technical Information of China (English)

    YU Cai-xia; YUAN Bai-qing; YOU Tian-yan

    2011-01-01

    The antidepressant trimipramine(Tri) enantiomers were successfully separated by capillary electrophoresis(CE) coupled with electrochemiluminescence(ECL) detection in aqueous-organic media. A dual cyclodextrin(CD)system combining β-CD and hydroxypropyl-β-cyclodextrin(HP-β-CD) was used as chiral selector. Acetonitrile(ACN)was added to the running buffer to improve the separation efficiency, detection sensitivity and repeatability. The method was also successfully applied to the chiral separation of Tri in spiked human urine sample.

  5. [Simultaneous separation and determination of vanillin and o-vanillin by capillary zone electrophoresis].

    Science.gov (United States)

    Chen, Xing; Guan, Jin; Wang, Huize; Li, Yun; Shi, Zhe

    2010-11-01

    A method for the simultaneous separation and determination of vanillin and o-vanillin by capillary zone electrophoresis (CZE) was developed. The influences of type, concentration and pH of running buffer, and applied voltage on separation were investigated. Under the conditions of 50 mmol/L borax-150 mmol/L disodium hydrogen phosphate (pH 7.5) and applied voltage of 15 kV, the vanillin and o-vanillin were separated in 6 min. The method was proved to be robust through verification of accuracy, precision and linearity. The calibration curves of vanillin and o-vanillin showed good linearity in the range of 10-240 mg/L, and the correlation coefficients were 0.999 9 and 0.999 7, respectively. The limits of detection for vanillin and o-vanillin were 1.0 mg/L (S/N = 3). The average recoveries at three spiked levels were 99.4%-101.2% with acceptable relative standard deviations of 0.19%-0.73%. The method has been successfully used for the determination of vanillin and o-vanillin in real samples, and the assay results are satisfactory.

  6. Copolymers For Capillary Gel Electrophoresis

    Science.gov (United States)

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  7. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh; Keynton, Robert S.; Roussel, Thomas J.; Crain, Mark M.; Jackson, Douglas J.; Walsh, Kevin M.; Naber, John F.; Baldwin, Richard P.; Franco, Danielle B.

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  8. Synthesis of ino Acid Derived β-Cyclodextrins Used in Chiral Separation by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    戴荣继; 佟斌; 魏征; 顾峻岭; 邓玉林; 李明愉; 傅若农

    2004-01-01

    Six new kinds of ino acid derived β-cyclodextrins were synthesized to improve their water solubility and chiral separation properties. They are heptakis{2,6-di-O-[3-L-(1-isopropyl carboxyl methyl ino)-2-hydroxy propyl]}-β-cyclodextrin (i.e. L-Val-β-CD), heptakis{2,6-di-O-[3-L-(1-benzyl carboxyl methyl ino)-2-hydroxy propyl]}-β-cyclodextrin (i.e. L-Phe-β-CD), heptakis{2,6-di-O-[3-(D, L-1-benzyl carboxyl methyl ino)-2-hydroxy propyl]}-β-cyclodextrin (i.e. D,L-Phe-β-CD), heptakis{2,6-di-O-[3-(L-1-hydroxymethyl carboxyl methyl ino)-2-hydroxy propyl]}-β-cyclodextrin (i.e. L-Ser-β-CD), heptakis{2,6-di-O-[3-(L-1-carboxylmethyl carboxyl methyl ino)- 2-hydroxy propyl]}-β-cyclodextrin (i.e. L-Asp-β-CD), heptakis{2,6-di-O-[3-(L-2-carboxyl tetrethylene ino)-2-hydroxy propyl]}-β-cyclodextrin (i.e. L-Pro-β-CD). Their chemical structures were certified using FTIR and 1H NMR. Except for L-Phe-β-CD and D,L-Phe-β-CD, that are in soluble in water, the other ino acid derived β-CDs all have good water solubility. D,L-tyrosine and promethazine were baselinely separated by L-Val-β-CD in capillary electrophoresis.

  9. Surface initiated polymerization of a cationic monomer on inner surfaces of silica capillaries: analyte separation by capillary electrophoresis versus polyelectrolyte behavior.

    Science.gov (United States)

    Witos, Joanna; Karesoja, Mikko; Karjalainen, Erno; Tenhu, Heikki; Riekkola, Marja-Liisa

    2013-03-01

    [2-(Methacryloyl)oxyethyl]trimethylammonium chloride was successfully polymerized by surface-initiated atom transfer radical polymerization method on the inner surface of fused-silica capillaries resulting in a covalently bound poly([2-(methacryloyl)oxyethyl]trimethylammonium chloride) coating. The coated capillaries provided in capillary electrophoresis an excellent run-to-run repeatability, capillary-to-capillary and day-to-day reproducibility. The capillaries worked reliably over 1 month with EOF repeatability below 0.5%. The positively charged coated capillaries were successfully applied to the capillary electrophoretic separation of three standard proteins and five β-blockers with the separation efficiencies ranging from 132,000 to 303,000 plates/m, and from 82,000 to 189,000 plates/m, respectively. In addition, challenging high- and low-density lipoprotein particles could be separated. The hydrodynamic sizes of free polymer chains in buffers used in the capillary electrophoretic experiments were measured for the characterization of the coatings.

  10. Capillary Electrophoresis - Optical Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M. J.

    2001-08-06

    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  11. Optimization strategies for separation of sulfadiazines using Box-Behnken design by liquid chromatography and capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    GONG Wen-jun; ZHANG Yu-ping; ZHANG Yi-Jun; XU Guang-ri; WEI Xin-jun; LEE Kwang-pill

    2007-01-01

    Development of effective chromatographic or electrophoretic separation involves judicious deciding of selection of optimal experimental conditions that can provide an adequate resolution at a reasonable run time for the separation of interested components. Box-Behnken factorial design was effectively applied for the separation optimization of eight structurally related sulfonamides using capillary zone electrophorosis and reverse high performance liquid chromatography. Optimum values for volume ratio of THF to H2O in eluent, column temperature and flow rate of eluent are found as 12 to 88, 35 ℃ and 1.0 mL/min, respectively.Box-Behnken modified optimization model is extended to separation by capillary electrophoresis (CE). While using CE, a satisfactory separation is achieved with a minimum resolution larger than 1.0 for a separation time less than 10 min.

  12. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species.

    Science.gov (United States)

    Mai, Thanh Duc; Le, Minh Duc; Sáiz, Jorge; Duong, Hong Anh; Koenka, Israel Joel; Pham, Hung Viet; Hauser, Peter C

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices.

  13. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  14. Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.

    Science.gov (United States)

    Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J

    2014-10-01

    A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations.

  15. Hybrid phospholipid bilayer coatings for separations of cationic proteins in capillary zone electrophoresis.

    Science.gov (United States)

    Gallagher, Elyssia S; Adem, Seid M; Bright, Leonard K; Calderon, Isen A C; Mansfield, Elisabeth; Aspinwall, Craig A

    2014-04-01

    Protein separations in CZE suffer from nonspecific adsorption of analytes to the capillary surface. Semipermanent phospholipid bilayers have been used to minimize adsorption, but must be regenerated regularly to ensure reproducibility. We investigated the formation, characterization, and use of hybrid phospholipid bilayers (HPBs) as more stable biosurfactant capillary coatings for CZE protein separations. HPBs are formed by covalently modifying a support with a hydrophobic monolayer onto which a self-assembled lipid monolayer is deposited. Monolayers prepared in capillaries using 3-cyanopropyldimethylchlorosilane (CPDCS) or n-octyldimethylchlorosilane (ODCS) yielded hydrophobic surfaces with lowered surface free energies of 6.0 ± 0.3 or 0.2 ± 0.1 mJ m(-2) , respectively, compared to 17 ± 1 mJ m(-2) for bare silica capillaries. HPBs were formed by subsequently fusing vesicles comprised of 1,2-dilauroyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine to CPDCS- or ODCS-modified capillaries. The resultant HPB coatings shielded the capillary surface and yielded reduced electroosmotic mobility (1.3-1.9 × 10(-4) cm(2) V(-1) s(-1) ) compared to CPDCS- and ODCS-modified or bare capillaries (3.6 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , 4.8 ± 0.4 × 10(-4) cm(2) V(-1) s(-1) , and 6.0 ± 0.2 × 10(-4) cm(2) V(-1) s(-1) , respectively), with increased stability compared to phospholipid bilayer coatings. HPB-coated capillaries yielded reproducible protein migration times (RSD ≤ 3.6%, n ≥ 6) with separation efficiencies as high as 200 000 plates/m.

  16. Application of the copolymers containing sulfobetaine methacrylate in protein separation by capillary electrophoresis.

    Science.gov (United States)

    Cao, Fuhu; Tan, Lin; Xiang, Lina; Liu, Songtao; Wang, Yanmei

    2013-01-01

    This study describes the formation of highly efficient antiprotein adsorption random copolymer coating of poly(N,N-dimethylacrylamide-co-sulfobetaine methacrylate) (poly(DMA-co-SBMA)) on the fused-silica capillary inner wall. Firstly, the poly(DMA-co-SBMA)s with different feed ratio (SBMA/DMA) were synthesized via the reversible addition fragmentation chain transfer polymerization. And then, X-ray photoelectron spectroscopy (XPS) and water contact angle (CA) were used to investigate the composition and hydrophilicity of poly(DMA-co-SBMA) coating formed on the glass slide surfaces. CA measurements revealed that the poly(DMA-co-SBMA) coating became more hydrophilic with the increment of feed ratio (SBMA/DMA), and at the same time, the XPS results showed that the coating ability was also increased with the increment of feed ratio. Followed, the copolymer was applied to coat the fused-silica capillary inner wall, and the coated capillary was used to separate the mixture of proteins (lysozyme, cytochrome c, ribonuclease A, and α-chymotrypsinogen A) in a pH range from 3.0 to 5.0. Under the optimum conditions, an excellent separation of basic proteins with peak efficiencies ranging from 551,000 to 1509,000 N/m had been accomplished within 10 min. Furthermore, the effect of coating composition on protein separation was also investigated through the comparison of separation efficiency achieved by using bare, PSBMA- and poly(DMA-co-SBMA)-coated capillary, respectively.

  17. Labeling of double-stranded DNA by ROX-dideoxycytosine triphosphate using terminal deoxynucleotidyl transferase and separation by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Figeys, D.; Renborg, A.; Dovichi, N.J. (Univ. of Alberta, Edmonton, Alberta (Canada))

    1994-12-01

    Terminal transferase is used to add a single fluorescently labeled dideoxynucleotide to double-stranded DNA prepared by restriction endonuclease action on a bacteriophage. The product is separated by capillary electrophoresis with both hydroxypropylmethylcellulose and non-cross-linked polyacrylamide. The reaction products generate single peaks for each fragment with hydroxypropylmethylcellulose. However, the higher resolution separation produced by non-cross-linked polyacrylamide shows that the product contains two components for each restriction digest fragment. This labeling technique should be useful in restriction fragment length polymorphism studies. 9 refs., 2 figs.

  18. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  19. Selectivity in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Zeeuw, R.A; de Jong, G.J.; Ensing, K

    1999-01-01

    This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a Chemistry and Toxicology, parti

  20. Polymerized phospholipid bilayers as permanent coatings for small amine separations using mixed aqueous/organic capillary zone electrophoresis.

    Science.gov (United States)

    Pei, Lei; Lucy, Charles A

    2012-12-07

    Phospholipid bilayer (SPB) coatings have been used in capillary electrophoresis to reduce the nonspecific adsorption between the capillary wall and cationic analytes. This paper describes the use of the polymerizable lipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (Diyne PC) as a permanent capillary coating. A supported phospholipid bilayer was formed on the capillary walls and polymerization was performed in situ using ultraviolet irradiation. The polymerization reaction was monitored by UV-visible absorbance spectroscopy and atomic force microscopy. The EOF of the polymerized Diyne PC coating was moderately suppressed (2.0×10(-4)cm(2)/Vs) compared to a non-polymerized Diyne PC bilayer (0.3×10(-4)cm(2)/Vs), but the stability was improved significantly. Separations of benzylamine, veratrylamine, phenylethylamine and tolyethylamine using a poly Diyne PC coated capillary yielded efficiency of 220,000-370,000 plates/m and peak asymmetry factor 0.48-1.18. Specifically, the poly(Diyne PC) coating provided improved separation resolution in NACE due to the reduced surface adsorption.

  1. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Thanh Duc; Le, Minh Duc [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, Alcalá de Henares, Madrid (Spain); Duong, Hong Anh [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Koenka, Israel Joel [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland)

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  2. One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis.

    Science.gov (United States)

    Guo, Xiao-Feng; Guo, Xiao-Mei; Wang, Hong; Zhang, Hua-Shan

    2015-11-01

    The coating of capillary inner surface is considered to be an effective approach to suppress the adsorption of proteins on capillary inner surface in CE. However, most of coating materials reported are water-soluble, which may dissolve in BGE during the procedure of electrophoresis. In this study, a novel strategy for selection of physically coating materials has been illustrated to get coating layer with excellent stability using materials having poor solubility in commonly used solvents. Taking natural chitin as example (not hydrolyzed water soluble chitosan), a simple one step coating method using chitin solution in hexafluoroisopropanol was adopted within only 21 min with good coating reproducibility (RSDs of EOF for within-batch coated capillaries of 1.55% and between-batch coated capillaries of 2.31%), and a separation of four basic proteins on a chitin coated capillary was performed to evaluate the coating efficacy. Using chitin coating, the adsorption of proteins on capillary inner surface was successfully suppressed with reversed and stable EOF, and four basic proteins including lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen A were baseline separated within 16 min with satisfied separation efficiency using 20 mM pH 2.0 H3PO4-Na2HPO4 as back ground electrolyte and 20 kV as separation voltage. What is more important, the chitin coating layer could be stable for more than two months during this study, which demonstrates that chitin is an ideal material for preparing semi-permanent coating on bare fused silica capillary inner wall and has hopeful potential in routine separation of proteins with CE.

  3. [The novel copolymer coated capillary columns of electrophoresis and their applications to separation of proteins].

    Science.gov (United States)

    Lu, G; Gao, D; Gu, J; Fu, R; Li, F; Zhang, H

    1999-01-01

    The copolymer of acrylonitrile, methyl acrylate, hydroxy ethyl acrylate (ZB-004), the copolymer of acrylonitrile, methyl acrylate, hydroxy ethyl acrylate, acrylamide (ZB-014) and the copolymer of acrylonitrile, hydroxy ethyl acrylate (ZB-016) were coated on the inner surface of fused-silica capillaries by just filling the capillary with solutions containing these copolymers followed by flushing the capillary with nitrogen. The physically adsorbed layer can reduce both protein adsorption and electroosmotic flow in the pH range of 3-5. Electroosmotic flow decreased by raising the concentrations of the copolymers. Separation performance of ZB-004 layer is better than those of other two layers due to its low hydrophilicity, but with higher pH values, appreciable peak deformation and increase in electroosmosis were observed. The intra day and inter day migration reproducibility were investigated in terms of relative standard deviation (RSD) with four basic proteins at pH 4.0. The RSDs of the intra day migration times were less than 2%. The RSDs of the inter day migration times were less than 4%. At pH 5.0, the RSDs of the migration times in two ZB-004-coated capillaries made on two different days were less than 1%. Separation efficiencies of four basic proteins in a ZB-004-coated capillary which stored in a buffer (pH 4.0) for fifteen days after being used for 14 days decreased 15%. These coatings were stable and exhibited reproducible separations from intra day, inter day and inter column under acidic conditions.

  4. Pulsed-field capillary electrophoresis: optimizing separation parameters with model mixtures of sulfonated polystyrenes.

    Science.gov (United States)

    Sudor, J; Novotny, M V

    1994-07-01

    The electrophoretic transport of high molecular weight charged solutes, both flexible and stiff polymers, has been studied by capillary electrophoresis under constant-field and pulsed-field conditions. Sulfonated polystyrenes were used as model solutes in different entangled polymer solutions. First, changes of the end-to-end distance vectors of flexible polymers were examined through the mobility/potential-gradient curves. Under pulsed-field conditions, the influence of different pulse shapes, frequencies, and amplitudes of forward and backward pulses on the electrophoretic mobilities of model solutes was studied. Resolution of the mixture components was strongly affected by changes in frequency of both sine-wave and square-wave pulses. The experimental results obtained under pulse-field conditions are roughly in agreement with the existing theories of electrophoretic transport.

  5. [Development of a droplet-interfaced high performance liquid chromatography-capillary electrophoresis two dimensional separation platform].

    Science.gov (United States)

    Ye, Linquan; Wu, Qingshi; Dai, Simin; Xiao, Zhiliang; Zhang, Bo

    2011-09-01

    Proteomics demands high resolution multidimensional separation techniques due to its extremely high complexity. Droplet microfluidics provides a series of unique advantages in manipulating micro and nanolitre samples, such as micro-volume operation, limited diffusion and none cross-contaminating, therefore has the potential to be an ideal interface strategy for multidimensional separation. Using the microchips of different structures, functions such as "droplet generation" and "oil depletion" can be realized. Based on these functions, samples can be transferred from continuous flow to segmented flow and then back to continuous flow. In this way, different separation modes can be combined. In this study, droplet technology was utilized as a novel interface strategy in combining high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Using tryptic peptides mixture as a sample, this two dimensional HPLC-CE system provided high resolution separation with a peak capacity over 3000. This proof-of-principle study has demonstrated the usefulness of droplet interface technology in multidimensional separation.

  6. Optimizing separation conditions of 19 polycyclic aromatic hydrocarbons by cyclodextrin-modified capillary electrophoresis and applications to edible oils.

    Science.gov (United States)

    Ferey, Ludivine; Delaunay, Nathalie; Rutledge, Douglas N; Cordella, Christophe B Y; This, Hervé; Huertas, Alain; Raoul, Yann; Gareil, Pierre

    2014-02-01

    For the first time, the separation of 19 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants in environmental and food samples by the United States Environmental Protection Agency (US-EPA) and the European Food Safety Authority was developed in cyclodextrin (CD)-modified capillary zone electrophoresis with laser-induced fluorescence detection (excitation wavelength: 325 nm). The use of a dual CD system, involving a mixture of one neutral CD and one anionic CD, enabled to reach unique selectivity. As solutes were separated based on their differential partitioning between the two CDs, the CD relative concentrations were investigated to optimize selectivity. Separation of 19 PAHs with enhanced resolutions as compared with previous studies on the 16 US-EPA PAHs and efficiencies superior to 1.5 × 10(5) were achieved in 15 min using 10mM sulfobutyl ether-β-CD and 20mM methyl-β-CD. The use of an internal standard (umbelliferone) with appropriate electrolyte and sample compositions, rinse sequences and sample vial material resulted in a significant improvement in method repeatability. Typical RSD variations for 6 successive experiments were between 0.8% and 1.7% for peak migration times and between 1.2% and 4.9% for normalized corrected peak areas. LOQs in the low µg/L range were obtained. For the first time in capillary electrophoresis, applications to real vegetable oil extracts were successfully carried out using the separation method developed here.

  7. Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins.

    Science.gov (United States)

    Kwaterczak, Arkadiusz; Duszczyk, Kazimiera; Bielejewska, Anna

    2009-07-10

    Liquid chromatography (LC) and capillary electrophoresis (CE) are very widely used as chiral separation methods. In this publication we try to find if the results obtained in CE and LC with the chiral selector added to the electrolyte and the mobile phase, respectively, can be used as tools for studying weak stereoselective interactions, and how this information can be useful for optimizing chiral separation processes. The manuscript presents a systematic comparison of chiral discrimination of model compounds in HPLC and CE using neutral and negatively charged cyclodextrins. The enantiomeric separation of basic chiral pharmaceuticals such as pheniramine, brompheniramine, metoxyphenamine, cyclopentolate, doxylamine and ketamine was investigated in capillary electrophoresis (CE) and liquid chromatography (HPLC) using negatively charged sulfated-beta-cyclodextrin (S-beta-CD) and neutral cyclodextrins (CDs). The apparent stability constants between the model compounds and cyclodextrins were estimated in both techniques. We discuss the influence of the stability constant and K1/K2 ratio of the investigated complexes on chiral separation obtained in both techniques.

  8. Electrostatic interaction mechanism on the separation of phenols by non-aqueous capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The electrostatic interaction between additive and analyte is of great importance to non-aqueous cap- illary electrophoresis(NACE)separation.Three tetraalkylammonium bromides and acetonitrile were applied as additives and running solvent respectively.The effect of alkyl chain length and concentra- tion of additive on electrostatic interactions was investigated by the separation of phenols.The sepa- ration ability was found to increase with decreasing alkyl chain length of the additive,and the resolu- tion values were increased with increasing additive concentration.The separation was seriously dete- riorated after a little amount of water was added in the running solution.Furthermore,the electrostatic interaction is strong under the conditions of low electron cloud density,weak steric hindrance and multi-interaction sites.Thus,the separation result can be predicted by theoretical analysis,which is helpful for the separation of other substances in NACE based on electrostatic interaction.

  9. Separation of iron-free and iron-saturated forms of transferrin and lactoferrin via capillary electrophoresis performed in fused-silica and neutral capillaries.

    Science.gov (United States)

    Nowak, Paweł; Śpiewak, Klaudyna; Brindell, Małgorzata; Woźniakiewicz, Michał; Stochel, Grażyna; Kościelniak, Paweł

    2013-12-20

    A capillary electrophoresis-based method for the cost-effective and high efficient separation of iron-free and iron-saturated forms of two members of transferrin family: transferrin and lactoferrin has been developed. The proposed qualitative method relying on the SDS application allowed us to separate iron-free and iron-saturated forms of these proteins, as well as human serum albumin, used as an internal standard. Owing to the distinct migration times under established conditions, the combination of transferrin and lactoferrin assays within a single analytical procedure was feasible. The performance of the method using a fused-silica capillary has been compared with the results obtained using the same method but performed with the use of a neutral capillary of the same dimensions. Neutral capillary has been used as an alternative, since the comparable resolution has been achieved with a concomitant reduction of the electroosmotic flow. Despite of this fact, the migration of analytes occurred with similar velocity but in opposite order, due to the reverse polarity application. A quantitative method employing fused-silica capillary for iron saturation study has been also developed, to evaluate the iron saturation in commercial preparations of lactoferrin.

  10. On-line simultaneous and rapid separation of anions and cations from a single sample using dual-capillary sequential injection-capillary electrophoresis.

    Science.gov (United States)

    Gaudry, Adam J; Guijt, Rosanne M; Macka, Mirek; Hutchinson, Joseph P; Johns, Cameron; Hilder, Emily F; Dicinoski, Greg W; Nesterenko, Pavel N; Haddad, Paul R; Breadmore, Michael C

    2013-06-05

    A novel capillary electrophoresis (CE) approach has been developed for the simultaneous rapid separation and identification of common environmental inorganic anions and cations from a single sample injection. The method utilised a sequential injection-capillary electrophoresis instrument (SI-CE) with capacitively-coupled contactless conductivity detection (C(4)D) constructed in-house from commercial-off-the-shelf components. Oppositely charged analytes from a single sample plug were simultaneously injected electrokinetically onto two separate capillaries for independent separation and detection. Injection was automated and may occur from a syringe or be directly coupled to an external source in a continuous manner. Software control enabled high sample throughput (17 runs per hour for the target analyte set) and the inclusion of an isolation valve allowed the separation capillaries to be flushed, increasing throughput by removing slow migrating species as well as improving repeatability. Various environmental and industrial samples (subjected only to filtering) were analysed in the laboratory with a 3 min analysis time which allowed the separation of 23 inorganic and small organic anions and cations. Finally, the system was applied to an extended automated analysis of Hobart Southern Water tap water for a period of 48 h. The overall repeatability of the migration times of a 14 analyte standard sample was less than 0.74% under laboratory conditions. LODs ranged from 5 to 61 μg L(-1). The combination of automation, high confidence of peak identification, and low limits of detection make this a useful system for the simultaneous identification of a range of common inorganic anions and cations for discrete or continuous monitoring applications.

  11. In-capillary enrichment, proteolysis and separation using capillary electrophoresis with discontinuous buffers: application on proteins with moderately acidic and basic isoelectric points.

    Science.gov (United States)

    Nesbitt, Chandra A; Yeung, Ken K-C

    2009-01-01

    Advances in mass spectrometry and capillary-format separation continue to improve the sensitivity of protein analysis. Of equal importance is the miniaturization of sample pretreatment such as enrichment and proteolysis. In a previous report (Nesbitt et al., Electrophoresis, 2008, 29, 466-474), nanoliter-volume protein enrichment, tryptic digestion, and partial separation was demonstrated in capillary electrophoresis followed by MALDI mass spectral analysis. A discontinuous buffer system, consisting of ammonium (pH 10) and acetate (pH 4), was used to create a pH junction inside the capillary, trapping a protein with a neutral isoelectric point, myoglobin (pI 7.2). Moreover, co-enrichment of myoglobin with trypsin led to an in-capillary digestion. In this paper, the ability of this discontinuous buffer system to perform similar in-capillary sample pretreatment on proteins with moderately acidic and basic pI was studied and reported. Lentil lectin (pI 8.6) and a multi-phosphorylated protein, beta-casein (pI 5.1), were selected as model proteins. In addition to the previously shown tryptic digestion, proteolysis with endoproteinase Asp-N was also performed. Digestion of these acidic and basic pI proteins produced a few peptides with extreme pI values lying outside the trapping range of the discontinuous buffer. An alteration in the peptide trapping procedure was made to accommodate these analytes. Offline MALDI mass spectral analysis confirmed the presence of the expected peptides. The presented miniaturized sample pretreatment methodology was proven to be applicable on proteins with a moderately wide range of pI. Flexibility in the choice of protease was also evident.

  12. Multidimensional capillary electrophoresis.

    Science.gov (United States)

    Grochocki, Wojciech; Markuszewski, Michał J; Quirino, Joselito P

    2015-01-01

    Multidimensional separation where two or more orthogonal displacement mechanisms are combined is a promising approach to increase peak capacity in CE. The combinations allow dramatic improvement of analytical performance since the total peak capacity is given by a product of the peak capacities of all methods. The initial reports were concentrated on the construction of effective connections between capillaries for 2D analysis. Today, 2D and 3D CE systems are now able to separate real complex biological or environmental mixtures with good repeatability, improved resolution with minimal loss of sample. This review will present the developments in the field of multidimensional CE during the last 15 years. The endeavors in this specific field were on the development of interfaces, interface-free techniques including integrated separations, microdevices, and on-line sample concentration techniques to improve detection sensitivity.

  13. Separation and quantification of viral double-stranded RNA fragments by capillary electrophoresis in hydroxyethylcellulose polymer solutions.

    Science.gov (United States)

    Shambaugh, C L; Bodmer, J L; Hsu, D; Ranucci, C S

    2004-10-01

    Capillary electrophoresis (CE) is an analytical technique widely utilized to resolve complex mixtures of nucleic acids. CE uses a variety of polymers in solution that act as a molecular sieve to separate nucleic acid fragments according to size. It has been shown previously that purified dsDNA can be resolved efficiently by solutions of hydroxyethylcellulose (HEC) polymer, providing a rapid and high resolution method of separation. We have applied this separation technique to viral double-stranded (ds) RNA segments derived from rotavirus process samples. HEC polymers of various molecular masses and concentrations were identified and compared for their ability to separate dsRNA based on the extent of expected polymer network formation. The HEC polymer exhibiting the most desirable separation characteristics was then used for subsequent optimization of various method parameters, such as, injection time, electric field strength, dye concentration and capillary equilibration. The optimized method was then applied to the quantification of genome concentration based on a representative segment of the rotavirus genome. This study demonstrated that purified viral dsRNA material of known concentration could be used to generate an external standard curve relating concentration to peak area. This standard curve was used to determine the concentration of unknown samples by interpolation. This novel RNA quantification assay is likely to be applicable to other types of virus, including those containing dsDNA.

  14. Determination of synthetic dyes in food products by capillary zone electrophoresis in a hydrodynamically closed separation compartment.

    Science.gov (United States)

    Masár, M; Kaniansky, D

    1996-01-01

    The application of capillary zone electrophoresis (CZE) in a hydrodynamically closed separation system to determine synthetic food colorants added to food products was investigated. The CZE separations were carried out in a 300-micron-i.d. capillary tube made of fluorinated ethylene-propylene copolymer. The inner diameter of the capillary tube made it possible to enhance sample loads (100-nL injection volumes) so that 10-300 ppb limits of detection (LOD) values could be achieved for the studied dyes by a photometric absorbance detector operating at a 254-nm detection wave-length. With the exception of erythrosine (which exhibited a residual adsorption), very good reproducibilities of the determination were typical for 4- and 32-ppm concentrations of the dyes. This rapid CZE procedure (migration times of the resolved analytes were between 2.5 and 10.5 min) provided good selectivities in the determination of the dyes in various food matrices (soft drink concentrates, liqueurs, and chewing gums). Simple sample preparation steps were effective for the sample matrices used in the investigation.

  15. Separation and determination of four active anthraquinones in Chinese herbal preparations by flow injection-capillary electrophoresis.

    Science.gov (United States)

    Liu, Lihong; Fan, Liuyin; Chen, Hongli; Chen, Xingguo; Hu, Zhide

    2005-08-01

    A simple, rapid, and accurate method for the separation and determination of physcion, chrysophanol, aloe-emodin, and emodin in Rhubarb, Juemingzi, and Chinese herbal preparations was developed by combination of flow injection-capillary zone electrophoresis for the first time. The analysis was carried out using an unmodified fused-silica capillary (75 mm x 50 microm ID x 375 microm OD, effective separation length of 48 mm) and direct ultraviolet detection at 254 nm. By a series of optimization, the sample solvent consisted of NaOH (100 mmol/L) and ACN (1:1 v/v), and a running buffer composed of 15 mmol/L sodium borate - 12.5 mmol/L sodium dihydrogen phosphate - 42% v/v ACN (pH 10.1) was applied for the separation of the four anthraquinones. The separation was rapid and highly reproducible, with complete resolution of all four compounds within 6 min. The sample throughput rate could reach up to 12 per h. The repeatability (defined as relative standard deviation) was 4.45, 4.44, 4.34, 0.61% with peak height evaluation and 1.62, 0.89, 2.49, 2.19% with peak area evaluation for physcion, chrysophanol, aloe-emodin, and emodin, respectively.

  16. Separation and determination of aloperine, sophoridine, matrine and oxymatrine by combination of flow injection with microfluidic capillary electrophoresis.

    Science.gov (United States)

    Cheng, Yuqiao; Chen, Hongli; Li, Yuqin; Chen, Xingguo; Hu, Zhide

    2004-05-28

    A novel, rapid and accurate method for the separation and determination of aloperine (ALP), sophoridine (SRI), matrine (MT) and oxymatrine (OMT) has been developed by combination of flow injection (FI) with microfluidic capillary electrophoresis (CE) for the first time. In the present paper, a continuous sample introduction interface was described. The interface with an H-channel structure was produced using a non-lithographic approach. The H-channel structure was fixed on a planar plastic base utilizing a horizontal 6.5cm-long separation capillary with two vertical sidearm tubes on each end that served as inlet and outlet flow-through electrode reservoirs. The inlet reservoir also functioned as interface for coupling to the FI system. The buffer solution used was a 50mmoll(-1) borate solution with the pH adjusted to 8.80 with 2moll(-1) HCl. The performance of the system was demonstrated in the separation and determination of ALP, SRI, MT and OMT with UV detection at 215nm, achieving baseline separation within 2min. A series of samples was injected repeatedly without current interruption and subsequent rinsing, and the contents of these four bio-alkaloids in two marketed drugs were determined with satisfactory recovery by this proposed method.

  17. Comparison of methanol and acetonitrile as solvents for the separation of sertindole and its major metabolites by capillary zone electrophoresis.

    Science.gov (United States)

    Subirats, Xavier; Reinstadler, Sigrun; Porras, Simo P; Raggi, Maria Augusta; Kenndler, Ernst

    2005-09-01

    Sertindole (1-[2-[4-[5-chloro-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl]ethyl]-2-imidazolidinone), an atypical antipsychotic drug, was separated by capillary electrophoresis from its two main metabolites norsertindole and dehydrosertindole. The low solubility of the analytes in water (octanol-water partition coefficient is about 10(5)) is overcome by the use of methanol (MeOH) and acetonitrile (ACN) as solvents for the background electrolyte (BGE). Mobilities were measured in BGEs with defined pH in a broad range. It was found that in MeOH the mobility of the analytes is mainly governed by acid-base equilibria, whereas in ACN other reactions like ion pairing and homo-conjugation play a pronounced role and lead to a complex pattern of the mobility as function of the pH. However, separation can be obtained in less than 10 min in both solvent systems.

  18. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  19. Effects of improved microchannel structures on the separation characteristics of microchip capillary electrophoresis

    CERN Document Server

    Utsumi, Y; Ozaki, M; Terabe, S

    2003-01-01

    We fabricated the electrophoresis microchips using the UV polymerization technique. We employed plastic substrates that were suitable for rapid prototyping instead of glass and quartz. A thick UV negative photo resist was used to form molds and poly-dimethylsilozane (PDMS) was polymerized by a thermal curing process on the mold to obtain replica microchips. Electroosmotic flow (EOF) was measured to evaluate the surface. Rhodamine B and sulforhodamine B are successfully separated using the microchip. Characteristic differences between UV-fabricated and SR-fabricated microchips were evaluated by EOF measurement. It was observed that accurately defined microchannels fabricated by synchrotron radiation (SR) lithography show constant peak heights and FWHMs. Thus the advantage of the application of SR lithography to the mold fabrication is also demonstrated. (author)

  20. Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone.

    Science.gov (United States)

    Galeotti, Fabio; Coppa, Giovanni V; Zampini, Lucia; Maccari, Francesca; Galeazzi, Tiziana; Padella, Lucia; Santoro, Lucia; Gabrielli, Orazio; Volpi, Nicola

    2014-03-01

    Human milk is a unique fluid in glycobiology due to the presence of many free structurally complex oligosaccharides emerging as important dietary factors during early life and having many biological and protective functions. Methods that allow accurate profiling of oligosaccharide mixtures in this complex biological fluid with quantification of the four known genetically determined groups are welcomed. A high-voltage CE separation and detection at 254 nm of 17 neutral and acidic human milk oligosaccharide (HMO) standard along with lactose derivatized with 2-aminoacridone, using a BGE containing 20% methanol as an organic modifier and borate, able to form on-capillary anionic borate-polyol complexes, is reported. This CE approach was able to separate both neutral HMOs and acidic HMOs, with the sialic acid residue, also in the presence of lactose in high content. This method was applied to the four secretory groups individually extracted by a rapid and simple preparative step. LODs were found ranging from ∼50 to 700 fmol. We were able to measure HMO content also in the presence of excess fluorophore, or interference from proteins, peptides, salts, and other impurities normally present in this complex biological fluid. Overall, CE equipped with a UV detector is a common analytical approach and this simple CE separation offers high resolution and sensitivity for the differentiation of human milk samples related to genetic groups and days of lactation by considering that important changes in HMO content are a reflection of the lactation day.

  1. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  2. Separation of oxalate, formate and glycolate in human body fluid samples by capillary electrophoresis with contactless conductometric detection.

    Science.gov (United States)

    Kubáň, Petr; Ďurč, Pavol; Bittová, Miroslava; Foret, František

    2014-01-17

    A new method for rapid determination of toxic metabolites after methanol and ethylene glycol intoxication - oxalate, formate and glycolate in various body fluid samples (blood serum, saliva, urine, exhaled breath condensate) by capillary electrophoresis with contactless conductometric detection was developed. A selective separation of the three target analytes from other constituents present in the analyzed biological matrices was achieved in less than 6min in a fused silica capillary of 25μm I.D. using an electrolyte comprising 50mM l-histidine and 50mM 2-(N-morpholino)ethanesulfonic acid at pH 6.1. The only sample preparation was dilution with deionized water. The limits of detection were 0.4, 0.6 and 1.3μM and limits of quantitation 1.3, 1.9 and 4.2μM for oxalate, formate and glycolate, respectively. The method provides a simple and rapid diagnostic test in suspected intoxication and is able to distinguish the ingested liquid, based on its metabolite trace. The method presents a fast screening tool that can be applicable in clinical practice.

  3. Two-dimensional capillary electrophoresis using tangentially connected capillaries.

    Science.gov (United States)

    Sahlin, Eskil

    2007-06-22

    A novel type of fused silica capillary system is described where channels with circular cross-sections are tangentially in contact with each other and connected through a small opening at the contact area. Since the channels are not crossing each other in the same plane, the capillaries can easily be filled with different solutions, i.e. different solutions will be in contact with each other at the contact point. The system has been used to perform different types of two-dimensional separations and the complete system is fully automated where a high voltage switch is used to control the location of the high voltage in the system. Using two model compounds it is demonstrated that a type of two-dimensional separation can be performed using capillary zone electrophoresis at two different pH values. It is also shown that a compound with acid/base properties can be concentrated using a dynamic pH junction mechanism when transferred from the first separation to the second separation. In addition, the system has been used to perform a comprehensive two-dimensional capillary electrophoresis separation of tryptic digest of bovine serum albumin using capillary zone electrophoresis followed by micellar electrokinetic chromatography.

  4. Carboxymethyl-β-cyclodextrin for Chiral Separation of Amino Acids Derivatized with Fluorescene-5-isothiocyanate by Capillary Electrophoresis and Laser-induced Fluorescence Detection

    Institute of Scientific and Technical Information of China (English)

    Yu Yun CHEN; Wei WANG; Wei Ping YANG; Zhu Jun ZHANG

    2004-01-01

    A method using carboxymethyl-β-cyclodextrin(CM-β-CD) as selector for chiral separation of amino acids by capillary electrophoresis and laser-induced fluorescence detection was studied. Resolution was better than that obtained byβ-CD or HP-β-CD.

  5. Modelling of conditions for the enantiomeric separation of beta(2)-adrenergic sympathicomimetics by capillary electrophoresis using cyclodextrins as chiral selectors in a polyethylene glycol gel

    NARCIS (Netherlands)

    de Boer, Theo; Bijma, R; Ensing, K

    1999-01-01

    A two-factor central composite design was used to determine a mathematical model for prediction of the optimal conditions for the separation of the enantiomers of some widely used beta(2)-sympathicomimetic drugs (beta(2)-agonists) by capillary electrophoresis using cyclodextrins (CD) as a chiral sel

  6. Enantiomeric separation of tapentadol by capillary electrophoresis--study of chiral selectivity manipulation by various types of cyclodextrins.

    Science.gov (United States)

    Znaleziona, Joanna; Fejős, Ida; Ševčík, Juraj; Douša, Michal; Béni, Szabolcs; Maier, Vítězslav

    2015-02-01

    The chiral recognition of the centrally acting analgesic agent tapentadol and its isomers with various cyclodextrins (CDs) was studied by capillary electrophoresis, focusing on the migration order of four stereoisomers. In the case of non-charged hydroxypropylated CDs (2-hydroxypropyl-β-CD, 2-hydroxypropyl-γ-CD) the beta derivative was able to discriminate the S,R- and R,S-isomers in acidic background electrolyte, whereas the gamma allowed the separation of S,S- and R,R-tapentadol, respectively. Dual CD system containing both hosts was used to separate all of four isomers. Negatively charged sulfated-α-CD at 1.0% (w/v) concentration in 100mM sodium borate buffer (pH 9.5) was capable of separating the isomers with favorable enantiomer migration order and the optimized method was able to determine 0.15% of chiral impurities of tapentadol in the presence of the last migrating clinically important R,R-isomer.

  7. Method for analysing glycoprotein isoforms by capillary electrophoresis

    OpenAIRE

    Frutos, Mercedes de; Díez-Masa, José Carlos; Morales-Cid, Gabriel

    2011-01-01

    [EN] The present invention relates to a new method for the purification, concentration, separation and determination of the isoforms of alpha-1-acid glycoprotein (AGP) in human blood serum samples using capillary electrophoresis. The new method is based on the immunocapture and preconcentration of the sample within the separation capillary by using an immunoadsorbent phase magnetically immobilized within the electrophoresis capillary and the subsequent desorption and separation of the glycopr...

  8. Structural and conformational variants of human beta2-microglobulin characterized by capillary electrophoresis and complementary separation methods

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Rovatti, Luca; Nissen, Mogens H;

    2003-01-01

    The small (Mr = 11729) serum protein beta2-microglobulin is prone to precipitate as amyloid in a protein conformational disorder (PCD) that occurs in a significant number of patients on chronic hemodialysis. Analyses by capillary electrophoresis (CE) were undertaken to study beta2-microglobulin...

  9. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  10. Separation and quantitation of phycobiliproteins using phytic acid in capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Viskari, Pertti J; Colyer, Christa L

    2002-10-01

    The similar electrophoretic mobilities and sizes of several of the phycobiliproteins, which are derived from the photosynthetic apparatus of cyanobacteria and eukaryotic algae, render their separation and quantitation a challenging problem. However, we have developed a suitable capillary electrophoresis (CE) method that employs a phytic acid-boric acid buffer and laser-induced fluorescence (LIF) detection with a single 594 nm He-Ne laser. This method takes advantage of the remarkably high quantum yields of these naturally fluorescent proteins, which can be attributed to their linear tetrapyrrole chromophores covalently bound to cysteinyl residues. As such, limits of detection of 1.18 x 10(-14), 5.26 x 10(-15), and 2.38 x 10(-15) mol/l were obtained for R-phycoerythrin, C-phycocyanin, and allophycocyanin proteins, respectively, with a linear dynamic range of eight orders of magnitude in each case. Unlike previously published CE-LIF methods, this work describes the separation of all three major classes of phycobiliproteins in under 5 min. Very good recoveries, ranging from 93.2 to 105.5%, were obtained for a standard mixture of the phycobiliproteins, based on seven-point calibration curves for both peak height and peak area. It is believed that this development will prove useful for the determination of phycobiliprotein content in naturally occurring cyanobacteria populations, thus providing a useful tool for understanding biological and chemical oceanographic processes.

  11. Comparison of chiral recognition capabilities of cyclodextrins for the separation of basic drugs in capillary zone electrophoresis.

    Science.gov (United States)

    Jin, L J; Li, S F

    1998-04-24

    The enantiomeric separation of some racemic anti-histamines and anti-malarials, namely (+/-)-pheniramine, (+/-)-brompheniramine, (+/-)-chlorpheniramine, (+/-)-doxylamine, and (+/-)-chloroquine, was investigated by capillary zone electrophoresis. The enantiomeric separation of five compounds was obtained by addition of approximately 7 mM (1%, w/v) sulfated-beta-cyclodextrin into the buffer as a chiral selector. The effects of sulfated-beta-cyclodextrin concentration and buffer pH on migration and resolution are discussed. Two other cyclodextrins, carboxyethylated-beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin were also investigated. Four of the racemic compounds were resolved using 14 mM (2%, w/v) carboxyethylated-beta-cyclodextrin while 28 mM (4%, w/v) hydroxypropyl-beta-cyclodextrin resolved only two of them. It was found that the type of substituent and the degree of substitution on the rim of the CD structure played an important role in enhancing the chiral recognition. Cyclodextrins with negatively charged substituents and higher degree of substitution on the rim of the structure proved to give better resolution to the cationic racemic compounds compared with cyclodextrin with neutral substituents. This is due to the countercurrent mobility of the negatively charged cyclodextrin relative to the cationic analytes thus allowing for a smaller difference in interaction constants to achieve a successful resolution of enantiomers. Furthermore, lower concentrations of negatively charged cyclodextrins were necessary to achieve the equivalent resolutions as compared with the neutral ones.

  12. Cycloaliphatic epoxy resin coating for capillary electrophoresis.

    Science.gov (United States)

    Shah, Roopa S; Wang, Qinggang; Lee, Milton L

    2002-04-05

    Coating the interior surface of a fused-silica capillary with a polymeric material has long been used in capillary electrophoresis (CE) to reduce or eliminate electroosmotic flow and suppress adsorption. A cycloaliphatic epoxide-based resin was bonded to silane treated capillaries and crosslinked with a curing agent. The epoxy resin coating significantly reduced electroosmotic flow over a pH range of 3-10. This coating was sufficiently hydrophilic to suppress protein adsorption. The epoxy resin coated capillary was used to separate several acidic and basic proteins and peptides. Separation efficiencies greater than 400,000 theoretical plates were achieved. The relative standard deviations in migration times for proteins were methods.

  13. Separation of basic drug enantiomers by capillary electrophoresis using chicken alpha1-acid glycoprotein: insight into chiral recognition mechanism.

    Science.gov (United States)

    Matsunaga, Hisami; Sadakane, Yutaka; Haginaka, Jun

    2003-08-01

    Recombinant chicken alpha(1)-acid glycoprotein (alpha(1)-AGP) was prepared by the Escherichia coli expression system and completely deglycosylated alpha(1)-AGP (cd-alpha(1)-AGP) was obtained by treatments of native alpha(1)-AGP with a mixture of endoglycosidase and N-glycosidase. The average molecular masses of chicken alpha(1)-AGP, cd-alpha(1)-AGP and recombinant alpha(1)-AGP were estimated to be about 29 200, 21 700 and 20 700, respectively, by matrix-assisted laser desorption-time of flight-mass spectrometry. We compared the chiral recognition ability of chicken alpha(1)-AGP, cd-alpha(1)-AGP and recombinant alpha(1)-AGP using them as chiral selectors in capillary electrophoresis. The chicken alpha(1)-AGP showed higher resolution for eperisone, pindolol and tolperisone than cd-alpha(1)-AGP or recombinant alpha(1)-AGP. Recombinant alpha(1)-AGP still showed chiral recognition for three basic drugs tested. By addition of propranolol as a competitor in the separation solution in CE, no enantioseparations of three basic drugs were observed with chicken alpha(1)-AGP, cd-alpha(1)-AGP or recombinant alpha(1)-AGP. These results reveal that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition ability, and that the chiral recognition site(s) for basic drugs exists on the protein domain.

  14. Enantiomeric separation of free L- and D-amino acids in hydrolyzed protein fertilizers by capillary electrophoresis tandem mass spectrometry.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Serra, Nuria Sierras; Marina, María Luisa; Crego, Antonio L

    2013-05-29

    Two capillary electrophoresis-tandem mass spectrometry (CE-MS(2)) methods were optimized in this work using cyclodextrins (CDs) as chiral selectors in order to determine the degree of racemization of the free amino acids contained in different hydrolyzed protein fertilizers used as plant biostimulants. The methodologies developed were characterized by the specificity of MS(2) experiments enabling the identification of all protein amino acids, except for cysteine. The enantiomeric separation of up to 14 amino acids was achieved with resolutions above 1.0 and limits of detection between 0.02 and 0.8 μM. The methods were applied to the analysis of complex samples such as hydrolyzed protein fertilizers to evaluate the presence of d-amino acids after different kinds of hydrolysis treatments. The results corroborated the absence or almost negligible presence of enantiomeric conversions of the L-amino acids into D-amino acids in the case of fertilizers obtained by enzymatic hydrolysis, as well as the high racemization rate for those obtained through a chemical hydrolysis.

  15. Molecular Modeling Study of Chiral Separation and Recognition Mechanism of β-Adrenergic Antagonists by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yifeng Chai

    2012-01-01

    Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.

  16. Separation of porphyrin-based photosensitizer isomers by laser-induced fluorescence capillary electrophoresis.

    Science.gov (United States)

    Peng, Xuejun; Sternberg, Ethan; Dolphin, David

    2005-10-01

    Methods for the separation of photosensitizer isomers, such as benzoporphyrin derivative monoacid, benzoporphyrin ethyl monoacid, 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a, diethyleneglycol diester benzoporphyrin derivative, tin ethyl etiopurpurin, and phthalocyanine tetrasulfonate, have been systematically developed by CE. Detection was accomplished by UV absorption at 214 nm or by LIF with excitation at 442/488 nm and emission at 690 nm. The effects of three major experimental parameters of buffer types, organic solvents, and surfactant additives are described. The optimized separation conditions were determined so as to provide satisfactory separation efficiency and analysis time. The methods are shown to be suitable for the separation and determination of porphyrin and phthalocyanines regioisomers, diastereoisomers, and enantiomers.

  17. Mannitol influence on the separation of DNA fragments by capillary electrophoresis in entangled polymer solutions.

    Science.gov (United States)

    Han, F; Xue, J; Lin, B

    1998-08-01

    A new kind of sieving matrix is presented in this paper to allow satisfactory separation of DNA fragments in a relatively low viscous solution. When a certain amount of mannitol was added to cellulose solution not concentrated enough to separate PGEM-3Zf(+)/HaeIII standards well, a polymer solution with low viscosity but with very good separation effects was obtained. The separation result of this sieving buffer was comparable with those using highly concentrated cellulose solutions. The sieving ability of solutions with different cellulose concentrations and different amounts of mannitol has been investigated. It was proved that 0.5% was the minimum hydroxypropylmethylcellulose (HPMC) concentration that could be used to separate DNA fragments satisfactorily. HPMC solutions with a concentration of less than 0.5% could not separate the standard DNA fragments even in the presence of mannitol. It was found that 6% was the optimized mannitol concentration because either more or less mannitol will lead a decrease of resolution. The principle of the positive influence of mannitol has also been discussed.

  18. Capillary electrophoresis in food authenticity.

    Science.gov (United States)

    Kvasnicka, Frantisek

    2005-06-01

    Food authenticity is a term which simply refers to whether the food purchased by the consumer matches its description. False description can occur in many forms, from the undeclared addition of water or other cheaper materials, or the wrong declaration of the amount of a particular ingredient in the product, to making false statements about the source of ingredients i.e., their geographic, plant, or animal origin. The aim of this review is to summarize applications of capillary electrophoresis in food authentication.

  19. Different strategies for the preconcentration and separation of parabens by capillary electrophoresis.

    Science.gov (United States)

    Maijó, Irene; Borrull, Francesc; Aguilar, Carme; Calull, Marta

    2013-02-01

    Several strategies, namely, large volume sample stacking (LVSS), field-amplified sample injection (FASI), sweeping, and in-line SPE-CE, were investigated for the simultaneous separation and preconcentration of a group of parabens. A BGE consisting of 20 mM sodium dihydrogenphosphate (pH 2.28) and 150 mM SDS with 15% ACN was used for the separation and preconcentration of the compounds by sweeping, and a BGE consisting of 30 mM sodium borate (pH 9.5) was used for the separation and preconcentration of the compounds by LVSS, FASI, and in-line SPE-CE. Several factors affecting the preconcentration process were investigated in order to obtain the maximum enhancement of sensitivity. The LODs obtained for parabens were in the range of 18-27, 3-4, 2, and 0.01-0.02 ng/mL, and the sensitivity evaluated in terms of LODs was improved up to 29-, 77-, 120-, and 18,400-fold for sweeping, LVSS, FASI, and in-line SPE-CE, respectively. These preconcentration techniques showed potential as good strategies for focusing parabens. The four methods were validated with standard samples to show the potential of these techniques for future applications in real samples, such as biological and environmental samples.

  20. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core.

  1. Capillary Electrophoresis in the Presence of Fosfomycin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fosfomyein, a sodim salt of cis-(3-methyloxiranyl) phosphonic acid, was used as electrolyte in binary methanol-water media for capillary electrophoresis. The variety of electroosmotic flow with pH*,methanol concentration and ionic strength was investigated. The migration behavior of nine bases was examined under various conditions, and the separation of thymine, cytosine, 5-flurouracil, 4,6-diamino-pyrimidine, purine was accomplished.

  2. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongjun [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  3. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D

    1992-01-01

    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  4. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7

    2012-01-01

    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  5. Gold nanomaterials based pseudostationary phases in capillary electrophoresis: a brand-new attempt at chondroitin sulfate isomers separation.

    Science.gov (United States)

    Zhao, Ting; Zhou, Guanglian; Wu, Yuanhong; Liu, Xiumei; Wang, Fengshan

    2015-02-01

    In this work, a CE method with bare gold nanorods (GNRs) based pseudostationary phase was developed and applied for the separation of chondroitin sulfate (CS) isomers, CS, and dermatan sulfate (DS). The separation efficiency was investigated by varying the experimental parameters such as concentration and pH of the BGE, separation voltage, internal diameter of capillary, different size, and morphology of gold nanomaterials. Results showed that different size and morphology of gold nanomaterials had different effects on the separation of CS and DS. The best separation of CS and DS was achieved in the BGE composed of aqueous 150 mmol/L (mM) ethylenediamine + 20 mM sodium dihydrogen phosphate + 30% v/v GNRs, pH 4.5, at the separation voltage of -10 kV. Capillary was 59.2 cm in length (effective length 49 cm), 50 μm id capillary thermostated at 25°C. CE with bare GNRs used as pseudostationary phase was shown to be a suitable technique for the separation of CS and DS mixtures with wider peaks. RSD of migration time and peak area of CS and DS were 0.13, 0.14 and 0.86, 1.07%, respectively.

  6. Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays.

    Science.gov (United States)

    Li, Ling; Zhou, Shanshan; Jin, Lixia; Zhang, Cheng; Liu, Weiping

    2010-05-15

    In recent years, the continuous evolution of the field of stereochemistry has produced a heightened awareness of the applications of pure enantiomers of agrochemicals. This review describes reports of the enantiomeric separation of commercial organophosphorus pesticides (OPs) and the applications of these methods to research on the enantioselectivity of the toxicity and environmental fate of these compounds. Chiral OPs can be analysed by high-performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE). These different separation techniques for OP enantiomers are briefly discussed, and their applications are presented.

  7. Polyelectrolyte multilayer coatings for the separation of proteins by capillary electrophoresis: Influence of polyelectrolyte nature and multilayer crosslinking.

    Science.gov (United States)

    Bekri, Samya; Leclercq, Laurent; Cottet, Hervé

    2015-06-19

    The present work aims at studying the influence of the nature of the polyelectrolytes used in successive multiple ionic polymers on the performances of protein separation in acetic acid volatile background electrolyte. A broad library of polyelectrolyte multilayers was compared on the basis of 9 different weak/strong polyanions and 8 different weak/strong polycations. More than 20 couples of different polyelectrolytes were investigated. The separation efficiencies (expressed as the N/l ratio, where N is the plate number and l is the capillary effective length) were systematically compared for the separation of a protein test mixture. The coating stability was evaluated by the relative standard deviation of the migration times. For weak polyelectrolyte multilayers, the influence of the polymer crosslinking on the coating stability and separation efficiency has been studied. Intra-day repeatability of 100 successive runs, and capillary-to-capillary reproducibility were tested on coatings of each category (crosslinked and non crosslinked). The main (not obvious) result rising from this study is that the nature of the polyanion constituting the multilayers is of primary importance for the performance in terms of separation efficiency and stability, even when the mulilayers finish with a polycation.

  8. High-speed separation and detection of amino acids in laver using a short capillary electrophoresis system.

    Science.gov (United States)

    Wang, Wei; Ma, Lihong; Yao, Fenzeng; Lin, Xiuli; Xu, Kaixuan

    2015-01-01

    A high-speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted-vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4-NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72,000 to 40,000 (corresponding to 1.1-2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis.

  9. Capillary Separation: Micellar Electrokinetic Chromatography

    Science.gov (United States)

    Terabe, Shigeru

    2009-07-01

    Micellar electrokinetic chromatography (MEKC), a separation mode of capillary electrophoresis (CE), has enabled the separation of electrically neutral analytes. MEKC can be performed by adding an ionic micelle to the running solution of CE without modifying the instrument. Its separation principle is based on the differential migration of the ionic micelles and the bulk running buffer under electrophoresis conditions and on the interaction between the analyte and the micelle. Hence, MEKC's separation principle is similar to that of chromatography. MEKC is a useful technique particularly for the separation of small molecules, both neutral and charged, and yields high-efficiency separation in a short time with minimum amounts of sample and reagents. To improve the concentration sensitivity of detection, several on-line sample preconcentration techniques such as sweeping have been developed.

  10. Monitoring of enzymatic reactions using capillary electrophoresis with conductivity detection

    OpenAIRE

    2009-01-01

    Capillary electrophoresis combined with contactless conductivity detection allows to separate and detect the ionic species, which are neither UV absorbing nor fluorescent. This thesis focuses on the applications of this method on enzymatic reactions in different analytical tasks. First, the non-ionic species ethanol, glucose, ethyl acetate and ethyl butyrate were made accessible for analysis by capillary electrophoresis via charged products or byproducts obtained in enzymati...

  11. Capillary electrophoresis-mass spectrometry of carbohydrates.

    Science.gov (United States)

    Zaia, Joseph

    2013-01-01

    The development of methods for capillary electrophoresis (CE) with on-line mass spectrometric detection (CE/MS) is driven by the need for accurate, robust, and sensitive glycomics analysis for basic biomedicine, biomarker discovery, and analysis of recombinant protein therapeutics. One important capability is to profile glycan mixtures with respect to the patterns of substituents including sialic acids, acetate, sulfate, phosphate, and other groups. There is additional need for an MS-compatible separation system capable of resolving carbohydrate isomers. This chapter summarizes applications of CS/MS to analysis of carbohydrates, glycoproteins, and glycopeptides that have appeared since 2008. Readers are referred to recent comprehensive reviews covering earlier publications.

  12. Atomic Force Controlled Capillary Electrophoresis

    Science.gov (United States)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  13. Improving the sensitivity in chiral capillary electrophoresis.

    Science.gov (United States)

    Sánchez-López, Elena; Marina, María Luisa; Crego, Antonio L

    2016-01-01

    CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Sánchez-Hernández et al. [Electrophoresis 2014, 35, 12-27].

  14. Enantiomeric separation of 13 new amphetamine-like designer drugs by capillary electrophoresis, using modified-B-cyclodextrins.

    Science.gov (United States)

    Burrai, Lucia; Nieddu, Maria; Pirisi, Maria Antonietta; Carta, Antonio; Briguglio, Irene; Boatto, Gianpiero

    2013-10-01

    An easy-to-prepare chiral CE method for the enantiomeric separation of 13 new amphetamine-like designer drugs, using CDs as chiral selectors, was developed. Sulfated-β-CD was found to be the best chiral selector among the three used (sulfated-β-CD, caroboxymethyl-β-CD, dimethyl-β-CD). The separation of the analytes was achieved in a fused-silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3 PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 - 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 - 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized.

  15. Ionic Liquid and HP-β-CD Modified Capillary Zone Electrophoresis to Separate Hyperoside, Luteolin and Chlorogenic Acid

    Institute of Scientific and Technical Information of China (English)

    Yue Ling WANG; Zhong Bo HU; Zhuo Bin YUAN

    2006-01-01

    Ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, 1E-3MI-TFB) and HP-β-CD as modifier was added to the buffer to separate hyperoside, luteolin and chlorogenic acid.Experiments explored the effect of concentration of 1E-3MI-TFB and HP-β-CD on separation.The results indicated that 1.0 mmol/L HP-β-CD and 1‰ (v/v) 1E-3MI-TFB added to the buffer simultaneous y could achieve a good compromise of resolution and analysis time. Capillary experiments and UV spectra indicated that there was interaction between 1E-3MI-TFB and analytes.

  16. 20 Years of Fatty Acid Analysis by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Marcone Augusto Leal de Oliveira

    2014-09-01

    Full Text Available A review taking into account the literature reports covering 20 years of fatty acid analysis by capillary electrophoresis is presented. This paper describes the evolution of fatty acid analysis using different CE modes such as capillary zone electrophoresis, non-aqueous capillary electrophoresis, micellar electrokinetic capillary chromatography and microemulsion electrokinetic chromatography employing different detection systems, such as ultraviolet-visible, capacitively coupled contactless conductivity, laser-induced fluorescence and mass spectrometry. In summary, the present review signals that CE seems to be an interesting analytical separation technique that is very useful for screening analysis or quantification of the usual fatty acids present in different matrices, offering short analysis times and a simple sample preparation step as inherent advantages in comparison with the classical methodology, making it a separation technique that is very attractive for quality control in industry and government agencies.

  17. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  18. Study of Oxidation of Glutathione by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A capillary electrophoresis method for the separation and quantification of reduced glutathione (GSH) and oxidized glutathione (GSSG) was developed. A baseline separation was achieved within five minutes. The effects of time and the concentrations of hydrogen peroxide (H2O2) on the oxidation of GSH were investigated.

  19. Capillaries modified by noncovalent anionic polymer adsorption for capillary zone electrophoresis, micellar electrokinetic capillary chromatography and capillary electrophoresis mass spectrometry

    DEFF Research Database (Denmark)

    Bendahl, L; Hansen, S H; Gammelgaard, Bente

    2001-01-01

    A simple coating procedure for generation of a high and pH-independent electroosmotic flow in capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) is described. The bilayer coating was formed by noncovalent adsorption of the ionic polymers Polybrene...

  20. Optimisation for the separation of the oligosaccharide, sodium Pentosan Polysulfate by reverse polarity capillary zone electrophoresis using a central composite design.

    Science.gov (United States)

    Prochazka, S; Mulholland, M; Lloyd-Jones, A

    2003-02-01

    The separation by reverse polarity capillary zone electrophoresis of the therapeutically developed sodium salt of Pentosan Polysulfate was optimised through the analysis of response surface methodologies, modeled using a central composite design. The optimisation investigated injection pressure, injection time and voltage and the effect of the conditions on retention times, peak areas, separation efficiency and the method sensitivity. The overall goal was to develop the most sensitive results with no decrease in separation efficiency. The following results were obtained: (1) retention times generally decreased as injection pressure, injection time and voltage increased, injection time having the least effect; (2) as expected peak areas increased as injection pressure and injection time increased but decreased as voltage increased; (3) separation efficiencies generally increased as injection pressure and injection time decreased, with voltage having almost no effect. For the optimum condition, the sample was introduced at the inlet vial at the cathode hydrodynamically, at optimal setting of 44 s at 35 mbar. The optimal voltage was -20 kV. In comparison with other methods, the optimum showed increased sensitivity, resolution and separation efficiency. Repeatability studies were performed on the optimum parameter conditions. Relative standard deviation values obtained were between 0.9 and 5.4%.

  1. Optimized photonic crystal fibers supporting efficient capillary electrophoresis

    Science.gov (United States)

    Calcerrada, M.; García-Ruiz, C.; Roy, P.; Gonzalez-Herraez, M.

    2013-05-01

    In this paper we present preliminary results on the use of Photonic Crystal Fibers (PCFs) in a conventional capillary electrophoresis system to separate and detect fluorescent species. PCFs show interesting advantages over conventional capillaries for this application, including larger surface-to-volume ratio and potential for higher resolution with comparable sensitivity. Our results illustrate some of these advantages, and we point out the need for stringent tolerances in the fabrication of specific PCFs for this application.

  2. Enantiomeric Separation and Determination of the Enantiomeric Impurity of Armodafinil by Capillary Electrophoresis with Sulfobutyl Ether-β-cyclodextrin as Chiral Selector

    OpenAIRE

    Bingren Xiang; Yibing Ji; Suyun Xiang; Xiaojuan Zhou; Wei Wang

    2011-01-01

    A selective capillary electrophoresis method using sulfobutyl ether-β-cyclodextrin as a chiral selector was developed and validated for the determination of the enantiomeric impurity of (R)-modafinil, i.e., armodafinil. Several parameters were optimized for a satisfactory enantioresolution, including the type and concentration of chiral selector and organic modifier, pH of background electrolyte (BGE), capillary temperature. The finally adopted condition was: 20 mmol/L phosphate buffer at pH ...

  3. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  4. Capillary electrophoresis application in metal speciation and complexation characterization

    Science.gov (United States)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  5. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  6. Separation of intron 22 inversion type 1 and 2 of hemophilia A by modified inverse-shifting polymerase chain reaction and capillary gel electrophoresis.

    Science.gov (United States)

    Pan, Tzu-Yu; Chiou, Shyh-Shin; Wang, Chun-Chi; Wu, Shou-Mei

    2014-12-01

    An inverse-shifting polymerase chain reaction (IS-PCR) combined with short-end capillary gel electrophoresis (CGE) was developed for genotyping of intron 22 inversion Type 1 (Inv22-1) and Type 2 (Inv22-2) of hemophilia A (HA). Severe HA cases are affected by intron 22 inversion around 45-50%. Inv22-1 has higher frequency than Inv22-2. The aim of this study is to distinguish them by genotyping. In order to improve Inv22 genotyping efficiency, five primers were designed and applied to differentiate the wild type, Inv22-1, Inv22-2 and carrier. Three amplicons of 405, 457 and 512 bp were recognized for wild type; 333, 457 and 584 bp for Inv22-1; 385, 405 and 584 bp for Inv22-2. The Inv22-1 carrier has 5 amplicons including 333, 405, 457, 512, 584 bp and Inv22-2 carrier is differentiated by 385, 405, 457, 512 and 584 bp. The amplicons between Inv22-1 and Inv22-2 carriers are only different in 333 bp for Inv22-1 carrier and 385 bp for Inv22-2 carrier. Capillary gel electrophoresis (CGE) was used for separation within 5 min. The separation voltage was set at 8 kV (cathode at detector), and the temperature was kept at 25°C. The sieving matrix was 89 mM Tris, 89 mM boric acid, 2mM EDTA containing 0.4% (w/v) HPMC and 1 μM of YO-PRO(®)-1 Iodide. Total of 50 HA patients (including 35 non-Inv22, 14 Inv22-1, and one Inv22-2 patients) and 7 HA carriers were diagnosed in the application. Seven random samples (5 patients and 2 carriers) were subjected to comparison and gave identical results of DNA sequencing and this modified IS-PCR.

  7. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    Science.gov (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  8. 非水毛细管电泳分离碱金属、碱土金属和铵离子的机理研究%Investigation on Mechanism for Separation of Alkali, Alkaline Metal and Ammonium Cations in Nonaqueous Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    刘红霞; 宋鹃梅; 张书胜; MACKA Miroslav; HADDAD Paul R

    2004-01-01

    Capillary electrophoresis ( CE ) has rapidly gained great interests among researchers in many different fields. One of these areas is the separation of small ions such as inorganic cations, anions, and low Mr organic molecules However, as the separation of ions

  9. Chiral Separation of Ephedrine and Pseudoephedrine by Capillary Electrophoresis%毛细管电泳技术分离麻黄碱和伪麻黄碱

    Institute of Scientific and Technical Information of China (English)

    高冲; 王明召

    2015-01-01

    设计了一篇反映现代化学内容的高中化学教学材料。通过用氧化石墨烯修饰毛细管柱分离麻黄碱和伪麻黄碱的研究实例,介绍毛细管电泳技术分离手性对映体的基本原理,内容涉及分子的手性、分子间作用力、氢键等高中化学知识,供一线高中化学教师用于教学实践。%Based on high school chemistry knowledge such as chiral molecules,intermolecu-lar forces and hydrogen bond,an instructional material about the basic principles of chiral separa-tions of the ephedrine-pseudoephedrine (E-PE)isomers by GO-coated capillary electrophoresis was designed,in order to extend high school chemistry.

  10. Highly sensitive trivalent copper chelate–luminol chemiluminescence system for capillary electrophoresis chiral separation and determination of ofloxacin enantiomers in urine samples

    Directory of Open Access Journals (Sweden)

    Hao-Yue Xie

    2014-12-01

    Full Text Available A simple, fast and sensitive capillary electrophoresis (CE strategy combined with chemiluminescence (CL detection for analysis of ofloxacin (OF enantiomers was established in the present work. Sulfonated β-cyclodextrin (β-CD was used as the chiral additive being added into the running buffer of luminol–diperiodatocuprate (III (K5[Cu(HIO62], DPC chemiluminescence system. Under the optimum conditions, the proposed method was successfully applied to separation and analysis of OF enantiomers with the detection limits (S/N=3 of 8.0 nM and 7.0 nM for levofloxacin and dextrofloxacin, respectively. The linear ranges were both 0.010–100 μM. The method was utilized for analyzing OF in urine; the results obtained were satisfactory and recoveries were 89.5–110.8%, which demonstrated the reliability of this method. This approach can also be further extended to analyze different commercial OF medicines.

  11. Nitromethane as solvent in capillary electrophoresis.

    Science.gov (United States)

    Subirats, Xavier; Porras, Simo P; Rosés, Martí; Kenndler, Ernst

    2005-06-24

    Nitromethane has several properties that make it an interesting solvent for capillary electrophoresis especially for lipophilic analytes that are not sufficiently soluble in water: freezing and boiling points are suitable for laboratory conditions, low viscosity leads to favourable electrophoretic mobilities, or an intermediate dielectric constant enables dissolution of electrolytes. In the present work we investigate the change of electrophoretically relevant analyte properties - mobilities and pKa values - in nitromethane in dependence on the most important experimental conditions determined by the background electrolyte: the ionic strength, I, and the pH. It was found that the mobility decreases with increasing ionic strength (by, e.g. up to 30% from I = 0 to 50 mmol/L) according to theory. An appropriate pH scale is established by the aid of applying different concentration ratios of a buffer acid with known pKa and its conjugate base. The mobility of the anionic analytes (from weak neutral acids) depends on the pH with the typical sigmoidal curve in accordance with theory. The pKa of neutral acids derived from these curves is shifted by as much as 14 pK units in nitromethane compared to water. Both findings confirm the agreement of the electrophoretic behaviour of the analytes with theories of electrolyte solutions. Separation of several neutral analytes was demonstrated upon formation of charged complexes due to heteroconjugation with chloride as ionic constituent of the background electrolyte.

  12. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip

    NARCIS (Netherlands)

    Manz, A.; Harrison, D.J.; Verpoorte, E.M.J.; Fettinger, J.C.; Paulus, A.; Ludi, H.; Widmer, H.M.

    1992-01-01

    Miniaturization of already existing techniques in on-line analytical chemistry is an alternative to compound-selective chemical sensors. Theory on separation science predicts higher efficiency, faster analysis time and lower reagent consumption for microsystems. Micromachining, a well known photolit

  13. Capillary electrophoresis in a fused-silica capillary with surface roughness gradient.

    Science.gov (United States)

    Horká, Marie; Šlais, Karel; Karásek, Pavel; Růžička, Filip; Šalplachta, Jiří; Šesták, Jozef; Kahle, Vladislav; Roth, Michal

    2016-10-01

    The electro-osmotic flow, a significant factor in capillary electrophoretic separations, is very sensitive to small changes in structure and surface roughness of the inner surface of fused silica capillary. Besides a number of negative effects, the electro-osmotic flow can also have a positive effect on the separation. An example could be fused silica capillaries with homogenous surface roughness along their entire separation length as produced by etching with supercritical water. Different strains of methicillin-resistant and methicillin-susceptible Staphylococcus aureus were separated on that type of capillaries. In the present study, fused-silica capillaries with a gradient of surface roughness were prepared and their basic behavior was studied in capillary zone electrophoresis with UV-visible detection. First the influence of the electro-osmotic flow on the peak shape of a marker of electro-osmotic flow, thiourea, has been discussed. An antifungal agent, hydrophobic amphotericin B, and a protein marker, albumin, have been used as model analytes. A significant narrowing of the detected zones of the examined analytes was achieved in supercritical-water-treated capillaries as compared to the electrophoretic separation in smooth capillaries. Minimum detectable amounts of 5 ng/mL amphotericin B and 5 μg/mL albumin were reached with this method.

  14. Capillary electrophoresis using core-based hyperbranched polyethyleneimine (CHPEI) static-coated capillaries.

    Science.gov (United States)

    Boonyakong, Cheerapa; Tucker, Sheryl A

    2009-10-01

    With unique 3-D architecture, the application of core-based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, M(w) approximately 5000 and CHPEI25, M(w) approximately 25,000) were physically adsorbed onto the inner surface of bare fused-silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0-9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three-fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (capillary and capillary).

  15. 亲和毛细管电泳、环糊精-电动色谱、毛细管电泳-质谱用于对映体分离的研究进展%Method Development of Enantiomer Separations by Affinity Capillary Electrophoresis,Cyclodextrin Electrokinetic Chromatography and Capillary Electrophoresis-Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separat ions during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some prote ins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated f rom our study in this review article. In the enantiomer separations by affinit y CE, the deterioration of detection sensitivity was observed under high concent ration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 μmol/L, without the detection problem. Cha rged CDs had several advantages for the enantiomer separations over neutral ones . Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large differen ce in electrophoretic mobility between the free analyte and the inclusion comple x should also enhance the enantiomeric resolution. In CEmass spectrometry (CE MS), the partial filling technique was applied to avoid the introduction of no nvolatile chiral selectors into the CEMS interface. By replacing the nonvolat ile electrolytes in the running buffer by volatile ones, the separation conditio ns employed in CE with the UV detection method could be transferred to CEMS.

  16. Double-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable capillary electrophoresis and capillary electrophoresis with mass spectrometry glycan analysis.

    Science.gov (United States)

    Zhang, Yi-Wei; Zhao, Ming-Zhe; Liu, Jing-Xin; Zhou, Ying-Lin; Zhang, Xin-Xiang

    2015-02-01

    Glycosylation plays an important role in protein conformations and functions as well as many biological activities. Capillary electrophoresis combined with various detection methods provided remarkable developments for high-sensitivity glycan profiling. The coating of the capillary is needed for highly polar molecules from complex biosamples. A poly(vinyl alcohol)-coated capillary is commonly utilized in the capillary electrophoresis separation of saccharides sample due to the high-hydrophilicity properties. A modified facile coating workflow was carried out to acquire a novel multiple-layer poly(vinyl alcohol)-coated capillary for highly sensitive and stable analysis of glycans. The migration time fluctuation was used as index in the optimization of layers and a double layer was finally chosen, considering both the effects and simplicity in fabrication. With migration time relative standard deviation less than 1% and theoretical plates kept stable during 100 consecutive separations, the method was presented to be suitable for the analysis of glycosylation with wide linear dynamic range and good reproducibility. The glycan profiling of enzymatically released N-glycans from human serum was obtained by the presented capillary electrophoresis method combined with mass spectrometry detection with acceptable results.

  17. Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The water-soluble carboxymethyl-cyclodextrin polymer (CM-CD polymer) was synthesized and used as capillary electrophoresis chiral selector.Verrapamil and thiopentorusodium were well separated using CM-CD polymer as chiral selector.

  18. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  19. Monitoring Homovanillic Acid and Vanillylmandelic Acid in Human Urine by Capillary Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A simple, rapid and low-cost method of separation and determination of homovanillic acid and vanillylmandelic acid in human urine was developed based on capillary zone electrophoresis / amperometric detection with high sensitivity and good resolution.

  20. ANALYSIS OF ANIONIC METALLIZED AZO AND FORMAZAN DYES BY CAPILLARY ELECTROPHORESIS/MASS SPECTROMETRY

    Science.gov (United States)

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cmX50 mu m uncoated fused-silica capillary and a 5 mM ammonium a...

  1. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fung, N.

    1998-03-27

    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  2. Bundled capillary electrophoresis using microstructured fibres.

    Science.gov (United States)

    Rogers, Benjamin; Gibson, Graham T T; Oleschuk, Richard D

    2011-01-01

    Joule heating, arising from the electric current passing through the capillary, causes many undesired effects in CE that ultimately result in band broadening. The use of narrow-bore capillaries helps to solve this problem as smaller cross-sectional area results in decreased Joule heating and the rate of heat dissipation is increased by the larger surface-to-volume ratio. Issues arising from such small capillaries, such as poor detection sensitivity, low loading capacity and high flow-induced backpressure (complicating capillary loading) can be avoided by using a bundle of small capillaries operating simultaneously that share buffer reservoirs. Microstructured fibres, originally designed as waveguides in the telecommunication industry, are essentially a bundle of parallel ∼5 μm id channels that extend the length of a fibre having otherwise similar dimensions to conventional CE capillaries. This work presents the use of microstructured fibres for CZE, taking advantage of their relatively high surface-to-volume ratio and the small individual size of each channel to effect highly efficient separations, particularly for dye-labelled peptides.

  3. Design and evaluation of capillary electrophoresis in dynamically coated capillaries coupled with chemiluminescence detection.

    Science.gov (United States)

    Liu, Haiyan; Han, Ning; Zhang, Lingyi; Du, Yiping; Zhang, Weibing

    2010-11-08

    A dynamic coating capillary electrophoresis coupled with a simplified on-line chemiluminescence detection system was designed and evaluated. In the proposed system, poly-vinylpyrrolidone was used as dynamic coating substance in the separation buffer to reduce the unwanted protein non-specific adsorption, which was first applied in capillary electrophoresis coupling with on-line chemiluminescence detection. In order to avoid complex processing, an ordinary plastic cuvette was modified as a three-way joint. The chemiluminescence reaction conditions and capillary electrophoresis separation conditions were investigated in detail. The results showed that the coated capillary can be injected protein samples at least 30 times continuously with good repeatability. Under optimal conditions, the chemiluminescence relative intensity was linear with the concentration of hemoglobin in the range of 4-1850 μg mL(-1) and the detection limit was 2.0 μg mL(-1) (S/N=3). The relative standard deviation of migration times and peak heights for 40 μg mL(-1) hemoglobin were 2.5% and 4.1% (n=11) respectively. Interference of matrix effects was overcome by the calibration according to standard addition methods. Afterwards, the method was validated successfully and was applied to detect the concentration of hemoglobin in the serum of haemolytic patients.

  4. Capillary electrophoresis with laser-induced fluorescence: environmental applications.

    Science.gov (United States)

    Riddick, Lee; Brumley, William C

    2008-01-01

    Capillary electrophoresis (CE), especially free-zone CE, offers a relatively simple separation with moderate selectivity based on the mobility of ions in solution. Laser-induced fluorescence (LIF) detection, an extremely sensitive technique, can be coupled with a variety of separation conditions to achieve sensitive and quantitative results. When these techniques are combined, CE/LIF provides the sensitivity and increased selectivity that makes trace level environmental analysis of fluorescent compounds possible at or below levels typical for gas chromatography (GC)/mass spectrometry (MS). We offer a panoramic review of the role of these tools in solving environmental and related analytical problems before providing a detailed experimental protocol.

  5. Attempt to run urinary protein electrophoresis using capillary technique.

    Science.gov (United States)

    Falcone, Michele

    2014-10-01

    The study of urinary protein has a predominant place in the diagnosis of kidney disease. The most common technique is agarose gel electrophoresis (AGE). For several years, the technique of choice applied to the analysis of serum proteins has been CE, a system that uses capillary fused silica, subjected to high voltage to separate and measure serum proteins. The purpose of this paper was to perform capillary electrophoresis on urinary proteins which, at present, are not interpretable due to the many nonspecific peaks visible when using gel electrophoresis. In order to carry out our research, we used a capillary V8 analyzer together with an agarose gel system from the same company. AGE was taken as the reference method, for which urine was used without any pretreatment. For the V8 system, urine was subjected to purification on granular-activated carbon and then inserted into the V8 analyzer, selecting a program suitable for liquids with low protein content. We examined 19 urine samples collected over 24 hrs from both hospitalized and external patients with different types of proteinuria plus a serum diluted 1/61 considered as a control to recognize the bands. Both methods showed the same protein fractions and classified the proteinuria in a similar way.

  6. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis.

    Science.gov (United States)

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong

    2016-09-01

    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries.

  7. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC) wit

  8. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On......-line affinity capillary electrophoresis methods are especially valuable for enantiomeric separations and for functional characterization of the contents of biological samples that are only available in minute quantities....

  9. Novel cationic polyelectrolyte coatings for capillary electrophoresis.

    Science.gov (United States)

    Duša, Filip; Witos, Joanna; Karjalainen, Erno; Viitala, Tapani; Tenhu, Heikki; Wiedmer, Susanne K

    2016-01-01

    The use of bare fused silica capillary in CE can sometimes be inconvenient due to undesirable effects including adsorption of sample or instability of the EOF. This can often be avoided by coating the inner surface of the capillary. In this work, we present and characterize two novel polyelectrolyte coatings (PECs) poly(2-(methacryloyloxy)ethyl trimethylammonium iodide) (PMOTAI) and poly(3-methyl-1-(4-vinylbenzyl)-imidazolium chloride) (PIL-1) for CE. The coated capillaries were studied using a series of aqueous buffers of varying pH, ionic strength, and composition. Our results show that the investigated polyelectrolytes are usable as semi-permanent (physically adsorbed) coatings with at least five runs stability before a short coating regeneration is necessary. Both PECs showed a considerably decreased stability at pH 11.0. The EOF was higher using Good's buffers than with sodium phosphate buffer at the same pH and ionic strength. The thickness of the PEC layers studied by quartz crystal microbalance was 0.83 and 0.52 nm for PMOTAI and PIL-1, respectively. The hydrophobicity of the PEC layers was determined by analysis of a homologous series of alkyl benzoates and expressed as the distribution constants. Our result demonstrates that both PECs had comparable hydrophobicity, which enabled separation of compounds with log Po/w > 2. The ability to separate cationic drugs was shown with β-blockers, compounds often misused in doping. Both coatings were also able to separate hydrolysis products of the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate at highly acidic conditions, where bare fused silica capillaries failed to accomplish the separation.

  10. Enantiomeric Separation and Determination of the Enantiomeric Impurity of Armodafinil by Capillary Electrophoresis with Sulfobutyl Ether-β-cyclodextrin as Chiral Selector

    Directory of Open Access Journals (Sweden)

    Bingren Xiang

    2011-12-01

    Full Text Available A selective capillary electrophoresis method using sulfobutyl ether-β-cyclodextrin as a chiral selector was developed and validated for the determination of the enantiomeric impurity of (R-modafinil, i.e., armodafinil. Several parameters were optimized for a satisfactory enantioresolution, including the type and concentration of chiral selector and organic modifier, pH of background electrolyte (BGE, capillary temperature. The finally adopted condition was: 20 mmol/L phosphate buffer at pH 7.5, containing 20 mmol/L sulfobutyl ether-β-cyclodextrin and 20% methanol, at temperature of 25 °C. A good resolution of 3.3 for the two enantiomers of modafinil was achieved by applying the optimal conditions. The limit of detection (LOD and limit of quantification (LOQ of (S-modafinil were 1.25 μg/mL and 2.50 μg/mL, respectively. The established method was also proven to display good selectivity, repeatability, linearity and accuracy. Finally, the method was used to investigate the enantiomeric purity of armodafinil in bulk samples.

  11. Enantiomeric separation and determination of the enantiomeric impurity of armodafinil by capillary electrophoresis with sulfobutyl ether-β-cyclodextrin as chiral selector.

    Science.gov (United States)

    Wang, Wei; Xiang, Suyun; Zhou, Xiaojuan; Ji, Yibing; Xiang, Bingren

    2011-12-30

    A selective capillary electrophoresis method using sulfobutyl ether-β-cyclodextrin as a chiral selector was developed and validated for the determination of the enantiomeric impurity of (R)-modafinil, i.e., armodafinil. Several parameters were optimized for a satisfactory enantioresolution, including the type and concentration of chiral selector and organic modifier, pH of background electrolyte (BGE), capillary temperature. The finally adopted condition was: 20 mmol/L phosphate buffer at pH 7.5, containing 20 mmol/L sulfobutyl ether-β-cyclodextrin and 20% methanol, at temperature of 25 °C. A good resolution of 3.3 for the two enantiomers of modafinil was achieved by applying the optimal conditions. The limit of detection (LOD) and limit of quantification (LOQ) of (S)-modafinil were 1.25 μg/mL and 2.50 μg/mL, respectively. The established method was also proven to display good selectivity, repeatability, linearity and accuracy. Finally, the method was used to investigate the enantiomeric purity of armodafinil in bulk samples.

  12. Capillary electrophoresis as a versatile tool for the bioanalysis of drugs - a review

    NARCIS (Netherlands)

    Boone, CM; Waterval, JCM; Lingeman, H; Ensing, K; Underberg, WJM

    1999-01-01

    This review article presents an overview of current research on the use of capillary electrophoretic techniques for the analysis of drugs in biological matrices. The principles of capillary electrophoresis and its various separation and detection modes are briefly discussed. Sample pretreatment meth

  13. PNEUMATIC MICROVALVE FOR ELECTROKINETIC SAMPLE PRECONCENTRATION AND CAPILLARY ELECTROPHORESIS INJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.

    2014-10-27

    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  14. On-line cation-exchange preconcentration and capillary electrophoresis coupled by tee joint interface.

    Science.gov (United States)

    Zhang, Zhao-Xiang; He, You-Zhao

    2005-02-25

    An on-line preconcentration method based on ion exchange solid phase extraction was developed for the determination of cationic analytes in capillary electrophoresis (CE). The preconcentration-separation system consisted of a preconcentration capillary bonded with carboxyl cation-exchange stationary phase, a separation capillary for zone electrophoresis and a tee joint interface of the capillaries. Two capillaries were connected closely inside a 0.3 mm i.d. polytetrafluoroethylene tube with a side opening and fixed together by the interface. The preparations of the preconcentration capillaries and interface were described in detail in this paper. The on-line preconcentration and separation procedure of the analysis system included washing and conditioning the capillaries, loading analytes, filling with buffer solution, eluting analytes and separating by capillary zone electrophoresis (CZE). Several analysis parameters, including sample loading flow rate and time, eluting solution and volume, inner diameter and length of preconcentration capillary etc., were investigated. The proposed method enhanced the detection sensitivity of CE-UV about 5000 times for propranolol and metoprolol compared with normally electrokinetic injection. The detection limits of propranolol and metoprolol were 0.02 and 0.1 microg/L with the proposed method respectively, whereas those were 0.1 and 0.5 mg/L with conventional electrokinetic injection. The experiment results demonstrate that the proposed technique can increase the preconcentration factor evidently.

  15. Penicillin G as a novel chiral selector in capillary electrophoresis.

    Science.gov (United States)

    Dixit, Shuchi; Park, Jung Hag

    2014-01-24

    The penicillin sub-class of β-lactam antibiotics has not been examined for its enantiodiscriminating abilities in capillary electrophoresis (CE) until date. The present work was therefore designed to evaluate penicillin G potassium salt (PenG) as an ion-pair chiral selector (CS) using CE for its several attributes, namely, high solubility in water and lower alcohols, structure allowing multiple interactions with analytes and cost-effectiveness. Systematic experiments were performed to investigate the effect of composition of background electrolyte, applied voltage and capillary temperature on chiral separation. Baseline resolutions of enantiomers of five basic chiral drugs (namely, darifenacin, citalopram, sertraline, propranolol and metoprolol) were attained using a background electrolyte composed of water:methanol (90:10, v/v) and consisting of 10.7 or 16.1mM CS at 20°C using an applied voltage of 5kV.

  16. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    Science.gov (United States)

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products.

  17. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis.

    Science.gov (United States)

    Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A

    2015-09-01

    A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).

  18. Correlation of MFOLD-predicted DNA secondary structures with separation patterns obtained by capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis.

    Science.gov (United States)

    Glavac, Damjan; Potocnik, Uros; Podpecnik, Darja; Zizek, Teofil; Smerkolj, Sava; Ravnik-Glavac, Metka

    2002-04-01

    We have studied 57 different mutations within three beta-globin gene promoter fragments with sizes 52 bp, 77 bp, and 193 bp by fluorescent capillary electrophoresis CE-SSCP analysis. For each mutation and wild type, energetically most-favorable predicted secondary structures were calculated for sense and antisense strands using the MFOLD DNA-folding algorithm in order to investigate if any correlation exists between predicted DNA structures and actual CE migration time shifts. The overall CE-SSCP detection rate was 100% for all mutations in three studied DNA fragments. For shorter 52 bp and 77 bp DNA fragments we obtained a positive correlation between the migration time shifts and difference in free energy values of predicted secondary structures at all temperatures. For longer 193 bp beta-globin gene fragments with 46 mutations MFOLD predicted different secondary structures for 89% of mutated strands at 25 degrees C and 40 degrees C. However, the magnitude of the mobility shifts did not necessarily correlate with their secondary structures and free energy values except for the sense strand at 40 degrees C where this correlation was statistically significant (r = 0.312, p = 0.033). Results of this study provided more direct insight into the mechanism of CE-SSCP and showed that MFOLD prediction could be helpful in making decisions about the running temperatures and in prediction of CE-SSCP data patterns, especially for shorter (50-100 bp) DNA fragments.

  19. Capillary electrophoresis-mass spectrometry using noncovalently coated capillaries for the analysis of biopharmaceuticals.

    Science.gov (United States)

    Haselberg, R; Brinks, V; Hawe, A; de Jong, G J; Somsen, G W

    2011-04-01

    In this work, the usefulness of capillary electrophoresis-electrospray ionization time-of-flight-mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight-mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6-7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.

  20. Fabricating PFPE Membranes for Capillary Electrophoresis

    Science.gov (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).

  1. Analysis of neuropeptides using capillary zone electrophoresis with multichannel fluorescence detection

    Science.gov (United States)

    Sweedler, Jonathan V.; Shear, Jason B.; Fishman, Harvey A.; Zare, Richard N.; Scheller, Richard H.

    1991-12-01

    Capillary zone electrophoresis is fast becoming one of the most sensitive separation schemes for sampling complex microenvironments. A unique detection scheme is developed in which a charge-coupled device (CCD) detects laser induced fluorescence from an axially illuminated electrophoresis capillary. The fluorescence from an analyte band is measured over a several centimeter section of the capillary, greatly increasing the observation time of the fluorescently tagged band. The sensitivity of the system is in the 1-8 X 10-20 mol range for derivatized amino acids and peptides. Subattomole quantities of bag cell neuropeptides collected from the giant marine mollusk Aplysia californica can be measured.

  2. Analysis of roller pen inks by capillary zone electrophoresis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pengcheng; WANG Yanji; XU Yuanyuan; YAO Lijuan

    2007-01-01

    The analysis of roller pen inks has become more and more important in fraudulent document examination because of the extensive use of roller pens in financial documents.Capillary electrophoresis with powerful resolution was applied for the analysis of roller pen inks.The experiment focused on the optimization of the separation of the extract from commercially available roller pen entries.A better separation electropherogram was obtained when a 20 mM borate buffer at pH 8.5 and a fused silica capillary with an inner diameter of 100 μm with a total length of 47 (40 cm to the detector window)were used.Five inks from roller pens of different manufacturers and countries were analyzed,and their electropherograms showed that most patterns are distinctly different from each other.Capillary with inner diameter of 100 μm increased the intensity of determination;therefore,color dyes were identified in the visible range and were able to provide more information for comparing types of roller pen inks.

  3. Analytical characterization of wine and its precursors by capillary electrophoresis.

    Science.gov (United States)

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F

    2012-08-01

    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.

  4. Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis.

    Science.gov (United States)

    Ghosal, Sandip

    2004-01-01

    Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged species in capillary electrophoresis unless special precautions are taken to suppress it. The presence of the EOF provides certain advantages in separations. It is an alternative to mechanical pumps, which are inefficient and difficult to build at small scales, for transporting reagents and analytes on microfluidic chips. The downside is that any imperfection that distorts the EOF profile reduces the separation efficiency. In this paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics and its effect on separations in free solution capillary zone electrophoresis is discussed in the light of recent advances.

  5. Recent developments in electrochemical detection for microchip capillary electrophoresis.

    Science.gov (United States)

    Vandaveer, Walter R; Pasas-Farmer, Stephanie A; Fischer, David J; Frankenfeld, Celeste N; Lunte, Susan M

    2004-11-01

    Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.

  6. Reprint of: Enantiomeric separation of functionalized ethano-bridged Tröger bases using macrocyclic cyclofructan and cyclodextrin chiral selectors in high-performance liquid chromatography and capillary electrophoresis with application of principal component analysis.

    Science.gov (United States)

    Weatherly, Choyce A; Na, Yun-Cheol; Nanayakkara, Yasith S; Woods, Ross M; Sharma, Ankit; Lacour, Jérôme; Armstrong, Daniel W

    2014-10-01

    The enantiomeric separation of a series of racemic functionalized ethano-bridged Tröger base compounds was examined by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Using HPLC and CE the entire set of 14 derivatives was separated by chiral stationary phases (CSPs) and chiral additives composed of cyclodextrin (native and derivatized) and cyclofructan (derivatized). Baseline separations (Rs ≥ 1.5) in HPLC were achieved for 13 of the 14 compounds with resolution values as high as 5.0. CE produced 2 baseline separations. The separations on the cyclodextrin CSPs showed optimum results in the reversed phase mode, and the LARIHC cyclofructan CSPs separations showed optimum results in the normal phase mode. HPLC separation data of the compounds was analyzed using principal component analysis (PCA). The PCA biplot analysis showed that retention is governed by the size of the R1 substituent in the case of derivatized cyclofructan and cyclodextrin CSPs, and enantiomeric resolution closely correlated with the size of the R2 group in the case of non-derivatized γ-cyclodextrin CSP. It is clearly shown that chromatographic retention is necessary but not sufficient for the enantiomeric separations of these compounds.

  7. Enantiomeric separation of functionalized ethano-bridged Tröger bases using macrocyclic cyclofructan and cyclodextrin chiral selectors in high-performance liquid chromatography and capillary electrophoresis with application of principal component analysis.

    Science.gov (United States)

    Weatherly, Choyce A; Na, Yun-Cheol; Nanayakkara, Yasith S; Woods, Ross M; Sharma, Ankit; Lacour, Jérôme; Armstrong, Daniel W

    2014-04-01

    The enantiomeric separation of a series of racemic functionalized ethano-bridged Tröger base compounds was examined by high performance liquid chromatography (HPLC) and capillary electrophoresis (CE). Using HPLC and CE the entire set of 14 derivatives was separated by chiral stationary phases (CSPs) and chiral additives composed of cyclodextrin (native and derivatized) and cyclofructan (derivatized). Baseline separations (Rs≥1.5) in HPLC were achieved for 13 of the 14 compounds with resolution values as high as 5.0. CE produced 2 baseline separations. The separations on the cyclodextrin CSPs showed optimum results in the reversed phase mode, and the LARIHC™ cyclofructan CSPs separations showed optimum results in the normal phase mode. HPLC separation data of the compounds was analyzed using principal component analysis (PCA). The PCA biplot analysis showed that retention is governed by the size of the R1 substituent in the case of derivatized cyclofructan and cyclodextrin CSPs, and enantiomeric resolution closely correlated with the size of the R2 group in the case of non-derivatized γ-cyclodextrin CSP. It is clearly shown that chromatographic retention is necessary but not sufficient for the enantiomeric separations of these compounds.

  8. Affinity capillary electrophoresis: the theory of electromigration.

    Science.gov (United States)

    Dubský, Pavel; Dvořák, Martin; Ansorge, Martin

    2016-12-01

    We focus on the state-of-the-art theory of electromigration under single and multiple complexation equilibrium. Only 1:1 complexation stoichiometry is discussed because of its unique status in the field of affinity capillary electrophoresis (ACE). First, we summarize the formulas for the effective mobility in various ACE systems as they appeared since the pioneering days in 1992 up to the most recent theories till 2015. Disturbing phenomena that do not alter the mobility of the analyte directly but cause an unexpected peak broadening have been studied only recently and are also discussed in this paper. Second, we turn our attention to the viscosity effects in ACE. Change in the background electrolyte viscosity is unavoidable in ACE but numerous observations scattered throughout the literature have not been reviewed previously. This leads to an uncritical employment of correction factors that may or may not be appropriate in practice. Finally, we consider the ionic strength effects in ACE, too. Limitations of the current theories are also discussed and the tasks identified where open problems still prevail. Graphical Abstract A weak base (A) undergoes an acidic-basic equilibria (in blue) and migrates with an electrophoretic mobility of [Formula: see text]. Simultaneously, it interacts with a selector (sel) while the analyte-selector complex migrates with an electrophoretic mobility of [Formula: see text]. The strength of the interaction (in orange) is governed by the binding constant, K A , and the concentration of the selector, c sel . This all gives the analyte an effective mobility of [Formula: see text] and moves it out of the zero position (EOF; right top insert). The interaction of the positively charged analyte with the neutral selector slows down the analyte with increasing selector concentration (right bottom insert).

  9. Study of Oxidation of Glutathione Treated with Hypochlorous Acid by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Capillary electrophoresis (CE) method was developed for the separation and quantification of reduced glutathione (GSH), oxidized glutathione (GSSG) and glutathione sulphonic acid (GSO3H). Baseline separation was obtained within five minutes. The effects of reaction time and molar ratio of hypochlorous acid (HOCI) to GSH on the oxidation of GSH were investigated.

  10. CAPILLARY ELECTROPHORESIS-ELECTROSPRAY MASS SPECTRA OF THE HERBICIDES PARAQUAT AND DIQUAT

    Science.gov (United States)

    The positive ion electrospray mass spectra of the quaternary ammonium salt herbicides paraquat and diquat are examined by on-line separation with capillary electrophoresis (CE) and by direct infusion of the analytes. The analytes are separated by CE in 7-10 min at pH 3.9 in 50% m...

  11. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J

    2010-08-01

    CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.

  12. SEPARATION OF METAL IONS AS CHELATES OF 1N2,7O3,6S IN THE PRESENCE OR ABSSENCE OF TBA+ BY CAPILLARY ELECTROPHORESIS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Separation and determination of metal ions based on the formation of chelate anions with 1-Nitroso-2,7-dihydrexynaphthalene-3,6-di sulfonic acid(1N2,7O3,6S) was studied by using HPCE of the nine metal ions exami ned, the ions that can be detected sensitively with 1-Nitroso-2,7-dihydrexyna phtha lene-3,6-disulfonic acid were Fe2+,Co2+,Cu2+,Ni2+,Zn 2+ and Pd2+. The cobalt chelate could exist in two oxidation stat es of cobalt. When TBA+ were added in electrophoretic solutions, the drastic c ha nges in electrophoretic mobilities of chelate were observed, which was due to th e ion association between chelates anions and TBA+. The ion association consta nts of chelate anions with TBA+ were determined by using the change in electro p horetic mobilities of chelates, metal ions tested were separated within 10 min u sing 30cm silica capillary(50 m i.d).

  13. Congophilicity (Congo red affinity) of different beta2-microglobulin conformations characterized by dye affinity capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Nissen, Mogens Holst

    2000-01-01

    The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red-affinities of......The amyloidogenic protein beta-microglobulin was characterized by affinity capillary electrophoresis (CE). CE could separate conformational variants of beta2-microglobulin and with the amyloid-specific dye Congo red as a buffer additive it was possible to measure different Congo red...

  14. Cyclodextrins in capillary electrophoresis: recent developments and new trends.

    Science.gov (United States)

    Escuder-Gilabert, L; Martín-Biosca, Y; Medina-Hernández, M J; Sagrado, S

    2014-08-29

    Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.

  15. Capillary electrophoresis and the clinical laboratory.

    Science.gov (United States)

    Jabeen, Rukhsana; Payne, Deborah; Wiktorowicz, John; Mohammad, Amin; Petersen, John

    2006-06-01

    Over the past 15 years, CE as an analytical tool has shown great promise in replacing many conventional clinical laboratory methods, such as electrophoresis and HPLC. CE's appeal was that it was fast, used very small amounts of sample and reagents, was extremely versatile, and was able to separate large and small analytes, whether neutral or charged. Because of this versatility, numerous methods have been developed for analytes that are of clinical interest. Other than molecular diagnostic and forensic laboratories CE has not been able to make a major impact in the United States. In contrast, in Europe and Japan an increasing number of clinical laboratories are using CE. Now that automated multicapillary instruments are commercially available along with cost-effective test kits, CE may yet be accepted as an instrument that will be routinely used in the clinical laboratories. This review will focus on areas where CE has the potential to have the greatest impact on the clinical laboratory. These include analyses of proteins found in serum and urine, hemoglobin (A1c and variants), carbohydrate-deficient transferrin, forensic and therapeutic drug screening, and molecular diagnostics.

  16. Assay of Histamine in Single Mast Cells by Capillary Zone Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Capillary zone electrophoresis was employed for the analysis of histamine in single rat peritoneal mast cells using an amperometric detector. In this method, individual mast cells and then 0.02 mol/L NaOH as a lysing solution are injected into the front end of the separation capillary. A cell injector was constructed for easy injection of single cells. Histamine in single mast cells has been identified and quantified.

  17. Separation of Enantiomers of Nitrendipine and Nimodipine by High Performance Capillary Electrophoresis%尼群地平和尼莫地平的光学异构体的高效毛细管电泳法分离

    Institute of Scientific and Technical Information of China (English)

    李艺; 朱培仪; 宋粉云

    2011-01-01

    建立了高效毛细管电泳法拆分并测定尼群地平片和尼莫地平片中的光学异构体.采用未涂层弹性融硅石英毛细管柱,以40 mmol/L磷酸二氢钠溶液(以磷酸调至pH 2.96)-10 mmol/L磺丁基醚-β-环糊精为运行缓冲液,分离电压-15 kV,检测波长237 nm.尼群地平和尼莫地平对映体得到基线分离,分离度为3.43和2.08.考察了环糊精的浓度、缓冲液浓度和pH、分离电压等的影响,并运用计算机分子模拟技术对环糊精与对映体间的拆分机制进行探讨.%An high performance capillary electrophoresis method was established for the chiral separation and determination of enantiomers of nitrendipine and nimodipine.An uncoated fused sillica capillary column was used with running buffer of 40 mmol/L sodium dihydrogen phosphate (adjusted to pH 2.96 with phosphoric acid) -10 mmol/L SBEβ-CD, at the applied voltage of-15 kV and the detection wavelength of 237 nm.Under the optimized conditions, a baseline separation of enantiomers of nitrendipine and nimodipine were achieved.The resolution of enantiomers of nitrendipine and nimodipine were 3.43 and 2.08.Computer-aided technique was used to calculate the binding energies and the factors affecting the separation efficiency such as the concentration of chiral selectors, running buffer, pH value and separation voltage were studied.

  18. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis.

    Science.gov (United States)

    Anubala, S; Sekar, R; Nagaiah, K

    2014-06-01

    A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution.

  19. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y

    2016-05-01

    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange.

  20. Capillary Electrophoresis in the Analysis of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Gabriel Hancu

    2015-12-01

    Full Text Available The aim of this study to inventory the main electrophoretic methods for identification and quantitative determination of fatty acids from different biological matrices. Critical analysis of electrophoretic methods reported in the literature show that the determination of polyunsaturated fatty acids can be made by: capillary zone electrophoresis, micellar electrokinetic chromatography and microemulsion electrokinetic chromatography using different detection systems such as ultraviolet diode array detection, laser induced fluorescence or mass – spectrometry. Capillary electrophoresis is a fast, low-cost technique used for polyunsaturated fatty acids analysis although their determination is mostly based on gas chromatography.

  1. SIMULTANEOUS DTERMINATION OF CHROMATE AND AROMATIC HYDROCARBONS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    An analytical method was developed to determine simultaneously, the inorganic anion CrO2-4, and organic aromatic compounds including benzoate, 2-Cl-benzoate, phenol, m-cresol and o-/p-cresol by capillary electrophoresis (CE). Chromate and the aromatics were separated in a relativ...

  2. Optical sensing in microchip capillary electrophoresis by femtosecond laser written waveguides

    NARCIS (Netherlands)

    Martinez-Vázquez, R.; Osellame, R.; Cretich, M.; Dongre, C.; Hoekstra, H.J.W.M.; Vlekkert, van den H.; Ramponi, R.; Pollnau, M.; Chiari, M.; Cerullo, G.

    2009-01-01

    Capillary electrophoresis separation in an on-chip integrated microfluidic channel is typically monitored with bulky, bench-top optical excitation/detection instrumentation. Optical waveguides allow confinement and transport of light in the chip directing it to a small volume of the microfluidic cha

  3. Gold Nanoparticles Enhanced Microchip Capillary Electrophoresis for Detection of Serum Lipoprotein

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; WANG DaXin; CAO Li; CHEN Xia

    2009-01-01

    @@ We describe here the use of gold nanoparticles (AuNPs) in conjunction with chip-based capillary electrophoresis (CE) to improve the selectivity between lipoprotein fractions and increase the efficiency of the separation.AuNPs were added into the running buffer to manipulate solution and control the electroosmotic flow (EOF).

  4. Capillary electrophoresis of FITC labeled amino acids with laser-induced fluorescence detection

    Institute of Scientific and Technical Information of China (English)

    党福全; 陈义

    1999-01-01

    FITC labeled amino acids have been separated using a home-huilt capillary electrophoresis with a laserinduced fluorescence detection (CE-LIF) system. Seventeen peaks can now be generated from the twenty common amino acids. The key conditions lie in the optimization of pH, buffer electrolytes and buffer additives.

  5. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  6. 毛细管电泳有效分离测定甜菊糖苷新方法的研究%Study of New Method for Separation and Determination of Stevia Glucosides by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    邵寒娟; 胡涌刚; 丁亮; 陈睦传; 彭兴跃

    2001-01-01

    This paper reported a new, effective and secure method for separation and determination of stevioside by capillary electrophoresis. The effects of di{ferent separation conditions on the migration time, selectivity and resolution were investigated. Under optimum separation conditions, the detector response for stevioside was linear over the range 0.05-9 mg/ml and the linear regression coefficient was 0.997. All components provided good resolution in 3.5 min. The relative standard deviations for the migration time of St and RA were 0.71% and 0.46%, respectively. This method was applied to the determination of steviol extract, and the content of St in this sample was 5.36%.%本文采用100%二甲基甲酰胺(DMF)作为样品的溶剂,以Tris-硼砂作为分离甜菊糖苷的缓冲体系,探讨了进样量、柱温、电压、Tris-硼砂缓冲液浓度以及pH值等条件对甜菊糖苷分离结果的影响。通过优化各种分离条件,实现了毛细管电泳高效分离测定甜菊糖苷。

  7. Capillary electrophoresis-chemiluminescence determination of norfloxacin and prulifloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhongju; Wang Xiaoli [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Qin Weidong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)], E-mail: qinwd@bnu.edu.cn; Zhao Huichun [College of Chemistry, Beijing Normal University, Beijing 100875 (China)], E-mail: zhaohuichun@bnu.edu.cn

    2008-08-15

    A capillary electrophoresis (CE)-chemiluminescence (CL) method for determining norfloxacin (NFLX) and prulifloxacin (PFLX) was developed based on the enhanced CL intensity of the cerium(IV)-sulfite-fluoroquinolone (FQ) reaction sensitized by terbium(III). The separation was conducted in buffer composed of 20 mM sodium citrate, 4 mM citric acid and 10 mM sodium sulfite at pH 6.1. The CL reagent solution consisted of 2 mM cerium(IV), 4 mM terbium(III) and 1.1 mM hydrochloric acid. NFLX and PFLX were baseline separated within 11 min with detection limits (S/N = 3) of 0.057 and 0.084 {mu}g mL{sup -1}, respectively. The maximum intra- and inter-day relative standard deviations (R.S.D.s) of migration time of the analytes were less than 4.0% and 4.2%, respectively. The proposed method was applied to detect NFLX and PFLX in fortified urine sample and the results were comparable to high-performance liquid chromatography (HPLC)-UV method. Moreover, the high selectivity of the CL detection and the high-separation efficiency of CE render the method the potential of quick analyzing fluoroquinolones in real complex matrix.

  8. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Heidi Adler

    2014-01-01

    Full Text Available The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10, oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3.

  9. Applicability of chemically modified capillaries in chiral capillary electrophoresis for methamphetamine profiling.

    Science.gov (United States)

    Iwata, Yuko T; Mikuma, Toshiyasu; Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2013-03-10

    We examined the applicability of chemically modified capillaries on the chiral capillary electrophoresis of essential compounds for methamphetamine (MA) profiling (MA, amphetamine, ephedrine, pseudoephedrine, norephedrine, and norpseudoephedrine) using highly sulfated γ-cyclodextrin as a chiral selector. Four types of chemically modified capillaries, namely, FunCap-CE/Type D (possessing diol groups), Type A (amino groups), Type C (carboxyl groups), and Type S (sulfate groups), were evaluated. Repeatability, speed, and good chiral resolution sufficient for routine MA profiling were achieved with the Type S capillary.

  10. Disposable pen-shaped capillary gel electrophoresis cartridge for fluorescence detection of bio-molecules

    Science.gov (United States)

    Amirkhanian, Varoujan; Tsai, Shou-Kuan

    2014-03-01

    We introduce a novel and cost-effective capillary gel electrophoresis (CGE) system utilizing disposable pen-shaped gelcartridges for highly efficient, high speed, high throughput fluorescence detection of bio-molecules. The CGE system has been integrated with dual excitation and emission optical-fibers with micro-ball end design for fluorescence detection of bio-molecules separated and detected in a disposable pen-shaped capillary gel electrophoresis cartridge. The high-performance capillary gel electrophoresis (CGE) analyzer has been optimized for glycoprotein analysis type applications. Using commercially available labeling agent such as ANTS (8-aminonapthalene-1,3,6- trisulfonate) as an indicator, the capillary gel electrophoresis-based glycan analyzer provides high detection sensitivity and high resolving power in 2-5 minutes of separations. The system can hold total of 96 samples, which can be automatically analyzed within 4-5 hours. This affordable fiber optic based fluorescence detection system provides fast run times (4 minutes vs. 20 minutes with other CE systems), provides improved peak resolution, good linear dynamic range and reproducible migration times, that can be used in laboratories for high speed glycan (N-glycan) profiling applications. The CGE-based glycan analyzer will significantly increase the pace at which glycoprotein research is performed in the labs, saving hours of preparation time and assuring accurate, consistent and economical results.

  11. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    Science.gov (United States)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  12. The study of polyoxometalates formation using capillary zone electrophoresis.

    Science.gov (United States)

    Zdanov, Artem A; Shuvaeva, Olga V

    2014-09-01

    The formation process of polyoxometalates [PMo12 O40 ](3-) and [PMo12 - x Vx O40 ](-3-x) has been studied in aqueous solutions of 0.1 M malonate buffer at pH 2.8-3.0 using CZE. Two different approaches, pre-capillary and in-capillary, were examined and compared. In precapillary mode, the reaction mixture of the reactants and reaction products was injected into the capillary followed by the separation procedure. In in-capillary mode, the sequential input of the reagents and running electrolyte into the capillary and the species separation occurs simultaneously. The optimal parameters of in-capillary separation were established as functions of applied voltage and the length of the intermediate buffer zone between the reagents in the capillary. As a result the best-compromise conditions for the separation of the mixtures containing the reactants, intermediates, and reaction products, in order to achieve the best efficiency, symmetry, and peak areas, were achieved at -18 kV and the input parameter of 900 mbar·s. It was also shown that in-capillary mode is more informative than pre-capillary mode for studying the complex compound formation process.

  13. Quantitative, small-scale, fluorophore-assisted carbohydrate electrophoresis implemented on a capillary electrophoresis-based DNA sequence analyzer.

    Science.gov (United States)

    Murray, Sarah; McKenzie, Marian; Butler, Ruth; Baldwin, Samantha; Sutton, Kevin; Batey, Ian; Timmerman-Vaughan, Gail M

    2011-06-15

    Fluorophore-assisted carbohydrate electrophoresis (FACE) is an analytical method for characterizing carbohydrate chain length that has been applied to neutral, charged, and N-linked oligosaccharides and that has been implemented using diverse separation platforms, including polyacrylamide gel electrophoresis and capillary electrophoresis. In this article, we describe three substantial improvements to FACE: (i) reducing the amount of starch and APTS required in labeling reactions and systematically analyzing the effect of altering the starch and 8-amino-1,3,6-pyrenetrisulfonic acid (APTS) concentrations on the reproducibility of the FACE peak area distributions; (ii) implementing FACE on a multiple capillary DNA sequencer (an ABI 3130xl), enabling higher throughput than is possible on other separation platforms; and (iii) developing a protocol for producing quantitative output of peak heights and areas using genetic marker analysis software. The results of a designed experiment to determine the effect of decreasing both the starch and fluorophore concentrations on the sensitivity and reproducibility of FACE electrophoregrams are presented. Analysis of the peak area distributions of the FACE electrophoregrams identified the labeling reaction conditions that resulted in the smallest variances in the peak area distributions while retaining strong fluorescence signals from the capillary-based DNA sequencer.

  14. A prototypic system of parallel electrophoresis in multiple capillaries coupled with microwell arrays.

    Science.gov (United States)

    Su, Jing; Ren, Kangning; Dai, Wen; Zhao, Yihua; Zhou, Jianhua; Wu, Hongkai

    2011-11-01

    We present a microfluidic system that can be directly coupled with microwell array and perform parallel electrophoresis in multiple capillaries simultaneously. The system is based on an array of glass capillaries, fixed in a polydimethylsiloxane (PDMS) microfluidic scaffold, with one end open for interfacing with microwells. In this capillary array, every two adjacent capillaries act as a pair to be coupled with one microwell; samples in the microwells are introduced and separated by simply applying voltage between two electrodes that are placed at the other ends of capillaries; thus no complicated circuit design is required. We evaluate the performance of this system and perform multiple CE with direct sample introduction from microwell array. Also with this system, we demonstrate the analysis of cellular contents of cells lysed in a microwell array. Our results show that this prototypic system is a promising platform for high-throughput analysis of samples in microwell arrays.

  15. Enantioseparation of citalopram analogues with sulfated β-cyclodextrin by capillary electrophoresis.

    Science.gov (United States)

    Wang, Yadi; Zhang, Shusheng; Breitbach, Zachary S; Petersen, Hans; Ellegaard, Peter; Armstrong, Daniel W

    2016-03-01

    Capillary electrophoresis methods were developed for the enantiomeric separation of 27 citalopram analogues. Sulfated β-cyclodextrin was the most broadly selective and useful chiral selector. The separations of most of the citalopram analogue compounds reported in this work have not been reported previously. Excellent enantiomeric separations were obtained for 26 out of 27 compounds, and most of the separations were achieved within 10 min. The effects of chemical parameters such as chiral selector types, buffer types, chiral selector and buffer concentrations, buffer pH and organic modifiers on the separation were investigated. The influence of analyte structure on separation also was examined and discussed.

  16. Direct Separation and Determination of Synthetic Pigments in Jelly by Capillary Electrophoresis%毛细管电泳法直接分离测定果冻中的色素

    Institute of Scientific and Technical Information of China (English)

    杜建中; 谢薇薇; 蔡泉林; 金蓓

    2012-01-01

    建立毛细管电泳法直接测定果冻中亮蓝、胭脂红、柠檬黄的方法,研究缓冲溶液种类、浓度、pH值、电压等对分离的影响,并对分离条件进行优化。在波长255nm、分离电压18kV、pH8.5、5mmol/LNa2nP04-5mmol/LNa28407溶液中,亮蓝、胭脂红、柠檬黄在6min内得到了较好的分离。用于部分市售果冻样品的测定,得到较满意结果,回收率为85%-110%。%A method was developed for the direct determination of brilliant blue, ponceau 4R and tartrazine in jelly by capillary electrophoresis. The effects of several factors, such as pH value, type and concentration of running buffer, separation voltage on the separation of the synthetic pigments were investigated to f'md optimum conditions. The best separation among brilliant blue, ponceau 4R and tartrazine was achieved within 6 rain under the following conditions: a mixture of 5 mmol/L Na2HPO4 and 5 mmol/L Na2B407 (pH: 8.5) as running buffer, separation voltage 18 kV, and detection wavelength 255 nm. The method has been used to determine some commercial jellies with satisfying results and recovery rates between 85% and 110%.

  17. Determination of aggregation thresholds of UV absorbing anionic surfactants by frontal analysis continuous capillary electrophoresis.

    Science.gov (United States)

    Le Saux, Thomas; Varenne, Anne; Gareil, Pierre

    2004-06-01

    Aggregation of anionic surfactants was investigated by frontal analysis continuous capillary electrophoresis (FACCE), a method involving the continuous electrokinetic introduction of the surfactant sample into the separation capillary. This process results in a partial separation of the monomeric and aggregated forms without perturbing the monomer-aggregate equilibrium. The critical micelle concentration (CMC) can then be easily derived from the height of the firstly detected migration front, corresponding to the monomeric form. This approach is exemplified with octyl and dodecylbenzenesulfonates and compared with conductimetry and surface tension measurements. FACCE turns out to be an effective method for the determination of CMC and intermediate aggregation phenomena with very small sample and short time requirements.

  18. Comparison of three modifications of fused-silica capillaries and untreated capillaries for protein profiling of maize extracts by capillary electrophoresis.

    Science.gov (United States)

    Pobozy, Ewa; Sentkowska, Aleksandra; Piskor, Anna

    2014-09-01

    In this work, capillary electrophoresis was applied to protein profiling of fractionated extracts of maize. A comparative study on the application of uncoated fused-silica capillaries and capillaries modified with hydroxypropylmethylcellulose, ω-iodoalkylammonium salt and a commercially available neutral capillary covalently coated with polyacrylamide is presented. The coating stability, background electrolyte composition, and separation efficiency were investigated. It was found that for zeins separation, the most stable and efficient was the capillary coated with polyacrylamide. Finally, the usefulness of these methods was studied for the differentiation of zein fraction in transgenic and nontransgenic maize. Zeins extracted from maize standards containing 0 and 5% m/m genetic modification were successfully separated, but slight differences were observed in terms of the zein content. Albumin and globulin fractions were analyzed with the use of unmodified fused-silica capillary with borate buffer pH 9 and the capillary coated with polyacrylamide with phosphate buffer pH 3. In the albumin fraction, additional peaks were found in genetically modified samples.

  19. A High Voltage Power Supply That Mitigates Current Reversals in Capillary Zone Electrophoresis-Electrospray Mass Spectrometry

    Science.gov (United States)

    Flaherty, Ryan J.; Sarver, Scott A.; Sun, Liangliang; Brownell, Greg A.; Go, David B.; Dovichi, Norman J.

    2017-02-01

    Capillary electrophoresis coupled with electrospray ionization typically employs two power supplies, one at each end of the capillary. One power supply is located at the proximal (injection) end of the capillary. The power supply located at the distal (detector) end of the capillary drives the electrospray. Electrophoresis is driven by the difference in potential between these power supplies. Separations that employ large capillary inner diameter, high conductivity background electrolyte, and high separation potentials generate higher current than that produced by the electrospray. Excess current flows through the electrospray power supply. Most power supplies are not designed to sink current, and the excess current will cause the electrospray voltage to deviate from its set point. We report a simple circuit to handle this excess current, allowing separations under a wide range of electrophoretic conditions.

  20. Recent advances in the analysis of therapeutic proteins by capillary and microchip electrophoresis.

    Science.gov (United States)

    Creamer, Jessica S; Oborny, Nathan J; Lunte, Susan M

    2014-07-01

    The development of therapeutic proteins and peptides is an expensive and time-intensive process. Biologics, which have become a multi-billion dollar industry, are chemically complex products that require constant observation during each stage of development and production. Post-translational modifications along with chemical and physical degradation from oxidation, deamidation, and aggregation, lead to high levels of heterogeneity that affect drug quality and efficacy. The various separation modes of capillary electrophoresis (CE) are commonly utilized to perform quality control and assess protein heterogeneity. This review attempts to highlight the most recent developments and applications of CE separation techniques for the characterization of protein and peptide therapeutics by focusing on papers accepted for publication in the in the two-year period between January 2012 and December 2013. The separation principles and technological advances of CE, capillary gel electrophoresis, capillary isoelectric focusing, capillary electrochromatography and CE-mass spectrometry are discussed, along with exciting new applications of these techniques to relevant pharmaceutical issues. Also included is a small selection of papers on microchip electrophoresis to show the direction this field is moving with regards to the development of inexpensive and portable analysis systems for on-site, high-throughput analysis.

  1. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  2. Electrochemical methods in conjunction with capillary and microchip electrophoresis.

    Science.gov (United States)

    Mark, Jonas J P; Scholz, Rebekka; Matysik, Frank-Michael

    2012-12-01

    Electromigrative techniques such as capillary and microchip electrophoresis (CE and MCE) are inherently associated with various electrochemical phenomena. The electrolytic processes occurring in the buffer reservoirs have to be considered for a proper design of miniaturized electrophoretic systems and a suitable selection of buffer composition. In addition, the control of the electroosmotic flow plays a crucial role for the optimization of CE/MCE separations. Electroanalytical methods have significant importance in the field of detection in conjunction with CE/MCE. At present, amperometric detection and contactless conductivity detection are the predominating electrochemical detection methods for CE/MCE. This paper reviews the most recent trends in the field of electrochemical detection coupled to CE/MCE. The emphasis is on methodical developments and new applications that have been published over the past five years. A rather new way for the implementation of electrochemical methods into CE systems is the concept of electrochemically assisted injection which involves the electrochemical conversions of analytes during the injection step. This approach is particularly attractive in hyphenation to mass spectrometry (MS) as it widens the range of CE-MS applications. An overview of recent developments of electrochemically assisted injection coupled to CE is presented.

  3. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis.

    Science.gov (United States)

    Bao, Yuanwu; Zhu, Libin; Newburg, David S

    2007-11-15

    The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange high-performance liquid chromatography (HPLC), reverse- or normal-phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have been analyzed by high pH anion exchange chromatography with pulsed amperometric detection and, in our laboratory, by CE with detection at 205nm. The novel method described here uses a running buffer of aqueous 200mM NaH2PO4 (pH 7.05) containing 100mM sodium dodecyl sulfate (SDS) mixed with 45% (v/v) methanol to baseline resolve 5 oligosaccharides and separate all 12. This allows automated simultaneous quantification of the 12 major sialyloligosaccharides of human milk in a single 35-min run. This method revealed differences in sialyloligosaccharide concentrations between less and more mature milk from the same donors. Individual donors also varied in expression of sialyloligosaccharides in their milk. Thus, the facile quantification of sialyloligosaccharides by this method is suitable for measuring variation in expression of specific sialyloligosaccharides in milk and their relationship to decreased risk of specific diseases in infants.

  4. Toward high-throughput monitoring of metallodrug-protein interaction using capillary electrophoresis in chemically modified capillaries.

    Science.gov (United States)

    Shmykov, Alexei Y; Filippov, Vladimir N; Foteeva, Lidia S; Keppler, Bernhard K; Timerbaev, Andrei R

    2008-08-15

    The performance of capillary electrophoresis (CE) operating with a sulfonated capillary for the separation of protein adducts of anticancer ruthenium(III)-based drugs was evaluated. The coated capillary was shown to yield improved resolution of albumin- and transferrin-bound species of ruthenium compared with that attained with the bare fused-silica capillary. The coating also showed an increased reproducibility of migration times and peak areas and allowed reasonably high efficiency separation of analytes (up to 1300 theoretical plates per meter), which display high affinity toward a fused-silica surface. In addition, due to rather high electroosmotic flow (EOF, > 45 x 10(-5)cm(2)V(-1)s(-1)) in the coated capillary, it enabled fast counter-EOF monitoring of albumin and transferrin adducts. This benefit, together with requiring only a short flush with the background electrolyte to have migration times reproducible (at capillary holding promise for CE examination of fast reactions such as those accompanying protein-drug interactions and biotransformations associated with drug delivery via protein binding.

  5. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  6. Application of plasma-polymerized films for isoelectric focusing of proteins in a capillary electrophoresis chip.

    Science.gov (United States)

    Tsai, Shuo-Wen; Loughran, Michael; Hiratsuka, Atsunori; Yano, Kazuyoshi; Karube, Isao

    2003-03-01

    The first use of plasma polymerization technique to modify the surface of a glass chip for capillary isoelectric focusing (cIEF) of different proteins is reported. The electrophoresis separation channel was machined in Tempax glass chips with length 70 mm, 300 microm width and 100 microm depth. Acetonitrile and hexamethyldisiloxane monomers were used for plasma polymerization. In each case 100 nm plasma polymer films were coated onto the chip surface to reduce protein wall adsorption and minimize the electroosmotic flow. Applied voltages of 1000 V, 2000 V and 3000 V were used to separate mixtures of cytochrome c (pI 9.6), hemoglobin (pI 7.0) and phycocyanin (pI 4.65). Reproducible isoelectric focusing of each pI marker protein was observed in different coated capillaries at increasing concentration 2.22-5 microg microL(-1). Modification of the glass capillary with hydrophobic HMDS plasma polymerized films enabled rapid cIEF within 3 min. The separation efficiency of cytochrome c and phycocyanin in both acrylamide and HMDS coated capillaries corresponded to a plate number of 19600 which compares favourably with capillary electrophoresis of neurotransmitters with amperometric detection.

  7. Usage of Capillary Electrophoresis for screening common Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. For control of this inherited hemoglobin disorders need to accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid & more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias & hemoglobin variants Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as Gel electrophoresis, High performance liquid chromatography, Isoelectric focusing, Capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two complementary methods for hemoglobinopathies screening. We can analyze by the methods more hemoglobin disorders and decrease more laboratory errors. Moreover

  8. Potential of polyE-323 coated capillaries for capillary electrophoresis of lipids.

    Science.gov (United States)

    Martma, Kert; Lindenburg, Petrus W; Habicht, Kaia-Liisa; Vulla, Kaspar; Resik, Kristiin; Kuut, Gunnar; Shimmo, Ruth

    2013-11-22

    In this note the feasibility of a polyamine-based capillary coating, polyE-323, for capillary electrophoresis (CE) of lipids is explored. PolyE-323 has previously been demonstrated to be suitable to suppress analyte-wall interaction of proteins in CE. However, the full applicability range of polyE-323 has not been exploited yet and it might be useful in the analysis of hydrophobic analytes, such as lipids. In this study, the stability of polyE-323 when using highly organic background electrolytes (BGEs), which are needed to solubilize the lipid analytes, was studied. For this, we used three different lipid samples: sphingomyelin, cardiolipin and a lipid extract from a cell culture. The highly organic BGEs that were used in this study consisted of 94.5% of organic solvents and 5.5% of an aqueous buffer. First, the influence of pure acetonitrile, methanol, propylene carbonate, isopropanol and chloroform on the polyE-323 coating was investigated. Then BGEs were developed and tested, using sphingomyelin and cardiolipin as test analytes in CE-UV experiments. After establishing the best BGEs (in terms of analysis time and repeatability) by CE-UV, sphingomyelin was used as a test analyte to demonstrate that method was also suitable for CE with mass-spectrometry detection (CE-MS). The LOD of sphingomyelin was estimated to be 100 nM and its migration time repeatability was 1.3%. The CE-MS analysis was further applied on a lipid extract obtained from human glioblastoma cells, which resulted in the separation and detection of a multitude of putative lipids. The results of our feasibility study indicate that CE systems based on polyE-323 coated capillaries and highly organic BGEs are promising for fast electromigration-based analysis of lipids.

  9. Precise small volume sample handling for capillary electrophoresis.

    Science.gov (United States)

    Mozafari, Mona; Nachbar, Markus; Deeb, Sami El

    2015-09-03

    Capillary electrophoresis is one of the most important analytical techniques. Although the injected sample volume in capillary electrophoresis is only in the nanoliter range, most commercial CE-instruments need approximately 50 μL of the sample in the injection vial to perform the analysis. Hence, in order to fully profit from the low injection volumes, smaller vial volumes are required. Thus experiments were performed using silicone oil which has higher density than water (1.09 g/mL) to replace sample dead volume in the vial. The results were compared to those performed without using the silicone oil in the sample vial. As an example five standard proteins namely beta-lactoglobulin, BSA, HSA, Myoglobin and Ovalbumin, and one of the coagulation cascade involved proteins called vitonectin were investigated using capillary electrophoresis. Mobility ratios and peak areas were compared. However no significant changes were observed (RSDs% for mobility ratios and peak areas were better than 0.9% and 5.8% respectively). Afterwards an affinity capillary electrophoresis method was used to investigate the interactions of two proteins, namely HSA and vitronectin, with three ligands namely enoxaparin sodium, unfractionated heparin and pentosan polysulfate sodium (PPS). Mobility shift precision results showed that the employment of the filling has no noticeable effect on any of the protein-ligand interactions. Using a commercial PrinCE instrument and an autosampler the required sample volume is reduced down to 10 μL, and almost this complete volume can be subsequently injected during repeated experiments. This article is protected by copyright. All rights reserved.

  10. Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis

    OpenAIRE

    2007-01-01

    The acidic oligosaccharides of human milk are predominantly sialyloligosaccharides. Pathogens that bind sialic acid-containing glycans on their host mucosal surfaces may be inhibited by human milk sialyloligosaccharides, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides have been quantified by anion exchange HPLC, reverse or normal phase HPLC, and capillary electrophoresis (CE) of fluorescent derivatives; in milk, these oligosaccharides have be...

  11. Application of cyclodextrins in chiral capillary electrophoresis.

    Science.gov (United States)

    Rezanka, Pavel; Navrátilová, Klára; Rezanka, Michal; Král, Vladimír; Sýkora, David

    2014-10-01

    CE represents a very powerful separation tool in the area of chiral separations. CD-mediated chiral CE is a continuously flourishing technique within the frame of the electromigration methods. In this review, a brief overview of the synthetic procedures leading to modified CDs is provided first. Next, selected aspects related to the utilization of CDs in chiral CE are discussed specifically in the view of recently published data. Advantages of CDs and basic principles of chiral CE are remained. The topic of the determination of binding constants is touched. Particular attention is paid to the effort aiming at better understanding of the molecular level of the enantiorecognition between CDs and the analyte in the solution. Powerful approaches extensively utilized in this field are NMR, molecular modeling, and computer simulations. Then, a summary of applications of CDs in the CE enantioseparations is given, covering years 2008-2013. Finally, the general trend of modified CDs use in separation science is statistically evaluated.

  12. Separation and quantification of whey protein in south china buffalo milk by capillary electrophoresis%毛细管电泳法对南方水牛奶乳清蛋白的分离和定量分析

    Institute of Scientific and Technical Information of China (English)

    李昀锴; 李子超; 王丽娜; 徐明芳

    2011-01-01

    A capillary electrophoresis method for the separation and quantitative analysis of Buffalo whey protein was proposed. The four main proteins ( α-La, β-Lg, BSA, IgG. ) of buffalo milk were well separated by using 1.2% sodium borate running buffer. The relative standard deviations (RSD) of the method were Less than 1.5 % for migration time and 0. 5% for the peak area. The proposed method was applied to the determination of proteins in the whey protein of buffalo milk products and the recoveries were in t he range of 91% ~ 102%. This method is suitable for seperation and quantitative analysis of whey protein in milk products.%利用毛细管区带电泳对广东省水牛乳乳清蛋白成分进行了分离和定量分析研究.采用1.2%的十四水合硼酸钠电泳缓冲液,对水牛奶乳清蛋白的四种主要组分α-乳白蛋白(α-La)、β-乳球蛋白(β-Lg)、牛血清白蛋白(BSA)、免疫球蛋白(IgG)进行了很好的分离,其迁移时间和峰面积的RSD分别小于1.5%和0.5%,加标回收率范围91%~102%.建立了基于毛细管区带电泳的分析方法,对牛乳及其乳制品中的乳清蛋白进行了快速分离和定量分析.

  13. Nonaqueous capillary electrophoresis of dextromethorphan and its metabolites.

    Science.gov (United States)

    Pelcová, Marta; Langmajerová, Monika; Cvingráfová, Eliška; Juřica, Jan; Glatz, Zdeněk

    2014-10-01

    This study deals with the nonaqueous capillary electrophoretic separation of dextromethorphan and its metabolites using a methanolic background electrolyte. The optimization of separation conditions was performed in terms of the resolution of dextromethorphan and dextrorphan and the effect of separation temperature, voltage, and the characteristics of the background electrolyte were studied. Complete separation of all analytes was achieved in 40 mM ammonium acetate dissolved in methanol. Hydrodynamic injection was performed at 3 kPa for 4 s. The separation voltage was 20 kV accompanied by a low electric current. The ultraviolet detection was performed at 214 nm, the temperature of the capillary was 25°C. These conditions enabled the separation of four analytes plus the internal standard within 9 min. Further, the developed method was validated in terms of linearity, sensitivity, and repeatability. Rat liver perfusate samples were subjected to the nonaqueous capillary electrophoretic method to illustrate its applicability.

  14. Quantification of Carbohydrates in Grape Tissues Using Capillary Zone Electrophoresis.

    Science.gov (United States)

    Zhao, Lu; Chanon, Ann M; Chattopadhyay, Nabanita; Dami, Imed E; Blakeslee, Joshua J

    2016-01-01

    Soluble sugars play an important role in freezing tolerance in both herbaceous and woody plants, functioning in both the reduction of freezing-induced dehydration and the cryoprotection of cellular constituents. The quantification of soluble sugars in plant tissues is, therefore, essential in understanding freezing tolerance. While a number of analytical techniques and methods have been used to quantify sugars, most of these are expensive and time-consuming due to complex sample preparation procedures which require the derivatization of the carbohydrates being analyzed. Analysis of soluble sugars using capillary zone electrophoresis (CZE) under alkaline conditions with direct UV detection has previously been used to quantify simple sugars in fruit juices. However, it was unclear whether CZE-based methods could be successfully used to quantify the broader range of sugars present in complex plant extracts. Here, we present the development of an optimized CZE method capable of separating and quantifying mono-, di-, and tri-saccharides isolated from plant tissues. This optimized CZE method employs a column electrolyte buffer containing 130 mM NaOH, pH 13.0, creating a current of 185 μA when a separation voltage of 10 kV is employed. The optimized CZE method provides limits-of-detection (an average of 1.5 ng/μL) for individual carbohydrates comparable or superior to those obtained using gas chromatography-mass spectrometry, and allows resolution of non-structural sugars and cell wall components (structural sugars). The optimized CZE method was successfully used to quantify sugars from grape leaves and buds, and is a robust tool for the quantification of plant sugars found in vegetative and woody tissues. The increased analytical efficiency of this CZE method makes it ideal for use in high-throughput metabolomics studies designed to quantify plant sugars.

  15. New electrolyte systems for capillary zone electrophoresis of metal cations and non-ionic organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Y.

    1995-06-19

    Excellent separations of metal ions can be obtained very quickly by capillary electrophoresis provided a weak complexing reagent is incorporated into the electrolyte to alter the effective mobilities of the sample ions. Indirect photometric detection is possible by also adding a UV-sensitive ion to the electrolyte. Separations are described using phthalate, tartrate, lactate or hydroxyisobutyrate as the complexing reagent. A separation of twenty-seven metal ions was achieved in only 6 min using a lactate system. A mechanism for the separation of lanthanides is proposed for the hydroxyisobutyrate system.

  16. Analysis of recombinant human growth hormone by capillary electrophoresis with bilayer-coated capillaries using UV and MS detection.

    Science.gov (United States)

    Catai, Jonatan R; Sastre Toraño, Javier; Jongen, Peter M J M; de Jong, Gerhardus J; Somsen, Govert W

    2007-06-01

    The characterization of recombinant human growth hormone (rhGH; somatropin) by capillary electrophoresis (CE) with UV-absorbance and mass spectrometric (MS) detection using capillaries noncovalently coated with polybrene (PB) and poly(vinyl sulfonic acid) (PVS) is demonstrated. Compared with bare fused-silica capillaries, PB-PVS coated capillaries yielded more favorable migration-time reproducibilities and higher separation efficiencies. Optimal separation conditions for the bilayer-coated capillaries comprised a background electrolyte (BGE) of 400 mM Tris phosphate (pH 8.5) yielding migration-time R.S.D.s of less than 1.0% and plate numbers above 300,000 for intact rhGH. The protein was also analyzed using the CE method described in the European Pharmacopoeia (Ph. Eur.) monograph. The pharmacopoeial method gave much longer analysis times (22 min versus 8 min), lower resolution and plate numbers, and consecutive shifts in migration time for rhGH, indicating possible interactions between the protein and the inner capillary wall. Due to stable migration times obtained with the coated capillaries, reliable profiling and quantification of rhGH and its byproducts in time was possible. Analysis of thermally degraded rhGH revealed the formation of two main degradation products. CE-mass spectrometry (MS) of this sample, using a PB-PVS coated capillary and a BGE of 75 mM ammonium formate (pH 8.5), suggests that these products are desamido forms of rhGH. Analyses of expired rhGH preparations with CE-UV and CE-MS indicated the presence of both deamidation and oxidation products.

  17. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.

    Science.gov (United States)

    Xuan, Xiangchun; Li, Dongqing

    2005-02-04

    Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations.

  18. The multi-concentration and two-dimensional capillary electrophoresis method for the analysis of drugs in urine samples

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel method has been developed by integration of multi-concentration and two-dimensional(2D) capillary electrophoresis(CE) for simultaneous enhancement of detection sensitivity and separation power in complex samples.Capillary zone electrophoresis(CZE) was used as the first dimension separation according to mobilities,from which the effluent fractions were further analyzed by micellar electrokinetic capillary chromatography(MEKC) acting as the second dimension.Cation-selective exhaustive injection(CSEI) preconcentration method was used to introduce more analytes into the capillary.Furthermore,pH junction and sweeping dual concentration strategies were employed to avoid sample zone diffusion at the interface.The resulting electrophoregram was quite different from that of either CZE or MEKC separation.Up to(0.5-1.2) ×104 fold improvements in sensitivity were obtained relative to the conventional electrokinetic injection method.The proposed method was successfully applied to the determination of drugs in human urine.

  19. Determination of Amino Acids in Panax notoginseng by Microwave Hydrolysis and Derivatization Coupled with Capillary Zone Electrophoresis Detection

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-tian; ZHAO Ya-jing; JIANG Cheng-fei; ZHANG Han-qi; YU Ai-min

    2013-01-01

    The microwave hydrolysis and derivatization coupled with capillary electrophoresis detection were developed for the separation and determination of the amino acids in Panax notoginseng.The experimental conditions for the microwave hydrolysis and derivatization were examined and optimized.Several parameters of capillary electrophoresis,such as pH value of background electrolyte,borate concentration and applied voltage were optimized.Under the selected conditions,11 amino acids were completely separated.The real sample was analyzed and the results were satisfactory.Compared with that of conventional heat hydrolysis and derivatization,the analytical time of this method was significantly shortened.

  20. A universal concept for stacking neutral analytes in micellar capillary electrophoresis.

    Science.gov (United States)

    Palmer, J; Munro, N J; Landers, J P

    1999-05-01

    Unlike recent studies that have depended on manipulation of separation buffer parameters to facilitate stacking of neutral analytes in micellar capillary electrophoresis (MCE) mode, we have developed a method of stacking based simply on manipulation of the sample matrix. Many solutions for sample stacking in MCE are based on strict control of pH, micelle type, electroosmotic flow (EOF) rate, and separation-mode polarity. However, a universal solution to sample stacking in MCE should allow for free manipulation of separation buffer parameters without substantially affecting separation of analytes. Analogous to sample stacking in capillary zone electrophoresis by invoking field amplification of charged analytes in a low-conductivity sample matrix, the proposed method utilizes a high-conductivity sample matrix to transfer field amplification from the sample zone to the separation buffer. This causes the micellar carrier in the separation buffer to stack before it enters the sample zone. Neutral analytes moving out of the sample zone with EOF are efficiently concentrated at the micelle front. Micelle stacking is induced by simply adding salt to the sample matrix to increase the conductivity 2-3-fold higher than the separation buffer. This solution allows free optimization of separation buffer parameters such as micelle concentration, organic modifiers, and pH, providing a method that may complement virtually any existing MCE protocol without restricting the separation method.

  1. In-capillary detection of fast antibody-peptide binding using fluorescence coupled capillary electrophoresis.

    Science.gov (United States)

    Qin, Yuqin; Qiu, Lin; Qin, Haifang; Ding, Shumin; Liu, Li; Teng, Yiwan; Chen, Yao; Wang, Cheli; Li, Jinchen; Wang, Jianhao; Jiang, Pengju

    2016-01-01

    Herein, we report a technique for detecting the fast binding of antibody-peptide inside a capillary. Anti-HA was mixed and interacted with FAM-labeled HA tag (FAM-E4 ) inside the capillary. Fluorescence coupled capillary electrophoresis (CE-FL) was employed to measure and record the binding process. The efficiency of the antibody-peptide binding on in-capillary assays was found to be affected by the molar ratio. Furthermore, the stability of anti-HA-FAM-E4 complex was investigated as well. The results indicated that E4 YPYDVPDYA (E4) or TAMRA-E4 YPYDVPDYA (TAMRA-E4) had the same binding priorities with anti-HA. The addition of excess E4 or TAMRA-E4 could lead to partial dissociation of the complex and take a two-step mechanism including dissociation and association. This method can be applied to detect a wide range of biomolecular interactions.

  2. Preparation approaches of the coated capillaries with liposomes in capillary electrophoresis.

    Science.gov (United States)

    Mei, Jie; Tian, Yan-Ping; He, Wen; Xiao, Yu-Xiu; Wei, Juan; Feng, Yu-Qi

    2010-10-29

    The use of liposomes as coating materials in capillary electrophoresis has recently emerged as an important and popular research area. There are three preparation methods that are commonly used for coating capillaries with liposomes, namely physical adsorption, avidin-biotin binding and covalent coupling. Herein, the three different coating methods were compared, and the liposome-coated capillaries prepared by these methods were evaluated by studying systematically their EOF characterization and performance (repeatability, reproducibility and lifetime). The amount of immobilized phospholipids and the interactions between liposome or phospholipid membrane and neutral compounds for the liposome-coated capillaries prepared by these methods were also investigated in detail. Finally, the merits and disadvantages for each coating method were reviewed.

  3. 磺胺类人工合成甜味剂的毛细管电泳/电导法分离检测%Separation and Determination of Sulfanilamide Artificial Sweeteners in Beverages by Capillary Electrophoresis with Conductivity Detection

    Institute of Scientific and Technical Information of China (English)

    蒋奕修; 魏瑞霞; 杨桂珍; 罗晓东; 李秀英; 谢天尧

    2009-01-01

    A new method for the rapid separation and sensitive determination of sulfanilamide artificial sweeteners,including saccharin sodium,acesulfame potassium and sodium cyclamate,by capillary electrophoresis with conductivity detection was developed.The optimum conditions were as follows:running buffer:15 mmol/L Tris-10 mmol/L H3BO3-0.2 mmol/L EDTA,electrocsmotic flow(EOF) inhibitor:0.2% tetraethylenepentamine,separation voltage:-15 kV,electrokinetic injection:-10 kV×10 s.Three analytes could be well separated within 11 min in a fused-silica capillary under the optimal conditions.The linear response ranges were 0.8-120,1.1-120,1.5-120 μmol/L with the LODs of 0.3,0.4,0.6 μmol/L for saccharin sodium,acesulfame potassium and sodium cyclamate,respectively.The relative standard deviations for the intra- and inter- day precisions were below 4.0%.Effects of the component of the running buffer and its concentration,and the injection mode on the sensitivity and separation for the method were discussed in detail.The established method was used to determine the analytes contents in different commercial beverages with satisfactory results.%采用15 mmol/L Tris-10 mmol/L H3BO3-0.2 mmol/L EDTA为电泳运行液,0.2%四乙烯五胺为电渗流抑制剂,融硅石英毛细管(45 cm×50 μm),负高压分离(-15 kV),柱端接触式电导检测,建立了磺胺类人工合成甜味剂(糖精钠、安赛蜜、甜蜜素)的高效毛细管电泳/电导法分离检测方法.糖精钠、安赛蜜、甜蜜素的线性检测范围分别为0.8 ~120、1.1 ~120、1.5 ~120 μmol/L,检出限分别为0.3、0.4、0.6 μmol/L.详细讨论了电泳运行液的组成、浓度以及进样方式对灵敏度和分离度的影响.该法用于市售饮料中3种甜味剂的分离检测,结果满意.

  4. Single-strand conformation polymorphism analysis using capillary array electrophoresis for large-scale mutation detection.

    Science.gov (United States)

    Larsen, Lars Allan; Jespersgaard, Cathrine; Andersen, Paal Skytt

    2007-01-01

    This protocol describes capillary array electrophoresis single-strand conformation polymorphism (CAE-SSCP), a screening method for detection of unknown and previously identified mutations. The method detects 98% of mutations in a sample material and can be applied to any organism where the goal is to determine genetic variation. This protocol describes how to screen for mutations in 192 singleplex or up to 768 multiplex samples over 3 days. The protocol is based on the principle of sequence-specific mobility of single-stranded DNA in a native polymer, and covers all stages in the procedure, from initial DNA purification to final CAE-SSCP data analysis, as follows: DNA is purified, followed by PCR amplification using fluorescent primers. After PCR amplification, double-stranded DNA is heat-denatured to separate the strands and subsequently cooled on ice to avoid reannealing. Finally, samples are analyzed by capillary electrophoresis and appropriate analysis software.

  5. A New Immunoassay Method by Capillary Electrophoresis with Enhanced Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    Jiao Ning WANG; Ji Cun REN

    2005-01-01

    This paper described a new immunoassay method by capillary electrophoresis with enhanced chemiluminescence (CL) detection system based on luminol-hydrogen peroxide reaction catalyzed by horseradish peroxides (HRP). Using para-iodophenol as a CL enhancer, the detection limit of about 1×10-12 mol/L for HRP was achieved, which corresponded to 1.32×10-5U/mL. In optimal conditions, the free HRP-labeled CA125 antibody (Ab*) and the bound enzyme-labeled complex (Ab*-Ag) were well separated by capillary electrophoresis within 4 min.The assay was successfully used to determine the contents of CA125 in human sera, which were associated with ovarian cancer, and the recoveries of the standard addition experiments were 96 to109 %.

  6. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Science.gov (United States)

    Fiore, Emmanuelle; Dausse, Eric; Dubouchaud, Hervé; Peyrin, Eric; Ravelet, Corinne

    2015-08-01

    Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR) amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization) of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s) was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  7. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Montealegre, Cristina; Kiessig, Steffen; Moritz, Bernd; Neusüß, Christian

    2016-12-23

    Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE-MS method for the analysis of mAbs is presented analyzing SDS-complexed samples. To obtain narrow and intensive peaks of SDS-treated antibodies, an in-capillary strategy was developed based on the co-injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in-capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS-containing matrices, including the sieving matrix used in a standard CE-SDS method and gel-buffers applied in SDS-PAGE methods. The developed CE-MS approaches enable fast and reproducible characterization of SDS-complexed antibodies.

  8. Development of a capillary electrophoresis-mass spectrometry method using polymer capillaries for metabolomic analysis of yeast.

    Science.gov (United States)

    Tanaka, Yoshihide; Higashi, Tetsuji; Rakwal, Randeep; Wakida, Shin-ichi; Iwahashi, Hitoshi

    2008-05-01

    Metabolomics is an emerging field in analytical biochemistry, and the development of such a method for comprehensive and quantitative analysis of organic acids, carbohydrates, and nucleotides is a necessity in the era of functional genomics. When a concentrated yeast extract was analyzed by CE-MS using a successive multiple ionic-polymer layer (SMIL)-coated capillary, the adsorption of the contaminants on the capillary wall caused severe problems such as no elution, band-broadening, and asymmetric peaks. Therefore, an analytical method for the analysis of anionic metabolites in yeast was developed by pressure-assisted CE using an inert polymer capillary made from poly(ether etherketone) (PEEK) and PTFE. We preferred to use the PEEK over the PTFE capillary in CE-MS due to the easy-to-use PEEK capillary and its high durability. The separation of anionic metabolites was successfully achieved with ammonium hydrogencarbonate/formate buffer (pH 6.0) as the electrolyte solution. The use of 2-propanol washing after every electrophoresis run not only eliminated wall-adsorption phenomena, but allowed for good repeatability to be obtained for migration times in the metabolomic analysis.

  9. 生物碱样品中有效成分的CZE法分离与测定%Separation and Determination of Effective Compounds in Alkaloidal Samples by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    高苏亚; 王黎; 王树春; 李华

    2013-01-01

    建立了一种简单的同时分离测定生物碱样品中咖啡因、可可碱和茶碱3种有效成分的区带毛细管电泳法.采用未涂层石英毛细管(75 μm i.d.×60 cm,有效长度50 cm),以20 mmol·L-1硼砂-4 mmol·L-1β-CD (pH 9.0)为运行缓冲液,压力(0.5 psi)进样5 s,运行电压16 kV,检测波长273 nm,温度25℃.在优化的实验条件下,3种生物碱的电泳谱图峰面积与其质量浓度在0.036~0.288 g·L-1呈良好线性关系(r≥0.9984);方法的精密度、重复性和稳定性良好,其峰面积的RSD均不大于3.2%,其检出限均不大于2.7mg·L-1;加标回收率为97%~ 104%.该方法简单、快速、试剂消耗少,可用于生物碱样品中咖啡因、可可碱和茶碱的分离与测定.%A capillary zone electrophoresis(CZE) method was established for the separation and determination of three effective compounds such as caffeine, theobromine and theophylline in alkaloidal samples. The sample was separated on an uncoated silica capillary (75 μm i. d.×60 cm, effective length; 50 cm) using pH 9. 0 20 mmol . L-1 borate containing 4 mmol . L-1 beta-cyclodextrin (β-CD) as running buffer. The pressure of injection was set at 0. 5 psi and the time was set 5 s. The detection wavelength was 273 run. A voltage of 16 kV was applied at 25 ℃. Under the optimal conditions, good linear relationships were observed between peak areas and alkaloidal concentrations in the range of 0. 036 -0. 288 g . L-1, with correlation coefficients not less than 0. 998 4. The RSDs of the peak area were not more than 3. 2% . The limits of detection ( LODs) were not more than 2. 7 mg . L-1. The average recoveries were in the range of 97% - 104% . This method is simple, quick and less reagent-consuming, and is suitable for the separation and determination of the three alkaloids in real samples.

  10. Subtracting Technique of Baselines for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; MO Jin-yuan; CHEN Zuan-guang; GAO Yan

    2004-01-01

    The drifting baselines of capillary electrophoresis affect the veracity of analysis greatly. This paper presents Threshold Fitting Technique(TFT) so as to subtract the baselines from the original signals and emendate the signals. In TFT, wav elet and curve fitting technique are applied synthetically, thresholds are decided by the computer automatically. Many experiments of signal processing indicate that TFT is simple for being used, there are few man-induced factors, and the results are satisfactory. TFT can be applied for noisy signals without any pre-processing.

  11. Capillary electrophoresis-electrochemical detection microchip device and supporting circuits

    Science.gov (United States)

    Jackson, Douglas J.; Roussel, Jr., Thomas J.; Crain, Mark M.; Baldwin, Richard P.; Keynton, Robert S.; Naber, John F.; Walsh, Kevin M.; Edelen, John. G.

    2008-03-18

    The present invention is a capillary electrophoresis device, comprising a substrate; a first channel in the substrate, and having a buffer arm and a detection arm; a second channel in the substrate intersecting the first channel, and having a sample arm and a waste arm; a buffer reservoir in fluid communication with the buffer arm; a waste reservoir in fluid communication with the waste arm; a sample reservoir in fluid communication with the sample arm; and a detection reservoir in fluid communication with the detection arm. The detection arm and the buffer arm are of substantially equal length.

  12. Challenges of glycoprotein analysis by microchip capillary gel electrophoresis.

    Science.gov (United States)

    Engel, Nicole; Weiss, Victor U; Wenz, Christian; Rüfer, Andreas; Kratzmeier, Martin; Glück, Susanne; Marchetti-Deschmann, Martina; Allmaier, Günter

    2015-08-01

    Glycosylations severely influence a protein's biological and physicochemical properties. Five exemplary proteins with varying glycan moieties were chosen to establish molecular weight (MW) determination (sizing), quantitation, and sensitivity of detection for microchip capillary gel electrophoresis (MCGE). Although sizing showed increasing deviations from literature values (SDS-PAGE or MALDI-MS) with a concomitant higher degree of analyte glycosylation, the reproducibility of MW determination and accuracy of quantitation with high sensitivity and reliability were demonstrated. Additionally, speed of analysis together with the low level of analyte consumption render MCGE attractive as an alternative to conventional SDS-PAGE.

  13. Capillary electrophoresis coupled with electrochemiluminescence for determination of cloperastine hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To investigate the electrochemiluminescence (ECL) behavior of cloperastine hydrochloride. Methods ECL intensity of tris (2,2′-bipyridyl) rutheniumo(Ⅱ) was enhanced, the method for the determination of cloperastine hydrochloride was established using capillary electrophoresis (CE) coupled with electrochemilumolinescence (ECL) detection. Results Under the optimum conditions, ECL intensity varied linearly with cloperastine hydrochloride concentration from 7.0×10-6g/mL to 1.0×10-4g/mL. The detection l...

  14. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    王瑛; 莫金垣

    2002-01-01

    Capillary electrophoresis(CE) is a powerful analytical tool in chemistry,Thus,it is valuable to solve the denoising of CE signals.A new denoising method called MWDA which emplosy Mexican Hat wavelet is presented ,It is an efficient chemometrics technique and has been applied successfully in processing CE signals ,Useful information can be extractred even from signals of S/N=1 .After denoising,the peak positions are unchanged and the relative errors of peak height are less than 3%.

  15. STUDY OF CAPILLARY ELECTROPHORESIS ON MICROCHIP BASED ON MEMS

    Institute of Scientific and Technical Information of China (English)

    WangMing; LiWei; 等

    2002-01-01

    Using a standard photolithographical procedure,chenmical wet etching and thermal diffusion bonding technology,a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry.The channels on the microchip substrate are about 50um deep and 150um wide.By employing amino acids derived from 2,4-DiNitroFluoroBenzen(DNFB) on CE chip channels,the sample manipulating system is studied based on the principle of electrodynamics.

  16. STUDY OF CAPILLARY ELECTROPHORESIS ON MICROCHIP BASED ON MEMS

    Institute of Scientific and Technical Information of China (English)

    Wang Ming; Li Wei; Han Jinghong; Cui Dafu

    2002-01-01

    Using a standard photolithographical procedure, chemical wet etching and thermal diffusion bonding technology, a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry. The channels on the microchip substrate are about 50μm deep and 150μm wide. By employing amino acids derived from 2,4-DiNitroFluoroBenzen (DNFB) on CE chip channels, the sample manipulating system is studied based on the principle of electrodynamics.

  17. Quality by design in the chiral separation strategy for the determination of enantiomeric impurities: development of a capillary electrophoresis method based on dual cyclodextrin systems for the analysis of levosulpiride.

    Science.gov (United States)

    Orlandini, S; Pasquini, B; Del Bubba, M; Pinzauti, S; Furlanetto, S

    2015-02-06

    Quality by design (QbD) concepts, in accordance with International Conference on Harmonisation Pharmaceutical Development guideline Q8(R2), represent an innovative strategy for the development of analytical methods. In this paper QbD principles have been comprehensively applied in the set-up of a capillary electrophoresis method aimed to quantify enantiomeric impurities. The test compound was the chiral drug substance levosulpiride (S-SUL) and the developed method was intended to be used for routine analysis of the pharmaceutical product. The target of analytical QbD approach is to establish a design space (DS) of critical process parameters (CPPs) where the critical quality attributes (CQAs) of the method have been assured to fulfil the desired requirements with a selected probability. QbD can improve the understanding of the enantioseparation process, including both the electrophoretic behavior of enantiomers and their separation, therefore enabling its control. The CQAs were represented by enantioresolution and analysis time. The scouting phase made it possible to select a separation system made by sulfated-β-cyclodextrin and a neutral cyclodextrin, operating in reverse polarity mode. The type of neutral cyclodextrin was included among other CPPs, both instrumental and related to background electrolyte composition, which were evaluated in a screening phase by an asymmetric screening matrix. Response surface methodology was carried out by a Doehlert design and allowed the contour plots to be drawn, highlighting significant interactions between some of the CPPs. DS was defined by applying Monte-Carlo simulations, and corresponded to the following intervals: sulfated-β-cyclodextrin concentration, 9-12 mM; methyl-β-cyclodextrin concentration, 29-38 mM; Britton-Robinson buffer pH, 3.24-3.50; voltage, 12-14 kV. Robustness of the method was examined by a Plackett-Burman matrix and the obtained results, together with system repeatability data, led to define a method

  18. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.; Townsley, C.

    1995-04-01

    DRE Suffield has initiated a research program to develop methods and equipment for field detection and laboratory identification of mid-spectrum agents, molecules of biological origin such as proteins, peptides and toxins. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defence interest: bradykinin, bradykinin fragment 1-5, substance P,ARG8-vasopressin, luteinizing hormone releasing hormone, bombesin, leucine enkephalin, methionine enkephalin, and oxytocin. Using a 50 micrometer x 47 cm capillary column, 22.5 kV separation voltage and a 100 mM pH 2.5 phosphate buffer, all nine peptide could separated in under 10 minutes. Three strategies, which could be used in a fully automated field detection and identification system, were demonstrated for the identification of unknown peptides: comparison of migration times, comparison of electrophoretic mobilities, and co-injection of multiple reference standards. These experiments demonstrate that a separation based analytical method such as capillary electrophoresis could form the basis of a generic detection system for mid-spectrum protein and peptide toxins.

  19. Very fast capillary electrophoresis with electrochemical detection for high-throughput analysis using short, vertically aligned capillaries.

    Science.gov (United States)

    Mark, Jonas Josef Peter; Piccinelli, Paolo; Matysik, Frank-Michael

    2014-09-01

    A method for conducting fast and efficient capillary electrophoresis (CE) based on short separation capillaries in vertical alignment was developed. The strategy enables for high-throughput analysis from small sample vials (low microliter to nanoliter range). The system consists of a lab-made miniaturized autosampling unit and an amperometric end-column detection (AD) cell. The device enables a throughput of up to 200 separations per hour. CE-AD separations of a dye model system in capillaries of only 4 to 7.5 cm length with inner diameters (ID) of 10 or 15 μm were carried out under conditions of very high electric field strengths (up to 3.0 kV/cm) with high separation efficiency (half peak widths below 0.2 s) in less than 3.5 s migration time. A non-aqueous background electrolyte, consisting of 10 mM ammonium acetate and 1 M acetic acid in acetonitrile, was used. The practical suitability of the system was evaluated by applying it to the determination of dyes in overhead projector pens.

  20. Simultaneous determination of phenylethanoid glycosides and aglycones by capillary zone electrophoresis with running buffer modifier.

    Science.gov (United States)

    Dong, Shuqing; Gao, Ruibin; Yang, Yan; Guo, Mei; Ni, Jingman; Zhao, Liang

    2014-03-15

    Although the separation efficiency of capillary electrophoresis (CE) is much higher than that of other chromatographic methods, it is sometimes difficult to adequately separate the complex ingredients in biological samples. This article describes how one effective and simple way to develop the separation efficiency in CE is to add some modifiers to the running buffer. The suitable running buffer modifier β-cyclodextrin (β-CD) was explored to fast and completely separate four phenylethanoid glycosides and aglycones (homovanillyl alcohol, hydroxytyrosol, 3,4-dimethoxycinnamic acid, and caffeic acid) in Lamiophlomis rotata (Lr) and Cistanche by capillary zone electrophoresis with ultraviolet (UV) detection. It was found that when β-CD was used as running buffer modifier, a baseline separation of the four analytes could be accomplished in less than 20 min and the detection limits were as low as 10(-3) mg L(-1). Other factors affecting the CE separation, such as working potential, pH value and ionic strength of running buffer, separation voltage, and sample injection time, were investigated extensively. Under the optimal conditions, a successful practical application on the determination of Lr and Cistanche samples confirmed the validity and practicability of this method.

  1. Studies of Active Ingredients in Cough Syrup by Capillary Zone Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tian-shu; WANG Ai-fang; WU Fang; SHI Guo-yue; FANG Yu-zhi

    2003-01-01

    The present paper covers a simple, reliable and reproducible method, based on capillary zone electrophoresis(CZE) with amperometric detection(AD), for the separation and the determination of ephedrine hydrochloride, promethazine hydrochloride and codeine phosphate. Under the optimal conditions, the three analytes were base-line separated completely within 16 min. Good linear relationships between the peak heights and the concentrations of the three analytes were obtained with the correlation coefficients better than 0.9993. The method was directly applied to the determination of the active ingredients in pharmaceutical preparations and the assay results were satisfactory.

  2. Recent developments in capillary and chip electrophoresis of bioparticles: Viruses, organelles, and cells.

    Science.gov (United States)

    Subirats, Xavier; Blaas, Dieter; Kenndler, Ernst

    2011-06-01

    In appropriate aqueous buffer solutions, biological particles usually exhibit a particular electric surface charge due to exposed charged or chargeable functional groups (amino acid residues, acidic carbohydrate moieties, etc.). Consequently, these bioparticles can migrate in solution under the influence of an electric field allowing separation according to their electrophoretic mobilities or their pI values. Based on these properties, electromigration methods are of eminent interest for the characterization, separation, and detection of such particles. The present review discusses the research papers published between 2008 and 2010 dealing with isoelectric focusing and zone electrophoresis of viruses, organelles and microorganisms (bacteria and yeast cells) in the capillary and the chip format.

  3. Charge Effect on the Quantum Dots-Peptide Self-Assembly Using Fluorescence Coupled Capillary Electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Teng, Yiwan; Bi, Yanhua; Hu, Wei; Li, Jinchen; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2016-04-01

    We present a molecular characterization of metal-affinity driven self-assembly between CdSe-ZnS quantum dots and a series of hexahistidine peptides with different charges. In particular, we uti- lized fluorescence coupled capillary electrophoresis to test the self-assembly process of quantum dots with peptides in solution. Four peptides with different charges can be efficiently separated by fluorescence coupled capillary electrophoresis. The migration time appeared to be influenced by the charges of the peptide. In addition, the kinetics of self-assembly process of quantum dots with one of the peptides manifested a bi-phasic kinetics followed by a saturating stage. This work revealed that there exist two types of binding sites on the surface of quantum dots for peptide 1: one type termed "high priority" binding site and a "low priority" site which is occupied after the first binding sites are fully occupied. The total self-assembly process finishes in solution within 80 s. Our work represents the systematic investigation of the details of self-assembly kinetics utilizing high-resolution fluorescence coupled capillary electrophoresis. The charge effect of peptide coating quantum dots provides a new way of preparing bioprobes.

  4. Characterization and Study of Transgenic Cultivars by Capillary and Microchip Electrophoresis

    Directory of Open Access Journals (Sweden)

    Elena Domínguez Vega

    2014-12-01

    Full Text Available Advances in biotechnology have increased the demand for suitable analytical techniques for the analysis of genetically modified organisms. Study of the substantial equivalence, discrimination between transgenic and non-transgenic cultivars, study of the unintended effects caused by a genetic modification or their response to diverse situations or stress conditions (e.g., environmental, climatic, infections are some of the concerns that need to be addressed. Capillary electrophoresis (CE is emerging as an alternative to conventional techniques for the study and characterization of genetically modified organisms. This article reviews the most recent applications of CE for the analysis and characterization of transgenic cultivars in the last five years. Different strategies have been described depending on the level analyzed (DNA, proteins or metabolites. Capillary gel electrophoresis (CGE has shown to be particularly useful for the analysis of DNA fragments amplified by PCR. Metabolites and proteins have been mainly separated using capillary zone electrophoresis (CZE using UV and MS detection. Electrophoretic chips have also proven their ability in the analysis of transgenic cultivars and a section describing the new applications is also included.

  5. Analysis of serotonin in brain microdialysates using capillary electrophoresis and native laser-induced fluorescence detection.

    Science.gov (United States)

    Benturquia, Nadia; Couderc, François; Sauvinet, Valérie; Orset, Cyrille; Parrot, Sandrine; Bayle, Christophe; Renaud, Bernard; Denoroy, Luc

    2005-03-01

    Serotonin or 5-hydroxytryptamine (5-HT) is a major neurotransmitter in the central nervous system. In this work, a method for analyzing 5-HT in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. A pH-mediated in-capillary preconcentration of samples was performed, and after separation by capillary zone electrophoresis, native fluorescence of 5-HT was detected by a 266 nm solid-state laser. The separation conditions for the analysis of 5-HT in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical bases. Separation of 5-HT was performed using a 80 mmol/L citrate buffer, pH 2.5, containing 20 mmol/L hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and +30 kV voltage. The detection limit was 2.5 x 10(-10) mol/L. This method allows the in vivo brain monitoring of 5-HT using a simple, accurate CE measurement in underivatized microdialysis samples.

  6. Effect of Electric Field Modes on the Separation Performance of DNA in Capillary Electrophoresis%电场方式对毛细管电泳分离DNA的影响

    Institute of Scientific and Technical Information of China (English)

    陈进; 李振庆; 倪一; 刘晨晨; 窦晓鸣; 山口佳则

    2012-01-01

    have successfully separated the 2-DNA endonuclease fragments digested by EcoT14 I/Bgl II under inversion pulsed electric field. The results above demonstrate that inversion pulsed field capillary electrophoresis is a method with fast speed, accuracy, high reproducibility, and thus it can be applied for the separation of DNA fragments with a wide molecular range.

  7. Powder-blasting technology as an alternative tool for microfabrication of capillary electrophoresis chips with integrated conductivity sensors

    NARCIS (Netherlands)

    Schlautmann, Stefan; Wensink, Henk; Schasfoort, Richard; Elwenspoek, Miko; Berg, van den Albert

    2001-01-01

    The fabrication and characterization of a microfluidic device for capillary electrophoresis applications is presented. The device consists of a glass chip which contains a single separation channel as well as an integrated conductivity detection cell. In contrast to most microfluidic glass devices t

  8. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  9. Semi-crosslinked polyacrylamides as high-resolution and dynamic self-coating sieving matrices for protein capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; XU JianDong; XIE Yao; QU Feng; DENG YuLin; GENG LiNa

    2008-01-01

    This paper describes non-gel capillary sieving electrophoresis employing semi-crosslinked poly-acrylamide as a high performance and low viscous replaceable separation matrix for separation of non-denatured protein separation. Arising from the fine sieving and dynamic coating ability of this polymer, a mixture of basic proteins lysozyme, cytochrome C, ribonuclease A, and trypsin was resolved with excellent reproducibility. Mixing different semi-crosslinked polyacrylamides together further im-proves the separation. The separtion mechanism was analyzed. With network structure developed to an intermediate state between crosslinked gel and linear polymer solutions, these semi-crosslinked polyacrylamide polymers demonstrate a promise as a new class of size sieving separation medium, not only in capillary electrophoresis, but also in microfluidic chip separation schemes.

  10. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo

    2002-01-01

    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  11. Determination of artificial sweeteners by capillary electrophoresis with contactless conductivity detection optimized by hydrodynamic pumping.

    Science.gov (United States)

    Stojkovic, Marko; Mai, Thanh Duc; Hauser, Peter C

    2013-07-17

    The common sweeteners aspartame, cyclamate, saccharin and acesulfame K were determined by capillary electrophoresis with contactless conductivity detection. In order to obtain the best compromise between separation efficiency and analysis time hydrodynamic pumping was imposed during the electrophoresis run employing a sequential injection manifold based on a syringe pump. Band broadening was avoided by using capillaries of a narrow 10 μm internal diameter. The analyses were carried out in an aqueous running buffer consisting of 150 mM 2-(cyclohexylamino)ethanesulfonic acid and 400 mM tris(hydroxymethyl)aminomethane at pH 9.1 in order to render all analytes in the fully deprotonated anionic form. The use of surface modification to eliminate or reverse the electroosmotic flow was not necessary due to the superimposed bulk flow. The use of hydrodynamic pumping allowed easy optimization, either for fast separations (80s) or low detection limits (6.5 μmol L(-1), 5.0 μmol L(-1), 4.0 μmol L(-1) and 3.8 μmol L(-1) for aspartame, cyclamate, saccharin and acesulfame K respectively, at a separation time of 190 s). The conditions for fast separations not only led to higher limits of detection but also to a narrower dynamic range. However, the settings can be changed readily between separations if needed. The four compounds were determined successfully in food samples.

  12. Carbon Fiber-gold/mercury Dual-electrode Detection for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A carbon fiber-gold/mercury dual-electrode for capillary electrophoresis is constructed. Cysteine, glutathione, ascorbic acid and uric acid can be detected simultaneously and selectively at the dual-electrode, respectively. The capillary electrophoresis / dual-electrode detection system has been used to determine these compounds in human blood samples.

  13. Determination of Enantiomeric Excess of Glutamic Acids by Lab-made Capillary Array Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Jun WANG; Kai Ying LIU; Li WANG; Ji Ling BAI

    2006-01-01

    Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capillary array electrophoresis method can accurately determine the enantiomeric excess of glutamic acid and can be used for high-throughput screening system for combinatorial asymmetric catalysis.

  14. Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products.

    Science.gov (United States)

    Gahoual, Rabah; Beck, Alain; Leize-Wagner, Emmanuelle; François, Yannis-Nicolas

    2016-10-01

    Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.

  15. A new post-column reactor-laser induced fluorescence detector for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Liling

    1996-01-02

    Capillary zone electrophoresis (CZE), a powerful separation method based on the differential migration of charged species under the influence of an electric field, has been widely used for separations covering from small ions to big biomolecules. Chapter 1 describes the method, then discusses detection of the separated analytes by laser induced fluorescence and by chemical derivatization, and the use of O-phthaldialdehyde (OPA) as a post-column reagent. Chapter 2 describes a post-column reactor which uses two narrow bore capillaries connected coaxially. This reactor differs from other coaxial reactors in terms of capillary dimensions, reagent flow control, ease of construction and most importantly, better limits of detection. The derivatization reagent is electroosmotically driven into the reaction capillary and the reagent flow rate is independently controlled by a high voltage power supply. Amino acids, amines and proteins, derivatized by OPA/2-mercaptoethanol using this post-column reactor coupled with LIF detection, show low attomole mass limits of detection, and for the first time, the authors demonstrate single cell capability with a post-column derivatization scheme. The single cell capability shows that this reactor could find applications in assaying non-fluorescent or electrochemically inactive components in individual biological cells in the future.

  16. Gene analysis of multiple oral bacteria by the polymerase chain reaction coupled with capillary polymer electrophoresis.

    Science.gov (United States)

    Liu, Chenchen; Yamaguchi, Yoshinori; Sekine, Shinichi; Ni, Yi; Li, Zhenqing; Zhu, Xifang; Dou, Xiaoming

    2016-03-01

    Capillary polymer electrophoresis is identified as a promising technology for the analysis of DNA from bacteria, virus and cell samples. In this paper, we propose an innovative capillary polymer electrophoresis protocol for the quantification of polymerase chain reaction products. The internal standard method was modified and applied to capillary polymer electrophoresis. The precision of our modified internal standard protocol was evaluated by measuring the relative standard deviation of intermediate capillary polymer electrophoresis experiments. Results showed that the relative standard deviation was reduced from 12.4-15.1 to 0.6-2.3%. Linear regression tests were also implemented to validate our protocol. The modified internal standard method showed good linearity and robust properties. Finally, the ease of our method was illustrated by analyzing a real clinical oral sample using a one-run capillary polymer electrophoresis experiment.

  17. Evaluation of migration behaviour of therapeutic peptide hormones in capillary electrophoresis using polybrene-coated capillaries.

    Science.gov (United States)

    Aptisa, Ghiulendan; Benavente, Fernando; Sanz-Nebot, Victoria; Chirila, Elisabeta; Barbosa, José

    2010-02-01

    Modelling electrophoretic mobility as a function of pH can be simultaneously used for determination of ionization constants and for rapid selection of the optimum pH for separation of mixtures of the modelled compounds. In this work, equations describing the effect of pH on electrophoretic behaviour were used to investigate migration of a series of polyprotic amphoteric peptide hormones between pH 2 and 12 in polybrene-coated capillaries. Polybrene (hexadimethrin bromide) is a polymer composed of quaternary amines that is strongly adsorbed by the fused-silica inner surface, preventing undesired interactions between the peptides and the inner capillary wall. In polybrene-coated capillaries the separation voltage must be reversed, because of the anodic electroosmotic flow promoted by the polycationic polymer attached to the inner capillary wall. The possibility of using polybrene-coated capillaries for determination of accurate ionization constants has been evaluated and the optimum pH for separation of a mixture of the peptide hormones studied has been selected. Advantages and disadvantages of using bare fused-silica and polybrene-coated capillaries for these purposes are discussed.

  18. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  19. The new approach of standardization of capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    LI; Hua; WANG; Kang; JOSEF; Havel

    2005-01-01

    In this paper, we develope the new standardization methods to eliminate the influence in capillary electrophoresis (CE). The markers were used to determine the basis position and then correct the data of sample by the migration time of standard sample, and make the migration time of samples consistent with the standard sample by the criterion of the marker. The problem of time transition was corrected in this way. Then according to the peak height or peak area of the marker in the sample (peak height was used here) compared with the standard sample, the sample data was zoomed appropriately. The absorbance error was made to be correct.The wavelet de-noise method was also used to make the data smooth and get a good baseline.

  20. Microchip capillary electrophoresis based electroanalysis of triazine herbicides.

    Science.gov (United States)

    Islam, Kamrul; Chand, Rohit; Han, Dawoon; Kim, Yong-Sang

    2015-01-01

    The number of pesticides used in agriculture is increasing steadily, leading to contamination of soil and drinking water. Herein, we present a microfluidic platform to detect the extent of contamination in soil samples. A microchip capillary electrophoresis system with in-channel electrodes was fabricated for label-free electroanalytical detection of triazine herbicides. The sample mixture contained three representative triazines: simazine, atrazine and ametryn. The electropherogram for each individual injection of simazine, atrazine and ametryn showed peaks at 58, 66 and 72 s whereas a mixture of them showed distinct peaks at 59, 67 and 71 s respectively. The technique as such may prove to be a useful qualitative and quantitative tool for the similar environmental pollutants.

  1. Application of capillary electrophoresis to the simultaneous determination and stability study of four extensively used penicillin derivatives

    Directory of Open Access Journals (Sweden)

    Brigitta Simon

    2014-09-01

    Full Text Available The applicability of capillary electrophoresis for the analysis of four extensively used penicillin derivatives (benzylpenicillin, ampicillin, amoxicillin, oxacilllin has been studied. Because of structural similarities, the electrophoretic behavior of these derivatives is very similar; consequently an efficient separation using the conventional capillary zone electrophoresis is hard to be achieved. Their simultaneous separation was solved by using micellar electrokinetic capillary chromatography, the separation being based on the differential partition of the analytes between the micellar and aqueous phase. Using a buffer solution containing 25 mM sodium tetraborate and 100 mM sodium dodecyl sulfate as surfactant, at a pH of 9.3, applying a voltage of + 25 kV at a temperature of 25 °C, we achieved the simultaneous separation of the studied penicillin derivatives in less then 5 minutes. The separation conditions were optimized and the analytical performance of the method was evaluated in terms of precision, linearity, limit of detection, and quantification. Also, a simple capillary zone electrophoresis method was applied to study the stability of the studied penicillin derivatives in water at different temperatures, using ciprofloxacin hydrochloride as internal standard. It was observed that the extent of the hydrolysis of penicillins in water is highly dependent on the time and also temperature.

  2. Analysis of anions in ambient aerosols by microchip capillary electrophoresis.

    Science.gov (United States)

    Liu, Yan; MacDonald, David A; Yu, Xiao-Ying; Hering, Susanne V; Collett, Jeffrey L; Henry, Charles S

    2006-11-01

    We describe a microchip capillary electrophoresis method for the analysis of nitrate and sulfate in ambient aerosols. Investigating the chemical composition of ambient aerosol particles is essential for understanding their sources and effects. Significant progress has been made towards developing mass spectrometry-based instrumentation for rapid qualitative analysis of aerosols. Alternative methods for rapid quantification of selected high abundance compounds are needed to augment the capacity for widespread routine analysis. Such methods could provide much higher temporal and spatial resolution than can be achieved currently. Inorganic anions comprise a large percentage of particulate mass, with nitrate and sulfate among the most abundant species. While ion chromatography has proven very useful for analyzing extracts of time-integrated ambient aerosol samples collected on filters and for semi-continuous, on-line particle composition measurements, there is a growing need for development of new compact, inexpensive approaches to routine on-line aerosol ion analysis for deployment in spatially dense, atmospheric measurement networks. Microchip capillary electrophoresis provides the necessary speed and portability to address this need. In this report, on-column contact conductivity detection is used with hydrodynamic injection to create a simple microchip instrument for analysis of nitrate and sulfate. On-column contact conductivity detection was achieved using a Pd decoupler placed upstream from the working electrodes. Microchips containing two Au or Pd working electrodes showed a good linear range (5-500 microM) and low limits-of-detection for sulfate and nitrate, with Au providing the lowest detection limits (1 microM) for both ions. The completed microchip system was used to analyze ambient aerosol filter samples. Nitrate and sulfate concentrations measured by the microchip matched the concentrations measured by ion chromatography.

  3. Affinity capillary electrophoresis method for investigation of bile salts complexation with sulfobutyl ether-ß-cyclodextrin

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Jensen, Henrik; Holm, Rene

    2012-01-01

    an influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility-shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying...... constant power and ionic strength conditions as well as constant voltage and varying ionic strength were investigated. A new approach for the correction of background electrolyte ionic strength was developed. Mobility-shift affinity capillary electrophoresis experiments obtained at constant voltage...

  4. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  5. Optimization of capillary array electrophoresis single-strand conformation polymorphism analysis for routine molecular diagnostics.

    Science.gov (United States)

    Jespersgaard, Cathrine; Larsen, Lars Allan; Baba, Shingo; Kukita, Yoji; Tahira, Tomoko; Christiansen, Michael; Vuust, Jens; Hayashi, Kenshi; Andersen, Paal Skytt

    2006-10-01

    Mutation screening is widely used for molecular diagnostics of inherited disorders. Furthermore, it is anticipated that the present and future identification of genetic risk factors for complex disorders will increase the need for high-throughput mutation screening technologies. Capillary array electrophoresis (CAE) SSCP analysis is a low-cost, automated method with a high throughput and high reproducibility. Thus, the method fulfills many of the demands to be met for application in routine molecular diagnostics. However, the need for performing the electrophoresis at three temperatures between 18 degrees C and 35 degrees C for achievement of high sensitivity is a disadvantage of the method. Using a panel of 185 mutant samples, we have analyzed the effect of sample purification, sample medium and separation matrix on the sensitivity of CAE-SSCP analysis to optimize the method for molecular diagnostic use. We observed different effects from sample purification and sample medium at different electrophoresis temperatures, probably reflecting the complex interplay between sequence composition, electrophoresis conditions and sensitivity in SSCP analysis. The effect on assay sensitivity from three different polymers was tested using a single electrophoresis temperature of 27 degrees C. The data suggest that a sensitivity of 98-99% can be obtained using a 10% long chain poly-N,N-dimethylacrylamide polymer.

  6. A new injection method for soil nutrient analysis in capillary electrophoresis

    Science.gov (United States)

    Smolka, M.; Puchberger-Enengl, D.; Bipoun, M.; Fercher, G.; Klasa, A.; Krutzler, C.; Keplinger, F.; Vellekoop, M. J.

    2013-05-01

    We present a new method for the direct injection of liquid sample into a capillary electrophoresis (CE) device. Instead of a double-T injection mechanism, a single inlet provided with a membrane filter is used. From a reservoir on top of this inlet, the liquid directly enters the separation channel through the membrane. The driving force is a short electrical pulse. This avoids an additional sample channel, so that the chip needs only three microfluidic connects and no mechanical sample pumping is demanded. The high injection reproducibility and the comparatively simple setup open up the way for mobile application of soil analysis.

  7. Determination of diastereoisomeric alkaloids in urine by capillary electrophoresis with electrochemiluminescence detection

    Institute of Scientific and Technical Information of China (English)

    Yan Ming Liu; Long Fei Peng; Lin Mei; Li Juan Liu

    2011-01-01

    A new and simple capillary electrophoresis with electrochemiluminescence detection was developed for the separation and the quantification of a pair of diastereoisomeric alkaloids (ephedrine and pseudoephedrine). The limits of detection (S/N = 3) were 4.5 × 10-8 mol/L for ephedrine and 5.2×10-8 mol/L for pseudoephedrine, respectively. The RSDs of migration time and peak area were less than 1.3 and 2.5% (n = 5), respectively. The applicability of the propose method was illustrated in the determination of ephedrine and pseudoephedrine in human urine, ephedrine in nasal drops, and the monitoring of pharmacokinetics for pseudoephedrine.

  8. Study on Rhizoma Chuanxiong based on capillary electrophoresis with amperometric detection

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A high-performance capillary electrophoresis with amperometric detection(CE-AD) method has been developed for the analysis of seven bioactive ingredients,namely ferulic acid(FA),vanillin,vanillic acid,p-hydroxybenzoic acid,caffeic acid,gallic acid and protocatechuic acid,in Rhizoma Chuanxiong.The effects of several factors such as the acidity and concentration of running buffer,the separation voltage,the applied potential to working electrode and the injection time were investigated.Under the optimum con...

  9. Determination of acidity constants of enolisable compounds by capillary electrophoresis.

    Science.gov (United States)

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L

    2004-10-01

    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  10. Determination of Amino Acids in Single Human Lymphocytes after On-capillary Derivatization by Capillary Zone Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amino acids in individual human lymphocytes were determined by capillary zone electrophoresis with electrochemical detection after on-capillary derivatization. In order to inject cells easily, a cell injector was designed. Four amino acids (serine, alanine, taurine, and glycine) in single human lymphocytes have been identified. Quantitation has been accomplished through the use of calibration curves.

  11. Dual-channel capillary electrophoresis for simultaneous determination of cations and anions.

    Science.gov (United States)

    Opekar, František; Tůma, Petr

    2016-05-13

    An original electrophoresis apparatus for simultaneous rapid determination of cations and anions has been designed and tested. The separation part of the apparatus consists of two identical fused-silica capillaries, each with a length of 10.5cm and inner diameter of 25μm. The injection space is formed by the crossing of four channels in a plexiglass cross-piece. The capillaries pass through two opposing channels and their injection ends are located opposite one another at a distance of approx. 0.5mm in the centre of the crossing point. The exit ends of the capillaries are placed in vessels containing the background electrolyte in which are immersed the electrodes of a high-voltage source. Contactless conductivity detectors with semi-cylindrical electrodes are located 2cm from the exit ends of the capillaries. The injection part of the apparatus consists of two piezoelectric micro-pumps bringing the solution through another channel in the cross-piece to the injection ends of the capillary. During the injection, the sample is brought through one of them and is injected electrokinetically for a defined time. Then the sample zone is forced out of the injection space by a stream of background electrolyte from the second micro-pump. The timing of the injection process is computer-controlled. Thus the equipment can be considered to constitute electrophoresis in one capillary with injection into its centre. The use of short capillaries and miniature micro-pumps without other mechanical components enabled the construction of the apparatus on a board with dimensions of 20×25cm. The proposed equipment was used to test simultaneous separation of a mixture of cations and anions, NH4(+), K(+), Ca(2+), Mg(2+), Sr(2+), Ba(2+), Cl(-), NO3(-), SO4(2-), ClO3(-) and F(-), in BGE with composition 500mM HAc+20mM Tris+2mM 18-crown-6 (pH 3.3). Baseline separation of all the components was achieved in time less than 1min. Quantification of the content of nitrate nitrogen (determined as

  12. Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis.

    Science.gov (United States)

    Król, Małgorzata; Karoly, Agnes; Kościelniak, Paweł

    2014-09-01

    Forensic laboratories are increasingly engaged in the examination of fraudulent documents, and what is important, in many cases these are inkjet-printed documents. That is why systematic approaches to inkjet printer inks comparison and identification have been carried out by both non-destructive and destructive methods. In this study, micro-Raman spectroscopy and capillary electrophoresis (CE) were applied to the analysis of colour inkjet printer inks. Micro-Raman spectroscopy was used to study the chemical composition of colour inks in situ on a paper surface. It helps to characterize and differentiate inkjet inks, and can be used to create a spectra database of inks taken from different cartridge brands and cartridge numbers. Capillary electrophoresis in micellar electrophoretic capillary chromatography mode was applied to separate colour and colourless components of inks, enabling group identification of those components which occur in a sufficient concentration (giving intensive peaks). Finally, on the basis of the obtained results, differentiation of the analysed inks was performed. Twenty-three samples of inkjet printer inks were examined and the discriminating power (DP) values for both presented methods were established in the routine work of experts during the result interpretation step. DP was found to be 94.0% (Raman) and 95.6% (CE) when all the analysed ink samples were taken into account, and it was 96.7% (Raman) and 98.4% (CE), when only cartridges with different index numbers were considered.

  13. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry.

    Science.gov (United States)

    Barroso, Albert; Giménez, Estela; Benavente, Fernando; Barbosa, José; Sanz-Nebot, Victoria

    2016-04-01

    Certain glycoproteins are rather difficult to digest due to compacted tertiary or quaternary structures. In a previous study, a capillary LC coupled to TOF-MS (μLC-TOF-MS) method was developed for the detection and characterization of the glycopeptide glycoforms of human transferrin (Tf), a proteolytic resistant glycoprotein, in serum samples. After immunoaffinity purification, Tf was digested with trypsin in the presence of RapiGest(®) and μLC-TOF-MS analyses permitted to detect the N413 and N611 glycopeptide glycoforms. Conversely, the use of this surfactant, albeit mandatory to quantitatively digest the isolated Tf, proved detrimental to CE-TOF-MS analysis due to its interaction with the inner surface of the silica capillary walls. As CE is usually regarded as an interesting alternative to other separation techniques (low consumption of reagents, excellent separation efficiency, and reduced analysis times), in this work, the undesirable interferences of the surfactant have been removed to allow the correct separation and detection of Tf glycoforms by CE-TOF-MS. Moreover, the digestion protocol described by the RapiGest(®) manufacturer has been modified to minimize desialylation of Tf glycopeptide glycoforms. The new developed CE-TOF-MS methodology has been then compared with the former μLC-TOF-MS by means of sensitivity and separation efficiency of Tf glycopeptide glycoforms in the standard glycoprotein. Additionally, Tf glycopeptide glycoforms from serum of healthy volunteers and patients with congenital disorders of glycosylation have also been analyzed following the developed methodology.

  14. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis.

    Science.gov (United States)

    Deng, Dongli; Deng, Hao; Zhang, Lichun; Su, Yingying

    2014-04-01

    A simple and rapid capillary electrophoresis method was developed for the separation and determination of ephedrine (E) and pseudoephedrine (PE) in a buffer solution containing 80 mM of NaH2PO4 (pH 3.0), 15 mM of β-cyclodextrin and 0.3% of hydroxypropyl methylcellulose. The field-amplified sample injection (FASI) technique was applied to the online concentration of the alkaloids. With FASI in the presence of a low conductivity solvent plug (water), an approximately 1,000-fold improvement in sensitivity was achieved without any loss of separation efficiency when compared to conventional sample injection. Under these optimized conditions, a baseline separation of the two analytes was achieved within 16 min and the detection limits for E and PE were 0.7 and 0.6 µg/L, respectively. Without expensive instruments or labeling of the compounds, the limits of detection for E and PE obtained by the proposed method are comparable with (or even lower than) those obtained by capillary electrophoresis laser-induced fluorescence, liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. The method was validated in terms of precision, linearity and accuracy, and successfully applied for the determination of the two alkaloids in Ephedra herbs.

  15. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    Science.gov (United States)

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-05-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved.

  16. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.

    Science.gov (United States)

    Craig, Douglas B; Reinfelds, Gundars; Henderson, Anna

    2014-08-01

    Capillary electrophoresis has been used to demonstrate that individual molecules of a given enzyme support different catalytic rates. In order to determine how rate varies with temperature, and determine activation energies for individual β-galactosidase molecules, a 12-channel Peltier array temperature control device was constructed where the temperature of each cell was separately controlled. This array was used to control the temperature of the central 30 cm of a 50 cm long capillary, producing a temperature gradient along its length. Continuous flow single β-galactosidase molecule assays were performed allowing measurement of the catalytic rates at different temperatures. Arrhenius plots were produced and the distribution of activation energies for individual β-galactosidase molecules was found to be 56 ± 10 kJ/mol with a range of 34-72 kJ/mol.

  17. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms.

    Science.gov (United States)

    Farina-Gomez, Noemi; Puerta, Angel; Gonzalez, Monica; Diez-Masa, Jose Carlos; de Frutos, Mercedes

    2016-04-22

    Glycoproteins expressed in the human body can experience modifications as result of pathological situations. Detection of those changes can be useful as disease biomarkers. As a result of these modifications, size and/or electrical charge of the glycoprotein can be altered. Migration in capillary zone electrophoresis (CZE) is governed by the size to charge ratio of the analyte and therefore this separation technique can be used to monitor those modifications. At its turn, the alteration of the electrophoretical pattern of a given glycoprotein could be used as disease biomarker. To this aim, high repeatability for separation of a large number of peaks for a given glycoprotein is desirable. For prostate cancer, new markers are needed to decrease the high number of false positive results provided by the biomarkers currently used in clinics. In this sense, CZE methods for analysis of the several prostate specific antigen (PSA) peaks which this glycoprotein exhibit, called isoforms and containing one or more glycoforms, could be useful to study the PSA pattern as prostate cancer marker. In this study two complementary strategies to achieve both lot-to-lot capillary repeatability and high resolution of a large number of PSA isoforms are developed. Better performance and precision have been obtained for capillaries conditioned with HCl than for those conditioned with NaOH. Optimization of the background electrolyte (BGE) pH value to 8.0 and inclusion of 3M urea on its composition were the two factors of highest impact for enhancing resolution of the highest number of PSA peaks. Under the optimized conditions for capillary conditioning and BGE pH and composition, long-term resolution of 10 isoforms of PSA was achieved. Inter-day (n=3) %RSD was 0.55 for the ratio tm/tEOF, 1.15 for μeff, and 5.02 for % Acorr of the PSA peaks.

  18. A Capillary Electrophoresis Detection Scheme for Water-soluble Vitamins Based on Luminol - BrO- Chemiluminescence System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel chemiluminescence detection scheme has been developed for detecting water-soluble vitamins following capillary electrophoresis (CE) separation. This detection was based on the inhibitory effect of vitamins on the CL reaction between luminol and BrO- in basic aqueous solution. Detection of vitamins was accomplished with a borate-based background electrolyte at pH 9.2. The luminol was used as a component of the separation carrier electrolyte.

  19. Improvement on Simultaneous Determination of Cr(III) and Cr(VI) by Capillary Electrophoresis and Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A sensitive method for the simultaneous determination of Cr(III) and Cr(VI) using in-capillary reaction capillary electrophoresis separation and chemiluminescence detection was developed. The procedures were designed as follows: The sample, hydrochloric acid and sodium hydrogen sulfite solution segments were injected sequentially into the capillary. The reaction of Cr(VI) reduced to Cr(III) by HSO3- occurred inside the capillary after applying the running voltage. According to the migration time difference of both Cr(III) ions moving towards to the cathode (detection end), they could be separated and determined. The limits of detection for chromium(III) and chromium(VI) (S/N = 3) were 6.0(10-13 mol/L (12 zmol) and 1.9(10-11 mol/L (380 zmol), respectively.

  20. Discussion on Teaching and Learning of the Separation Experiment of Isomers by Capillary Electrophoresis%谈毛细管电泳分离异构体实验的教与学

    Institute of Scientific and Technical Information of China (English)

    周平; 金姗霞

    2016-01-01

    In the analytical chemistry curriculum of undergraduate education, the teaching of instrumental analysis laboratory course is getting more and more important. This paper, taking the experiment of capil ary electrophoresis for isomers separation as an example, discussed the efficient approaches to improve the instrumental analysis laboratory teaching effectiveness.%以毛细管电泳分离异构体的实验教学为例,探讨了提高仪器分析实验教学效果的有效途径。

  1. Determination of impurities in heparin by capillary electrophoresis using high molarity phosphate buffers.

    Science.gov (United States)

    Wielgos, Todd; Havel, Karalyn; Ivanova, Nadia; Weinberger, Robert

    2009-02-20

    Oversulfated chondroitin sulfate (OSCS), an impurity found in some porcine intestinal heparin samples was separated from intact heparin by capillary electrophoresis (CE) using a 600mM phosphate buffer, pH 3.5 as the background electrolyte in a 56cm x 25microm i.d. capillary. This method was confirmed in two separate labs, was shown to be linear, reproducible, robust, easy to use and provided the highest resolution and superior limits of detection compared to other available CE methods. Glycosoaminoglycans such as dermatan sulfate and heparan sulfate were separated and quantified as well during a single run. The heparin peak area response correlated well to values obtained using the official assay for biological activity. A high speed, high resolution version of the method was developed using 600mM lithium phosphate, pH 2.8 in a 21.5cm x 25microm i.d. capillary which provided limits of detection for OSCS that were below 0.1%.

  2. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents. Suffield memorandum No. 1463

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.

    1995-12-31

    Mid-spectrum biological warfare agents such as proteins, peptides, and toxins are often difficult to analyze and often require individually developed assay methods for detection and identification. In this regard, capillary electrophoresis is an important, emerging technique for separation and quantitation of peptides and proteins, providing separation efficiencies up to two orders of magnitude greater than high performance liquid chromatography. The technique can also analyze a broad range of compounds, has a simple instrument design which can be automated, and has low sample volume requirements. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defense interest including bradykinin, leucine enkephalin, and oxytocin. The paper demonstrates three strategies which could be used in a fully automated field detection and identification system for unknown peptides.

  3. Non-aqueous capillary electrophoresis of drugs: properties and application of selected solvents.

    Science.gov (United States)

    Tjørnelund, J; Hansen, S H

    1999-01-29

    The electrophoretic mobility of selected acidic and basic test solutes have been determined in non-aqueous media prepared by adding various combinations of ammonium acetate, sodium acetate, methane sulphonic acid and acetic acid to acetonitrile, propylene carbonate, methanol, formamide, N-methylformamide, N,N-dimethylformamide and dimethylsulphoxide, respectively. The apparent pH (pH*) of these non-aqueous media have been measured and it was found that pH* is an important factor for the separations in non-aqueous capillary electrophoresis. However, in some solvents the concentration of sodium acetate has a strong influence on the mobility despite very small changes in pH*. Due to the fact that a change in one parameter influences a number of other parameters it is very difficult to conduct systematic studies in non-aqueous media and to compare the migration of the species at fixed pH* values from one solvent to another. Thus pH* is only of value for comparison when used with a specific solvent or solvent mixture. The viscosity of the above-mentioned solvents were measured at various temperatures and means to adjust the viscosity of the non-aqueous media used for capillary electrophoresis are discussed and the separation of ibuprofen and its major metabolites in urine is used as an example.

  4. Self-assembled and covalently linked capillary coating of diazoresin and cyclodextrin-derived dendrimer for analysis of proteins by capillary electrophoresis.

    Science.gov (United States)

    Yu, Bing; Chi, Ming; Han, Yuxing; Cong, Hailin; Tang, Jianbin; Peng, Qiaohong

    2016-05-15

    Self-assembled and covalently linked capillary coatings of cyclodextrin-derived (CD) dendrimer were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/CD-dendrimer coatings based on ionic bonding was fabricated first on the inner surface of capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. Protein adsorption on the inner surface of capillary was suppressed by the DR/CD-dendrimer coating, and thus a baseline separation of lysozyme (Lys), myoglobin (Mb), bovine serum albumin (BSA) and ribonuclease A (RNase A) was achieved using capillary electrophoresis (CE). Compared with the bare capillary, the DR/CD-dendrimer covalently linked capillary coatings showed excellent protein separation performance with good stability and repeatability. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE.

  5. Determination of Magnolol and Honokiol by Non-aqueous Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two active principles in traditional Chinese medicine Magnolia officinalis, magnolol and honokiol, were successfully separated by means of nonaqueous capillary electrophoresis. The effect of the composition of a nonaqueous buffer on column efficiency and resolution, and the effect of acid additives on peak shapes were researched. The separation was conducted with a running buffer in a mixture of methanol/acetonitrile/formamide (volume ratio: 1: 2: 2), in which the concentrations of Tris, acetic acid, and water were 60 mmol/L, 0. 04 mmol/L and 5% (volume fration),respectively, and the pH * (apperent pH) of the running buffer was 8. 96. Magnolol and honokiol were separated on baseline within 20 min. The relative standard deviation of the analytes' concentrations in the sample is 1.32% for magnolol and 1.60% for honokiol, and the recoveries of the spiked sample are 98.4% for magnolol and 98.0% for honokiol, respectively.

  6. Hydrogel plug for independent sample and buffer handling in continuous microchip capillary electrophoresis

    Science.gov (United States)

    Puchberger-Enengl, Dietmar; Bipoun, Mireille; Smolka, Martin; Krutzler, Christian; Keplinger, Franz; Vellekoop, Michael J.

    2013-05-01

    In microchip capillary electrophoresis most frequently electrokinetic sample injection is utilized, which does not allow pressure driven sample handling and is sensitive for pressure drops due to different reservoir levels. For efficient field tests a multitude of samples have to be processed with the least amount of external equipment. We present the use of a hydrogel plug to separate the sample from clean buffer to enable independent sample change and buffer refreshment. In-situ polymerization of the gel does away with complex membrane fabrication techniques. The sample is electrokinetically injected through the gel and subsequently separated by a voltage between the second gel inlet and the buffer outlet. By blocking of disturbing flows by the gel barrier a well-defined ion plug is obtained. After each experiment, the sample and the separation channel can be flushed independently, allowing for a continuous operation mode in order to process multiple samples.

  7. Development of a liquid-junction/low-flow interface for phosphate buffer capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Li, Fu-An; Huang, Ju-Li; Shen, Shang-Yu; Wang, Che-Wei; Her, Guor-Rong

    2009-04-01

    To alleviate ion suppression from phosphate buffer and to preserve separation integrity, a new capillary electrophoresis mass spectrometry (CE-MS) interface was developed. The interface consisted of a low-flow interface and a liquid junction. In this design, both the inlet reservoir and the liquid-junction reservoir were filled with phosphate running buffer. Because the phosphate anions in the column migrated toward the inlet reservoir (away from the electrospray ionization (ESI) source) the problem of ion suppression in ESI was avoided. The liquid junction was incorporated to eliminate issues of degraded separation observed when sheath liquid interfaces use different buffers for separation and MS analysis attributed to differences in anion velocity. The utility of the interface was demonstrated by the analysis of antihistamines at pH 3.5 and the analysis of perfluorocarboxylic acid at pH 9.5.

  8. Development of a capillary electrophoresis method for the simultaneous determination of cephalosporins

    Directory of Open Access Journals (Sweden)

    Hancu Gabriel

    2013-01-01

    Full Text Available A rapid and simple capillary electrophoresis method has been developed for the simultaneous determination of six extensively used cephalosporin antibiotics (cefaclor, cefadroxil, cefalexin, cefuroxim, ceftazidim, ceftriaxon. The determination of cephalosporins was performed at a pH 6.8, using a 25 mM phospate - 25 mM borate mixed buffer, + 25 kV voltage at a temperature of 25 °C. We achieved a baseline separation in approximately 10 minutes. The separation resolution was increased by addition of an anionic surfactant, 50 mM sodium dodecyl sulfate, to the buffer solution. The proposed separation was evaluated on the basis of detection and quantification limits, effective electrophoretic mobility and relative standard deviation for migration times and peak areas.

  9. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng

    2009-01-01

    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  10. Capillary electrophoresis micro X-ray fluorescence: a tool for benchtop elemental analysis.

    Science.gov (United States)

    Miller, Thomasin C; Joseph, Martha R; Havrilla, George J; Lewis, Cris; Majidi, Vahid

    2003-05-01

    A new tool was developed for separation and elemental detection by interfacing a simple capillary electrophoresis (CE) apparatus, constructed using a thin-walled fused-silica capillary, with a benchtop energy-dispersive micro X-ray fluorescence (MXRF) system. X-ray excitation and detection of the separated analytes was done using an EDAX Eagle II micro X-ray fluorescence system equipped with a polycapillary Rh target excitation source and a SiLi detector. It was demonstrated that this prototype system could be used for the separation and detection of species containing two different metals from one another, specifically Cu and Co. Free Co could also be separated from Co bound to cyanocobalamin (vitamin B-12). Two organic compounds were also separated from one another, a large biological protein, ferritin, from a small biological organic, cyanocobalamin. Preliminary average detection limits obtained on this system were on the order of 10(-)(4) M and compared favorably to those reported for the similar technique of CE-synchrotron XRF. CEMXRF allows for nondestructive, simultaneous, on-line, benchtop elemental analysis for chemical speciation applications.

  11. Capillary electrophoresis methods for microRNAs assays: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Eunmi; Song, Eun Joo, E-mail: ejsong@kist.re.kr

    2014-12-10

    Highlights: • A review of CE analysis of miRNAs. • Summary of developments and applications of CE systems in miRNA studies. • Applications and development of microchip-based CE for rapid analysis of miRNA. - Abstract: MicroRNAs (miRNAs) are short noncoding RNAs that conduct important roles in many cellular processes such as development, proliferation, differentiation, and apoptosis. In particular, circulating miRNAs have been proposed as biomarkers for cancer, diabetes, cardiovascular disease, and other illnesses. Therefore, determination of miRNA expression levels in various biofluids is important for the investigation of biological processes in health and disease and for discovering their potential as new biomarkers and drug targets. Capillary electrophoresis (CE) is emerging as a useful analytical tool for analyzing miRNA because of its simple sample preparation steps and efficient resolution of a diverse size range of compounds. In particular, CE with laser-induced fluorescence detection is a promising and relatively rapidly developing tool with the potential to provide high sensitivity and specificity in the analysis of miRNAs. This paper covers a short overview of the recent developments and applications of CE systems in miRNA studies in biological and biomedical areas.

  12. Quantification of sugars in breakfast cereals using capillary electrophoresis.

    Science.gov (United States)

    Toutounji, Michelle R; Van Leeuwen, Matthew P; Oliver, James D; Shrestha, Ashok K; Castignolles, Patrice; Gaborieau, Marianne

    2015-05-18

    About 80% of the Australian population consumes breakfast cereal (BC) at least five days a week. With high prevalence rates of obesity and other diet-related diseases, improved methods for monitoring sugar levels in breakfast cereals would be useful in nutrition research. The heterogeneity of the complex matrix of BCs can make carbohydrate analysis challenging or necessitate tedious sample preparation leading to potential sugar loss or starch degradation into sugars. A recently established, simple and robust free solution capillary electrophoresis (CE) method was used in a new application to 13 BCs (in Australia) and compared with several established methods for quantification of carbohydrates. Carbohydrates identified in BCs by CE included sucrose, maltose, glucose and fructose. The CE method is simple requiring no sample preparation or derivatization and carbohydrates are detected by direct UV detection. CE was shown to be a more robust and accurate method for measuring carbohydrates than Fehling method, DNS (3,5-dinitrosalicylic acid) assay and HPLC (high performance liquid chromatography).

  13. Capillary electrophoresis for the assay of fixed-dose combination tablets of artesunate and amodiaquine

    Directory of Open Access Journals (Sweden)

    Amin N’Cho

    2012-05-01

    Full Text Available Abstract Background Quality control of drugs in formulations is still a major challenge in developing countries. For the quality control of artesunate and amodiaquine tablets in fixed-dose combination, only liquid chromatographic methods have been proposed in the literature. There are no capillary electrophoretic methods reported for the determination of these active substances, although this technique presents several advantages over liquid chromatography (long lifetime, low price of the capillary, low volumes of electrolyte consumption in addition to simplicity. In this paper, a reliable capillary electrophoresis method has been developed and validated for the quality control of these drugs in commercial fixed-dose combination tablets. Methods Artesunate and amodiaquine hydrochloride in bilayer tablets were determined by micellar electrokinetic capillary chromatography (MEKC. Analytes were extracted from tablets by sonication with a solvent mixture phosphate buffer pH 7.0-acetonitrile containing benzoic acid as internal standard. Separation was carried out on Beckman capillary electrophoresis system equipped with fused silica capillary, 30 cm long (20 cm to detector × 50 μm internal diameter, using a 25 mM borate buffer pH 9.2 containing 30 mM sodium dodecyl sulfate as background electrolyte, a 500 V cm−1 electric field and a detection wavelength of 214 nm. Results Artesunate, amodiaquine and benzoic acid were separated in 6 min. The method was found to be reliable with respect to specificity,linearity of the calibration line (r2 > 0.995, recovery from synthetic tablets (in the range 98–102%, repeatability (RSD 2–3%, n = 7 analytical procedures. Application to four batches of commercial formulations with different dosages gave content in good agreement with the declared content. Conclusion The MEKC method proposed is reliable for the determination of artesunate and amodiaquine hydrochloride in fixed

  14. p-Hydrazinobenzenesulfonic Acid Derivatives of Carbohydrates and Their Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    p-Hydrazinobenzenesulfonic acid is explored as a novel ultraviolet labeling reagent for capillary electrophoresis (CE) of mono- and disaccharides. The labeling reaction takes less than 10 minutes and introduces both of absorption and charge groups into the sugars.

  15. Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Yan XUE; Hai Ying YANG; Yong Tan YANG

    2005-01-01

    A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.

  16. Trace analysis of organic ions in ice samples by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Capillary electrophoresis was tested as a new analytical method for ice samples. Comparisons to ion chromatography were made concerning accuracy, detection limits, reproducibility, necessary sample volume and time consumption. (author) 1 fig., 3 refs.

  17. Determination of biogenic amines in beer and wine by capillary electrophoresis-tandem mass spectrometry.

    Science.gov (United States)

    Daniel, Daniela; Dos Santos, Vagner Bezerra; Vidal, Denis Tadeu Rajh; do Lago, Claudimir Lucio

    2015-10-16

    A capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) method for the simultaneous assessment of nine biogenic amines (spermine, spermidine, putrescine, cadaverine, histamine, phenylethylamine, tryptamine, tyramine, and urocanic acid) in commercial samples of beer and wine is introduced. The samples were submitted to a simple clean-up step with poly(vinylpolypyrrolidone) followed by filtration. Electrophoretic separation in a polyvinyl alcohol (PVA)-coated capillary using 0.5 mol L(-1) acetic acid (pH 2.5) as background electrolyte and detection by electrospray-tandem mass spectrometry was employed. The range of the correlation coefficients of the calibration curves of the analyzed compounds was 0.996-0.999, and the limits of detection and limits of quantification were in the range of 1-2 μg L(-1) and 3-8 μg L(-1), respectively. The recovery values for samples spiked at three concentration levels (0.2, 0.5, and 1.0 mg L(-1)) ranged from 87 to 113% with standard deviation not greater than 5.8%. The use of a PVA-coated silica capillary allows suppressing the electroosmotic flow and, consequently, increasing of the separation efficiency. The method was successfully used to determine biogenic amines in commercial samples of beer and wine.

  18. Self-assembled covalent capillary coating of diazoresin/carboxyl fullerene for analysis of proteins by capillary electrophoresis and a comparison with diazoresin/graphene oxide coating.

    Science.gov (United States)

    Yu, Bing; Shu, Xi; Cong, Hailin; Chen, Xin; Liu, Huwei; Yuan, Hua; Chi, Ming

    2016-03-11

    Self-assembled and covalently linked capillary coatings of carboxyl fullerenes (C60-COOH) were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/C60-COOH coatings based on ionic bonding was fabricated first on the inner surface of silica capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. The covalently bonded coatings had the ability of suppressing protein adsorption on the inner surface of silica capillary, and thus the baseline separation of lysozyme (Lys), cytochrome c (Cyt-c), bovine serum albumin (BSA) and myoglobin (Mb) was achieved within 13min by using capillary electrophoresis (CE). The covalently linked DR/C60-COOH capillary coatings presented good chemical stability and repeatability. The reproducibility of the separation of proteins was less than 1%, 2.5%, and 3.5%, respectively, for run-to-run, day-to-day, capillary-to-capillary, respectively; and the RSD of migration time for the proteins are all less than 2.5% after a continuous 100 times running in a coating column. Compared with DR/graphene oxide (GO) coatings prepared by the same method, the DR/C60-COOH capillary coatings showed excellent protein separation performance due to a self-lubrication based anti-fouling mechanism. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE.

  19. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  20. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria

    Science.gov (United States)

    2009-11-01

    Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria by Dimitra N. Stratis-Cullum, Sun...Aptamer Binding to Campylobacter jejuni Bacteria Dimitra N. Stratis-Cullum, Sun McMasters, and Paul M. Pellegrino Sensors and Electron Devices...To) 2007–2008 4. TITLE AND SUBTITLE Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter jejuni Bacteria 5a

  1. Role of capillary electrophoresis in the fight against doping in sports.

    Science.gov (United States)

    Harrison, Christopher R

    2013-08-06

    At present the role of capillary electrophoresis in the detection of doping agents in athletes is, for the most part, nonexistent. More traditional techniques, namely gas and liquid chromatography with mass spectrometric detection, remain the gold standard of antidoping tests. This Feature will investigate the in-roads that capillary electrophoresis has made, the limitations that the technique suffers from, and where the technique may grow into being a key tool for antidoping analysis.

  2. Nonaqueous capillary electrophoresis of imatinib mesylate and related substances.

    Science.gov (United States)

    Ye, Lei; Huang, Yifei; Li, Jian; Xiang, Guangya; Xu, Li

    2012-08-01

    In the present study, nonaqueous capillary electrophoretic separation of imatinib mesylate (IM) and related substances, N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine (PYA), N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-4-((piperazin-1-yl)methyl) benzamide (NDI) and 4-chloromethyl-N-(4-methyl-3-((4-(pyridin-3-yl) pyrimidin-2-yl) amino) phenyl) benzamide (CPB) was developed. The influential factors affecting separation, including type and concentration of the electrolyte, applied voltage, and buffer modifier were investigated. Baseline separation of the studied analytes was obtained using a buffer of 50 mM Tris and 50 mM methanesulfonic acid in methanol at a apparent pH (pH*) of 1.65. To enhance the sensitivity, large-volume sample stacking was employed for online concentration. The strongest analytical signal with a suitable separation was achieved when the injection time was 100 s. The linearity ranges of PYA and NDI were 0.100-2.50 μg mL(-1), and that of CPB was 0.125-2.50 μg mL(-1), with good coefficients (r(2) > 0.9948). The relative standard deviations of intra- and interday were satisfactory. Under the optimized conditions, seven batches of the synthesized samples were analyzed and CPB was detected in two batches. Owing to its simplicity, effectiveness, and low price, the developed method is promising for quality control of IM.

  3. Accurate determination of peptide phosphorylation stoichiometry via automated diagonal capillary electrophoresis coupled with mass spectrometry: proof of principle.

    Science.gov (United States)

    Mou, Si; Sun, Liangliang; Dovichi, Norman J

    2013-11-19

    While reversible protein phosphorylation plays an important role in many cellular processes, simple and reliable measurement of the stoichiometry of phosphorylation can be challenging. This measurement is confounded by differences in the ionization efficiency of phosphorylated and unphosphorylated sites during analysis by mass spectrometry. Here, we demonstrate diagonal capillary electrophoresis-mass spectrometry for the accurate determination of this stoichiometry. Diagonal capillary electrophoresis is a two-dimensional separation method that incorporates an immobilized alkaline phosphatase microreactor at the distal end of the first capillary and employs identical electrophoretic separation modes in both dimensions. The first dimension is used to separate a mixture of the phosphorylated and unphosphorylated forms of a peptide. Fractions are parked in the reactor where they undergo complete dephosphorylation. The products are then periodically transferred to the second capillary and analyzed by mass spectrometry (MS). Because the phosphorylated and unphosphorylated forms differ in charge, they are well resolved in the first dimension separation. Because the unphosphorylated and dephosphorylated peptides are identical, there is no bias in ionization efficiency, and phosphorylation stoichiometry can be determined by the ratio of the signal of the two forms. A calibration curve was generated from mixtures of a phosphorylated standard peptide and its unphosphorylated form, prepared in a bovine serum albumin tryptic digest. This proof of principle experiment demonstrated a linear response across nearly 2 orders of magnitude in stoichiometry.

  4. Analysis of Glutamic Acid in Cerebrospinal Fluid by Capillary Electrophoresis with High Frequency Conductivity Detection

    Institute of Scientific and Technical Information of China (English)

    Hai Yun ZHAI; Jun Mei WANG; Xiao Li YAO; Xue Cai TAN; Pei Xiang CAI; Zuan Guang CHEN

    2005-01-01

    A rapid method to determine glutamic acid (Glu) in cerebrospinal fluid (CSF) by capillary electrophoresis with high frequency conductivity detection (contactless conductivity detection) was described. The CSF sample was pretreated with silver cation resin to remove high concentration of Cl- ions in CSF. The separation was achieved in the buffer solution of 10 mmol/L Tris and 8 mmol/L boric acid at the separation voltage of 20.0 kV. Glu showed linear response in the range of 5.0×10-6 to 6.0×10-3 mol/L, the limit of detection was 1.0×10-6 mol/L. The method was used for analysis Glu in CSF satisfactorily with a recovery of 97.8-98.8%.

  5. Quantification of Fumaria officinalis isoquinoline alkaloids by nonaqueous capillary electrophoresis-electrospray ion trap mass spectrometry.

    Science.gov (United States)

    Sturm, Sonja; Strasser, Eva-Maria; Stuppner, Hermann

    2006-04-21

    A capillary electrophoresis (CE) method using non-aqueous (NA) separation solutions combined with an ion trap mass spectrometer (MS and MS/MS) as detection device is presented for the separation, identification and quantification of isoquinoline alkaloids from Fumaria officinalis. The best results were obtained with a mixture of acetonitrile-methanol (9:1, v/v) containing 60mM ammonium acetate and 2.2M acetic acid as running electrolyte and an applied voltage of 30 kV. Electrospray MS measurements were performed in the positive ionization mode with isopropanol-water (1:1, v/v) as sheath liquid at a flow rate of 3 microl/min. Alkaloids were detected as [M+H](+)-ions and showed typical fragmentation patterns in MS/MS experiments. The developed assay was used for the quantification of seven isoquinoline alkaloids representing different structural subtypes in Fumariae herba extracts and F. herba containing phytopharmaceuticals.

  6. Capillary electrophoresis-electrochemistry microfluidic system for the determination of organic peroxides

    Science.gov (United States)

    Wang, Joseph; Escarpa, Alberto; Pumera, Martin; Feldman, Jason; Svehla, D. (Principal Investigator)

    2002-01-01

    A microfluidic analytical system for the separation and detection of organic peroxides, based on a microchip capillary electrophoresis device with an integrated amperometric detector, was developed. The new microsystem relies on the reductive detection of both organic acid peroxides and hydroperoxides at -700 mV (vs. Ag wire/AgCl). Factors influencing the separation and detection processes were examined and optimized. The integrated microsystem offers rapid measurements (within 130 s) of these organic-peroxide compounds, down to micromolar levels. A highly stable response for repetitive injections (RSD 0.35-3.12%; n = 12) reflects the negligible electrode passivation. Such a "lab-on-a-chip" device should be attractive for on-site analysis of organic peroxides, as desired for environmental screening and industrial monitoring.

  7. Analysis of neutral surfactants by non-aqueous capillary electrophoresis using an electroosmotic flow reversal.

    Science.gov (United States)

    Desbène, A M; Geulin, L; Morin, C J; Desbène, P L

    2005-03-11

    The separation of KM 20, that is in fact a mixture of non-ionic surfactants, was carried out by non-aqueous capillary electrophoresis. This complex mixture resulting from the condensation of ethylene oxide with fatty alcohols does not have chromophoric moieties. So, we analysed it after derivatization by means of 3,5-dinitrobenzoyl chloride. The proposed approach is based both on the formation of complexes with alkaline or ammonium cations in methanol and on the utilisation of a positively charged capillary. From a comparative study on the capillary treatment procedure, we used hexadimethrine bromide as electroosmotic flow reverser in order to obtain both repeatable analyses and good resolutions of the largest KM 20 oligomers. Then, among the five cations used to form complexes with KM 20, we pointed out that ammonium cation led to the best resolutions. Moreover, we evidenced that the counter-ion of this cation had a great influence on resolution because it modified the magnitude of electroosmotic flow. Ion pair formation that is more or less strong between ammonium and its counter-ion was involved in this variation of electroosmotic flow. So, we calculated the association constants for various ammonium salts in methanol. Then, using ammonium chloride as background electrolyte, we optimised the concentration of this salt, in methanol, in order to reach the optimal separation of KM 20 oligomers. Thus, a baseline separation was obtained by using 6 x 10(-2) mol/L NH4Cl as running electrolyte. In these conditions, we separated, in about 30 min, more than 30 oligomers of KM 20. The distribution of these oligomers that was determined from the optimal separation, appeared consistent with that obtained from HPLC analyses. Indeed, we determined that the mean ethoxylation number was equal to 18 while its real value is equal to 20.

  8. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    Science.gov (United States)

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  9. On-capillary derivatisation as an approach to enhancing sensitivity in capillary electrophoresis.

    Science.gov (United States)

    Glatz, Zdeněk

    2015-03-01

    Separation technologies play an important role in revealing biological processes at various omic levels, in pharmacological and clinical research. In this context, CE is a strong candidate for analyses of samples with rapidly increasing complexity. Even though CE is well known for its many advantages in this regard, the sensitivity of CE analyses is insufficient for many applications. Accordingly, there are generally three main options for enhancing the sensitivity of CE analyses - using special detection techniques, using sample pre-concentration and derivatisation. Derivatisation is often the method of choice for many laboratories, since it is simple and provides several advantages such as small sample volume demand and the possibility of automation. Although it can be performed in different ways depending on where the reaction takes place, this article reviews one of the simplest and at the same time most useful approaches on-capillary derivatisation. Even if in many cases the use of on-capillary derivatisation alone is enough to improve the detection sensitivity, on other occasions it needs to be employed in combination with the other above-mentioned strategies. After a simple discussion of derivatisation in general, special attention is focused on the on-capillary approach and methodologies available for on-capillary reactant mixing. Its applications in various fields are also described.

  10. Evaluation of The Interaction between Netropsin and Double Stranded DNA by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.07±0.10)×105 (mol/L)-1. The binding stoichiometry was 1:1. The use of polyacrylamide coated capillary showed better effect in the analysis of DNA than noncoated capillary.

  11. Optimization of affinity capillary electrophoresis for routine investigations of protein-metal ion interactions.

    Science.gov (United States)

    Alhazmi, Hassan A; Deeb, Sami El; Nachbar, Markus; Redweik, Sabine; Albishri, Hassan M; El-Hady, Deia Abd; Wätzig, Hermann

    2015-10-01

    To facilitate the implementation of affinity capillary electrophoresis into routine binding screening studies of proteins with metal ions, method acceleration, transfer and precision improvement were investigated. Affinity capillary electrophoresis was accelerated by using shorter capillaries, employing lower sample concentrations and smaller injection volumes. Intra- and inter-instrument method transfers were investigated considering the temperature setting of the capillary cooling system. For intra-instrument method transfer, similar results were obtained when transferring a method from a long (62 cm) to a short (31 cm) capillary. The analysis time was reduced from 9 to 4 min. In case of inter-instrument method transfer, interaction results showed small variation on the capillary electrophoresis instrument with inefficient capillary cooling system. Binding measurement precision was enhanced by slightly pushing the sample above the beginning of the capillary. Changing the buffer vials after each 30 runs and employing extra flushing after each 60 subsequent runs further enhanced the precision. The use of 0.1 molar ethylenediaminetetraacetic acid in the rinsing solution successfully desorbs the remaining metal ions from the capillary wall. Excellent precision for apparent mobility ratio measurements was achieved for different protein-metal ion interactions (relative standard deviation of 0.16-0.89%, 15 series, 12 runs for each).

  12. Wheat cultivar discrimination by capillary electrophoresis of gliadins in isoelectric buffers.

    Science.gov (United States)

    Capelli, L; Forlani, F; Perini, F; Guerrieri, N; Cerletti, P; Righetti, P G

    1998-02-01

    A modified method is reported for screening of wheat cultivars: capillary zone electrophoresis of gliadins in isoelectric buffers. Previously published procedures recommended a 100 mM phosphate buffer, supplemented with 0.05% hydroxypropylmethylcellulose and 20% acetonitrile, in uncoated capillaries. Due to the very high conductivity of such a buffer (4.7 mmhos at 25 degrees C) high speed separations (10-12 min analysis time at 800 V/cm) could only be elicited in 20 microm internal diameter (ID) capillaries, at the expense of sensitivity. In the present report, we optimized the background electrolyte as follows: 40 mM aspartic acid (pH=pI=2.77) in the presence of 7 M urea and 0.5% short-chain hydroxyethylcellulose (Mn 27000 Da; apparent pH 3.9 in 7 M urea). As an alternative recipe, the same isoelectric buffer can be supplemented with a mixed organic solvent composed of 4 M urea and 20% acetonitrile (apparent pH 3.66). Due to the much lower conductivity (0.7 mmhos), separations can be carried out at 1000 V/cm in only 10 min, but in larger bore capillaries (50 microm ID), ensuring a five-times higher sensitivity. The gliadin patterns thus obtained are species-specific and allow easy identification of all cultivars tested of both durum and bread wheat. No adsorption of proteins to the silica wall seems to occur and high reproducibility in peak areas and transit times is obtained.

  13. Analysis of anionic metallized azo and formazan dyes by capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Poiger, T; Richardson, S D; Baughman, G L

    2000-07-21

    Capillary electrophoresis-mass spectrometry was applied to the separation of several anionic dyes containing copper(II), chromium(III), or cobalt(III) as part of the dye molecule. The dyes were separated using a 110 cm x 50 microm uncoated fused-silica capillary and a 5 mM ammonium acetate buffer (pH 9) containing 40% acetonitrile. Excellent separation efficiencies (N = 500,000 plates/column) and low detection limits of 20-50 pg (selected ion monitoring, S/N = 10) were achieved. Mass spectra were acquired at different cone voltages. At low cone voltages (low collision energies), sensitivity was maximized and the mass spectra contained only signals of the (multiply charged) molecular ions and low levels of sodium ion and proton adducts. At higher cone voltages, the 2:1 (ligand:metal) chromium and cobalt dyes showed losses of one of the two dye ligands, accompanied by a reduction of the metal. The copper dyes showed signals due to loss of SO2 and SO3-, but no release of metal. Azo cleavage, otherwise typical of azo dyes, was not observed with the metallized dyes.

  14. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1993-10-01

    This program seeks the development of capillary electrokinetic separation techniques and associated optical methods of detection. Fundamental studies of pertinent separation and band broadening mechanisms are being conducted, with the emphasis on understanding systems that include highly-ordered assemblies as running buffer additives. The additives include cyclodextrins, affinity reagents, and soluble (entangled) polymers and are employed with capillary electrophoresis, CE and/or micellar electrokinetic capillary chromatography, MECC modes of separation. The utility of molecular modeling techniques for predicting the effects of highly ordered assemblies on the retention behavior of isomeric compounds is under investigation. The feasibility of performing separations using a non-aqueous solvent/fullerene electrochromatographic system is being explored. The analytical methodologies associated with these capillary separation techniques are being advanced through the development of retention programming instumentation/techniques and new strategies for performing optical detection. The advantages of laser fluorimetry are extended through the inclusion of fluorogenic, reagents in the running buffer. These reagents include oligonucleotide intercalation reagents for detecting DNA fragments. Chemiluminescence detection using post-capillary reactors/flow cells is also in progress. Successful development of these separation and detection systems will fill current voids in the capabilities of capillary separation techniques.

  15. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.A.

    1993-05-01

    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  16. Recent advances in amino acid analysis by capillary electrophoresis.

    Science.gov (United States)

    Poinsot, Véréna; Carpéné, Marie-Anne; Bouajila, Jalloul; Gavard, Pierre; Feurer, Bernard; Couderc, François

    2012-01-01

    This paper describes the most important articles that have been published on amino acid analysis using CE during the period from June 2009 to May 2011 and follows the format of the previous articles of Smith (Electrophoresis 1999, 20, 3078-3083), Prata et al. (Electrophoresis 2001, 22, 4129-4138) and Poinsot et al. (Electrophoresis 2003, 24, 4047-4062; Electrophoresis 2006, 27, 176-194; Electrophoresis 2008, 29, 207-223; Electrophoresis 2010, 31, 105-121). We present new developments in amino acid analysis with CE, which are reported describing the use of lasers or light emitting diodes for fluorescence detection, conductimetry electrochemiluminescence detectors, mass spectrometry applications, and lab-on-a-chip applications using CE. In addition, we describe articles concerning clinical studies and neurochemical applications of these techniques.

  17. Nonionic surfactant enhanced semipermanent coatings for capillary electrophoresis of inorganic anions without use of organic additives.

    Science.gov (United States)

    Yao, Lihua; Liu, Qian; Li, Yi; Yao, Shouzhuo

    2011-09-01

    Separation of inorganic anions by capillary electrophoresis (CE) is usually conducted in co-electroosmotic mode due to the large electrophoretic mobilities of inorganic anions. Semipermanent surfactant coatings have been shown to be effective for CE of inorganic anions due to their strong capability of electroosmotic flow (EOF) manipulation. However, semipermanent coatings often suffer from their unsatisfactory stability. In addition, organic solvent additives are usually required to adjust the selectivity, which also aggravate the degradation of coating. In this work, a novel semipermanent coating consisting of cationic Gemini surfactant 18-10-18 and nonionic surfactant Tween 20 was developed to separate inorganic anions in CE. This coating is easy to prepare and more stable than pure Gemini coating. The introduction of nonionic surfactant in the coating not only suppresses the reversed EOF but can also adjust the selectivity of separation. Good separations of six model anions were achieved, the separation efficiency was as high as 65040-169700 plates/m and the RSDs of the migration times were less than 0.5 and 2.5% for run-to-run and day-to-day assays, respectively. Calibration curves were linear in the range of 0.05-5.0 mM; the detection limits ranged from 20 to 50 μM. More importantly, no organic solvents are required in the background buffer to achieve the satisfactory separations. This guarantees the coating stability and makes the method greener than most of other methods for CE of inorganic anions.

  18. A novel covalent coupling method for coating of capillaries with liposomes in capillary electrophoresis.

    Science.gov (United States)

    Mei, Jie; Xu, Jian-Rong; Xiao, Yu-Xiu; Liao, Xiao-Yan; Qiu, Guo-Fu; Feng, Yu-Qi

    2008-09-01

    A novel covalent coupling method for coating of capillaries with liposomes has been developed, which includes three steps: (i) epoxy-diol coating, (ii) activation with 2,2,2-trifluoroethanesulfonyl chloride, and (iii) liposome coupling. The coating conditions, such as the reaction time and temperature of liposome coupling, the content of dimyristoylphosphatidylethanolamine in liposomes, were optimized. Vesicles were visualized on the inner silica wall as confirmed by atomic force microscopy. The effectiveness of the coating was demonstrated by investigating the effect of pH of BGE on EOF and separating neutral compounds. The intra- and inter-capillary variations in EOF are 4.02% RSD (n=30) and 6.72% RSD (n=4) respectively, and the coated capillaries can be used to perform analysis at least for one month without any performance deterioration when stored at 4 degrees C. A set of drugs with diverse structures was applied into the developed liposome-coated CE. The normalized capacity factor (K) was introduced to quantitatively evaluate drug-membrane interactions. The relationship between log K and the fraction dose absorbed in humans (Fa%) shows that the liposome-coated CE can be utilized for in vitro prediction of Fa% of drugs that follow the transcellular passive transport route.

  19. Capillary electrophoresis with noncovalently bilayer-coated capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids.

    Science.gov (United States)

    Zheng, Chang; Liu, Youping; Zhou, Qiuhong; Di, Xin

    2010-10-15

    A novel noncovalently bilayer-coated capillary using cationic polymer polybrene (PB) and anionic polymer (sodium 4-styrenesulfonate) (PSS) as coatings was prepared. This PB-PSS coating showed good migration-time reproducibility for proteins and high stability in the range of pH 2-10 and in the presence of 1M NaOH, acetonitrile and methanol. Capillary electrophoresis with PB-PSS coated capillaries was successfully applied to quantitatively investigate the stability of bovine serum albumin, ovomucoid, β-lactoglobulin and lysozyme in simulated gastrointestinal fluids. β-lactoglobulin A and β-lactoglobulin B were both stable in simulated gastric fluid with degradation percentages of 34.3% and 17.2% after 60min of incubation, respectively. Bovine serum albumin, ovomucoid and lysozyme were stable in simulated intestinal fluid with degradation percentages of 17.7%, 23.4% and 22.8% after 60min of incubation, respectively. The superiority of the proposed method over sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and capillary electrophoresis with untreated fused silica capillaries was demonstrated and emphasized.

  20. Capillary electrophoresis as a tool for the characterization of pentosan nanoparticles.

    Science.gov (United States)

    Abdel-Haq, Hanin; Bossù, Elena

    2012-09-28

    Because capillary zone electrophoresis (CZE) showed higher resolution for highly charged large carbohydrates and complex structures when compared to other chromatographic separation methods, it was chosen for the characterization of nanoparticles (NPs) of pentosan polysulfate (PPS). Thus, using the CZE technique, we developed a reliable, sensitive and rapid protocol that allowed the detection and characterization of PPS NPs. This protocol was able to determine the profile of both the NPs and the species of PPS entrapped into them, and to quantify free and bound PPS showing high reproducibility, acceptable accuracy and a good degree of precision. Moreover, it allowed the evaluation of the size and charge of the NPs. This protocol might be suitable for the characterization of other kinds of NPs also.

  1. Analysis of Phenolic Compounds in Coke Plant Wastewater by Capillary Zone Electrophoresis with Inhibited Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    Xiang Dong XU; Yong Gang HU; Ze Yu YANG

    2006-01-01

    A capillary electrophoresis(CE) with on-line inhibited chemiluminescence (CL) detection was firstly used for the simultaneous analysis of benzenediol isomers and phenol. It is based on the quenching effect of benzenediol isomers and phenol on the chemiluminescence reaction of luminol with potassium ferricyanide in sodium hydroxide medium. Under the optimum conditions, the four phenols were baseline separated and detected in less than 10 min.The detection limits (S/N=3) for hydroquinone, resorcinol, catechol and phenol were 2.9×10-8mol/L, 3.7×10-7 mol/L, 8.4×10-8 mol/L and 4.4×10-6 mol/L, respectively. Finally, the presented method has been successfully applied to real sample.

  2. Application of 2,3-Naphthalenediamine in Labeling Natural Carbohydrates for Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Jim-Min Fang

    2012-06-01

    Full Text Available Neutral and acidic monosaccharide components in Ganoderma lucidum polysaccharide are readily labeled with 2,3-naphthalenediamine, and the resulting saccharide-naphthimidazole (NAIM derivatives are quantified by capillary electrophoresis (CE in borate buffer. Using sulfated-α-cyclodextrin as the chiral selector, enantiomers of monosaccharide-NAIMs are resolved on CE in phosphate buffer, allowing a simultaneous determination of the absolute configuration and sugar composition in the mucilage polysaccharide of a medicinal herb Dendrobium huoshanense. Together with the specific enzymatic reactions of various glycoside hydrolases on the NAIM derivatives of glycans, the structures of natural glycans can be deduced from the digestion products identified by CE analysis. Though heparin dissachrides could be successfully derived with the NAIM-labeling method, the heparin derivatives with the same degree of sulfation could not be separated by CE.

  3. The selective determination of sulfates, sulfonates, and phosphates in urine by capillary electrophoresis/mass spectrometry.

    Science.gov (United States)

    Bunz, Svenja-Catharina; Neusüß, Christian

    2013-01-01

    Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, anions of biological relevance such as sulfates, sulfonates, and phosphates are rarely included in common techniques for metabolite studies. In this protocol, we demonstrate a unique method to selectively determine these anions. The method comprises a capillary electrophoresis separation using an acidic background electrolyte (pH ≤ 2) and anodic detection by mass spectrometry via negative electrospray ionization. In this way, only anions of strong acids like sulfates are determined. The selectivity for sulfur-containing species is proved based on the specific isotopic ratios. In conjunction with the accurate mass from the time-of-flight mass spectrometer, the presented method is well suited for clinical and pharmaceutical applications to identify possible metabolites and to quantify known metabolites.

  4. Simultaneous determination of cimetidine, famotidine, nizatidine, and ranitidine in tablets by capillary zone electrophoresis.

    Science.gov (United States)

    Wu, S M; Ho, Y H; Wu, H L; Chen, S H; Ko, H S

    2001-08-01

    A simple capillary zone electrophoresis (CZE) method is described for the simultaneous determination of cimetidine (CIM), famotidine (FAM), nizatidine (NIZ), and ranitidine (RAN). The analysis of these drugs was performed in a 100 mM phosphate buffer, pH 3.5. Several parameters were studied, including wavelength for detection, concentration and pH of phosphate buffer, and separation voltage. The quantitative ranges were 100-1,000 microM for each analyte. The intra- and interday relative standard deviations (n = 5) were all less than 4%. The detection limits were found to be about 10 microM for CIM, 20 microM for RAN, 20 microM for NIZ, and 10 microM for FAM (S/N = 3, injection 1 s) at 214 nm. All recoveries were greater than 92%. Applications of the method to the assay of these drugs in tablets proved to be feasible.

  5. Stability and Determination of Metamizole Sodium by Capillary Electrophoresis Analysis Combined with Infra-red Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    XIANG Qian; NIU Gang; WU Xian-hua; CHEN Gang

    2007-01-01

    Metamizole sodium was chosen as a representative of unstable analytes for investigation by discusing the effects of oxygen and solvent on its degradation reaction using the capillary electrophoresis technique. A possible degradation mechanism was deduced from the observed behavior and was confirmed by infra-red spectroscopic study. The degradation reaction could be inhibited obviously by methanol instead of water as the solvent of analyte. Under the optimized conditions: separation voltage of 20 kV, and 5 mmol/L disodium hydrogen phosphate and 5 mmol/L borax with 10% methanol(pH 9. 12) as the running buffer, the standard curve of metamizole sodium was linear in a range of 3.77-74.07 mg/L. A satisfactory result was achieved when the technique was used to detect metamizole sodium in tablet.

  6. Correlation between Molecular Structures and Relative Electrophoretic Mobility in Capillary Electrophoresis: Alkylpyridines

    Institute of Scientific and Technical Information of China (English)

    YAO, Xiao-Jun; FAN, Bo-Tao; DOUCET, J. P.; PANAYE, A.; LIU, Man-Cang; ZHANG, Rui-Sheng; HU, Zhi-De

    2003-01-01

    The quantitative relationship between relative electrophoretic mobility in capillary electrophoresis for a series of 31 closely related alkylpyridines and their molecular structures was studied by using CODESSA. According to the t-test on the results, we found that the three most important descriptors affecting the mobility are the relative number of rings (NR), Min e-n attraction for a C-N bond (MEN) and average complementary information index (ACIC). With these structure descriptors a good three-parameter linear model was developed to correlate the mobility of these compounds with their structures. This model can not only correctly predict the migration behavior of these compounds, but also find the structural factors which are responsible for the migration behavior of these compounds,thus can help to explain the separation mechanism of these compounds. The method used in this work can also be extended to the mobility-structure relationship research of other compounds.

  7. Analysis of Soft Drinks: UV Spectrophotometry, Liquid Chromatography, and Capillary Electrophoresis

    Science.gov (United States)

    McDevitt, Valerie L.; Rodriguez, Alejandra; Williams, Kathryn R.

    1998-05-01

    Instrumental analysis students analyze commercial soft drinks in three successive laboratory experiments. First, UV multicomponent analysis is used to determine caffeine and benzoic acid in Mello YelloTM using the spectrophotometer's software and manually by the simultaneous equations method. The following week, caffeine, benzoic acid and aspartame are determined in a variety of soft drinks by reversed-phase liquid chromatography using 45% methanol/55% aqueous phosphate, pH 3.0, as the mobile phase. In the third experiment, the same samples are analyzed by capillary electrophoresis using a pH 9.4 borate buffer. Students also determine the minimum detection limits for all three compounds by both LC and CE. The experiments demonstrate the analytical use and limitations of the three instruments. The reports and prelab quizzes also stress the importance of the chemistry of the three compounds, especially the relationships of acid/base behavior and polarity to the LC and CE separations.

  8. Using Capillary Electrophoresis to Determine the Purity of Acetylsalicylic Acid Synthesized in the Undergraduate Laboratory

    Science.gov (United States)

    Welder, Frank; Colyer, Christa L.

    2001-11-01

    Capillary electrophoresis (CE), although a powerful analytical tool, has found only limited application in undergraduate laboratory study. In an effort to expose freshman and sophomore chemistry students to this technique, thereby giving them practical instrumental experience early in their careers, we propose to use CE in the analysis of student-synthesized acetylsalicylic acid (ASA). The synthesis of ASA from salicylic acid (SA) is a routine undergraduate laboratory, although students rarely have the opportunity to test the purity of their product. The CE method described herein provides students with a method to test purity and yield of their product and to determine the effect of aging on their sample. CE can accomplish this in a short period of time, with minimal disruption to the regular laboratory curriculum. Optimized separation conditions, limits of detection, and linear range for ASA and SA are also given.

  9. Identification of inorganic improvised explosive devices using sequential injection capillary electrophoresis and contactless conductivity detection.

    Science.gov (United States)

    Blanco, Gustavo A; Nai, Yi H; Hilder, Emily F; Shellie, Robert A; Dicinoski, Greg W; Haddad, Paul R; Breadmore, Michael C

    2011-12-01

    A simple sequential injection capillary electrophoresis (SI-CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) has been developed for the rapid separation of anions relevant to the identification of inorganic improvised explosive devices (IEDs). Four of the most common explosive tracer ions, nitrate, perchlorate, chlorate, and azide, and the most common background ions, chloride, sulfate, thiocyanate, fluoride, phosphate, and carbonate, were chosen for investigation. Using a separation electrolyte comprising 50 mM tris(hydroxymethyl)aminomethane, 50 mM cyclohexyl-2-aminoethanesulfonic acid, pH 8.9 and 0.05% poly(ethyleneimine) (PEI) in a hexadimethrine bromide (HDMB)-coated capillary it was possible to partially separate all 10 ions within 90 s. The combination of two cationic polymer additives (PEI and HDMB) was necessary to achieve adequate selectivity with a sufficiently stable electroosmotic flow (EOF), which was not possible with only one polymer. Careful optimization of variables affecting the speed of separation and injection timing allowed a further reduction of separation time to 55 s while maintaining adequate efficiency and resolution. Software control makes high sample throughput possible (60 samples/h), with very high repeatability of migration times [0.63-2.07% relative standard deviation (RSD) for 240 injections]. The separation speed does not compromise sensitivity, with limits of detection ranging from 23 to 50 μg·L(-1) for all the explosive residues considered, which is 10× lower than those achieved by indirect absorbance detection and 2× lower than those achieved by C(4)D using portable benchtop instrumentation. The combination of automation, high sample throughput, high confidence of peak identification, and low limits of detection makes this methodology ideal for the rapid identification of inorganic IED residues.

  10. Capillary electrophoresis of intact basic proteins using noncovalently triple-layer coated capillaries.

    Science.gov (United States)

    Haselberg, Rob; de Jong, Gerhardus J; Somsen, Govert W

    2009-07-01

    The usefulness of a noncovalent, positively charged capillary coating for the efficient analysis of intact basic proteins with CE was studied. Capillaries were coated by subsequent flushing with solutions of 10% w/v Polybrene (PB), 3% w/v dextran sulfate (DS), and again 10% w/v PB. Coating characterization studies showed that stable coatings could be produced which exhibited a pH-independent and highly reproducible EOF. The PB-DS-PB coating was evaluated with Tris phosphate BGEs of various pH using the four basic model proteins: alpha-chymotrypsinogen A, ribonuclease A, cytochrome c, and lysozyme. Typical migration time RSDs for the proteins were less than 0.85%, and apparent plate numbers were above 125,000 using a capillary length of 40 cm. The high separation efficiency allowed detection of several minor impurities in the model proteins. Using a BGE of medium pH, the CE system with triple-layer coating appeared to be useful for the repeatable profiling of recombinant humanized mouse monoclonal immunoglobulin G(1) showing a characteristic pattern of glycoforms. The CE system was also applied to the characterization of two llama antibodies, which were produced in Saccharomyces cerevisiae, revealing the presence of a side product in one of the antibodies. The high migration time stability allowed the reliable determination of antibody-antigen binding by monitoring migration time shifts. Finally, the feasibility of using the PB-DS-PB coated capillaries for CE with mass spectrometric detection was shown by the characterization of the impure llama antibody sample.

  11. Capillary electrophoresis in the evaluation of ischemic injury: simultaneous determination of purine compounds and glutathione.

    Science.gov (United States)

    Carlucci, F; Tabucchi, A; Biagioli, B; Sani, G; Lisi, G; Maccherini, M; Rosi, F; Marinello, E

    2000-05-01

    An understanding of tissue energy metabolism and antioxidant status is of major interest in the field of organ preservation for transplantation. Nucleotide and glutathione are indicators of cell damage occurring during ischemia and reperfusion. A high performance capillary electrophoresis (HPCE) method with UV detection (185 nm) for the simultaneous analysis of intracellular free ribonucleotides, nucleosides, bases and glutathione (oxidized and reduced form) in myocardial tissues is described. The method does not involve thiol derivatization. The separations were carried out in an uncoated fused-silica capillary, 60 cm long, 52.5 cm to detector, 75 microm ID, with 20 mM Na-borate buffer, pH 10.00, at 20 kV voltage and reading at 185 nm. Injection was hydrostatic for 12 s and total analysis time was 20 min. The technique enables optimum separation of all the compounds examined and has a resolution similar to that of HPLC analysis, with the advantage of fast simultaneous measurement of cell nucleotide metabolism and redox state, not possible with HPLC.

  12. Analyses of Phytohormones in Coconut (Cocos Nucifera L. Water Using Capillary Electrophoresis-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Swee Ngin Tan

    2014-12-01

    Full Text Available Capillary electrophoresis (CE coupled with mass spectrometry (MS or tandem mass spectrometry (MS/MS is reported as an alternative and potentially useful method for the simultaneous analysis of various classes of phytohormones with diversified structures, including indole-3-acetic acid (IAA, indole-3-butyric acid (IBA, abscisic acid (ABA, gibberellic acid (GA, zeatin (Z, N6-benzyladenine (BA, α-naphthaleneacetic acid (NAA and 2,4-dichlorophenoxyacetic acid (2,4-D. The key to the CE-MS/MS analysis was based on electroosmotic flow reversal using a cationic polymer-coated capillary. Under optimum conditions, a baseline separation of eight phytohormones was accomplished within 30 min using 60 mM ammonium formate/formic acid buffer of pH 3.8 with −20 kV as the separation voltage. The accessibility of MS/MS together with the characterization by migration properties obtained by CE allows for the development of CE-MS/MS as an emerging potential method for the analysis of different classes of phytohormones in a single run. The utility of the CE-MS/MS method was demonstrated by the comprehensive screening of phytohormones in coconut (Cocos nucifera L. water after pre-concentration and purification through solid-phase extraction (SPE cartridge. IAA, ABA, GA and Z were detected and quantified in the purified coconut water extract sample.

  13. Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection.

    Science.gov (United States)

    Ivano, A R; Nazimov, I V; Lobazov, A P; Popkovich, G B

    2000-10-13

    This is an initial report to propose a novel approach in high-performance capillary electrophoresis (HPCE) for the direct detection of compounds without natural absorbance in the UV and visible spectral range, such as amino acids and carbohydrates. A refractometry detector with the 2 nl cell (Applied Systems, Minsk, Belarus) was employed to identify amino acids and carbohydrates without derivatization. The first results are provided on separation of seven free amino acids in the phosphate running buffer and three free carbohydrates in the borate-sodium dodecyl sulfate running buffer and detection by refractometer. Fused capillaries of 50 or 75 microm internal diameter and separation voltage (10-23 kV) were applied. Detection limits ranged typically from 10 to 100 fmol and the response was linear over two orders of magnitude for most of the amino acids and carbohydrates. The HPCE system demonstrated good long-term stability and reproducibility with a relative standard deviation, less than 5% for the migration time (n=10).

  14. Gold nanoparticles deposited capillaries for in-capillary microextraction capillary zone electrophoresis of monohydroxy-polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Huiyong; Knobel, Gaston; Wilson, Walter B; Calimag-Williams, Korina; Campiglia, Andres D

    2011-03-01

    This article presents the first application of gold nanoparticles deposited capillaries as pre-concentration devices for in-capillary microextraction CZE and their use for the analysis of monohydroxy-polycyclic aromatic hydrocarbons in synthetic urine samples. The successful separation of 1-hydroxypyrene, 9-hydroxyphenanthrene, 3-hydroxybenzo[a]pyrene (3-OHbap), 4-hydroxybenzo[a]pyrene and 5-hydroxybenzo[a]pyrene under a single set of electrophoretic conditions is demonstrated as well as the feasibility to obtain competitive ultraviolet absorption LOD with commercial instrumentation. Enrichment factors ranging from 87 (9-OHphe) to 100 (3-OHbap) made it possible to obtain LOD ranging from 9 ng/mL (9-OHphe and 3-OHbap) to 14 ng/mL (4-hydroxybenzo[a]pyrene).

  15. Capillary electrophoresis of heparin and other glycosaminoglycans using a polyamine running electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, Thomas N.; Trombley, John D.; Taylor, Richard T. [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States); Danielson, Neil D., E-mail: danielnd@muohio.edu [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Ethylenediamine is likely acting as an ion-pairing agent. Black-Right-Pointing-Pointer Oversulfated chondroitin sulfate is last peak instead of first peak. Black-Right-Pointing-Pointer There is about a factor of five improved detectability with a 12.5 min analysis time. Black-Right-Pointing-Pointer Use of a 50 {mu}m ID capillary is possible. - Abstract: This study involves the use of polyamines as potential resolving agents for the capillary electrophoresis (CE) of glycosaminoglycans (GAGs), specifically heparin, dermatan sulfate, chondroitin sulfate, over-sulfated chondroitin sulfate (OSCS), and hyaluronan. All of the compounds can be separated from each other with the exception of chondroitin sulfate and hyaluronan. Using optimization software, the final run conditions are found to be 200 mM ethylenediamine and 45.5 mM phosphate as the electrolyte with -14 V applied across a 50 {mu}m ID Multiplication-Sign 24.5 cm fused silica capillary at 15 Degree-Sign C. The ion migration order, with OSCS as the last instead of the first peak, is in contrast to previous reports using either a high molarity TRIS or lithium phosphate run buffer with narrower bore capillaries. Total analysis time is 12. 5 min and the relative standard deviation of the heparin migration time is about 2.5% (n = 5). The interaction mechanism between selected polyamines and heparin is explored using conductivity measurements in addition to CE experiments to show that an ion-pairing mechanism is likely.

  16. Steroid determination in fish plasma using capillary electrophoresis

    Science.gov (United States)

    Bykova, L.; Archer-Hartmann, S. A.; Holland, L.A.; Iwanowicz, L.R.; Blazer, V.S.

    2010-01-01

    A capillary separation method that incorporates pH-mediated stacking is employed for the simultaneous determination of circulating steroid hormones in plasma from Perca flavescens (yellow perch) collected from natural aquatic environments. The method can be applied to separate eight steroid standards: progesterone, 17α,20β-dihydroxypregn-4-en-3-one, 17α-hydroxyprogesterone, testosterone, estrone, 11-ketotestosterone, ethynyl estradiol, and 17β-estradiol. Based on screening of plasma, the performance of the analytical method was determined for 17α,20β-dihydroxypregn-4-en-3-one, testosterone, 11-ketotestosterone, and 17β-estradiol. The within-day reproducibility in migration time for these four steroids in aqueous samples was ≤2%. Steroid quantification was accomplished using a calibration curve obtained with external standards. Plasma samples from fish collected from the Choptank and Severn Rivers, Maryland, USA, stored for up to one year were extracted with ethyl acetate and then further processed with anion exchange and hydrophobic solid phase extraction cartridges. The recovery of testosterone and 17β-estradiol from yellow perch plasma was 84 and 85%, respectively. Endogenous levels of testosterone ranged from 0.9 to 44 ng/ml, and when detected 17α,20β-dihydroxypregn-4-en-3-one ranged from 5 to 34 ng/ml. The reported values for testosterone correlated well with the immunoassay technique. Endogenous concentrations of 17β-estradiol were ≤1.7 ng/ml. 11-Ketotestosterone was not quantified because of a suspected interferant. Higher levels of 17α,20β-dihydroxypregn-4-en-3-one were found in male and female fish in which 17β-estradiol was not detected. Monitoring multiple steroids can provide insight into hormonal fluctuations in fish.

  17. Chiral resolution of basic drugs by capillary electrophoresis with new glycosaminoglycans.

    Science.gov (United States)

    Tsukamoto, T; Ushio, T; Haginaka, J

    1999-12-09

    New glycosaminoglycans, fucose-containing glycosaminoglycan (FGAG) and depolymerized holothurian glycosaminoglycan (DHG), were investigated as chiral additives for the separation of drug enantiomers by capillary electrophoresis. The average molecular masses of FGAG and DHG were estimated to be about 59,000 and 14,000, respectively. A variety of basic drug enantiomers were resolved using 10 mM phosphate buffer, pH 5.0, containing 3% FGAG or DHG. Since chiral recognition properties of FGAG and DHG are different, some drug enantiomers were only separated by using FGAG or DHG. With regard to comparison of chiral recognition abilities of FGAG and DHG with other chiral selectors, tolperisone and eperisone enantiomers were not separated with alpha- or beta-cyclodextrin, or heparin as the chiral additives, but were separated with FGAG and DHG. The results obtained reveal that FGAG and DHG are useful as the chiral selectors for separations of drug enantiomers by CE, and that they could be complementarily used with other chiral additives.

  18. Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Melania Cârcu-Dobrin

    2017-03-01

    Full Text Available Fluoxetine is an antidepressant, a selective serotonin reuptake inhibitor (SSRI used primarily in the treatment of major depression, panic disorder and obsessive compulsive disorder. Chiral separation of racemic fluoxetine is necessary due to its enantioselective metabolism. In order to develop a suitable method for chiral separation of fluoxetine, cyclodextrin (CD modified capillary electrophoresis (CE was employed. A large number of native and derivatized, neutral and ionized CD derivatives were screened to find the optimal chiral selector. As a result of this process, heptakis(2,3,6-tri-O-methyl-β-CD (TRIMEB was selected for enantiomeric discrimination. A factorial analysis study was performed by orthogonal experimental design in which several factors are varied at the same time to optimize the separation method. The optimized method (50 mM phosphate buffer, pH = 5.0, 10 mM TRIMEB, 15 °C, + 20 kV, 50 mbar/1 s, detection at 230 nm was successful for baseline separation of fluoxetine enantiomers within 5 min. Our method was validated according to ICH guidelines and proved to be sensitive, linear, accurate and precise for the chiral separation of fluoxetine.

  19. Portable, Battery Operated Capillary Electrophoresis with Optical Isomer Resolution Integrated with Ionization Source for Mass Spectrometry

    Science.gov (United States)

    Moini, Mehdi; Rollman, Christopher M.

    2016-03-01

    We introduce a battery operated capillary electrophoresis electrospray ionization (CE/ESI) source for mass spectrometry with optical isomer separation capability. The source fits in front of low or high resolution mass spectrometers similar to a nanospray source with about the same weight and size. The source has two high voltage power supplies (±25 kV HVPS) capable of operating in forward or reverse polarity modes and powered by a 12 V rechargeable lithium ion battery with operation time of ~10 h. In ultrafast CE mode, in which short narrow capillaries (≤15 μm i.d., 15-25 cm long) and field gradients ≥1000 V/cm are used, peak widths at the base are <1 s wide. Under these conditions, the source provides high resolution separation, including optical isomer resolution in ~1 min. Using a low resolution mass spectrometer (LTQ Velos) with a scan time of 0.07 s/scan, baseline separation of amino acids and their optical isomers were achieved in ~1 min. Moreover, bovine serum albumin (BSA) was analyzed in ~1 min with 56% coverage using the data-dependent MS/MS. Using a high resolution mass spectrometer (Thermo Orbitrap Elite) with 15,000 resolution, the fastest scan time achieved was 0.15 s, which was adequate for CE-MS analysis when optical isomer separation is not required or when the optical isomers were well separated. Figures of merit including a detection limit of 2 fmol and linear dynamic range of two orders of magnitude were achieved for amino acids.

  20. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008-2010).

    Science.gov (United States)

    Breadmore, Michael C; Dawod, Mohamed; Quirino, Joselito P

    2011-01-01

    Capillary electrophoresis has been alive for over two decades now; yet, its sensitivity is still regarded as being inferior to that of more traditional methods of separation such as HPLC. As such, it is unsurprising that overcoming this issue still generates much scientific interest. This review continues to update this series of reviews, first published in Electrophoresis in 2007, with an update published in 2009 and covers material published through to June 2010. It includes developments in the fields of stacking, covering all methods from field-amplified sample stacking and large volume sample stacking, through to ITP, dynamic pH junction and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  1. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    Science.gov (United States)

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs.

  2. Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene-cobalt microsphere hybrid paste electrodes.

    Science.gov (United States)

    Liang, Peipei; Sun, Motao; He, Peimin; Zhang, Luyan; Chen, Gang

    2016-01-01

    A graphene-cobalt microsphere (CoMS) hybrid paste electrode was developed for the determination of carbohydrates in honey and milk in combination with capillary electrophoresis (CE). The performance of the electrodes was demonstrated by detecting mannitol, sucrose, lactose, glucose, and fructose after CE separation. The five analytes were well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV. The electrodes exhibited pronounced electrocatalytic activity, lower detection potentials, enhanced signal-to-noise characteristics, and higher reproducibility. The relation between peak current and analyte concentration was linear over about three orders of magnitude. The proposed method had been employed to determine lactose in bovine milk and glucose and fructose in honey with satisfactory results. Because only electroactive substances in the samples could be detected on the paste electrode, the electropherograms of both food samples were simplified to some extent.

  3. Capillary electrophoresis with electrospray ionisation-mass spectrometry for the characterisation of degradation products in aged papers.

    Science.gov (United States)

    Dupont, Anne-Laurence; Seemann, Agathe; Lavédrine, Bertrand

    2012-01-30

    A methodology for capillary electrophoresis/electrospray ionisation mass spectrometry (CE/ESI-MS) was developed for the simultaneous analysis of degradation products from paper among two families of compounds: low molar mass aliphatic organic acids, and aromatic (phenolic and furanic) compounds. The work comprises the optimisation of the CE separation and the ESI-MS parameters for improved sensitivity with model compounds using two successive designs of experiments. The method was applied to the analysis of lignocellulosic paper at different stages of accelerated hygrothermal ageing. The compounds of interest were identified. Most of them could be quantified and several additional analytes were separated.

  4. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  5. Separation of selenium compounds by CE-ICP-MS in dynamically coated capillaries applied to selenized yeast samples

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente

    2004-01-01

    The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication and subs......The selenium species in nutritional supplement tablets, based on selenized yeast, were separated by capillary zone electrophoresis using capillaries coated dynamically with poly(vinyl sulfonate) and detected by ICP-MS. Sample pre-treatment consisted of cold-water extraction by sonication......-water extract within 13 min. The efficiency of the system corresponded to 620 000 theoretical plates. When spiking the sample with available standards, co-migration was observed with selenomethionine and selenocystine-Se-methylselenocysteine-the latter species were not separated. When the cold-water extract...

  6. Determination of anions with an on-line capillary electrophoresis method; Anionien on-line maeaeritys kapillaarielektroforeesilla - MPKT 10

    Energy Technology Data Exchange (ETDEWEB)

    Siren, H.; Saerme, T.; Kotiaho, T.; Hiissa, T.; Savolahti, P.; Komppa, V. [VTT Chemical Technology, Espoo (Finland)

    1998-12-31

    The aim of the study was to set-up an on-line capillary electrophoresis method for determination of anions in process waters of pulp and paper industry with exporting the results to the process control system of the mill. The quantification is important, since it will give information about the possible causes of precipitation. In recent years, the capillary electrophoresis (CE) due to its high separation efficiency has been shown as a method to take into consideration when analyzing chemical species ranging from small inorganic anions to different macromolecules. Many compounds are not easily detected in their native state, why analysis methods must be developed to improve their detection. Especially, small inorganic and organic anions which do not have chromophores are not sensitive enough for direct-UV detection. In such analyses the anions are mostly detected with indirect-UV technique. Capillary electrophoresis instruments are used to analyze samples in off-line, which seldom represent the situation in process. Therefore, on-line instrument technology with autoanalyzing settings will be needed in quality control. The development of a fully automatic capillary electrophoresis system is underway in co-operation with KCL (The Finnish Pulp and Paper Research Institute). In our research, we have first concentrated on the determination of sulphate in waters of paper industry. The method used for detection of sulphate is based on indirect-UV detection with CE, where the background electrolyte (BGE) is an absorbing mixture of secondary amines. The whole procedure for quantification of sulphate is performed within 15 minutes, after which a new sample is analyzed automatically. The only sample pretreatment is filtration, which is necessary before analysis. The concentrations of sulphate in process waters tested were between 300 and 800 ppm. Our tests show that a simultaneous determination of chloride, sulphate, nitrate, nitrite, sulphite, carbonate and oxalate is also

  7. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    Science.gov (United States)

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  8. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  9. Tudy on drug displacement interactions by capillary electrophoresis-frontal analysis

    Institute of Scientific and Technical Information of China (English)

    Zhou Dawei; Li Famei

    2006-01-01

    The interaction between 18-methyl norethindrone and ketoprofen,including the displacement of ketoprofen from human serum albumin binding sites,was investigated by the capillary electrophoresis-frontal analysis method (CE-FA)at room temperature.A very large sample plug was introduced hydrostatically into the capillary(65 cm x 50 μm i.d.;effective length of 35 cm)over 80 s at a height difference of 11 cm.The working conditions for CE-FA separation are as follows:operating voltage,10 kV;running buffer,67 mmol.L-1 phosphate,pH 7.4.The unbound ketoprofen concentration was directly measured from the height of the frontal peak.When the concentration of 18-methyl norethindrone was increased from 0 to 200 μmol/L,the unbound ketoprofen concentration was found to increase from 22.4 to 26.4 μmol/L at 100 μmol/L total ketoprofen concentration and from 82.1 to 106.2 μmol/L at 200 μmol/L total ketoprofen concentration.From these data,it may be deduced that the administration of high concentration of 18-methyl norethindrone can displace ketoprofen from its secondary binding site.

  10. Determination of ibuprofen and flurbiprofen in pharmaceuticals by capillary zone electrophoresis.

    Science.gov (United States)

    Hamoudová, Rafifa; Pospísilová, Marie

    2006-06-16

    Capillary zone electrophoresis with spectrophotometric detection was used for the determination of ibuprofen (IB) and flurbiprofen (FL) in pharmaceuticals. The separation was carried out in a fused silica capillary (60 cm x 100 microm i.d. effective length 45 cm) at 30 kV with UV detection at 232 nm. The optimized background electrolyte was 20mM N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) with 20mM imidazole and 10mM alpha-cyclodextrin of pH 7.3. 2-Naphthoxyacetic acid was used as internal standard. A single analysis took less than 5 min. Rectilinear calibration ranges were 2-500 mg l(-1) for IB and 1-60 mg l(-1) for FL. The relative standard deviations (R.S.D.) values (n=6) were 1.53% for IB and 1.29% for FL (for 200 mg l(-1) IB and 10 mg l(-1) FL). This validated method has been successfully applied for the routine analysis of 10 commercially available pharmaceutical preparations (syrup, tablets, cream and gel).

  11. Multiresidue analysis of phenylurea herbicides in environmental waters by capillary electrophoresis using electrochemical detection.

    Science.gov (United States)

    Chicharro, M; Bermejo, E; Sánchez, A; Zapardiel, A; Fernandez-Gutierrez, A; Arraez, D

    2005-05-01

    A rapid multiresidue method has been developed for the analysis of seven phenylurea herbicides in the presence of two s-triazines in environmental waters. A simple end-column electrochemical detector was used in combination with a commercially-available capillary electrophoresis instrument with UV detection. The determination of phenylurea pesticides using micellar electrokinetic capillary chromatography with electrochemical detection represents the first such determination that has been reported. In both detection systems, linear ranges were obtained for the seven phenylurea herbicides at concentrations lower than 2.0x10(-5) mol l(-1), in 0.020 mol l(-1) phosphoric acid at pH 7.0 and containing 0.020 mol l(-1) of sodium dodecylsulfate, in order to obtain selectivity in the additional separation by a micellar distribution process. Under these conditions a detection limit lower than 5.0x10(-6) mol l(-1) (0.25 pmol of pesticide) was achieved for most of them. The pesticides were resolved in less than 30 min.

  12. Simultaneous Determination of FOur Arsenic Additives in Animal Feed by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    BaoguoSun; MiroslavMacka; 等

    2002-01-01

    Four additives,[4-hydroxy-3-nitrophenylarsonic acid(Roxarsone),4-nitrophenylarsonic acid(4-NPAA),phenylarsonic acid (PAA) and p-aminophenylarsonic acid (p-ASA)] in chicken feed were simultaneously determinated by capillary zone electrophoresis(CZE) with on -line UV-detection.Based on our previous research,the sample extraction,cleanup and detection condition were discussed and optimised,Analytes were extracted with acidic 20% acetonitrile and the cleaned up with C18 SPE before the detection.20mM Carbonate buffer at pH10 was used as electrolyte,A fused silica capillary(48.5cm x75um),18kV working voltage and 200nm detection wavelength were applied for CE detection.Acetonitrile functioned as a modifier to reduce the conductivity of the sample soulution during the CE separation.The sensityvity of the method is sufficient for the routine inspection of Roxarsone in animal feed,The recoveries for all analytes were reasonably good but the precision of the method was poorer than HPLC.

  13. A New Dual-electrode and Multi-channel Electrochemical DetectionSystem for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bing Yi YANG; Jin Yuan MO; Rong LAI

    2004-01-01

    A new type of dual-electrode and multi-channel electrochemical detection technology for capillary electrophoresis is described in this paper. Two detectors(the amperometric detector and the conductometric detector)or two conductometric detectors are connected to the same capillary electrophoresis system. The whole system possesses the advantages of the two electrochemical detectors including sparing time,improving the analytical speed and expanding the sample range.The working electrode and detector cell are handled easily.The system was applied to sample detection with satisfactory results.

  14. 6-O-(Hydroxypropyltrimethylammonia)-β-cyclodextrin with Low Degree of Substitution: Convenient Preparation and its Application as a Chiral Selector in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A cationic cyclodextrin derivative 6-O-(hydroxypropyltrimethylammonia)-β-cyclodextrin (GTA-β-CD) with low degree of substitution was prepared through a convenient method in solid phase. The product could be used as a valuable chiral selector in the capillary electrophoresis (CE) separation of some acidic drug enantiomers such as naproxen, ofloxacin,ibuprofen and warfarin.

  15. Simultaneous determination of caffeine, paracetamol, and ibuprofen in pharmaceutical formulations by high-performance liquid chromatography with UV detection and by capillary electrophoresis with conductivity detection.

    Science.gov (United States)

    Cunha, Rafael R; Chaves, Sandro C; Ribeiro, Michelle M A C; Torres, Lívia M F C; Muñoz, Rodrigo A A; Dos Santos, Wallans T P; Richter, Eduardo M

    2015-05-01

    Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 μm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) β-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L(-1) by liquid chromatography and 39, 32, and 49 μmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods.

  16. Multiplex and quantitative pathogen detection with high-resolution capillary electrophoresis-based single-strand conformation polymorphism.

    Science.gov (United States)

    Hwang, Hee Sung; Shin, Gi Won; Chung, Boram; Na, Jeongkyeong; Jung, Gyoo Yeol

    2013-01-01

    Among the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products. In this report, a protocol for the detection of 12 pathogenic bacteria is provided. Pathogen markers were amplified by PCR using universal primers and separated by CE-SSCP; each marker peak was well separated at baseline and showed a characteristic mobility, allowing the easy identification of the pathogens.

  17. Interactions of helquats with chiral acidic aromatic analytes investigated by partial-filling affinity capillary electrophoresis.

    Science.gov (United States)

    Růžička, Martin; Koval, Dušan; Vávra, Jan; Reyes-Gutiérrez, Paul E; Teplý, Filip; Kašička, Václav

    2016-10-07

    Noncovalent molecular interactions between helquats, a new class of dicationic helical extended diquats, and several chiral acidic aromatic drugs and catalysts have been investigated using partial-filling affinity capillary electrophoresis (PF-ACE). Helquats dissolved at 1mM concentration in the aqueous background electrolyte (40mM Tris, 20mM acetic acid, pH 8.1) were introduced as ligand zones of variable length (0-130mm) into the hydroxypropylcellulose coated fused silica capillary whereas 0.1mM solutions of negatively charged chiral drugs or catalysts (warfarin, ibuprofen, mandelic acid, etodolac, binaphthyl phosphate and 11 other acidic aromatic compounds) were applied as a short analyte zone at the injection capillary end. After application of electric field, analyte and ligand migrated against each other and in case of their interactions, migration time of the analyte was increasing with increasing length of the ligand zone. From the tested compounds, only isomers of those exhibiting helical chirality and/or possessing conjugated aromatic systems were enantioselectively separated through their differential interactions with helquats. Some compounds with conjugated aromatic groups interacted with helquats moderately strongly but non-enantiospecifically. Small compounds with single benzene ring exhibited no or very weak non-enantiospecific interactions. PF-ACE method allowed to determine binding constants of the analyte-helquat complexes from the changes of migration times of the analytes. Binding constants of the weakest complexes of the analytes with helquats were less than 50L/mol, whereas binding constants of the strongest complexes were in the range 1 000-1 400L/mol.

  18. [Determination of penicillin intermediate and three penicillins in milk by high performance capillary electrophoresis].

    Science.gov (United States)

    Tian, Chunqiu; Tan, Huarong; Gao, Liping; Shen, Huqin; Qi, Kezong

    2011-11-01

    A high performance capillary electrophoresis (HPCE) method was developed for the simultaneous determination of penicillin intermediate and penicillins in milk, including 6-amino-penicillanic acid (6-APA), penicillin G (PEN), ampicillin (AMP) and amoxicillin (AMO). The main parameters including the ion concentration and pH value of running buffer, separation voltage and column temperature were optimized systematically by orthogonal test. The four penicillins (PENs) were baseline separated within 4.5 min with the running buffer of 40 mmol/L potassium dihydrogen phosphate-20 mmol/L borax solution (pH 7.8), separation voltage of 28 kV and column temperature of 30 degrees C. The calibration curves showed good linearity in the range of 1.56 - 100 mg/L, and the correlation coefficients (r2) were between 0.9979 and 0.9998. The average recoveries at three spiked levels were in the range of 84.91% - 96.72% with acceptable relative standard deviations (RSDs) of 1.11% - 9.11%. The method is simple, fast, accurate and suitable for the determination of penicillins in real samples.

  19. Analysis of ecstasy tablets using capillary electrophoresis with capacitively coupled contactless conductivity detection.

    Science.gov (United States)

    Porto, Suely K S S; Nogueira, Thiago; Blanes, Lucas; Doble, Philip; Sabino, Bruno D; do Lago, Claudimir L; Angnes, Lúcio

    2014-11-01

    A method for the identification of 3,4-methylenedioxymethamphetamine (MDMA) and meta-chlorophenylpiperazine (mCPP) was developed employing capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C(4) D). Sample extraction, separation, and detection of "Ecstasy" tablets were performed in <10 min without sample derivatization. The separation electrolyte was 20 mm TAPS/Lithium, pH 8.7. Average minimal detectable amounts for MDMA and mCPP were 0.04 mg/tablet, several orders of magnitude lower than the minimum amount encountered in a tablet. Seven different Ecstasy tablets seized in Rio de Janeiro, Brazil, were analyzed by CE-C(4) D and compared against routine gas chromatography-mass spectrometry (GC-MS). The CE method demonstrated sufficient selectivity to discriminate the two target drugs, MDMA and mCPP, from the other drugs present in seizures, namely amphepramone, fenproporex, caffeine, lidocaine, and cocaine. Separation was performed in <90 sec. The advantages of using C(4) D instead of traditional CE-UV methods for in-field analysis are also discussed.

  20. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin.

    Science.gov (United States)

    Sun, Xiaojun; Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Xia, Qiangwei; Linhardt, Robert J

    2016-02-01

    Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.

  1. Analysis of Trace Ingredients in Green Tea by Capillary Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    LI Ping; DONG Shu-Qing; WANG Qing-Jiang; FANG Yu-Zhi

    2008-01-01

    In this paper, four trace ingredients (rutin, gallic acid, quercetin, chlorogenic acid) in green tea were simultaneously determined by capillary electrophoresis coupled with amperometric detection (CE-AD). Effects of several important factors such as the pH and concentration of running buffer, separation voltage, injection time and detection potential were investigated to acquire the optimum conditions. Under the optimum conditions, the analytes could be separated within 20 min at a separation voltage of 18 kV in a 60 mmol/L borate buffer (pH 8.7). A 300 μmdiameter carbon disk electrode generated good responses at 950 mV (vs. SCE) for all analytes. The relationship between the peak currents and concentrations of the analytes was linear over about three orders of magnitude with demonstrated long-term stability and reproducibility with relative standard deviations less than 3% for both migration time and peak current (n=7), which could be successfully used for the determination of the analytes in green tea with satisfactory assay results.

  2. Determination of Active Ingredients of Hawthorn by Capillary Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    TANG Zhu-Xing; ZENG Yi-Kun; ZHOU Yun; ZANG Shu-Liang; HE Pin-Gang; FANG Yu-Zhi

    2006-01-01

    A method based on capillary electrophoresis with electrochemical detection has been developed for the separation and determination of epicatechin, kaempferol, chlorogenic acid, 4-hydroxybenzoic acid, quercetin and protocatechuic acid in hawthorn for the first time. The effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CE-ED were investigated. Under the optimum conditions,the analytes could be separated in a 60 mmol·L-1 borate buffer (pH 8.7) within 21 min. A 300 μm diameter carbon disk electrode has a good response at +0.95 V (vs. SCE) for all analytes. The response was linear over three orders of magnitude with detection limits (S/N=3) ranging from 3×10-8 to2×10-7 g·mL-1 for the analytes. The method has been successfully applied to the analysis of real sample, with satisfactory results.

  3. Comparison of Carboxylic and Hydroxycarboxylic Acids as Complexing Agents for Transition Metal Separation with Nonaqueous Capillary Electrophoresis%非水毛细管电泳分离过渡金属羧酸和羟基羧酸配位剂的比较

    Institute of Scientific and Technical Information of China (English)

    屈锋; 林金明

    2004-01-01

    @@ Many papers have been published on the analysis of metal cations by capillary electrophoresis (CE), for example, lanthanide, transition metal, alkali, and alkaline earth metal ions. Separations of metal ions are based on the differences in their electrophoretic mobilities. Since most metal ions having identical charge and size give rise to identical electrophoretic mobilities, the direct electrophoretic separation of these ions is impossible. However, their mobilities can be modified by introducing chemical equilibria in which the ions are involved in forming complexes. If metal ions have different complex formation constants, their apparent electrophoretic mobilities differ. The separation process is mainly carried out by using various weak complexing agents[1-4], which complex the metal ions to different extents. The weak complexing agents for metal ion separation primarily are hydroxycarboxylic acids with hydroxyl and carboxyl groups. In addition, organic solvents have also been added into the electrolytes to improve the selectivity of metal ion separation. When a metal ion interacts with polar solvent molecules through ion-dipole bonds, a solvation shell may be formed around the central ion. In principle, the solvent solvates all kinds of ions in solution, some to a greater extent than others, depending on the specific properties of the central ion regarding a certain solvent. The use of pure nonaqueous systems offers potential for adjustment of relative migration rates via changes in solvent-ion interaction. Evidence for such analyte-electrolyte interaction has been reported for the separations of inorganic anions[5] and alkali, alkaline earth and transition metal ions in pure nonaqueous systems[6-8].

  4. Improving the reproducibility in capillary electrophoresis by incorporating current drift in mobility and peak area calculations

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Hansen, Steen H

    2012-01-01

    The traditional way of calculating mobility and peak areas in capillary electrophoresis does not take into account the changes in the buffer viscosity at different thermostatic control and that the analytes may accelerate during the individual runs due to Joule heating effects. We present a method...

  5. DETERMINATION OF IONIZATION CONSTANTS OF HETEROCYCLIC AROMATIC AMINES USING CAPILLARY ZONE ELECTROPHORESIS. (R824100)

    Science.gov (United States)

    Capillary zone electrophoresis (CZE) is a very convenient technique for the determination of ionization constants. The technique is rapid, precise, uses small quantities of solute, and the exact concentration of the compound is not needed. This work represents the first report on...

  6. On-Line Multichannel Raman Spectroscopic Detection System For Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An on-line multichannel Raman spectroscopic detection system for capillary electrophoresis was established by using an Ar+ laser and a cryogenically cooled ICCD. Resonant excitation Raman spectra of methyl red and methyl orange were employed to test the system. The result shows that it could yield on-line electrophoretogram and time series of Raman spectra.

  7. Urine Metabolite Profiling of Human Colorectal Cancer by Capillary Electrophoresis Mass Spectrometry Based on MRB

    Directory of Open Access Journals (Sweden)

    Jin-Lian Chen

    2012-01-01

    (P<0.05. Conclusion. The technique of capillary electrophoresis mass spectrometry based on MRB could reveal the significant metabolic alterations during progression of colorectal cancer, and the method is feasible and may be useful for the early diagnosis of colorectal cancer.

  8. Capillary electrophoresis with laser-induced fluorescence detection for fast and reliable apolipoprotein E genotyping

    NARCIS (Netherlands)

    Somsen, GW; Welten, HTME; Mulder, FP; Swart, CW; Kema, IP; de Jong, GJ

    2002-01-01

    The use of capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection for the rapid determination of apolipoprotein E (apoE) genotypes was studied. High resolution and sensitive detection of the concerned DNA restriction fragments was achieved using CE buffers with hydroxypropylm

  9. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium ph

  10. Characterization of the Interaction between Bovine Serum Albumin and Lomefloxacin by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Ming GUO; Qing Sen YU; Jian Wei YAN; Fei TAN; Guo Zheng MA

    2004-01-01

    Three capillary zone electrophoresis (CZE) methods of the frontal analysis (FA), vacancy peak (VP) and simplified Hummel-Dreyer (SHD) were applied to investigate interaction between bovine serum albumin (BSA) and lomefloxacin, the experimental condition was established after a large number of tests. Based on the site-binding model, the binding parameters were measured according to the site model by Scatchard.

  11. The separation of whale myoglobins with two-dimensional electrophoresis.

    Science.gov (United States)

    Spicer, G S

    1988-10-01

    Five myoglobins (sperm whale, Sei whale, Hubbs' beaked whale, pilot whale, and Amazon River dolphin) were examined using two-dimensional electrophoresis. Previous reports indicated that none of these proteins could be separated by using denaturing (in the presence of 8-9 M urea) isoelectric focusing. This result is confirmed in the present study. However, all the proteins could be separated by using denaturing nonequilibrium pH-gradient electrophoresis in the first dimension. Additionally, all the myoglobins have characteristic mobilities in the second dimension (sodium dodecyl sulfate), but these mobilities do not correspond to the molecular weights of the proteins. We conclude that two-dimensional electrophoresis can be more sensitive to differences in primary protein structure than previous studies indicate and that the assessment seems to be incorrect that this technique can separate only proteins that have a unit charge difference.

  12. Capillary zone electrophoresis for enumeration of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in yogurt.

    Science.gov (United States)

    Lim, Orathai; Suntornsuk, Worapot; Suntornsuk, Leena

    2009-03-15

    Enumeration of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus is a priority due to their importance in yogurt production. Capillary electrophoresis (CE) of both bacteria could be achieved in 7.2 min with a resolution of 3.2 in the background electrolyte (BGE) containing 4.5mM Tris(hydroxymethyl) amminomethane (TRIS)-4.5 mM boric acid-0.1 mM ethylenediamine tetraacetate (EDTA) (TBE) buffer (pH 8.4) and 0.05% (v/v) polyethylene oxide (PEO), using a capillary of 47.5 cm (effective length) x 100 microm i.d., injection of 50 mbar x 3s followed by -5kV x 120s, a voltage and temperature of 20 kV and 25 degrees C, respectively. Appropriate amounts of PEO in the BGE, sample preparation (i.e. vortex) and introduction were key factors for their separation. A short hydrodynamic injection followed by applying reversed polarity voltage could compress the bacteria into narrow zones, which were detected as separated single peaks. Method linearity (r(2)>0.99), precision (%RSDsyogurt were not statistically different from those of the plate count method (P>0.05). The CE method can be used as an alternative for quantitation of L. delbrueckii subsp. bulgaricus and S. thermophilus in yogurt since it was reliable, simple, cost and labor effective and rapid, allowing the analysis of 3 samples/h (comparing to 2d/sample by plate count method).

  13. Analytical potential of mid-infrared detection in capillary electrophoresis and liquid chromatography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Kuligowski, Julia; Quintas, Guillermo; Guardia, Miguel de la [Department of Analytical Chemistry, Universitat de Valencia, Edifici Jeroni Munoz, 50th Dr. Moliner, 46100 Burjassot (Spain); Lendl, Bernhard, E-mail: blendl@mail.zserv.tuwien.ac.at [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9-164, A-1060 Vienna (Austria)

    2010-10-29

    Literature published in the last decade concerning the use of mid-infrared spectrometry as a detection system in separation techniques employing a liquid mobile phase is reviewed. In addition to the continued use of isocratic liquid chromatographic (LC) techniques, advances in chemometric data evaluation techniques now allow the use of gradient techniques on a routine basis, thus significantly broadening the range of possible applications of LC-IR. The general trend towards miniaturized separation systems was also followed for mid-IR detection where two key developments are of special importance. Firstly, concerning on-line detection the advent of micro-fabricated flow-cells with inner volumes of only a few nL for transmission as well as attenuated total reflection measurements enabled on-line mid-IR detection in capillary LC and opened the path for the first successful realization of on-line mid-IR detection in capillary zone electrophoresis as well as micellar electrokinetic chromatography. Secondly, concerning off-line detection the use of micro-flow through dispensers now enables to concentrate eluting analytes on dried spots sized a few tens of micrometers, thus matching the dimensions for sensitive detection by mid-IR microscopy. Finally in an attempt to increase detection sensitivity of on-line mid-IR detection, mid-IR quantum cascade lasers have been used. Applications cover the field of food analysis, environmental analysis and the characterization of explosives among others. Best detection sensitivities for on-line and off-line detection have been achieved in miniaturized systems and are in the order of 50 ng and 2 ng on column, respectively.

  14. 微流控毛细管电泳-流动注射联用技术在分离和测定中药制剂中麻黄碱与伪麻黄碱的应用%Micro-fluidic capillary electrophoresis system with flow injection sample introduction applied to separation and determination of ephedrine and pseudoephedrine

    Institute of Scientific and Technical Information of China (English)

    陈宏丽; 张玉霞; 程玉桥; 陈兴国; 胡之德

    2007-01-01

    In this work, a microfluidic capillary electrophoresis system coupled to a flow injection sample introduction system using short capillary column as separation channel is described. This device contains an H-shaped microchip fixed on a planar plastic base, which utilizes a horizontal separation capillary with tubular side arms on each end that serve as inlet and outlet flow-through electrode reservoirs. Continuous FI introduction of a series of samples containing a standard mixture of ephedrine and pseudoephedrine allows a throughput rate up to 60 h-1 with complete baseline separation and high precision. The limits of detection (S/N=3) are 1.77 μg/mL for ephedrine and 2.03 μg/mL for pseudoephedrine, respectively. The microfluidic system has been applied to analyzing, for the first time, three commercial pharmaceutical preparations containing ephedrine or pseudoephedrine, and the results are satisfactory.%采用较短的毛细管作为分离通道,建立了一种微流控毛细管电泳和流动注射联用的分离测定麻黄碱和伪麻黄碱的新体系.该体系由一个H-型微芯片接口、一个水平放置的毛细管(作为分离通道)、两个竖直放置的Tygon管(作为阳极和阴极的电解质流通储液槽)组成.在最佳实验条件下,麻黄碱和伪麻黄碱标准品的进样频率可达到60 h-1,且完全基线分离,重现性良好,检测限(S/N=3)分别为:麻黄1.77 μg/mL,伪麻黄2.03 μg/mL.该微流控体系已用于3种含有麻黄碱和伪麻黄碱的市售药品的测定,结果令人满意.

  15. A comparative study of capillary zone electrophoresis and pH-potentiometry for determination of dissociation constants.

    Science.gov (United States)

    Andrasi, Melinda; Buglyo, Peter; Zekany, Laszlo; Gaspar, Attila

    2007-09-03

    Acidity constants of six cephalosporin antibiotics, cefalexin, cefaclor, cefadroxil, cefotaxim, cefoperazon and cefoxitin are determined using capillary zone electrophoresis (CZE) and pH-potentiometric titrations. Since CZE is a separation method, it is not necessary for the samples to be of high purity and known concentration because only mobilities are measured. The effect on determination of dissociation constants of different matrices (serum, 0.9% NaCl, fermentation matrix) was examined. The advantages of CZE can be utilized in those fields where potentiometry has limitations (sample quantity, solubility, purity, simultaneous determinations), although pK(a) values that are close to each other can be determined by potentiometry with more accuracy.

  16. Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory.

    Science.gov (United States)

    Klepárník, Karel

    2015-01-01

    This review focuses on the latest development of microseparation electromigration methods in capillaries and microfluidic devices with MS detection and identification. A wide selection of 183 relevant articles covers the literature published from June 2012 till May 2014 as a continuation of the review article on the same topic by Kleparnik [Electrophoresis 2013, 34, 70-86]. Special attention is paid to the new improvements in the theory of instrumentation and methodology of MS interfacing with capillary versions of zone electrophoresis, ITP, and IEF. Ionization methods in MS include ESI, MALDI, and ICP. Although the main attention is paid to the development of instrumentation and methodology, representative examples illustrate also applications in the proteomics, glycomics, metabolomics, biomarker research, forensics, pharmacology, food analysis, and single-cell analysis. The combinations of MS with capillary versions of electrochromatography and micellar electrokinetic chromatography are not included.

  17. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device.

    Science.gov (United States)

    Greenspoon, Susan A; Yeung, Stephanie H I; Johnson, Kelly R; Chu, Wai K; Rhee, Han N; McGuckian, Amy B; Crouse, Cecelia A; Chiesl, Thomas N; Barron, Annelise E; Scherer, James R; Ban, Jeffrey D; Mathies, Richard A

    2008-07-01

    Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.

  18. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG,Ying(王瑛); MO,Jin-Yuan(莫金垣)

    2002-01-01

    Capillary electrophorsis (CE) is a powerful analytical tool in chemistry. Thus, it is valuable to solve the denoising of CE signals. A new denoising method called MWDA which employs Mexican Hat wavelet is presented. It is an efficient chemometrics technique and has been applied successfully in processing CE signals. Useful information can be extracted even from signals of S/N = 1. After denoising, the peak positions are unchanged and the relative errors of peak height are less than 3%.

  19. Identification of primary amines in Titan tholins using microchip nonaqueous capillary electrophoresis

    Science.gov (United States)

    Cable, M. L.; Hörst, S. M.; He, C.; Stockton, A. M.; Mora, M. F.; Tolbert, M. A.; Smith, M. A.; Willis, P. A.

    2014-10-01

    Titan, the moon of Saturn with a thick atmosphere and an active hydrocarbon-based weather cycle, is considered the best target in the solar system for the study of organic chemistry on a planetary scale. Microfluidic devices that employ liquid phase techniques such as capillary electrophoresis with ultrasensitive laser-induced fluorescence detection offer a unique solution for in situ analysis of complex organics on Titan. We previously reported a protocol for nonaqueous microfluidic analysis of primary aliphatic amines in ethanol, and demonstrated separations of short- and long-chain amines down to -20 °C. We have optimized this protocol further, and used it to analyze Titan aerosol analogues (tholins) generated in two separate laboratories under a variety of different conditions. Ethylamine was a major product in all samples, though significant differences in amine content were observed, in particular for long-chain amines (C12-C27). This work validates microfluidic chemical analysis of complex organics with relevance to Titan, and represents a significant first step in understanding tholin composition via targeted functional group analysis.

  20. Determination of Nicotine in Tobacco by Capillary Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)

    SUN Jin-ying; XU Xiao-yu; YU Huan; YOU Tian-yan

    2012-01-01

    A sensitive,simple and low-cost method based on capillary electrophoresis(CE) with electrochemical(EC) detection at a carbon fiber microdisk electrode(CFE) was developed for the determination of nicotine.Effects of detection potential,concentration and pH value of the phosphate buffer,and injection time as well as separation voltage were investigated.Under the optimized conditions:a detection potential of 1.20 V,40 mmol/L phosphate buffer(pH 2.0),a sample injection time of 10 s at 10 kV and a separation voltage of 16 kV,the linear range obtained was from 5.0× 10 7 mol/L to 1.0× 10-4 mol/L with a correlation coefficient of 0.9989 and the limit of detection(LOD,S/N=3)obtained was 5.0× 10-8 mol/L.The method was also used to determine the nicotine in cigarettes.Nicotine amount ranged from 0.211 mg/g to 0.583 mg/g in the pipe tobacco of seven brands of cigarette and the amount in one cigarette varied from 0.136 mg/cigarette to 0.428 mg/cigarette.

  1. [Determination of amino acids in honey by capillary electrophoresis with indirect ultraviolet detection].

    Science.gov (United States)

    Zhou, Xianjing; Shi, Yanping

    2013-07-01

    A method of capillary electrophoresis with indirect ultraviolet (UV) detection was developed for the separation and determination of nine amino acids such as lysine, tryptophan, glutamic acid, etc. The effects of sodium dihydrogen phosphates concentration, pH of buffer and sample injection type and time on the reproducibility and efficiency were investigated. The optimum injection time was 5 s at 5 kPa. The optimum electrophoretic conditions were as follow: 10 mmol/L sodium dihydrogen phosphates (pH 10. 2) containing 0. 5 mmol/L cetrimonium bromide, 20 mmol/L nicotinic acid and 10% (v/v) methanol as running buffer, applied voltage of - 15 kV, detection wavelength of 220 nm. The base line separation of the nine amino acids was achieved successfully within 11 min. The lowest detection limit was 0. 3 mg/L. All of the nine analytes showed good linearities within 1. 0 - 1000 mg/L. The relative standard deviations of migration time and peak area were 0. 64% - 5. 83%. The recoveries of the eight amino acids spiked in a real sample were between 60. 00% and 118.37%. The method was applied in the determination of the amino acids in honey samples from different nectar plants and origins. Prolin, serine and aspartic acid were found in five honey samples, and tryptophan was only found in a litchi honey sample. This method can provide good reference to the evaluation of the quality and nectar origin of honey.

  2. Determination of Four Active Ingredients in Vc Yinqiao Tablets by Capillary Zone Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    L(U),Jin; WANG,Qing-Jiang; CHENG,Xi; LIU,Hai-Yan; HE,Pin-Gang; FANG,Yu-Zhi

    2006-01-01

    A simple, reliable and reproducible method, based on capillary zone electrophoresis with amperometric detection (CZE-AD), has been developed for simultaneous determination of four active ingredients in Vc Yinqiao tablets including paracetamol, vitamin C, caffeic acid and chlorogenic acid. A carbon-disk electrode was used as working electrode and 0.95 V (versus SCE) was selected as detection potential. The optimal conditions of CZE experiment were 30 mmol·L-1 borate solution (pH 9.5) as running buffer, 14 kV as separation voltage and 8 s (14 kV) as electro-kinetic sampling time. Under the selected optimum conditions, paracetamol, vitamin C, caffeic acid and chlorogenic acid could be perfectly separated within 22 min, and their detection limits (S/N=3) ranged from 5 × 10-7 to 1×10-6 mol·L-1. This proposed method demonstrated good reproducibility with relative standard deviations of less than 3% for both migration time and peak current (n=7). The utility of this method was demonstrated by monitoring a kind of compound medicine named Vc Yinqiao tablets and the assay results were satisfactory.

  3. Determination of L-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis.

    Science.gov (United States)

    Galiana-Balaguer, L; Roselló, S; Herrero-Martínez, J M; Maquieira, A; Nuez, F

    2001-09-15

    This study shows an improved method for the determination of L-ascorbic acid (l-AA) in fruits of Lycopersicon by capillary zone electrophoresis (CZE). Two backgrounds electrolytes (BGEs) have been tested: (i) 400 mM borate at pH 8.0 and 1 x 10(-2)% hexadimethrine bromide, for the separation of Eulycopersicon subgenus species; and (ii) as in BGE(i) but supplemented with 20% (v/v) acetonitrile, for the separation of species of the Eriopersicon subgenus. The present procedures were compared with two routine methods-enzymatic assay and potentiometric titration with 2,6-dichlorophenol-indophenol. While these routine methods presented some difficulties in quantifying l-AA in several Lycopersicon fruits, CZE was successfully applied in all the analyzed samples. The proposed CZE protocols give lower detection limits (<0.4 microg ml(-1)); are cheaper, quicker, and highly reproducible; and can be applied to analyze large series of samples (ca. 50 samples per day) which is utmost importance, not only in screening trials for internal quality and tomato breeding programs, but also in systematic and routine characterization of Lycopersicon fruits.

  4. Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: A molecular modeling approach

    Science.gov (United States)

    Suliman, FakhrEldin O.; Elbashir, Abdalla A.

    2012-07-01

    Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.

  5. Determination of gibberellins in soybean using tertiary amine labeling and capillary electrophoresis coupled with electrochemiluminescence detection.

    Science.gov (United States)

    Zhu, Guimei; Long, Shihua; Sun, Hao; Luo, Wen; Li, Xia; Hao, Zaibin

    2013-12-15

    A novel sensitive method based on tertiary amine labeling for the analysis of gibberellins (GAs) by capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection was proposed. GA3 was tagged with 2-(2-aminoethyl)-1-methylpyrrolidine (AEMP) using N, N'-dicyclohexylcarbodiimide (DCC) and 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt) as coupling agents in acetonitrile to produce GA3-AEMP-derivative. The GA3-AEMP-derivative was injected into CE by electrokinetic injection and detected by Ru(bpy)3(2+)-based ECL. The parameters affecting derivatization, detection and separation such as concentration of reactants, detection potential, pH and concentration of separation buffer, were investigated in detail. Under optimum conditions, the linear concentration range for GA3 was from 2.0×10(-7) to 1.28×10(-4)M with a correlation coefficient of 0.9997. The detection limit was 8×10(-8)M (S/N=3). The relative standard deviations of migration time, peak intensity and peak area for nine continuous injections of 2.0×10(-5)M GA3-AEMP-derivative were 1.0%, 2.1% and 4.2%, respectively. The developed approach was successfully applied to the determination of total GAs in the stem, leaf and seed of soybean (Glycine max [L.] Merr.) with recoveries in the range from 89.6% to 99.3%.

  6. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms.

    Science.gov (United States)

    Guo, Longhua; Yang, Huanghao; Qiu, Bin; Xiao, Xueyang; Xue, Linlin; Kim, Donghwan; Chen, Guonan

    2009-12-01

    A capillary electrophoresis coupled with electrochemiluminescent detection system (CE-ECL) was developed for the detection of polymerase chain reaction (PCR) amplicons. The ECL luminophore, tris(1,10-phenanthroline) ruthenium(II) (Ru(phen)(3)(2+)), was labeled to the PCR primers before amplification. Ru(phen)(3)(2+) was then introduced to PCR amplicons by PCR amplification. Eventually, the PCR amplicons were separated and detected by the homemade CE-ECL system. The detection of a typical genetically modified organism (GMO), Roundup Ready Soy (RRS), was shown as an example to demonstrate the reliability of the proposed approach. Four pairs of primers were amplified by multiple PCR (MPCR) simultaneously, three of which were targeted on the specific sequence of exogenous genes of RRS, and another was targeted on the endogenous reference gene of soybean. Both the conditions for PCR amplification and CE-ECL separation and detection were investigated in detail. Results showed that, under the optimal conditions, the proposed method can accurately identifying RRS. The corresponding limit of detection (LOD) was below 0.01% with 35 PCR cycles.

  7. Determination of amitrole and urazole in water samples by capillary zone electrophoresis using simultaneous UV and amperometrical detection.

    Science.gov (United States)

    Chicharro, M; Moreno, M; Bermejo, E; Ongay, S; Zapardiel, A

    2005-12-16

    In this paper, capillary zone electrophoresis with amperometric detection (CZE-AD) was first applied to the simultaneous separation and determination of amitrole and urazole in water samples. A simple end-column electrochemical detector was used in combination with a commercially available capillary electrophoresis instrument with UV detection. The effects of several important factors were investigated to find optimum conditions. A carbon disk electrode was used as working electrode. Separation and determination of these compounds in water samples were performed in 0.030 mol l(-1) acetate buffers at pH 4.5, 25 kV as separation voltage and the samples were introduced by hydrodynamic mode for 1.5 s. Most of the studies realized showed that the direct electrochemical detection is more sensitive and selective than UV detection. Under the optimum conditions, excellent linearity was observed between peak amperometric signal and analyte concentrations in the range of 0.19-1.35 mg l(-1) for amitrole and 0.20-1.62 mg l(-1) for urazole. The detection limits were 63 and 68 microg l(-1) for amitrole and urazole, respectively. The utility of this method was demonstrated by monitoring water samples, and the assay results were satisfactory. The detection limits using a previous preconcentration step for amitrole and urazole in spiked mineral water samples were 0.6 and 1.0 microg l(-1) for amitrole and urazole, respectively.

  8. Technology to accelerate pangenomic scanning for unknown point mutations in exonic sequences: cycling temperature capillary electrophoresis (CTCE

    Directory of Open Access Journals (Sweden)

    Bjørheim Jens

    2007-08-01

    Full Text Available Abstract Background Rapid means to discover and enumerate unknown mutations in the exons of human genes on a pangenomic scale are needed to discover the genes carrying inherited risk for common diseases or the genes in which somatic mutations are required for clonal diseases such as atherosclerosis and cancers. The method of constant denaturing capillary electrophoresis (CDCE permitted sensitive detection and enumeration of unknown point mutations but labor-intensive optimization procedures for each exonic sequence made it impractical for application at a pangenomic scale. Results A variant denaturing capillary electrophoresis protocol, cycling temperature capillary electrophoresis (CTCE, has eliminated the need for the laboratory optimization of separation conditions for each target sequence. Here are reported the separation of wild type mutant homoduplexes from wild type/mutant heteroduplexes for 27 randomly chosen target sequences without any laboratory optimization steps. Calculation of the equilibrium melting map of each target sequence attached to a high melting domain (clamp was sufficient to design the analyte sequence and predict the expected degree of resolution. Conclusion CTCE provides practical means for economical pangenomic detection and enumeration of point mutations in large-scale human case/control cohort studies. We estimate that the combined reagent, instrumentation and labor costs for scanning the ~250,000 exons and splice sites of the ~25,000 human protein-coding genes using automated CTCE instruments in 100 case cohorts of 10,000 individuals each are now less than U.S. $500 million, less than U.S. $500 per person.

  9. Highly sensitive determination of copper in HeLa cell using capillary electrophoresis combined with a simple cell extraction treatment.

    Science.gov (United States)

    Meng, Lingchen; Fang, Ziyuan; Lin, Jian; Li, Meixian; Zhu, Zhiwei

    2014-04-01

    A new separation system of capillary electrophoresis (CE1) for the highly sensitive determination of copper was established by using ethylenediaminetetraacetic acid (EDTA) as a complexing agent and employing cetyltrimethylammonium chloride (CTAC) as a capillary inner wall modifier. Benefitted from the combination of field-enhanced sample injection (FESI) method, a limit of detection (LOD) of 2.7 nM was obtained, which was much lower than that of the conventional methods. This made it possible to determine trace copper in HeLa cell only by a simple cell extraction (CE2) treatment. Two copper-extraction methods-acid-hydrolysis and freeze-thaw-were compared. Limited by the requirement of low ion strength in FESI, only the extract using freeze-thaw could be successfully applied in the determination. The effectiveness assessment of this CE(2)-FESI method was adopted by inductively coupled plasma-atomic emission spectrometry (ICP-AES) as a gold standard.

  10. Analysis of bioactive ingredients in the brown alga Fucus vesiculosus by capillary electrophoresis and neutron activation analysis.

    Science.gov (United States)

    Truus, Kalle; Vaher, Merike; Koel, Mihkel; Mähar, Andres; Taure, Imants

    2004-07-01

    Two different types of bioactive components of the seaweed Fucus vesiculosus were analysed: (1) polyphenols (phlorotannins) by capillary electrophoresis (CE) and (2) mineral part (including bioactive microelements) by neutron activation analysis (NAA). CE experiments were carried out using a UV detector (at 210 nm) and an uncoated silica capillary. The best separation was achieved at a voltage of 20 kV using borate or acetate buffer in a methanol/acetonitrile mixture as background electrolyte. The CE analysis data were confirmed by high-performance liquid chromatography (HPLC). Determination of mineral composition of algal biomass by NAA was performed on the basis of various nuclides; the best results (from 38 elements determined) were obtained for Mn, Fe, Zn, As, Br, Sr, I, Ba, Au and Hg.

  11. Simultaneous determination of berberine,matrine and oxymatrine in traditional Chinese medicines by using nonaqueous capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A rapid method for the simultaneous determination of berberine(BBR),matrine(MT)and oxymatrine(OMT)by nonaqueous capillary electrophoresis(NACE)was developed.Optimum separation of the analytes was obtained on a 50cm×50μm i.d.fused-silica capillary using a non-aqueous buffer system of 70mM ammonium acetate,7.0% acetic acid and 10% acetonitrile at 25kV and 20℃.The relative standard deviations(R.S.D.)of the migration times and peak areas of the three active components were 0.06%-0.20% and 0.12%-3.41% for berber...

  12. Characterization and stability of gold nanoparticles depending on their surface chemistry: Contribution of capillary zone electrophoresis to a quality control.

    Science.gov (United States)

    Pallotta, Arnaud; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2016-08-26

    Four kinds of gold nanoparticles (AuNP) quite similar in terms of gold core size (ca. 5nm) and shape (spherical) but differing by their surface chemistry (either negatively, or positively charged, or neutral) were synthesized. They were analyzed using both the classical physicochemical approach (spectrophotometry, dynamic light scattering coupled or not to electrophoresis and transmission electron microscopy) and capillary zone electrophoresis equipped with photodiode array detection. The results obtained by both methodologies (related to Surface Plasmon Band-maximal absorbance wavelength-, and zeta potential and electrophoretic mobilities) were well correlated. Moreover, taking advantage of the separation method, the sample heterogeneity was evaluated and an impurity profile was extracted. This allowed setting some specifications which were then applied on the one hand to a batch-to-batch survey to declare NP as conform or not after production and on the other hand to a stability study.

  13. Electrophoretic Focusing: An Alternative to Capillary Electrophoresis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrophoretic focusing is a new separation method intended to achieve high resolution within very short sample residence times because one fraction is separated at...

  14. [Analysis of tartrazine aluminum lake and sunset yellow aluminum lake in foods by capillary zone electrophoresis].

    Science.gov (United States)

    Zhang, Yiding; Chang, Cuilan; Guo, Qilei; Cao, Hong; Bai, Yu; Liu, Huwei

    2014-04-01

    A novel analytical method for tartrazine aluminum lake and sunset yellow aluminum lake using capillary zone electrophoresis (CZE) was studied. The pigments contained in the color lakes were successfully separated from the aluminum matrix in the pre-treatment process, which included the following steps: dissolve the color lakes in 0.1 mol/L H2SO4, adjust the pH of the solution to 5.0, then mix it with the solution of EDTA x 2Na and heat it in a water bath, then use polyamide powder as the stationary phase of solid phase extraction to separate the pigments from the solution, and finally elute the pigments with 0.1 mol/L NaOH. The CZE conditions systematically optimized for tartrazine aluminum lake were: 48.50 cm of a fused silica capillary with 40.00 cm effective length and 50 microm i. d., the temperature controlled at 20.0 degrees C, 29.0 kV applied, HPO4(2-)-PO4(3-) (0.015 mol/L, pH 11.45) solution as running buffer, detection at 263 nm. The conditions for sunset yellow aluminum lake were: the same capillary and temperature, 25.0 kV applied, HPO4(2-)-PO4(3-) (0.025 mol/L, pH 11.45) solution as running buffer, detection at 240 nm. The limits of detection were 0.26 mg/L and 0.27 mg/L, and the linear ranges were 0.53-1.3 x 10(2) mg/L and 0.54-1.4 x 10(2) mg/L for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. The RSDs were 4.3% and 5.7% (run to run, n = 6), 5.6% and 6.0% (day to day, n = 6) for tartrazine aluminum lake and sunset yellow aluminum lake, respectively. Further developments for this method could make it a routinely used method analyzing color lakes in foods.

  15. Application of capillary electrophoresis to the development and evaluation of aptamer affinity probes

    Science.gov (United States)

    Sooter, Letha J.; McMasters, Sun; Stratis-Cullum, Dimitra N.

    2007-09-01

    Nucleic acid aptamers can exhibit high binding affinities for a wide variety of targets and have received much attention as molecular recognition elements for enhanced biosensor performance. These aptamers recognize target molecules through a combination of conformational dependent non-covalent interactions in aqueous media which can be investigated using capillary electrophoresis-based methods. In this paper we report on the results of our studies of the relative binding affinity of Campylobacter jejuni aptamers using a capillary electrophoretic immunoassay. Our results show preferential binding to C. jejuni over other common food pathogen bacteria. Capillary electrophoresis can also be used to develop new aptamer recognition elements using an in vitro selection process known as systematic evolution of ligand by exponential enrichment (SELEX). Recently, this process has been adapted to use capillary electrophoresis in an attempt to shorten the overall selection process. This smart selection of nucleic acid aptamers from a large diversity of a combinatorial DNA library is under optimization for the development of aptamers which bind to Army-relevant targets. This paper will include a discussion of the establishment of CE-SELEX methods for the future development of smart aptamer probes.

  16. Evaluation of interactions between RAW264.7 macrophages and small molecules by capillary electrophoresis.

    Science.gov (United States)

    Wang, Feng-Qin; Li, Qiao-Qiao; Zhang, Qian; Wang, Yin-Zhen; Hu, Yuan-Jia; Li, Peng; Wan, Jian-Bo; Yang, Feng-Qing; Xia, Zhi-Ning

    2016-12-09

    In this study, the affinity interactions between RAW 264.7 macrophages and three small molecules including naringin, oleuropein and paeoniflorin were evaluated by affinity capillary electrophoresis (ACE), partial filling affinity capillary electrophoresis (PFACE) and frontal analysis capillary electrophoresis (FACE), respectively. The result indicated that ACE (varying concentrations of cell suspension were filled in the capillary as receptor) may not be suitable for the evaluation of interactions between cell and small molecules due to the high viscosity of cell suspension; PFACE can qualitatively evaluate the interaction, but the difference in viscosity between RAW264.7 suspension and buffer effects on the liner relationship between filling length and injection time, which makes the calculation of binding constant difficult. Furthermore, based on the PFACE results, naringin showed stronger interaction with macrophages than the other two molecules; taking advantage of the aggregation phenomenon of cell induced by electric field, FACE was successfully used to determine the stoichiometry (n = 5×10(9) ) and binding constant (Kb = 1×10(4) L/mol) of the interaction between RAW264.7 and naringin.

  17. Separation of DNA Fragments with a Broad Range of Molecular Weight by Capillary Electrophoresis with Sieving Matrix of Poly (ethylene oxide)%聚环氧乙烷无胶筛分毛细管电泳分离宽分子量范围DNA片段

    Institute of Scientific and Technical Information of China (English)

    李玉荣; 陈长宝; 周杰

    2011-01-01

    在无胶筛分毛细管电泳中,以聚环氧乙烷为筛分介质,用硅烷化处理的毛细管柱(31.2 cm×75 μm i.d.,有效长度21.0 cm)分离DL5000 DNA Marker(DNA长度为100~5000 bp),考察了筛分介质浓度、缓冲液pH值、分离电压和溴化乙锭浓度对分离双链DNA片段的影响,优化得到分离100~5000 bp DNA片段的最佳条件.毛细管电泳的最佳条件为PEO浓度5 mg/mL,缓冲液pH值8.0,电压-12.0 kV及溴化乙锭浓度3.0 μg/mL.在此条件下,可对山梨醇脱氢酶基因(SDH)和乙烯受体基因(ETR1)的聚合酶链式反应(PCR)扩增产物同时进行检测,分离和鉴定效果良好.%DL5000 DNA marker fragments( 100-5000 bp) were separated by non-gel sieve capillary electrophoresis on a silanized fused silica capillary column(31.2 cm ×75 μm i.d. with effective length 21.0 cm)using poly( ethylene oxide) as sieve matrix. The influences of poly( ethylene oxide) concentration, pH value of running buffer, separation voltage and ethidium bromide concentration on the separation efficiency of different lengths of double-strand DNA fragments were investigated. The optimum conditions for separation of 100-5000 bp DNA fragments were established as 5 mg/mL poly ( ethylene oxide), pH = 8.0, 3.0 μg/mL ethidium bromide and voltage of - 12.0 kV. Under these conditions, the multiplex polymerase chain reaction (PCR) magnified products from the sorbitol dehydrogenase gene (SDH) and the ethylene receptor gene (ETR1) were simultaneously detected, and good identification and resolution were obtained.

  18. Optimization of a nano-enzymatic reactor for on-line tryptic digestion of polypeptide conjugates by capillary electrophoresis.

    Science.gov (United States)

    Ladner, Yoann; Coussot, Gaelle; Ebner, Stefanie; Ibrahim, Amal; Vidal, Laetitia; Perrin, Catherine

    2016-01-01

    This work aims at studying the optimization of an on-line capillary electrophoresis (CE)-based tryptic digestion methodology for the analysis of therapeutic polypeptides (PP). With this methodology, a mixture of surrogate peptide fragments and amino acid were produced on-line by trypsin cleavage (enzymatic digestion) and subsequently analyzed using the same capillary. The resulting automation of all steps such as injection, mixing, incubation, separation and detection minimizes the possible errors and saves experimental time. In this paper, we first study the differents parameters influencing PP cleavage inside the capillary (plug length, reactant concentration, incubation time, diffusion and electrophoretic plugs mixing). In a second part, the optimization of the electrophoretic separation conditions of generated hydrolysis products (nature, pH and ionic strength (I) of the background electrolyte (BGE)) is described. Using the optimized conditions, excellent repeatability was obtained in terms of separation (migration times) and proteolysis (number of products from enzymatic hydrolysis and corresponding amounts) demonstrating the robustness of the proposed methodology.

  19. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotube-epoxy composite electrode.

    Science.gov (United States)

    Zhang, Luyan; Zhang, Wei; Chen, Gang

    2015-11-10

    This report describes the fabrication and the application of a novel carbon nanotube (CNT)-epoxy composite electrode as a sensitive amperometric detector for the capillary electrophoresis (CE). The composite electrode was fabricated on the basis of the in situ polycondensation of a mixture of CNTs and 1,2-ethanediamine-containing bisphenol A epoxy resin in the inner bore of a piece of fused silica capillary under heat. It was coupled with CE for the separation and detection of arbutin and bergenin in Bergeniae Rhizoma, a traditional Chinese medicine, to demonstrate its feasibility and performance. The two phenolic constituents were well separated within 10min in a 45cm capillary length at a separation voltage of 12kV using a 50mM borate buffer (pH 9.2). The CNT-based detector offered higher sensitivity, significantly lower operating potential, satisfactory resistance to surface fouling, and lower expense of operation, indicating great promise for a wide range of analytical applications. It showed long-term stability and reproducibility with relative standard deviations of less than 5% for the peak current (n=15).

  20. Novel covalently coated diazoresin/polyvinyl alcohol capillary column for the analysis of proteins by capillary electrophoresis.

    Science.gov (United States)

    Yu, Bing; Liu, Peng; Cong, Hailin; Tang, Jianguo; Zhang, Lixin

    2012-10-01

    A novel method for the preparation of covalently linked capillary coatings of PVA was demonstrated using photosensitive diazoresin (DR) as coupling agents. Layer-by-layer self-assembly film of DR and PVA based on hydrogen bonding was first fabricated on the inner wall of capillary, then the hydrogen bonding was converted into covalent bonding after treatment with UV light through the unique photochemistry reaction of DR. The covalently bonded coatings suppressed basic protein adsorption on the inner surface of capillary, and thus a baseline separation of lysozyme, cytochrome c and BSA was achieved using CE. Compared with bare capillary or noncovalently bonded DR/PVA coatings, the covalently linked DR/PVA capillary coatings not only improved the CE separation performance for proteins, but also exhibited good stability and repeatability. Due to the replacement of highly toxic and moisture-sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide a green and easy way to make the covalently coated capillaries for CE.

  1. Capillary electrophoresis single-strand conformation polymorphism for the monitoring of gastrointestinal microbiota of chicken flocks.

    Science.gov (United States)

    Pissavin, C; Burel, C; Gabriel, I; Beven, V; Mallet, S; Maurice, R; Queguiner, M; Lessire, M; Fravalo, P

    2012-09-01

    The objective of the present study was to evaluate the capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) to characterize poultry gut microbiota and the ability of this molecular method to detect modifications related to rearing conditions to be used as an epidemiological tool. The V3 region of the 16S rRNA gene was selected as the PCR target. Our results showed that this method provides reproducible data. The microbiota analysis of individuals showed that variability between individual fingerprints was higher for ileum and cloaca than for ceca. However, pooling the samples decreased this variability. To estimate the variability within and between farms, we compared molecular gut patterns of animals from the same hatchery reared under similar conditions and fed the same diet in 2 separate farms. Total aerobic bacteria, coliforms, and lactic acid bacteria were enumerated using conventional bacteriological methods. A significant difference was observed for coliforms present in the ceca and the cloaca depending on the farm. Ileal contents fingerprints were more closely related to those of cloacal contents than to those of ceca contents. When comparing samples from the 2 farms, a specific microbiota was highlighted for each farm. For each gut compartment, the microbiota fingerprints were joined in clusters according to the farm. Thus, this rapid and potentially high-throughput method to obtain gut flora fingerprints is sensitive enough to detect a "farm effect" on the balance of poultry gut microbiota despite the birds being fed the same regimens and reared under similar conditions.

  2. High-speed DNA genotyping using microfabricated capillary array electrophoresis chips

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, A.T.; Sensabaugh, G.F.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1997-06-01

    Capillary array electrophoresis (CAE) chips have been designed and fabricated with the capacity to rapidly (<160 s) analyze 12 different samples in parallel. Detection of all lanes with 0.3 s temporal resolution was achieved using a laser-excited confocal-fluorescence scanner. The operation and capabilities of these CAE microdevices were first determined by performing electrophoretic separations of pBR322 MspI DNA samples. Genotyping of HLA-H, a candidate gene for the diagnosis of hereditary hemochromatosis, was then performed to demonstrate the rapid analysis of biologically relevant samples. Two-color multiplex fluorescence detection of HLA-H genotypes was accomplished by prelabeling the standard pBR322 MspI DNA ladder with a red emitting bisintercalation dye (butyl TOTIN) and on-column labeling of the HLA-H DNA with thiazole orange. This work establishes the feasibility of using CAE chips for high-speed, high-throughput genotyping. 44 refs., 7 figs.

  3. Principles, Practice, and Evolution of Capillary Electrophoresis as a Tool for Forensic DNA Analysis.

    Science.gov (United States)

    Shewale, J G; Qi, L; Calandro, L M

    2012-07-01

    Capillary electrophoresis (CE) is a versatile and widely used analysis platform with application in diverse areas such as analytical chemistry, chiral separations, clinical, forensics, molecular biology, natural products, organic chemistry, and the pharmaceutical industry. Forensic applications of CE include fragment analysis, DNA sequencing, SNP typing, and analysis of gunshot residues, explosive residues, and drugs. Fragment analysis is a widely used method for short tandem repeat (STR) profiling for human identification (HID) due to the single-base resolution capability of CE. This approach circumvents the tedious and expensive approach of DNA sequencing for STR typing. The high sizing precision, ability to detect fluorescence emitted from multiple dyes, automated electrophoretic runs, and data collection software are key factors in the worldwide adoption of CE as the preferred platform for forensic DNA analysis. The most common CE systems used in forensic DNA analysis include the ABI PRISM® 310, 3100, 3100 Avant, 3130, 3130xl, 3500, and 3500xL Genetic Analyzers (GAs). The 3500 series GAs are developed with features useful for forensic scientists, including a normalization feature for analysis of the data designed to reduce the variation in peak height from instrument to instrument and injection to injection. Other hardware and software features include improved temperature control, radio frequency identification (RFID) tags for monitoring instrument consumables, HID-focused software features, and security and maintenance.

  4. A rapid and simultaneous determination of several analgesic antiinflammatory agents by capillary zone electrophoresis.

    Science.gov (United States)

    Makino, Kazutaka; Yano, Takahisa; Maiguma, Takayoshi; Teshima, Daisuke; Sendo, Toshiaki; Itoh, Yoshinori; Oishi, Ryozo

    2003-10-01

    A rapid and simultaneous determination of several analgesic antiinflammatory agents--ibuprofen, acetaminophen, indomethacin, and salicylic acid--in human serum was developed by using capillary zone electrophoresis (CZE) coupled with diode-array ultraviolet detection. After precipitation of serum protein with acetonitrile containing 3-isobutyl-1-methylxanthine as the internal standard, an aliquot of deproteinized samples was applied directly to the CZE system. It enabled us to measure all of these four agents within 6 min, and there were no peaks interfering with the assay of these agents or 3-isobutyl-1-methylxanthine. Both the separation and quantification of these agents in human serum were reproducible after repeated analysis within a day or day-to-day analysis. In addition, there was a good correlation for each drug (r = 0.997-0.999) between the values in serum determined by CZE analysis and those measured either by high-performance liquid chromatography with ultraviolet detection (ibuprofen and indomethacin) or by fluorescence polarization immunoassay (acetaminophen and salicylic acid). Therefore, the present CZE analysis could provide a simple, rapid, and efficient method for the identification as well as monitoring of analgesic antiinflammatory agents, particularly in serum of patients suffering from intoxication by overdosage of these agents.

  5. Methoxypropylamino β-cyclodextrin clicked AC regioisomer for enantioseparations in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jie; Wang, Yiying; Liu, Yun; Tang, Jian; Tang, Weihua, E-mail: whtang@mail.njust.edu.cn

    2015-04-08

    Highlights: In this paper, we demonstrate: • The click synthesis of a AC regioisomer cationic cyclodextrin (CD) as chiral selector. • The good enantioselectivities (chiral resolution over 5) for acidic racemates. • The strong chiral recognition of new CD by NMR study. • Baseline enantioseparation of some acidic racemates at CD of 0.5 mM. - Abstract: In this work, a novel methoxypropylamino β-cyclodextrin (β-CD) clicked AC regioisomer, 6{sup A}-4-hydroxyethyl-1,2,3-triazolyl-6{sup C}-3-methoxypropylamino β-cyclodextrin (HETz-MPrAMCD), was synthesized via nucleophilic addition and click chemistry. The chiral separation ability of this AC regioisomer cationic CD was evaluated toward 7 ampholytic and 13 acidic racemates by capillary electrophoresis. Dependence of enantioselectivity and resolution on buffer pH (5.5–8.0) and chiral selector concentration (0.5–7.5 mM) was investigated. Enantioselectivities (α ≥ 1.05) could be achieved for most analytes under optimal conditions except dansyl-DL-noreleucine and dansyl-DL-serine. The highest resolutions for 2-chloromandelic acid p-hydroxymandelic acid were 15.6 and 9.7 respectively. The inclusion complexation between HETz-MPrAMCD and each 3-phenyllactic acid enantiomer was also revealed with nuclear magnetic resonance study.

  6. Review on the development of truly portable and in-situ capillary electrophoresis systems

    Science.gov (United States)

    Lewis, A. P.; Cranny, A.; Harris, N. R.; Green, N. G.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.

    2013-04-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems.

  7. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    Science.gov (United States)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  8. Capillary electrophoresis fingerprinting and spectrophotometric determination of antioxidant potential for classification of Mentha products.

    Science.gov (United States)

    Roblová, Vendula; Bittová, Miroslava; Kubáň, Petr; Kubáň, Vlastimil

    2016-07-01

    In this work aqueous infusions from ten Mentha herbal samples (four different Mentha species and six hybrids of Mentha x piperita) and 20 different peppermint teas were screened by capillary electrophoresis with UV detection. The fingerprint separation was accomplished in a 25 mM borate background electrolyte with 10% methanol at pH 9.3. The total polyphenolic content in the extracts was determined spectrophotometrically at 765 nm by a Folin-Ciocalteu phenol assay. Total antioxidant activity was determined by scavenging of 2,2-diphenyl-1-picrylhydrazyl radical at 515 nm. The peak areas of 12 dominant peaks from CE analysis, present in all samples, and the value of total polyphenolic content and total antioxidant activity obtained by spectrophotometry was combined into a single data matrix and principal component analysis was applied. The obtained principal component analysis model resulted in distinct clusters of Mentha and peppermint tea samples distinguishing the samples according to their potential protective antioxidant effect. Principal component analysis, using a non-targeted approach with no need for compound identification, was found as a new promising tool for the screening of herbal tea products.

  9. Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis.

    Science.gov (United States)

    Lü, Chenchen; Li, Hengye; Wang, Heye; Liu, Zhen

    2013-02-19

    The affinity of boronic acids to cis-diol-containing biomolecules has found wide applications in many fields, such as sensing, separation, drug delivery, and functional materials. A sound understanding of the binding interactions will greatly facilitate exquisite applications of this chemistry. Although a few analytical tools have been available for the characterization of the interactions, these techniques are associated with some apparent drawbacks, so they are only applicable to a limited range of boronic acids and cis-diol-containing biomolecules. Therefore, a widely applicable method is still greatly needed. In this work, an affinity capillary electrophoresis (ACE) method was established and validated to probe the interactions between boronic acids and cis-diol-containing biomolecules. The method was proven to be applicable to almost all types of cis-diol-containing biomolecules and boronic acids. Based on this method, a quantitative, comparative study on the interactions between 14 boronic acids that have important potentials for application with 5 typical monosaccharides of biological importance was carried out. The findings provided new insights into boronate affinity interactions, particularly the relationship between the binding strength with the molecular structures of the binding species. Besides, effects of pH and temperature on the binding strength were also investigated. This method exhibited several significant advantages, including (1) possibility of simultaneous study of multiple interactions, (2) low requirement on the purity of the binding species, (3) wide applicability, and (4) high accuracy and precision.

  10. Capillary electrophoresis to determine entrapment efficiency of a nanostructured lipid carrier loaded with piroxicam

    Institute of Scientific and Technical Information of China (English)

    Jessica Otarola; Adriana Guillermina Lista; Beatriz Fernández Band; Mariano Garrido

    2015-01-01

    A simple and fast capillary electrophoresis method has been developed to determine the amount of piroxicam loaded in a drug delivery system based on nanostructured lipid carriers (NLCs). The entrapment efficiency of the nanostructured lipid carrier was estimated by measuring the concentration of drug not entrapped in a suspension of NLC. The influence of different parameters on migration times, peak symmetry, efficiency and resolution was studied; these parameters included the pH of the electrophoretic buffer solution and the applied voltage. The piroxicam peak was obtained with a satisfactory resolution. The separation was carried out using a running buffer composed of 50 mM ammonium acetate and 13.75 mM ammonia at pH 9. The optimal voltage was 20 kV and the cartridge temperature was 20 1C. The corresponding calibration curve was linear over the range of 2.7–5.4 mg/mL of NLC suspension. The reproducibility of migration time and peak area were investigated, and the obtained RSD% values (n ¼ 5) were 0.99 and 2.13, respectively.

  11. Capillary electrophoresis to determine entrapment efficiency of a nanostructured lipid carrier loaded with piroxicam

    Directory of Open Access Journals (Sweden)

    Jessica Otarola

    2015-02-01

    Full Text Available A simple and fast capillary electrophoresis method has been developed to determine the amount of piroxicam loaded in a drug delivery system based on nanostructured lipid carriers (NLCs. The entrapment efficiency of the nanostructured lipid carrier was estimated by measuring the concentration of drug not entrapped in a suspension of NLC. The influence of different parameters on migration times, peak symmetry, efficiency and resolution was studied; these parameters included the pH of the electrophoretic buffer solution and the applied voltage. The piroxicam peak was obtained with a satisfactory resolution. The separation was carried out using a running buffer composed of 50 mM ammonium acetate and 13.75 mM ammonia at pH 9. The optimal voltage was 20 kV and the cartridge temperature was 20 °C. The corresponding calibration curve was linear over the range of 2.7–5.4 µg/mL of NLC suspension. The reproducibility of migration time and peak area were investigated, and the obtained RSD% values (n=5 were 0.99 and 2.13, respectively.

  12. Determination of ranitidine in urine by capillary electrophoresis-electrochemiluminescent detection.

    Science.gov (United States)

    Gao, Ying; Tian, Yiling; Sun, Xiuhua; Yin, Xue-Bo; Xiang, Qian; Ma, Ge; Wang, Erkang

    2006-03-07

    The fast analysis of ranitidine is of clinical importance in understanding its efficiency and a patient's treatment history. In this paper, a novel determination method for ranitidine based on capillary electrophoresis-electrochemiluminescence detection is described. The conditions affecting separation and detection were investigated in detail. End-column detection of ranitidine in 5 mM Ru(bpy)(3)(2+) solution at applied voltage of 1.20 V was performed. Favorable ECL intensity with higher column efficiency was achieved by electrokinetic injection for 10s at 10 kV. The R.S.D. values of ECL intensity and migration time were 6.38 and 1.84% for 10(-4) M and 6.01 and 0.60% for 10(-5) M, respectively. A detection limit of 7 x 10(-8) M (S/N=3) was achieved. The proposed method was applied satisfactorily to the determination of ranitidine in urine in 6 min.

  13. Rapid simultaneous determination of organic acids, free amino acids, and lactose in cheese by capillary electrophoresis.

    Science.gov (United States)

    Izco, J M; Tormo, M; Jiménez-Flores, R

    2002-09-01

    A capillary electrophoresis (CE) method for the simultaneous separation of 11 metabolically important organic acids (oxalic, formic, citric, succinic, orotic, uric, acetic, pyruvic, propionic, lactic, and butyric), 10 amino acids (Asp, Glu, Tyr, Gly, Ala, Ser, Leu, Phe, Lys, and Trp), and lactose has been optimized, validated, and tested in dairy products. Repeatability and linearity were calculated for each compound, with detection limit values as low as 0.2 x 10(-2) mM for citric acid and Gly. The method was applied to analyze yogurt and different varieties of commercial cheeses. This method yielded specific CE patterns for different varieties of cheese. Also, it has been shown to be sensitive enough to measure small changes in composition of some of those compounds in fresh cheese stored under accelerated ripening conditions for 2 d at 32 degrees C (e.g., from 1728.3 +/- 45.0 to 1166.7 +/- 4.5 mg/100 g of DM in the case of lactose, or from 23.5 +/- 0.6 to 76.8 +/- 16.7 mg/100 g of DM in the case of acetic acid).

  14. Simultaneous electrochemiluminescence determination of sulpiride and tiapride by capillary electrophoresis with cyclodextrin additives.

    Science.gov (United States)

    Li, Jianguo; Zhao, Fengjuan; Ju, Huangxian

    2006-05-01

    Sulpiride and tiapride are often used in the treatment of depression, schizophrenia and psychopathology of senescence, gastric or duodenal ulcers and are also partly excreted by kidney. This work developed a simple and sensitive method for their simultaneous monitoring in human urine based on capillary electrophoresis coupled with electrochemiluminescence detection by end-column mode. beta-Cyclodextrin (beta-CD) was used as an additive to the running buffer to obtain the absolute separation of sulpiride and tiapride. Under optimized conditions the proposed method displayed a linear range from 1.0 x 10(-7) to 1.0 x 10(-4) M for both sulpiride and tiapride with the correlation coefficients more than 0.995 (n = 6). Their limits of detection were 1.0 x 10(-8) M (45 amol) and 1.5 x 10(-8) M (68 amol) at a signal to noise ratio of 3, respectively. The relative standard deviations for six determinations of 2.0 microM sulpiride and 3.0 microM tiapride were 1.8 and 2.5%, respectively. For practical application an extract step with ethyl acetate at pH 11 was performed to eliminate the influence of ionic strength in sample. The recoveries of sulpiride and tiapride at different levels in human urine were between 84 and 95%, which showed that the method was valuable in clinical and biochemical laboratories for monitoring sulpiride and tiapride for various purposes.

  15. Determination of phycobiliproteins by capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Viskari, P J; Kinkade, C S; Colyer, C L

    2001-07-01

    Phycobiliproteins are derived from the photosynthetic apparatus of cyanobacteria and eukaryotic algae. They are composed of a protein backbone to which linear tetrapyrrole chromophores are covalently bound. Furthermore, they are water-soluble highly fluorescent, and relatively stable at room temperature and neutral pH. For this reason, capillary electrophoresis-laser induced fluorescence (CE-LIF) seems the idea method for determination of these important proteins. The effects of buffer additives such as sodium dodecyl sulfate (SDS)and putrescine on the separation of the three major phycobiliprotein types, namely allophycocyanin, phycocyanin, and phycoerythrin, with excitation and emission maxima at 652/660, 615/647, and 565(494)/575 nm, respectively, are considered. Detection limits for these proteins by CE-LIF are some 60-500 times better than by absorbance detection. The development of a fast and sensitive CE-LIF assay such as this is of potential significance to our understand ing of chemical and biological oceanographic processes.

  16. Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food.

    Science.gov (United States)

    Omar, Mei Musa Ali; Elbashir, Abdalla Ahmed; Schmitz, Oliver J

    2017-01-01

    Simple and inexpensive capillary electrophoresis with UV-detection method (CE-UV) was optimized and validated for determination of six amino acids namely (alanine, asparagine, glutamine, proline, serine and valine) for Sudanese food. Amino acids in the samples were derivatized with 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) prior to CE-UV analysis. Labeling reaction conditions (100mM borate buffer at pH 8.5, labeling reaction time 60min, temperature 70°C and NBD-Cl concentration 40mM) were systematically investigated. The optimal conditions for the separation were 100mM borate buffer at pH 9.7 and detected at 475nm. The method was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision (repeatability) (RSD%) and accuracy (recovery). Good linearity was achieved for all amino acids (r(2)>0.9981) in the concentration range of 2.5-40mg/L. The LODs in the range of 0.32-0.56mg/L were obtained. Recoveries of amino acids ranging from 85% to 108%, (n=3) were obtained. The validated method was successfully applied for the determination of amino acids for Sudanese food samples.

  17. Characterization of microconcentric nebulizer uptake rates for capillary electrophoresis inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2003-05-01

    There is demonstrated interest in combining capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) for speciation determinations. When self-aspirating nebulizers are used for this application, it is important to offset the suction effect to avoid degradation of the separation. In this study, sample uptake rates for three microconcentric nebulizers of the same model, in combination with a cyclonic spray chamber, were characterized and compared for future utilization in CE-ICP-MS interfaces. The specific model studied was a MicroMist with a nominal uptake rate of 100 μl/min at 1 l/min argon gas flow rate per the manufacturer's specifications. Sample uptake rates at various nebulizer gas flows were measured by aspirating water from a weighed container and calculating the uptake rate in microliter per minute. The nebulizers studied provided good reproducibility from day to day, but a comparison of the different nebulizers reflected a significant difference in performance. A characteristic observed during the study was that uptake rates decreased with increasing nebulizer gas flow. This can be used for sample introduction for CE-ICP-MS. Interestingly, very different performance was observed when comparing the three different nebulizers of the same model. Uptake rates showed strong dependence on argon gas flow rates and the dimensions of the sample uptake tubing.

  18. Fast analysis of glibenclamide and its impurities: quality by design framework in capillary electrophoresis method development.

    Science.gov (United States)

    Furlanetto, Sandra; Orlandini, Serena; Pasquini, Benedetta; Caprini, Claudia; Mura, Paola; Pinzauti, Sergio

    2015-10-01

    A fast capillary zone electrophoresis method for the simultaneous analysis of glibenclamide and its impurities (I(A) and I(B)) in pharmaceutical dosage forms was fully developed within a quality by design framework. Critical quality attributes were represented by I(A) peak efficiency, critical resolution between glibenclamide and I(B), and analysis time. Experimental design was efficiently used for rapid and systematic method optimization. A 3(5)//16 symmetric screening matrix was chosen for investigation of the five selected critical process parameters throughout the knowledge space, and the results obtained were the basis for the planning of the subsequent response surface study. A Box-Behnken design for three factors allowed the contour plots to be drawn and the design space to be identified by introduction of the concept of probability. The design space corresponded to the multidimensional region where all the critical quality attributes reached the desired values with a degree of probability π ≥ 90%. Under the selected working conditions, the full separation of the analytes was obtained in less than 2 min. A full factorial design simultaneously allowed the design space to be validated and method robustness to be tested. A control strategy was finally implemented by means of a system suitability test. The method was fully validated and was applied to real samples of glibenclamide tablets.

  19. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    Science.gov (United States)

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  20. Synthesis of SB-β-CD and its application in nonaqueous capillary electrophoresis separation of basic chiral drugs%6-O-磺丁基-β-环糊精的合成及在非水毛细管电泳拆分碱性手性药物中的应用

    Institute of Scientific and Technical Information of China (English)

    邢文国; 孟宪兴; 冯维春; 李继宾; 何海林

    2013-01-01

    A new β-cyclodextrin (β-CD) derivative, SB-β-CD, was successfully synthesized and used as a chiral selector in nonaqueous capillary electrophoresis ( NACE ). The effects of organic solvents, the electrolytes, the concentrations of SB-p-CD and the pH of the buffer were investigated. Four basic chiral drugs, including chlorpheniramine, doxylamine, meclozine, and mianserin, were resolved, while the four basic chiral drugs can not be separated by β-CD under the same conditions. It demonstrated that SB-p-CD as a chiral selector had the special ability in the separation of basic chiral drugs. It was a rapid and accurate method for the separation of basic chiral drugs.%合成了新型环糊精衍生物6-O-磺丁基-β-环糊精(SB-β-CD),并以其作为手性选择剂,对扑尔敏、多西拉敏、美克洛嗪和米安舍林4种碱性手性药物进行非水毛细管电泳拆分.考察了有机溶剂、电解质、手性选择剂浓度以及pH对分离度的影响.研究结果表明:扑尔敏、多西拉敏、美克洛嗪和米安舍林4种碱性手性药物全部达到基线分离.可见SB-β-CD在碱性药物拆分方面具有特殊能力,为碱性手性药物的拆分提供了一种准确、简便的分析方法.

  1. Quantitative wavelength-resolved fluorescence detection for microchip capillary electrophoresis

    NARCIS (Netherlands)

    Götz, Sebastian

    2006-01-01

    This thesis describes the development and application of a new wavelengthresolved CCD-based fluorescence detector for microchip separations. In recent years, miniaturization has been one of the major trends in the development of new analytical separation systems. As the manipulated sample amounts an

  2. Migration behavior of alkylphenols, bisphenol A and bisphenol S studied by capillary electrophoresis using sulfated beta-cyclodextrin.

    Science.gov (United States)

    Mori, M; Naraoka, H; Tsue, H; Morozumi, T; Kaneta, T; Tanaka, S

    2001-06-01

    An application of capillary electrophoresis (CE) using sulfated beta-cyclodextrin (SCD) has been investigated for separating alkylphenols with different chain lengths, as well as bisphenol A and bisphenol S. In the absence of SCD in running buffer, all the phenols migrated at the same velocity as the electroosmotic flow (EOF), whereas the addition of SCD effectively led to the baseline separation of alkylphenols on the basis of the difference in the abilities to bind into the hydrophobic cavity of CD. The host-guest binding constants between analyte phenols and SCD were evaluated from Benesi-Hildebrand plots of the data obtained by two independent methods, CE and UV-visible measurements, demonstrating that the greater the hydrophobicity of the phenols, the larger the binding constants. The effects of organic solvents on the resolution for alkylphenols and bisphenols were also examined. This system using SCD was effective for the separation of 4-octylphenol and 4-nonylphenol isomers having longer alkyl chains.

  3. A fully automated linear polyacrylamide coating and regeneration method for capillary electrophoresis of proteins.

    Science.gov (United States)

    Bodnar, Judit; Hajba, Laszlo; Guttman, Andras

    2016-12-01

    Surface modification of the inner capillary wall in CE of proteins is frequently required to alter EOF and to prevent protein adsorption. Manual protocols for such coating techniques are cumbersome. In this paper, an automated covalent linear polyacrylamide coating and regeneration process is described to support long-term stability of fused-silica capillaries for protein analysis. The stability of the resulting capillary coatings was evaluated by a large number of separations using a three-protein test mixture in pH 6 and 3 buffer systems. The results were compared to that obtained with the use of bare fused-silica capillaries. If necessary, the fully automated capillary coating process was easily applied to regenerate the capillary to extend its useful life-time.

  4. Combining C(4) D and MS as a dual detection approach for capillary electrophoresis.

    Science.gov (United States)

    Beutner, Andrea; Cunha, Rafael Rodrigues; Richter, Eduardo Mathias; Matysik, Frank-Michael

    2016-04-01

    The hyphenation of two detectors in combination with separation techniques is a powerful tool to enhance the analytical information. In this work, we present for the first time the coupling of two important detectors for capillary electrophoresis (CE), namely capacitively coupled contactless conductivity detection (C(4) D) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS). The elaborated experimental protocol took into account the requirements of separation aspects and the compatibility with both detectors. ESI-TOF-MS requires background electrolytes (BGE) containing only volatile components such as ammonium acetate or formate. These, however, exhibit a rather high conductivity, which is disadvantageous for C(4) D. Thus, the selection of the BGE in an appropriate concentration was undertaken for the determination of various phenolic compounds serving as a model system. The chosen BGE was a 10 mM ammonium acetate/ammonia buffer with a pH of 9. This BGE was a compromise concerning the detection performance of both detectors. The LODs for m-cresol, m- and p-nitrophenol, and 2,4-dinitrophenol were 3.1 μM (C(4) D), 0.8 μM (MS), 0.8 μM (MS), and 1.5 μM (MS), respectively. Moreover, the overall separation efficiency was excellent illustrating that detector-induced band broadening can be neglected in the CE-C(4) D/MS system. The analytical characteristics for the determination of phenolic compounds show the suitability of this dual detection approach and demonstrate the complementary use of C(4) D and MS detection.

  5. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity.

    Science.gov (United States)

    Woo, Nain; Kim, Su-Kang; Kang, Seong Ho

    2016-08-01

    A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.

  6. Capillary ion electrophoresis of inorganic anions and uric acid in human saliva using a polyvinyl alcohol coated capillary column and hexamethonium chloride as additive of background electrolyte.

    Science.gov (United States)

    Mori, Masanobu; Yamamoto, Tsukasa; Kaseda, Maki; Yamada, Sachiko; Itabashi, Hideyuki

    2012-03-01

    A combination of polyvinyl alcohol chemically coated capillary (PVA capillary) and background electrolyte (BGE) with ion-pair reagent (hexamethonium dichloride, HMC) was used on capillary ion electrophoresis-UV detection (CIE-UV) for analysis of Br⁻, I⁻, NO₂⁻, NO₃⁻, SCN⁻ and uric acid in human saliva. The PVA capillary prepared in our laboratory minimized electro-osmotic flow (EOF) at the BGE in pH 3-10, and did not affect the UV detection at 210 nm by the PVA-layer on capillary wall. Therefore, use of the PVA capillary was suitable for sensitive UV detection for analyte anions, as well as suppression of protein adsorption. In this study, we optimized the BGE of 10 mM phosphate plus 10 mM HMC with applying a voltage of -15 kV. HMC as an additive to BGE could manipulate the electrophoretic mobility of anions, without electrostatic adsorption to the PVA capillary. The CIE-UV could separate and determine analyte anions in human saliva containing proteins by the direct injection without pretreatments such as dilution or deproteinization within 13 min. The relative standard deviations (n=10) were ranged of 0.5-1.6% in migration times, 2.2-6.8% in peak heights and 2.8-8.4% in peak areas. The limits of detection (S/N=3) were ranged of 3.42-6.87 μM. The peak height of anions in this system was gradually decreased through the successive injections of saliva samples, but the problem was successfully solved by periodically conditioning the PVA capillary. The quantifiability of anions in human saliva samples by the CIE-UV was evaluated through the recoveries by standard addition methods and comparison of other representative analytical methods, as well as identification by ion chromatography (IC). From the anion analyses in 12 different saliva samples, the CIE-UV demonstrated that can obtain obvious differences in concentrations of SCN⁻ between of smoker and non-smoker and those of uric acid between male and female with satisfactory results.

  7. Determination of Dissociation Constants of Complicated Compounds by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YANG, Geng-Liang; WANG, De-Xian; SUN, Su-Fang; LIU, Hai-Xing; MA, Jian-Jun

    2001-01-01

    In this work,the whole theoretical metods forthe determinaion ofpKa1 and pKa2 of complicated complicated compounds are proposed by capillary zone electrophoresis.The pka values areachieved by non-linear regression analysis by takiny into consideration the effect of activity coefficient.This is the first report on determining the dissociation constants of gastrodin,magnolol,honkiol,puercetin,curcumin,diethylstilbestrol,diehylstilbestrol,4acetamidophenol,eugenol and paeonol.

  8. Determination of Cordycepin in Cordyceps kyushuensis by Capillary Electrophoresis and its Antitumour Activity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A simple, rapid and low-cost method of determination for cordycepin in Cordyceps kyushuensis by capillary zone electrophoresis (CZE) was developed. Based on the finding that there is a high concentration of cordycepin in both natural and cultured Cordyceps kyushuensis, the in vitro antitumor activity of cordycepin and the water extracts of Cordyceps kyushuensis has been investigated. This is the first report about the antitumor effect of Cordyceps kyushuensis.

  9. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    Science.gov (United States)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  10. Capillary electrophoresis and mass spectrometry for screening of metabolic disorders in newborns.

    Science.gov (United States)

    Senk, Petr; Kozák, Libor; Foret, Frantisek

    2004-06-01

    Clinical analyses always represent a challenge for the sensitivity and selectivity of the analytical techniques. Of the most critical are the techniques required for the quick determination of the disease state and application of the proper treatment in newborns. This short critical review overviews the present state of the art of the use of mass spectrometry and capillary electrophoresis for screening of metabolic disorders in newborns.

  11. Characterization of Nanoparticles by Capillary Electrophoresis and Trapping of Nanoparticles in Microfluidics Device

    Science.gov (United States)

    2009-08-01

    from Sigma-Aldrich Canada Ltd. (Oakville, ON). 2-(N-Morpholino)ethane sulphonic acid (MES) was from ICN Biomedical Inc. (Aurora, OH). BODIPY 493/503...sized biological detection systems. To this end the physico-chemical properties of a variety of NPs were examined using capillary electrophoresis...valuable tool in NP research. The physico-chemical properties of NPs have critical effects on their behaviour in bio-analytical devices. Thus NPs

  12. Capillary electrophoresis-time of flight-mass spectrometry using noncovalently bilayer-coated capillaries for the analysis of amino acids in human urine.

    Science.gov (United States)

    Ramautar, Rawi; Mayboroda, Oleg A; Derks, Rico J E; van Nieuwkoop, Cees; van Dissel, Jaap T; Somsen, Govert W; Deelder, André M; de Jong, Gerhardus J

    2008-06-01

    A capillary electrophoresis-time of flight-mass spectrometry (CE-TOF-MS) method for the analysis of amino acids in human urine was developed. Capillaries noncovalently coated with a bilayer of Polybrene (PB) and poly(vinyl sulfonate) (PVS) provided a considerable EOF at low pH, thus facilitating the fast separation of amino acids using a BGE of 1 M formic acid (pH 1.8). The PB-PVS coating proved to be very consistent yielding stable CE-MS patterns of amino acids in urine with favorable migration time repeatability (RSDs capillary preconcentration step based on pH-mediated stacking allowing 100-nL sample injection (i.e. ca. 4% of capillary volume). As a result, LODs for amino acids were down to 20 nM while achieving satisfactory separation efficiencies. Preliminary validation of the method with urine samples showed good linear responses for the amino acids (R(2) >0.99), and RSDs for peak areas were <10%. Special attention was paid to the influence of matrix effects on the quantification of amino acids. The magnitude of ion suppression by the matrix was similar for different urine samples. The CE-TOF-MS method was used for the analysis of urine samples of patients with urinary tract infection (UTI). Concentrations of a subset of amino acids were determined and compared with concentrations in urine of healthy controls. Furthermore, partial least squares-discriminant analysis (PLS-DA) of the CE-TOF-MS dataset in the 50-450 m/z region showed a distinctive grouping of the UTI samples and the control samples. Examination of score and loadings plot revealed a number of compounds, including phenylalanine, to be responsible for grouping of the samples. Thus, the CE-TOF-MS method shows good potential for the screening of body fluids based on the analysis of endogenous low-molecular weight metabolites such as amino acids and related compounds.

  13. Coated capillaries with highly charged polyelectrolytes and carbon nanotubes co-aggregated with sodium dodecyl sulphate for the analysis of sulfonylureas by capillary electrophoresis.

    Science.gov (United States)

    El-Debs, Racha; Nehmé, Reine; Claude, Bérengère; Motteau, Solène; Togola, Anne; Berho, Catherine; Morin, Philippe

    2014-11-07

    Sulfonylureas (SUs) are one of the most widely used herbicides to control weeds in crops. Herein, capillary electrophoresis (CE) was used to determine four sulfonylureas in natural waters, namely chlorsulfuron (CS), iodosulfuron methyl (IM), metsulfuron methyl (MSM) and mesosulfuron methyl (MSS). First of all, a bare silica capillary was chosen with 10mM of 1-butyl-3-methylimidazolium tetrafluoroborate (bminBF4) as electrophoretic buffer (pH 9.6) containing 2 mg L(-1) of surfactant-coated single-wall carbon nanotubes (SC-SWCNTs). A dramatic deviation in migration times was observed. Therefore, a poly(diallyldimethylammonium) chloride (PDADMAC) statically coated cationic capillary was used to improve repeatability and to alter the selectivity of the separation. The electroosmotic flow (EOF) measurement revealed that the SC-SWCNTs were strongly adsorbed at the surface of the PDADMAC coating even in the absence of the surfactant-coated nanotubes in the electrolyte buffer. Consequently, a stable strong cathodic EOF and excellent repeatabilities were obtained with relative standard deviations (RSDs) on migration times and on corrected peak areas below 0.9 and 1.5%, respectively. The separation of the SUs was conducted in only 6 min. No regeneration of the coating between analyses was necessary, and high peak efficiencies up to 173,000 theoretical plates were obtained. The bi-layer coating was subsequently used to analyze sulfonylureas in tap water, in several mineral waters as well as in underground waters spiked with SUs and directly injected into the CE capillary.

  14. Determination of Enantiomeric Purity of n-Pyrrolidinyl Phenylpropanol by Capillary Electrophoresis Using b-Cyclodextrin Polymer as Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Enantiomer of n-pyrrolidinyl phenylpropanol was studied by capillary electrophoresis using b-cyclodextrin polymer as chiral selector. We determined the enantiomeric excess value of n-pyrrolidinyl phenylpropanol with RSD 0.48%.

  15. A Novel Protocol to Analyze Short- and Long-Chain Fatty Acids Using Nonaqueous Microchip Capillary Electrophoresis

    Science.gov (United States)

    Cable, M. L.; Stockton, A. M.; Mora, Maria F; Willis, P. A.

    2013-01-01

    We propose a new protocol to identify and quantify both short- and long-chain saturated fatty acids in samples of astrobiological interest using non-aqueous microchip capillary electrophoresis (micronNACE) with laser induced fluorescence (LIF).

  16. A KINETIC STUDY OF THE METHANOLYSIS OF THE SULFONYLUREAS BENSULFURON METHYL AND SULFOMETURON METHYL USING CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    The instability of sulfonylureas in solution in methanol has led us to a kinetic study of methanolysis of two sulfonylureas using capillary electrophoresis. In a preliminary experiment solutions of the seven compounds, bensulfuron methyl, sulfometuron methyl, nicosulfuron, chlori...

  17. Capillary electrophoresis-single strand conformation polymorphism for the detection of multiple mutations leading to tuberculosis drug resistance.

    Science.gov (United States)

    Krothapalli, Sowmya; May, Michael K; Hestekin, Christa N

    2012-10-01

    Drug resistant tuberculosis (TB) is a major health problem in both developed and developing countries. Mutations in the Mycobacterium (M.) tuberculosis bacterial genome, such as those to the rpoB gene and mabA-inhA promoter region, have been linked to TB drug resistance in against rifampicin and isoniazid, respectively. The rapid, accurate, and inexpensive identification of these and other mutations leading to TB drug resistance is an essential tool for improving human health. Capillary electrophoresis (CE) single strand conformation polymorphism (SSCP) can be a highly sensitive technique for the detection of genetic mutation that has not been previously explored for drug resistance mutations in M. tuberculosis. This work explores the potential of CE-SSCP through the optimization of variables such as polymer separation matrix concentration, capillary wall coating, electric field strength, and temperature on resolution of mutation detection. The successful detection of an rpoB gene mutation and two mabA-inhA promoter region mutations while simultaneously differentiating a TB-causing mycobacteria from a non-TB bacteria was accomplished using the optimum conditions of 4.5% (w/v) PDMA in a PDMA coated capillary at 20°C using a separation voltage of 278 V/cm. This multiplexed analysis that can be completed in a few hours demonstrates the potential of CE-SSCP to be an inexpensive and rapid analysis method.

  18. Restriction Enzyme Pattern Analysis of Mycobacteria DNA by Capillary Electrophoresis with Laser-induced Fluorescence Detection

    Institute of Scientific and Technical Information of China (English)

    Li Yuanqian; Wang Guoqing; Mi Jianping; Zhou Ying; Zeng Hongyan; Zhang Chaowu

    2006-01-01

    A new method for rapidly detecting restriction enzyme patterns of Mycobacterium DNA using capillary electrophoresis with laser-induced fluorescence detection (CE-LIFD)was developed.Polymerase chain reaction was used to amplify a 439-bp fragment of a 65,000-kDa(Mr)heat shock protein gene(hsp65)of Mycobacterium.After digesting amplification products by BstEII and HaeIII,patterns of enzyme cleavage products were detected by both CE-LIFD and agarose gel electrophoresis(AGE),respectively.Experimental parameters of CE were optimized.Restriction enzyme patterns of Mycobacterium DNA were detected in optimum electrophoresis conditions:a coated capillary column with a length of 50 cm and an internal diameter of 100 μm,an electrophoresis buffer of 45 mmol/1 Tris-boric acid-ethylenediaminetetraacetic acid,and a running voltage of 11 kV.The restriction enzyme patterns for eight species of mycobacteria were studied.Relative standard deviations of the relative migration times of DNA segments were<3.6%.Compared with AGE,CE is more outstanding in resolution and detection time,and it can be applied as a more effective means to DNA restriction enzyme pattern analysis.

  19. Determination of homologues of quaternary ammonium surfactants by capillary electrophoresis using indirect UV detection.

    Science.gov (United States)

    Liu, Hsueh-Ying; Ding, Wang-Hsien

    2004-02-06

    This investigation describes the simultaneous separation of two major non-chromophoric quaternary ammonium surfactants, alkyltrimethyl- and dialkyldimethylammonium compounds (ATMACs and DADMACs, respectively), by capillary electrophoresis (CE) using indirect UV detection. The most effective separation conditions was 10 mM phosphate buffer with 57.5% tetrahydrofuran and 3 mM sodium dodecyl sulfate (SDS) at pH 4.3, and the sample hydrodynamic injection of up to 20 s at 1 psi (approximately 60 nl), and an applied voltage of 25 kV (1 psi = 6.9 kPa). Specially, the selection of an appropriate chromophore and an internal standard (I.S.) to improve the peak identification and quantitation was systematically investigated. Decylbenzyldimethyl ammonium chloride (C10-BDMA+C-) as a chromophore with 3 mM sodium dodecyl sulfate provided the best detectability for all homologues. The reproducibility of the migration time and quantitative analysis can be improved by using tetraoctyl ammonium ion as an internal standard, giving the relative standard deviation (R.S.D.) less than 0.8% for the relative migration times, and 2.5-5.5% for the relative peak areas. A good linearity of CE analysis was obtained in the range of 1.0-20 microg/ml with r2 values of above 0.999. The analysis of cationic surfactants in commercial products of hair conditioners and fabric softeners was also performed. Electrospray mass spectrometric method was applied to evaluate the CE method, and the compatible results were obtained.

  20. Separation of Dopamine and Epinephrine by a Novel Electrophoresis Technique with Nafion Membrane as Separation Column

    Institute of Scientific and Technical Information of China (English)

    Fang Cheng; Wu Bingliang; Zhang Wu-ming; Zhou Xing-gao

    2004-01-01

    A novel electrophoresis technique, in which a strip of perflurosulfonic-acid (Nafion 117) membrane was used to replace the conventional separation column and liquid buffer solution within, was developed and employed to separate the mixture of dopamine and epinephrine under a low separation voltage of 100 V with quadruple pulses amperometry detection. It was showed that the so-called Nafion membrane electrophoresis could be one of very simple and easy method and has the potentiality to be used to separate and analyze some small organic biologic molecules.

  1. Capillary zone electrophoresis for analysis of phytochelatins and other thiol peptides in complex biological samples derivatized with monobromobimane.

    Science.gov (United States)

    Perez-Rama, Mónica; Torres Vaamonde, Enrique; Abalde Alonso, Julio

    2005-02-01

    A new method to improve the analysis of phytochelatins and their precursors (cysteine, gamma-Glu-Cys, and glutathione) derivatized with monobromobimane (mBrB) in complex biological samples by capillary zone electrophoresis is described. The effects of the background electrolyte pH, concentration, and different organic additives (acetonitrile, methanol, and trifluoroethanol) on the separation were studied to achieve optimum resolution and number of theoretical plates of the analyzed compounds in the electropherograms. Optimum separation of the thiol peptides was obtained with 150 mM phosphate buffer at pH 1.60. Separation efficiency was improved when 2.5% v/v methanol was added to the background electrolyte. The electrophoretic conditions were 13 kV and capillary dimensions with 30 cm length from the inlet to the detector (38 cm total length) and 50 microm inner diameter. The injection was by pressure at 50 mbar for 17 s. Under these conditions, the separation between desglycyl-peptides and phytochelatins was also achieved. We also describe the optimum conditions for the derivatization of biological samples with mBrB to increase electrophoretic sensitivity and number of theoretical plates. The improved method was shown to be simple, reproducible, selective, and accurate in measuring thiol peptides in complex biological samples, the detection limit being 2.5 microM glutathione at a wavelength of 390 nm.

  2. Quantitative twoplex glycan analysis using (12)C6 and (13)C6 stable isotope 2-aminobenzoic acid labelling and capillary electrophoresis mass spectrometry.

    Science.gov (United States)

    Váradi, Csaba; Mittermayr, Stefan; Millán-Martín, Silvia; Bones, Jonathan

    2016-12-01

    Capillary electrophoresis (CE) offers excellent efficiency and orthogonality to liquid chromatographic (LC) separations for oligosaccharide structural analysis. Combination of CE with high resolution mass spectrometry (MS) for glycan analysis remains a challenging task due to the MS incompatibility of background electrolyte buffers and additives commonly used in offline CE separations. Here, a novel method is presented for the analysis of 2-aminobenzoic acid (2-AA) labelled glycans by capillary electrophoresis coupled to mass spectrometry (CE-MS). To ensure maximum resolution and excellent precision without the requirement for excessive analysis times, CE separation conditions including the concentration and pH of the background electrolyte, the effect of applied pressure on the capillary inlet and the capillary length were evaluated. Using readily available (12/13)C6 stable isotopologues of 2-AA, the developed method can be applied for quantitative glycan profiling in a twoplex manner based on the generation of extracted ion electropherograms (EIE) for (12)C6 'light' and (13)C6 'heavy' 2-AA labelled glycan isotope clusters. The twoplex quantitative CE-MS glycan analysis platform is ideally suited for comparability assessment of biopharmaceuticals, such as monoclonal antibodies, for differential glycomic analysis of clinical material for potential biomarker discovery or for quantitative microheterogeneity analysis of different glycosylation sites within a glycoprotein. Additionally, due to the low injection volume requirements of CE, subsequent LC-MS analysis of the same sample can be performed facilitating the use of orthogonal separation techniques for structural elucidation or verification of quantitative performance.

  3. A novel capillary electrophoresis microchip with amperometric detection using a Prussian blue-modified indium tin oxide electrode

    Science.gov (United States)

    Kim, Ju-Ho; Kang, C. J.; Kim, Yong-Sang

    2005-03-01

    A novel approach to construct a disposable capillary electrophoresis microchip is proposed. The electrocatalytic oxidation of dopamine at a Prussian blue (PB)-modified indium tin oxide (ITO) electrode was described and the amperometric detection of dopamine was then investigated. The PB film on ITO electrode was electrodeposited using FeCl3 and K3Fe(CN)6 mixed solution. Our results indicated that PB film was uniform, smooth, and defect-free. The CE-chip has been tested successfully by detecting dopamine and catechol within a very short time of around 80 sec using an electric field of 60 V/cm. The results also showed that dopamine and catechol mixtures were separated efficiently and rapidly. The microsystems gave a very good reproducibility for peak height and separation time. This microchip is cost effective and adequate for a disposable sensor.

  4. Self-aligning subatmospheric hybrid liquid junction electrospray interface for capillary electrophoresis.

    Science.gov (United States)

    Krenkova, Jana; Kleparnik, Karel; Grym, Jakub; Luksch, Jaroslav; Foret, Frantisek

    2016-02-01

    We report a construction of a self-aligning subatmospheric hybrid liquid junction electrospray interface for CE eliminating the need for manual adjustment by guiding the capillaries in a microfabricated liquid junction glass chip at a defined angle. Both the ESI and separation capillaries are inserted into the microfabricated part until their ends touch. The distance between the capillary openings is defined by the angle between the capillaries. The microfabricated part contains channels for placement of the capillaries and connection of the external electrode reservoirs. It was fabricated using standard photolithographic/wet chemical etching techniques followed by thermal bonding. The liquid junction is connected to a subatmospheric electrospray chamber inducing the flow inside the ESI needle and helping the ion transport via aerodynamic focusing.

  5. A Theoretical Analysis of the Influence of Electroosmosis on the Effective Ionic Mobility in Capillary Zone Electrophoresis

    Science.gov (United States)

    Hijnen, Hens

    2009-01-01

    A theoretical description of the influence of electroosmosis on the effective mobility of simple ions in capillary zone electrophoresis is presented. The mathematical equations derived from the space-charge model contain the pK[subscript a] value and the density of the weak acid surface groups as parameters characterizing the capillary. It is…

  6. Effects of organic modifiers in separation of chlorophenols by capillary zone electrophoresis%有机改性剂对氯代酚毛细管区带电泳分离的影响

    Institute of Scientific and Technical Information of China (English)

    刘学良; 苏立强; 王俊德; 商振华

    2001-01-01

    The effects of organic modifiers such as acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, formamide, methanol, nitromethane, and tetrahydrofuran on the electrophoretic separation of chlorophenols were investigated. The relative migration of these analytes depend upon the ability for them to form hydrogen bonds, suggesting that solvation spheres of modifier molecules around the analytes are important. Selectivities can be tuned by employing organic modifiers with different hydrogen bonding properties.%在分离19种氯代酚的过程中,考察了不同的有机添加剂对其毛细管区带电泳分离的影响,发现除了缓冲溶液的pH值外,缓冲溶液添加剂对氯代酚的电泳分离也有较大影响。这种影响与添加剂和氯代酚形成氢键的能力有关。

  7. Variability of microchip capillary electrophoresis with conductivity detection.

    Science.gov (United States)

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions.

  8. PMMA-based capillary electrophoresis electrochemical detection microchip fabrication

    Science.gov (United States)

    Horng, Ray-Hua; Han, Pin; Chen, Hung-Yu; Lin, Kuan-Wen; Tsai, Tung-Mung; Zen, Jyh-Myng

    2005-01-01

    In this paper, a 50 µm (depth) × 50 µm (width) microfluidic channel is made on a poly(methyl methacrylate) (PMMA) substrate using thick photoresist. Openings were drilled for buffer reservoirs on an additional piece of PMMA. A final PMMA/patterned photoresist/PMMA sandwich configuration was completed using a bonding process. The thick photoresist was used as the adhesion layer and also as the microfluidic system. Using screen-printed technology for carbon and silver electrode fabrication, the microchip electrophoretic device functions were demonstrated. Successful detection of uric acid and L-ascorbic acid (the main components in human urine) validates the functionality of the proposed system. Successful ascorbic and uric acid separation in a sample from a urine donor who had consumed 500 mg of vitamins verified the proposed biochip.

  9. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10-11 M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  10. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gang Xue

    2001-12-31

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  11. Capillary electrophoresis of natural products: 2011-2012.

    Science.gov (United States)

    Tubaon, Ria Marni S; Rabanes, Heide; Haddad, Paul R; Quirino, Joselito P

    2014-01-01

    Bioactive natural products are major sources of lead compounds for drug discovery and pharmaceutical development, therefore, innovative and current separation and characterization techniques are important for these compounds. Here, CE methods applied for the analysis of natural products published during 2011-2012 are reviewed. This is an updated version of an earlier review paper in this journal, which highlighted developments during 2006-2010. The major method developments over the review period centered on derivatization, chiral analysis, modes of detection, stacking or on-line sample concentration, and sample preparation (predominantly using extraction methods). The samples analyzed were herbal products, foods, soil, and biological samples. Developments also occurred in the areas of quality control, toxicology assessment, and enzyme-inhibitor screening. A table that summarizes the areas, source of natural product, nature of the bioactive analyte, CE conditions, LODs, and corresponding reference is provided. A short description on the theory of CE and insights on future activities of CE on natural products are also presented.

  12. A semipermanent coating for preventing protein adsorption at physiological pH in kinetic capillary electrophoresis.

    Science.gov (United States)

    de Jong, Stephanie; Epelbaum, Nicolas; Liyanage, Ruchi; Krylov, Sergey N

    2012-08-01

    Protein adsorption to the inner capillary wall hinders the use of kinetic capillary electrophoresis (KCE) when studying noncovalent protein-ligand interactions. Permanent and dynamic capillary coatings have been previously reported to alleviate much of the problems associated with protein adsorption. The characteristic limitations associated with permanent and dynamic coatings motivated us to look at a third type of coating - semipermanent. Here, we demonstrate that a semipermanent capillary coating, designed by Lucy and co-workers, comprised of dioctadecyldimethylammonium bromide (DODAB) and polyoxyethylene (POE) stearate, greatly reduces protein adsorption at physiological pH - a necessary requirement for KCE. The coating (i) does not inhibit protein-DNA complex formation, (ii) prevents the adsorption of the analytes, and (iii) supports an electoosmotic flow required for many applications of KCE. The coating was tested in three physiological buffers using a well-known DNA aptamer and four proteins that severely bind to bare silica capillaries as standards. For every protein, a condition was found under which the semipermanent coating effectively suppresses protein adhesion. While no coating can completely prevent the adsorption of all proteins, our findings suggest that the DODAB/POE stearate coating can have a broad impact on CE at large, as it prevents the absorption of several well studied, highly adhesive proteins at physiological pH.

  13. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided.

  14. Capillary zone electrophoresis for determination of vildagliptin (a DPP-4 inhibitor) in pharmaceutical formulation and comparative study with HPLC.

    Science.gov (United States)

    Barden, A T; Piccoli, B L; Volpato, N M; Schapoval, E E S; Steppe, M

    2014-02-01

    A stability-indicating capillary zone electrophoresis (CZE) method was validated for the determination of vildagliptin (VLG) in pharmaceutical dosage forms using ranitidine hydrochloride (RH) as internal standard. The CZE method was carried out in a fused silica capillary (64.5 cm total length and 56.0 cm effective length, 50 microm i.d.) by applying a potential of 25 kV (positive polarity), hydrodynamic injection by 50 mbar for 5 s and the temperature of the capillary cartridge was 25 degreesC. The selected background electrolyte (BGE) consisted of 25 mM potassium phosphate (pH 8.0) with UV/PDA detection at 207 nm. The electrophoretic separation was obtained within 6 min and was linear in the range of 50-200 microg/mL (r= 0.9994). The specificity and the stability-indicating capability were demonstrated through degradation studies, which also showed that there was no interference of the formulation excipients. The method was validated in accordance to ICH guidelines acceptance criteria for specificity, linearity, precision, accuracy, robustness and system suitability. The proposed method was compared with HPLC method previously validated for this drug, and statistical analysis showed no significant difference between the methods.

  15. [Rapid determination of lactose, sucrose, glucose and fructose in foods by capillary zone electrophoresis with indirect ultraviolet detection].

    Science.gov (United States)

    Zhang, Huanhuan; Li, Jiang; Zhao, Shan; Ding, Xiaojing; Wang, Zhi

    2015-08-01

    A new and rapid method for the simultaneous determination of lactose, sucrose, glucose and fructose by capillary zone electrophoresis ( CZE) with indirect ultraviolet detection was developed. The separation was completed with an uncoated fused-silica capillary with 30.2 cm of total length (effective length of 20 cm) x 50 µm. The separation buffer consisted of 4 mmol/L potassium sorbate, 10 mmol/L sodium phosphate, 30 mmol/L NaOH (pH 12. 56) and 0. 5 mmol/L hexadecytrimethylammonium bromide (CTAB). The separation was performed at a voltage of -8 kV with the ultraviolet detection at 254 nm. The analysis of the four carbohydrates was completed within 10 min. The limits of detection (S/N= 3) for lactose, sucrose, glucose and fructose were 50, 75, 25 and 25 mg/L, and the limits of quantification (S/N = 10) were 150, 225, 75 and 75 mg/L, respectively. The average recoveries for the four carbohydrates were in the range of 87.0%-107.0% with the relative standard deviations of 1.2%-4.7%. No organic solvent was consumed throughout the whole process of the analysis. The method was used for the analysis of nine food samples and a quality control sample. The results demonstrated that the method is simple, rapid, accurate, and suitable for the routine analysis of the four carbohydrates in food samples.

  16. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014-2016).

    Science.gov (United States)

    Breadmore, Michael C; Wuethrich, Alain; Li, Feng; Phung, Sui Ching; Kalsoom, Umme; Cabot, Joan M; Tehranirokh, Masoomeh; Shallan, Aliaa I; Abdul Keyon, Aemi S; See, Hong Heng; Dawod, Mohamed; Quirino, Joselito P

    2017-01-01

    One of the most cited limitations of capillary (and microchip) electrophoresis is the poor sensitivity. This review continues to update this series of biennial reviews, first published in Electrophoresis in 2007, on developments in the field of on-line/in-line concentration methods in capillaries and microchips, covering the period July 2014-June 2016. It includes developments in the field of stacking, covering all methods from field amplified sample stacking and large volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to on-line or in-line extraction methods that have been used for electrophoresis.

  17. New technique for nanoparticle capillary electrophoresis/microfluidic chip and its uses in enantioselective separation%纳米粒子毛细管电泳/微流控芯片新技术及其在手性分离中的应用

    Institute of Scientific and Technical Information of China (English)

    陈杰; 丁国生; 岳春月; 唐安娜

    2012-01-01

    纳米粒子因其具有较大的比表面积和良好的生物相容性等特点,已广泛应用于分离科学领域.纳米粒子毛细管电泳/微流控芯片技术是纳米材料技术与毛细管电泳/微流控芯片技术相结合的产物.纳米粒子可以被吸附或键合到毛细管壁作为固定相与被分析物发生相互作用;也可以作为假固定相参与样品在柱内的分配和保留,从而提高柱效,改善分离.手性是自然界的本质属性之一,开发新的快速、高效、灵敏的手性分离分析方法对于对映体的立体选择性合成、药理研究、手性纯度检测和环境检测都具有重要的意义.本文主要综述了近些年来几种不同类型纳米粒子(聚合物纳米粒子、磁性纳米粒子、金纳米粒子、碳纳米管和其他类型纳米粒子)用于毛细管电泳/微流控芯片进行手性分离的现状,并对该领域今后的发展进行了展望.%Nanoparticles have been widely used in separation science due to their large specific surface area and good biocompatibility. Nanoparticle capillary electrophoresis (CE) /microflu-idic chip (MC) technique is the hybrid of nanomaterial and the CE/MC technique. By being adsorbed or bonded onto the inner surface of the capillary, the nanoparticles can interact with the analytes as stationary phase. As a kind of separation medium, the nanoparticles can also participate in the separation process acting as a pseudostationary phase (PSP) to improve the separation efficiency and selectivity. Chirality is one of the intrinsic characters of the nature. It is important to develop the novel, fast, highly efficient and sensitive chiral separation technique in many research areas, such as stereoselective synthesis of enantiomers, pharmacology, chiral compounds purity check and environment monitoring. Herein, the recent applications of different types of nanoparticles such as polymer nanoparticles, magnetic nanoparticles, gold nanoparticles and carbon

  18. [Simultaneous determination of chlorhexidine acetate and benzalkonium chloride in compound chemical disinfectants by capillary electrophoresis].

    Science.gov (United States)

    Song, Baohua; Ding, Xiaojing; Li, Jia; Wang, Zhi

    2012-09-01

    Benzalkonium chloride (BAC) is a mixture of alkyl substituted benzyl dimethylammonium chloride homologs (C12-BAC, C14-BAC and C16-BAC). Chlorhexidine acetate is a widely used effective component in compound chemical disinfectants. A method for the simultaneous determination of chlorhexidine acetate and benzalkonium chloride in compound chemical disinfectants by capillary electrophoresis (CE) was established. The CE analysis was carried out using an uncoated capillary with 50 microm i. d. and 37 cm total length. The running buffer was 150 mmol/L NaH2PO4-62.5 mmol/L H3PO4 (pH 2.5) containing 40% (v/v) acetonitrile. The sample medium was 50 mmol/L acetic acid-acetonitrile (1:1, v/v). The detection wavelength was 214 nm. The factors such as the buffer concentration and pH, the content of acetonitrile, which influenced the separation and accurate assay of compound chemical disinfectants were investigated in detail. The intra-day and inter-day precisions of the method were below 3. 0% and 3.7%, respectively. The limits of detection (LOD, signal to noise ratio (S/N) = 3) for chlorhexidine acetate, C12-BAC, Cl4-BAC and C16-BAC were 0. 3, 0.5, 0.5 and 0.5 mg/L, respectively. The limits of quantification (LOQ, S/N = 10) were 1.0, 1.5, 1.5, and 1.5 mg/L, respectively. The corrected peak area and the mass concentration of the four components mentioned above showed good linear relationships within the ranges of 1.0 - 400 mg/L, 1. 5 - 200 mg/L, 1.5 - 200 mg/L and 1.5 - 200 mg/L, with linear correlation coefficients (r) of 0.9995, 0.9998, 0.999 7 and 0.9998, respectively. The established method was used for the determination of the four disinfectants in the compound chemical disinfectants. The results were in good agreement with those obtained by the high performance liquid chromatographic method.

  19. Interactions of non-charged tadalafil stereoisomers with cyclodextrins: capillary electrophoresis and nuclear magnetic resonance studies.

    Science.gov (United States)

    Fejős, Ida; Kazsoki, Adrienn; Sohajda, Tamás; Márványos, Ede; Volk, Balázs; Szente, Lajos; Béni, Szabolcs

    2014-10-10

    The single isomer drug R,R-tadalafil (Cialis) contains two chiral centers thus four stereoisomers (R,R-, S,S-, S,R- and R,S-tadalafil) exist, however, only the most potent inhibitor, the R,R-tadalafil is in clinical use. In our study, over 20 charged cyclodextrin (CD) derivatives were studied for enantiospecific host-guest type interactions in CD-modified capillary electrophoresis. Tadalafil stereoisomers are non-charged; therefore, their electrophoretic separation poses a challenge. Several candidates of both positively and negatively charged hosts were found to be effective for the enantioseparation. Eight out of the beta derivatives and three of alpha derivatives (including sulfated, sulfoalkylated, carboxyalkylated and amino derivatives) resolved all four stereoisomers partially or completely. Cavity size-dependent absolute enantiomer migration order (EMO) reversals were observed in the case of sulfopropyl-alpha (EMO: R,S; S,R; R,R; S,S) and sulfopropyl-beta (S,S; R,R; S,R; R,S) derivatives, while substituent-dependent partial EMO reversals were detected for sulfobutyl-ether-alpha (R,S; S,R; S,S; R,R) and sulfated-alpha-CD (R,R; S,S; R,S; S,R) selectors. Complexation-induced (1)H NMR chemical shift changes reflected that the benzodioxole moiety plays a major role in cavity size-dependent EMO reversal. Sulfobutyl-ether-alpha-CD was the only selector that provided the desired EMO in which the clinically applied eutomer R,R-tadalafil migrates last. Finally, an electrophoretic method applying a background electrolyte (BGE) containing 75 mM Tris-acetic acid buffer (pH 4.75) and 7 mM sulfobutyl-ether-alpha-CD was developed for the baseline resolution of all isomers at 25 °C and +25 kV applied voltage.

  20. Advances in Automation and Throughput of the Mars Organic Analyzer Microchip Capillary Electrophoresis System

    Science.gov (United States)

    Haldeman, B. J.; Skelley, A. M.; Scherer, J. R.; Jayarajah, C.; Mathies, R. A.

    2005-12-01

    We have previously demonstrated the design, construction and testing of a portable microchip capillary electrophoresis (CE) instrument called the Mars Organic Analyzer (MOA) for analysis of amino acids and amine containing organic molecules (1). This instrument is designed to accept organic compounds isolated from samples by sublimation or by subcritical water extraction, to label the amine groups with fluorescamine, and to perform high resolution electrophoretic analysis. The CE instrument has shown remarkable robustness during successful field tests last year in the Panoche Valley, CA (1) and more recently in the Atacama Desert, Chile (2). For successful operation on Mars, however, it is necessary to operate autonomously and to analyze large numbers of samples, blanks, and standards. Toward this end we present here two advances in the MOA system that test key aspects of an eventual flight prototype. First, we have developed an automated microfluidic system and method for the autonomous loading, running and cleaning of the CE chip on the single channel MOA instrument. The integration of microfabricated PDMS valves and pumps with all-glass separation channels in a multilayer design enabled creation of structures for complex fluidic routing. Twenty sequential analyses of an amino acid standard were performed with an automated cleaning procedure between runs. In addition, dilutions were performed on-chip, and blanks were run to demonstrate the elimination of carry-over from run to run. These results demonstrate an important advance of the technology readiness level of the MOA. Second, we have designed, constructed and successfully tested a lab version of the multichannel instrument we initially proposed for the MSL opportunity. The portable Multi-Channel Mars Organic Analyzer (McMOA, 25 by 30 by 15 cm), was designed to sequentially interrogate eight radially oriented CE separation channels on a single wafer. Since each channel can be used to analyze 20 or more

  1. Physico-chemical characterization of liposomes and drug substance-liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography

    DEFF Research Database (Denmark)

    Franzen, Ulrik; Østergaard, Jesper

    2012-01-01

    Liposomes are self-assembled phospholipid vesicles and have numerous research and therapeutic applications. In the pharmaceutical and biomedical sciences liposomes find use as models of biological membranes, partitioning medium and as drug carriers. The present review addresses the use of capillary...... electrophoresis and liposome electrokinetic chromatography for the characterization of liposomes in a pharmaceutical context. Capillary electrophoretic techniques have been used for the measurement of electrophoretic mobility, which provides information on liposome surface charge, size and membrane permeability...... of liposomes. The use of liposome electrokinetic chromatography and capillary electrophoresis for determination of liposome/water partitioning and characterization of drug-liposome interactions is reviewed. A number of studies indicate that capillary electrophoresis may have a role in the characterization...

  2. [Determination of chondroitin sulfate in food supplements by capillary zone electrophoresis].

    Science.gov (United States)

    Arianova, E A; Bogachuk, M N; Perederiaev, O I

    2013-01-01

    Chondroitin sulfate is widely used as an ingredient in food supplements. A method of capillary zone electrophoresis for qualitative and quantitative analysis of chondroitin sulfate in food supplements has been developed. The system of capillary electrophoresis Agilent 3D CE (USA) with diode array detector (spectral range 190-400 nm, 192 nm was used to quantity), quartz capillary Agilent with effective length 56 cm (USA) (internal diameter 50 microm, temperature 25 degrees C, 30 kV, negative polarity) and 50 mM phosphate buffer (pH 3.5) has been used. Quantity limit of this method was 0.5 g/kg. It was used for determination of content of chondroitin sulfate in 14 food supplements. The chondroitin sulfate was detected in all test samples with deviation from the declared content (25-600 mg per capsule or tablet) at the level of 1 to 9%. The applicability of the elaborated method for assessing of food supplements quality has been shown.

  3. Quantitative on-line concentration for capillary electrophoresis with inkjet sample introduction technique.

    Science.gov (United States)

    Rang, Ying; Zeng, Hulie; Nakajima, Hizuru; Kato, Shungo; Uchiyama, Katsumi

    2015-08-01

    A quantitative sample introduction method based upon inkjet injection was applied to capillary electrophoresis coupled with stacking and sweeping on-line concentration techniques. Methylxanthines were used as model compounds for the proof-of-concept of the method. The volume of injected sample could be easily manipulated by controlling the number of ejected droplets in the injection procedure. Under optimized conditions, a linear relationship between the ejected droplet number and peak area was obtained when the droplet number introduced into the capillary was less than 100. Under optimized quantitative on-line concentration conditions, the limits of detection for theobromine, caffeine, and theophylline were 1.0, 2.0, and 1.0 μM, respectively. The inkjet injection system was evaluated by comparing it with conventional injection methods. The electropherogram of the inkjet injection mode was the same as that for hydrodynamic injection mode, and no sample discrimination was observed compared with the electrokinetic injection mode. The established method was applied to the determination of methylxanthines in bottled green tea. The recoveries of theobromine, caffeine, and theophylline were 94.1, 110.6, and 86.8%, respectively. We conclude that proposed method can be used for quantitative concentration for capillary electrophoresis, thus resulting in an improved accuracy.

  4. 毛细管电泳法分离测定潮汕凉果中的山梨酸、苯甲酸、糖精钠%Separation and Determination of Sorbic Acid, Benzoic Acid, Sodium Saccharin in the Preserved Fruits of Chaoshan by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    衷明华; 李云

    2009-01-01

    A new method for determination of sorbic acid,benzoic acid,and sodium saccharin in the preserved fruits of Chaoshan was developed by capillary electrophoresis with PDA detection. The main effect factors on the separation, the separation voltage, the composition of the running buffer solution and its pH,as well as the waves length of the PDA detector were optimized. With 20 mmol/L phosphate buffered saline (pH=7.4) separated within 15min. Under such optimum conditions,the linear ranges for sorbic acid, benzoic acid, and sodium saccharin are 0.250-100mg/L, 0. 100-50.0mg/L, and 0.100-50.0mg/L, respectively, and the relative standard deviation was less than 1.41%. The recovery for the real samples was found to be better than 90.9%.%采用毛细管电泳-PDA检测法,考察了pH、缓冲介质、波长、电压对山梨酸、苯甲酸、糖精钠分离测定的影响,得到优化的实验条件.以20mmol/乙磷酸盐(pH=7.4)为运行缓冲液,12kV为分离电压,检测通道波长为:192、202、254nm的电泳条件下,进样时间5s,山梨酸、苯甲酸、糖精钠可在15min内实现分离.山梨酸在0.250-100mg/L,苯甲酸在0.100-50.0mg/L,糖精钠在0.100-50.0mg/L范围内呈良好的线性关系,迁移时间、峰面积相对标准偏差均小于1.41%(n=5).用上述方法对实际样品进行测定,回收率在90.9%以上.

  5. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.; Lee, Cheng S.; Tang, Keqi

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.

  6. Design and evaluation of capillary coupled with optical fiber light-emitting diode induced fluorescence detection for capillary electrophoresis.

    Science.gov (United States)

    Ji, Hongyun; Li, Meng; Guo, Lihong; Yuan, Hongyan; Wang, Chunling; Xiao, Dan

    2013-09-01

    A new detector, capillary coupled with optical fiber LED-induced fluorescence detector (CCOF-LED-IFD, using CCOF for short), is introduced for CE. The strategy of the present work was that the optical fiber and separation capillary were, in the parallel direction, fastened in a fixation capillary with larger inner diameter. By employing larger inner diameter, the fixation capillary allowed the large diameter of the optical fiber to be inserted into it. By transmitting an enhanced excitation light through the optical fiber, the detection sensitivity was improved. The advantages of the CCOF-CE system were validated by the detection of riboflavin, and the results were compared to those obtained by the in-capillary common optical fiber LED-induced fluorescence detector (IC-COF-LED-IFD, using COF for short). The LODs of CCOF-CE and COF-CE were 0.29 nM and 11.0 nM (S/N = 3), respectively. The intraday (n = 6) repeatability and interday (n = 6) reproducibility of migration time and corresponding peak area for both types of CE were all less than 1.10 and 3.30%, respectively. The accuracy of the proposed method was judged by employing standard addition method, and recoveries obtained were in the range of 98.0-102.4%. The results indicated that the sensitivity of the proposed system was largely improved, and that its reproducibility and accuracy were satisfactory. The proposed system was successfully applied to separate and determine riboflavin in real sample.

  7. Capillary electrophoresis with laser-induced fluorescence detection for studying amino acid uptake by yeast during beer fermentation.

    Science.gov (United States)

    Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka

    2015-01-01

    The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation.

  8. Determination of Aniline and Its Derivatives in Environmental Water by Capillary Electrophoresis with On-Line Concentration

    Directory of Open Access Journals (Sweden)

    Jianzhi Sun

    2012-06-01

    Full Text Available This paper describes a simple, sensitive and environmentally benign method for the direct determination of aniline and its derivatives in environmental water samples by capillary zone electrophoresis (CZE with field-enhanced sample injection. The parameters that influenced the enhancement and separation efficiencies were investigated. Surprisingly, under the optimized conditions, two linear ranges for the calibration plot, 1–50 ng/mL and 50–1000 ng/mL (R > 0.998, were obtained. The detection limit was in the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the stacking efficiency, the standard addition method was applied to the analysis of water samples from local rivers.

  9. Characterization of the binding strengths between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis.

    Science.gov (United States)

    Lü, Chenchen; Liu, Zhen

    2015-01-01

    The affinity of boronic acids toward cis-diol-containing biomolecules has found wide applications in many fields, such as sensing, separation, drug delivery, and functional materials. A sound understanding of the binding interactions will greatly facilitate exquisite applications of this chemistry. Traditional techniques are associated with some apparent drawbacks, so they are only applicable to a limited range of boronic acids and cis-diol-containing biomolecules. This chapter describes an affinity capillary electrophoresis (ACE) method for the characterization of the binding strengths between boronic acids and cis-diol-containing biomolecules. As compared with existing approaches, such as (11)B NMR, the ACE method exhibits several significant advantages: (1) possibility of simultaneous study of multiple interactions, (2) low requirement on the purity of the binding species, (3) widely applicable to almost all types of cis-diol-containing compounds and boronic acids, and (4) high accuracy and precision.

  10. Selective extraction and determination of fluoroquinolones in bovine milk samples with montmorillonite magnetic molecularly imprinted polymers and capillary electrophoresis.

    Science.gov (United States)

    Wang, Hongwu; Liu, Yanqing; Wei, Shoulian; Yao, Su; Zhang, Jiali; Huang, Huichang

    2016-01-01

    A sensitive and selective method for separating fluoroquinolones (FQs) from bovine milk samples was successfully developed using montmorillonite magnetic molecularly imprinted polymers (MMMIPs) as adsorbents. MMMIPs were prepared using montmorillonite as carrier, fleroxacin (FLE) as template molecule, and Fe3O4 magnetite as magnetic component. MMMIPs possessed high adsorption capacity of 46.3 mg g(-1) for FLE. A rapid and convenient magnetic solid-phase extraction procedure coupled with capillary electrophoresis was established with MMMIPs as adsorbents for simultaneous and selective extraction of four FQs in bovine milk samples. Limits of detection ranged between 12.9 and 18.8 μg L(-1), and the RSDs were between 1.8% and 8.6%. The proposed method was successfully applied to spike bovine milk samples with recoveries of 92.7%-108.6%.

  11. Electromembrane extraction of diamine plastic restricted substances in soft drinks followed by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Liu, Yan; Guo, Lin; Wang, Yu; Huang, Fengying; Shi, Jing; Gao, Ge; Wang, Xiaoxin; Ye, Jiannong; Chu, Qingcui

    2017-04-15

    Ethane-1,2-diamine (EA) and hexane-1,6-diamine (HA) are two important plastic restricted substances commonly existing in food contact materials. A capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4)D) method has been developed for direct determination of above analytes, and the detection sensitivity has been significantly improved based on electromembrane extraction (EME). Under the optimum conditions, EA and HA could be well separated from their aliphatic diamine homologs as well as the common inorganic cations within 25min. The limits of detection could reach sub-ng/mL level, and good linearity (r>0.998) between peak area and analyte concentration could be obtained at three orders of magnitude. This EME/CE-C(4)D method provided a novel application for determining these plastic restricted substances in different bottled soft drinks, providing an alternative for the sensitive analyses of diamine substances.

  12. Simultaneous determination of electroactive and non-electroactive food preservatives by novel capillary electrophoresis with amperometric detection.

    Science.gov (United States)

    Wang, Weiyu; Wang, Yiping; Zhang, Junbo; Chu, Qingcui; Ye, Jiannong

    2010-09-23

    A novel capillary electrophoresis and amperometric detection method was achieved by adding an electroactive additive (3,4-dihydroxybenzylamine, 3,4-DHBA) to the running buffer, so that both electroactive and non-electroactive food preservatives were simultaneously determined. Under the selected optimum conditions, four electroactive preservatives (methylparaben, ethylparaben, propylparaben and butylparaben) and two non-electroactive preservatives (potassium sorbate and sodium lactate) were well separated and sensitively detected with detection limits (S/N=3) ranging from 1.06×10(-8) to 2.73×10(-6) g mL(-1). This method has been successfully employed for the determination of both electroactive and non-electroactive preservatives in several food commodities.

  13. Recent advances on the use of cyclodextrins in the chiral analysis of drugs by capillary electrophoresis.

    Science.gov (United States)

    Saz, J M; Marina, M L

    2016-10-07

    The most recent advances on the use of cyclodextrins as chiral selectors in capillary electrophoresis for the enantioseparation of drugs are reviewed in this article. The types of cyclodextrins employed and the resolutions achieved are discussed. The use of dual chiral systems, modified capillaries, non-aqueous media or microfluidic devices is also included and the mechanisms for enantioseparation of drugs and the inversion of the enantiomer migration order are studied. The most relevant applications developed to carry out the quantitation of chiral drugs, to assess the enantiomeric purity of pharmaceutical formulations, to study their metabolism or to achieve criminalistic or forensic investigations are described. Articles published in the last six years (period from 2010 to 2015) are considered.

  14. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Li, Jinchen; Qin, Yuqin; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2015-07-01

    As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self-assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self-assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self-assembly kinetics of QDs and protein using the Hill equation, the KD value for the self-assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of-capillary method and confirmed the effectiveness of the present method.

  15. Sensitive Method for Enantioseparation of Rivastigmine with Highly Sulfated Cyclodextrin as Chiral Selector by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Yan; XU Xing-Xiang; HU Zhi-De; KANG Jing-Wu

    2006-01-01

    A sensitive method for enantioseparation of a basic drug rivastigmine and determination of its optical impurity by capillary electrophoresis with highly sulfatedβ-cyclodextrin (HS-β-CD) as the chiral selector is described. In general, enantioseparation of basic chiral compounds is carried out in acidic condition (pH 2.5) to prevent analytes from adsorption on the capillary wall. However, in the case of rivastigmine, the detection sensitivity was too limited to determine the optical impurity of S-rivastigmine lower than 1% when buffer pH was 2.5. It was found that the detection sensitivity was improved 1.6 times just by raising the buffer pH value from 2.5 to 5.8. The poor column efficiency due to the adsorption of the analytes on the capillary wall was resolved by using dynamical coating of the capillary wall with the linear polyacrylamide solution. The experimental parameters such as the concentration of HS-β-CD, buffer pH and buffer ionic strength were optimized, respectively. The method was validated in terms of repeatability, linearity, limit of detection (LOD) and limit of quantitation (LOQ). Using the present method, the optical purity of nonracemic rivastigmine with the enantiomeric excess (ee) value of 99.14% was determined.

  16. Use of Capillary Electrophoresis in the Study of Interaction between dsDNA and Drug Molecules

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two 17-mer dsDNA with different sequence characteristics were designed to investigate the binding characteristics of berberine, an anticancer drug with uncertain binding mode, and Hoechst 33258, a model DNA minor groove binder, with dsDNA, respectively by the capillary zone electrophoresis (CZE). Kenndler model analysis revealed that Hoechst 33258 exhibited intermediate affinity with dsDNA, while there was only low affinity and some weak binding preference for AATT-containing to GGCC-containing dsDNA for berberine.

  17. Capillary electrophoresis with inhibited electrochemiluminescent detection for the trace analysis of epinephrine and dopamine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,a novel electrochemiluminescent (ECL) detection approach was developed for highly sensitive detection of ECL inhibitors based on the ECL inhibition of Ru(bpy)32+/2-(Dibutylamino)ethanol (DBAE) system. A microfluidic ECL detection cell was fabricated to couple with the capillary electrophoresis system,the electrochemical system and the postcolumn injection system. Both Ru(bpy)32+ and DBAE solutions were injected directly to the working electrode surface by a micro-infusion system to obtain a hi...

  18. Comparison of monolithic capillary electrochromatography and micellar electrokinetic chromatography for the separation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salwiński, Aleksander; Delépée, Raphaël

    2014-05-01

    Atmospheric pollution of anthropic origin is recognized as a major risk factor for health, in particular for respiratory and cardio-vascular systems. Among these pollutants, polycyclic aromatic hydrocarbons (PAHs) are placed on the list of US Environmental Protection Agency (EPA) as 'priority' pollutants and four of them are assigned as potential carcinogens by The International Agency for Research on Cancer (IARC). In the present work two capillary techniques-micellar electrokinetic chromatography (MEKC) and monolithic capillary electrochromatography (CEC)-were compared for the separation of eleven PAHs. Both techniques compared in the present work are fully compatible with every standard apparatus of capillary electrophoresis. For MEKC, enhancement of selectivity and decrease of the separation window of eleven PAHs were obtained with methanol:borate 25 mM (20/80, v/v) running buffer containing 10 mM of hydroxypropylated γ-cyclodextrins with low SDS content (25 mM). In case of CEC, two acrylate-based monolithic stationary phases (MSPs) were evaluated for their application in the separation of eleven PAHs. The best MSP based on butyl acrylate was compared with MEKC in terms of sample capacity, PAHs elution order, LOQ, efficiency and effect of pH. Influence of the hydrophobicity of mobile phase on the PAHs elution order was also studied.

  19. Capillary electrophoresis-mass spectrometry of intact basic proteins using Polybrene-dextran sulfate-Polybrene-coated capillaries: system optimization and performance.

    Science.gov (United States)

    Haselberg, Rob; de Jong, Gerhardus J; Somsen, Govert W

    2010-09-23

    A capillary electrophoresis-mass spectrometry (CE-MS) method using sheath liquid electrospray ionization interfacing was studied and optimized for the analysis of intact basic proteins. To prevent protein adsorption, capillaries with a noncovalent positively charged coating were utilized. Capillaries were coated by subsequent rinsing with solutions of Polybrene, dextran sulfate and Polybrene. The coating proved to be fully compatible with MS detection, causing no background signals and ionization suppression. The composition of the sheath liquid and BGE was optimized using the model proteins α-chymotrypsinogen A, ribonuclease A, lysozyme and cytochrome c. A sheath liquid of isopropanol-water-acetic acid (75:25:0.1, v/v/v) at 2 μL min(-1) resulted in optimal signal intensities for most proteins, but caused dissociation of the heme group of cytochrome c. Optimum protein responses were obtained with a BGE of 50 mM acetic acid (pH 3.0), which allowed a baseline separation of the test protein mixture. Several minor impurities present in the mixture could be detected and provisionally identified using accurate mass and a protein modification database. The selectivity of the CE-MS system was investigated by the analysis of acetylated lysozyme. Eight highly related species, identified as non-acetylated lysozyme and lysozyme acetylated in various degrees, could be distinguished. The CE-MS system showed good reproducibility yielding interday (three weeks period) RSDs for migration time and peak area within 2% and 10%, respectively. With the CE-MS system, determination coefficients (R(2)) for protein concentration and peak area were higher than 0.996, whereas detection limits were between 11 and 19 nM.

  20. Determination of vanillin in vanilla perfumes and air by capillary electrophoresis.

    Science.gov (United States)

    Minematsu, Saaya; Xuan, Guang-Shan; Wu, Xing-Zheng

    2013-12-01

    The present study investigated capillary electrophoretic detection of vanillin in vanilla perfume and air. An UV-absorbance detector was used in a home-made capillary electrophoretic instrument. A fused silica capillary (outer diameter: 364 μm, inner diameter: 50 μm) was used as a separation capillary, and a high electric voltage (20 kV) was applied across the two ends of the capillary. Total length of the capillary was 70 cm, and the effective length was 55 cm. Experimental results showed that the vanillin peak was detected at about 600, 450, and 500 seconds when pH of running buffers in CE were 7.2, 9.3, and 11.5, respectively. The peak area of vanillin was proportional to its concentration in the range of 0-10(-2) mol/L. The detection limit was about 10(-5) mol/L. Vanillin concentration in a 1% vanilla perfume sample was determined to be about 3×10(-4) mol/L, agreed well with that obtained by a HPLC method. Furthermore, determination of vanillin in air by combination of CE and active carbon adsorption method was investigated.

  1. Determination of polyphenols in Spanish wines by capillary zone electrophoresis. Application to wine characterization by using chemometrics.

    Science.gov (United States)

    Franquet-Griell, Helena; Checa, Antonio; Núñez, Oscar; Saurina, Javier; Hernández-Cassou, Santiago; Puignou, Lluis

    2012-08-29

    A capillary zone electrophoresis (CZE) method for the simultaneous determination of 20 polyphenols in wine was developed. The separation was performed using fused-silica capillaries of 75 μm i.d. and a 30 mM sodium tretraborate buffer solution at pH 9.2 with 5% isopropanol as a background electrolyte. A capillary voltage of +25 kV with pressure-assisted (3.5 kPa) separation from minute 18 was applied, thus achieving a total analysis time of 0.990), and run-to-run and day-to-day precisions (RSD values lower than 6.5 and 15.7%, respectively) were established. Three different calibration procedures were evaluated for polyphenol quantitation in wines: external calibration using standards prepared in Milli-Q water, standard addition, and pseudomatrix-matched calibration using wine as a matrix. For a 95% confidence level, no statistical differences were observed, in general, between the three calibration methods (p values between 0.11 and 0.84), whereas for some specific polyphenols, such as cinnamic acid, syringic acid, and gallic acid, results were not comparable when external calibration was used. The CZE method using pseudomatrix-matched calibration was then proposed and applied to the analysis of polyphenols in 49 Spanish wines, showing satisfactory results and a wide compositional variation between wines. Electrophoretic profiles and other compositional data (e.g., peak areas of selected peaks) were considered as fingerprints of wines to be used for characterization and classification purposes. The corresponding data were analyzed by principal component analysis (PCA) to extract information on the most significant features contributing to wine discrimination according to their origins. Results showed that a reasonable distribution of wines depending on the elaboration areas was found, tyrosol and gallic, protocatechuic, p-coumaric, and caffeic acids being some representative discriminant compounds.

  2. Efficient sample clean-up and online preconcentration for sensitive determination of melamine in milk samples by capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Ji, Yan-ling; Chen, Xiao-wei; Zhang, Zhu-bao; Li, Jing; Xie, Tian-yao

    2014-10-01

    Based on an efficient sample clean-up and field-amplified sample injection online preconcentration technique in capillary electrophoresis with contactless conductivity detection, a new analytical method for the sensitive determination of melamine in milk samples was established. In order to remove the complex matrix interference, which resulted in a serious problem during field-amplified sample injection, liquid-liquid extraction was utilized. As a result, liquid-liquid extraction provides excellent sample clean-up efficiency when ethyl acetate was used as organic extraction by adjusting the pH of the sample solution to 9.5. Both inorganic salts and biological macromolecules are effectively removed by liquid-liquid extraction. The sample clean-up procedure, capillary electrophoresis separation parameters and field-amplified sample injection conditions are discussed in detail. The capillary electrophoresis separation was achieved within 5 min under the following conditions: an uncoated fused-silica capillary, 12 mM HAc + 10 mM NaAc (pH = 4.6) as running buffer, separation voltage of +13 kV, electrokinetic injection of +12 kV × 10 s. Preliminary validation of the method performance with spiked melamine provided recoveries >90%, with limits of detection and quantification of 0.015 and 0.050 mg/kg, respectively. The relative standard deviations of intra- and inter-day were below 6%. This newly developed method is sensitive and cost effective, therefore, suitable for screening of melamine contamination in milk products.

  3. Angiotensin-converting enzyme inhibition studies by natural leech inhibitors by capillary electrophoresis and competition assay.

    Science.gov (United States)

    Deloffre, Laurence; Sautiere, Pierre-Eric; Huybrechts, Roger; Hens, Korneel; Vieau, Didier; Salzet, Michel

    2004-06-01

    A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.

  4. Effective electrophoretic mobilities and charges of anti-VEGF proteins determined by capillary zone electrophoresis.

    Science.gov (United States)

    Li, S Kevin; Liddell, Mark R; Wen, He

    2011-06-01

    Macromolecules such as therapeutic proteins currently serve an important role in the treatment of eye diseases such as wet age-related macular degeneration and diabetic retinopathy. Particularly, bevacizumab and ranibizumab have been shown to be effective in the treatment of these diseases. Iontophoresis can be employed to enhance ocular delivery of these macromolecules, but the lack of information on the properties of these macromolecules has hindered its development. The objectives of the present study were to determine the effective electrophoretic mobilities and charges of bevacizumab, ranibizumab, and model compound polystyrene sulfonate (PSS) using capillary zone electrophoresis. Salicylate, lidocaine, and bovine serum albumin (BSA), which have known electrophoretic mobilities in the literature, were also studied to validate the present technique. The hydrodynamic radii and diffusion coefficients of BSA, bevacizumab, ranibizumab, and PSS were measured by dynamic light scattering. The effective charges were calculated using the Einstein relation between diffusion coefficient and electrophoretic mobility and the Henry equation. The results show that bevacizumab and ranibizumab have low electrophoretic mobilities and are net negatively charged in phosphate buffered saline (PBS) of pH 7.4 and 0.16M ionic strength. PSS has high negative charge but the electrophoretic mobility in PBS is lower than that expected from the polymer structure. The present study demonstrated that capillary electrophoresis could be used to characterize the mobility and charge properties of drug candidates in the development of iontophoretic drug delivery.

  5. Heteroduplex analysis by capillary array electrophoresis for rapid mutation detection in large multiexon genes.

    Science.gov (United States)

    Velasco, Eladio; Infante, Mar; Durán, Mercedes; Pérez-Cabornero, Lucía; Sanz, David J; Esteban-Cardeñosa, Eva; Miner, Cristina

    2007-01-01

    Heteroduplex analysis (HA) has proven to be a robust tool for mutation detection. HA by capillary array electrophoresis (HA-CAE) was developed to increase throughput and allow the scanning of large multiexon genes in multicapillary DNA sequencers. HA-CAE is a straightforward and high-throughput technique to detect both known and novel DNA variants with a high level of sensitivity and specificity. It consists of only three steps: multiplex-PCR using fluorescently labeled primers, heteroduplex formation and electrophoresis in a multicapillary DNA sequencer. It allows, e.g., the complete coding and flanking intronic sequences of BRCA1 and BRCA2 genes from two patients (approximately 25 kb each) to be scanned in a single run of a 16-capillary sequencer, and has enabled us to detect 150 different mutations to date (both single nucleotide substitutions, or SNSs, and small insertions/deletions). Here, we describe the protocol developed in our laboratory to scan BRCA1, BRCA2, MLH1, MSH2 and MSH6 genes using an ABI3130XL sequencer. This protocol could be adapted to other instruments or to the study of other large multiexon genes and can be completed in 7-8 h.

  6. Rapid identification and quantitation for oral bacteria based on short-end capillary electrophoresis.

    Science.gov (United States)

    Chen, Jin; Ni, Yi; Liu, Chenchen; Yamaguchi, Yoshinori; Chen, Qinmiao; Sekine, Shinichi; Zhu, Xifang; Dou, Xiaoming

    2016-11-01

    High-speed capillary electrophoresis (HSCE) is a promising technology applied in ultra-rapid and high-performance analysis of biomolecules (such as nucleic acids, protein). In present study, the short-end capillary electrophoresis coupled with one novel space domain internal standard method (SDIS) was employed for the rapid and simultaneous analysis of specific genes from three oral bacteria (Porphyromonas gingivalis (P.g), Treponema denticola (T.d) and Tannerela forsythia (T.f)). The reliability, reproducibility and accuracy properties of above mentioned SDIS method were investigated in detail. The results showed the target gene fragments of P.g, T.d and T.f could be precisely, fast identified and quantitated within 95s via present short-end CE system. The analyte concentration and the ratio of space domain signals (between target sample and internal standard sample) featured a well linear relationship calculated via SDIS method. And the correlation coefficients R(2) and detection limits for P.g, T.d, T.f genes were 0.9855, 0.9896, 0.9969 and 0.077, 0.114 and 0.098ng/μl, respectively.

  7. Determination of herbicides paraquat, glyphosate, and aminomethylphosphonic acid in marijuana samples by capillary electrophoresis.

    Science.gov (United States)

    Lanaro, Rafael; Costa, José L; Cazenave, Silvia O S; Zanolli-Filho, Luiz A; Tavares, Marina F M; Chasin, Alice A M

    2015-01-01

    In this work, two methods were developed to determine herbicides paraquat, glyphosate, and aminomethylphosphonic acid (AMPA) in marijuana samples by capillary electrophoresis. For paraquat analysis, sample was extracted with aqueous acetic acid solution and analyzed by capillary zone electrophoresis with direct UV detection. The running electrolyte was 50 mmol/L phosphate buffer (pH 2.50). For glyphosate and AMPA, indirect UV/VIS detection was used, as these substances do not present chromophoric groups. Samples were extracted with 5 mmol/L hydrochloric acid. The running electrolyte was 10 mmol/L gallic acid, 6 mmol/L TRIS, and 0.1 mmol/L CTAB (pH = 4.7). The methods presented good linearity, precision, accuracy, and recovery. Paraquat was detected in 12 samples (n = 130), ranging from 0.01 to 25.1 mg/g. Three samples were positive for glyphosate (0.15-0.75 mg/g), and one sample presented AMPA as well. Experimental studies are suggested to evaluate the risks of these concentrations to marijuana user.

  8. Capillary Electrophoresis for the Simultaneous Determination of Metals by Using Ethylenediamine Tetraacetic Acid as Complexing Agent and Vancomycin as Complex Selector

    Institute of Scientific and Technical Information of China (English)

    THREEPROM, Jirasak; SOM-AUM, Waraporn; LIN, Jin-Ming

    2006-01-01

    A new separation system of capillary electrophoresis for the simultaneous determination of metals by using ethylenediamine tetraacetic acid (EDTA) as complexing agent and employing vancomycin as complex selector was described. The Z-shape cell capillary electrophoresis was used to enhance the sensitivity for the determination of the complexes of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Fe(Ⅲ) with EDTA. The partial filling method (co-current mode) was used in order to increase the selectivity of the electrophoretic method, meanwhile vancomycin was not present at the detector path during the detection of metal-EDTA complexes. The vancomycin concentration, phosphate concentration and pH of the buffer strongly influenced mobility, resolution and selectivity of the studied analytes. Under the optimal condition, the relative standard deviations (n=5) of the migration time and the peak area were less than 3.14% and 7.35%, respectively. Application of the Z-shape cell capillary electrophoresis method with UV detection and vancomycin loading led to the reliable determination of these metal ions in tap water and the recoveries were 97%-101%. The detection limits based on a signal to noise ratio of 3: 1 were found in the range of 2-10 μg·L-1.

  9. An interlaboratory comparison of ITS2-PCR for the identification of yeasts, using the ABI Prism 310 and CEQ8000 capillary electrophoresis systems

    Directory of Open Access Journals (Sweden)

    Verschraegen Gerda

    2005-03-01

    Full Text Available Abstract Background Currently, most laboratories identify yeasts routinely on the basis of morphology and biochemical reactivity. This approach has quite often limited discriminatory power and may require long incubation periods. Due to the increase of fungal infections and due to specific antifungal resistence patterns for different species, accurate and rapid identification has become more important. Several molecular techniques have been described for fast and reliable identification of yeast isolates, but interlaboratory exchangeability of identification schemes of molecular techniques has hardly been studied. Here, we compared amplified ITS2 fragment length determination by an ABI Prism 310 (Applied Biosystems, Foster City, Ca. capillary electrophoresis system with that obtained by a CEQ8000 (Beckman Coulter, Fullerton, Ca. capillary electrophoresis system. Results Although ITS2 size estimations on both systems differed and separate libraries had to be constructed for each system, both approaches had the same discriminatory power with regard to the 44 reference strains, identical identifications were obtained for 39/ 40 clinical isolates in both laboratories and strains from 51 samples were correctly identified using CEQ8000, when compared to phenotypic identification. Conclusion Identification of yeasts with ITS2-PCR followed by fragment analysis can be carried out on different capillary electrophoresis systems with comparable discriminatory power.

  10. Spherical molecularly imprinted polymer particles : A promising tool for molecular recognition in capillary electrokinetic separations

    NARCIS (Netherlands)

    de Boer, T; Mol, R; de Zeeuw, RA; de Jong, GJ; Sherrington, DC; Cormack, PAG; Ensing, K

    2002-01-01

    Spherical molecularly imprinted polymer particles obtained via precipitation polymerization, were introduced as a pseudostationary phase in capillary electrophoresis (CE) to study molecular recognition. Analyses were performed via a partial filling technique using (+)-ephedrine-imprinted microsphere

  11. Analysis of phosphate and phosphate containing headgroups enzymatically cleaved from phospholipids of Bacillus subtilis by capillary electrophoresis.

    Science.gov (United States)

    Bierhanzl, Václav Matěj; Riesová, Martina; Taraba, Lukáš; Čabala, Radomír; Seydlová, Gabriela

    2015-09-01

    A new, fast, selective, and reliable capillary electrophoresis method has been developed for analysis of selected phosphoesters (phosphoserine, phosphoethanolamine, phosphoglycerol) and phosphate. The method is based on separation of specific phosphate containing headgroups (phosphoesters) which are cleaved from the glycerol skeleton of a phospholipid by a regioselective enzyme (phospholipase C). Analysis of intact phospholipids with the same polar headgroup but different fatty acids shows that fatty acid composition has a high impact on separation of phospholipids, so analysis of separated polar headgroups, which avoids this influence, represents a much more suitable approach for phospholipid class research. Optimization of method parameters results in running buffers of relatively narrow pH interval (pH about 10) where all phosphoesters are separated. Further method validation has shown that direct UV detection has a sufficient detection limit for all analytes to perform suitable analyses of cell membrane lipids. The optimized method was tested on the lysate of cell membrane of Bacillus subtilis, where all analytes were determined.

  12. Fast Determination of Clenbuterol and Salbutamol in Feed and Meat Products Based on Miniaturized Capillary Electrophoresis with Amperometric Detection

    Institute of Scientific and Technical Information of China (English)

    CHU Qing-Cui; GENG Cheng-Huai; ZHOU Hui; YE Jian-Nong

    2007-01-01

    The fast separation capability of a novel miniaturized capillary electrophoresis with an amperometric detection (μCE-AD) system was demonstrated by determining clenbuterol and salbutamol in real samples.The effects of several factors such as the acidity and concentration of the running buffer,the separation voltage,the applied potential and the injection time on CE-AD were examined and optimized.Under the optimum conditions,the two β-agonists could be baseline separated within 60 s at a separation voltage of 2 kV in a 90 mmol/L H3BO3-Na2B4O7 running buffer (pH 7.4),which was not interfered by ascorbic acid and uric acid.Highly linear response was obtained for above compounds over three orders of magnitude with detection limits ranging from 1.20 × 10-7 to 6.50× 10-8 mol/L (S/N=3).This method was successfully used in the analysis of feed and meat products with relatively simple extraction procedures.

  13. Design of experiments for amino acid extraction from tobacco leaves and their subsequent determination by capillary zone electrophoresis.

    Science.gov (United States)

    Hodek, Ondřej; Křížek, Tomáš; Coufal, Pavel; Ryšlavá, Helena

    2017-01-13

    In this study, we optimized a method for the determination of free amino acids in Nicotiana tabacum leaves. Capillary electrophoresis with contactless conductivity detector was used for the separation of 20 proteinogenic amino acids in acidic background electrolyte. Subsequently, the conditions of extraction with HCl were optimized for the highest extraction yield of the amino acids because sample treatment of plant materials brings some specific challenges. Central composite face-centered design with fractional factorial design was used in order to evaluate the significance of selected factors (HCl volume, HCl concentration, sonication, shaking) on the extraction process. In addition, the composite design helped us to find the optimal values for each factor using the response surface method. The limits of detection and limits of quantification for the 20 proteinogenic amino acids were found to be in the order of 10(-5) and 10(-4) mol l(-1), respectively. Addition of acetonitrile to the sample was tested as a method commonly used to decrease limits of detection. Ambiguous results of this experiment pointed out some features of plant extract samples, which often required specific approaches. Suitability of the method for metabolomic studies was tested by analysis of a real sample, in which all amino acids, except for L-methionine and L-cysteine, were successfully detected. The optimized extraction process together with the capillary electrophoresis method can be used for the determination of proteinogenic amino acids in plant materials. The resulting inexpensive, simple, and robust method is well suited for various metabolomic studies in plants. As such, the method represents a valuable tool for research and practical application in the fields of biology, biochemistry, and agriculture.

  14. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  15. A novel method for Co(Ⅱ) and Cu(Ⅱ) analysis by capillary electrophoresis with chemiluminescence detection

    Institute of Scientific and Technical Information of China (English)

    Xiao Ming Guo; Xiang Dong Xu; Hui Jing Zhang; Yong Gang Hu; Jie Zhang

    2007-01-01

    Based on the fact that some metal ions can catalyze the chemiluminescence (CL) reaction of luminol with K3Fe(CN)6, a novel capillary electrophoresis CL method was developed for the determination of Co(Ⅱ) and Cu(Ⅱ). The separation was carried out with a 10 mmol/L sodium acetate solution containing 0.8 mmol/L luminol and 2.0 mmol/L α-HIBA (adjusted to pH 4.8 by Hac solution). The post-capillary reagent was 2.0 mmol/L K3Fe(CN)6 which was adjusted to pH 13.0 by NaOH solution. Under the optimum conditions, the detection limits (S/N = 3) for Co(Ⅱ) and Cu(Ⅱ) were 7.5 × 10-11 mol/L and 7.5 × 10-9 mol/L, with the linear range of 7.5 × 10-9 mol/L to 1.0 × 10-6 mol/L and 7.5 × 10-8 mol/L to 5.0 × 10-5 mol/L,respectively.

  16. Analysis of the anti-Parkinson drug pramipexole in human urine by capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Musenga, Alessandro; Kenndler, Ernst; Morganti, Emanuele; Rasi, Fabrizio; Raggi, Maria Augusta

    2008-09-19

    A sensitive method based on capillary electrophoresis with laser-induced fluorescence detection has been developed for the analysis of the non-ergoline dopamine agonist pramipexole in human urine. Separation was carried out in uncoated fused silica capillaries (75microm internal diameter, 75.0 and 60.0cm total and effective length, respectively), with a background electrolyte composed of borate buffer (50mM, pH 10.3), tetrabutylammonium bromide (30mM), and acetone (15%, v/v). Applying a 20kV voltage, the electrophoretic run is completed within 12min. A sample pre-treatment procedure based on liquid/liquid extraction with ethyl acetate, followed by derivatisation of pramipexole with fluorescein isothiocyanate at pH 9, allows the complete removal of biological interferences, with extraction yields always higher than 94.5%. Method validation gave good linearity (r(2)=0.9992) in the 25.0-1000ngmL(-1) range; limit of detection and limit of quantitation were 10.0 and 25.0ngmL(-1), respectively; precision was 90.0. The method was applied to the analysis of urine samples from patients undergoing therapy with pramipexole.

  17. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Liwei; Wang Kun [Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871 (China); Zhang Xinxiang [Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry, Peking University, Beijing 100871 (China)], E-mail: zxx@pku.edu.cn

    2007-11-05

    The interactions between fluoroquinolones and human serum albumin (HSA) were investigated by affinity capillary electrophoresis (ACE) and fluorescence quenching technique. Based on the efficient separation of several fluoroquinolones using a simple phosphate buffer, the binding constants of fluoroquinolones with HSA were determined simultaneously during one set of electrophoresis by ACE method. The thermodynamic parameters were obtained from data at different temperatures, and the negative {delta}H and {delta}S values showed that both hydrogen bonds and van der Waals interaction played major roles in the binding of fluoroquinolones to HSA. The interactions were also studied by fluorescence quenching technique. The results of fluorescence titration revealed that fluoroquinolones had the strong ability to quenching the intrinsic fluorescence of HSA through the static quenching procedure. The binding site number n, apparent binding constant K{sub b} and the Stern-Volmer quenching constant K{sub sv} were determined. The thermodynamic parameters were also studied by fluorescence method, and the results were consonant with that of ACE.

  18. Application of isotachophoresis in commercial capillary electrophoresis instrument using C(4) D and UV detection.

    Science.gov (United States)

    Koczka, Péter I; Bodor, Róbert; Masár, Marián; Gáspár, Attila

    2016-09-01

    In this work, we tested the applicability of a commercial CE instrument (Agilent) for capillary ITP (CITP). The fused silica capillaries were flushed with PVP solution before each sample injection to suppress the EOF. As a dual-detection mode, commercial capacitively coupled contactless conductivity detection and ultraviolet detectors were applied. The experiments showed that the detection gap of the capacitively coupled contactless conductivity detection limits the achievable LOD and the separation resolution when the analyte CITP zones are very narrow, therefore long (120 cm) CE capillary was used and it was largely filled with the sample solution. CITP analyses of several real samples (leather extract, red wine, juice, and fizzy drink) have been demonstrated. In peak mode of CITP when the zone of a chromophore analyte is positioned between nonchromophore zones, excellent sensitivity (in submicromolar concentration range) could be achieved by ultraviolet detection. The hazardous chromate in low concentration was determined in the aqueous extract of tanned leather.

  19. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Zhuo Bin YUAN

    2004-01-01

    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  20. Effect of temperature gradients on single-strand conformation polymorphism analysis in a capillary electrophoresis system using Pluronic polymer matrix.

    Science.gov (United States)

    Hwang, Hee Sung; Shin, Gi Won; Park, Han Jin; Ryu, Chang Y; Jung, Gyoo Yeol

    2013-09-02

    Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis is a prominent bioseparation method based on the mobility diversity caused by sequence-induced conformational differences of single-stranded DNA. The use of Pluronic polymer matrix has opened up new opportunities for CE-SSCP, because it improved the resolution for various genetic analyses. However, there still exists a challenge in optimizing Pluronic-based CE-SSCP, because the physical properties of Pluronic solutions are sensitive to temperature, particularly near the gelation temperature, where the viscoelasticity of Pluronic F108 solutions sharply changes from that of a Newtonian fluid to a hydrogel upon heating. We have focused on a set of experiments to control the ambient temperature of the CE system with the aim of enhancing the reliability of the CE-SSCP analysis by using the Applied Biosystems ABI 3130xl genetic analyzer with Pluronic F108 solution matrix. The ambient temperature control allowed us to vary the inlet and outlet portion of the capillary column, while the temperature of the column was kept at 35°C. The resolution to separate 2 single-base-pair-differing DNA fragments was significantly enhanced by changing the temperature from 19 to 30°C. The viscoelastic properties of the F108 solution matrix upon heating were also investigated by ex situ rheological experiments with an effort to reveal how the development of gels in Pluronic solutions affects the resolution of CE-SSCP. We found that the column inlet and outlet temperatures of the capillary column have to be controlled to optimize the resolution in CE-SSCP by using the Pluronic matrix.