WorldWideScience

Sample records for capillary discharge plasma

  1. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  2. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  3. Capillary-discharge sodium plasma for pulsed-power X-ray laser experiments

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Cooperstein, G.

    1986-01-01

    A capillary discharge plasma is being studied as a source of sodium plasma for Na/Ne x-ray laser experiments. The objective is to develop an intense x-ray pump of He-α emission from Na for matched-line photopumping of Ne. A uniform Na-bearing plasma (≅2-cm dia and ≅4-cm long) is to be injected into the anode-cathode gap of the Gamble II pulsed-power generator and imploded by MA-level currents to produce the intense sodium K-line radiation. Implosions of neon gas puffs have produced up to 50 GW of 0.92-keV He-α line emission, and similar x-ray power is expected from sodium implosions. Plasma from the capillary is produced by discharging current through an evacuated small hole in a plastic dielectric (≤ 3-mm dia and 1 to 2.5-cm long). A Na-bearing plasma is generated by forming the hole in NaF. Discharges of 30-kA (60-kA) peak current and 2-μs (2.6-μs) period are provided by a 0.6-μF (1.8-μF) capacitor bank charged to 25 kV. Diagnostics to evaluate plasma characteristics include witness plates, Faraday cups, photodiodes, open-shutter photographs, framing images, and visible light and near UV spectrographs. This plasma source emits visible light for 5-10 μs over a region extending - 1.5 cm from the capillary. Emission is more intense for capillary dia ≤ 0.8 mm. Spectroscopic measurements indicate that both positive ions and neutrals are present, including neutral Na from NaF capillaries. Velocities of≅2 cm/μs are deduced from Faraday cup measurements. For a 0.3-mm dia plastic capillary and 30-kA discharge current, ≅100 μg of capillary material is removed, which corresponds to≅10 μg/cm in the plasma

  4. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  5. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  6. EUV emission from Kr and Xe capillary discharge plasmas

    International Nuclear Information System (INIS)

    Juschkin, L.; Ellwi, S.; Kunze, H-J.; Chuvatin, A.; Zakharov, S.V.

    2002-01-01

    Kr and Xe plasmas are very intensive emitters in the spectral range of 100-150 A, which is relevant for a number of applications (for example microlithography). We present investigations of the extreme utraviolet (EUV) emission from a slow capillary discharge with Kr and Xe fillings. The emission of Kr ions (Kr VIII to Kr XI) within the range of 70-150 A consists of three bands of lines of about 10 A width with maxima at 116, 103 and 86 A. Xe emission bands of about 15 A width have their maxima at 136 and 115 A (Xe IX to Xe XII). The radiation duration in this spectral range is ∼150 ns for both elements. At the optimum conditions, the Kr emission at 103 A is 2-3 times more intense than the Xe emission at 136 A. The measured spectral energy of Kr radiation is about 0.1 J sr -1 A -1 . Experimental results are compared with numerical modellings of the dynamics and emission of the capillary discharge plasma, which enables the determination of plasma parameters and the future use of the codes as additional instruments for plasma diagnostics. (author)

  7. 0.56 GeV laser electron acceleration in ablative-capillary-discharge plasma channel

    International Nuclear Information System (INIS)

    Kameshima, Takashi; Kurokawa, Shin-ichi; Nakajima, Kazuhisa; Hong Wei; Wen Xianlun; Wu Yuchi; Tang Chuanming; Zhu Qihua; Gu Yuqiu; Zhang Baohan; Peng Hansheng; Sugiyama, Kiyohiro; Chen, Liming; Tajima, Toshiki; Kumita, Tetsuro

    2008-01-01

    A high-quality electron beam with a central energy of 0.56 GeV, an energy spread of 1.2% rms, and a divergence of 0.59 mrad rms was produced by means of a 4 cm ablative-capillary-discharge plasma channel driven by a 3.8 J27 fs laser pulse. This is the first demonstration of electron acceleration with an ablative capillary discharge wherein the capillary is stably operated in vacuum with a simple system triggered by a laser pulse. This result of the generation of a high-quality beam provides the prospects to realize a practical accelerator based on laser-plasma acceleration. (author)

  8. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    Science.gov (United States)

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  9. Influence of the inner diameters of capillary on the Z-Pinch plasma of the capillary discharge soft X-ray laser

    International Nuclear Information System (INIS)

    Jiang, Shan; Zhao, Yong-peng; Cui, Huai-yu; Li, Lian-bo; Ding, Yu-jie; Zhang, Wen-hong; Li, Wei

    2015-01-01

    In this paper, the effects of inner diameters on the Z-pinch plasma of capillary discharge soft X-ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z-pinch plasma simulations had been conducted with a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code. The parametric studies of Z-pinch plasma, such as the electron temperature, the electron density and the Ne-like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z-pinch plasma of Ne-like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Soft x-ray lasing in a capillary discharge

    International Nuclear Information System (INIS)

    Lee, Tong-Nyong; Shin, Hyun-Joon; Kim, Dong-Eon

    1995-01-01

    Soft x-ray lasing in the C VI Balmer α transition is observed in a capillary discharge. The capillary is made of polyethylene with a bore diameter of 1.2 mm. Plasma radiation from the discharge is analyzed using a toroidal mirror and a two-meter grazing-incidence spectrograph-monochromator. The electron temperatures are measured at both the axial and the peripheral region close to the capillary wall, using space-resolved spectra. A comparison of the branching ratio in the hot (axial) and the cool (peripheral) plasma regions indicates that there is a large population inversion between n=3 and 2 states of C 5+ ions in the cool (Te∼13 eV) region of the capillary plasma. Relative line intensities of the C VI Hα and a number of non-lasing lines are compared in this cool region as a function of capillary length. The C VI Hα line intensity increases exponentially whereas those of non-lasing transitions increase linearly with an increase of the capillary length. The gain coefficient thus measured indicates 2.8 cm -1 . The lasing line intensity does not seem to increase exponentially beyond a capillary length of 16 mm and the gain-length product, gL, obtained here is 3.9, which is a typical value one would expect for a recombination soft x-ray laser. The photoelectric signals of the lasing line indicate that the lasing takes place about 40 ns after the current peak in the first half cycle of the capillary discharge, with a lasing pulse width of 60 ns in FWHM

  11. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  12. Studies on pulsed hollow cathode capillary discharges

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P; Dumitrescu-Zoita, C; Larour, J; Rous, J [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises; Favre, M; Moreno, J; Chuaqui, H; Wyndham, E [Pontificia Univ. Catolica de Chile, Santiago (Chile). Facultad de Fisica; Zambra, M [Comision Chilena de Energia Nuclear, Santiago (Chile); Wong, C S [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab

    1997-12-31

    Preliminary results on radiation characteristics of pulsed hollow cathode capillary discharges are presented. The device combines the on axis electron beam assisted ionization capabilities of the transient hollow cathode discharge with a novel high voltage low inductance geometrical design, which integrates the local energy storage into the electrode system. A nanosecond regime high temperature plasma is produced in a long, high aspect ratio capillary, with light emission in the UV to XUV region. The discharge is operated from near vacuum to pressure in the 1000 mTorr range. (author). 2 figs., 7 refs.

  13. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  14. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  15. Xenon capillary discharge as a source of soft X-ray

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.

    2002-01-01

    Roč. 52, supplement D (2002), s. 112-116 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary discharge, soft X-ray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  16. Measurement of the resistivity and study of the dynamics of a cold, dense plasma created in a capillary discharge

    International Nuclear Information System (INIS)

    Shepherd, R.L.

    1987-01-01

    Plasmas were created by discharging a 600-kV Marx bank across a 20μ-diameter capillary in polyurethane. The current generated by the Marx bank accretes material from the capillary wall and fills the initial void to form a plasma. Various diagnostics were fielded to help characterize the plasma. The diagnostics consist of: (1) a four channel x-ray diode array to measure the temperature, (2) schlieren photography to measure the time dependent radial size, (3) two capacitively coupled voltage probes to measure the time-dependent voltage generated by the pulse-power system and the voltage delivered across the capillary, (4) a localized Rogowski coil to measure the current through the capillary, (5) four inductive shunts to measure the return current, (6) and end-on framing and side-on visible streak photography to measure time dependent size of the visible emission. The plasmas were characterized as having densities on the order of 6 x 10 22 and temperatures of ≅ 10 eV. The peak current is reached in 270 ns at 550 kA

  17. TiN coating on steel by pulsed capillary discharge

    International Nuclear Information System (INIS)

    Avaria, G; Favre, M; Bhuyan, H; Wyndham, E; Kelly, H; Grondona, D; Marquez, A

    2006-01-01

    The characteristic geometry of a pulsed capillary discharge (PCD)[1] establishes natural conditions for the formation of plasma jets, which expand in the chamber's neutral gas. A locally stored capacitor, coaxial with the capillary, is pulse charged to a maximum of -10kV, giving a current pulse of ∼10ns, ∼2kA. The discharge is operated in nitrogen, in a continuous pulsing mode, at a frequency of 50 Hz and pressures of 0.3 to 1 Torr. The coating produced by these plasma jets on substrates of AISI 304 stainless steel have been studied. The chamber's anode is made of titanium, which interacts with the nitrogen plasma producing TiN coatings on the substrates. The results are presented for the plasma characterization at different discharge pressures and times, as well as SEM, EDS and AFM analysis of deposits made. This characterization was carried out using Langmuir double probes, which provide data on the electronic temperature and density in the plasma jet. At the same time spectrographic studies of the plasma were carried out, and the presence of ionized atoms of titanium and nitrogen were observed. An inverse relation between the pressure of nitrogen present in the chamber and the thickness of the coating over steel was found, as well as a direct relationship between the temperature and plasma densities with the thickness of the deposit (CW)

  18. A study of coherent radiation generated in an ablative capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Hübner, Jakub; Vrba, Pavel

    2013-01-01

    Roč. 53, č. 2 (2013), s. 79-87 ISSN 1210-2709 R&D Projects: GA ČR GAP102/12/2043 Institutional support: RVO:61389021 Keywords : capillary discharge * XUV or soft X-ray laser * plasma modeling * ablation Subject RIV: BL - Plasma and Gas Discharge Physics https://ojs.cvut.cz/ojs/index.php/ap/article/view/1787/1619

  19. Study of a pulsed capillary discharge with a modulated radius

    NARCIS (Netherlands)

    Broks, B.H.P.; Dijk, van W.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    In this contribution, we present a plasma physical model of a pulsed capillary discharge with a modulated radius. Using a 2D time-dependent model, we have modeled the plasma and wall properties of this channel. It was found that properties of the central plasma are different than the properties of a

  20. Desing of a new driver for fast capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Boháček, Vladislav; Schmidt, Jiří; Šunka, Pavel; Řípa, Milan; Ullschmied, Jiří; Fuciman, Marcel

    2001-01-01

    Roč. 11, č. 11 (2001), s. Pr2-613 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z2043910 Keywords : capillary Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.401, year: 2001

  1. Gas-filled capillaries for plasma-based accelerators

    International Nuclear Information System (INIS)

    Filippi, F; Anania, M P; Brentegani, E; Biagioni, A; Chiadroni, E; Ferrario, M; Pompili, R; Romeo, S; Cianchi, A; Zigler, A

    2017-01-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented. (paper)

  2. Gas-filled capillaries for plasma-based accelerators

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  3. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures

    International Nuclear Information System (INIS)

    Denisova, N; Gavare, Z; Revalde, G; Skudra, Ja; Veilande, R

    2011-01-01

    Low-pressure capillary discharge lamps in Ar-Hg and Xe-Hg mixtures are studied. The discharge size is 0.5 mm (500 μm) in radius. According to the literature, such types of plasma sources are classified as microplasmas. The studies include spectrally resolved optical measurements, tomographic reconstructions and numerical simulations using the collisional-radiative model for an Ar-Hg plasma. We discuss the problems of theoretical modelling and experimental diagnostics of microplasma sources. It is shown that the conventional collisional-radiative model, based on the assumption that transportation of atoms in the highly excited states can be neglected, has limitations in modelling a capillary discharge in an Ar-Hg mixture. It is found that diffusion of highly excited mercury atoms to the wall influences the emission properties of the capillary discharge. We have concluded that applications of the emission tomography method to microplasmas require a special analysis in each particular case.

  4. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  5. Surface modification by EUV laser beam based on capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav; Shukurov, A.

    -, č. 58 (2011), s. 484-487 ISSN 2010-376X. [International Conference on Fusion and Plasma Physics. Bali, Indonésie, 26.10.2011-28.10.2011] R&D Projects: GA AV ČR KAN300100702; GA MŠk LA08024; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft x-ray * EUV * laser * radiation * source * capillary * discharge * plasma * ablation * surface modification Subject RIV: BL - Plasma and Gas Discharge Physics http://www.waset.org/journals/waset/v58/v58-99.pdf

  6. Influence of discharge parameters on capillary discharge-pumped soft X-ray laser

    International Nuclear Information System (INIS)

    Peng Huimin; Zheng Wudi; Yang Dawei; Zhao Yongpeng; Cheng Yuanli; Wang Qi

    2005-01-01

    Based on the wave shape of Marx device at National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, the influence of discharge parameters upon the temporal evolvement of capillary discharge produced plasmas conditions and the gain coefficient of 3p-3s transition in Neon-like Ar was simulated. In the simulation, argon with a density of 1.07 x 10 -6 g·cm -3 was filled into a ceramic capillary with an inner diameter of 3.1 mm, the peak of the discharge current pulse was 27.81 kA, and the width of the current pulse was 61.4 ns. The results show that the shorter the pulse rise time is, the higher the gain coefficient is. When the pulse rise time is 20-40 ns, the peak of the current pulse is 25-40 ns, and the current pulse width is 50-70 ns, the higher gain coefficient can be obtained. (authors)

  7. Route to Soft X-ray Laser Pumped by Gas-Filled-Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Řípa, Milan; Frolov, Oleksandr; Štraus, Jaroslav; Vrba, Pavel

    2004-01-01

    Roč. 34, - (2004), s. 154-157 ISSN 1433-5581. [First Cairo Conference on Plasma Physics & Applications. Cairo, 11.10.2003-15.10.2003] R&D Projects: GA ČR(CZ) GA202/03/0711 Grant - others:GA MŠk1(CZ) LA 235 Keywords : fast capillary discharge * soft x-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics

  8. X-Ray Laser in an Ablative Capillary Discharge Driven by an m=0 Instability

    International Nuclear Information System (INIS)

    Kunze, H.J.

    2002-01-01

    The development of EUV and soft-X ray lasers made great progress during the last decade. In most cases powerful primary lasers in the UV-, visible and near-infrared spectral regions are employed to produce the dense hot plasmas needed as active media for the lasers. Widely spread applications require small table-top systems and here capillary discharges offer an alternative approach and are being studied by several groups. By selecting properly the transient discharge conditions, collisional excitation or three-body recombination are the effective mechanisms to achieve population inversion. At the Ruhr-University a different approach is pursued where charge exchange between different ions in colliding plasmas is utilized. The plasmas are produced in a small ablative capillary discharge made of polyacetal. In the second half cycle an m=O instability develops and results in hot plasmas in the neck regions which stream into the cold plasma outside and create overpopulation of the n=3 level of hydrogenic carbon leading to lasing on the Balmer-alpha line at 18.22 nm. A waved structure of the inner capillary wall induces reliably the instability and pinhole pictures give the clue why not all materials are useful. Double pass experiments using a multilayer mirror give an effective gain-length product of GL=4.3 for a 3 cm long capillary and a life-time of the inversion layers of 400 ps

  9. Pump effect of a capillary discharge in electrically conductive liquids

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.

    2007-01-01

    Roč. 27, č. 4 (2007), s. 473-485 ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007 http://www.springerlink.com/content/w802073563282272/fulltext.pdf

  10. Soft X-ray emission of a fast-capillary-discharge device

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Štraus, Jaroslav; Prukner, Václav; Frolov, Oleksandr; Boháček, Vladislav

    2005-01-01

    Roč. 13, č. 2 (2005), s. 105-109 ISSN 1051-9998. [International Conference on High- Power Particle Beams, BEAMS /15th./. St. Petersburg, 18.7.2004-23.7.2004] R&D Projects: GA AV ČR(CZ) KSK2043105; GA ČR(CZ) GA202/03/0711 Institutional research plan: CEZ:AV0Z20430508 Keywords : pre-pulse plasma * capillary discharge * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.271, year: 2005

  11. The role of the gas/plasma plume and self-focusing in a gas-filled capillary discharge waveguide for high-power laser-plasma applications

    CERN Document Server

    Ciocarlan, C.; Islam, M. R.; Ersfeld, B.; Abuazoum, S.; Wilson, R.; Aniculaesei, C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A.; 10.1063/1.4822333

    2013-01-01

    The role of the gas/plasma plume at the entrance of a gas-filled capillary discharge plasma waveguide in increasing the laser intensity has been investigated. Distinction is made between neutral gas and hot plasma plumes that, respectively, develop before and after discharge breakdown. Time-averaged measurements show that the on-axis plasma density of a fully expanded plasma plume over this region is similar to that inside the waveguide. Above the critical power, relativistic and ponderomotive selffocusing lead to an increase in the intensity, which can be nearly a factor of 2 compared with the case without a plume. When used as a laser plasma wakefield accelerator, the enhancement of intensity can lead to prompt electron injection very close to the entrance of the waveguide. Self-focusing occurs within two Rayleigh lengths of the waveguide entrance plane in the region, where the laser beam is converging. Analytical theory and numerical simulations show that, for a density of 3.01018 cm3, the peak normalized...

  12. The creation of hypersonic flows by a powerful impulse capillary discharge

    Science.gov (United States)

    Pashchina, A. S.; Karmatsky, R. E.; Klimov, A. I.

    2017-11-01

    The possibility of using a powerful pulsed capillary discharge to produce quasi-stationary highspeed plasma flows with characteristic Mach numbers M = 3-10 and temperatures T = 3000-6000 K has been experimentally substantiated. In a rarefied gas atmosphere ( p ∞ condensed particles in a carbon-containing plasma.

  13. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  14. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    International Nuclear Information System (INIS)

    Biagioni, A.; Anania, M.P.; Bellaveglia, M.; Chiadroni, E.; Giovenale, D. Di; Pirro, G. Di; Ferrario, M.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Cianchi, A.; Filippi, F.; Mostacci, A.; Zigler, A.

    2016-01-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  15. Basic principles and applications of atmospheric-pressure discharge plasmas

    International Nuclear Information System (INIS)

    Becker, K.H.

    2002-01-01

    The principles that govern the generation and maintenance of atmospheric - pressure discharge plasmas are summarized. The properties and operating parameters of various types such as dielectric barrier discharge plasmas (DBDs), corona discharge plasmas (CDs), microhollow cathode discharge plasmas (MHCDs) , and dielectric capillary electrode discharge plasmas (CDEDs) are introduced. All of them are self sustained, non equilibrium gas discharges that can be operated at atmospheric pressure. CDs and DBDDs represent very similar types of discharges, while DBDs are characterized by insulating layers on one or both electrodes, CDs depend on inhomogeneous electric fields at least in some parts of the electrode configuration to restrict the primary ionization processes to a small fraction of the inter - electrode region. Their application to novel light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral region is described. (nevyjel)

  16. High-order harmonic generation in a capillary discharge

    Science.gov (United States)

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  17. Modeling of electrical confined-capillary-discharge where the discharge zone is extended by an additional pipe

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel)], E-mail: eyal_we@soreq.gov.il; Zoler, D.; Wald, S. [Propulsion Physics Laboratory, Soreq NRC, Yavne 81800 (Israel); Elias, E. [Department of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2009-03-02

    Plasma injectors are a source of pulsed, high momentum and temperature fluid. This fluid can serve as a very efficient reactive mixing and accelerating agent in several applications including chemical waste decomposition and hard materials coating. It can also serve as an efficient medium for synthesis of nano-particles and their deposition on various substrates. In those applications tuning the momentum and the thermodynamic properties of the plasma jet is of paramount importance as the quality of the interaction strongly depends on them. This Letter proposes a method and a model that will allow additional tuning to the thermodynamic properties of the plasma jet by adding an extension to the discharge zone. A steady state model of processes taking place in a realistic confined capillary discharge system is presented. A comparison between this system and the parameters characterizing a discharge in a 'conventional' ablative system is presented. The results obtained indicate that the non-discharge zone may provide an additional degree of freedom to optimize the system's performance. It enhances the control of the plasma parameters that allows optimal and predictable momentum control over the plasma jet. The theoretical predictions for the plasma parameters agree well with experimentally obtained data.

  18. Experimental determination of the Stark broadening of Cu I spectral lines in a plasma of a capillary discharge

    International Nuclear Information System (INIS)

    Sandolache, G.; Zoita, V.; Bauchire, M.; Le Menn, E.; Gentils, F.; Fleurier, C.

    2001-01-01

    Copper lines are frequently observed in various types of plasma device and industrial plasmas and then it is desirable to develop methods of plasma diagnostics using the emission spectrum of copper lines. The aim of this work is to create a database for the neutral copper spectral lines directly usable for the diagnostic of plasmas with metal vapors. An experimental device has been developed to create a metal plasma having the required metrological properties to facilitate the spectroscopic measurements. A capillary discharge technique has been used to create a plasma jet representing a radially symmetric light source. The copper-hydrogen plasma jet was produced by the ablation of the capillary wall consisting of a copper-embedded elastomer. The plasma jet was observed side-on using the high-resolution spectrometers equipped with ICCD detectors. The 2D square matrix ICCD detectors have permitted the observation of cross sections of the plasma jet. The high-speed time resolved camera equipped with interference filters has been used to check the cylindrical shape and the homogeneity of the plasma jet. The electron density of the plasma jet was obtained by using the H α spectral line of the hydrogen component plasma. The temperature was determined by applying the relative intensity method to the measured intensities of the neutral copper spectral lines emitted by the plasma jet. The hydrogen and copper lines were broadened principally by the Stark effect. The measured temperatures were about 15,000 K and the electron density of about 2x10 17 cm -3 . The results of the Stark broadening of the neutral cooper concerned particularly the lines 453.9 nm, 465.1 nm, 515.3 nm and 529.2 nm. (authors)

  19. A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Jakub Hübner

    2013-01-01

    Full Text Available Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

  20. Development of high power pumping system for capillary discharge EUV laser

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Komatsu, Takanori; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2008-01-01

    Development of high power pumping system for capillary discharge soft X-ray laser is reported. The pulsed power system consists of a 2.2 μF LC generator, a 2:54 step-up transformer and a 3 nF water capacitor. Taking advantage of high efficiency configuration, step-up ratio of water capacitor voltage to LC generator initial voltage is about 40 times. Consequently, obtained water capacitor voltage reaches about 450 kV when LC generator was charged to 12.5 kV. As a consequent, possibility of charging a water capacitor to 1 MV is demonstrated. With this extremely compact system, discharge current could be increased to nearly 100 kA through moderately long capillary, which leads to generation of high-density and high-temperature plasma column in order to realize EUV laser. (author)

  1. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, P., E-mail: vrbovmir@fbmi.cvut.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S.V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V.S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation); Jancarek, A.; Nevrkla, M. [Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1 (Czech Republic)

    2014-10-15

    Highlights: • Pinching capillary discharge is studied as a source of monochromatic SXR. • Modeling of the laboratory device was performed by RMHD Z* code. • Results of computer and laboratory experiments are presented. - Abstract: Capillary discharge plasma related to our laboratory device is modeled and the results are compared with experimental data. Time dependences of selected plasma quantities (e.g. plasma mass density, electron temperature and density and emission intensities) evaluated by 2D Radiation-Magneto-Hydro-Dynamic code Z* describe plasma evolution. The highest output pulse energy at 2.88 nm wavelength is achieved for nitrogen filling pressure ∼100 Pa. The estimated output energy of monochromatic radiation 5.5 mJ sr{sup −1} (∼10{sup 14} photons sr{sup −1}) corresponds properly to observe experimental value ∼3 × 10{sup 13} photons sr{sup −1}. Ray tracing inspection along the capillary axis proves an influence of radiation self-absorption for the investigated wavelength. The spectra, evaluated using the FLY code, agree to the measured ones.

  2. Capillary discharge sources of hard UV radiation

    International Nuclear Information System (INIS)

    Cachoncinlle, C; Dussart, R; Robert, E; Goetze, S; Pons, J; Mohanty, S R; Viladrosa, R; Fleurier, C; Pouvesle, J M

    2002-01-01

    We developed and studied three different extreme ultraviolet (EUV) capillary discharge sources either dedicated to the generation of coherent or incoherent EUV radiation. The CAPELLA source has been developed especially as an EUV source for the metrology at 13.4 nm. With one of these sources, we were able to produce gain on the Balmer-Hα (18.22 nm) and Hβ (13.46 nm) spectral lines in carbon plasma. By injecting 70 GW cm -3 we measured gain-length products up to 1.62 and 3.02 for the Hα and Hβ, respectively optimization of the EUV capillary source CAPELLA led to the development of an EUV lamp which emits 2 mJ in the bandwidth of the MoSi mirror, per joule stored, per shot and in full solid angle. The wall-plug efficiency is 0.2%. Stability of this lamp is better than 4% and the lamp can operate at repetition rate of 50 Hz

  3. Lasing at short wavelength in a capillary discharge and in a dense Z-pinch

    International Nuclear Information System (INIS)

    Kunze, H.-J.; Glenzer, S.; Steden, C.; Wieschebrink, H. T.; Koshelev, K. N.; Uskov, D.

    1995-01-01

    Results on the emission of the CVI Balmer-α transition obtained with a fast capillary discharge are summarized, and a model is discussed, which explains the observations as result of fast ions produced by a m=0 instabililty and charge exchange with CIII ions in the cold plasma region. Plasmas of large dimensions were produced in the gas-liner pinch discharge, and the emission of the 4f-3d transition has been studied in CIV, NV, OVI, and FVII. Amplification is seen on the transition in OVI and FVII

  4. Fast capillary discharge facility CAPEX-U as a source of the soft X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav

    2007-01-01

    Roč. 52, č. 16 (2007), s. 295-295 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando , Florida, 12.11.2007-16.11.2007] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA AV ČR KAN300100702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary discharge * x-ray * laser * laser-triggered * spark gap * breakdown * plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901

  5. The electrical Discharge Characteristics of the 3.5 KJ Electrothermal Plasma Gun Experiment

    International Nuclear Information System (INIS)

    Diab, F.; El-Aragi, G.M.; El-Kashef, G.M.; Saudy, A.H.

    2013-01-01

    In order to better understand the operating characteristics of an electrothermal plasma gun and its design, a variety of operation characteristics including ( the length of the capillary, applied voltage, diameter of the capillary tube, circuit inductance) were investigated to determine performance effects and viability in a real system. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.3 μH) connected in parallel to a plasma source by means of one high power plane transmission line by mean of a switch triggered by negative pulse 360/385 V. For the present studies a simple RLC was chosen, which allowed the circuit parameters to be easily measure d. The electrothermal discharge characteristics of the plasma gun operated in open air, So that at atmospheric pressure the main parameters were measured. The gun voltage and discharge current are measured with voltage divider and Rogowiski coil respectively. From the results recorded we found that, the current lagged the voltage i-e the plasma source has an inductive reactivity. Moreover, the current value was changed by changing the circuit parameters, including the discharge voltage and circuit inductance, and the wire properties such as the length and diameter. The maximum gun current ranged between (5 - 50 KA) according to the charging voltage of capacitors between (1-7 KV), a typical discharge times are on the order r of 125 μS.

  6. Detection of metal ions by atomic emission spectroscopy from liquid-electrode discharge plasma

    International Nuclear Information System (INIS)

    Wu Jian; Yu Jing; Li Jun; Wang Jianping; Ying Yibin

    2007-01-01

    In this paper, the discharge ignited in a capillary connecting two beakers filled with electrolyte solution is investigated. During the experiment, an external electrical voltage is applied through two platinum electrodes dipped in the beakers. A gas bubble forms inside the capillary when the applied voltage is higher than 1000 V. Since the beakers are tilted slightly, after generation, the bubble moves slowly to the uphill outlet of the capillary due to buoyancy. When the bubble reaches the end of the capillary, it cracks and a bright discharge is ignited. The emission spectra of the discharge plasma are related to the metal ions dissolved in the solution and thus can be used for metal ion detection. An application of the system to measurement of water hardness is shown

  7. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Kwek, K.H.; Low, K.S.; Tan, C.A.; Lim, C.S.

    1999-01-01

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm -1 . The electron density is about 2 x 10 19 cm -3 . This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  8. Amplification of spontaneous emission of neon-like argon in a fast gas-filled capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Boháček, Vladislav; Řípa, Milan; Frolov, Oleksandr; Vrba, Pavel; Štraus, Jaroslav; Prukner, Václav; Rupasov, A. A.; Shikanov, A. S.

    2008-01-01

    Roč. 34, č. 2 (2008), s. 162-168 ISSN 1063-780X R&D Projects: GA ČR GA202/06/1324; GA MŠk LA08024; GA AV ČR KJB100430702; GA AV ČR KAN300100702 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft X-ray * laser * fast high-current * capillary discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.785, year: 2008

  9. Capillary-discharge-based portable detector for chemical vapor monitoring

    International Nuclear Information System (INIS)

    Duan Yixiang; Su Yongxuan; Jin Zhe

    2003-01-01

    Conventional portable instruments for sensing chemical vapors have certain limitations for on-site use. In this article, we develop a genuinely portable detector that is sensitive, powerful, rugged, of simple design, and with very low power needs. Such a detector is based on a dry-cell battery-powered, capillary-discharge-based, microplasma source with optical emission detection. The microscale plasma source has very special features such as low thermal temperature and very low power needs. These features make it possible for the plasma source to be powered with a small dry-cell battery. A specially designed discharge chamber with minielectrodes can be configured to enhance the plasma stability and the system performance. A very small amount of inert gas can be used as sample carrier and plasma supporting gas. Inert gases possess high excitation potentials and produce high-energy metastable particles in the plasma. These particles provide sufficient energy to excite chemical species through Penning ionization and/or energy transfer from metastable species. A molecular emission spectrum can be collected with a palm-sized spectrometer through a collimated optical fiber. The spectrum can be displayed on a notebook computer. With this design and arrangement, the new detector provides high sensitivity for organic chemical species. The advantages and features of the newly developed detector include high sensitivity, simple structure, low cost, universal response, very low power consumption, compact volume with field portable capability, and ease of operation

  10. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    Science.gov (United States)

    Garifullin, A. R.; Abdullin, I. Sh; Skidchenko, E. A.; Krasina, I. V.; Shaekhov, M. F.

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products.

  11. The effects of low-temperature plasma treatment on the capillary properties of inorganic fibers

    International Nuclear Information System (INIS)

    Garifullin, A R; Abdullin, I Sh; Skidchenko, E A; Krasina, I V; Shaekhov, M F

    2016-01-01

    Solving the problem of achieving high adhesion between the components in the polymeric composite material (PCM) based on carbon fibers (CF) and basalt fibers (BF) is proposed to use the radio-frequency (RF) plasma under lower pressure by virtue of efficiency, environmental friendliness and rationality of the method. The paper gives the results of studies of the properties of CF and BF after RF capacitive discharge plasma treatment. The plasma modification modes of carbon and basalt fiber were investigated. The efficiency of treatment tool in surface properties modification of carbon and basalt fibers was found, namely capillary properties of CF and BF were researched. The optimal treatment modes were selected. It was found that the method of plasma modification in the radio-frequency capacitive discharge under the lower pressure contributes enhancing the capillary properties of inorganic fibers, in particular carbon and basalt ones. It shows the tendency to increase of the adhesive properties in PCM, and, consequently, the increase of the physical and mechanical properties of the products. (paper)

  12. Characterization of a capillary plasma reactor for carbon dioxide decomposition

    International Nuclear Information System (INIS)

    Mori, Shinsuke; Yamamoto, Aguru; Suzuki, Masaaki

    2006-01-01

    The decomposition of carbon dioxide in a plasma reactor was investigated experimentally, using capillary discharge tubes with a diameter of 0.5 or 3.0 mm and a length of 25, 50, 75, 100 or 150 mm. The chemical composition of the reaction products and the current-voltage characteristics were measured over a pressure range of 3.33-120 Torr, and the CO 2 conversion rates and reduced electric fields were calculated. The results show that the influence of downscaling on the reduced electric fields can be well evaluated by adjusting both the current density, i, and the products of the pressure and the tube diameter, pd. However, the characteristics of CO 2 decomposition cannot be determined based on i and pd; they are better characterized by i and p. It can be deduced from our experimental results that the CO 2 conversion rate is predominated by the electron impact CO 2 dissociation and gas phase reverse reactions even in a capillary plasma reactor

  13. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    Science.gov (United States)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  14. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    Science.gov (United States)

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  15. Performance of soft x-ray laser pumped by capillary discharge

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Kakuya, Yuji; Xiao, Yifan

    2005-01-01

    We report the output characteristics of capillary discharge single-pass 46.9 nm Ne-like Ar soft-X-ray laser generated by a capillary z-pinch discharge. The coherence properties of the laser have shown to be improved with the increase of the length of laser amplifier from 20 up to 35 cm. The high degree of the spatial coherence of the laser beam produced by 35 cm long capillary is demonstrated by the results obtained in a classical Young's double-slit experiments. We found that the coherence length of the laser is 50 μm. For the 20 cm-long capillary, the diameter of a laser beam is in a range from 3.2 to 4.0 mm, which is corresponding to a range of divergence from 2.2 to 2.8 mrad. Finally, we introduce two spikes on X-ray diode (XRD) signal observed in a single shot. (author)

  16. Investigation of the output pulse characteristics of a 46.9 nm Ar capillary discharge soft x-ray laser

    International Nuclear Information System (INIS)

    Ritucci, A.; Tomassetti, G.; Palladino, L.; Reale, A.; Gaeta, G.; Limongi, T.; Flora, F.; Mezi, L.; Kukhlevsky, S.V.; Kaiser, J.; Faenov, A.; Pikuz, T.; Reale, L.

    2002-01-01

    In this paper, we report on the realization of a capillary discharge soft x-ray laser operating at 46.9 nm pumped by a 30 kA peak value, 150 ns half cycle duration current pulse (corresponding to a mean current slope of about 5 1011 A/s). The slope of the pumping current is sufficiently high to produce the plasma compression and laser amplification on the 3p-3s, J=0-1 transition of Ne-like Ar, in 2.4-4 mm in diameter alumina capillary channels. We have analyzed the output pulse characteristics of the produced laser beam, such as the lasing time and the pulse duration, the saturation and the output pulse energy, the near field image as a function of different experimental parameters. Using the same current pulse, the lasing effect has not been observed in polyacetal capillaries, demonstrating the damning role of the wall capillary ablation in the heating and in the stability of the plasma column during the z-pinch compression

  17. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, L. S., E-mail: lschan1982@yahoo.com; Tan, D., E-mail: lschan1982@yahoo.com; Saboohi, S., E-mail: lschan1982@yahoo.com; Yap, S. L., E-mail: lschan1982@yahoo.com; Wong, C. S., E-mail: lschan1982@yahoo.com [Plasma Technology Research Centre, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  18. Ionization Waves in a Fast, Hollow-Cathode-Assisted Capillary Discharge

    International Nuclear Information System (INIS)

    Rutkevich, I.; Mond, M.; Kaufman, Y.; Choi, P.; Favre, M.

    1999-01-01

    The initial, low-current stage of the evolution of a soft x-ray emitting, hollow-cathode-assisted capillary discharge initiated by a steep high-voltage pulse is investigated. The capillary is surrounded by a shield having the cathode potential. The mean electric field E of the order of 10 kV/cm and the low gas pressure (P<1Torr) provide conditions for extensive electron runaway. This is taken into account in the formulation of the theoretical approach by retaining the inertial terms in the momentum equation for the electrons. In addition, the ionization rate is calculated by considering the cross section for ionization by high-energy electrons. The two-dimensional system of the basic equations is reduced to a system of one-dimensional equations for the axial distributions of the physical quantities by introducing appropriate radial profiles of the electric potential, and the electron gas parameters and satisfying the electrodynamic boundary conditions at the capillary wall and at the shield. The resulting system of equations admits solutions in the form of stationary ionization waves transferring the anode potential to the cathode end. Numerical calculations of such solutions for argon show that the wave velocity V increases with the gas pressure P and with the density of initial electron beam ejected from the cathode hole ahead of the ionization front, while the dependence of V on the applied voltage is weak. At the instant when the virtual anode reaches the cathode hole, the plasma in the capillary is not yet fully ionized. The traverse time of the ionization wave along the capillary calculated for various gas pressures is in reasonable agreement with experimentally registered time delay for a high-current stage resulting in voltage collapse and soft x-ray emission

  19. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  20. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries

    Science.gov (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu

    1988-12-01

    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  1. Plasma control for efficient extreme ultra-violet source

    International Nuclear Information System (INIS)

    Takahashi, Kensaku; Nakajima, Mitsuo; Kawamura, Tohru; Shiho, Makoto; Hotta, Eiki; Horioka, Kazuhiko

    2008-01-01

    To generate a high efficiency extreme-ultraviolet (EUV) source, effects of plasma shape for controlling radiative plasmas based on xenon capillary discharge are experimentally investigated. The radiation characteristics observed via tapered capillary discharge are compared with those of straight one. From the comparison, the long emission period and different plasma behaviors of tapered capillary discharge are confirmed. This means that control of the plasma geometry is effective for prolonging the EUV emission period. This result also indicates that the plasma shape control seems to have a potential for enhancing the conversion efficiency. (author)

  2. Damage-free plasma etching of porous organo-silicate low-k using micro-capillary condensation above -50 °C.

    Science.gov (United States)

    Chanson, R; Zhang, L; Naumov, S; Mankelevich, Yu A; Tillocher, T; Lefaucheux, P; Dussart, R; Gendt, S De; Marneffe, J-F de

    2018-01-30

    The micro-capillary condensation of a new high boiling point organic reagent (HBPO), is studied in a periodic mesoporous oxide (PMO) with ∼34 % porosity and k-value ∼2.3. At a partial pressure of 3 mT, the onset of micro-capillary condensation occurs around +20 °C and the low-k matrix is filled at -20 °C. The condensed phase shows high stability from -50 < T ≤-35 °C, and persists in the pores when the low-k is exposed to a SF 6 -based plasma discharge. The etching properties of a SF 6 -based 150W-biased plasma discharge, using as additive this new HBPO gas, shows that negligible damage can be achieved at -50 °C, with acceptable etch rates. The evolution of the damage depth as a function of time was studied without bias and indicates that Si-CH 3 loss occurs principally through Si-C dissociation by VUV photons.

  3. Experimental Studies of Electrothermal Plasma Gun

    International Nuclear Information System (INIS)

    Diab, F.B.A.

    2013-01-01

    The aim of the present work is to study the capillary plasma discharge dynamics and characteristics. The capillary plasma device is a new technology for producing high density plasma after ablating the capillary wall using a pulsed electric power. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.28 μH) connected in parallel to a plasma source by means of one high power supply. The gun was operated in open air at discharge energies between 35 J - 3.5 kJ according to charging voltage. The work presented in this thesis covers the following items, 1- Measurements of the basic parameters and characterizations of the pretest results of the electrical circuits and capillary plasma discharge using Rogowski coil, voltage probe and Photomultiplier. 2- Material processing including (physics of the surface modifications, the morphology of the surface by using Scanning Electron Microscope (SEM) at different conditions, compositions of the materials by using X-ray Fluorescence (XRF), Micro hardness test and material particle deposition.

  4. Diagnostics of Argon Injected Hydrogen Peroxide Added High Frequency Underwater Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Ahmed

    2016-05-01

    Full Text Available The effects of hydrogen peroxide addition and Argon injection on electrical and spectral characteristics of underwater capillary discharge were investigated. The flowing water discharge was created in a quartz tube (Φ = 4mm outer; Φ = 2mm inner; thickness 1mm by applying high frequency (25 kHz alternating current voltage (0-15kV across the tungsten electrodes (Φ=0.5mm, in pin-pin electrode configuration, separated by a gap distance of 10 mm. The results of no hydrogen peroxide addition and no Argon gas injection were compared with addition of hydrogen peroxide and Argon injection for different values. The emission spectrum was taken to present the increase in concentration of •OH radicals with and without hydrogen peroxide addition under different argon injection rates. The results demonstrated that addition of hydrogen peroxide do not remarkably affected the conductivity of water, but its addition increased the yield rate of •OH radicals generated by plasma discharge. The addition of Argon generated bubbles and gas channels reduced the high power consumption required for inducing flowing water long gap discharge. The results showed large concentration of •OH radicals due to hydrogen peroxide addition, less required input power for generating flowing water discharge by using high frequency input voltage and due to Argon injection.

  5. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  6. Ionization waves in the pre-breakdown phase of a pulsed capillary discharge

    International Nuclear Information System (INIS)

    Favre, M.; Lenero, A.M.; Chuaqui, H.; Mitchell, I.; Wyndham, E.; Choi, P.; Dumitrescu, C.; Mond, M.; Rutkevich, I.; Kaufman, Y.

    2001-01-01

    We present experimental observations of ionization waves in pulsed hollow cathode capillary discharges. When the capillary shield is at the anode potential, an anode directed ionization wave, with characteristic speed ∼10 7 m/s, is observed. When the capillary shield is at the cathode potential, a cathode directed slower ionization wave, with characteristic speed ∼10 4 m/s, is observed. The several orders of magnitude difference in the ionization wave speed can be attributed to the different initial electric field configuration in both polarities

  7. Investigation of X-ray lasing in a capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; E. Louis,

    2001-01-01

    Using a new technique of an induced MHD instability in a capillary made of polyacetal we observed an intense spike (signal) of the Balmer-a line of C VI at 18.22 nm during the second half cycle of the discharge. The spike is identified as Amplified Spontaneous Emission (ASE), and enhancements are

  8. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    National Research Council Canada - National Science Library

    Pekker, Leonid

    2008-01-01

    ... plasma core and the ablative capillary walls. The model includes the thermodynamics of partially ionized plasmas and non-ideal effects taking place in the high density plasma and assumes local thermodynamic equilibrium (LTE...

  9. Modelling of capillary Z-pinch recombination pumping of boron extreme ultraviolet laser

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Bobrova, N. A.; Sasorov, P. V.; Vrbová, M.; Hübner, Jakub

    2009-01-01

    Roč. 16, č. 7 (2009), 073105 1-073105 11 ISSN 1070-664X R&D Projects: GA ČR GA102/07/0275 Institutional research plan: CEZ:AV0Z20430508 Keywords : Boron * capillary * discharges (electric * laser ablation * optical pumping * plasma heating by laser * plasma kinetic theory * plasma magnetohydrodynamics * Z pinch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.475, year: 2009 http://link.aip.org/link/? PHP /16/073105

  10. Highly efficient pulsed power supply system with a two-stage LC generator and a step-up transformer for fast capillary discharge soft x-ray laser at shorter wavelength

    International Nuclear Information System (INIS)

    Sakai, Yusuke; Takahashi, Shnsuke; Komatsu, Takanori; Song, Inho; Watanabe, Masato; Hotta, Eiki

    2010-01-01

    Highly efficient and compact pulsed power supply system for a capillary discharge soft x-ray laser (SXRL) has been developed. The system consists of a 2.2 μF two-stage LC inversion generator, a 2:54 step-up transformer, a 3 nF water capacitor, and a discharge section with a few tens of centimeter length capillary. Adoption of the pulsed transformer in combination with the LC inversion generator enables us to use only one gap switch in the circuit for charging the water capacitor up to about 0.5 MV. Furthermore, step-up ratio of a water capacitor voltage to a LC inversion generator initial charging voltage is about 40 with energy transfer efficiency of about 50%. It also leads to good reproducibility of a capillary discharge which is necessary for lasing a SXRL stably. For the study of the possibility of lasing a SXRL at shorter wavelength in a small laboratory scale, high-density and high-temperature plasma column suitable for the laser can be generated relatively easily with this system.

  11. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  12. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  13. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  14. Capillary plasma jet: A low volume plasma source for life science applications

    Energy Technology Data Exchange (ETDEWEB)

    Topala, I., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Iasi Plasma Advanced Research Center (IPARC), Bd. Carol I No. 11, Iasi 700506 (Romania); Nagatsu, M., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-02-02

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  15. Capillary plasma jet: A low volume plasma source for life science applications

    Science.gov (United States)

    Topala, I.; Nagatsu, M.

    2015-02-01

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  16. The discharge characteristics in nitrogen helicon plasma

    Science.gov (United States)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  17. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  18. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  19. Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, B S; Foster, J E [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Babaeva, N Yu; Kushner, Mark J [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-03-02

    The propagation of electric discharge streamers inside bubbles in liquids is of interest for the remediation of toxins in water and plasma-based surgical instruments. The manner of streamer propagation has an important influence on the production of reactive species that are critical to these applications. Streamer propagation along the surface of electrode-attached bubbles of air in water, previously predicted by numerical simulations, has been experimentally imaged using a fast frame-rate camera. The successive pulsing of the streamer discharge inside the bubbles produced oscillations along the air-water interface. Subsequent streamers were observed to closely follow surface distortions induced by such oscillations. The oscillations likely arise from the non-uniform perturbation of the bubble driven by the electric field of the streamer and were found to be consistent with Kelvin's equation for capillary oscillations. For a narrow range of applied voltage pulse frequencies, the oscillation amplitude increased over several pulse periods indicating, potentially, resonant behaviour. We also observed coupling between bubbles wherein oscillations in a second bubble without an internal discharge were induced by the presence of a streamer in a fixed bubble. (fast track communication)

  20. Taming Instabilities in Plasma Discharges

    International Nuclear Information System (INIS)

    Klinger, T.; Krahnstover, N. O.; Mausbach, T.; Piel, A.

    2000-01-01

    Recent experimental work on taming instabilities in plasma discharges is discussed. Instead of suppressing instabilities, it is desired to achieve control over their dynamics, done by perturbing appropriately the current flow in the external circuit of the discharge. Different discrete and continuous feedback as well as open-loop control schemes are applied. Chaotic oscillations in plasma diodes are controlled using the OGY discrete feedback scheme. This is demonstrated both in experiment and computer simulation. Weakly developed ionization wave turbulence is tamed by continuous feedback control. Open-loop control of stochastic fluctuations - stochastic resonance - is demonstrated in a thermionic plasma diode. (author)

  1. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  2. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  3. Development of a discharge-heated plasma tube

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G.

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  4. Novel methods of ozone generation by micro-plasma concept

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, A.; Chiper, A.; Chen, W.; Stamate, E.

    2008-02-15

    The project objective was to study the possibilities for new and cheaper methods of generating ozone by means of different types of micro-plasma generators: DBD (Dielectric Barrier Discharge), MHCD (Micro-Hollow Cathode Discharge) and CPED (Capillary Plasma Electrode Discharge). This project supplements another current project where plasma-based DeNOx is being studied and optimised. The results show potentials for reducing ozone generation costs by means of micro-plasmas but that further development is needed. (ln)

  5. Progress on laser plasma accelerator development using transverselyand longitudinally shaped plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, Wim P.; Esarey, E.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Nakamura, K.; Gonsalves, A.J.; Panasenko, D.; Cormier-Michel, E.; Plateau, G.R.; Lin, C.; Bruhwiler, D.L.; Cary, J.R.

    2009-03-31

    A summary of progress at Lawrence Berkeley National Laboratory is given on: (1) experiments on down-ramp injection; (2) experiments on acceleration in capillary discharge plasma channels; and (3) simulations of a staged laser wakefield accelerator (LWFA). Control of trapping in a LWFA using plasma density down-ramps produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV Ic FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV Ic, stable over a week of operation. Experiments were also carried out using a 40 TW laser interacting with a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic bunches up to 300 MeV were observed. By detuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy bunches, up to 1 Ge V, was found. In this regime, peak electron energy was correlated with the amount of trapped charge. Simulations show that bunches produced on a down-ramn and iniected into a channel-guided LWFA can produce stable beams with 0.2 MeV Ic-class momentum spread at high energies.

  6. Method of controlling plasma discharge in a thermonuclear device

    International Nuclear Information System (INIS)

    Kawasaki, Kozo; Ishida, Takayuki; Takemaru, Koichi; Kawasaki, Takahide.

    1982-01-01

    Purpose: To prolong the plasma discharging period by previously increasing the temperature at the thick portion of a vacuum container prior to the plasma discharge to thereby decrease the temperature difference caused by the plasma discharge between the thick portion and the bellows. Method: Temperature values at the outer surface of the thick portion and the bellows of a vacuum container detected by temperature sensors are applied to the input processing section of a temperature control device, and baking control is carried out by way of the output processing section so that each of the portions of the vacuum container may be maintained at the temperature set by the temperature setting section based on the calculation performed in the control processing section. By previously increasing the temperature β at the thick portion higher by about 100 0 C than the temperature α for the bellows in the baking treatment prior to the plasma discharge, the plasma discharge period during which the temperature levels at both of the portions are reversed after the plasma discharge and the temperature difference arrives at a predetermined level i.g., of 100 0 C can significantly be prolonged as compared with the case where the plasma discharge is started at the same temperature for both of the portions. (Yoshino, Y.)

  7. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  8. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  9. Plasma-liquid system with rotational gliding discharge with liquid electrode

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Solomenko, O.V; Martysh, E.V.; Fedirchuk, I.I.

    2014-01-01

    Plasma-liquid system based on rotational gliding discharge with one liquid electrode was developed. Emission spectra of plasma of rotational gliding discharge with one liquid electrode were investigated. Discovered effective mechanism of controlling non-isothermal level of plasma in dynamic plasma-liquid systems. Major mechanism of expulsion of metal anode material from plasma-liquid systems with rotational discharges was shown.

  10. Plasma deposition by discharge in powder

    International Nuclear Information System (INIS)

    El-Gamal, H.A.; El-Tayeb, H.A.; Abd El-Moniem, M.; Masoud, M.M.

    2000-01-01

    Different types of material powders have been fed to the breach of a coaxial discharge. The coaxial discharge is powered from a 46.26 mu F, 24 KV capacitor bank. When the discharge takes place at the breach, the powder is heated and ionized to form a sheath of its material. The plasma sheath is ejected from the discharge zone with high velocity. The plasma sheath material is deposited on a glass substrate. It has been found from scanning electron microscope (SEM) analysis that the deposited material is almost homogenous for ceramic and graphite powders. The grain size is estimated to be the order of few microns. To measure the deposited material thickness the microdensitometer and a suitable arrangement of a laser interferometer and an optical microscope are used. It has also been found that deposited material thickness depends on the discharge number of shots and the capacitor bank energy

  11. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  12. Surface modifying of microporous PTFE capillary for bilirubin removing from human plasma and its blood compatibility

    International Nuclear Information System (INIS)

    Jin Gu; Yao Qizhi; Zhang Shanzi; Zhang Lei

    2008-01-01

    In this study, human serum albumin (HSA) was covalently immobilized onto the inner surface of microporous poly(tetrafluoroethylene) (MPTFE) capillaries for direct bilirubin removal from human plasma. To obtain active binding sites for HSA, the MPTFE capillaries were chemically functionalized by using a coating of poly(vinyl alcohol) (PVA)-glycidyl methacrylate (GMA) copolymers. Characterization of grafted MPTFE capillaries was verified by XPS, Fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM). Non-specific adsorption on the PVA-GMA coated capillary remains low (< 0.38 mg bilirubin/g), and higher affinity adsorption capacity, of up to 73.6 mg bilirubin/g polymer was obtained after HSA is immobilized. Blood compatibility of the grafted MPTFE capillary was evaluated by SEM and platelet rich plasma (PRP) contacting experiments. The experimental data on blood compatibility indicated that PVA-coated and PVA-GMA-HSA coated PTFE capillary showed a sharp suppress on platelets adhesion. The proposed method has the potential of serving in bilirubin removal in clinical application

  13. Influence of an axial magnetic field on the density profile of capillary plasma channels

    CERN Document Server

    Ivanov, V V; Toma, E S; Bijkerk, F

    2003-01-01

    A narrow capillary plasma channel, with a sizeable depletion of the electron density on the channel axis, has been proposed to guide a laser pulse over a length of several to several tens of centimetres. We discuss the possibility to significantly improve the wave-guiding properties of such a channel by applying an axial magnetic field. Our analytical and numerical studies show that a pulsed axial magnetic field of 10 T in a hydrogen capillary plasma at a pressure of 50 Torr will reduce the on-axis plasma density by a factor of three, and the full width at half maximum of the density profile by a factor of two. The resulting parabolic plasma density profile is expected to be more efficient in guiding laser pulses.

  14. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  15. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  16. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2004-01-01

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  17. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  18. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  19. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  20. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  1. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  2. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 259-266 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  3. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Run; Wu, Jie; Xue, Wenbin; Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying

    2014-01-01

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10 −5 –7.2 × 10 −3 , which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10 21  m −3 –2.6 × 10 22  m −3 . - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured

  4. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  5. Beam--plasma instabilities and the beam--plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Boswell, R.W.

    1986-01-01

    Using a new electron gun, a number of measurements bearing on the generation of beam--plasma discharge (BPD) in WOMBAT (waves on magnetized beams and turbulence) [R. W. Boswell and P. J. Kellogg, Geophys. Res. Lett. 10, 565 (1983)] have been made. A beam--plasma discharge is an rf discharge in which the rf fields are provided by instabilities [W. D. Getty and L. D. Smullin, J. Appl. Phys. 34, 3421 (1963)]. The new gun has a narrower divergence angle than the old, and comparison of the BPD thresholds for the two guns verifies that the BPD ignition current is proportional to the cross-sectional area of the plasma. The high-frequency instabilities, precursors to the BPD, are identified with the two Trivelpiece--Gould modes [A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)]. Which frequency appears depends on the neutral pressure. The measured frequencies are not consistent with the simple interpretation of the lower frequency as a Cerenkov resonance with the low-Trivelpiece--Gould mode; it must be a cyclotron resonance. As is generally true in such beam--plasma interaction experiments, strong low-frequency waves appear at currents far below those necessary for BPD ignition. These low-frequency waves are shown to control the onset of the high-frequency precursors to the BPD. A mechanism for this control is suggested, which involves the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves. This process greatly reduces the current necessary for BPD ignition

  6. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  7. Comparison of macroscopic properties of electrons in plasmas of beam-plasma and glow discharges

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Starykh, V.V.

    1979-01-01

    The theoretical basis of the comparison are adequate Boltzmann equations for the electron component of the beam discharge plasma and the glow discharge plasma. We included the turbulent field or the direct electric field in the mentioned plasma types and all important binary collision processes as well as the Coulomb interaction between the charged particles. The comparison was performed in hydrogen under the condition of equal power input per volumen unit of both plasmas in dependence of the turbulence energy per one electron U, for the ionization degree (nsub(e)/N)sub(g) = 10 -6 and the pressure p 0 sup(g) = 1 Torr of the glow discharge plasma and for the ionization degrees (nsub(e)/N)sub(b) = 10 -3 , 10 -2 , 10 -1 and the pressure p 0 sup(b) = 10 -2 Torr of the beam discharge plasma which are typical for the existence of both plasma types. Based upon the numerical solutions of the Boltzmann equations under the mentioned additional conditions we compared the energy distribution functions of the electrons, the mean energy and the power losses of the electrons due to the different collision processes with the molecules and the ions. Especially a law for similarity of the electron kinetics of the two collision dominated plasma types was found and the main channels for the transfer of the field energy in both plasmas were determined. The results obtained were applied for assesing the perspectives of the beam discharged plasma as a plasmachemical reactor. (author)

  8. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  9. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    International Nuclear Information System (INIS)

    Aleksandrov, A. F.; Petrov, A. K.; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B.; Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya.

    2016-01-01

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  10. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B. [Moscow State University, Faculty of Physics (Russian Federation); Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya. [Research Institute of Precision Engineering (Russian Federation)

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  11. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  12. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  13. PCR/LDR/capillary electrophoresis for detection of single-nucleotide differences between fetal and maternal DNA in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li

    2009-03-01

    The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.

  14. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  15. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  16. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  17. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  18. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  19. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  20. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  1. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  2. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  3. Ohmic discharges in Tore Supra - Marfes and detached plasmas

    International Nuclear Information System (INIS)

    Vallet, J.C.

    1990-01-01

    The Tore Supra plasma characteristics are given. The observed discharges are either leaning on the graphite inner first wall or limited by movable pump limiters located outboard and at the bottom of the vacuum chamber. The particular plasma conditions which lead to marfes and detached plasmas in ohmically heated He and D2 discharges limited by the inner wall are investigated. The results show that the ratio of radiated power to ohmic power increase linearly with M.g. As M.g rises, attached plasma, marfe and detached plasma are sequentially observed. Detached plasma with an effective radius as small as. 7 times the limiter radius was observed on Tore Supra

  4. Analysis of radiofrequency discharges in plasma

    Science.gov (United States)

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  5. Atmospheric-pressure dielectric barrier discharge with capillary injection for gas-phase nanoparticle synthesis

    International Nuclear Information System (INIS)

    Ghosh, Souvik; Liu, Tianqi; Bilici, Mihai; Cole, Jonathan; Huang, I-Min; Sankaran, R Mohan; Staack, David; Mariotti, Davide

    2015-01-01

    We present an atmospheric-pressure dielectric barrier discharge (DBD) reactor for gas-phase nanoparticle synthesis. Nickel nanoparticles are synthesized by homogenous nucleation from nickelocene vapor and characterized online by aerosol mobility measurements. The effects of residence time and precursor concentration on particle growth are studied. We find that narrower distributions of smaller particles are produced by decreasing the precursor concentration, in agreement with vapor nucleation theory, but larger particles and aggregates form at higher gas flow rates where the mean residence time should be reduced, suggesting a cooling effect that leads to enhanced particle nucleation. In comparison, incorporating a capillary gas injector to alter the velocity profile is found to significantly reduce particle size and agglomeration. These results suggest that capillary gas injection is a better approach to decreasing the mean residence time and narrowing the residence time distribution for nanoparticle growth by producing a sharp and narrow velocity profile. (paper)

  6. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  7. Plasma X-ray sources powered by megajoule magnetocumulative generators

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Averchenkov, V Ya; Pikar` , A S; Ryaslov, E A; Kargin, V I; Lazarev, S A; Borodkov, V V; Nazarenko, S T; Makartsev, G F [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation). Russian Federal Nuclear Center

    1997-12-31

    Experiments using magnetocumulative generators (MCGs) were performed to power three different types of high-energy-density plasma discharges suitable for intense x-ray generation. These included the H-pressed discharge, the capillary z-pinch, and the {theta}-pinch. The MCGs were operated both with and without plasma opening switches. The characteristic currents were approximately 10 MA and characteristic time scales approximately 1 {mu}s. (author). 7 figs., 3 refs.

  8. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  9. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  10. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  11. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  12. Characterization of a dielectric barrier plasma gun discharging at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Guangqiu; Ge Yuanjing; Zhang Yuefei; Chen Guangliang

    2004-01-01

    The authors develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, authors find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies. (author)

  13. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  14. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    Science.gov (United States)

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical

  15. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    International Nuclear Information System (INIS)

    Choi, Sooseok; Watanabe, Takayuki; Li Tianming

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process. (plasma technology)

  16. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  17. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    Jackson, Glen P.; King, Fred L.

    2003-01-01

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  18. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  19. Single injection 51Cr EDTA plasma clearance determination in children using capillary blood samples

    International Nuclear Information System (INIS)

    Broechner-Mortensen, J.; Christoffersen, J.

    1977-01-01

    The reliability of a determination of the total 51 Cr EDTA plasma clearance (e) (and with it the glomerular filtration rate), by a simplified single injection method (injected dose: 4.5 μCi per kg b.w.) using capillary blood samples (0.2 ml), was investigated in twenty children. Clearance values determined from capillary blood samples did not differ significantly from those measured simultaneously from venous blood samples, the mean ratio+-SD being 1.02+-0.06(n = 10). The reproducibility (total day-to-day variation) of E determined from capillary blood samples was 6.7% in children with decreased renal function (n = 3) and 6.9% in children with normal renal function (n = 7). The present data indicate that the use of capillary blood samples is an accurate and very precise approach for determination of E in children. (Auth.)

  20. Gas-Filled Capillary Model

    International Nuclear Information System (INIS)

    Steinhauer, L. C.; Kimura, W. D.

    2006-01-01

    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration -- Laser Wakefield (STELLA-LW) experiment

  1. Energy conversion and concentration in a high-current gaseous discharge: Dense plasma spheromak in plasma focus experiments

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Terentiev, A.R.

    1995-01-01

    Experimental results are presented which verify the possibility of the self-generated transformation of the magnetic field in plasma focus discharges to give a closed, spheromak-like magnetic configuration (SLMC). The energy conversion mechanism suggests a possibility of further concentrating the plasma power density by means of natural compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge

  2. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  3. Development of a positive column pulsed capillary discharge source for use with high resolution Fourier transform spectrometer

    International Nuclear Information System (INIS)

    Syed, W A A

    2002-01-01

    We report the designing and application of a positive column pulsed capillary discharge with the Fourier transform spectrometer (FTS). The pulsed light source has been used for the first time with the ultraviolet FTS. The experiment has been carried out with the high energy pulsed discharge with energy of 2-3 J lasting about 300 ns. A system has been developed to trigger the discharge at about 600 Hz with the pulses directly taken from the FTS sampling system. The spectrum of Ar III has been recorded in the 19 000-50 000 cm -1 region with good signal to noise ratio. The results have opened a wide range of applications in spectroscopy of multiply ionized species

  4. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    Science.gov (United States)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  5. Technological plasma source equipped with combined system of vacuum-arc discharge initiation

    International Nuclear Information System (INIS)

    Sysoev, Yu.O.

    2013-01-01

    The construction and the operation principle of erosion plasma source with a three-stage system of vacuum-arc discharge excitation is described. As first two step was used the modified contactless start system with plasma injector, which was widely used in standard plasma sources of the ''Bulat'' systems. The operation principle of the third stage was based on the transition of glow discharge to arc discharge. Coordinated operation of three stages during various stages of coating deposition provided significant increasing of service life and reliability of the system of vacuum-arc discharge initiation and extended the functionality of the plasma source

  6. Analysis on discharge process of a plasma-jet triggered gas spark switch

    Science.gov (United States)

    Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

    2018-01-01

    The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

  7. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  8. Electrohydraulic Discharges and Nonthermal Plasma for Water Treatment

    Czech Academy of Sciences Publication Activity Database

    Locke, B.R.; Sato, M.; Hoffman, M.R.; Chang, J.S.; Šunka, Pavel

    2006-01-01

    Roč. 45, č. 1 (2006), s. 882-905 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electrical discharges * water cleaning * environmental applications * liquid phase reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.518, year: 2006

  9. General directions and recently test modelling results of lithium capillary-pore systems as plasma facing components for tokamak-reactor

    International Nuclear Information System (INIS)

    Evtikhin, V.A.; Lyublinski, I.E.; Vertkov, A.V.; Azizov, E.A.; Mirnov, S.V.; Lazaret, V.B.; Safronov, V.M.

    2003-01-01

    Full text: At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing material. A solid CPS filled with liquid lithium will have high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stress induced cracking in steady state and during plasma transitions (disruptions, ELMs, VDEs, runaways) to provide the normal operation of divertor target plates and first wall protection elements. These materials would not be the sources of impurities inducing the raise of Z eff and they will not be collected as dust in the divertor area and in ducts. The key directions of experimental investigation of lithium CPS behaviour in first wall and divertor operation simulating conditions are considered. Experiments with lithium CPS in plasma disruption simulation conditions on the hydrogen plasma accelerator MK-200UG (∼10-15 MJ/m 2 , ∼50 μs) have been performed. Shielding lithium plasma layer formation and high stability of these systems have been shown. The new lithium limiter with a thermal regulation system tests on up graded T-11M tokamak (plasma current up to 100 kA, pulse length ∼0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, limiter deposited power are investigated in this tests

  10. On the Explicit Expression for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  11. On a Explicit Expresion for Plasma Layer Thickness

    CERN Document Server

    Sharma, R K

    2004-01-01

    The marginal zone theory is used to account for the observed Fahreus Linquist effect when the viscoity of blood changes with the diameter of the capillary. An attributable cause is the axial accumulation of cells. The discharge rate from Hagen Poiseulle law at steady state was derived by Haynes (1960) for the core and plasma layer and a total discharge rate was expressed as a function of the pressure drop along the capillary, quartic dependence on the radius of the capillary and quartic dependence on the dimensionless marginal zone thickness. The apparent of viscosity of the blood is expressed as a function of the ratio of the core layer viscosity and the plasma layer viscosity. In order to back out a marginal zone thickness from a given set of information, the Charm and Kurland expression (1974) for the viscosity and hematocrit variation and the temperature dependence parameter of the hematocrit alpha can be used to develop two transcendental equations and two un! knowns. This is the recommended procedure us...

  12. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Science.gov (United States)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  13. Thermo-structural modelling of a plasma discharge tube for electric propulsion

    International Nuclear Information System (INIS)

    Faoite, D. de; Browne, D.J.; Del Valle Gamboa, J.I.; Stanton, K.T.

    2016-01-01

    Highlights: • Thermo-structural analyses were performed for an electric propulsion space thruster. • Thermal stresses arise primarily from mismatches in thermal expansion coefficients. • Aluminium nitride is a suitable material for a plasma containment tube. • A design is presented allowing a thruster to operate at a power of at least 250 kW. - Abstract: Potential thermal management strategies for the plasma generation section of a VASIMR"® high-power electric propulsion space thruster are assessed. The plasma is generated in a discharge tube using helicon waves. The plasma generation process causes a significant thermal load on the plasma discharge tube and on neighbouring components, caused by cross-field particle diffusion and UV radiation. Four potential cooling system design strategies are assessed to deal with this thermal load. Four polycrystalline ceramics are evaluated for use as the plasma discharge tube material: alumina, aluminium nitride, beryllia, and silicon nitride. A finite element analysis (FEA) method was used to model the steady-state temperature and stress fields resulting from the plasma heat flux. Of the four materials assessed, aluminium nitride would result in the lowest plasma discharge tube temperatures and stresses. It was found that a design consisting of a monolithic ceramic plasma containment tube fabricated from aluminium nitride would be capable of operating up to a power level of at least 250 kW.

  14. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  15. Sterilization and decontamination of surfaces using atmospheric pressure plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garate, E.; Gornostaeva, O.; Alexeff, I.; Kang, W.L.

    1999-07-01

    The goal of the program is to demonstrate that an atmospheric pressure plasma discharge can rapidly and effectively sterilize or decontaminate surfaces that are contaminated with model biological and chemical warfare agents. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC. AC or pulsed discharges. the work done to date has focused on the sterilization of aluminum, polished steel and tantalum foil metal coupons, about 2 cm on a side and 2 mm thick, which have been inoculated with up to 10{sup 6} spores per coupon of Bacillus subtilis var niger or Bascillus stearothermorphilus. Results indicate that 5 minute exposures to the atmospheric pressure plasma discharge can reduce the viable spore count by 4 orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are stimulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  16. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  17. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  18. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  19. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    Science.gov (United States)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  20. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  1. Plasma-based localized defect for switchable coupling applications

    International Nuclear Information System (INIS)

    Varault, Stefan; Gabard, Benjamin; Sokoloff, Jerome; Bolioli, Sylvain

    2011-01-01

    We report in this paper experimental measurements in order to validate the concept of switchable electromagnetic band gap filters based on plasma capillaries in the microwave regime. The plasma tube is embedded inside the structure to create a bistable (plasma on or off) punctual defect. We first investigate two kinds of discharge tubes: Ar-Hg and pure Ne, which we then use to experimentally achieve plasma-based reconfigurable applications, namely, a two-port coupler and a two-port demultiplexer.

  2. Research on the Plasma Anemometer Based on AC Glow Discharge

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-01-01

    Full Text Available A new plasma anemometer based on AC glow discharge is designed in this article. Firstly, theoretical analysis of plasma anemometer working principle is introduced to prove the feasibility of the experimental measurement method. Then the experiments are carried out to study the effects of different parameters on the static discharge characteristics of the plasma anemometer system, by which the system optimization methods are obtained. Finally, several groups of appropriate parameters are selected to build the plasma anemometer system based on resistance capacitance coupling negative feedback AC glow discharge, and different airflow speeds are applied to obtain the achievable velocity measurement range. The results show that there is a linear relationship between airflow velocity and discharge current in an allowable error range, which can be applied for airflow velocity measurement. Negative feedback coupling module, which is composed of the coupling resistance and the coupling capacitance, has good effects on improving the system stability. The measurement range of the airflow velocity is significantly increased when the electrode gap is 3 mm, coupling resistance is 470 Ω, and coupling capacitance is 220 pF.

  3. Studies of the influence of nonequilibrium plasma thermal exposure on the characteristics of the capillary-porous polymer material

    International Nuclear Information System (INIS)

    Makhotkina, L Yu; Khristoliubova, V I

    2017-01-01

    Capillary-porous materials, which include natural macromolecular tanning material, are exposed to a number of factors during the treatment by a nonequilibrium plasma. Plasma particles exchange the charge and energy with the atoms of the material during the interaction of the plasma with the surface. The results of treatment are desorption of atoms and molecules from the body surface, sputtering and evaporation of material’s particles, changes of the structure and phase state. In real terms during the modification of solids by nonequilibrium low-temperature plasma thermal effect influences the process. The energy supplied from the discharge during the process with low pressure, which is converted into heat, is significantly less than during the atmospheric pressure, but the thermal stability of high-molecular compounds used in the manufacture of materials and products of the tanning industry, is very limited and depends on the duration of the effect of temperature. Even short heating of hydrophilic polymers (proteins) (100-180 °C) causes a change in their properties. It decreases the collagen ability to absorb water vapor, to swell in water, acids, alkalis, and thus decreases their durability. Prolonged heating leads to a deterioration of the physical and mechanical properties. Higher heating temperatures it leads to the polymer degradation. The natural leather temperature during plasma exposure does not rise to a temperature of collagen degradation and does not result in changes of physical phase of the dermis. However, the thermal plasma exposure must be considered, since the high temperatures influence on physical and mechanical properties. (paper)

  4. Soft X-Ray Spectra from High Current Nitrogen Z-Pinch Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Nevrkla, M.; Jančárek, A.

    2016-01-01

    Roč. 3, č. 1 (2016), s. 48 ISSN 2336-2626. [SPPT 2016 - 27th Symposium on Plasma Physics and Technology/27./. Prague, 20.06.2016-23.06.2016] Institutional support: RVO:61389021 Keywords : Capillary discharge * recombination pumping * pinch dynamics * evolution of spectra emission * computer modelling Subject RIV: BH - Optics, Masers, Lasers www.plasmaconference.cz

  5. Transient behavior of a supersonic three-dimensional micronozzle with an intersecting capillary

    Science.gov (United States)

    Matlis, N. H.; Gonsalves, A. J.; Steinke, S.; van Tilborg, J.; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R.; Leemans, W. P.

    2016-02-01

    An analysis of the interaction between a pulsed, supersonic microjet and an intersecting gas-filled capillary is presented, which enables a direct measurement of the pressure evolution inside the nozzle of the microjet. Plasma-emission spectroscopy was used to resolve, on a sub-microsecond timescale, the build-up and decay of pressure in the nozzle, which are shown to be correlated to the volume of the plenum supplying the nozzle and to the nozzle-throat size, respectively. The microjet, which was integrated with a capillary-discharge waveguide in a sapphire structure, was used to create a small, tunable region of high density gas within a centimeter-scale plateau of lower-density for use in a laser-plasma accelerator. The resultant longitudinally structured gas-density profile has been used to provide control of electron trapping and acceleration, but its evolution has not previously been directly quantified. The results presented here pave the way for improved control of laser-plasma accelerators and are also relevant to applications such as miniature satellites and lab-on-a-chip where precise knowledge of microjet pressure evolution is critical.

  6. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  7. Plasma Channel Diagnostic Based on Laser Centroid Oscillations

    International Nuclear Information System (INIS)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Osterhoff, Jens; Shiraishi, Satomi; Schroeder, Carl; Geddes, Cameron; Toth, Csaba; Esarey, Eric; Leemans, Wim

    2010-01-01

    A technique has been developed for measuring the properties of discharge-based plasma channels by monitoring the centroid location of a laser beam exiting the channel as a function of input alignment offset between the laser and the channel. The centroid position of low-intensity ( 14 Wcm -2 ) laser pulses focused at the input of a hydrogen-filled capillary discharge waveguide was scanned and the exit positions recorded to determine the channel shape and depth with an accuracy of a few %. In addition, accurate alignment of the laser beam through the plasma channel can be provided by minimizing laser centroid motion at the channel exit as the channel depth is scanned either by scanning the plasma density or the discharge timing. The improvement in alignment accuracy provided by this technique will be crucial for minimizing electron beam pointing errors in laser plasma accelerators.

  8. A Monte Carlo simulation of neon isotope separation in a DC discharge through a narrow capillary

    International Nuclear Information System (INIS)

    Niroshi Akatsuka; Masaaki Suzuki

    1999-01-01

    A numerical simulation was undertaken on the neon isotope separation in a DC arc discharge through a narrow capillary. The mass transport phenomenon of neutral particles as well as ions was treated by the direct simulation Monte Carlo (DSMC) method. The numerical results qualitatively agreed with existing experimental ones concerning not only the isotope separation phenomena, but also the pressure difference between the region of the anode and that of the cathode [ru

  9. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  10. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    International Nuclear Information System (INIS)

    Namihira, T.; Sakai, S.; Matsuda, M.; Wang, D.; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N 2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO 2 ), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one

  11. Ways to discharge-based soft X-ray lasers with the wavelength <15 nm

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Frolov, Oleksandr; Štraus, Jaroslav

    2008-01-01

    Roč. 26, č. 2 (2008), s. 167-178 ISSN 0263-0346. [International Conference on the Frontiers of Plasma Physics and Technology/3rd./. Bangkok, Thailand, 05.03.2007-09.03.2007] R&D Projects: GA ČR GA202/06/1324; GA MŠk LA08024; GA AV ČR KAN300100702; GA AV ČR KJB100430702 Institutional research plan: CEZ:AV0Z20430508 Keywords : soft X-ray * laser * fast high-current capillary discharge * exploding wire in water * focused shock wave in water Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.420, year: 2008

  12. Abrupt changes in neon discharge plasma detected via the optogalvanic effect

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xianming L., E-mail: xhan@butler.edu [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Blosser, Michael C. [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Misra, Prabhakar [Dept. of Physics and Astronomy, Howard University, Washington DC 20059 (United States); Chandran, Haridass [Dept. of Physical Science, Belfry School, Belfry, KY 41514 (United States)

    2012-10-30

    When a laser is tuned between two excited energy levels of a gas in a Direct Current discharge lamp, the discharge current will experience a temporary disturbance lasting tens or hundreds of microseconds known as the optogalvanic effect. We have carried out extensive studies of optogalvanic effects in neon discharge plasmas for transitions at 621.7 nm, 630.5 nm, 638.3 nm, 650.7 nm and 659.9 nm. A nonlinear least-squares Monte Carlo technique has been used to determine the relevant amplitude coefficients, decay rates and the instrumental time constant. We discovered an abrupt change in the neon discharge plasma at a discharge current of about 6 mA.

  13. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  14. On-line Automated Sample Preparation-Capillary Gas Chromatography for the Analysis of Plasma Samples.

    NARCIS (Netherlands)

    Louter, A.J.H.; van der Wagt, R.A.C.A.; Brinkman, U.A.T.

    1995-01-01

    An automated sample preparation module, (the automated sample preparation with extraction columns, ASPEC), was interfaced with a capillary gas chromatograph (GC) by means of an on-column interface. The system was optimised for the determination of the antidepressant trazodone in plasma. The clean-up

  15. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    Energy Technology Data Exchange (ETDEWEB)

    Varault, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France); Gabard, B. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); STAE—4, Rue Emile Monso, BP84234, 31030 Toulouse Cedex 4 (France); Crépin, T.; Bolioli, S. [ONERA—The French Aerospace Lab 2, Avenue Edouard Belin, BP4025, 31055 Toulouse Cedex (France); Sokoloff, J. [Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2014-02-28

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.

  16. Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime

    International Nuclear Information System (INIS)

    Varault, S.; Gabard, B.; Crépin, T.; Bolioli, S.; Sokoloff, J.

    2014-01-01

    We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiation pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide

  17. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  18. Modelling of a Nitrogen X-ray Laser pumped by Capillary Discharge

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Bobrova, N. A.; Sasorov, P. V.

    2005-01-01

    Roč. 3, č. 4 (2005), s. 564-580 ISSN 1644-3608 R&D Projects: GA MŠk(CZ) 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : MHD simulations * Z-pinch * Ion kinetics * Recombination Pumping * X-Ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.524, year: 2005

  19. On the distribution of plasma parameters in RF glow discharge

    International Nuclear Information System (INIS)

    Ning Cheng; Liu Zuli; Liu Donghui; Han Caiyuan.

    1993-01-01

    A self-consistent numerical model based on the two-fluid equations for describing the transport of charged particles in the RF glow discharge is presented. For a plasma generator filled with low-pressure air and parallel-plate electrodes, the model is numerical solved. The space-time distribution of parameters and the spatial distribution of some time-averaged parameters in plasma, which show the physical picture of the RF glow discharge, are obtained

  20. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin corresp...

  1. Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas

    International Nuclear Information System (INIS)

    Baba, K.; Kaneko, T.; Hatakeyama, R.

    2007-01-01

    The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production

  2. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  3. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  4. Characterization of the plasma in magnetic multidipole discharges

    International Nuclear Information System (INIS)

    Ferreira, J.G.

    1988-09-01

    In this work, a caracterization of the discharge of the quiescent plasma machine of INPE, and an identification of the most relevant processes in the definition of its plasma properties, were achieved. Measurements of plasma potential, the floating potential, the temperature of the electrons, and the density of the plasma, for pressures ranging from 10 -3 to 10 -1 Pa and for discharge potentials for 45V to 120V were acomplished. These measurements were made with a Langmuir spherical probe with 1mm in diameter. In the whole range of operation the presence of two populations of electrons with distinct temperatures in the energy range from 1 to 10eV was observed, although for pressures approaching 10 -1 Pa the plasma tended to a single population of electrons with temperature of 1eV. The difference between plasma and floating potentials was observed to become smaller as the pressure raised, and the potential difference between plasma and anode reached a value around 2V when pressure raised above 10 -2 Pa. The plasma density increases approximately linearly with pressure, for values below 10 -2 Paa, but above 10 -1 Pa its increase with pressure is quite reduced. A study on the collision processes in the plasma volume and on loss processes to surfaces allowed to interpret qualitatively the observed plasma behavior and to estimate, by means of simple expressions, some of the plasma parameters. The loss areas for ions and primary electrons were estimated from experimental results. A simple quantitative model which allows the calculation of plasma density in the whole range of operation, reproduced the correct order of magnitude of experimental values. However, an additional work, both theoretical and experimental, is required to obtain better agreement between experimental and theoretical values. (author) [pt

  5. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    Science.gov (United States)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  6. Development of a PCR/LDR/capillary electrophoresis assay with potential for the detection of a beta-thalassemia fetal mutation in maternal plasma.

    Science.gov (United States)

    Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li

    2010-08-01

    Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.

  7. Electric discharge plasmas influence attachment of cultured CHO k1 cells

    NARCIS (Netherlands)

    Kieft, I.E.; Broers, J.L.V.; Caubet-Hilloutou, V.; Slaaf, D.W.; Ramaekers, F.C.S.; Stoffels - Adamowicz, E.

    2004-01-01

    Non-thermal plasmas can be generated by electric discharges in gases. These plasmas are reactive media, capable of superficial treatment of various materials. A novel non-thermal atmospheric plasma source (plasma needle) has been developed and tested. Plasma appears at the end of a metal pin as a

  8. Magnetized whirls in plasma focus discharges

    International Nuclear Information System (INIS)

    Witalis, E.

    1979-05-01

    The plasma focus is briefly described with emphasis on its capabilities as a neutron source. The filamentary whirl structures observed in the discharge plasma are described. Starting with a simple, early and particularly well established case of vorticity imparted by a rotational electric field to the plasma in MHD generators, a general derivation is then outlined proving that such magnetically induced rotation is a general feature for the normally Hall-conducting magnetized plasma. Physical interpretations of the effect are given and objections to it are critically reviewed as is also a theory proposing radiation cooling as the cause of plasma filamentation. A more detailed derivation based essentially on the consistent description of the motion and the field generation of the charged plasma particles yields a theoretical model where the specific features of magnetically compressed plasmas are found. In particular, the ion collisionless skin depth is obtained as the key length parameter. This length is identified as roughly the whirl radius. In conjunction with a generalized Bennett relation theoretical whirl properties are predicted and found to agree with observations. Mechanisms that relate the whirls to nuclear fusion reaction conditions are tentatively indicated. (author)

  9. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  10. Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane

    Science.gov (United States)

    Camerotto, Elisabeth; De Schepper, Peter; Nikiforov, Anton Y.; Brems, Steven; Shamiryan, Denis; Boullart, Werner; Leys, Christophe; De Gendt, Stefan

    2012-10-01

    This paper investigates the generation of a stable plasma phase in a liquid hydrocarbon (n-dodecane) by means of ultrasound (US) and radio-frequency (RF) or electromagnetic radiation. It is demonstrated for the first time that ultrasonic aided RF plasma discharges can be generated in a liquid. Plasma discharges are obtained for different gas mixtures at a pressure of 12 kPa and at low ignition powers (100 W for RF and 2.4 W cm-2 for US). Direct carbon deposition from the liquid precursor on Cu, Ni, SiO2 and Si substrates has been obtained and no apparent compositional or structural difference among the substrate materials was observed. Characterization of the deposited solid phase revealed an amorphous structure. In addition, structural changes in the liquid precursor after plasma treatment have been analysed. Optical emission spectroscopy (OES) allowed the estimation of several plasma characteristic temperatures. The plasma excitation temperature was estimated to be about 2.3-2.4 eV. The rotational and vibrational temperatures of the discharge in n-dodecane with Ar as a feed gas were 1400 K and 6500 K, respectively. In Ar/O2 plasma, an increased rotational (1630 K) and vibrational temperature (7200 K) were obtained.

  11. Research of plasma-electrolyte discharge in the processes of obtaining metallic powders

    Science.gov (United States)

    Kashapov, R. N.; Kashapov, L. N.; Kashapov, N. F.

    2017-11-01

    The use of the plasma electrolyte process has never been considered as a simple, cheap and fast method of obtaining powders used in selective laser melting processes. Therefore, the adaptation of the plasma-electrolyte process to the production of metal powders used in additive production is an urgent task. The paper presents the results of studies of gas discharge parameters between a metal and liquid electrode in the processes of obtaining metallic iron powders. The discharge combustion conditions necessary for the formation of metal powders of micron size are determined. A possible mechanism for the formation of powder particles in a discharge plasma is proposed.

  12. Discharge plasmas as EUV Sources for Future Micro Lithography

    Science.gov (United States)

    Kruecken, Thomas

    2007-08-01

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on xenon or tin gas discharges. After having investigated the limits of a hollow cathode triggered xenon pinch discharge Philips Extreme UV favors a laser triggered tin vacuum spark discharge. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. In the xenon discharges the optical depths allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundancies of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS. Due to very steep gradients (up to a couple orders of magnitude per mm) the plasma of tin vacuum spark discharges is very complicated. Therefore we shall describe here only some technological aspects of our tin EUV lamp: The electrode system consists of two rotating which are pulled through baths of molten tin such that a tin film remains on their surfaces. With a laser pulse some tin is ablated from one of the wheels and travels rapidly through vacuum towards the other rotating wheel. When the tin plasma reaches the other electrodes it ignites and the high current phase starts, i.e. the capacitor bank is unloaded, the plasma is pinched and EUV is radiated. Besides the good spectral properties of tin this concept has some other advantages: Erosion of electrodes is no severe problem as the tin film is

  13. Plasma remediation of trichloroethylene in silent discharge plasmas

    International Nuclear Information System (INIS)

    Evans, D.; Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kushner, M.J.

    1993-01-01

    Plasma destruction of toxins, and volatile organic compounds in particular, from gas streams is receiving increased attention as an energy efficient means to remediate those compounds. In this regard, remediation of trichloroethylene (TCE) in silent discharge plasmas has been experimentally and theoretically investigated. We found that TCE can be removed from Ar/O 2 gas streams at atmospheric pressure with an energy efficiency of 15--20 ppm/(mJ/cm 3 ), or 2--3 kW h kg -1 . The majority of the Cl from TCE is converted to HCl, Cl 2 , and COCl 2 , which can be removed from the gas stream by a water bubbler. The destruction efficiency of TCE is smaller in humid mixtures compared to dry mixtures due to interception of reactive intermediates by OH radicals

  14. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    International Nuclear Information System (INIS)

    Elabid, Amel E.A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-01-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  15. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  16. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  17. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  18. Electrode configuration for extreme-UV electrical discharge source

    Science.gov (United States)

    Spence, Paul Andrew; Fornaciari, Neal Robert; Chang, Jim Jihchyun

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  19. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    International Nuclear Information System (INIS)

    Gucker, Sarah N; Foster, John E; Garcia, Maria C

    2015-01-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L −1 ). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date. (paper)

  20. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Mammosser, John D.

    2015-01-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O 2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM 010 -mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper

  1. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid, E-mail: shahid.ahmed@ieee.org [BML Munjal University, Gurgaon, Haryana 123413 (India); Mammosser, John D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  2. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  3. Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study

    International Nuclear Information System (INIS)

    Vincent-Randonnier, Axel; Teixeira, David

    2010-01-01

    This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m·s -1 bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m·s -1 (power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10 -5 s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

  4. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  5. Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry by direct injection nebulization for selenium speciation

    DEFF Research Database (Denmark)

    Bendahl, Lars; Gammelgaard, Bente; Jons, O.

    2001-01-01

    A demountable direct injection high efficiency nebulizer operating at low sample uptake rates was developed and used for coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS). When the nebulizer was used for continuous sample introduction, detection...

  6. Deterministic dynamics of plasma focus discharges

    International Nuclear Information System (INIS)

    Gratton, J.; Alabraba, M.A.; Warmate, A.G.; Giudice, G.

    1992-04-01

    The performance (neutron yield, X-ray production, etc.) of plasma focus discharges fluctuates strongly in series performed with fixed experimental conditions. Previous work suggests that these fluctuations are due to a deterministic ''internal'' dynamics involving degrees of freedom not controlled by the operator, possibly related to adsorption and desorption of impurities from the electrodes. According to these dynamics the yield of a discharge depends on the outcome of the previous ones. We study 8 series of discharges in three different facilities, with various electrode materials and operating conditions. More evidence of a deterministic internal dynamics is found. The fluctuation pattern depends on the electrode materials and other characteristics of the experiment. A heuristic mathematical model that describes adsorption and desorption of impurities from the electrodes and their consequences on the yield is presented. The model predicts steady yield or periodic and chaotic fluctuations, depending on parameters related to the experimental conditions. (author). 27 refs, 7 figs, 4 tabs

  7. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  8. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  9. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  10. Plasma diagnosis of RF discharge by using impedance measurement

    International Nuclear Information System (INIS)

    Huang Jianjun; Teuner, D.

    2001-01-01

    It is presented that the method known from network analysis with home-made probe and experimental setup to measure current, voltage and phase angle of RF discharge in He gas more accurately. The sheath thickness and the real and imaginary parts of the plasma impedance were obtained by using the equivalent circuit model and taking account stray capacitances of the set-up. In addition, making use of Godyak's RF discharge simple model, the electron density in the discharge was calculated at different pressure and current density

  11. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  12. Lithium capillary porous system behavior as PFM in FTU Tokamak experiments

    International Nuclear Information System (INIS)

    Apichela, M.L.; Mazzitelli, G.; Lyublinski, I.E.; Lazarev, V.; Mirnov, S.; Vertkov, A.

    2007-01-01

    Full text of publication follows: Liquid lithium use on the base of capillary porous systems (CPS) application as plasma facing material (PFM) of tokamaks is advanced way to solve the problems of plasma contamination with high Z impurity, PFM degradation and tritium retention. In frame of joint program between ENEA (Italy) and FSUE 'Red Star' and TRINITI (RF) started at the end of 2005 die test of liquid lithium limiter (LLL) with CPS in a high field, medium size, carbon free tokamak FTU have been performed successfully. The LLL has been inserted in ohmic plasma discharges and at additional heating with LH and ECR at power levels in the MW range without any particular problem (BT = 6 T, Ip = 0.5- 0.9 MA, n e = 0.2 -2.6x10 20 m -3 , t = 1.5 s, P∼ 2-5 MW/m 2 at a normal discharge). The behavior of lithium CPS based on stainless steel wire mesh and its surface modification in normal discharges and at disruptions has been studied. Results of microscopic analyses of CPS structure after experimental campaigns are presented. The possibility to withstand heat load exceeding 5 MW/m 2 without damage, lithium surface renewal, mechanical stabilization of liquid lithium against MHD forces have been confirmed. Application of W, Mo as the base material and possible structure types of CPS have been considered for operating parameters improvement of long-living plasma facing components. (authors)

  13. Plasma pressure in the discharge column of the Novillo Tokamak

    International Nuclear Information System (INIS)

    Gaytan G, E.

    1995-01-01

    The design and construction of an acquisition system for the measurement of the plasma pressure in the Novillo Tokamak is described in detail. The system includes a high voltage ramp generator, a hardware and a software interface with a personal computer. It is used to determine experimentally the variations of the pressure in the plasma column in the cleaning and main discharges. The measurement of the pressure is made with a Pirani sensor adapted to the acquisition hardware and synchronized with the discharge in the plasma. The software is made in object oriented programming as a graphic interface designed to be used easily. It controls the acquisition, records the data, displays in graphic form the results and save the measurements. The graphic interface is a building block that can be used in different acquisition tasks. The ramp generator can deliver a signal of 200 V peak to peak with a current of 200 m A and offset control. The acquisition time is 2.5 μ s for every measurement, 8192 measurements can be stored in the acquisition board for every discharge. (Author)

  14. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  15. Is the negative glow plasma of a direct current glow discharge negatively charged?

    International Nuclear Information System (INIS)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-01-01

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge

  16. Modulation of ionization in the plasma column of an optical discharge

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.

    1981-01-01

    Stability of the ionization in the plasma column of an optical discharge is discussed. It is shown that a plasma filament formed by a long laser spike under optical discharge conditions may break up into a chain of bright luminous layers oriented in the direction of propagation of a laser beam and characterized by a higher gas ionization (''optical striations''). A nonlinear formulation of the problem is used to find the depth of modulation of the gas ionization

  17. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Science.gov (United States)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  18. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  19. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  20. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  1. Breakdown transient study of plasma distributions in a 2.45 GHz hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cortázar, O.D., E-mail: daniel.cortazar@uclm.es [Universidad de Castilla-La Mancha, ETSII-INEI, Applied Mechanics and Projects Department, C.J. Cela s/n, 13170 Ciudad Real (Spain); Megía-Macías, A. [ESS Bilbao Consortium, Polígono Ugaldeguren-III Pol. A 7B, 48170-Zamudio, Vizcaya (Spain); Tarvainen, O.; Koivisto, H. [University of Jyväskylä, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2015-05-01

    Plasma distribution transients associated with the breakdown of a 2.45 GHz hydrogen discharge similar to high current microwave ion sources are studied by means of an ultra-fast frame image acquisition system in visible light range. Eight different plasma distributions have been studied by photographing the 2D projections of the discharge through a transparent plasma electrode. The temporal evolution of images in Balmer-alpha and Fulcher band wavelengths have been recorded associated to atomic and molecular excitation and ionization processes. Some unexpected plasma distributions transient behaviors during breakdown are reported.

  2. In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune; Norby, Poul

    2014-01-01

    of a electrolyte filled capillary with anode and cathode in each end suspended on stainless steel wires, the oxygen in-let is placed on the cathode side of the capillary with a flushing system for oxygen in-let. In this study we present a flexible design of a capillary based Li-O2 battery with discharge and charge...... a stainless steel wire where the cathode is attached. The in situ XRD measurements show how the Li2O2 growth depend on current discharge rate and how the FWHM changes dependent on reflection and charge/discharge.Several cells were tested both ex situ and in situ, and in situ XRD for 1st discharge/charge and 2...

  3. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  4. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  5. Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)

  6. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  7. Polymerization of phenol by using discharged plasma under hydrothermal state

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M [Graduate School of Science and Technology, Kumamoto University (Japan); Namihira, T; Goto, M, E-mail: mgoto@kumamoto-u.ac.j [Bioelectrics Research Center, Kumamoto University 2-39-1 Kurokami, Kumamoto 865-8555 Japan (Japan)

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  8. Polymerization of phenol by using discharged plasma under hydrothermal state

    International Nuclear Information System (INIS)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M; Namihira, T; Goto, M

    2010-01-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  9. Discharge cleaning on KSTAR 1st plasma events

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Wang, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. S.; Yang, H. L.; Kim, K. P.; Kim, K. M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A discharge cleaning of a vacuum vessel was conducted with a GDC (Glow discharge cleaning) and a ICRF-DC(ICRF assisted discharge cleaning) for the KSTAR first plasma event period. The base pressure of the vessel was kept below 10-7 mbar via a cool down of the cryo-vessel, a 100C baking, and a GDC. (Partial pressure of hydrogen and nitrogen is below 10-8 mbar). The diagnostics for a discharge cleaning is a differential pumped RGA attached to a pumping duct and a cold cathode and a hot cathode gauge attached to the vessel and the pumping duct respectively. To analyze the discharge characteristics, a microwave interferometer, Bremsstahlung, H-alphas and a TV camera were used. Two straps among the four straps of the ICRF antenna are used for the ICRF-DC and ICRF heating experiments. The phase difference between the adjacent straps was 0 degree and the operating frequency was 30-33MHz.

  10. Second derivative Langmuir probe diagnostics of gas discharge plasma at intermediate pressures (review article)

    International Nuclear Information System (INIS)

    Popov, Tsv K; Dimitrova, M; Dias, F M; Tsaneva, V N; Stelmashenko, N A; Blamire, M G; Barber, Z H

    2006-01-01

    The second-derivative Langmuir probe method for precise determination of the plasma potential, the electron energy distribution function (respectively the electron temperature,) and the electron density of gas discharge plasma at intermediate pressures (100-1000 Pa) is reviewed. Results of applying the procedure proposed to different kinds of gas discharges are presented. Factors affecting the accuracy of the plasma characteristics evaluated are discussed

  11. Study of discharge in quiescent plasma machine of the INPE

    International Nuclear Information System (INIS)

    Ferreira, J.G.; Ferreira, J.L.; Ludwig, G.O.; Maciel, H.S.

    1988-12-01

    Measurements of principal plasma parameters produced by quiescent plasma machine of the Instituto de Pesquisas Espaciais (INPE) for current of 500 mA and several values of pressure and discharge power are presented. A qualitative interpretation for obtained results is done and a simple model for plasma density is compared with experimental values. The conditions of cathode operation are also investigated. (M.C.K.)

  12. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  13. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  14. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  15. Determination of clebopride in plasma by capillary gas chromatography-negative-ion chemical ionization mass spectrometry.

    Science.gov (United States)

    Robinson, P R; Jones, M D; Maddock, J

    1988-11-18

    A procedure for the analysis of clebopride in plasma using capillary gas chromatography-negative-ion chemical ionization mass spectrometry has been developed. Employing an ethoxy analogue as internal standard, the two compounds were extracted from basified plasma using dichloromethane. Subsequent reaction with heptafluorobutyryl imidazole produced volatile monoheptafluorobutyryl derivatives whose ammonia negative-ion mass spectra proved ideal for selected-ion monitoring. The recovery of clebopride from plasma at 0.536 nmol/l was found to be 85.5 +/- 0.9% (n = 3) whilst measurement down to 0.268 nmol/l was possible with a coefficient of variation of 7.9%. Plasma levels of the compound are reported in two volunteers following ingestion of 1 mg of clebopride as the malate salt.

  16. Steroid determination in fish plasma using capillary electrophoresis

    Science.gov (United States)

    Bykova, L.; Archer-Hartmann, S. A.; Holland, L.A.; Iwanowicz, L.R.; Blazer, V.S.

    2010-01-01

    A capillary separation method that incorporates pH-mediated stacking is employed for the simultaneous determination of circulating steroid hormones in plasma from Perca flavescens (yellow perch) collected from natural aquatic environments. The method can be applied to separate eight steroid standards: progesterone, 17α,20β-dihydroxypregn-4-en-3-one, 17α-hydroxyprogesterone, testosterone, estrone, 11-ketotestosterone, ethynyl estradiol, and 17β-estradiol. Based on screening of plasma, the performance of the analytical method was determined for 17α,20β-dihydroxypregn-4-en-3-one, testosterone, 11-ketotestosterone, and 17β-estradiol. The within-day reproducibility in migration time for these four steroids in aqueous samples was ≤2%. Steroid quantification was accomplished using a calibration curve obtained with external standards. Plasma samples from fish collected from the Choptank and Severn Rivers, Maryland, USA, stored for up to one year were extracted with ethyl acetate and then further processed with anion exchange and hydrophobic solid phase extraction cartridges. The recovery of testosterone and 17β-estradiol from yellow perch plasma was 84 and 85%, respectively. Endogenous levels of testosterone ranged from 0.9 to 44 ng/ml, and when detected 17α,20β-dihydroxypregn-4-en-3-one ranged from 5 to 34 ng/ml. The reported values for testosterone correlated well with the immunoassay technique. Endogenous concentrations of 17β-estradiol were ≤1.7 ng/ml. 11-Ketotestosterone was not quantified because of a suspected interferant. Higher levels of 17α,20β-dihydroxypregn-4-en-3-one were found in male and female fish in which 17β-estradiol was not detected. Monitoring multiple steroids can provide insight into hormonal fluctuations in fish.

  17. Steroid determination in fish plasma using capillary electrophoresis.

    Science.gov (United States)

    Bykova, Liliya; Archer-Hartmann, Stephanie A; Holland, Lisa A; Iwanowicz, Luke R; Blazer, Vicki S

    2010-09-01

    A capillary separation method that incorporates pH-mediated stacking is employed for the simultaneous determination of circulating steroid hormones in plasma from Perca flavescens (yellow perch) collected from natural aquatic environments. The method can be applied to separate eight steroid standards: progesterone, 17alpha,20beta-dihydroxypregn-4-en-3-one, 17alpha-hydroxyprogesterone, testosterone, estrone, 11-ketotestosterone, ethynyl estradiol, and 17beta-estradiol. Based on screening of plasma, the performance of the analytical method was determined for 17alpha,20beta-dihydroxypregn-4-en-3-one, testosterone, 11-ketotestosterone, and 17beta-estradiol. The within-day reproducibility in migration time for these four steroids in aqueous samples was < or =2%. Steroid quantification was accomplished using a calibration curve obtained with external standards. Plasma samples from fish collected from the Choptank and Severn Rivers, Maryland, USA, stored for up to one year were extracted with ethyl acetate and then further processed with anion exchange and hydrophobic solid phase extraction cartridges. The recovery of testosterone and 17beta-estradiol from yellow perch plasma was 84 and 85%, respectively. Endogenous levels of testosterone ranged from 0.9 to 44 ng/ml, and when detected 17alpha,20beta-dihydroxypregn-4-en-3-one ranged from 5 to 34 ng/ml. The reported values for testosterone correlated well with the immunoassay technique. Endogenous concentrations of 17beta-estradiol were < or =1.7 ng/ml. 11-Ketotestosterone was not quantified because of a suspected interferant. Higher levels of 17alpha,20beta-dihydroxypregn-4-en-3-one were found in male and female fish in which 17beta-estradiol was not detected. Monitoring multiple steroids can provide insight into hormonal fluctuations in fish. Copyright 2010 SETAC.

  18. Parallel simulation of radio-frequency plasma discharges

    International Nuclear Information System (INIS)

    Fivaz, M.; Howling, A.; Ruegsegger, L.; Schwarzenbach, W.; Baeumle, B.

    1994-01-01

    The 1D Particle-In-Cell and Monte Carlo collision code XPDP1 is used to model radio-frequency argon plasma discharges. The code runs faster on a single-user parallel system called MUSIC than on a CRAY-YMP. The low cost of the MUSIC system allows a 24-hours-per-day use and the simulation results are available one to two orders of magnitude quicker than with a super computer shared with other users. The parallelization strategy and its implementation are discussed. Very good agreement is found between simulation results and measurements done in an experimental argon discharge. (author) 2 figs., 3 refs

  19. An analytical theory of corona discharge plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.; Lee, W.M.

    1997-01-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100% energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R c p, plasma is generated for a high-voltage pulse satisfying u>u c , where u c is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R c is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude

  20. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

    Science.gov (United States)

    Alexandrov, A. L.; Schweigert, I. V.

    2018-05-01

    The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

  1. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  2. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  3. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  4. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  5. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  6. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    Science.gov (United States)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  7. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  8. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  9. Dust acoustic waves in a dc glow-discharge plasma

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Nefedov, A.P.; Torchinskii, V.M.; Fortov, V.E.; Khrapak, A.G.

    1999-01-01

    The spontaneous excitation of low-frequency oscillations of the macroparticle density in ordered dust structures levitating in standing striations of a dc glow discharge is discovered. It is concluded on the basis of a simplified linear model of an ideal collisionless plasma that the observed instability is caused by the drift motion of ions relative to the dust, which leads to the excitation of dust acoustic oscillations of the plasma

  10. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  11. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  12. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  13. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  14. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  15. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  16. Three-fluid magnetohydrodynamical simulation of plasma focus discharges

    International Nuclear Information System (INIS)

    Behler, K.; Bruhns, H.

    1987-01-01

    A two-dimensional, three-fluid code based on the two-fluid Potter code [Methods in Computational Physics (Academic, New York, 1970), Vol. 9, p. 340] was developed for simulating the plasma focus discharge. With this code it is possible to treat the neutral gas in addition to the plasma components and to model the ionization and recombination phenomena. Thus the sheet dynamics in a plasma focus can be studied and effects investigated such as the occurrence of residual gas (or plasma) density behind the current sheet in the run-down phase. This is a prerequisite to the occurrence of leak currents, which are one of the causes limiting the performance of large plasma focus devices. It is shown that fast operating foci with small dimensions behave favorably compared with the ''classical'' Mather focus [Methods of Experimental Physics (Academic, New York, 1971), Vol. 9B, p. 187] with long coaxial electrodes

  17. Experimental and theoretical study of plasma-water interaction in electrothermal guns

    International Nuclear Information System (INIS)

    Arensburg, Alex.

    1993-05-01

    This thesis comprises an experimental and theoretical study of the plasma- jet-water interaction in electrothermal guns. In the present work the plasma jet was produced by high current pulsed discharge in a plasma injector consisting of polyethylene capillary, closed at one end by a metallic anode and supported at the other end with a hollow cathode. A thin aluminium fuse placed inside the capillary and connecting both electrodes, provided an initial conducting element. A pulse forming network delivering a high current pulse through the fuse, exploded it and produced an aluminium plasma. Subsequently, ablation of the capillary wall begun as a result of its exposure to radiation from the fuse plasma. The ablation products were heated by the pulse current until ionized, replacing the fuse plasma by a polyethylene plasma thus sustaining the ablation process. The experimental investigation reported here used x-ray shadowgraphy to observe the plasma-working fluid interaction process. The working fluid was an aqueous solution of 92% water and 8% lead acetate gelatinized with agar. The penetration of the plasma jet into the working fluid was exposed on films at successive time intervals by means of x-ray shadowgraphy. When the water interacts with the plasma it also ablated. This ablation rate was estimated from energy conservation considerations. Peak pressures up to 3.5*10 8 Pa were measured during the process. At such pressure water does not undergo phase transformation when heated. Thus the mass density at the plasma water interface should be regarded as a continuous function of temperature. The determination of the temperature profile at the interface between the capillary plasma and the water requires the solution of the heat transfer and radiative transfer equations under ablation conditions. This constituted the main theoretical part of the present work. 36 refs., 4 tabs., 29 figs

  18. Penetration of a dielectric barrier discharge plasma into textile structures at medium pressure

    International Nuclear Information System (INIS)

    Geyter, N De; Morent, R; Leys, C

    2006-01-01

    Plasma treatment of textiles is becoming more and more popular as a surface modification technique. Plasma treatment changes the outermost layer of a material without interfering with the bulk properties. However, textiles are several millimetres thick and need to be treated homogeneously throughout the entire thickness. To control the penetration depth of the plasma effect, it is necessary to study the influence of operating parameters. Three layers of a 100% polyester non-woven are treated in the medium pressure range (0.3-7 kPa) with a dielectric barrier discharge to study the influence of pressure and treatment time. Current and voltage waveforms and Lichtenberg figures are used to characterize the discharge. Process pressure proved to have an important effect on the penetration of the plasma through the textile layers. This is caused not only by the pressure dependence of diffusive transport of textile modifying particles but also by a different behaviour of the barrier discharge

  19. Overview and Recent Results from the HyperV Plasma Gun

    Science.gov (United States)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Phillips, Michael; van Doren, David; Elton, Raymond; Uzun-Kaymak, Ilker

    2007-11-01

    We present an overview of research at HyperV to develop high velocity dense plasma jets for application to fusion and HEDP. The approach uses symmetrical pulsed injection of high density plasma into a coaxial EM accelerator having a cross-section tailored to prevent formation of the blow-by instability. Two development paths are followed to accomplish this injection step: we compare large arrays of capillary discharges to sparkgaps arranged in a toroidal configuration. Experiments on three test fixtures are described: a 2pi configuration with 64 capillary injectors, a 32 injector prototype gun designed to drive rotation in the Maryland MCX experiment, and a second gun using 112 sparkgap electrodes for injection. Data is presented from visible light spectroscopy, fast optical imaging, Rogowski coils, pressure probes, Bdot probes, photodiodes, and a laser interferometer. Ballistic pendulum tests indicate plasma jets with mass 160 micrograms at 70 km/s have been achieved with plasma density above 10^15 cm-3.

  20. Determination of uric acid in plasma and allantoic fluid of chicken embryos by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Matějčková, J.; Tůma, P.; Samcová, E.; Zemanová, Zdeňka

    2007-01-01

    Roč. 30, č. 12 (2007), s. 1947-1952 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA304/04/0972 Grant - others:GA ČR(CZ) GA203/07/0896 Program:GA Institutional research plan: CEZ:AV0Z50110509 Keywords : capillary electrophoresis * microsamples of plasma * uric acid Subject RIV: CE - Biochemistry Impact factor: 2.632, year: 2007

  1. Diode with plasma cathode on the basis of a sliding discharge

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1982-01-01

    The operative regime of a diode with plasma cathode on the basis of a discharge sliding over the surface of dielectric without an additional switching - on discharge generator at the glance of capacity couplings of anode and cathode assemblies is described. It is experimentally shown that at the voltage at the diode of about 150-300 kV electron beams with the 400-1000 A/cm current density can be formed. The velocity of cathode plasma motion in the direction of anode for different materials of dielctric insertion in a cathode assembly amounts to (1.5-10)x10 5 cm/s

  2. On the influence of the condensed particles on the absorption properties of plasma created by ablation controlled arc in a capillary

    Science.gov (United States)

    Pashchina, A. S.; Valyano, G. E.

    2017-11-01

    The results of experimental studies of the absorption properties of plasma created by ablation controlled arc in a capillary are presented. It is shown that the dominant influence on the plasma absorption properties is exerted by condensed particles formed in relatively low-temperature zones in the vicinity of the capillary wall and on the periphery of the plasma jet, whereas the plasma bremsstrahlung is optically thin. The nonmonotonic behavior of the plasma optical thickness in the spectral range Δλ=400-700 nm, as well as amplification of the probing radiation in a relatively narrow wavelength interval Δλ=628±5 nm, caused, probably, by resonant excitation of condensed particles by electromagnetic radiation, are detected. The estimations of the condensed particles parameters (the average size dD≈2-4 nm, the concentration ND=(1-5)·1013 cm-3, the volume fraction fV≈(0.1-3)·10-6), which quantitatively consistent with the results of studies of the microstructure of the condensed phase on scanning electron microscope, have been obtained.

  3. The influence of exothermic reactions on the nonequilibrium level of discharge plasma

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Iukhymenko, V.V.; Prysiazhnevych, I.V.; Martysh, Eu.V.

    2013-01-01

    The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic excitation temperatures Te of atoms, vibrational Tv and rotational Tr temperatures of molecules in the generated plasma were determined by optical emission spectroscopy. It was shown that both discharges generate nonequilibrium plasma in the case of working gas air and working liquid-distilled water. Adding a fuel (ethanol) into the plasma system with O 2 leads to the increasing of rotational and vibrational temperatures of molecules, which became equal to each other within the errors. This may indicate that the exothermic reactions reduce the level of nonthermality of the generated plasma as a result of additional energy supply for heavy components in the process of complete combustion of hydrocarbons.

  4. The measurement of argon metastable atoms in the barrier discharge plasma

    Science.gov (United States)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  5. Rocket borne electron accelerator results pertaining to the beam plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Monson, S.J.

    1981-01-01

    The beam plasma discharge (BPD) is a state in which plasma instabilities accelerate electrons sufficiently to ionize a neutral background. A description is given of a number of ionospheric experiments which fall into two classes based on gun perveance. In the first class, an electron gun of high perveance has been operated at comparatively low potentials in the range from 2 to 8 kV and beam currents up to approximately 100 mA. The second group, the Electron Echo experiments, have used beam voltages in the range from 10 to 40 kV, and perveance guns with beam currents on the order of 100 mA and 1 A. Evidence is presented that the beam plasma discharge is excited by gun pulses of the lower voltage and higher perveance type

  6. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  7. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  8. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  9. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  10. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    Science.gov (United States)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  11. Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges

    International Nuclear Information System (INIS)

    Cheng Yuguo; Cheng Mousen; Wang Moge; Yang Xiong; Li Xiaokang

    2014-01-01

    A one-dimensional radial non-uniform fluid model is employed to study plasma behaviors with special emphasis laid on helicon discharges. The plasma density n e , electron temperature T e , electron azimuthal and radial drift velocities are investigated in terms of the plasma radius r p , magnetic field intensity B 0 and gas pressure p 0 , by assuming radial ambipolar diffusion and negligible ion cyclotron movement. The results show that the magnetic confinement plays an important role in the discharge equilibrium, especially at low pressure, which significantly reduces T e compared with the case of a negligible magnetic field effect, and higher B 0 leads to a greater average plasma density. T e shows little variations in the plasma density range of 10 11 cm −3 –10 13 cm −3 for p 0 < 3.0 mTorr. Comparison of the simulation results with experiments suggests that the model can make reasonable predictions of T e in low pressure helicon discharges. (low temperature plasma)

  12. High density low-q discharges with D-shaped plasmas in Doublet III

    International Nuclear Information System (INIS)

    Nagami, Masayuki; Yoshida, Hidetoshi; Shinya, Kichiro; Yokomizo, Hideaki; Shimada, Michiya; Ioki, Kimihiro; Izumi, Shigeru; Kitsunezaki, Masao; Jahns, G.

    1981-07-01

    The maximum plasma current in Doublet III is found to be limited by disruptions when the limiter safety factor is approximately 2. However, due to the strong toroidal and shaping field effect on rotational transform at the outer plasma edge associated with a D-shape formation having a vertical elongation of 1.5, the safety factor q sub(a) * estimated from simple geometric considerations for D-shaped plasmas corresponds to values as low as 1.5. These discharges operate stably with considerably higher plasma current than most reactor design studies assume. These low-q discharges show excellent plasma performance: very flat spatial electron temperature progiles, high density operation with anti n sub(e)R/B sub(T) up to 7.8, and good energy confinement producing a volume average β of up to 1% with ohmic heating only. This operational regime appears to be applicable to future high β tokamaks with D-shaped cross section. (author)

  13. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  14. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    International Nuclear Information System (INIS)

    Ohtsu, Yasunori; Matsumoto, Naoki

    2014-01-01

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode

  15. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    International Nuclear Information System (INIS)

    Gao Deli; Yang Xuechang; Zhou Fei; Wu Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  16. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  17. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  18. Electron energy distribution function in SSM-discharge plasma

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Olszewski, S.V.; Lebedev, D.O.; Evstigneev, M.A.

    1996-01-01

    The results of investigation in mass composition of positive component SSM-discharge plasma. All measurements were performed in H 2 and D 2 using the monopole mass-spectrometer MX 7301 and the probe technique. From the experimental dependences the value of H 3 + dissociation constant rate (k = 4 x 10 -11 cm -3 s -1 ) was estimated

  19. Formation of Plasma Structures in Stimulated High-Pressure Microwave Discharge

    National Research Council Canada - National Science Library

    Popov, N. A; Vedenin, P. V

    2003-01-01

    In other papers, the possibility is observed of a jumplike propagation of an stimulated MW discharge toward the radiation source in the form of dipole plasma channels oriented along the electric field vector...

  20. Plasma Channel Lenses and Plasma Tornadoes for Optical Beam Focusing and Transport

    Science.gov (United States)

    Hubbard, R. F.; Kaganovich, D.; Johnson, L. A.; Gordon, D. F.; Penano, J. R.; Hafizi, B.; Helle, M. H.; Mamonau, A. A.

    2017-10-01

    Shaped plasmas offer the possibility of manipulating laser pulses at intensities far above the damage limits for conventional optics. An example is the plasma channel, which is a cylindrical plasma column with an on-axis density minimum. Long plasma channels have been widely used to guide intense laser pulses, particularly in laser wakefield accelerators. A new concept, the ``plasma tornado'', offers the possibility of creating long plasma channels with no nearby structures and at densities lower than can be achieved by capillary discharges. A short plasma channel can focus a laser pulse in much the same manner as a conventional lens or off-axis parabola. When placed in front of the focal point of an intense laser pulse, a plasma channel lens (PCL) can reduce the effective f-number of conventional focusing optics. When placed beyond the focal point, it can act as a collimator. We will present experimental and modeling results for a new plasma tornado design, review experimental methods for generating short PCLs, and discuss potential applications. Supported by the Naval Research Laboratory Base Program.

  1. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Ren Jingyu; Qu Guangzhou; Liang Dongli; Hu Shibin; Wang Tiecheng

    2015-01-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. (paper)

  2. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, S.; Takatsu, A.; Yarita, T.; Zhu, Y.; Chiba, K.

    2009-01-01

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H 2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  3. Plasma sheath dynamics in pinch discharge

    International Nuclear Information System (INIS)

    Mansour, A.A.Abd-Fattah

    1995-01-01

    The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule

  4. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  5. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  6. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.W., E-mail: t.w.morgan@differ.nl; Bekerom, D.C.M. van den; De Temmerman, G.

    2015-08-15

    Sn filled capillary porous structures were exposed to high flux low temperature plasma conditions at the Pilot-PSI linear device. Enhanced erosion above that expected classically was investigated via spectroscopic observation of Sn{sup 0} emission from the plasma in front of the target surface while the surface temperature was monitored by both thermography and pyrometry. An anomalous erosion flux was observed as temperature increases, with onset for this occurrence varying strongly between different ion species. The results appear incompatible with existing ‘adatom’ models for the anomalous erosion flux. Further targets were exposed in turn to increasing heat fluxes and the heat removed determined from cooling water calorimetry, which was then compared to a solid Mo reference target. At high powers the total energy of the cooling water is reduced, indicating a shielding of the surface from the plasma heat flux by the vapour cloud in front.

  7. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  8. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  9. Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-12-01

    In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.

  10. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  11. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    Science.gov (United States)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  12. Discharge physics and chemistry of a novel atmospheric pressure plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Henins, I.; Hermann, J.W.; Selwyn, G.S.; Jeong, J.Y.; Hickis, R.

    1999-07-01

    The atmospheric pressure plasma jet (APPJ) is a unique plasma source operating at atmospheric pressure. The APPJ operates with RF power and produces a stable non-thermal discharge in capacitively-coupled configuration. The discharge is spatially and temporally homogeneous and provides a unique gas phase chemistry that is well suited for various applications including etching, film deposition, surface treatment and decontamination of chemical and biological warfare (CBW) agents. A theoretical model shows electron densities of 0.2--2 x 10{sup 11} cm{sup {minus}3} for a helium discharge at a power level of 3--30 W cm{sup {minus}3}. The APPJ also produces a large flux, equivalent of up to 10,000 monolayer s{sup {minus}1}, of chemically-active, atomic and metastable molecular species which can impinge surfaces several cm downstream of the confined source. In addition, the efforts are in progress to measure the electron density using microwave diagnostics and to benchmark the gas phase chemical model by using LIF and titration.

  13. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Science.gov (United States)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  14. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Bruce R; Shih, Kai-Yuan [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 x 10{sup -2} to 80 g kWh{sup -1}. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  15. Plasma flow discharge researches at the PIRIT-2000 facility

    International Nuclear Information System (INIS)

    Popkov, N.F.; Ryaslov, E.A.; Kargin, V.I.; Pikar', A.S.; Vorontsov, V.I.; Kotel'nikov, D.V.; Melkozerov, A.V.

    1996-01-01

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs

  16. Plasma flow discharge researches at the PIRIT-2000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs.

  17. Spatial and temporal variation of repetitive plasma discharges in saline solutions

    International Nuclear Information System (INIS)

    Stalder, K R; Nersisyan, G; Graham, W G

    2006-01-01

    Repetitive plasma discharges developed in saline solutions have been investigated using fast, intensified charge coupled detector imaging techniques. The images show that synchronously pulsed multielectrode configurations tend to develop intense, transient plasma regions somewhat randomly in both space and time on short (10 μs) time scales, even though they appear to be stationary on longer (tens of milliseconds) time scales. Evidence for the production of both strongly ionized and weakly ionized plasmas is also presented

  18. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  19. Coherent structures induced by dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei

    2017-11-01

    The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.

  20. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  1. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  2. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  3. Beam-plasma interaction in a cold-cathodes penning discharge

    International Nuclear Information System (INIS)

    Bliman, S.L.

    1966-06-01

    The H.F. emissions from a cold-cathode reflex discharge are studied. An experimental law for the frequency variation shows that fαV 1/2 discharged if B 0 and p are constant. If B 0 is made to increase, the frequencies change such that f ce - f emitted / f ce decreases. With each emitted frequency there is associated a stationary wave system making it possible to measure the phase velocity Vφ of the waves. This phase velocity is always close to that of the fast electrons accelerated by a potential V discharge. A non-quasistatic formalism for the propagation of waves in a beam-plasma system is then established. The Maxwell equations are solved taking into account boundary conditions. Comparison of these experiments with the theory shows a satisfactory agreement. (author) [fr

  4. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  5. Degradation of nitride coatings in low-pressure gas discharge plasma

    Science.gov (United States)

    Ivanov, Yurii; Shugurov, Vladimir; Krysina, Olga; Petrikova, Elizaveta; Tolkachev, Oleg

    2017-12-01

    The paper provides research data on the defect structure, mechanical characteristics, and tribological properties of commercially pure VT1-0 titanium exposed to surface modification on a COMPLEX laboratory electron-ion plasma setup which allows nitriding, coating deposition, and etching in low-pressure gas discharge plasma in a single vacuum cycle. It is shown that preliminary plasma nitriding forms a columnar Ti2N phase in VT1-0 titanium and that subsequent TiN deposition results in a thin nanocrystalline TiN layer. When the coating-substrate system is etched, the coating fails and the tribological properties of the material degrade greatly.

  6. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  7. Measurement of ozone production scaling in a helium plasma jet with oxygen admixture

    Science.gov (United States)

    Sands, Brian; Ganguly, Biswa

    2012-10-01

    Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.

  8. Extreme-UV electrical discharge source

    Science.gov (United States)

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  9. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  10. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Bo [Industry Applications Research Laboratory, Korea Electrotechnology Research Institute, Changwon, Kyeongnam (Korea, Republic of); Oda, Tetsuji [Department of Electrical Engineering, The University of Tokyo, Tokyo 113-8656 (Japan)

    2007-05-15

    The hybrid barrier discharge plasma process combined with ozone decomposition catalysts was studied experimentally for decomposing dilute trichloroethylene (TCE). Based on the fundamental experiment for catalytic activities on ozone decomposition, MnO{sub 2} was selected for application in the main experiments for its higher catalytic abilities than other metal oxides. A lower initial TCE concentration existed in the working gas; the larger ozone concentration was generated from the barrier discharge plasma treatment. Near complete decomposition of dichloro-acetylchloride (DCAC) into Cl{sub 2} and CO{sub x} was observed for an initial TCE concentration of less than 250 ppm. C=C {pi} bond cleavage in TCE gave a carbon single bond of DCAC through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were easily broken in the subsequent catalytic reaction. While changing oxygen concentration in working gas, oxygen radicals in the plasma space strongly reacted with precursors of DCAC compared with those of trichloro-acetaldehyde. A chlorine radical chain reaction is considered as a plausible decomposition mechanism in the barrier discharge plasma treatment. The potential energy of oxygen radicals at the surface of the catalyst is considered as an important factor in causing reactive chemical reactions.

  11. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  12. Weight-controlled capillary viscometer

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2005-11-01

    The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.

  13. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  14. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  15. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  16. Dust-acoustic instability in an inductive gas-discharge plasma

    International Nuclear Information System (INIS)

    Zobnin, A.V.; Usachev, A.D.; Petrov, O.F.; Fortov, V.E.

    2002-01-01

    Spontaneous excitation of a dust-particle density wave is observed in a dust cloud levitating in the region of the diffused edge of an rf inductive low-pressure gas-discharge plasma. The main physical parameters of this wave and of the background plasma are measured. The analytic model proposed for the observed phenomenon is based on the theory of dust sound and successfully correlates with experimental data in a wide range of experimental conditions. The effect of variable charge of dust particles on the evolution of the observed dust-plasma instability is studied analytically. It is shown that the necessary condition for the development of the dust-acoustic instability is the presence of a dc electric field in the dust cloud region

  17. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    Science.gov (United States)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  18. Integrated discharge scenario for high-temperature helical plasma on LHD

    International Nuclear Information System (INIS)

    Nagaoka, K.; Takahashi, H.; Murakami, S.

    2014-10-01

    Discharge scenario of high temperature plasma with helical configuration has been significantly progressed. The increase of central ion temperature due to reduction of wall recycling was clearly observed. The neutral particle profile was measured with a high-dynamic range of Balmer-α spectroscopy, and the reduction of neutral density was identified after helium conditioning main discharges. The peaking of ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for improvement of ion heat transport in the core. The ion ITB and electron ITB have been successfully integrated due to superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of T i ∼T e has been significantly extended. The normalized temperature gradient of ion and electron (R/L T ) were observed to exceed 10, indicating the significant improvement of both ion and electron heat transports at the barrier position. The positive radial electric field was observed by heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient was observed to decrease with the increase of temperature ratio (T e /T i ). This experiment demonstrated that the profile control is a key to combine ion ITB and electron ITB and have a potential to improve the performance of helical plasmas. (author)

  19. Experimental observation of nonlinear behaviour in a helium plasma discharge in the presence of a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Toma, M.; Sanduloviciu, M.

    1994-01-01

    The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)

  20. Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chemical launch with discharge rod plasma generator

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2017-08-01

    Full Text Available Instead of the capillary plasma generator (CPG, a discharge rod plasma generator (DRPG is used in the 30 mm electrothermal-chemical (ETC gun to improve the ignition uniformity of the solid propellant. An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun (2D-IB-SPETCG is presented to describe the process of the ETC launch. Both calculated pressure and projectile muzzle velocity accord well with the experimental results. The feasibility of the 2D-IB-SPETCG model is proved. Depending on the experimental data and initial parameters, detailed distribution of the ballistics parameters can be simulated. With the distribution of pressure and temperature of the gas phase and the propellant, the influence of plasma during the ignition process can be analyzed. Because of the radial flowing plasma, the propellant in the area of the DRPG is ignited within 0.01 ms, while all propellant in the chamber is ignited within 0.09 ms. The radial ignition delay time is much less than the axial delay time. During the ignition process, the radial pressure difference is less than 5  MPa at the place 0.025 m away from the breech. The radial ignition uniformity is proved. The temperature of the gas increases from several thousand K (conventional ignition to several ten thousand K (plasma ignition. Compare the distribution of the density and temperature of the gas, we know that low density and high temperature gas appears near the exits of the DRPG, while high density and low temperature gas appears at the wall near the breech. The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch. The 2D-IB-SPETC model can be used for prediction and improvement of experiments.

  1. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  2. plasma modes behaviors and electron injection influence in an audio-ultrasonic air gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.; Haleem, N.A.

    2010-01-01

    the main purpose of this study is to investigate the favorable conditions for the production of plasma particle acceleration in an audio-ultrasonic air gas discharge of 20 cm long and 34 mm diameter.it is found that according to the applied conditions the formed plasma changes its behavior and overtakes diverse modes of different characteristics. the pressure, the voltage, and the frequency applied to the plasma determine its proper state. both experimental data collection and optical observations are introduced to clarify and to put in evidence the present plasma facts. the distribution of the electrons density along the plasma tube draws in average the electric field distribution of the ionization waves. in addition, the plasma is studied with and without electrons injection in order to investigate its influence . it is found that the electron injection decreases the plasma intensity and the plasma temperature, while it increases the discharge current. in turn, the decrease of the plasma temperature decreases the plasma oscillations and enhances the plasma instability. on the other hand,the enhancement of the plasma instability performs good conditions for electron acceleration. as a result, the qualified mode for particles acceleration is attained and its conditions are retrieved and defined for that purpose.

  3. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  4. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  5. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  6. TVA - Thermionic Vacuum Arc - A new type of discharge generating pure metal vapor plasma

    International Nuclear Information System (INIS)

    Musa, G.; Popescu, A.; Mustata, I.; Borcoman, I.; Cretu, M.; Leu, G.F.; Salambas, A.; Ehrich, H.; Schumann, I.

    1996-01-01

    In this paper it is presented a new type of discharge in vacuum conditions generating pure metal vapor plasma with energetic metal ions content. The peculiarities of this heated cathode discharge are described and the dependence of the measured ion energy of the working parameters are established. The ion energy value can be easily and smoothly changed. A nearly linear dependence between energy of ions and arc voltage drop has been observed. The ion energy can be increased by the increase of the interelectrode distance, decrease of cathode temperature, change of the relative position of the electrodes and by the decrease of the arc discharge current. A special configuration with cylindrical geometry has been used to develop a small size and compact metal vapour plasma gun. Due to the mentioned peculiarities, this discharge offers new openings for important applications. (author)

  7. Core-SOL simulations of L-mode tokamak plasma discharges using BALDUR code

    Directory of Open Access Journals (Sweden)

    Yutthapong Pinanroj

    2014-04-01

    Full Text Available Core-SOL simulations were carried out of plasma in tokamak reactors operating in a low confinement mode (L-mode, for various conditions that match available experimental data. The simulation results were quantitatively compared against experimental data, showing that the average RMS errors for electron temperature, ion temperature, and electron density were lower than 16% or less for 14 L-mode discharges from two tokamaks named DIII-D and TFTR. In the simulations, the core plasma transport was described using a combination of neoclassical transport calculated by NCLASS module and anomalous transport by Multi-Mode-Model version 2001 (MMM2001. The scrape-off-layer (SOL is the small amount of residual plasma that interacts with the tokamak vessel, and was simulated by integrating the fluid equations, including sources, along open field lines. The SOL solution provided the boundary conditions of core plasma region on low confinement mode (L-mode. The experimental data were for 14 L-mode discharges and from two tokamaks, named DIII-D and TFTR.

  8. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  9. The magnetic field application for the gas discharge plasma control in processes of surface coating and modification

    International Nuclear Information System (INIS)

    Asadullin, T Ya; Galeev, I G

    2017-01-01

    In this paper the method of magnetic field application to control the gas discharge plasma effect on the various surfaces in processes of surface coating and modification is considered. The magnetic field directed perpendicular to the direction of electric current in the gas discharge plasma channel is capable to reject this plasma channel due to action of Lorentz force on the moving electrically charged particles [1,2]. The three-dimensional spatial structure of magnetic field is created by system of necessary quantity of the magnets located perpendicular to the direction of course of electric current in the gas-discharge plasma channel. The formation of necessary spatial distribution of magnetic field makes possible to obtain a required distribution of plasma parameters near the processed surfaces. This way of the plasma channel parameters spatial distribution management is the most suitable for application in processes of plasma impact on a surface of irregular shape and in cases when the selective impact of plasma on a part of a surface of a product is required. It is necessary to apply automated computer management of the process parameters [3] to the most effective plasma impact. (paper)

  10. Plasma polymerization at different positions in an asymmetric ethylene discharge

    International Nuclear Information System (INIS)

    Trieschmann, Jan; Hegemann, Dirk

    2011-01-01

    The characteristics of plasma polymerization are investigated in an asymmetric, capacitively coupled plasma discharge. Here, the deposition in different plasma zones, i.e. on the driven electrode, within the plasma bulk and the plasma sheath as well as approximately at the plasma-sheath edge, is investigated. Principal expectations are perfectly met, though new interesting dependences of the obtained a-C : H coatings with respect to film properties and deposition rates are also found. That is, the deposition rates as measured on thin, small glass slides placed directly on the electrode are considerably higher than everywhere else in the plasma, yet only single-sided. In contrast, the deposition rates on the samples within the plasma are lowered depending on the exact placement, while a double-sided coating is obtained. Furthermore, film properties, such as the film density, are highly dependent on the sample placement in the plasma, which can even be higher under floating conditions. With simple physical arguments we are able to show the relations between the deposition rate and the energy input into the plasma as well as between the energy density during film growth and the film density itself.

  11. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Salarieh Setareh; Dorranian Davoud

    2013-01-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O 2 , He, and He/O 2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O 2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  13. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  14. Space-time-dependent development of the plasma in a pulsed hollow-cathode discharge

    International Nuclear Information System (INIS)

    Schaefer, G.; Wages, M.

    1988-01-01

    This paper presents streak camera investigations on the space-time-dependent development of pulsed hollow-cathode discharges (HCD's) starting from low-current preionization discharges. The discharges started closer to the end of the cathode, then moved further into the cathode, and then spread over a longer range along the axis of the cathode. The depth range of the intense pulsed hollow-cathode plasma was found to be two to eight times the cathode diameter

  15. Computational study of plasma sustainability in radio frequency micro-discharges

    International Nuclear Information System (INIS)

    Zhang, Y.; Jiang, W.; Zhang, Q. Z.; Bogaerts, A.

    2014-01-01

    We apply an implicit particle-in-cell Monte-Carlo (PIC-MC) method to study a radio-frequency argon microdischarge at steady state in the glow discharge limit, in which the microdischarge is sustained by secondary electron emission from the electrodes. The plasma density, electron energy distribution function (EEDF), and electron temperature are calculated in a wide range of operating conditions, including driving voltage, microdischarge gap, and pressure. Also, the effect of gap size scaling (in the range of 50-1000 μm) on the plasma sustaining voltage and peak electron density at atmospheric pressure is examined, which has not been explored before. In our simulations, three different EEDFs, i.e., a so-called three temperature hybrid mode, a two temperature α mode, and a two temperature γ mode distribution, are identified at different gaps and voltages. The maximum sustaining voltage to avoid a transition from the glow mode to an arc is predicted, as well as the minimum sustaining voltage for a steady glow discharge. Our calculations elucidate that secondary electrons play an essential role in sustaining the discharge, and as a result the relationship between breakdown voltage and gap spacing is far away from the Paschen law at atmospheric pressure

  16. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    Science.gov (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  17. On the stability of the interface between dense plasma and liquid under electrical pulse discharge in liquid medium

    International Nuclear Information System (INIS)

    Starchyk, P.D.; Porytskyy, P.V.

    2005-01-01

    It is shown that the most important influence on the plasma of electrical pulse discharges in liquid have the processes in a zone of its contact with condensed medium. The investigations of growth of corrugations are conducted which arise on an interface between both the plasma channels of electrical pulse discharges and limiting it liquid. It is shown that the growth of perturbations caused by Rayleigh-Taylor instability are nonlinearly saturated. It is established the interconnection between both the pointed perturbations and the parameters of a dense plasma of discharge channel

  18. Polarization of X-ray lines emitted from plasma-focus discharges; Problems of interpretation

    International Nuclear Information System (INIS)

    Jakubowski, L.

    2002-01-01

    In high current pulse discharges of the Plasma Focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of X-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpret the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense X-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed X-ray lines. (author)

  19. Polarization of x-ray lines emitted from plasma-focus discharges; Problems of interpretation

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.J.; Baronova, E.O.

    2003-01-01

    In high current pulse discharges of the Plasma Focus (PF) type, inside the collapsing pinch column, there are formed local micro-regions of high-density and high-temperature plasma, so-called hot spots. Individual hot spots are separated in space and time. Each hot spot is characterized by its specific electron concentration and temperature, as well as by the emission of X-ray lines with different polarization. When numerous hot spots are produced it is impossible to determine local plasma parameters and to interpretate the polarization effects. To eliminate this problem this study was devoted to the realization of PF-type discharges with single hot spot only. It has been achieved by a choice of the electrode configuration, which facilitated the formation of a single hot spot emitting intense X-ray lines. At the chosen experimental conditions it was possible to determine local plasma parameters and to demonstrate evident differences in the polarization of the observed X-ray lines. (author)

  20. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    Science.gov (United States)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  1. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    International Nuclear Information System (INIS)

    Soloshenko, I A; Tsiolko, V V; Pogulay, S S; Terent'yeva, A G; Bazhenov, V Yu; Shchedrin, A I; Ryabtsev, A V; Kuzmichev, A I

    2007-01-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O 3 , HNO 3 , HNO 2 , N 2 O 5 and NO 3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm -3 . It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O 3 , HNO 3 , HNO 2 , N 2 O 5 and NO 3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values

  2. User interaction concept for plasma discharge control on WENDELSTEIN 7-X

    International Nuclear Information System (INIS)

    Spring, Anett; Laqua, Heike; Niedermeyer, Helmut

    2006-01-01

    The requirements to the user interfaces arising from the concept of segmented discharges allowing short pulses and steady state operation and from the distributed hierarchical structure of the experiment are discussed. The modular design of the user interfaces is presented including specialised tools for preparation, manipulating, and monitoring the discharge operation. The user guidance and the mapping of complex control procedures onto a physically relevant view on the plasma discharge process will be vitally important. The feasibility of the user interaction concept could already be validated on a prototype installation and during commissioning of the first technical WENDELSTEIN 7-X (W7-X) components

  3. A contoured gap coaxial plasma gun with injected plasma armature.

    Science.gov (United States)

    Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond

    2009-08-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  4. A contoured gap coaxial plasma gun with injected plasma armature

    International Nuclear Information System (INIS)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond

    2009-01-01

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 μg of plasma with density above 10 17 cm -3 to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 μg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  5. Simulation of spatially dependent excitation rates and power deposition in RF discharges for plasma processing

    International Nuclear Information System (INIS)

    Kushner, M.J.; Anderson, H.M.; Hargis, P.J.

    1985-01-01

    In low pressure, radio frequency (RF) discharges of the type used in plasma processing of semiconductor materials, the rate of electron impact excitation and energy transfer processes depends upon both the phase of the RF excitation and position in the discharge. Electron impact collisions create radicals that diffuse or drift to the surfaces of interest where they are adsorbed or otherwise react. To the extent that these radicals have a finite lifetime, their transport time from point of creation to surface of interest is an important parameter. The spatial dependence of the rate of the initial electron impact collisions is therefore also an important parameter. The power that sustains the discharge is coupled into the system by two mechanisms: a high energy e-beam component of the electron distribution resulting from electrons falling through or being accelerated by the sheaths, and by joule heating in the body of the plasma. In this paper, the authors discuss the spatial dependence of excitation rates and the method of power deposition iin RF discharges of the type used for plasma processing

  6. Plasma-aided surface technology for modification of materials referred to fire protection

    International Nuclear Information System (INIS)

    Dineff, P.; Gospodinova, D.; Kostova, L.; Vladkova, T.; Chen, E.

    2008-01-01

    There has been considerable interest in dielectric barrier air discharge at atmospheric pressure and room temperature over the past decade due to the increased number of industrial applications. New plasma-aided capillary impregnation technology for flame spreading stop and fire protection of porous materials was developed. Research, based on thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC), proves that plasma-chemical surface pre-treatment exert material change on chemical interaction between phosphorus containing flame retardant and wood matrix (Pinus sylvestris, Bulgaria; Pseudotsuga, Canada)

  7. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    Science.gov (United States)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  8. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    Science.gov (United States)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  9. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  10. Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators

    International Nuclear Information System (INIS)

    Corde, S; Thaury, C; Phuoc, K Ta; Lifschitz, A; Lambert, G; Lundh, O; Brijesh, P; Sebban, S; Rousse, A; Faure, J; Malka, V; Arantchuk, L

    2012-01-01

    Betatron x-ray emission in laser plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser–plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half. (paper)

  11. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  12. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges

    International Nuclear Information System (INIS)

    Seo, Sang-Hun; In, Jung-Hwan; Chang, Hong-Young

    2006-01-01

    The spatiotemporal evolution of the electron energy distribution function (EEDF) and of plasma parameters such as the electron density, the electron temperature and the plasma and floating potentials has been investigated using spatially and temporally resolved single Langmuir probe measurements in dc and mid-frequency, short-pulse magnetron discharges with a repetition frequency of 10 kHz and a duty cycle of 10%. In the pulsed discharge of the short duty cycle, a peak electron temperature higher than 10 eV was observed near the cathode fall region during the early phase of the pulse-on, which is about three times higher than the steady-state value of the electron temperature in the dc discharge. The temporal evolution of the measured EEDFs showed the initial efficient electron heating during the early phase of the pulse-on and the subsequent relaxation of electron energy by the inelastic collisions and the diffusive loss. The high-energy electrons generated during the pulse-on phase diffused the downstream region toward the grounded substrate, resulting in a bi-Maxwellian EEDF consisting of the background low-energy electrons and the high-energy electrons. The results of the spatially and temporally resolved probe measurements will be presented and the enhanced efficiency of the electron heating in the short-pulse discharge will be explained on the basis of the global model of a pulsed discharge

  13. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    Science.gov (United States)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  14. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  15. Plasma inhomogeneities near the electrodes of a capacitively-coupled radio-frequency discharge containing dust particles

    International Nuclear Information System (INIS)

    Tawidian, H; Mikikian, M.; Couedel, L.; Lecas, T.

    2011-01-01

    Dusty plasmas can be found in fusion devices. In this paper we analyse a new phenomenon occurring during dust particle growth instabilities and consisting of the appearance of small plasma spheroids in the vicinity of discharge electrodes. Small plasma spheroids are evidenced and analyzed in front of the electrodes of a capacitively-coupled radio-frequency discharge in which dust particles are growing. These regions are characterized by a spherical shape, a slightly enhanced luminosity and are related to instabilities induced by the presence of dust particles. Several types of behaviors are identified and particularly their chaotic appearance or disappearance and their rotational motion along the electrode periphery. Correlations with the unstable behavior of the global plasma glow are performed. These analyses are obtained thanks to high-speed imaging which is the only diagnostics able to evidence these plasma spheroids

  16. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  17. Glow plasma jet - experimental study of a transferred atmospheric pressure glow discharge

    International Nuclear Information System (INIS)

    Guerra-Mutis, Marlon H; U, Carlos V Pelaez; H, Rafael Cabanzo

    2003-01-01

    In this paper we present the experimental study of a glow plasma jet (GPJ) obtained from a transferred atmospheric pressure glow discharge (APGD) operating at 60 Hz. The characterization of the emission spectra for both electrical discharges is presented and the electrical circuit features for APGD generation are discussed. The potentiality of GPJ as a source of active species for depletion of contaminants in liquid hydrocarbon fractions is also established

  18. A model for plasma discharges simulation in Tokamak devices

    International Nuclear Information System (INIS)

    Fonseca, Antonio M.M.; Silva, Ruy P. da; Galvao, Ricardo M.O.; Kusnetzov, Yuri; Nascimento, I.C.; Cuevas, Nelson

    2001-01-01

    In this work, a 'zero-dimensional' model for simulation of discharges in Tokamak machine is presented. The model allows the calculation of the time profiles of important parameters of the discharge. The model was applied to the TCABR Tokamak to study the influence of parameters and physical processes during the discharges. Basically it is constituted of five differential equations: two related to the primary and secondary circuits of the ohmic heating transformer and the other three conservation equations of energy, charge and neutral particles. From the physical model, a computer program has been built with the objective of obtaining the time profiles of plasma current, the current in the primary of the ohmic heating transformer, the electronic temperature, the electronic density and the neutral particle density. It was also possible, with the model, to simulate the effects of gas puffing during the shot. The results of the simulation were compared with the experimental results obtained in the TCABR Tokamak, using hydrogen gas

  19. Myocardial capillary permeability after regional ischemia and reperfusion in the in vivo canine heart. Effect of superoxide dismutase

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Bjerrum, P J; Haunsø, S

    1991-01-01

    coronary artery followed by 1 hour of reperfusion. Myocardial plasma flow rate and capillary extraction of chromium 51-labeled EDTA or technetium 99m-labeled diethylenetriaminepentaacetic acid were measured by the single-injection, residue-detection method before ischemia and 5 and 60 minutes after...... fibrillation in contrast to none in the superoxide dismutase group. Before ischemia, plasma flow rate, myocardial capillary extraction fraction, and PS values were similar in the two groups. Five minutes after the start of reperfusion, plasma flow rate increased significantly (p less than 0.01) in both groups....... In the control group, capillary extraction fraction increased by 12% (p = NS) in spite of the higher plasma flow; these increases in capillary extraction fraction and plasma flow induced a 69% increase in PS (p less than 0.01). In the superoxide dismutase-treated group, capillary extraction fraction decreased...

  20. The role of plasma radius as a condition for sustaining a coaxial discharge at various wave modes

    International Nuclear Information System (INIS)

    Ivanov, K; Bogdanov, T; Benova, E

    2012-01-01

    A gas discharge can be produced and sustained by travelling electromagnetic waves in various geometries: planar, spherical, cylindrical and coaxial. An electromagnetic wave travelling along a dielectric tube can produce plasma outside the tube when a metal rod is placed along the tube axis, which is the typical arrangement of a coaxial surface-wave-sustained discharge (CSWD). The CSWD has been studied intensively both theoretically and experimentally since 1998. In the case of a SWD in cylindrical geometry, plasma is mainly produced and sustained by the azimuthally symmetric waves. In coaxial geometry, there are both experimental and theoretical indications showing that higher wave modes may also produce and sustain plasma under certain conditions. In order to find out these conditions theoretically, we developed a one-dimensional fluid model. The purpose of this work is to investigate theoretically the behavior of wave phase diagrams under various discharge conditions and to find the discharge conditions under which plasma can be produced, as well as those conditions when this is not possible.

  1. Determination of the working conditions of the system for ion extraction from glow discharge plasma

    International Nuclear Information System (INIS)

    Murlak-Stachura, H.; Pilat, M.

    1988-01-01

    The discharge plasma was formed in discharge tube 110 cm long and 5.5 cm in diameter. An extraction probe with a bore 0.2 mm in diameter was on the tube wall about 40 cm from the anode. The probe characteristic was measured at determined pressure and intensity of discharge current. 8 refs., 3 figs. (A.S.)

  2. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    Science.gov (United States)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  3. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    Science.gov (United States)

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  4. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    Science.gov (United States)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  5. New type of discharge-produced plasma source for extreme ultraviolet based on liquid tin jet electrodes

    NARCIS (Netherlands)

    Koshelev, K.N.; Krivtsun, V.M.; Ivanov, V.; Yakushev, O.; Chekmarev, A.; Koloshnikov, V.; Snegirev, E.; Medvedev, Viacheslav

    2012-01-01

    A new approach for discharge-produced plasma (DPP) extreme ultraviolet (EUV) sources based on the usage of two liquid metallic alloy jets as discharge electrodes has been proposed and tested. Discharge was ignited using laser ablation of one of the cathode jets. A system with two jet electrodes was

  6. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  7. Capillary electrophoresis - inductively coupled plasma mass spectrometry (CE-ICPMS) coupling to assess pentavalent actinides thermodynamic constants

    International Nuclear Information System (INIS)

    Topin, S.; Baglan, N.; Aupiais, J.

    2009-01-01

    Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)

  8. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    Science.gov (United States)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  9. [Automatic adjustment control system for DC glow discharge plasma source].

    Science.gov (United States)

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  10. Charged particles beams measurements in plasma focus discharges

    International Nuclear Information System (INIS)

    Jakubowski, L.; Sadowski, M.; Zebrowski, J.

    2001-01-01

    Experimental studies performed with many Plasma-Focus (PF) facilities have shown that simultaneously with the emission of X-ray pulses and intense relativistic electron beams (REBs) there also appears the emission of pulsed ion streams of a relatively high energy (up to several MeV). Such ions are emitted mainly along the z-axis of the PF discharge, although the ion angular distribution is relatively wide. From PF discharges with deuterium filling fast neutrons produced by nuclear fusion reactions are also emitted. The paper concerns studies of the energetic ion beams and their correlation with the pulsed REBs. Time-integrated measurements were performed with an ion pinhole camera equipped with solid-state nuclear track detectors (SSNTDs), and time-resolved studies were carried out with a scintillation detector, enabling the determination of an ion energy spectrum on the basis of the time-of-flight (TOF) technique. (author)

  11. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  12. V-I curves and plasma parameters in a high density DC glow discharge generated by a current-source

    International Nuclear Information System (INIS)

    Granda-Gutierrez, E E; Lopez-Callejas, R; Piedad-Beneitez, A de la; BenItez-Read, J S; Pacheco-Sotelo, J O; Pena-Eguiluz, R; A, R Valencia; Mercado-Cabrera, A; Barocio, S R

    2008-01-01

    Nitrogen DC glow discharges, conducted in a cylindrical geometry, have been characterized using a new current-source able to provide 10 -3 - 3 A for the sustainment of the discharge, instead of a conventional voltage-source. The V-I characteristic curves obtained from these discharges were found to fit the general form i(v) = A(p)v k(p) , whereby the plasma itself can be modeled as a voltage-controlled current-source. We conclude that the fitting parameters A and k, which mainly depend on the gas pressure p, are strongly related to the plasma characteristics, so much so that they can indicate the pressure interval in which the maximum plasma density is located, with values in the order of 10 16 m -3 at reduced discharge potential (300-600 V) and low working pressure (10 -1 - 10 1 Pa)

  13. A contoured gap coaxial plasma gun with injected plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, F. Douglas; Case, Andrew; Messer, Sarah J.; Bomgardner, Richard II; Phillips, Michael W.; Brockington, Samuel; Elton, Raymond [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States)

    2009-08-15

    A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 {mu}g of plasma with density above 10{sup 17} cm{sup -3} to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 {mu}g has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.

  14. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2014-01-01

    Self-organization of filaments in dielectric-barrier discharges (DBDs) probably has many origins. However, the dominant cause is proposed to be the accumulation of charge on the surfaces of the bounding dielectrics that reinforces successive discharge pulses to occur at the same locations. A secondary cause is the electrostatic repulsion of individual plasma filaments. Self-organization typically develops over many discharge pulses. In this paper, we discuss the results of a computational investigation of plasma filaments in overvoltage DBDs that, under select conditions, display self-organized patterns (SOPs) of plasma density during a single discharge pulse. (Overvoltage refers to the rapid application of a voltage in excess of the quasi-dc breakdown voltage.) The origin of the SOPs is a synergistic relationship between the speed of the surface-ionization waves that propagate along each dielectric and the rate at which avalanche occurs across the gap. For our test conditions, SOPs were not observed at lower voltages and gradually formed at higher voltages. The same conditions that result in SOPs, i.e. the application of an overvoltage, also produce more diffuse discharges. A transition from a single narrow filament to a more diffuse structure was observed as overvoltage was approached. The sensitivity of SOPs to the orientation and permittivity of the bounding dielectrics is discussed. (paper)

  15. The determination of transition probabilities with an inductively-coupled plasma discharge

    International Nuclear Information System (INIS)

    Nieuwoudt, G.

    1984-03-01

    The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement

  16. Application of Atmospheric Dielectric Barrier Discharge Plasma for Polyethylene Powder Modification

    International Nuclear Information System (INIS)

    Pichal, J.; Aubrecht, L.; Pichal, J.; Hladik, J.; Spatenka, P.; Spatenka, P.

    2006-01-01

    Paper refers about a novel plasma reactor exploiting the dielectric barrier discharge (DBD) burning in air at atmospheric pressure by ambient temperature and its usability tests. Test modifications were performed with the high density polyethylene powder Borealis CB 9155-01. Modification effect was evaluated by means of dynamic capillarity rising measurements. Tests proved significant powder capillarity changes. The existence of powder surface changes was also confirmed by ESCA tests. Modification aging effect was remarkably small, hence modification effect is very time stable. In comparison with other in literature described apparatus used for this purpose the plasma reactor is of a simple construction and needs no vacuum equipment. Its operation costs are low. Described plasma modification method seems to be an appropriate method for plasma modification of polyethylene powder on the industrial scale

  17. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    Science.gov (United States)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  18. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  19. A holographic method for investigating cylindrical symmetry plasmas resulting from electric discharges

    International Nuclear Information System (INIS)

    Rosu, N.; Ralea, M.; Foca, M.; Iova, I.

    1992-01-01

    A new method based on holographic interferometry in real time with reference fringes for diagnosing gas electric discharges in cylindrical symmetry tubes is presented. A method for obtaining and quantitatively investigating interferograms obtained with a video camera is described. By studying the resulting images frame by frame and introducing the measurements into an adequate computer programme one gets a graphical recording of the radial distribution of the charged particle concentration in the plasma in any region of the tube at a given time, as well as their axial distribution. The real time evolution of certain phenomena occurring in the discharge tube can also be determined by this non-destructive method. The method is used for electric discharges in Ar at average pressures in a discharge tube with hollow cathode effect. (Author)

  20. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  1. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  2. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    International Nuclear Information System (INIS)

    Diaz A, Laura V.; Pacheco S, Joel O.; Pacheco P, Marquidia; Monroy G, Fabiola; Emeterio H, Miguel; Ramos F, Fidel

    2006-01-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment

  3. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    Science.gov (United States)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  4. Development of soft ionization using direct current pulse glow discharge plasma source in mass spectrometry for volatile organic compounds analysis

    Science.gov (United States)

    Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki

    2018-01-01

    This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.

  5. Two-Phase Flow Regimes and Discharge Characteristics of a Plasma Electrohydrodynamic Atomization

    International Nuclear Information System (INIS)

    Sun Ming; Borocilo, D.; Harvel, G. D.; Chang, J. S.; Ibe, M.; Matsubara, H.; Hirata, H.; Fanson, P.

    2011-01-01

    Experimental investigation was conducted to study the flow regimes and discharge characteristics of plasma electrohydrodynamic atomization (EHDA) for decane (C 10 H 22 ) under pulsed applied negative voltage. The experimental parameters were set as the flow rate of decane from 0 mL/min to 10 mL/min and the DC charging voltage from DC 0 V to 12 V with a pulse repetition rates of 200 Hz. The flow regime of decane was observed and the volume-to-electrical charge ratio was measured. Unlike a conventional EHDA system, the results show that a corona discharge was initiated at the edge of the hollow electrode at a specific corona on-set voltage of -17 kV or -20 kV in the case with or without decane flow, respectively. This phenomenon was defined as plasma EHDA.

  6. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, M.; Samolov, A.; Popovic, S.; Vuskovic, L.; Godunov, A. [Department of Physics, Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529 (United States); Cuckov, F. [Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowing microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.

  7. Closed form analytic solutions describing glow discharge plasma

    International Nuclear Information System (INIS)

    Pai, S.T.; Guo, X.M.; Zhou, T.D.

    1996-01-01

    On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics

  8. Theoretical and experimental identification of a plasma in a gaseous discharge between two parallel plates electrodes

    International Nuclear Information System (INIS)

    Delgado Aparicio Villaran, Luis Felipe; Chaname D, Julio

    1996-01-01

    This work allows a basic approach to the identification of a gaseous discharge plasma (of air, hydrogen, argon or any other gas) between two metallic electrodes separated by a variable distance 'd' in the range of 1 to 17 cm. The discharge zone identification (anodic and cathodic regions), the tabulation of the characteristic curves V (volts), versus vs I (m A), and V (Volts) versus pd (Torr x cm), as well the implementation of some electric probes, will characterize this plasma. (author)

  9. Plasma actuators for active flow control based on a glow discharge

    International Nuclear Information System (INIS)

    Kühn, M.; Kühn-Kauffeldt, M.; Schein, J.; Belinger, A.

    2017-01-01

    In this work a glow discharge based active flow control for high flow velocities and low Reynolds numbers is presented. Unlike common plasma actuators such as dielectric barrier discharge (DBD) or spark jets, this actuator uses small impulse bits at frequencies. The actuator is optimized for frequencies up to 40 kHz to counter Tollmien Schlichting wave effects and so reduce overall air foil drag. Several measurements to prove the non-eroding effect of the actuator and the electrical properties were performed. It was found that the actuator is capable of operating at high frequencies without measurable erosion. (paper)

  10. No-moving-part electro/fluidic transducer based on plasma discharge effect

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Šonský, Jiří

    2015-01-01

    Roč. 232, August (2015), s. 20-29 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : transducer * fluidic * plasma discharge Subject RIV: BK - Fluid Dynamics Impact factor: 2.201, year: 2015 http://www.sciencedirect.com/science/article/pii/S092442471500206X

  11. A Multicell Converter Model of DBD Plasma Discharges

    International Nuclear Information System (INIS)

    Flores-Fuentes, A. A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia A, R.; Barocio, S. R.; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.

    2006-01-01

    A compact Matlab model of plasma discharges in a DBD reactor consisting of two parallel electrode plates with a small gap and a thin dielectric sheet between them is reported. Its DBD plasma is modelled as a voltage controlled current-source switched on when the voltage across the gap exceeds the breakdown voltage. A three cell voltage-source inverter, configured in half-bridge, has been used as a power supply. This configuration has an excellent performance when operating as an open-loop. The distribution of total energy between a large number of low power converters proofs to be advantageous, allowing an efficient high power drive. Simulation results show that the current source and its output current tend to follow an exponential behaviour. A phenomenological characteristic of the voltage-current behaviour of DBD is then described by power laws with different voltage exponent function values

  12. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    Science.gov (United States)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  13. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    Science.gov (United States)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  14. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    International Nuclear Information System (INIS)

    Wang Zhaojun; Jiang Song; Liu Kefu

    2014-01-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%. (plasma technology)

  15. A simplified MHD model of capillary Z-Pinch compared with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shapolov, A.A.; Kiss, M.; Kukhlevsky, S.V. [Institute of Physics, University of Pecs (Hungary)

    2016-11-15

    The most accurate models of the capillary Z-pinches used for excitation of soft X-ray lasers and photolithography XUV sources currently are based on the magnetohydrodynamics theory (MHD). The output of MHD-based models greatly depends on details in the mathematical description, such as initial and boundary conditions, approximations of plasma parameters, etc. Small experimental groups who develop soft X-ray/XUV sources often use the simplest Z-pinch models for analysis of their experimental results, despite of these models are inconsistent with the MHD equations. In the present study, keeping only the essential terms in the MHD equations, we obtained a simplified MHD model of cylindrically symmetric capillary Z-pinch. The model gives accurate results compared to experiments with argon plasmas, and provides simple analysis of temporal evolution of main plasma parameters. The results clarify the influence of viscosity, heat flux and approximations of plasma conductivity on the dynamics of capillary Z-pinch plasmas. The model can be useful for researchers, especially experimentalists, who develop the soft X-ray/XUV sources. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  17. TOPICAL REVIEW: Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    Science.gov (United States)

    Chabert, P.

    2007-02-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries.

  18. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.; Hadas, Y.; Schamiloglu, E.

    2015-01-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed

  19. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    Science.gov (United States)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  20. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    Science.gov (United States)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Thomas, Flint; Kozlov, Alexey

    2008-11-01

    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  2. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    Energy Technology Data Exchange (ETDEWEB)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.; Kovalsky, S. S.; Lopatin, I. V.; Schanin, P. M.; Yakovlev, V. V. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation)

    2017-01-15

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{sup 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.

  3. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    International Nuclear Information System (INIS)

    Li Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-01-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ∼25 μs after the discharge power termination

  4. Excitation and absorption of electromagnetic waves in helicon discharges by plasma immersed antennas

    International Nuclear Information System (INIS)

    Cho, S.

    1998-01-01

    Excitation and absorption of electromagnetic waves are numerically studied for helicon discharges driven by antennas immersed in the plasma. The Maxwell equations are reduced to a set of ordinary differential equations, which are solved for radially inhomogeneous plasmas by using the shooting method. Numerical results show that the plasma resistance is much larger and its peaks due to eigenmode resonance appear at higher densities for the immersed antenna case than for the case of the antenna located outside the plasma under otherwise same conditions. It is also found that the m=-1 mode can be excited in the nonuniform plasma with an inner antenna, while it can be hardly excited when the plasma is driven by an outer antenna. In addition, the fast wave approximation neglecting the electron inertia is discussed. (author)

  5. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    International Nuclear Information System (INIS)

    Shen Yongjun; Ding Jiandong; Lei Lecheng; Zhang Xingwang

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10 −9 mol/L and 0.61 × 10 −9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10 −2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10 −2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation

  6. Travelling-wave-sustained discharges

    International Nuclear Information System (INIS)

    Schlueter, Hans; Shivarova, Antonia

    2007-01-01

    This review is on discharges maintained by travelling waves: new plasma sources, discovered in 1974 and considered as a prototype of the gas discharges according to their definition as nonlinear systems which unify in a self-consistent manner plasmas and fields. In the presentation here of the fluid-plasma models of the diffusion-controlled regime of the travelling-wave-sustained discharges (TWSDs), the basic features of the discharge maintenance-the discharge self-consistency and the electron heating in the high-frequency field-are stressed. Operation of stationary and pulsed discharges, discharge maintenance without and in external magnetic fields as well as discharge production in different gases (argon, helium, helium-argon gas mixtures and hydrogen) are covered. Modulation instability of diffusion-controlled discharges and discharge filamentation at higher gas pressures are also included in the review. Experimental findings which motivate aspects of the reported modelling are pointed out

  7. [Applications of atomic emission spectrum from liquid electrode discharge to metal ion detection].

    Science.gov (United States)

    Mao, Xiu-Ling; Wu, Jian; Ying, Yi-Bin

    2010-02-01

    The fast and precise detection of metal ion is an important research project concerning studies in diverse academic fields and different kinds of detecting technologies. In the present paper, the authors review the research on atomic emission spectrum based on liquid electrode discharge and its applications in the detection of metal ion. In the first part of this paper the principles and characteristics of the methods based on electrochemistry and spectroscopy were introduced. The methods of ion-selective electrode (ISE), anodic stripping voltammetry, atomic emission spectrum and atomic absorption spectrum were included in this part and discussed comparatively. Then the principles and characteristics of liquid electrode spectra for metal ion detection were introduced. The mechanism of the plasma production and the characteristics of the plasma spectrum as well as its advantages compared with other methods were discussed. Secondly, the authors divided the discharge system into two types and named them single liquid-electrode discharge and double-liquid electrode respectively, according to the number of the liquid electrode and the configuration of the discharge system, and the development as well as the present research status of each type was illustrated. Then the characteristics and configurations of the discharge systems including ECGD, SCGD, LS-APGD and capillary discharge were discussed in detail as examples of the two types. By taking advantage of the technology of atomic emission spectrum based on liquid electrode discharge, the detecting limit of heavy metals such as copper, mercury and argent as well as active metal ions including sodium, potass and magnesium can achieve microg x L(-1). Finally, the advantages and problems of the liquid-electrode discharge applied in detection of metal ion were discussed. And the applications of the atomic emission spectrum based on liquid electrode discharge were prospected.

  8. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    Science.gov (United States)

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  9. Short- and long-term plasma phenomena in a HiPIMS discharge

    International Nuclear Information System (INIS)

    Poolcharuansin, P; Bradley, J W

    2010-01-01

    Using a time-resolved Langmuir probe the temporal evolution of the bulk plasma parameters in a high-power impulse magnetron sputtering (HiPIMS) discharge was investigated for a number of different discharge conditions. The magnetron was operated in argon between 0.5 and 1.6 Pa with a titanium target and with peak target power densities up to 1000 W cm -2 . The pulse width and repetition rate were held constant at 100 μs and 100 Hz, respectively. Using an OML analysis as well as a Druyvesteyn formulation, the electron densities, effective temperatures and energy distribution functions were obtained throughout the pulse period (0-9 ms), including a detailed study of the first 10 μs, which was achieved with a temporal resolution better than 0.5 μs. In the initial phase of the voltage pulse (t ∼ 1-4 μs), three distinct groups of electrons (indistinguishable from Maxwellian electrons) were observed, namely 'super-thermal', 'hot' and 'cold' populations with effective temperatures of 70-100 eV, 5-7 eV and 0.8-1 eV, respectively. After 4 μs these groups become energetically indistinguishable from each other to form a single distribution with an electron temperature that decays from about 5 to 3 eV during the rest of the pulse on-time. The presence of the 'super-thermal' electron group pushes the probe floating potential to a very negative value (significantly deeper than -95 V) during the initial period of the pulse. In the off-time, the electron density decays with two-fold characteristic times, revealing initially short-term (30-40 μs) and ultimately long-term (3-4 ms) decay rates. These long decay times lead to a relative high density remnant plasma (2 x 10 9 cm -3 ) at the end of the off-time, which serves to seed the next voltage pulse. The electron temperature and plasma potential also exhibit two-fold decay in the off-time, but with typically somewhat faster decays, particularly for the long-term decay (100-500 μs) up to the end of the off-time. The time

  10. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  11. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    International Nuclear Information System (INIS)

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  12. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    International Nuclear Information System (INIS)

    Shimizu, T; Zimmermann, J L; Morfill, G E

    2011-01-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O 2 /N 2 and H 2 O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  13. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Science.gov (United States)

    Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.

    2011-02-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  14. Application of capacitively coupled rf discharge plasma for sterilization of polymer materials used in ophthalmology

    International Nuclear Information System (INIS)

    Abdullin, I.Sh.; Avetisov, S.E.; Lipatov, D.V.; Rybakova, E.G.; Bragin, V.E.; Bykanov, A.N.; Kamarentsev, E.N.

    1996-01-01

    The sterilization effect of capacitively coupled rf discharge plasma treatment of contact lenses was investigated. There were used two types of polymer: highly hydrophilic polymer with water content 76% (Navelen-76) and poly-methylmethacrylate (PMMA). There was demonstrated the possibility of effective sterilization by RF discharge plasma of a set of polymer materials used in ophthalmology. The best results were obtained for hard contact lenses. There was perfect sterilization in this case. There were not perfect sterilization in some cases of soft contact lenses treatment. It may be caused by porous structure of the external layers of this material and limited thickness of the sterilization layer. (author)

  15. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  16. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  17. Accuracy of the HumaSensplus point-of-care uric acid meter using capillary blood obtained by fingertip puncture.

    Science.gov (United States)

    Fabre, Stéphanie; Clerson, Pierre; Launay, Jean-Marie; Gautier, Jean-François; Vidal-Trecan, Tiphaine; Riveline, Jean-Pierre; Platt, Adam; Abrahamsson, Anna; Miner, Jeffrey N; Hughes, Glen; Richette, Pascal; Bardin, Thomas

    2018-05-02

    The uric acid (UA) level in patients with gout is a key factor in disease management and is typically measured in the laboratory using plasma samples obtained after venous puncture. This study aimed to assess the reliability of immediate UA measurement with capillary blood samples obtained by fingertip puncture with the HumaSens plus point-of-care meter. UA levels were measured using both the HumaSens plus meter in the clinic and the routine plasma UA method in the biochemistry laboratory of 238 consenting diabetic patients. HumaSens plus capillary and routine plasma UA measurements were compared by linear regression, Bland-Altman plots, intraclass correlation coefficient (ICC), and Lin's concordance coefficient. Values outside the dynamic range of the meter, low (LO) or high (HI), were analyzed separately. The best capillary UA thresholds for detecting hyperuricemia were determined by receiver operating characteristic (ROC) curves. The impact of potential confounding factors (demographic and biological parameters/treatments) was assessed. Capillary and routine plasma UA levels were compared to reference plasma UA measurements by liquid chromatography-mass spectrometry (LC-MS) for a subgroup of 67 patients. In total, 205 patients had capillary and routine plasma UA measurements available. ICC was 0.90 (95% confidence interval (CI) 0.87-0.92), Lin's coefficient was 0.91 (0.88-0.93), and the Bland-Altman plot showed good agreement over all tested values. Overall, 17 patients showed values outside the dynamic range. LO values were concordant with plasma values, but HI values were considered uninterpretable. Capillary UA thresholds of 299 and 340 μmol/l gave the best results for detecting hyperuricemia (corresponding to routine plasma UA thresholds of 300 and 360 μmol/l, respectively). No significant confounding factor was found among those tested, except for hematocrit; however, this had a negligible influence on the assay reliability. When capillary and routine

  18. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  19. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  20. Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD Plasma Treatment of Polypropylene Films

    Directory of Open Access Journals (Sweden)

    Lukas JW Seidelmann

    2017-03-01

    Full Text Available Atmospheric pressure plasma treatment of the surface of a polypropylene film can significantly increase its surface energy and, thereby improve the printability of the film. A laboratory-scale dielectric barrier discharge (DBD system has therefore been developed, which simulates the electrode configuration and reel-to-reel web transport mechanism used in a typical industrial-scale system. By treating the polypropylene in a nitrogen discharge, we have shown that the water contact angle could be reduced by as much as 40° compared to the untreated film, corresponding to an increase in surface energy of 14 mNm−1. Ink pull-off tests showed that the DBD plasma treatment resulted in excellent adhesion of solvent-based inks to the polypropylene film.

  1. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    International Nuclear Information System (INIS)

    Chen Kang; Liang Hua

    2016-01-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. (paper)

  2. Influence of argon/oxygen atmospheric dielectric barrier discharge treatment on desizing and scouring of poly (vinyl alcohol) on cotton fabrics

    International Nuclear Information System (INIS)

    Peng Shujing; Gao Zhiqiang; Sun Jie; Yao Lan; Qiu Yiping

    2009-01-01

    The effect of argon/oxygen atmospheric dielectric barrier discharge (DBD) treatment on desizing and scouring of polyvinyl alcohol (PVA) on cotton fabric was studied with respect to the treatment duration of 1, 2, 4 and 6 min. X-ray photoelectron spectroscopy (XPS) analysis indicated that oxygen concentration increased for the plasma treated PVA film. Solubility measurement revealed that plasma treatment increased PVA solubility in hot washing but less effective in cold washing. Scanning electron microscopy (SEM) showed that the fiber surfaces were as clean as unsized fibers after 6 min treatment followed by hot washing. Wickability analysis indicated that the capillary heights of plasma treated fabrics increased significantly as the plasma treatment duration increased. The results of the yarn tensile strength test showed that the plasma treatment did not have a negative effect on fabric tensile strength.

  3. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    Science.gov (United States)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  4. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  5. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  6. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    Science.gov (United States)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  7. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    Science.gov (United States)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  8. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    International Nuclear Information System (INIS)

    Ruma; Aoki, N; Hosseini, S H R; Sakugawa, T; Akiyama, H; Lukes, P; Spetlikova, E

    2013-01-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz. (paper)

  9. Periodic long-range transport in a large volume dc glow discharge dusty plasma

    International Nuclear Information System (INIS)

    Thomas, Edward Jr.; Amatucci, William E.; Compton, Christopher; Christy, Brian; Jackson, Jon David

    2003-01-01

    In an earlier paper, the authors reported on observations of a variety of particle transport phenomena observed in DUPLEX--the DUsty PLasma EXperiment at the Naval Research Laboratory [E. Thomas, Jr., W. E. Amatucci, C. Compton, and B. Christy, Phys. Plasmas 9, 3154 (2002)]. DUPLEX is a large, transparent polycarbonate cylinder that is 40 cm in radius and 80 cm in height. dc glow discharge argon plasmas are generated in DUPLEX. In this paper, the authors expand upon one particular feature of particle transport in DUPLEX, the long-range (i.e., greater than 15 cm), periodic (T∼2.5 min) transport of suspended alumina particles through the plasma. A detailed description of this particle motion through the plasma is presented. Finally, a qualitative model describing the phenomena that lead to this transport is also given

  10. Modeling of inhomogeneous mixing of plasma species in argon–steam arc discharge

    Czech Academy of Sciences Publication Activity Database

    Jeništa, Jiří; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A.B.

    2018-01-01

    Roč. 51, č. 4 (2018), č. článku 045202. ISSN 0022-3727 R&D Projects: GA ČR(CZ) GA15-19444S; GA ČR(CZ) GC17-10246J Institutional support: RVO:61389021 Keywords : arc * combined diffusion coefficients * (in)homogeneous mixing * mass (mole) fraction * hybrid-stabilized electric arc Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.588, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6463/aa9f6f/meta

  11. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  12. INFLUENCE OF VACUUM ARC PLASMA EVAPORATOR CATHODE GEOMETRY OF ON VALUE OF ADMISSIBLE ARC DISCHARGE CURRENT

    Directory of Open Access Journals (Sweden)

    I. A. Ivanou

    2015-01-01

    Full Text Available An analysis of main design parameters that determine a level of droplet formation intensity at the generating stage of plasma flow has been given in the paper. The paper considers the most widely used designs of water cooled consumable cathodes. Ti or Ti–Si and Fe–Cr alloys have been taken as a material for cathodes. The following calculated data: average ionic charge Zi for titanium plasma +1.6; for «titanium–silicon plasma» +1.2, an electronic discharge 1.6022 ⋅ 10–19 C, an ion velocity vi = 2 ⋅ 104 m/s, an effective volt energy equivalent of heat flow diverted in the cathode Uк = 12 V, temperature of erosion cathode surface Тп = 550 К; temperature of the cooled cathode surface То = 350 К have been accepted in order to determine dependence of a maximum admissible arc discharge current on cathode height. The calculations have been carried out for various values of the cathode heights hк (from 0.02 to 0.05 m. Diameter of a target cathode is equal to 0.08 m for a majority of technological plasma devices, therefore, the area of the erosion surface is S = 0.005 m2.A thickness selection for a consumable target cathode part in the vacuum arc plasma source has been justified in the paper. The thickness ensures formation of minimum drop phase in the plasma flow during arc cathode material evaporation. It has been shown that a maximum admissible current of an arc discharge is practically equal to the minimum current of stable arcing when thickness of the consumable cathode part is equal to 0.05 m. The admissible discharge current can be rather significant and ensure high productivity during coating process with formation of relatively low amount of droplet phase in the coating at small values of hк.

  13. Plasma characteristics in non-sinusoidally excited CCP discharges

    Science.gov (United States)

    Lafleur, Trevor; Booth, Jean-Paul

    2012-10-01

    Using particle-in-cell (PIC) simulations we perform a characterization of the plasma response to positive pulse-type voltage excitations (with a repetition frequency of 13.56 MHz) in a geometrically symmetric CCP reactor (with a gap length of 2 cm) operated with argon (for pressures between 20-500 mTorr). Use of these non-sinusoidal waveforms generates an electrical asymmetry effect in the system, which necessitates the formation of a DC bias. This DC bias, together with the shape of the voltage waveforms used, produces a number of new phenomena that are not present in typical sinusoidal discharges: (1) the plasma density and ion flux can be increased as the pulse width is reduced, (2) a significant asymmetry in the ion fluxes to the powered and grounded electrodes develops as the pressure increases, (3) the average ion energy striking the grounded electrode remains low and approximately constant as the pulse width decreases, and (4) the sheath at the grounded electrode never fully collapses; electrons are no longer lost in sharp pulses, but escape essentially throughout the rf cycle. Effects (1) and (3) above offer the possibility for a new form of control in these types of discharges, where the ion flux can be increased while the ion energy on the grounded electrode can be kept small and essentially constant. This effect has recently been exploited to control the crystallinity of silicon thin films [1], where the low ion bombarding energy was found to improve the quality of films grown. [4pt] [1] Johnson E V, Pouliquen S, Delattre P A, and Booth J P, J. Non-Cryst. Solids 2012, in press.

  14. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  15. Characteristics of two types of beam plasma discharge in a laboratory experiment

    International Nuclear Information System (INIS)

    Boswell, R.W.; Kellogg, P.J.

    1983-01-01

    Experiments on the Beam Plasma Discharge (BPD) using an electron beam travelling along a magnetic field have been carried out in a large volume laboratory vacuum chamber. Two different types of BPD have been observed, and scaling laws for varying neutral gas pressure, axial magnetic field, interaction length and electron flux, deduced. The second type of BPD occurs when the beam current is increased well above the threshold for the first type. The transition from the first type to the second, like the ignition of the first, is distinguished by abrupt changes of luminosity, discharge diameter, and wave emission signature

  16. Improvement of Technological Properties of a Vegetal Tanning Agent in Gas Discharge Plasma

    Science.gov (United States)

    Khairullin, A. K.; Voznesensky, E. F.; Rakhmatullina, G. R.; Sabirov, A. M.; Tikhonova, N. V.

    2017-11-01

    The article considers the possibility of modification of the vegetal tanning agent quebracho in the plasma of a radio-frequency induction discharge at low pressure. It is established that plasma treatment leads to a decrease in the size of colloid fractions and a decrease in the molecular weight, while the functionality of the vegetal tanning agent is preserved. Application of the obtained product in the process of leather retanning allows improving its physical, mechanical and consumer properties.

  17. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  18. Measurement of rimantadine in plasma by capillary gas chromatography/mass spectrometry with a deuterium-labeled internal standard

    International Nuclear Information System (INIS)

    Herold, D.A.; Anonick, P.K.; Kinter, M.; Hayden, F.G.

    1988-01-01

    Rimantadine is a synthetic antiviral agent used in prophylaxis and in treating the early stages of uncomplicated influenza A illness. We describe a stable isotope-dilution assay involving capillary gas chromatography/mass spectrometry. We used 200 ng of d3-rimantadine, added to 1 mL of plasma, as the internal standard. The rimantadine was extracted from the plasma with a Bond-Elut CN column, the column was washed with water, and the rimantadine was eluted with methanol, dried, and treated to form the t-butyldimethylsilyl derivative. The mass spectrometer was operated in the selected ion monitoring mode. Ions at m/z 236 and m/z 239 were monitored, corresponding to the loss of C4H9 from the rimantadine derivative and d3-rimantadine, respectively. Within-run precision (CVs) ranged from 8.9% at 29 micrograms/L to 3.2% at 1666 micrograms/L. Corresponding data for between-run precision were 5.4% and 1.7%. Treated volunteers (n = 86) provided plasma samples with a concentration range of 153 to 1127 micrograms/L. This simplified method allows rapid, precise assay of rimantadine in plasma

  19. The Plasma Discharge System For Effective Sterilization Of Water And Solid Surfaces

    International Nuclear Information System (INIS)

    Senturk, K.

    2010-01-01

    The different areas such as medicine, surgery, food production need efficient sterilization system since they are directly related to human health. In this work a new plasma system is described in order to present its effectiveness in sterilization. This is a different method from conventional methods such as: chemicals and heat addition, UV irradiation etc. The developed plasma system produces cold plasma working under atmospheric pressure. To generate the plasma both AC and DC high voltage power supplies were used. The developed system is cheap and very effective for sterilization. The light emission for both AC and DC coronas for the plasmas were investigated to understand the nature of generated plasma ionization. Different parameters like temperature, voltage, application time were changed during the plasma application and the optimization for killing the micro-organisms were investigated. To understand the biological effect of plasma on the organisms comparisons were done by using the scanning electron microscope and absorption spectrometer. The plasma was applied on the bacteria like Escherichia coli, Bacillus subtilis, Streptococcus mutans , the yeasts such as Candida albicans, and green algae. The efficiency, the non toxic nature, the affordable price make this plasma discharge method a very efficient one for sterilization.

  20. Purification of water by bipolar pulsed discharge plasma combined with TiO2 catalysis

    International Nuclear Information System (INIS)

    Zhang, Yongrui; Ma, Wenchang; Zhang, Xian; Wang, Liming; Zhang, Ruobing; Guan, Zhicheng

    2013-01-01

    In the process of water treatment by bipolar pulsed discharge plasma, there are not only the chemical effects such as the cold plasma, but also the physical effects such as the optical radiation. The energy of the optical radiation can be used by photocatalyst. Therefore, the effect of the photocatalyst to the degradation of the organic pollutant was investigated using a packed bed reactor by bipolar pulsed discharge in the air-liquid-solid mixture. The nanoparticle TiO 2 photocatalyst was obtained using the sol-gel method and the typical dye solution Indigo Carmine was chosen as the degradation target to test the catalytic effect of the nanoparticle TiO 2 photocatalyst. Experiment results proved that the degradation efficiency of the Indigo Carmine solution was increased by a certain extent with the TiO 2 photocatalyst. It was totally decolorized within 3 minutes by bipolar pulsed discharge in the condition that the peak voltage was 30 kV and the air flow was 1.0 m 3 h −1 .

  1. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T; Zimmermann, J L; Morfill, G E, E-mail: tshimizu@mpe.mpg.de [Max-Planck Institute for Extraterrestrial Physics, Giessenbachstr., 85748 Garching (Germany)

    2011-02-15

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O{sub 2}/N{sub 2} and H{sub 2}O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  2. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  3. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  4. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    At Laser Plasma Division, RRCAT, a program on high voltage capillary discharge had been started. The system consists of a 400 kV Marx bank, water line capacitor, spark gap and capillary chamber. The initial results of the emission of intense short soft X-ray pulses (5–10 ns) from the capillary discharge are reported.

  5. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    International Nuclear Information System (INIS)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2011-01-01

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3–6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3–4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: ► This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. ► A Boltzmann distribution is studied among iron lines of various excitation levels. ► We find an overpopulation of the high-lying energy levels from the normal distribution. ► It is caused through Penning-type collision of iron atom with argon metastable atom.

  6. Global magnetospheric perturbations stimulated by the plasma wave discharge in the lower ionosphere

    International Nuclear Information System (INIS)

    Markov, G.A.; Chugunov, Yu.V.

    1994-01-01

    In this paper we discuss a new method of controlled stimulation of global perturbations and the diagnostics of plasma physical processes in the ionosphere and the magnetosphere of the Earth. The method was realized with a series of rocket experiments by means of excitation of the radio frequency plasma wave discharge in the near field of the dipole antenna. We focus considerable attention on the results obtained in these experiments testifying to the wide choice and diversity of potentialities of this new method

  7. Positive-column plasma studied by fast-flow glow discharge mass spectrometry: Could it be a 'Rydberg gas?'

    International Nuclear Information System (INIS)

    Mason, Rod S.; Miller, Pat D.; Mortimer, Ifor; Mitchell, David J.; Dash, Neil A.

    2003-01-01

    Ions created from the fast-flowing positive column plasma of a glow discharge were monitored using a high voltage magnetic sector mass spectrometer. Since the field gradient and sheath potentials created by the plasma inside the source opposed cation transfer, it is inferred that the ions detected were the field-ionized Rydberg species. This is supported by the mass spectral changes which occurred when a negative bias was applied to the sampling aperture and by the contrasting behavior when attached to a quadrupole analyzer. Reaction with H 2 (titrated into the flowing plasma) quenched not only the ionization of discharge gas Rydberg atoms but also the passage of electric current through the plasma, without significant changes to the field and sheath potentials. Few 'free' ions were present and the lifetimes of the Rydberg atoms detected were much longer than seen in lower pressure experiments, indicating additional stabilization in the plasma environment. The observations support the model of the flowing plasma, given previously [R. S. Mason, P. D. Miller, and I. P. Mortimer, Phys. Rev. E 55, 7462 (1997)] as mainly a neutral Rydberg atom gas, rather than a conventional ion-electron plasma

  8. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds.

    Science.gov (United States)

    Kim, Je-Wook; Puligundla, Pradeep; Mok, Chulkyoon

    2017-01-01

    Different pathogenic microorganisms have been reported to cause sprouts-associated outbreaks. In order to sterilise and enhance the germination of seeds, non-thermal plasma has been increasingly investigated in the field of agricultural science as an alternative to the traditional pre-sowing seed treatments. This work aimed to evaluate the effect of corona discharge plasma jet (CDPJ) on disinfection of the natural bio-contaminants of broccoli seed and also studied the plasma effect on sprout seed germination rate and physico-chemical properties of sprouts. Aerobic bacteria, moulds and yeasts, B. cereus, E. coli, Salmonella spp. were detected on the broccoli seed surface. After 0-3 min treatment using CDPJ, the detected microorganisms were reduced in the range of 1.2-2.3 log units. Inactivation patterns were better explained using pseudo-first-order kinetics. The plasma treatment of seeds up to 2 min exhibited a positive effect on germination rate, seedling growth. The physico-chemical and sensory characteristics of sprouts were unaffected due to the CDPJ treatment of their respective seeds. Corona discharge plasma jet can potentially be used for microbial decontamination of broccoli seeds. In addition, the plasma treatment of broccoli sprout seeds has enabled a significant enhancement in their germination rate and seedling growth without compromising physico-chemical and sensory characteristics of their corresponding sprouts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Discharge time dependence of a solution plasma process for colloidal copper nanoparticle synthesis and particle characteristics

    International Nuclear Information System (INIS)

    Pootawang, Panuphong; Saito, Nagahiro; Lee, Sang Yul

    2013-01-01

    In this study, we investigate a new synthetic route, termed the solution plasma process, for the synthesis of colloidal copper nanoparticles (CuNPs) in the presence of an amide and acid capping agent. Gelatin and ascorbic acid were selected as the capping agents to protect the particles against coalescence and oxidation side reaction. Using a high voltage power supply, CuNPs were rapidly formed by 1 min after the discharge. The size and shape of the CuNPs were dependent on the discharge time and were clearly influenced by the effect of the capping agents under two characteristics of the discharge medium (pH and temperature). With a long discharge time, the CuNP size tended to decrease with the formation of anisotropic particle morphologies: spherical, cubic, hexagonal, triangular and rod-like shapes. The decrease in CuNP size as a function of discharge time could be explained by the dissolution of CuNPs in a lower pH solution. After 5 min discharge the capping agent evidently allowed the protection of the synthesized CuNPs against oxidation with the presence of anisotropic CuNP shapes. It is demonstrated that the CuNP shape could be tuned from spherical to anisotropic shapes without the undesirable oxidation by adjusting the discharge time of the solution plasma. These advantages are valuable for material engineering to design the properties of Cu-based nanoparticles for the desired applications. (paper)

  10. Study of plasma wall interactions in the long-pulse NB-heated discharges of JT-60U towards steady-state operation

    International Nuclear Information System (INIS)

    Takenaga, H.; Asakura, N.; Higashijima, S.; Nakano, T.; Kubo, H.; Konoshima, S.; Oyama, N.; Isayama, A.; Ide, S.; Fujita, T.; Miura, Y.

    2005-01-01

    Long time scale variation of plasma-wall interactions and its impact on particle balance, main plasma performance and particle behavior have been investigated in ELMy H-mode plasmas by extending the discharge pulse and the neutral beam heating pulse to 65 s and 30 s, respectively. The wall pumping rate starts to decrease in the latter phase by repeating the long-pulse discharges with 60% of Greenwald density sustained by gas-puffing. After several discharges, the wall inventory is saturated in the latter phase and, consequently, the density increases with neutral beam fuelling only. The edge pressure in the main plasma is reduced and ELMs are close to the type III regime under conditions of wall saturation. The intensities of C II emission near the X-point and CD band emission in the inner divertor start to increase before the wall saturates and continue to increase after the wall is saturated

  11. Plasma self-oscillations in the temperature-limited current regime of a hot cathode discharge

    International Nuclear Information System (INIS)

    Arnas Capeau, C.; Bachet, G.; Doveil, F.

    1995-01-01

    Experimental observations of self-oscillations occurring in the so-called ''temperature-limited current regime'' of a hot cathode discharge are presented. Their frequency and amplitude are strongly dependent on the discharge parameters. The scaling laws of their variation and an example of a period-doubling route to chaos are reported. A two probe experiment showing that the plasma behavior is closely related to the hot cathode sheath stability is also reported. copyright 1995 American Institute of Physics

  12. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  13. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  14. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  15. Effects of a precursor plasma on a coaxial-to-radial transition discharge

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    The Quick-Fire series of experiments on the AFWL SHIVA-Star 9.6 megajoule capacitor bank utilizes a coaxial plasma gun as a power conditioning and switching element driving an imploding plasma liner in what is essentially a hollow z-pinch. Initially, the liner is a thin, cylindrical plastic-and-metal foil. Ideally, the foil remains undisturbed until switching action occurs, and steps have been taken to minimize the amount of hot material that is accelerated into the plasma region ahead of the main coaxial discharge. The condition of the foil and the surrounding region prior to switching has been studied both with nitrogen laser shadowgraphy and with a technique which measures the deflection of a helium-neon laser beam due to the presence of density gradients in the switching region. Estimates of the density of precursor plasmas and their effects on foil condition are presented

  16. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    International Nuclear Information System (INIS)

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr.

    1990-01-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals

  17. On-Line Organic Solvent Field Enhanced Sample Injection in Capillary Zone Electrophoresis for Analysis of Quetiapine in Beagle Dog Plasma

    Directory of Open Access Journals (Sweden)

    Yuqing Cao

    2016-01-01

    Full Text Available A rapid and sensitive capillary zone electrophoresis (CZE method with field enhanced sample injection (FESI was developed and validated for the determination of quetiapine fumarate in beagle dog plasma, with a sample pretreatment by LLE in 96-well deep format plate. The optimum separation was carried out in an uncoated 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 13 kV. The electrophoretic analysis was performed by 50 mM phosphate at pH 2.5. The detection wavelength was 210 nm. Under these optimized conditions, FESI with acetonitrile enhanced the sensitivity of quetiapine about 40–50 folds in total. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision and extraction recovery. Using mirtazapine as an internal standard (100 ng/mL, the response of quetiapine was linear over the range of 1–1000 ng/mL. The lower limit of quantification was 1 ng/mL. The intra- and inter-day precisions for the assay were within 4.8% and 12.7%, respectively. The method represents the first application of FESI-CZE to the analysis of quetiapine fumarate in beagle dog plasma after oral administration.

  18. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL

    NARCIS (Netherlands)

    Constantinescu, A. A.; Vink, H.; Spaan, J. A.

    2001-01-01

    Proteoglycans and plasma proteins bound to the endothelial cell glycocalyx are essential for vascular function, but at the same time, they lower capillary tube hematocrit by reducing capillary volume available to flowing blood. Because oxidized low-density lipoproteins (oxLDL) reduce the effective

  19. (RTO) Characterization of the Time-dependent Behaviour of Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    2014-06-19

    excited by a sine -wave signal with peak- to-peak amplitudes between 7.2 kV and 10 kV, and frequencies of 2.5 kHz and 4 kHz. The results indicate that the...side length of 0.68 m, made of transparent PMMA, to isolate it from ambient disturbances. The plasma actuator was excited by a sine -wave signal, which... Portugal , 2008. 6Hanson, R., Houser, N., and Lavoie, P., “Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

  20. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  1. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    International Nuclear Information System (INIS)

    Kylian, O; Rauscher, H; Gilliland, D; Bretagnol, F; Rossi, F

    2008-01-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper

  2. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  3. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kylian, O; Rauscher, H; Gilliland, D; Bretagnol, F; Rossi, F [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E Fermi 2749, 21027 Ispra (Italy)], E-mail: francois.rossi@jrc.it

    2008-05-07

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  4. The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Hu Miao; Guo Yun

    2012-01-01

    In this work, a Dielectric Barrier Discharge (DBD) air plasma was used to sterilize Escherichia coli (E. coli) on the surface of medical Polyethylene Terephthalate (PET) film. The leakage of cellular DNA and protein by optical absorbance measurement at 260 nm and 280 nm, together with transmission electron microscopy (TEM) about cell morphology were performed after sterilization to analyse inactivation mechanisms. The results indicated that the DBD air plasma was very effective in E. coli sterilization. The plasma germicidal efficiency depended on the plasma treatment time, the air-gap distance, and the applied voltage. Within 5 min of plasma treatment, the germicidal efficiency against E. coli could reach 99.99%. An etching action on cell membranes by electrons, ions and radicals is the primary mechanism for DBD air plasma sterilization, which leads to the effusion of cellular contents (DNA and protein) and bacterial death. (plasma technology)

  5. Direct evidence of departure from local thermodynamic equilibrium in a free-burning arc-discharge plasma

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.

    1993-01-01

    Radial profiles of gas temperature, electron temperature, and electron density were measured in a free-burning atmospheric-pressure argon arc-discharge plasma using line-shape analysis of scattered laser light. This method yields gas temperature, electron temperature, and electron density directly, with no reliance on the assumption of local thermodynamic equilibrium (LTE). Our results show a significant departure from LTE in the center of the discharge, contrary to expectations

  6. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    Science.gov (United States)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  7. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments

    Science.gov (United States)

    Brandenburg, Ronny

    2017-05-01

    Dielectric barrier discharges (DBDs) are plasmas generated in configurations with an insulating (dielectric) material between the electrodes which is responsible for a self-pulsing operation. DBDs are a typical example of nonthermal atmospheric or normal pressure gas discharges. Initially used for the generation of ozone, they have opened up many other fields of application. Therefore DBDs are a relevant tool in current plasma technology as well as an object for fundamental studies. Another motivation for further research is the fact that so-called partial discharges in insulated high voltage systems are special types of DBDs. The breakdown processes, the formation of structures, and the role of surface processes are currently under investigation. This review is intended to give an update to the already existing literature on DBDs considering the research and development within the last two decades. The main principles and different modes of discharge generation are summarized. A collection of known as well as special electrode configurations and reactor designs will be presented. This shall demonstrate the different and broad possibilities, but also the similarities and common aspects of devices for different fields of applications explored within the last years. The main part is devoted to the progress on the investigation of different aspects of breakdown and plasma formation with the focus on single filaments or microdischarges. This includes a summary of the current knowledge on the electrical characterization of filamentary DBDs. In particular, the recent new insights on the elementary volume and surface memory mechanisms in these discharges will be discussed. An outlook for the forthcoming challenges on research and development will be given.

  8. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  9. The role of magnetic energy on plasma localization during the glow discharge under reduced pressure

    Directory of Open Access Journals (Sweden)

    Chodun Rafal

    2016-06-01

    Full Text Available In this work, we present the first results of our research on the synergy of fields, electric and magnetic, in the initiation and development of glow discharge under reduced pressure. In the two-electrode system under reduced pressure, the breakdown voltage characterizes a minimum energy input of the electric field to initiate and sustain the glow discharge. The glow discharge enhanced by the magnetic field applied just above the surface of the cathode influences the breakdown voltage decreasing its value. The idea of the experiment was to verify whether the contribution of potential energy of the magnetic field applied around the cathode is sufficiently effective to locate the plasma of glow discharge to the grounded cathode, which, in fact, is the part of a vacuum chamber wall (the anode is positively biased in this case. In our studies, we used the grounded magnetron unit with positively biased anode in order to achieve favorable conditions for the deposition of thin films on fibrous substrates such as fabrics for metallization, assuming that locally applied magnetic field can effectively locate plasma. The results of our studies (Paschen curve with the participation of the magnetic field seem to confirm the validity of the research assumption. What is the most spectacular - the glow discharge was initiated between introduced into the chamber anode and the grounded cathode of magnetron ‘assisted’ by the magnetic field (discharge did not include the area of the anode, which is a part of the magnetron construction.

  10. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Motie, Iman [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com [Department of Engineering, University of Applied Science and Technology (UAST)-Mohandesan Center, Mashhad (Iran, Islamic Republic of)

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  11. Real time control of fully non-inductive operation in Tore Supra leading to 6 minutes, 1 giga-joule plasma discharges

    International Nuclear Information System (INIS)

    Van Houtte, D.; Martin, G.; Becoulet, A.; Saoutic, B.

    2004-01-01

    The experimental programme of Tore Supra (a = 0.72 m, R = 2.4 m, I p T < 4.5 T) has been devoted in 2003 to study simultaneously heat removal capability and particle exhaust in steady-state fully non-inductive current drive discharges. This required both advanced technology integration and steady-state real time plasma control. In particular, an improvement of the plasma position within a few millimetre range, and new real time cross controls between radio frequency (RF) power and various actuators built around a shared memory network, have allowed Tore Supra to access a powerful steady-state regime with an improved safety level for the actively cooled plasma facing components. Feedback controlled fully non-inductive plasma discharges have been sustained in a steady-state regime up to 6 minutes with a new world record of injected-extracted energy exceeding 1 GJ. Advanced tools, experimental results and brief physics analysis of these discharges are presented and discussed. (authors)

  12. Real time control of fully non-inductive operation in Tore Supra leading to 6 minutes, 1 giga-joule plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Van Houtte, D.; Martin, G.; Becoulet, A.; Saoutic, B

    2004-07-01

    The experimental programme of Tore Supra (a = 0.72 m, R = 2.4 m, I{sub p} < 1.7 MA, B{sub T} < 4.5 T) has been devoted in 2003 to study simultaneously heat removal capability and particle exhaust in steady-state fully non-inductive current drive discharges. This required both advanced technology integration and steady-state real time plasma control. In particular, an improvement of the plasma position within a few millimetre range, and new real time cross controls between radio frequency (RF) power and various actuators built around a shared memory network, have allowed Tore Supra to access a powerful steady-state regime with an improved safety level for the actively cooled plasma facing components. Feedback controlled fully non-inductive plasma discharges have been sustained in a steady-state regime up to 6 minutes with a new world record of injected-extracted energy exceeding 1 GJ. Advanced tools, experimental results and brief physics analysis of these discharges are presented and discussed. (authors)

  13. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    International Nuclear Information System (INIS)

    Bradley, J W; Karkari, S K; Vetushka, A

    2004-01-01

    The temporal evolution of the plasma potential, V p , in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, V p was found to respond to the large and rapid changes in the cathode voltage, V d , during the different phases of the pulse cycle, with V p always more positive than V d . At a typical substrate position (>80 mm from the target), V p remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with V p elevated uniformly to about 3 V above V d . Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), V d reached a potential of +290 V; however, close to the target, V p was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal

  14. Boltzmann statistical consideration on the excitation mechanism of iron atomic lines emitted from glow discharge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2011-11-15

    A Boltzmann plot for many iron atomic lines having excitation energies of 3.3-6.9 eV was investigated in glow discharge plasmas when argon or neon was employed as the plasma gas. The plot did not show a linear relationship over a wide range of the excitation energy, but showed that the emission lines having higher excitation energies largely deviated from a normal Boltzmann distribution whereas those having low excitation energies (3.3-4.3 eV) well followed it. This result would be derived from an overpopulation among the corresponding energy levels. A probable reason for this is that excitations for the high-lying excited levels would be caused predominantly through a Penning-type collision with the metastable atom of argon or neon, followed by recombination with an electron and then stepwise de-excitations which can populate the excited energy levels just below the ionization limit of iron atom. The non-thermal excitation occurred more actively in the argon plasma rather than the neon plasma, because of a difference in the number density between the argon and the neon metastables. The Boltzmann plots yields important information on the reason why lots of Fe I lines assigned to high-lying excited levels can be emitted from glow discharge plasmas. - Highlights: Black-Right-Pointing-Pointer This paper shows the excitation mechanism of Fe I lines from a glow discharge plasma. Black-Right-Pointing-Pointer A Boltzmann distribution is studied among iron lines of various excitation levels. Black-Right-Pointing-Pointer We find an overpopulation of the high-lying energy levels from the normal distribution. Black-Right-Pointing-Pointer It is caused through Penning-type collision of iron atom with argon metastable atom.

  15. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology ' Stankin,' (Russian Federation)

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  16. Electric discharge during electrosurgery.

    Science.gov (United States)

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  17. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  18. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  19. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    Science.gov (United States)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.

  20. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    International Nuclear Information System (INIS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-01-01

    A novel Fe 3 O 4 @rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe 3 O 4 by interacting with Fe 3 O 4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW −1 h −1 . (paper)

  1. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    Science.gov (United States)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  2. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    International Nuclear Information System (INIS)

    Chae, Jae-Ou; Jeong, Young-Jun; Shmelev, V M; Denicaev, A A; Poutchkov, V M; Ravi, V

    2006-01-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly

  3. whistler oscillitons and capillary-gravity generalized solitons

    African Journals Online (AJOL)

    Nonlinear stationary waveforms in two completely different systems, namely, electromagnetic-fluid waves in a magnetic plasma and capillary-gravity water waves, are compared and contrasted. These systems display common features and are amenable to a Hamiltonian description. More importantly, however, is the fact ...

  4. Micro-column plasma emission liquid chromatograph. [Patent application

    Science.gov (United States)

    Gay, D.D.

    1982-08-12

    In a direct current plasma emission spectrometer for use in combination with a microcolumn liquid chromatograph, an improved plasma source unit is claimed. The plasma source unit includes a quartz capillary tube having an inlet means, outlet off gas means and a pair of spaced electrodes defining a plasma region in the tube. The inlet means is connected to and adapted to receive eluant of the liquid chromatograph along with a stream of plasma-forming gas. There is an opening through the wall of the capillary tube penetrating into the plasma region. A soft glass capillary light pipe is disposed at the opening, is connected to the spectrometer, and is adapted to transmit light passing from the plasma region to the spectrometer. There is also a source of electromotive force connected to the electrodes sufficient to initiate and sustain a plasma in the plasma region of the tube.

  5. audio-ultrasonic waves by argon gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.

    2010-01-01

    in the present work, wave emission formed by audio-ultrasonic plasma is investigated. the evidence of the magnetic and electric fields presence is performed by experimental technique. comparison between experimental field measurements and several plasma wave methods reveals the plasma audio-ultrasonic radiations mode. this plasma is a symmetrically driven capacitive discharge, consisting of three interactive regions: the electrodes, the sheaths, and the positive column regions . the discharge voltage is up to 900 volts, the discharge current flowing through the plasma attains a value of 360 mA .the frequency of the discharge voltage covers the audio and the ultrasonic range up to 100 khz. the effective plasma working distance has increased to attain the total length of the tube of 40 cm. a non-disturbing method using an external coil is used to measure the electric discharge field in a plane perpendicular to that of the plasma axe tube. this method proves the existence of a current flowing in a direction perpendicular to the plasma axe tube. a system of minute coils sensors proved the existence of two fields in two perpendicular directions . comparison between different observed fields reveals the existence of propagating electromagnetic waves due to the alternating current flowing through the skin plasma tube. the field intensity distribution along the tube draws the discharge current behavior between the two plasma electrodes that can be used to predict the range of the plasma discharge current.

  6. Zirconium dioxide ultrafine powders formation in ultra-high frequency discharge plasma

    International Nuclear Information System (INIS)

    Triotskij, V.N.; Kurkin, E.N.; Torbov, V.I.; Berestenko, V.I.; Torbova, O.D.; Gurov, S.V.; Alekseev, N.V.

    1995-01-01

    ZrO 2 fine powders of 30...60 nm particle size were synthesized by ZrCl 4 oxidation in a flow of oxygen microwave plasma. Oxygen flow rate and ZrCl 4 feeding rate were the defining parameters effecting on powder particles size at constant discharge power.At predominant contribution of the coalescence process into ZrO 2 powder particles formation their heterogeneous growth was shown necessary to take into account. 16 refs.; 5 figs

  7. Tesla's coherent plasma discharge -and- a plan for megavolts at Megahertz

    International Nuclear Information System (INIS)

    Nichson, J.D.

    1987-01-01

    In his lecture on Experiments With Alternate Currents of High Potential and High Frequency before the Institute of Electrical Engineers in London (1892), Tesla reports a discharge through a partially evacuated air tube of 1 meter length and 1 inch diameter. It is characterized by the following properties: (1) The filamentary discharge may be locally displaced by a nearby dielectric body or a magnet. (2) When the filament is released, it demonstrates behaviour similar to that of a string which suspends a weight, including the formation of standing waves with distinct nodes. (3) Its decay time is on the order of 8 minutes. (4) The vibrating filament may be split with a magnet to produce two vibrating filaments. (5) This effect could only be formed with a dynamo-driven coil at low air pressures in the tube. The disruptive discharge coil (coloquially a Tesla Coil) failed to produce the effect with its superior voltage and frequency range. It is here proposed that this phenomenon is related to positive leader formation. A model for this, consistent for AC and DC discharges, is advanced. Also, a novel method for regulation of a nitrogen-filled spark gap will be proposed. It is hoped that this new device will produce smooth, uniform discharges from the Tesla Coil. This, if theory is correct on many points, will reproduce Tesla's coherent plasma at higher pressures in free-standing form, and will allow other novel effects

  8. Laser–capillary interaction for the EXIN project

    Energy Technology Data Exchange (ETDEWEB)

    Bisesto, F.G., E-mail: fabrizio.giuseppe.bisesto@lnf.infn.it [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Anania, M.P. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Bacci, A.L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Bellaveglia, M.; Chiadroni, E. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Universit degli studi di Roma Tor Vergata, Via di Tor Vergata, Rome (Italy); Curcio, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A.; Mostacci, A.; Petrarca, M. [Sapienza – University of Rome, P.le Aldo Moro, 2, 00185 Rome (Italy); INFN – Roma1, P.le Aldo Moro, 2, 00185 Rome (Italy); Pompili, R. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R.; Serafini, L. [INFN – Milano, Via Celoria 16, 20133 Milan (Italy); Vaccarezza, C. [INFN-LNF, Via Enrico Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    The EXIN project is under development within the SPARC-LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  9. Exposure of liquid lithium confined in a capillary structure to high plasma fluxes in PILOT-PSI—Influence of temperature on D retention

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Rojo, A.B., E-mail: anabmr2010@hotmail.com [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Oyarzabal, E. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain); Fundación UNED Guzman el Bueno, 133, 28003 Madrid (Spain); Morgan, T.W. [FOM Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, 3439 MN, Nieuwegein (Netherlands); Tabarés, F.L. [Ciemat, Laboratorio Nacional de Fusión, Av Complutense 22, 28040 Madrid (Spain)

    2017-04-15

    Experiments on deuterium retention on liquid lithium confined in a capillary structure followed by ex-situ thermal desorption spectrometry (TDS) at high plasma fluxes (∼10{sup 23} m{sup 2} s{sup −1}) and high temperatures (440 °C and 580 °C) have been performed. Deuterium plasmas were generated at the PILOT-PSI linear plasma device and the targets were a 30 mm diameter stainless steel disc, 5 mm thick, covered with a porous mesh and filled with lithium. The settings (current) of the plasma source were varied in order to get different sample surface temperatures during irradiation. The targets were kept at floating potential during the exposure. Hydrogen and Li emission signals were monitored during the plasma exposure and TDS analysis was made afterwards in a separated system. Decreased retention at high exposure temperatures was deduced from the analysis of the hydrogen emission signals. Nevertheless, the results from TDS signal analysis were not conclusive.

  10. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    Science.gov (United States)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  11. First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy

    Science.gov (United States)

    Meier, Steffen M.; Hecimovic, Ante; Tsankov, Tsanko V.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2018-03-01

    In this paper, the novel technique of THz time domain spectroscopy has been applied to obtain time-resolved measurements of the plasma density in the active zone of a HiPIMS discharge with a titanium target. The obtained peak values are in the range of 1012-1013 cm-3 for discharge current densities of 1-4 A cm-2 at 0.5 and 2 Pa argon pressure. The measured densities show good correlation with the discharge current and voltage and the intensity of various atomic and ionic lines. The well known phases of the discharge have been identified and related to the variation of the electron density. The measurement results show that the plasma density remains nearly constant during the runaway/self-sputtering phase. Based on that, it is conjectured that singly charged titanium ions are the dominant ion species during this phase.

  12. Influence of ion transport on discharge propagation of nanosecond dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Hua, Weizhuo; Koji, Fukagata

    2017-11-01

    A numerical study has been conducted to understand the streamer formation and propagation of nanosecond pulsed surface dielectric barrier discharge of positive polarity. First we compared the result of different grid configuration to investigate the influence of x and y direction grid spacing on the streamer propagation. The streamer propagation is sensitive to y grid spacing especially at the dielectric surface. The streamer propagation velocity can reach 0.2 cm/ns when the voltage magnitude is 12 kV. A narrow gap was found between the streamer and dielectric barrier, where the plasma density is several orders of magnitude smaller than the streamer region. Analyses on the ion transport in the gap and streamer regions show the different ion transport mechanisms in the two different region. In the gap region, the diffusion of electron toward the dielectric layer decreases the seed electron in the beginning of voltage pulse, resulting that ionization avalanche does not occur. The streamer region is not significantly affected by the diffusion flux toward the dielectric layer, so that ionization avalanche takes place and leads to dramatic increase of plasma density.

  13. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low-speed flows and...

  14. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. C.; Benilov, M. S. [Departamento de Física, CCCEE, Universidade da Madeira, Largo do Município, 9000 Funchal (Portugal)

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  15. Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa

    Science.gov (United States)

    Kousal, Jaroslav; Tichý, Milan; Šebek, Ondřej; Čechvala, Juraj; Biederman, Hynek

    2011-08-01

    The majority of plasma polymerization sources operate at pressures higher than 1 Pa. At these pressures most common deposition methods do not show significant directionality. One way of enhancing the directional effects is to decrease the working pressure to increase the mean free path of the reactive molecules. The plasma source used in this work was designed to study the plasma polymerization process at pressures below 0.1 Pa. The source consists of the classical radio frequency (RF) (13.56 MHz, capacitive coupled) tubular reactor enhanced by an external magnetic circuit. The working gas is introduced into the discharge by a capillary. This forms a relatively localized zone of higher pressure where the monomer is activated. Due to the magnetic field, the plasma is constricted near the axis of the reactor with nearly collisionless gas flow. The plasma parameters were obtained using a double Langmuir probe. Plasma density in the range ni = 1013-1016 m-3 was obtained in various parts of the discharge under typical conditions. The presence of the magnetic field led to the presence of relatively strong electric fields (103 V m-1) and relatively high electron energies up to several tens of eV in the plasma.

  16. Langmuir probe study of a magnetically enhanced RF plasma source at pressures below 0.1 Pa

    Energy Technology Data Exchange (ETDEWEB)

    Kousal, Jaroslav; Tichy, Milan; Sebek, Ondrej; Cechvala, Juraj; Biederman, Hynek, E-mail: jaroslav.kousal@mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00, Prague 8 (Czech Republic)

    2011-08-15

    The majority of plasma polymerization sources operate at pressures higher than 1 Pa. At these pressures most common deposition methods do not show significant directionality. One way of enhancing the directional effects is to decrease the working pressure to increase the mean free path of the reactive molecules. The plasma source used in this work was designed to study the plasma polymerization process at pressures below 0.1 Pa. The source consists of the classical radio frequency (RF) (13.56 MHz, capacitive coupled) tubular reactor enhanced by an external magnetic circuit. The working gas is introduced into the discharge by a capillary. This forms a relatively localized zone of higher pressure where the monomer is activated. Due to the magnetic field, the plasma is constricted near the axis of the reactor with nearly collisionless gas flow. The plasma parameters were obtained using a double Langmuir probe. Plasma density in the range n{sub i} = 10{sup 13}-10{sup 16} m{sup -3} was obtained in various parts of the discharge under typical conditions. The presence of the magnetic field led to the presence of relatively strong electric fields (10{sup 3} V m{sup -1}) and relatively high electron energies up to several tens of eV in the plasma.

  17. Some aspects of the study of gas-discharge plasma and production of high magnetic fields

    International Nuclear Information System (INIS)

    Novitskii, V.G.

    This collection is compiled from the papers presented in the section of MHD generators and superconducting devices at the Institute of Electromechanics Conference held in May 1965. The subjects discussed include three-phase plasmatrons, their operational characteristics, and the nature of the physical processes occurring in the arc chamber. The collection also contains the results of experimental and theoretical research on gas-discharge plasma, conduction phenomena in flowing gaseous plasmas, and energy balance and radiation in the case of gas-discharge plasma. It also considers the stability of arcs, the effect of the transverse magnetic field and gas flow on breakdown voltages, the electrode phenomena and the distribution of current on the electrodes. Results of research on the conditions of electric-arc contraction and the characteristics of a contracted arc are given. The problems associated with the production of high magnetic fields and the use of superconducting materials to this end are discussed. The experience gained in the design and fabrication of superconducting magnets and cryostats is described. The results of design calculations for magnetic systems of the Bitter type are also presented

  18. Amplification of spontaneous emission of neon-like argon in a fast gas-filled capillary discharge

    International Nuclear Information System (INIS)

    Kolacek, K.; Schmidt, J.; Bohacek, V.; Ripa, M.; Frolov, O.; Vrba, P.; Straus, J.; Prukner, V.; Rupasov, A. A.; Shikanov, A. S.

    2008-01-01

    The evolution of the CAPEX facility and its basic diagnostics are described. The experiments carried out in the last modification of this facility accomplished with the demonstration of amplified spontaneous emission of neon-like argon (Ar 8+ ) at the wavelength 46.88 nm. The first version of the facility, CAPEX1, operated with a plastic capillary and had a short high-power passive prepulse and an imperfect gas-filling system. In the second version, CAPEX2, a ceramic capillary was used, the prepulse amplitude was lowered, and the gas-filling system was improved. In the third, most successful version, CAPEX3, the capillary bending was reduced, a longer external prepulse was used, and the gas-filling system was further optimized. For each version, results of X-ray measurements are presented and interpreted

  19. Experimental Study of Current Discharge Behavior and Hard X-ray Anisotropy by APF Plasma Focus Device

    Science.gov (United States)

    Habibi, M.; Amrollahi, R.; Attaran, M.

    2009-03-01

    Amirkabir (APF) is a new Mather-type plasma focus device (16 kV, 36 μf, and 115 nH). In this work we present some experimental results as variation of discharge current signal respect to applied voltage at the optimum pressure, focusing time of plasma versus gas pressure, and variations of current discharge with different insulator sleeve dimensions. As we prospected optimum pressure tending to increase as we tried to higher voltage levels. The time taken by the current sheath to lift-off the insulator surface and therefore quality of pinched plasma depends on the length of the insulator sleeve. The results show that the insulator diameter can influence on pinch quality. Behavior of hard X-ray (HXR) signals with the pressure and also anisotropy of HXR investigated by the use of two scintillation detectors. The distribution of HXR intensity shows a large anisotropy with a maximum intensity between 22.5° and 45° and also between -22.5° and -67.5°.

  20. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    International Nuclear Information System (INIS)

    Sang Chaofeng; Sun Jizhong; Wang Dezhen

    2010-01-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.