WorldWideScience

Sample records for capillary array technique

  1. High Throughput Sample Preparation and Analysis for DNA Sequencing, PCR and Combinatorial Screening of Catalysis Based on Capillary Array Technique

    Energy Technology Data Exchange (ETDEWEB)

    Yonghua Zhang

    2002-05-27

    Sample preparation has been one of the major bottlenecks for many high throughput analyses. The purpose of this research was to develop new sample preparation and integration approach for DNA sequencing, PCR based DNA analysis and combinatorial screening of homogeneous catalysis based on multiplexed capillary electrophoresis with laser induced fluorescence or imaging UV absorption detection. The author first introduced a method to integrate the front-end tasks to DNA capillary-array sequencers. protocols for directly sequencing the plasmids from a single bacterial colony in fused-silica capillaries were developed. After the colony was picked, lysis was accomplished in situ in the plastic sample tube using either a thermocycler or heating block. Upon heating, the plasmids were released while chromsomal DNA and membrane proteins were denatured and precipitated to the bottom of the tube. After adding enzyme and Sanger reagents, the resulting solution was aspirated into the reaction capillaries by a syringe pump, and cycle sequencing was initiated. No deleterious effect upon the reaction efficiency, the on-line purification system, or the capillary electrophoresis separation was observed, even though the crude lysate was used as the template. Multiplexed on-line DNA sequencing data from 8 parallel channels allowed base calling up to 620 bp with an accuracy of 98%. The entire system can be automatically regenerated for repeated operation. For PCR based DNA analysis, they demonstrated that capillary electrophoresis with UV detection can be used for DNA analysis starting from clinical sample without purification. After PCR reaction using cheek cell, blood or HIV-1 gag DNA, the reaction mixtures was injected into the capillary either on-line or off-line by base stacking. The protocol was also applied to capillary array electrophoresis. The use of cheaper detection, and the elimination of purification of DNA sample before or after PCR reaction, will make this approach an

  2. Design of a fraction collector for capillary array electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Minarik, M.; Klepárník, Karel; Gilar, M.; Foret, František; Miller, A. W.; Sosic, Z.; Karger, B. L.

    2002-01-01

    Roč. 23, č. 1 (2002), s. 35-42. ISSN 0173-0835 R&D Projects: GA ČR GA203/00/0772 Institutional research plan: CEZ:AV0Z4031919 Keywords : fraction collector * capillary array electrophoresis * DNA analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.325, year: 2002

  3. Cross-talk effect in electrostatic based capillary array nozzles

    International Nuclear Information System (INIS)

    Electrohydrodynamic printing is a promising technique for printed electronics application. Most researchers working in this field are using a single nozzle configuration. However, for large area printing a multi-nozzle setup will be required for time and cost effective process. In this paper the influence of electric field and flow-rate on jetting angle on multi-nozzle array has been investigated experimentally. A three nozzle setup has been used in a linear array by using glass capillary as a nozzle with independent voltage applied on each nozzle and independent ink supply. The experiments are performed by changing the nozzle to nozzle gap and the effect on the jetting angle has been investigated. It has been observed that by increasing the applied voltage the jetting angle also increases at fixed flow-rate. In case of increasing the flow-rate, the jetting angle first increases with increase in flow-rate, but as the flow-rate increases at certain level the jetting angle decreases; moreover, at a high flow-rate the cone-jet length starts increasing. Numerical simulation has been performed to have a better understanding of the electric-field with respect to jetting angles. The influence of one nozzle on another nozzle is also investigated by operating the nozzle independently by using different operating cases. The cross-talk effect is also minimized by reducing the nozzle diameter. At 250 μm nozzle diameter the cross-talk effect was negligible for 5 mm nozzle-to-nozzle gap. This study will help in better understanding of the interaction between different nozzles in multi-nozzle cases and better design of the multi-nozzle system by minimizing the effects of adjacent nozzles for multi-nozzle electrohydrodynamic printing system

  4. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  5. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  6. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  7. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  8. Determination of Enantiomeric Excess of Glutamic Acids by Lab-made Capillary Array Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Jun WANG; Kai Ying LIU; Li WANG; Ji Ling BAI

    2006-01-01

    Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capillary array electrophoresis method can accurately determine the enantiomeric excess of glutamic acid and can be used for high-throughput screening system for combinatorial asymmetric catalysis.

  9. Application of a sensor array based on capillary-attached conductive gas sensors for odor identification

    International Nuclear Information System (INIS)

    An electronic nose based on an array of capillary-attached conductive gas sensors was fabricated. The identification ability of the developed structure was investigated by employing different categories of simple and complex odor databases. Feature data sets were generated from the dynamic and steady state responses of the sensor array to the applied odor databases. Combinations of different feature extraction and classification methods were used to detect target gases. Validation of each technique was evaluated. Achievements of the study proved high classification rates of the fabricated e-nose in odor identification. It was indicated that gas identification is possible by applying the early selected portion of transient responses of the developed sensor array. The ability of the mentioned structure in analyzing gas mixtures was also investigated. The results presented high accuracy in the classification of gas mixtures

  10. Experimental and Numerical Study on the Capillary Performance of Non-Homogeneous Micro-Post Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Sung Jin [KAIST, Daejeon (Korea, Republic of)

    2013-12-15

    In this article, an advanced cooling surface based on micro-post arrays with non-homogeneous configurations is investigated and compared with conventional micro-post arrays with homogeneous configuration. The capillary performance of micro-post arrays are characterized using the capillary rate of rise experiments and numerical simulations which take into account the meniscus curvature. The experimental and numerical results show that that the capillary performance of the micro-post wick can be significantly enhanced, compared with the homogeneous type wick, by employing non-homogeneous configurations. The capillary performance is shown to be primarily a function of the solid fraction and increases linearly with decreasing solid fraction, regardless of the wick configuration, when the solid fraction is larger than 0.25. However, the capillary performance is found to be significantly reduced when the solid fraction falls below approximately 0.25.

  11. Capillary electrophoretic determination of sulfite using the zone-passing technique of in-capillary derivatization.

    Science.gov (United States)

    Jankovskiene, G; Daunoravicius, Z; Padarauskas, A

    2001-11-16

    A new capillary electrophoretic (CE) method was developed for the simple and selective determination of sulfite. The proposed method is based on the in-capillary derivatization of sulfite with iodine using the zone-passing technique and direct UV detection of iodide formed. The optimal conditions for the separation and derivatization reaction were established by varying concentration of iodine, electrolyte pH and applied voltage. The optimised separations were carried out in 20 mmol l(-1) Tris-HCl electrolyte (pH 8.5) using direct UV detection at 214 nm. Experimental results showed that the injection of the iodine zone from anodic end of the capillary gives significantly better precision. Common UV absorbing anions such as Br-, l-, S2O3(2-), NO3-, NO2-, SCN- did not give any interferences. Valid calibration (r2=0.998) is demonstrated in the range 1 x 10(-5) - 8 x 10(-4) mol l(-1) of sulfite. The detection limit (SIN=3) was 2 x 10(-6) mol l(-1). The proposed system was applied to the determination of free sulfite in wines. The recovery tests established for wine samples were within the range 92-103%. The CE results were compared with those obtained by iodometric titration technique. PMID:11762765

  12. Subtracting Technique of Baselines for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; MO Jin-yuan; CHEN Zuan-guang; GAO Yan

    2004-01-01

    The drifting baselines of capillary electrophoresis affect the veracity of analysis greatly. This paper presents Threshold Fitting Technique(TFT) so as to subtract the baselines from the original signals and emendate the signals. In TFT, wav elet and curve fitting technique are applied synthetically, thresholds are decided by the computer automatically. Many experiments of signal processing indicate that TFT is simple for being used, there are few man-induced factors, and the results are satisfactory. TFT can be applied for noisy signals without any pre-processing.

  13. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    王瑛; 莫金垣

    2002-01-01

    Capillary electrophoresis(CE) is a powerful analytical tool in chemistry,Thus,it is valuable to solve the denoising of CE signals.A new denoising method called MWDA which emplosy Mexican Hat wavelet is presented ,It is an efficient chemometrics technique and has been applied successfully in processing CE signals ,Useful information can be extractred even from signals of S/N=1 .After denoising,the peak positions are unchanged and the relative errors of peak height are less than 3%.

  14. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  15. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis

    Science.gov (United States)

    Scherer, James R.; Liu, Peng; Mathies, Richard A.

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  16. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David

    1999-11-08

    Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the capillary. Detection was accomplished by laser induced fluorescence detection. Mutation detection was performed by comparing the pattern changes between the homoduplex and the heteroduplex samples. High throughput, high detection rate and easy operation were achieved in this system. They further demonstrated fast and reliable genotyping based on CTTv STR system by multiple-capillary array electrophoresis. The PCR products from individuals were mixed with pooled allelic ladder as an absolute standard and coinjected with a 96-vial tray. Simultaneous one-color laser-induced fluorescence

  17. Spatial resolution of confocal XRF technique using capillary optics.

    Science.gov (United States)

    Dehlinger, Maël; Fauquet, Carole; Lavandier, Sebastien; Aumporn, Orawan; Jandard, Franck; Arkadiev, Vladimir; Bjeoumikhov, Aniouar; Tonneau, Didier

    2013-01-01

    XRF (X-ray fluorescence) is a powerful technique for elemental analysis with a high sensitivity. The resolution is presently limited by the size of the primary excitation X-ray beam. A test-bed for confocal-type XRF has been developed to estimate the ultimate lateral resolution which could be reached in chemical mapping using this technique. A polycapillary lens is used to tightly focus the primary X-ray beam of a low power rhodium X-ray source, while the fluorescence signal is collected by a SDD detector through a cylindrical monocapillary. This system was used to characterize the geometry of the fluorescent zone. Capillary radii ranging from 50 μm down to 5 μm were used to investigate the fluorescence signal maximum level This study allows to estimate the ultimate resolution which could be reached in-lab or on a synchrotron beamline. A new tool combining local XRF and scanning probe microscopy is finally proposed. PMID:23758858

  18. Characterization and identification of microorganisms by capillary electrophoretic techniques

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Horká, Marie; Vykydalová, Marie; Kubesová, Anna; Růžička, F.

    2014. s. 1-1. [World Congress on Targeting Microbiota - Towards Clinical Revolution /2./. 16.10.2014-17.10.2014, Paris] R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : capillary electrophoresis * capillary isoelectric focusing * bacteria Subject RIV: CB - Analytical Chemistry, Separation

  19. On-line stacking techniques for the nonaqueous capillary electrophoretic determination of acrylamide in processed food

    International Nuclear Information System (INIS)

    In the present study, field amplified sample stacking (FASS) techniques in the nonaqueous capillary electrophoresis method (NACE) were introduced for the on-line concentration of the acrylamide to improve acrylamide detection at 210 nm by diode-array detection. Acetonitrile (ACN) as a nonaqueous solvent permits acrylamide to be protonated through the change of its acid-base chemistry, allowing capillary electrophoretic separation of this compound. Choosing 30 mmol L-1 HClO4, 20 mmol L-1 NaClO4, 218 mmol L-1 CH3COOH in ACN as the separation electrolyte and employing sample stacking methods, the LOD value of acrylamide was decreased to 2.6 ng mL-1 with electrokinetic injection and 4.4 ng mL-1 with hydrodynamic injection. Optimized stacking conditions were applied to the determination of acrylamide in several foodstuffs. The method is simple, rapid, inexpensive, and widely applicable for the determination of acrylamide in food samples

  20. Current role of capillary electrophoretic/electrokinetic techniques in forensic toxicology.

    Science.gov (United States)

    Tagliaro, Franco; Bortolotti, Federica; Pascali, Jennifer P

    2007-08-01

    The current application of capillary electrophoresis in forensic toxicology has been critically reviewed with special focus on the areas where this technique has shown real advantages over chromatographic methods. For example, capillary electrophoresis has been most successfully applied to the chiral analysis of some drugs of forensic interest, including amphetamines and their congeners. Another typical application field of capillary electrophoresis is represented by protein analysis. Recently, special interest has been paid to carbohydrate deficient transferrin (CDT), the most important biological marker of chronic alcohol abuse. Other specific applications of capillary electrophoresis of potential forensic toxicological concern are also discussed. The review includes 62 references. PMID:17572886

  1. Reconfigurable laser arrays with capillary fill microfluidics for chip-based flow cytometry (Conference Presentation)

    Science.gov (United States)

    Thomas, Robert

    2016-03-01

    Low cost, portable chip based flow cytometry has great potential for applications in resource poor and point of care settings. Typical approaches utilise low cost silicon or glass substrates with light emission and detection performed either off-chip using external equipment or incorporated on-chip using `pick and place' diode lasers and photo-detectors. The former approach adds cost and limits portability while the sub-micron alignment tolerances imposed by the application make the latter impractical for all but the simplest of systems. Use of an optically active semiconductor substrate, on the other hand, overcomes these limitations by allowing multiple laser/detector arrays to be formed in the substrate itself using high resolution lithographic techniques. The capacity for multiple emitters and detectors on a single chip not only enables parallel measurement for increased throughput but also allows multiple measurements to be performed on each cell as it passes through the system. Several different experiments can be performed simultaneously and throughput demand can be reduced with the facility for error checking. Furthermore, the fast switching times inherent with semiconductor lasers allows the active sections of the device to be reconfigured on a sub-microsecond time scale providing additional functionality. This is demonstrated here in a capillary fill system using pairs of laser/detectors that are operated in pulsed mode and alternated between lasing and detecting in an interleaved manner. Passing cells are alternately interrogated from opposing directions providing information that can be used to correct for differences in lateral cell position and ultimately differentiate blood cell type.

  2. Electropolishing the bore of metal capillary tubes: A technique for adjusting the critical flow.

    Science.gov (United States)

    Stoffels, J J; Ells, D R

    1979-12-01

    A technique has been developed for electropolishing the bore of metal capillary tubes. Although developed specifically for stainless-steel tubes, the technique should be directly applicable to other metals. Tubes with inside diameter as small as 0.20 mm and 110 mm long have been successfully electropolished. The electropolishing technique can be used to increase the critical flow of a capillary tube in a controllable way. PMID:18699437

  3. Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Lim, Michel; Delamarche, Emmanuel

    2016-03-01

    We report a concept for the simple fabrication of easy-to-use chips for immunoassays in the context of point-of-care diagnostics. The chip concept comprises mainly three features: (1) the efficient integration of reagents using beads functionalized with receptors, (2) the generation of capillary-driven liquid flows without using external pumps, and (3) a high-sensitivity detection of analytes using fluorescence microscopy. We fabricated prototype chips using dry etching of Si wafers. 4.5-μm-diameter beads were integrated into hexagonal arrays by sedimentation and removing the excess using a stream of water. We studied the effect of different parameters and showed that array occupancies from 30% to 50% can be achieved by pipetting a 250 nL droplet of 1% bead solution and allowing the beads sediment for 3 min. Chips with integrated beads were sealed using a 50-μm-thick dry-film resist laminated at 45 °C. Liquids pipetted to loading pads were autonomously pulled by capillary pumps at a rate of 0.35 nL s-1 for about 30 min. We studied ligand-receptor interactions and binding kinetics using time-lapse fluorescence microscopy and demonstrated a 5 pM limit of detection (LOD) for an anti-biotin immunoassay. As a clinically-relevant example, we implemented an immunoassay to detect prostate specific antigen (PSA) and showed an LOD of 108 fM (i.e. 3.6 pg mL-1). While a specific implementation is provided here for the detection of PSA, we believe that combining capillary-driven microfluidics with arrays of single beads and fluorescence readout to be very flexible and sufficiently sensitive for the detection of other clinically-relevant analytes.

  4. Effective directional self-gathering of drops on spine of cactus with splayed capillary arrays

    Science.gov (United States)

    Liu, Chengcheng; Xue, Yan; Chen, Yuan; Zheng, Yongmei

    2015-12-01

    We report that the fast droplet transport without additional energy expenditure can be achieved on the spine of cactus (Gymnocalycium baldianum) with the assistance of its special surface structure: the cactus spine exhibits a cone-like structure covered with tilted scales. A single scale and the spine surface under it cooperatively construct a splayed capillary tube. The arrays of capillary tube formed by the overlapping scales build up the out layer of the spine. The serial drops would be driven by the asymmetric structure resulted from tilt-up scales-by-scales on the cone-shaped spine, and move directionally toward the bottom from top of spine, by means of the Laplace pressure in differences. In addition, after the past of the first droplet, thin liquid film of drop is trapped in the splayed capillary micro-tube on the surface of spine, which greatly reduces the friction of subsequential droplet transport in efficiency. This finding provides a new biological model which could be used to transport droplet spontaneously and directionally. Also this work offers a way to reduce the surface adhesion by constructing liquid film on the surface, which has great significance in prompting droplet transport efficiency.

  5. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis

    Science.gov (United States)

    Li, Q.; Zhu, Y.; Zhang, N.-Q.; Fang, Q.

    2016-05-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 105 N/m) were achieved.

  6. Automatic Combination of Microfluidic Nanoliter-Scale Droplet Array with High-Speed Capillary Electrophoresis.

    Science.gov (United States)

    Li, Q; Zhu, Y; Zhang, N-Q; Fang, Q

    2016-01-01

    In this paper, we developed a novel approach for interfacing a microfluidic two-dimensional droplet array to a high-speed capillary electrophoresis (HSCE) system. Picoliter-scale sample injection (ca. 200 pL) from a nanoliter-scale droplet array covered by nonvolatile oil was automatically achieved using the spontaneous injection mode, without the interference from the cover oil and the need of special droplet extraction interface as in previously reported systems. The system was applied in consecutive separations of 25 different samples of amino acids with a whole separation time less than 15 min, as well as on-line monitoring of in-droplet derivatizing reaction of amino acids by fluorescein isothiocyanate (FITC) over 3 hours. High separation speed (up to 100 samples per hour) and high separation efficiency (up to 9.22 × 10(5) N/m) were achieved. PMID:27230468

  7. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    Science.gov (United States)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  8. Assessment of microsphere technique for measurement of capillary blood flow in random skin flaps in pigs

    International Nuclear Information System (INIS)

    In this technical paper, we reviewed the theory and methodology of the radioactive microsphere technique for determination of cardiac output and regional blood flow. Furthermore, we described two experiments conducted to assess this technique for measurement of capillary blood flow in skin-flap research. Our experimental data thus far indicated that the radioactive microsphere technique provided highly reproducible measurements for determination of capillary blood flow in 4 X 10 cm acute and delayed random skin flaps constructed in pigs. The advantages and disadvantages of this laboratory technique were also discussed

  9. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection.

    Science.gov (United States)

    Chen, Zhijun; Yan, Xiaomei

    2009-10-14

    This article describes the development of a simple analytical approach for the simultaneous determination of melamine and 5-hydroxymethylfurfural (HMF) in milk samples using capillary electrophoresis (CE) with diode array detection (DAD) for the first time. Ultraviolet absorption at wavelengths of 214 and 280 nm was applied for the detection of melamine and HMF, respectively. Milk samples were extracted with 1% trichloroacetic acid using a high-speed blender and ultrasonication. After centrifugation and filtration, the extract was analyzed by CE-DAD directly. Micellar electrokinetic capillary chromatography was employed as the separation mode by adding sodium dodecyl sulfate (SDS) to the electrolyte. Under optimal separation conditions, melamine, HMF, and interferents were well resolved. The linear dynamic ranges were 0.05-100 microg/mL for melamine (R(2) = 0.9996) and 0.1-100 microg/mL for HMF (R(2) = 0.9997). The assay detection limits were 0.047 microg/mL and 0.067 microg/mL for melamine and HMF, respectively. Satisfactory results were obtained for the assay recovery rate and repeatability. The proposed method was successfully applied for the analysis of melamine and HMF in real milk samples, and the results of melamine were comparable to those obtained using HPLC-UV reference method. PMID:19761188

  10. Determination of dissociation constants of pharmacologically active xanthones by capillary zone electrophoresis with diode array detection.

    Science.gov (United States)

    Wu, Xiaomu; Gong, Suxuan; Bo, Tao; Liao, Yiping; Liu, Huwei

    2004-12-24

    In this article, the dissociation constants (pKa) of 10 pharmacologically active xanthones isolated from herbal medicine Securidaca inappendiculata were determined by capillary zone electrophoresis with diode array detection. The pKa values determined by the method based on the electrophoretic mobilities (calculated from migration times) have been proved by the method based on UV absorbance calculated from the online spectra corresponding peaks. No conspicuous difference was observed between the two methods with acceptable reproducibility. Two pKa values (pKa1 and pKa2) were found for four xanthones while generally the 10 compounds possess the pKa values ranging from 6.4 to 9.2. PMID:15641365

  11. Efficient power optimization technique for array multipliers

    International Nuclear Information System (INIS)

    Multiplication is a fundamental operation in most signal processing algorithms. Multipliers have large area, long latency and consume considerable power. Therefore, low power multiplier design has been an important part in low power very large scale integrated (VLSI) system design. There has been extensive work on low power multipliers at technology, physical, circuit and logic levels. These low-level techniques are not unique to multiplier modules and they are generally applicable to other types of modules. The characteristics of arithmetic computation in multipliers are not considered well. Moreover, power consumption is directly related to data switching patterns. However, it is difficult to consider application-specific data characteristics in low-level power optimization. In this paper, we present a feasible method of pipelined array multiplier and evaluated the results by the flexible estimation methods at register transfer level (RTL). The multiplier architecture is for low power and high speed applications. The experimental results indicated that this internal optimization reduced the power consumption of this circuit effectively. (author)

  12. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  13. Spatial resolution of confocal XRF technique using capillary optics

    OpenAIRE

    Dehlinger, Maël; Fauquet, Carole; Lavandier, Sebastien; Aumporn, Orawan; Jandard, Franck; Arkadiev, Vladimir; Bjeoumikhov, Aniouar; Tonneau, Didier

    2013-01-01

    XRF (X-ray fluorescence) is a powerful technique for elemental analysis with a high sensitivity. The resolution is presently limited by the size of the primary excitation X-ray beam. A test-bed for confocal-type XRF has been developed to estimate the ultimate lateral resolution which could be reached in chemical mapping using this technique. A polycapillary lens is used to tightly focus the primary X-ray beam of a low power rhodium X-ray source, while the fluorescence signal is collected by a...

  14. Advances in enantioselective separations using electromigration capillary techniques.

    Science.gov (United States)

    Preinerstorfer, Beatrix; Lämmerhofer, Michael; Lindner, Wolfgang

    2009-01-01

    The most recent literature dealing with enantioselective separations and stereoselective analyses of chiral entities including especially pharmaceuticals, phytochemicals, biochemicals, agrochemicals, fine chemicals and specific test compounds by electromigration techniques such as CE, MEKC, MEEKC, CEC and microchip CE is reviewed. The review covers literature from 2007 until mid-2008, i.e. studies that were published after the appearance of the latest review article on that topic in Electrophoresis by Gübitz and Schmid (see Electrophoresis 2007, 28, 114). Particular attention is given to the description of new chiral selector systems, studies on separation mechanisms and applications in the above-specified electromigration techniques. PMID:19107703

  15. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  16. Overview on the Phase Conjugation Techniques of the Retrodirective Array

    OpenAIRE

    Tian Ling Zhang; Xiao Wei Shi; Yu Chun Guo; Lei Chen

    2010-01-01

    This paper presents an overview on the phase conjugation techniques of the retrodirective antenna array. The concepts, advantages, and disadvantages of phase conjugation techniques are introduced. The self-phasing characteristic and technical difficulties of the array are presented as well as their structures and applications. Further researches in this area are presented finally.

  17. Development of novel separation techniques for biological samples in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.T.

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  18. Development of two-dimensional mapping technique by in-air-PIXE with metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, N., E-mail: ean.fujita@cc.nara-wu.ac.j [Graduate School of Humanities and Sciences, Nara Women' s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women' s University, Nara 630-8506 (Japan)

    2011-05-01

    We have developed the two-dimensional mapping technique with in-air-PIXE (2D-PIXE) using a metal capillary as a guide to extract ion beam to air. The metal capillary is the conventional injection needle with a 200 {mu}m inside diameter. For the target which is the character made of the copper wires on aluminum basement, 2D-PIXE measurements were performed by irradiating 3 MeV proton beam. As a result, the character was tend to be restored clearly by this method. We discuss about the result of the two-dimensional map from a viewpoint of the signal-to-noise ratio and the resolution. This technique is expected to be applicable to various fields such as biology, nano-technology, archeology and so on.

  19. An experimental technique to measure the capillary waves in electrified microjets

    Directory of Open Access Journals (Sweden)

    Rebollo-Muñoz Noelia

    2012-04-01

    Full Text Available Backlight optical imaging is an experimental technique with an enormous potential in microfluidics to study very varied fluid configurations and phenomena. In this paper, we show the capability of this technique to precisely characterize the capillary waves growing in electrified microjets. For this purpose, images of electrified liquid jets formed by electrospray were acquired and processed using a sub-pixel resolution technique. Our results reflect the validity and usefulness of optical imaging for this type of application.

  20. DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    OpenAIRE

    Blom, Koen C.H.; Burgwal, van de, M.D.; Rovers, Kenneth C.; Kokkeler, André B.J.; Smit, Gerard J.M.

    2010-01-01

    Abstract—A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of the vehicle the array is mounted on. The proposed system uses blind beamforming to adapt the array steering vector to changing signal (conditions and) directions. Movement of the vehicle, t...

  1. Rapid diagnosis of methanol poisoning by direct coupling of microextraction techniques to capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Pantůčková, Pavla; Kubáň, Pavel; Boček, Petr

    Bratislava: Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 2015, s. 252-253. ISBN 978-80-971179-5-5. [International Conference Analytical Methods and Human Health /20./. Patince (SK), 15.06.2015-18.06.2015] R&D Projects: GA ČR(CZ) GA13-05762S Grant ostatní: GA AV ČR(CZ) R200311404 Institutional support: RVO:68081715 Keywords : methanol poisoning * microextraction techniques * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  2. Capillary electrophoresis. A potentially powerful technique for long-lived radionuclide speciation?

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) is a relatively new technique in the field of metal ion analysis. CE has been utilised for metal speciation studies, but mostly it has been used as a fast and convenient metal ion separation technique. With CE it is possible to investigate chemical characteristics like charge-to-mass ratios, structural properties and reactivity. The speciation of some environmentally relevant metal ions (Al, Cu, Fe, Hg, Pb and Sr) is discussed in the presence of degraded natural organic material, humic substances (humic and fulvic acid). The results from this work on stable elements could serve as a basis for speciation studies of long-lived radionuclides. Two detection modes were applied: UV and LIF detection. With the direct UV detection and the LIF detection, Na2B4O7 - at different concentrations and with different organic solvents - was used as the electrolyte. The influence of metal ions on chemical characteristics of humic substances is also presented. (author)

  3. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS.

    Science.gov (United States)

    Šalplachta, Jiří; Kubesová, Anna; Horký, Jaroslav; Matoušková, Hana; Tesařová, Marie; Horká, Marie

    2015-10-01

    Dickeya and Pectobacterium species represent an important group of broad-host-range phytopathogens responsible for blackleg and soft rot diseases on numerous plants including many economically important plants. Although these species are commonly detected using cultural, serological, and molecular methods, these methods are sometimes insufficient to classify the bacteria correctly. On that account, this study was undertaken to investigate the feasibility of three individual analytical techniques, capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), for reliable classification of Dickeya and Pectobacterium species. Forty-three strains, representing different Dickeya and Pectobacterium species, namely Dickeya dianthicola, Dickeya dadantii, Dickeya dieffenbachiae, Dickeya chrysanthemi, Dickeya zeae, Dickeya paradisiaca, Dickeya solani, Pectobacterium carotovorum, and Pectobacterium atrosepticum, were selected for this purpose. Furthermore, the selected bacteria included one strain which could not be classified using traditional microbiological methods. Characterization of the bacteria was based on different pI values (CIEF), migration velocities (CZE), or specific mass fingerprints (MALDI-TOF MS) of intact cells. All the examined strains, including the undetermined bacterium, were characterized and classified correctly into respective species. MALDI-TOF MS provided the most reliable results in this respect. PMID:26229029

  4. Application of capillary fluid management techniques to the design of a phase separating microgravity bioreactor

    Science.gov (United States)

    Finger, Barry W.; Neville, Gale E., Jr.; Sager, John C.

    1993-01-01

    Manned space missions require the development of compact, efficient, and reliable life support systems. A number of aqueous biological conversion processes are associated with bioregenerative life support systems. Vessels, or bioreactors, capable of supporting these processes in microgravity must be developed. An annular flow bioreactor has been conceived. It has the potential to incorporate containment, phase separation, gas exchange, and illumination into a single vessel. The bioreactor utilizes capillary fluid management techniques and is configured as a cylindrical tube in which a two-phase liquid-gas flow is maintained. Vanes placed around the inner perimeter enhance capillary forces and cause the liquid phase to attach and flow along the interior surface of the tube. No physical barrier is required to complete phase separation. It is shown analytically that liquid film thickness is limited only by vane geometry and that an annular flow bioreactor capable of managing 284 liters would occupy 0.7 cubic m, less than half the volume of a Spacelab experiment rack.

  5. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gang Xue

    2001-12-31

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  6. Circumventing Imprecise Geometric Information and Development of a Unified Modeling Technique for Various Flow Regimes in Capillary Tubes

    Science.gov (United States)

    Abbasi, Bahman

    2012-11-01

    Owing to their manufacturability and reliability, capillary tubes are the most common expansion devices in household refrigerators. Therefore, investigating flow properties in the capillary tubes is of immense appeal in the said business. The models to predict pressure drop in two-phase internal flows invariably rely upon highly precise geometric information. The manner in which capillary tubes are manufactured makes them highly susceptible to geometric imprecisions, which renders geometry-based models unreliable to the point of obsoleteness. Aware of the issue, manufacturers categorize capillary tubes based on Nitrogen flow rate through them. This categorization method presents an opportunity to substitute geometric details with Nitrogen flow data as the basis for customized models. The simulation tools developed by implementation of this technique have the singular advantage of being applicable across flow regimes. Thus the error-prone process of identifying compatible correlations is eliminated. Equally importantly, compressibility and chocking effects can be incorporated in the same model. The outcome is a standalone correlation that provides accurate predictions, regardless of any particular fluid or flow regime. Thereby, exploratory investigations for capillary tube design and optimization are greatly simplified. Bahman Abbasi, Ph.D., is Lead Advanced Systems Engineer at General Electric Appliances in Louisville, KY. He conducts research projects across disciplines in the household refrigeration industry.

  7. Applications of imaged capillary isoelectric focussing technique in development of biopharmaceutical glycoprotein-based products.

    Science.gov (United States)

    Anderson, Carrie L; Wang, Yang; Rustandi, Richard R

    2012-06-01

    CE-based methods have increasingly been applied to the analysis of a variety of different type proteins. One of those techniques is imaged capillary isoelectric focusing (icIEF), a method that has been used extensively in the field of protein-based drug development as a tool for product identification, stability monitoring, and characterization. It offers many advantages over the traditional labor-intensive IEF slab gel method and even standard cIEF with on-line detection technologies with regard to method development, reproducibility, robustness, and speed. Here, specific examples are provided for biopharmaceutical glycoprotein products such as mAbs, erythropoietin (EPO), and recombinant Fc-fusion proteins, though the technique can be adapted for many other therapeutic proteins. Applications of iCIEF using a Convergent Bioscience instrument (Toronto, Canada) with whole-field imaging technology are presented and discussed. These include a quick method to establish an identity test for many protein-based products, product release, and stability evaluation of glycoproteins with respect to charge heterogeneity under accelerated temperature stress, different pH conditions, and in different formulations. Finally, characterization of glycoproteins using this iCIEF technology is discussed with respect to biosimilar development, clone selection, and antigen binding. The data presented provide a "taste'' of what icIEF method can do to support the development of biopharmaceutical glycoprotein products from early clone screening for better product candidates to characterization of the final commercial products. PMID:22736354

  8. Adaptive array technique for differential-phase reflectometry in QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Idei, H., E-mail: idei@triam.kyushu-u.ac.jp; Hanada, K.; Zushi, H. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, 816-8560 Japan (Japan); Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R. [Interdisciplinary Grad. School of Eng. Sci., Kyushu Univ., Kasuga, 816-8580 Japan (Japan); Yamamoto, M. K. [Research Institute for Sustainable Humanosphere, Kyoto Univ., Uji, 611-0011 Japan (Japan)

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  9. Application of high-resolution capillary array electrophoresis with automated fraction collection for GeneCalling analysis of the yeast genomic DNA

    Czech Academy of Sciences Publication Activity Database

    Berka, J.; Ruiz-Martinez, M. C.; Hammond, R.; Minarik, M.; Foret, František; Sosic, Z.; Klepárník, Karel; Karger, B. L.

    2003-01-01

    Roč. 24, č. 4 (2003), s. 639-647. ISSN 0173-0835 R&D Projects: GA ČR GA203/00/0772; GA ČR GA303/00/0928 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary array * fraction collection * gene expression profiling Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.040, year: 2003

  10. The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

    Directory of Open Access Journals (Sweden)

    Daniel Gandyra

    2015-01-01

    Full Text Available We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1 determination of the water adhesion force and the elasticity of individual hairs (trichomes of the floating fern Salvinia molesta. (2 The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3 Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

  11. Application of phased array techniques to coarse grain components inspection

    International Nuclear Information System (INIS)

    Ultrasonic inspection of cast stainless steel components from primary and auxiliary cooling circuits of 'French Nuclear Power Plant has to face with major difficulties due to the coarse grained structure of these materials. Attenuation losses and structural noise are encountered, which limits the performances of defect detection ability, mostly in terms of degraded signal-to-noise ratio and poor sensitivity. To overcome such problems, theoretical and experimental studies have been achieved at the French Atomic Energy Commission, with support from the French Institute for Radiological Protection and Nuclear Safety. Experimental studies have been performed over stainless steel specimen of known coarse structure (equi-axial grains and/or elongated grains), containing artificial reflectors (cylindrical holes and electro-eroded surface breaking notches). Those mock-ups have been inspected using contact probes of different array designs (linear or matrix splitting), and using pulse echo or dual-element techniques. Such arrays allow to control the ultrasonic beam so as to investigate different inspection angles and focusing depths. Experiments were carried out using oblique longitudinal waves, using delay laws computed by a specific model, taking account of acoustical and geometrical properties of the probes and the inspected component. In addition, specific reconstruction techniques have been investigated to enhance the signal-to-noise ratio as well as spatial resolution. These techniques are based on beam-forming summation and multi-angle inspections. Experimental results show that such techniques allow to reduce the speckle noise and to optimise the beam resolution. Those increased performances allow to detect and to size small planar defects located at the inner wall of a thick specimen, using corner and tip diffraction echoes. (authors)

  12. In-line coupling of microextraction techniques to capillary electrophoresis for direct analyses of biological, clinical and toxicological samples

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Pantůčková, Pavla; Boček, Petr

    2015. L-27. ISBN N. [International Symposium on Electro- and Liquid Phase-Separation Techniques (ITP2015) /22./ and the Nordic Separation Science (NoSSS) symposium /8./. 30.08.2015-03.09.2015, Helsinki] R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : in-line coupling * microextractions * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  13. Analytical capillary isotachophoresis: a routine technique for the analysis of lipoproteins and lipoprotein subfractions in whole serum.

    Science.gov (United States)

    Schmitz, G; Borgmann, U; Assmann, G

    1985-02-22

    A capillary isotachophoretic separation technique was developed for lipoproteins in native serum which, compared with previous electrophoretic techniques, has negligible molecular sieve effects, does not need gel casting, is suitable for whole serum and has a high discriminative power for lipoprotein subfractions. The technique is based on pre-staining whole serum lipoproteins for 30 min at 4 degrees C before separation of 0.5 microliter of the sample in a free-flow capillary system (0.5 mm I.D.) with discontinuous buffer system. In normolipidaemic sera, high-density (HDL) and low-density lipoproteins (VLDL) are separated into two major subpopulations according to their net electric mobility. The identification of these fractions was confirmed by substitution with ultracentrifugally isolated lipoproteins and by their complete absence from Tangier and abetalipoproteinaemic serum. Triglyceride-rich very low-density lipoproteins (VLDL) revealed a defined zone between the HDL and LDL subpopulations. Our preliminary results indicate that the separation of human whole serum lipoproteins by capillary isotachophoresis is a promising method for the determination of lipoprotein subfractions. PMID:4030932

  14. Environmental water monitoring by capillary electrophoresis and result comparison with solvent chemistry techniques.

    Science.gov (United States)

    Sirén, Heli; Väntsi, Sirpa

    2002-05-24

    The aim of this work was to determine inorganic ions from natural waters by capillary electrophoresis (CE) and to compare the results obtained with those measured with conventional solvent chemistry techniques. The project was part of a larger CE study, during which we measured inorganic ions from some lake and river systems and groundwaters in Southern Finland. Results obtained from contaminated Finnish waters were compared with samples from the River Rhine in the Düsseldorf area. Two CE methods were used for analysis: one for determination of chloride, sulfate, nitrite and nitrate at pH 7.7 and the other for ammonium, potassium, calcium, sodium and magnesium at pH 3.6, both methods using identification based on indirect UV detection. Two separation methods were used in order to prevent complex formation of metals with sulfate, hydroxide and decomposed organic matter present in the environmental samples. On the basis of the CE studies dilution was needed for those samples having more than 100 mg/l of sulfate, chloride, calcium and sodium. On average, the natural waters in the study contained ammonium, magnesium, sodium, potassium and calcium below 0.3, 20, 200, 20, and 200 mg/l, respectively. The concentrations of chloride, sulfate, nitrite and nitrate were below 20, 100, 10, and 10 mg/l, respectively. Correlation of the CE results with those acquired by titration, atomic absorption spectrometry, ion chromatography and flow injection analysis were obtained; R2 values for the comparison tests varied from 0.8816 to 0.9994 depending on the ion. The repeatabilities of the anion and cation CE methods were tested using laboratory-made reference sample mixtures with high and low salt concentration. PMID:12102308

  15. The in-capillary DPPH-capillary electrophoresis-the diode array detector combined with reversed-electrode polarity stacking mode for screening and quantifying major antioxidants in Cuscuta chinensis Lam.

    Science.gov (United States)

    Liu, Jiao; Tian, Ji; Li, Jin; Azietaku, John Teye; Zhang, Bo-Li; Gao, Xiu-Mei; Chang, Yan-Xu

    2016-07-01

    An in-capillary 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-CE-the DAD (in-capillary DPPH-CE-DAD) combined with reversed-electrode polarity stacking mode has been developed to screen and quantify the active antioxidant components of Cuscuta chinensis Lam. The operation parameters were optimized with regard to the pH and concentration of buffer solution, SDS, β-CDs, organic modifier, as well as separation voltage and temperature. Six antioxidants including chlorogenic acid, p-coumaric acid, rutin, hyperin, isoquercitrin, and astragalin were screened and the total antioxidant activity of the complex matrix was successfully evaluated based on the decreased peak area of DPPH by the established DPPH-CE-DAD method. Sensitivity was enhanced under reversed-electrode polarity stacking mode and 10- to 31-fold of magnitude improvement in detection sensitivity for each analyte was attained. The results demonstrated that the newly established in-capillary DPPH-CE-DAD method combined with reversed-electrode polarity stacking mode could integrate sample concentration, the oxidizing reaction, separation, and detection into one capillary to fully automate the system. It was considered a suitable technique for the separation, screening, and determination of trace antioxidants in natural products. PMID:26955793

  16. Glass capillary X-ray lens: fabrication technique and ray tracing calculations

    International Nuclear Information System (INIS)

    A new method for producing a compound refractive X-ray lens is described. The lens is designed as glass capillary filled by a set of concave individual lenses. The method is appropriate for the preparation of 10-1000 spherical lenses in a glass capillary with a diameter of 0.1-1 mm. Lens aberrations are considered and simple formulas for spot size are derived. Ray-tracing simulations on the focusing experiments using 18 keV X-rays are reported

  17. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    Science.gov (United States)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  18. Capillary electromigration techniques: Capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav

    Vol. 2. Weinheim: Wiley, 2015 - ( And erson, J.; Berthod, A.; Pino Estévez, V.; Stalcup, A.), s. 505-529 ISBN 978-3-527-33374-5 R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : electrophoretic mobility * electroosmotic flow * analysis * ionogenic compounds Subject RIV: CB - Analytical Chemistry, Separation

  19. Application of multiplicative array techniques for multibeam sounder systems

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.

    Multiplicative array processing is well known for its narrow beamwidth and low sidelobe level, but the array gain is quite low. The effectiveness of such a system becomes lower, especially when the signal to noise ratio is low. Proposed some...

  20. Fabrication of microlens arrays using a CO2-assisted embossing technique

    International Nuclear Information System (INIS)

    This paper reports a method to fabricate microlens arrays with a low processing temperature and a low pressure. The method is based on embossing a softened polymeric substrate over a mold with micro-hole arrays. Due to the effect of capillary and surface tension, microlens arrays can be formed. The embossing medium is CO2 gas, which supplies a uniform pressing pressure so that large-area microlens arrays can be fabricated. CO2 gas also acts as a solvent to plasticize the polymer substrates. With the special dissolving ability and isotropic pressing capacity of CO2 gas, microlens arrays can be fabricated at a low temperature (lower than Tg) and free of thermal-induced residual stress. Such a combined mechanism of dissolving and embossing with CO2 gas makes the fabrication of microlens arrays direct with complex processes, and is more compatible for optical usage. In the study, it is also found that the sag height of microlens changes when different CO2 dissolving pressure and time are used. This makes it easy to fabricate microlens arrays of different geometries without using different molds. The quality, uniformity and optical property of the fabricated microlens arrays have been verified with measurements of the dimensions, surface smoothness, focal length, transmittance and light intensity through the fabricated microlens arrays

  1. The lunar Askaryan technique with the Square Kilometre Array

    CERN Document Server

    James, Clancy W; Bray, Justin D; Buitink, Stijn; Dagkesamanskii, Rustam D; Ekers, Ronald D; Falcke, Heino; Gayley, Ken G; Huege, Tim; Mevius, Maaijke; Mutel, Robert L; Protheroe, Raymond J; Scholten, Olaf; Spencer, Ralph E; ter Veen, Sander

    2016-01-01

    The lunar Askaryan technique is a method to study the highest-energy cosmic rays, and their predicted counterparts, the ultra-high-energy neutrinos. By observing the Moon with a radio telescope, and searching for the characteristic nanosecond-scale Askaryan pulses emitted when a high-energy particle interacts in the outer layers of the Moon, the visible lunar surface can be used as a detection area. Several previous experiments, at Parkes, Goldstone, Kalyazin, Westerbork, the ATCA, Lovell, LOFAR, and the VLA, have developed the necessary techniques to search for these pulses, but existing instruments have lacked the necessary sensitivity to detect the known flux of cosmic rays from such a distance. This will change with the advent of the SKA. The Square Kilometre Array (SKA) will be the world's most powerful radio telescope. To be built in southern Africa, Australia and New Zealand during the next decade, it will have an unsurpassed sensitivity over the key 100 MHz to few-GHZ band. We introduce a planned expe...

  2. Signal and array processing techniques for RFID readers

    Science.gov (United States)

    Wang, Jing; Amin, Moeness; Zhang, Yimin

    2006-05-01

    Radio Frequency Identification (RFID) has recently attracted much attention in both the technical and business communities. It has found wide applications in, for example, toll collection, supply-chain management, access control, localization tracking, real-time monitoring, and object identification. Situations may arise where the movement directions of the tagged RFID items through a portal is of interest and must be determined. Doppler estimation may prove complicated or impractical to perform by RFID readers. Several alternative approaches, including the use of an array of sensors with arbitrary geometry, can be applied. In this paper, we consider direction-of-arrival (DOA) estimation techniques for application to near-field narrowband RFID problems. Particularly, we examine the use of a pair of RFID antennas to track moving RFID tagged items through a portal. With two antennas, the near-field DOA estimation problem can be simplified to a far-field problem, yielding a simple way for identifying the direction of the tag movement, where only one parameter, the angle, needs to be considered. In this case, tracking of the moving direction of the tag simply amounts to computing the spatial cross-correlation between the data samples received at the two antennas. It is pointed out that the radiation patterns of the reader and tag antennas, particularly their phase characteristics, have a significant effect on the performance of DOA estimation. Indoor experiments are conducted in the Radar Imaging and RFID Labs at Villanova University for validating the proposed technique for target movement direction estimations.

  3. Formation of molecular doping patterns in organic-inorganic hybrid films by a capillary electrophoresis doping technique

    International Nuclear Information System (INIS)

    A new technique is proposed for the fabrication of fine patterns of molecular doping in organic-inorganic hybrid materials by the combination of capillary electrophoresis doping (CED) and photolithography. The UV-induced polymerization of - -- C=C - -- bonds in organic groups yields a fine contrast of structures with the desired pattern in organic-inorganic hybrid films, and CED treatment introduces functional molecules only into unirradiated regions to form the doping patterns of molecules inside the films. The fine patterning of rhodamine-6G doping with from 2 to 4 μm resolution is demonstrated in hybrid films of 10 μm thickness.

  4. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    Science.gov (United States)

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  5. Inspection of pipeline girth welds with ultrasonic phased array technique

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A novel automatic ultrasonic system used for the inspection of pipeline girth welds is developed, in which a linear phased array transducer using electronic scan is adopted. Optimal array parameters are determined based on a mathematical model of acoustic field for linear phased array derived from Huygens' principle. The testing method and the system structure are introduced. The experimental results show that the phased array transducer system has the same detectability as that of conventional ultrasonic transducer system, but the system architecture can be simplified greatly, and the testing flexibility and the testing speed can be improved greatly.

  6. Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes

    Science.gov (United States)

    Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul

    2011-01-01

    This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.

  7. A wave matrix technique for analysis of lossy antenna array noise

    OpenAIRE

    Tokarsky, Peter L.

    1997-01-01

    A universal technique is proposed for the analysis of the noise temperature of an arbitrary phased antenna array allowing to estimate the contribution of all the sources of internal noises under rigorous taking into account of the mutual coupling between loss radiators. The technique is based on the matrix theory of antenna arrays [1, 2] and noisy microwave multiport circuits theory [3, 4].

  8. A multiscale products technique for denoising of DNA capillary electrophoresis signals

    Science.gov (United States)

    Gao, Qingwei; Lu, Yixiang; Sun, Dong; Zhang, Dexiang

    2013-06-01

    Since noise degrades the accuracy and precision of DNA capillary electrophoresis (CE) analysis, signal denoising is thus important to facilitate the postprocessing of CE data. In this paper, a new denoising algorithm based on dyadic wavelet transform using multiscale products is applied for the removal of the noise in the DNA CE signal. The adjacent scale wavelet coefficients are first multiplied to amplify the significant features of the CE signal while diluting noise. Then, noise is suppressed by applying a multiscale threshold to the multiscale products instead of directly to the wavelet coefficients. Finally, the noise-free CE signal is recovered from the thresholded coefficients by using inverse dyadic wavelet transform. We compare the performance of the proposed algorithm with other denoising methods applied to the synthetic CE and real CE signals. Experimental results show that the new scheme achieves better removal of noise while preserving the shape of peaks corresponding to the analytes in the sample.

  9. A multiscale products technique for denoising of DNA capillary electrophoresis signals

    International Nuclear Information System (INIS)

    Since noise degrades the accuracy and precision of DNA capillary electrophoresis (CE) analysis, signal denoising is thus important to facilitate the postprocessing of CE data. In this paper, a new denoising algorithm based on dyadic wavelet transform using multiscale products is applied for the removal of the noise in the DNA CE signal. The adjacent scale wavelet coefficients are first multiplied to amplify the significant features of the CE signal while diluting noise. Then, noise is suppressed by applying a multiscale threshold to the multiscale products instead of directly to the wavelet coefficients. Finally, the noise-free CE signal is recovered from the thresholded coefficients by using inverse dyadic wavelet transform. We compare the performance of the proposed algorithm with other denoising methods applied to the synthetic CE and real CE signals. Experimental results show that the new scheme achieves better removal of noise while preserving the shape of peaks corresponding to the analytes in the sample. (paper)

  10. ICE decoupling technique for RF coil array designs

    OpenAIRE

    Li, Ye; Xie, Zhentian; Pang, Yong; Vigneron, Daniel; Zhang, Xiaoliang

    2011-01-01

    Purpose: Parallel magnetic resonance imaging (MRI) requires an array of RF coil elements with different sensitivity distributions and with minimal electromagnetic coupling. The goal of this project was to develop a new method based on induced current compensation or elimination (ICE) for improved coil element decoupling and to investigate its performance in phantom MR images.

  11. A single base extension technique for the analysis of known mutations utilizing capillary gel electrophoreisis with electrochemical detection.

    Science.gov (United States)

    Brazill, Sara A; Kuhr, Werner G

    2002-07-15

    A novel single nucleotide polymorphism (SNP) detection system is described in which the accuracy of DNA polymerase and advantages of electrochemical detection are demonstrated. A model SNP system is presented to illustrate the potential advantages in coupling the single base extension (SBE) technique to capillary gel electrophoresis (CGE) with electrochemical detection. An electrochemically labeled primer, with a ferrocene acetate covalently attached to its 5' end, is used in the extension reaction. When the Watson-Crick complementary ddNTP is added to the SBE reaction, the primer is extended by a single nucleotide. The reaction mixture is subsequently separated by CGE, and the ferrocene-tagged fragments are detected at the separation anode with sinusoidal voltammetry. This work demonstrates the first single base resolution separation of DNA coupled with electrochemical detection. The unextended primer (20-mer) and the 21-mer extension product are separated with a resolution of 0.8. PMID:12139049

  12. Self-Assembling Process of Colloidal Particles into Two-Dimensional Arrays Induced by Capillary Immersion Force: A Simulation Study With Discrete Element Method

    International Nuclear Information System (INIS)

    This paper presents a simulation study for self-assembling process of colloidal particles into two-dimensional arrays due to capillary immersion force. Discrete element method is used to simulate the dynamics of colloidal particles trapped in a thin liquid film. The previous model is improved in the following two points: a modification of the screening effect of capillary immersion force and introduction of periodic boundary condition. Snapshots provided by the simulations agree well with experimental images taken by atomic force microscopy. The self-assembling process is quantified with pair correlation function and coordination number. At lower coverage, colloidal particles rapidly form small clusters that consist of several particles in the early stage. Subsequently, chain-like structures with some branches are mainly generated. On the other hand, at higher coverage, large domains of hexagonal close-packed (HCP) structures are gradually generated. The rate of the growth of HCP domains is much slower than that of the generation of the small clusters and the chain-like structures

  13. Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins - new media for capillary separation techniques.

    Science.gov (United States)

    Benkovics, Gabor; Hodek, Ondrej; Havlikova, Martina; Bosakova, Zuzana; Coufal, Pavel; Malanga, Milo; Fenyvesi, Eva; Darcsi, Andras; Beni, Szabolcs; Jindrich, Jindrich

    2016-01-01

    This work focuses on the preparation and application of supramolecular structures based on mono-cinnamyl-α-cyclodextrins (Cin-α-CD). Pure regioisomers of Cin-α-CD having the cinnamyl moiety at the 2-O- or at the 3-O-position, respectively, were prepared, characterized and applied in capillary electrophoresis as additives to the background electrolyte. These new monomer units with a potential to self-organize into supramolecular structures were synthesized via a straightforward one-step synthetic procedure and purified using preparative reversed-phase chromatography allowing a large scale separation of the regioisomers. The ability of the monomers to self-assemble was proved by various methods including NMR spectroscopy and dynamic light scattering (DLS). The light scattering experiments showed that the monomer units have distinguishable ability to form supramolecular structures in different solvents and the size distribution of the aggregates in water can be easily modulated using different external stimuli, such as temperature or competitive guest molecules. The obtained results indicated that the two regioisomers of Cin-α-CD formed different supramolecular assemblies highlighting the fact that the position of the cinnamyl group plays an important role in the intermolecular complex formation. PMID:26877812

  14. Advanced array techniques for unattended ground sensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  15. Technique investigation on large area neutron scintillation detector array

    International Nuclear Information System (INIS)

    The detailed project for developing Large Area Neutron Scintillation Detector Array (LaNSA) to be used for measuring fusion fuel area density on Shenguang III prototype is presented, including experimental principle, detector working principle, electronics system design and the needs for target chamber etc. The detailed parameters for parts are given and the main causes affecting the system function are analyzed. The realization path is introduced. (authors)

  16. Design and fabrication of an array type electron multiplier for radiation imaging by micromachining technique

    International Nuclear Information System (INIS)

    A new position sensitive array type electron multiplier using micromachining technique has been investigated. Here are described new miniature three dimensional structures for such a multichannel electron multiplies. Their design and preliminary processing are presented. (author)

  17. A comparative study of various physicochemically modified capillaries used in CE technique for the three distinct analytical purposes.

    Science.gov (United States)

    Nowak, Paweł Mateusz; Woźniakiewicz, Michał; Garnysz, Magdalena; Kościelniak, Paweł

    2016-05-01

    The five different commercially offered capillaries, bare silica, one dynamically and three permanently coated, have been tested with respect to the three distinct bioanalytical issues: (i) achiral and chiral separation of small mass molecules, warfarin and its six isomeric hydroxy-derivatives; (ii) ultraselective separation of transferrin and albumin including differentiation between the diferric, two monoferric and iron-free forms of transferrin; and (iii) pioneering identification of albumin-induced shifts of acid dissociation constant by using CE instrumentation, revealed for warfarin and six hydroxywarfarins. As a result all of these pharmacologically and biochemically-relevant purposes have been reached, but using different capillaries. The dynamically coated silica capillary has allowed for the first time to separate warfarin from its six main hydroxy-metabolites by CE with high resolution. The bare silica capillary has performed well in cyclodextrin-assisted enantioseparation of these compounds. The neutral capillary has provided excellent resolution and performance in separation of proteins. The amine capillary, in turn, has occurred to be the best choice for identification of albumin-induced pKa shifts occurring in vivo, omitting capillary clogging and providing better sensitivity than the neutral capillary. This work reveals specific predispositions and shows that there is no universal capillary which may be applied to all issues. PMID:27038649

  18. Development of a Thick-film Silicon Ribbon Growth Technique for Application to Large-area Solar Cells and Arrays

    Science.gov (United States)

    Berman, P. A.

    1973-01-01

    A new technique is described for growth of large-area silicon ribbons. This technique is an edge-defined, film-fed growth process by which single crystals can be grown having a shape controlled by the outside dimensions of a shaping die, growth taking place from an extremely thin film of liquid fed by capillary action from a crucible below. The material from which the die is fabricated is very critical to the process. The die must be wet by the silicon, but adverse impurities must not be introduced into the silicon, and the die must not become degraded by the molten silicon. A breakthrough in die fabrication that has allowed the growth of silicon ribbons having dimensions of 1 cm by 30 cm with a thickness of 0.7 mm is described. The implications of this significant advancement with respect to development of photovoltaic solar arrays for wide-scale terrestrial solar-to-electric energy conversion systems are discussed.

  19. Microlens Array Laser Transverse Shaping Technique for Photoemission Electron Source

    CERN Document Server

    Halavanau, A; Qiang, G; Gai, W; Power, J; Piot, P; Wisniewski, E; Edstrom, D; Ruan, J; Santucci, J

    2016-01-01

    A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science \\& Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.

  20. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Kubesová, Anna; Horký, J.; Matoušková, H.; Tesařová, Marie; Horká, Marie

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7625-7635. ISSN 1618-2642 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bacteria * electrophoretic techniques * MALDI Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.436, year: 2014 http://hdl.handle.net/11104/0250090

  1. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  2. A novel technique for wireless optical communications with lenslet array processor

    Institute of Scientific and Technical Information of China (English)

    Weiqing Pan; Liren Liu; Hongzhan Liu; Shaogeng Deng

    2006-01-01

    @@ A novel communication technique is proposed, which utilizes a set ofmutually distinguishable optical pat terns instead of convergent facula to transmit information. Then the capacity is increased by exploiting the optical spatial bandwidth resources. At last, we experimentally demonstrate the proposed communication technique based on four 8 × 8 spatial pattern signals by using lenslet array processor.

  3. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Nillesen, M.M.; Hansen, H.H.G.; Gerrits, I.H.; Thijssen, J.M.; Korte, C.L. de

    2009-01-01

    The goal of this study was to investigate the applicability of conventional 2-D displacement and strain imaging techniques to phased array radiofrequency (RF) data. Furthermore, the possible advantages of aligning and stretching techniques for the reduction of decorrelation artefacts was examined. D

  4. C-MOS array design techniques: SUMC multiprocessor system study

    Science.gov (United States)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  5. Development of an Automation Technique for the Establishment of Functional Lipid Bilayer Arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg;

    2009-01-01

    fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 x 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However......In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 x 8 arrays with apertures having diameters of 301 +/- 5 mu m were......, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment...

  6. In situ synthesis of DNA micro-arrays using typography technique

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel typography technique was developed to in situ synthesize oligonucleotide arrays on glass slide,which has the celerity,high spatial resolution,lower cost,reliable operation,and high synthetic efficiency.The principle and process of the typography technique for fabricating gene-chips have been described in detail.A suit of poly(terafluoroethylene)devices for synthesizing oligonucleotide arrays were designed and prepared,and the fiber tubes with a number of nano-or micron-channels were em- ployed.The oligonucleotide arrays of 16 and 160 features with four different probes were synthesized using the typography technique.The four specific oligonucleotide probes including the matched and the mismatched by the fluorescent target sequence gave obviously different hybridization fluorescent signals.It was indicated that the gene-chip fabricated by the typography method could be used to rapidly screen single-nucleotide polymorphisms(SNP)and to detect mutations.

  7. Measurement techniques and instruments suitable for life-prediction testing of photovoltaic arrays. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.T.; Sliemers, F.A.; Deringer, G.C.; Wood, V.E.; Wilkes, K.E.; Gaines, G.B.; Carmichael, D.C.

    1978-01-15

    The validation of a service life of 20 years for low-cost photovoltaic arrays must be accomplished through accelerated life-prediction tests. A methodology for such tests has been developed in a preceding study. The results discussed consist of the initial identification and assessment of all known measurement techniques and instruments that might be used in these life-prediction tests. Array failure modes, relevant materials property changes, and primary degradation mechanisms are discussed as a prerequisite to identifying suitable measurement techniques and instruments. Candidate techniques and instruments are identified on the basis of extensive reviews of published and unpublished information. These methods are organized in six measurement categories--chemical, electrical, optical, thermal, mechanical, and ''other physicals''. Using specified evaluation criteria, the most promising techniques and instruments for use in life-prediction tests of arrays are then selected. These recommended techniques and their characteristics are described. Recommendations are made regarding establishment of the adequacy, particularly with respect to precision, of the more fully developed techniques for this application, and regarding the experimental evaluation of promising developmental techniques. Measurement needs not satisfied by presently available techniques/instruments are also identified.

  8. Mapping the temporal pole with a specialized electrode array: technique and preliminary results

    International Nuclear Information System (INIS)

    Temporopolar cortex plays a crucial role in the pathogenesis of temporal lobe epilepsy and subserves important cognitive functions. Because of its shape and position in the middle cranial fossa, complete electrode coverage of the temporal pole (TP) is difficult to achieve using existing devices. We designed a novel TP electrode array that conforms to the surface of temporopolar cortex and achieves dense electrode coverage of this important brain region. A multi-pronged electrode array was designed that can be placed over the surface of the TP using a straightforward insertion technique. Twelve patients with medically intractable epilepsy were implanted with the TP electrode array for purposes of seizure localization. Select patients underwent cognitive mapping by electrocorticographic (ECoG) recording from the TP during a naming task. Use of the array resulted in excellent TP electrode coverage in all patients. High quality ECoG data were consistently obtained for purposes of delineating seizure activity and functional mapping. During a naming task, significant increases in ECoG power were observed within localized subregions of the TP. One patient developed a transient neurological deficit thought to be related to the mass effect of multiple intracranial recording arrays, including the TP array. This deficit resolved following removal of all electrodes. The TP electrode array overcomes limitations of existing devices and enables clinicians and researchers to obtain optimal multi-site recordings from this important brain region. (paper)

  9. Target localization techniques for vehicle-based electromagnetic induction array applications

    Science.gov (United States)

    Miller, Jonathan S.; Schultz, Gregory M.; Shubitidze, Fridon; Marble, Jay A.

    2010-04-01

    State-of-the-art electromagnetic induction (EMI) arrays provide significant capability enhancement to landmine, unexploded ordnance (UXO), and buried explosives detection applications. Arrays that are easily configured for integration with a variety of mobile platforms offer improved safety and efficiency to personnel conducting detection operations including site remediation, explosive ordnance disposal, and humanitarian demining missions. We present results from an evaluation of two vehicle-based frequency domain EMI arrays. Our research includes implementation of a simple circuit model to estimate target location from sensor measurements of the scattered vertical magnetic field component. Specifically, we characterize any conductive or magnetic target using a set of parameters that describe the eddy current and magnetic polarizations induced about a set of orthogonal axes. Parameter estimations are based on the fundamental resonance mode of a series inductance and resistance circuit. This technique can be adapted to a variety of EMI array configurations, and thus offers target localization capabilities to a number of applications.

  10. A technique for large-area position-controlled growth of GaAs nanowire arrays

    Science.gov (United States)

    Kauppinen, Christoffer; Haggren, Tuomas; Kravchenko, Aleksandr; Jiang, Hua; Huhtio, Teppo; Kauppinen, Esko; Dhaka, Veer; Suihkonen, Sami; Kaivola, Matti; Lipsanen, Harri; Sopanen, Markku

    2016-04-01

    We demonstrate a technique for fabricating position-controlled, large-area arrays of vertical semiconductor nanowires (NWs) with adjustable periods and NW diameters. In our approach, a Au-covered GaAs substrate is first coated with a thin film of photoresponsive azopolymer, which is exposed twice to a laser interference pattern forming a 2D surface relief grating. After dry etching, an array of polymer islands is formed, which is used as a mask to fabricate a matrix of gold particles. The Au particles are then used as seeds in vapour-liquid-solid growth to create arrays of vertical GaAs NWs using metalorganic vapour phase epitaxy. The presented technique enables producing NWs of uniform size distribution with high throughput and potentially on large wafer sizes without relying on expensive lithography techniques. The feasibility of the technique is demonstrated by arrays of vertical NWs with periods of 255-1000 nm and diameters of 50-80 nm on a 2 × 2 cm area. The grown NWs exhibit high long range order and good crystalline quality. Although only GaAs NWs were grown in this study, in principle, the presented technique is suitable for any material available for Au seeded NW growth.

  11. Verification and application of beam steering Phased Array UT technique for complex structures

    International Nuclear Information System (INIS)

    Phased Array Ultrasonic Testing (PAUT) techniques for complex geometries are greatly progressing. We developed an immersion PAUT which is suitable for complex surface profiles such as nozzles and deformed welded areas. Furthermore, we have developed a shape adaptive beam steering technique for 3D complex surface structures with conventional array probe and flexible coupling gel which makes the immersion beam forming technique usable under dry conditions. This system consists of 3 steps. Step1 is surface profile measurement which based on 3D Synthesis Aperture Focusing Technique (SAFT), Step2 is delay law calculation which could take into account the measured 3D surface profiles and steer a shape adjusted ultrasonic beam, Step3 is shape adjusted B-scope construction. In this paper, verification results of property of this PAUT system using R60 curved specimen and nozzle shaped specimen which simulated actual BWR structure. (author)

  12. Two-Stage MAS Technique for Analysis of DRA Elements and Arrays on Finite Ground Planes

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    A two-stage Method of Auxiliary Sources (MAS) technique is proposed for analysis of dielectric resonator antenna (DRA) elements and arrays on finite ground planes (FGPs). The problem is solved by first analysing the DRA on an infinite ground plane (IGP) and then using this solution to model the FGP...

  13. Arc arrays: studies of high resolution techniques for multibeam bathymetric applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Schenke, H.W.

    . This geometry is tested using the Bartlett method for varying arc and linear arrays of 30 - elements. We also examine `high resolution techniques' such as the Maximum LIkelihood (ML) method and the Maximum Entropy (ME) methods (different orders), for 16-element...

  14. Systemic Capillary Leak Syndrome associated with hypovolemic shock and compartment syndrome. Use of transpulmonary thermodilution technique for volume management

    Directory of Open Access Journals (Sweden)

    Schmid Roland M

    2010-07-01

    Full Text Available Abstract Systemic Capillary Leak Syndrome (SCLS is a rare disorder characterized by increased capillary hyperpermeability leading to hypovolemic shock due to a markedly increased shift of fluid and protein from the intravascular to the interstitial space. Hemoconcentration, hypoalbuminemia and a monoclonal gammopathy are characteristic laboratory findings. Here we present a patient who suffered from SCLS with hypovolemic shock and compartment syndrome of both lower legs and thighs. Volume and catecholamine management was guided using transpulmonary thermodilution. Extended hemodynamic monitoring for volume and catecholamine management as well as monitoring of muscle compartment pressure is of crucial importance in SCLS patients.

  15. MIXED EVOLUTIONARY TECHNIQUES TO REDUCE ORDER OF LINEAR INTERVAL SYSTEMS USING GENERLIZED ROUTH ARRAY

    Directory of Open Access Journals (Sweden)

    DEVENDER KUMAR SAINI

    2010-10-01

    Full Text Available Recently, genetic algorithms (GA and particle swarm optimization (PSO technique have attracted considerable attention among various modern heuristic optimization techniques. In this paper both PSO and GA optimization are employed for finding stable reduced order models of large-scale linear Interval systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. In both methods interval arithmetic is used to construct generalized Routh array for determining the denominator polynomials of reduced system. The reduced numerator polynomials are determined by minimizing Integral Square Error (ISE between original and reduced system using GA in first technique and using PSO in second technique pertaining to a unit step input. Both techniques are simple rugged and computer oriented. Both the methods are illustrated through a numerical example and the results are compared with recently published conventional model reduction technique.

  16. A novel technique for electronic phasing of high power fiber amplifier arrays

    Science.gov (United States)

    Shay, T. M.; Baker, J. T.; Sanchez, Anthony D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-06-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  17. Measurement Techniques and Instruments Suitable for Life-prediction Testing of Photovoltaic Arrays

    Science.gov (United States)

    Noel, G. T.; Wood, V. E.; Mcginniss, V. D.; Hassell, J. A.; Richard, N. A.; Gaines, G. B.; Carmichael, D. C.

    1979-01-01

    The validation of a 20-year service life for low-cost photovoltaic arrays is a critical requirement in the Low-Cost Solar Array (LSA) Project. The validation is accomplished through accelerated life-prediction tests. A two-phase study was conducted to address the needs before such tests are carried out. The results and recommended techniques from the Phase 1 investigation are summarized in the appendix. Phase 2 of the study is covered in this report and consisted of experimental evaluations of three techniques selected from these recommended as a results of the Phase 1 findings. The three techniques evaluated were specular and nonspecular optical reflectometry, chemiluminescence measurements, and electric current noise measurements.

  18. An acoustic-array based structural health monitoring technique for wind turbine blades

    Science.gov (United States)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  19. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    Science.gov (United States)

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  20. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    Directory of Open Access Journals (Sweden)

    Robert K. Henderson

    2012-05-01

    Full Text Available We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD-based cameras for fluorescence lifetime imaging microscopy (FLIM by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

  1. Phased-array beam steering using optical true time delay technique

    Science.gov (United States)

    Yang, Dong-Hua; Lin, Wen-Piao

    2015-09-01

    An optical dispersion technique for phased-array beam steering is proposed and analyzed. Optical true time delay using a high-dispersion compensation fiber (HDCF) and a phased array antenna (PAA) can provide a continuous radio-frequency squint-free beam scanning. When the dispersion of the fabricated DCF-C band is as high as -1020±31 ps/nm/km, the laser wavelength can be tuned from 1549.95 to 1550.2 nm. The experimental results confirmed that the scanning angle of far field radiation patterns for proposed technique can be tuned to have a range 51° (from -22° to +29°) at frequency of 5.9, 12.7 and 17 GHz.

  2. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    Science.gov (United States)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  3. Opto-microwave technique in the promising active phased antenna arrays

    OpenAIRE

    Bakhrakh, Lev D.; Shifrin, Yakov S.

    1995-01-01

    Implementation of multi-element active phased antenna arrays (APAA) due to poor mass-overall dimensions characteristics, signals distribution system complexity is rather difficult. Extra difficulties arise with wide-band signals and millimeter waves APAA. The signal distribution fiber-optical systems using elements of laser technique and other elements of opto-electronics allow in many cases to solve completely the problem of the signals distribution system and pilot and monitor signals in AP...

  4. Controlled ultraviolet (UV) photoinitiated fabrication of monolithic porous layer open tubular (monoPLOT) capillary columns for chromatographic applications

    OpenAIRE

    Collins, David; Nesterenko, Ekaterina; Brabazon, Dermot; Paull, Brett

    2012-01-01

    An automated column fabrication technique that is based on a ultraviolet (UV) light-emitting diode (LED) array oven, and provides precisely controlled "in-capillary" ultraviolet (UV) initiated polymerization at 365 nm, is presented for the production of open tubular monolithic porous polymer layer capillary (monoPLOT) columns of varying length, inner diameter (ID), and porous layer thickness. The developed approach allows the preparation of columns of varying length, because of an automated c...

  5. Simple reflow technique for fabrication of a microlens array in solgel glass.

    Science.gov (United States)

    He, M; Yuan, X C; Ngo, N Q; Bu, J; Kudryashov, V

    2003-05-01

    A simple reflow method for fabrication of refractive microlens arrays in inorganic-organic SiO2-ZrO2 solgel glass is presented. To our knowledge, this is the first report that presents a simple reflow technique for transforming a negatively induced hybrid solgel material into desirable spherical microlenses. It is shown that the microlenses have excellent smooth surfaces and uniform dimensions. The reflow technique is considerably cheaper than use of a high-energy beam-sensitive gray-scale mask and is suitable for mass production. PMID:12747722

  6. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    International Nuclear Information System (INIS)

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min

  7. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    Science.gov (United States)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  8. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Yanes, Enrique G. E-mail: yanes@bhnrc.usda.gov; Miller-Ihli, Nancy J. E-mail: miller-ihli@bhnrc.usda.gov

    2004-06-18

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 {mu}l/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography ({mu}HPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and {mu}HPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 {mu}l/min.

  9. Fabrication of Converging and Diverging Polymeric Microlens Arrays By A Thermocapillary Replication Technique

    Science.gov (United States)

    Lim, Soon Wei Daniel; Fiedler, Kevin; Troian, Sandra

    Thermocapillary forces offer a powerful method for sculpting interfaces at microscale dimensions. Here we demonstrate how periodic arrays of cooled pins placed in close proximity to the surface of a molten polymer nanofilm can be used to fabricate various large area microlens arrays, which when solidified exhibit ultrasmooth surfaces and excellent focusing capability. This technique was used to fabricate both homogeneous converging and diverging microlens shapes by application of various thermal distributions. The converging arrays were incorporated into a Shack-Hartmann wavefront sensor able to image moving currents of airborne spray droplets. Feature overlap was also used to achieve hierarchical arrays comprising two superimposed patterns. By varying the width of the cooled pins, it was also possible to fabricate converging microlens structures featuring a caldera-like depression at the vertex able to focus collimated light into a sharp annulus. These demonstrations prove that with suitable microscale control over the thermal distributions projected onto molten nanofilms, a diverse set of micro-optical components can be fabricated by thermocapillary replication from a nearby mask without contact and in a single step. S. W. D. Lim acknowledges funding from the Toshi Kubota SURF fellowship. KRF is supported by a NASA Science and Technology Research Fellowship.

  10. Suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in dairy cows by using 3 different electronic hand-held devices.

    Science.gov (United States)

    Kanz, P; Drillich, M; Klein-Jöbstl, D; Mair, B; Borchardt, S; Meyer, L; Schwendenwein, I; Iwersen, M

    2015-09-01

    The objective of this study was to evaluate the suitability of capillary blood obtained by a minimally invasive lancet technique to detect subclinical ketosis in 49 prepartum and 191 postpartum Holstein-Friesian cows using 3 different electronic hand-held devices [FreeStyle Precision (FSP, Abbott), GlucoMen LX Plus (GLX, A. Menarini), NovaVet (NOV, Nova Biomedical)]. The β-hydroxybutyrate (BHBA) concentration in serum harvested from coccygeal blood samples was analyzed in a laboratory and used as a reference value. Capillary samples were obtained from the skin of the exterior vulva by using 1 of 3 different lancets. In all samples, the concentration of BHBA was immediately analyzed with all 3 hand-held devices used in random order. All lancets used in the study were eligible for capillary blood collection but differed in the total number of incisions needed. Spearman correlation coefficients between the BHBA concentrations in capillary blood and the reference test were highly significant with 83% for the FSP, 73% for the NOV, and 63% for the GLX. Using capillary blood, the FSP overestimated the mean BHBA concentration compared with the reference test (+0.08 mmol/L), whereas the GLX and NOV underestimated the mean concentration (-0.07 and -0.01 mmol/L). When a BHBA concentration of 1.2 mmol/L in serum was used to define subclinical ketosis, the corresponding analyses of receiver operating characteristics resulted in optimized thresholds for capillary blood of 1.1 mmol/L for the NOV and GLX devices, and of 1.0 mmol/L for the FSP. Based on these thresholds, sensitivities (Se) and specificities (Sp) were 89 and 84% for the NOV, 80 and 89% for the GLX, and 100 and 76% for the FSP. Based on a serum BHBA concentration of 1.4 mmol/L, analyses of receiver operating characteristics resulted in optimized cut-offs of 1.4 mmol/L for the FSP (Se 100%, Sp 92%), 1.3 mmol/L for the NOV (Se 80%, Sp 95%), and 1.1 mmol/L (Se 90%, Sp 85%) for the GLX. Using these optimized thresholds

  11. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Toemsak Srikhirin

    2013-09-01

    Full Text Available In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput.

  12. A one-step technique to prepare aligned arrays of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mahanandia, Pitamber [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)], E-mail: pitam@physics.iisc.ernet.in

    2008-04-16

    A simple effective pyrolysis technique has been developed to synthesize aligned arrays of multi-walled carbon nanotubes (MWCNTs) without using any carrier gas in a single-stage furnace at 700 deg. C. This technique eliminates nearly the entire complex and expensive machinery associated with other extensively used methods for preparation of CNTs such as chemical vapour deposition (CVD) and pyrolysis. Carbon source materials such as xylene, cyclohexane, camphor, hexane, toluene, pyridine and benzene have been pyrolyzed separately with the catalyst source material ferrocene to obtain aligned arrays of MWCNTs. The synthesized CNTs have been characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. In this technique, the need for the tedious and time-consuming preparation of metal catalysts and continuously fed carbon source material containing carrier gas can be avoided. This method is a single-step process where not many parameters are required to be monitored in order to prepare aligned MWCNTs. For the production of CNTs, the technique has great advantages such as low cost and easy operation.

  13. Capillary electrophoresis finger print technique (CE-SSCP): an alternative tool for the monitoring activities of HAB species in Baja California Sur Costal.

    Science.gov (United States)

    Herrera-Sepúlveda, Angélica; Hernandez-Saavedra, Norma Y; Medlin, Linda K; West, Nyree

    2013-10-01

    In Mexican waters, there is no a formal and well-established monitoring program of harmful algal blooms (HAB) events. Until now, most of the work has been focused on the characterization of organisms present in certain communities. Therefore, the development of new techniques for the rapid detection of HAB species is necessary. Capillary electrophoresis finger print technique (CE-SSCP) is a fingerprinting technique based on the identification of different conformers dependent of its base composition. This technique, coupled with capillary electrophoresis, has been used to compare and identify different conformers. The aim of this study was to determine if CE-SSCP analysis of ribosomal RNA (rRNA) gene fragments could be used for a rapid identification of toxic and harmful HAB species to improve monitoring activities along the coasts of Baja California Sur, Mexico.Three different highly variable regions of the 18S and 28S rRNA genes were chosen and their suitability for the discrimination of different dinoflagellate species was assessed by CE-SSCP.The CE-SSCP results obtained for the LSU D7 fragment has demonstrated that this technique with this gene region could be useful for the identification of the ten dinoflagellates species of different genera.We have shown that this method can be used to discriminate species and the next step will be to apply it to natural samples to achieve our goal of molecular monitoring for toxic algae in Mexican waters. This strategy will offer an option to improve an early warning system of HAB events for coastal BCS, allowing the possible implementation of mitigation strategies. A monitoring program of HAB species using molecular methods will permit the analysis of several samples in a short period of time, without the pressure of counting with a taxonomic expert in phytoplankton taxonomy. PMID:22744160

  14. Capillary electromigration techniques as tools for assessing the status of vitamins A, C and E in patients with cystic fibrosis.

    Science.gov (United States)

    Olędzka, Ilona; Kaźmierska, Katarzyna; Plenis, Alina; Kamińska, Barbara; Bączek, Tomasz

    2015-01-01

    The purpose of this work is the evaluation of the nutritional status of patients with cystic fibrosis (CF), based on the level of vitamin C in urine and vitamins A and E in serum, using the fast, selective and fully automated micellar electrokinetic capillary chromatographic (MEKC) and microemulsion electrokinetic capillary chromatographic (MEEKC) methods. The optimization of parameters affecting the electrophoretic separation provided adequate separation of the analytes of interest in the short time of 8 min (MEKC) and 20 min (MEEKC). The developed methods were practical applications to evaluate the levels of vitamins A, C and E in real samples from 28 children suffering from cystic fibrosis and from 10 healthy volunteers. Based on the mean concentration values obtained in the two groups, it can be seen that the levels of each vitamin were lower in patients with CF than in healthy volunteers. In the case of vitamin E, these differences in both groups were statistically significant, while the disproportion of concentrations of vitamins A and C in both the studied groups were not so relevant. On the other hand, a principal component analysis (PCA) confirmed that in some patients with CF the concentration of vitamin A was significantly lower than in the control group. Thus, the future evaluation of the status of fat-soluble vitamins in the longer term for the evaluation of the nutritional status of patients with CF should be continued. The presented CE methods can become useful tools for the evaluation of the nutritional status of patients with CF. PMID:25240158

  15. 2D Active Antenna Array Design for FD-MIMO System and Antenna Virtualization Techniques

    Directory of Open Access Journals (Sweden)

    Ioannis Tzanidis

    2015-01-01

    Full Text Available Full dimension MIMO (FD-MIMO is one of the key technologies presently studied in the 3GPP for the next generation long-term evolution advanced (LTE-A systems. By incorporating FD-MIMO into LTE/LTE-A systems, it is expected that system throughput will be drastically improved beyond what is possible in conventional LTE systems. This paper presets details on the 2D active antenna array design for FD-MIMO systems supporting 32 antenna elements. The FD-MIMO system allows for dynamic and adaptive precoding to be performed jointly across all antennas thus achieving more directional transmissions in the azimuth and elevation domains simultaneously, to a larger number of users. Finally, we discuss 2D antenna array port virtualization techniques for creating beams with wide coverage, necessary for broadcasting signals to all users within a sector, such as the CRS (Common Reference Signal.

  16. Research on fiber-optic interferometric hydrophone array using frequency division multiplying technique

    Institute of Scientific and Technical Information of China (English)

    CAO Jianian; LI Xuyou; WANG Zhaoxia; LUO Jicheng; FU Lintai

    2001-01-01

    From the point of view of system design, a configuration of fiber-optic interferometric hydrophone array and its modulation and demodulation approach using frequency division multiplexing technique based on Phase Generated Carrier (PGC) is introduced. And the emphasis on demonstrating the relationship among the number of units N, the detectable signal amplitude D and the detectable frequency ωs through analyzing the frequency spectrum of the output signal of the J × K array and the key factor which restricts N, D, ωo for increasing are presented. The maximum phase shift and the law of its variation according to frequency are specially analyzed. The results induced from some relative theory were verified by experiments.

  17. Modeling and Simulation of PV Array and its Performance Enhancement Using MPPT (P&O Technique

    Directory of Open Access Journals (Sweden)

    T.Chaitanya

    2011-08-01

    Full Text Available The renewable energy will be an increasingly important part of power generation in the new millennium. Photovoltaic (PV systems produce DC electricity when sunlight shines on the PV array, requiring little maintenance, and emitting no noise, among others. Day-by –day the energy demand is increasing and thus the need for a renewable source that will not harm the environment are of prime importance. The proposed model uses basic circuit equation of the photovoltaic solar cells including the effects of solar irradiation and temperature changes. The DC-DC converter is used for boosting a low voltage of the PV array up to the high dc bus voltage, which is not less than grid voltage level. A DC-DC converter performs the Maximum Power Point Tracking (MPPT. In photovoltaic systems for getting the maximum power we use MPPT techniques. In these methods open circuit voltage method is one, which is based on the observation that the voltage of the maximum power point is always close to a fixed percentage of the open circuit voltage. This technique uses only 76% of the open circuit voltage as the optimum operating voltage. The Perturb and Observe (P&O method operates by periodically perturbing (i.e. incrementing or decrementing the array terminal voltage or current and comparing the PV output power with that of the previous perturbation cycle. The proposed Perturb and Observe control algorithm is a software programme with a self-tuning function which adjusts the array reference voltage and step size of the voltage to achieve maximum power point. The validity of the photo voltaic module with P & O method allows better performance of MPPT due to variation of both power and voltage. This work is proposed to be carried out in MATLAB/SIMULINK environment.

  18. Application of liquid pre-column capillary electrophoresis technique to the study of interaction between drug enantiomers and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    丁永生; 朱晓蜂; 林炳承

    1999-01-01

    Based on the chiral separation of several basie drugs, dimetindene, tetryzoline, theodrenaline and verapamil, the liquid pre-colunm capillary electrophoresis (LPC-CE) technique was established. It was used to determine free concentrations of drug enantiomers in mixed solutions with human serum albumin (HSA). To prevent HSA entering the CE chiral separation zone, the mobility differences between HSA and drugs under a specific pH condition were employed in the LPC. Thus, the detection confusion caused by protein was totally avoided. Further study of binding constants determination and protein binding competitions was carried out. The study proves that the LPC technique could be used for complex media, particularly the matrix of protein coexisting with a variety of drugs.

  19. [Application of the capillary electrophoresis technique for the study of the products of explosion and combustion of mixed explosives and pyrotechnic compositions in the forensic medical practice].

    Science.gov (United States)

    Davydov, M V; Spiridonov, V A; Budnikov, V N; Petrosiants, T G

    2010-01-01

    The authors describe methods of cation-anion analysis of aqueous media by the capillary electrophoresis technique with reference to the detection of the products of explosion and combustion of mixed explosives and pyrotechnic compositions. The possibility to use the results thus obtained for the study of an explosion injury is discussed. Optimal conditions for the separation of chloride, nitrite, nitrate, sulfate, sulfide, chlorate, and perchlorate ions are determined. The efficiency of the proposed methods for the characteristic of the cation-anion composition of the aqueous medium to identify the products of explosion and combustion of mixed explosives and pyrotechnic compounds is exemplified by their application in the forensic medical practice. It is concluded that the above techniques can be used to study explosion injuries. PMID:20560510

  20. Ultrasonic Phased Array Techniques for Detection of Flaws of Stud Bolts in Nuclear Power Plants

    International Nuclear Information System (INIS)

    The reactor vessel body and closure head are fastened with the stud bolt that is one of crucial parts for safety of the reactor vessels in nuclear power plants. It is reported that the stud bolt is often experienced by fatigue cracks initiated at threads. Stud bolts are inspected by the ultrasonic technique during the overhaul periodically for the prevention of failure which leads to radioactive leakage from the nuclear reactor. The conventional ultrasonic inspection for stud bolts was mainly conducted by reflected echo method based on shadow effect. However, in this technique, there were numerous spurious signals reflected from every oblique surfaces of the thread. In this study, ultrasonic phased array technique was applied to investigate detectability of flaws in stud bolts and characteristics of ultrasonic images corresponding to different scanning methods, that is, sector and linear scan. For this purpose, simplified stud bolt specimens with artificial defects of various depths were prepared

  1. Development of a pseudo phased array technique using EMATs for DM weld testing

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Adam C., E-mail: adam.cobb@swri.org; Fisher, Jay L., E-mail: adam.cobb@swri.org [Southwest Research Institute, Sensor Systems and Nondestructive Technology Department, 6220 Culebra Road, San Antonio, TX 78238-5166 (United States); Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu [IHI Corporation, Nuclear Power Operations, Yokohama Engineering Center, 1, Shin-Nakahara-cho, Isogo-ku, Yokohama 235-8501 (Japan)

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  2. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    OpenAIRE

    Toemsak Srikhirin; Armote Somboonkaew; Ratthasart Amarit; Boonsong Sutapun; Mongkol Kunakorn; Pimpun Kitpoka; Krisda Sudprasert; Patjaree Peungthum; Nongluck Houngkamhang; Apirom Vongsakulyanon

    2013-01-01

    In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow...

  3. Comparative evaluation between ultrasonic phased array and synthetic aperture focusing techniques

    International Nuclear Information System (INIS)

    Single-element scanning techniques are widely used in the NDT industry and have seen a number of successful applications. They require moving the sensor in time-consuming raster scan to create two-dimensional scan patterns and several transducers are required to focus at different levels in the inspected material. However, phased array technology is an emerging NDI technology which offers means to focus the ultrasonic beam at different locations and steer it to reach defects at hidden parts in complex structures, hence, substantially reducing the scanning time and simplifying the scanning pattern by scanning electronically in milliseconds instead of scanning mechanically in a few seconds. The motivation of this work is to investigate and compare electronic and SAFT (synthetic focusing) of the ultrasonic waves using linear phased array transducers. Experimental tests were done on an aluminum block with side-drilled holes to simulate defects. Reduction of calculation time for the SAFT algorithm was achieved using beam width limitation. Experimental SAFT results and results from phased array system were compared. Practical SAFT advantages and limitations are then highlighted and requirements for better performance are discussed

  4. Hybrid sample-inverted reflow and soft-lithography technique for fabrication of conicoid microlens arrays

    Science.gov (United States)

    He, Miao; Yuan, Xiaocong; Bu, Jing; Chye Cheong, Wai

    2005-07-01

    We report a cost-effective fabrication method, with a combination of the sample-inverted reflow technique and the soft-lithography replication method, to fabricate conicoid refractive microlens arrays (MLAs), including hyperboloid, paraboloid, and ellipsoid MLAs in inorganic-organic hybrid SiO2-ZrO2 solgel material. The fabrication procedures involve two basic steps. First, a master of the conicoid MLA was made in photoresist by the sample-inverted reflow technique. Second, we built a negative mold of the master by casting polydimethylsiloxane (PDMS) onto a silicone elastomer against the master, and then the profile was imprinted onto the solgel glass. As a result, the fabricated solgel MLAs have been obtained with excellent smooth profiles, having negligible discrepancies from the profiles of ideal conicoid MLAs.

  5. Comparisons of receive array interference reduction techniques under erroneous generalized transmit beamforming

    KAUST Repository

    Radaydeh, Redha Mahmoud

    2014-02-01

    This paper studies generalized single-stream transmit beamforming employing receive array co-channel interference reduction algorithms under slow and flat fading multiuser wireless systems. The impact of imperfect prediction of channel state information for the desired user spatially uncorrelated transmit channels on the effectiveness of transmit beamforming for different interference reduction techniques is investigated. The case of over-loaded receive array with closely-spaced elements is considered, wherein it can be configured to specified interfering sources. Both dominant interference reduction and adaptive interference reduction techniques for statistically ordered and unordered interferers powers, respectively, are thoroughly studied. The effect of outdated statistical ordering of the interferers powers on the efficiency of dominant interference reduction is studied and then compared against the adaptive interference reduction. For the system models described above, new analytical formulations for the statistics of combined signal-to-interference-plus-noise ratio are presented, from which results for conventional maximum ratio transmission and single-antenna best transmit selection can be directly deduced as limiting cases. These results are then utilized to obtain quantitative measures for various performance metrics. They are also used to compare the achieved performance of various configuration models under consideration. © 1972-2012 IEEE.

  6. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;

    2009-01-01

    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...

  7. Capillary electrophoresis

    International Nuclear Information System (INIS)

    After a short historical introduction, the different modes of separation in capillary electrophoresis are explained and illustrated by practical examples. In addition, the most important parameters that can be used to optimize the selectivity of the separation, are discussed. (author) 27 refs.; 8 figs

  8. Biomedical applications of capillary electrophoresis

    Science.gov (United States)

    Kartsova, L. A.; Bessonova, E. A.

    2015-08-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  9. Capillary gas chromatography-ICP mass spectrometry: a powerful hyphenated technique for the determination of organometallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smaele, T. de [Laboratory for Analytical Chemistry, Ghent Univ. (Belgium); Moens, L. [Laboratory for Analytical Chemistry, Ghent Univ. (Belgium); Dams, R. [Laboratory for Analytical Chemistry, Ghent Univ. (Belgium); Sandra, P. [Laboratory of Organic Chemistry, Ghent Univ. (Belgium)

    1996-08-01

    The development and improvement of a gas chromatography inductively coupled plasma mass spectrometry system, GC-ICP-MS, is described. The GC and ICP-MS are coupled with a heated stainless steel transfer line. Xe, present in the GC carrier gas, is used to facilitate the nebuliser gas flow rate setting and the positioning of the torch. Alkyltin compounds are separated by GC using a 30 m capillary column within 9 min. The necessity of applying double internal standardisation (use of Bu{sub 3}PeSn and Xe gas as internal standards) is shown. The repeatabilities at 50 {mu}g/l concentration for both retention time and peak are better than 0.25% and 5%, respectively. The detection limits for alkyltin compounds are better than those of existing methods and range between 15 and 35 fg Sn. Finally, GC-ICP-MS is applied to the determination of mono-, di- and tributyltin in some harbour waters, after extraction and Grignard derivation with PrMgCl. Concentrations between 1 and 20 ng/l are found. (orig.). With 5 figs., 6 tabs.

  10. Stacking and Analysis of Melamine in Milk Products with Acetonitrile-Salt Stacking Technique in Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yu Kong

    2014-01-01

    Full Text Available Melamine was measured in real milk products with capillary electrophoresis (CE based on acetonitrile-salt stacking (ASS method. Real milk samples were deproteinized with acetonitrile at a final concentration of 60% (v/v and then injected hydrodynamically at 50 mBar for 40.0 s. The optimized buffer contains 80.0 mmol/L pH 2.8 phosphates. Melamine could be detected within 20.0 min at +10 kV with a low limit of detection (LOD of 0.03 μmol/L. Satisfactory reproducibility (inter- and intraday RSD% both for migration time and peak area was lower than 5.0% and a wide linearity range of 0.05 μmol/L ~ 10.0 μmol/L were achieved. The proposed method was suitable for routine assay of MEL in real milk samples that was subjected to a simple treatment step.

  11. Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques

    Science.gov (United States)

    Benkovics, Gabor; Hodek, Ondrej; Havlikova, Martina; Bosakova, Zuzana; Coufal, Pavel; Malanga, Milo; Fenyvesi, Eva; Darcsi, Andras; Beni, Szabolcs

    2016-01-01

    Summary This work focuses on the preparation and application of supramolecular structures based on mono-cinnamyl-α-cyclodextrins (Cin-α-CD). Pure regioisomers of Cin-α-CD having the cinnamyl moiety at the 2-O- or at the 3-O-position, respectively, were prepared, characterized and applied in capillary electrophoresis as additives to the background electrolyte. These new monomer units with a potential to self-organize into supramolecular structures were synthesized via a straightforward one-step synthetic procedure and purified using preparative reversed-phase chromatography allowing a large scale separation of the regioisomers. The ability of the monomers to self-assemble was proved by various methods including NMR spectroscopy and dynamic light scattering (DLS). The light scattering experiments showed that the monomer units have distinguishable ability to form supramolecular structures in different solvents and the size distribution of the aggregates in water can be easily modulated using different external stimuli, such as temperature or competitive guest molecules. The obtained results indicated that the two regioisomers of Cin-α-CD formed different supramolecular assemblies highlighting the fact that the position of the cinnamyl group plays an important role in the intermolecular complex formation. PMID:26877812

  12. Application of Stacking Technique in ANA: Method and Practice with PKU Seismological Array

    Science.gov (United States)

    Liu, J.; Tang, Y.; Ning, J.; Chen, Y. J.

    2010-12-01

    Cross correlation of ambient noise records is now routinely used to get dispersion curve and then do seismic tomography; however little attention has been paid to array techniques. We will present a spacial-stacking method to get high resolution dispersion curves and show practices with the observation data of PKU seismological array. Experiential Green Functions are generally obtained by correlation between two stations, and then the dispersion curves are obtained from the analysis of FTAN. Popular method to get high resolution dispersion curves is using long time records. At the same time, if we want to get effectual signal, the distance between the two stations must be at least 3 times of the longest wavelength. So we need both long time records and appropriate spaced stations. Now we use a new method, special-stacking, which allows shorter observation period and utilizes observations of a group of closely distributed stations to get fine dispersion curves. We correlate observations of every station in the station group with those of a far station, and then stack them together. However we cannot just simply stack them unless the stations in the station group at a circle, of which the center is the far station owing to dispersion characteristics of the Rayleigh waves. Thus we do antidispersion on the observation data of every station in the array, then do stacking. We test the method using the theoretical seismic surface wave records which obtained by qseis06 compiled by Rongjiang Wang both with and without noise. For the cases of three imaginary stations (distance is 1 degree) have the same underground structure and without noise, result is that the center station had the same dispersion with and without spacial-stacking. Then we add noise to the theoretical records. The center station's dispersion curves obtained by our method are much closer to the dispersion curve without noise than contaminated ones. We can see that our method has improved the resolution of

  13. A fiber-array probe technique for measuring the viscosity of a substance under shock compression

    International Nuclear Information System (INIS)

    A fiber-array probe is designed to measure the damping behavior of a small perturbed shock wave in an opaque substance, by which the effective viscosity of substance under the condition of high temperature and high pressure can be constrained according to the flyer-impact technique. It shows that the measurement precision of the shock arrival time by using this technique is within 2 ns. To easily compare with the results given by electrical pin technique, the newly developed method is used to investigate the effective viscosity of aluminum (Al). The shear viscosity coefficient of Al is determined to be 1700 Pa·s at 71 GPa with a strain rate of 3.6 × 106 s−1, which is in good agreement with the results of other methods. The advantage of the new technique over the electrical pin one is that it is applicable for studying the non-conductive substances. (interdisciplinary physics and related areas of science and technology)

  14. Vortex-assisted liquid-liquid-liquid microextraction (VALLLME) technique: A new microextraction approach for direct liquid chromatography and capillary electrophoresis analysis.

    Science.gov (United States)

    Makahleh, Ahmad; Yap, Hui Fang; Saad, Bahruddin

    2015-10-01

    A new, rapid and sensitive microextraction technique named vortex-assisted liquid-liquid-liquid microextraction (VALLLME) is proposed. The complete extraction process involves two steps. First, a vortex-assisted liquid-liquid microextraction (VALLME) procedure was used to extract the analytes from a relatively large volume of sample (donor phase) to a small volume of organic solvent (intermediate phase). Next, a micro-vortex-assisted liquid-liquid extraction (µ-VALLE) was used to extract the target analytes from the intermediate phase to a smaller volume of aqueous solution (acceptor phase). The final extract (acceptor phase) can be directly injected into the high performance liquid chromatography or capillary electrophoresis units without any further treatments. The selection of the intermediate phase and the manipulation of pH are key parameters that ensure good extraction efficiency of the technique. The proposed technique has been successfully applied for the determination of carvedilol (used as model analyte) in biological fluid samples. The optimum extraction conditions were: toluene as intermediate phase (150 μL); pH of the donor phase, 9.5; vortex time of the VALLME, 45 s (maximum speed, 2500 rpm); 0.1M HCl (15 μL) as acceptor phase; vortexing time of the µ-VALLME, 75 s (maximum stirring speed, 2500 rpm) and salt concentration in the donor phase, 5% (w/v). Under these conditions, enrichment factors of 51- and 418-fold for VALLME step and VALLLME procedure, respectively, were achieved. PMID:26078176

  15. Formation of plano-convex micro-lens array in fused silica glass using CO2 laser assisted reshaping technique

    CERN Document Server

    Sohn, Ik-Bu; Yoo, Dongyoon; Noh, Young-Chul; Ahsan, Md Shamim; Sung, Jae-Hee; Lee, Seong-Ku

    2016-01-01

    We report on fabricating high-fill-factor plano-convex spherical and square micro-lens arrays on fused silica glass surface using CO2 laser assisted reshaping technique. Initially, periodic micro-pillars have been encoded on the glass surface by means of a femtosecond laser beam. Afterwards, the micro-pillars are polished several times by irradiating a CO2 laser beam on top of the micro-pillars. Consequently, spherical micro-lens array with micro-lens size of 50 um x 50 um and square micro-lens array with micro-lens size of 100 um x 100 um are formed on fused silica glass surface. We also study the intensity distribution of light passed through the spherical micro-lens array engraved glass sample. The simulation result shows that, the focal length of the spherical micro-lens array is 35 um. Furthermore, we investigate the optical properties of the micro-lens array engraved glass samples. The proposed CO2 laser based reshaping technique is simple and fast that shows promises in fabrication arrays of smooth mic...

  16. Effects of correlated noise on the full-spectrum combining and complex-symbol combining arraying techniques

    Science.gov (United States)

    Vazirani, P.

    1995-01-01

    The process of combining telemetry signals received at multiple antennas, commonly referred to as arraying, can be used to improve communication link performance in the Deep Space Network (DSN). By coherently adding telemetry from multiple receiving sites, arraying produces an enhancement in signal-to-noise ratio (SNR) over that achievable with any single antenna in the array. A number of different techniques for arraying have been proposed and their performances analyzed in past literature. These analyses have compared different arraying schemes under the assumption that the signals contain additive white Gaussian noise (AWGN) and that the noise observed at distinct antennas is independent. In situations where an unwanted background body is visible to multiple antennas in the array, however, the assumption of independent noises is no longer applicable. A planet with significant radiation emissions in the frequency band of interest can be one such source of correlated noise. For example, during much of Galileo's tour of Jupiter, the planet will contribute significantly to the total system noise at various ground stations. This article analyzes the effects of correlated noise on two arraying schemes currently being considered for DSN applications: full-spectrum combining (FSC) and complex-symbol combining (CSC). A framework is presented for characterizing the correlated noise based on physical parameters, and the impact of the noise correlation on the array performance is assessed for each scheme.

  17. Capillary Condensation in Confined Media

    CERN Document Server

    Charlaix, Elisabeth

    2009-01-01

    We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion crack propagati...

  18. A validated capillary electrophoresis method for simultaneous determination of ezetimibe and atorvastatin in pharmaceutical formulations

    OpenAIRE

    AlShehri, Mona M.

    2011-01-01

    A simple, precise, and sensitive capillary electrophoresis technique coupled with a diode array detector has been developed for the separation and simultaneous determination of ezetimibe and atorvastatin in pharmaceutical formulations. Separation of both ezetimibe and atorvastatin was achieved utilizing fused silica capillary (58 cm × 75 μm ID) and background electrolyte solution that consisted of phosphate buffer (2.5 mM, pH 6.7): methanol (70:30 v/v). The proposed method was validated by te...

  19. Study of the interactions between the transuranic elements and some environmental ligands by the hyphenated technique capillary electrophoresis: inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In this work, the capabilities of the hyphenated Capillary Electrophoresis-ICP-MS technique are used to improve the knowledge on the transuranic element speciation in the environment (nuclear waste management) and in the framework of spent fuel reprocessing. Essential thermodynamical data have been determined for the first time for the interactions of the plutonium at the (5+) oxidation state (main soluble species of Pu of the surface water) in inorganic media (chloride, nitrate, sulfate, carbonate). This study enables to correct the existing model, based on the thermodynamical data of the neptunium at the (5+) oxidation state (analogue of the pentavalent plutonium). Furthermore, the hyphenated CE-ICP-MS technique has also been applied to study the interactions between DTPA, widely used in the nuclear industry, and the elements at the (3+) oxidation state (Pu, Am, Cm, Cf) and at the (4+) oxidation state (Pu, Np, Th). The results show for the first time the formation of mixed An(IV)/DTPA/OH complexes likely to play a key role on the actinide behavior in the field of the waste management. The study on the trivalent elements confirms the selectivity of DTPA versus the actinide in the framework of the actinide/lanthanide separation but proves that the covalency, responsible of the selectivity, are less important than the ionicity in the binding. (author)

  20. Mass fabrication technique for polymeric replicas of arrays of insect corneas

    International Nuclear Information System (INIS)

    Motivated to develop a technique for producing many high-fidelity replicas for the sacrifice of a single biotemplate, we combined a modified version of the conformal-evaporated-film-by-rotation technique and electroforming to produce a master negative made of nickel from a composite biotemplate comprising several corneas of common blowflies. This master negative can function as either a mold for casting multiple replicas or a die for stamping multiple replicas. An approximately 250 nm thick nickel film was thermally deposited on an array of blowfly corneas to capture the surface features with high fidelity and then a roughly 60 μm thick structural layer of nickel was electroformed onto the thin layer to give it the structural integrity needed for casting or stamping. The master negative concurrently captured the spatial features of the biotemplate at length scales ranging from 200 nm to a few millimeters. Polymer replicas produced thereafter by casting did faithfully reproduce features of a few micrometers and larger in dimension.

  1. A novel micromachining technique for the batch fabrication of scanning probe arrays with precisely defined tip contact areas

    International Nuclear Information System (INIS)

    This paper reports a novel micromachining technique for the batch fabrication of scanning probe arrays with different tip contact areas. Based on the bulk micromachining of silicon-on-insulator substrates, it eliminates the need for time-dependent etching processes and thus is capable of simultaneously fabricating both 'sharp' and 'blunt' scanning probes with precisely defined tip contact areas in a controllable and repeatable manner. As an example of the application of this probe fabrication technique, prototype scanning probe arrays have been successfully fabricated and used to demonstrate variable-resolution scanning probe lithography of fluorescent dyes in a parallel mode

  2. Analysis of jet-airfoil interaction noise sources by using a microphone array technique

    Science.gov (United States)

    Fleury, Vincent; Davy, Renaud

    2016-03-01

    The paper is concerned with the characterization of jet noise sources and jet-airfoil interaction sources by using microphone array data. The measurements were carried-out in the anechoic open test section wind tunnel of Onera, Cepra19. The microphone array technique relies on the convected, Lighthill's and Ffowcs-Williams and Hawkings' acoustic analogy equation. The cross-spectrum of the source term of the analogy equation is sought. It is defined as the optimal solution to a minimal error equation using the measured microphone cross-spectra as reference. This inverse problem is ill-posed yet. A penalty term based on a localization operator is therefore added to improve the recovery of jet noise sources. The analysis of isolated jet noise data in subsonic regime shows the contribution of the conventional mixing noise source in the low frequency range, as expected, and of uniformly distributed, uncorrelated noise sources in the jet flow at higher frequencies. In underexpanded supersonic regime, a shock-associated noise source is clearly identified, too. An additional source is detected in the vicinity of the nozzle exit both in supersonic and subsonic regimes. In the presence of the airfoil, the distribution of the noise sources is deeply modified. In particular, a strong noise source is localized on the flap. For high Strouhal numbers, higher than about 2 (based on the jet mixing velocity and diameter), a significant contribution from the shear-layer near the flap is observed, too. Indications of acoustic reflections on the airfoil are also discerned.

  3. Identification of the yeasts by capillary electrophoretic techniques with use of dynamic modification of the cells by fluorescent stain

    Czech Academy of Sciences Publication Activity Database

    Růžička, F.; Holá, V.; Horká, Marie; Šlais, Karel

    Nürnberg : International Society of Chemotherapy, 2004, A-117. [World Conference on Magic Bullets - To Celebrate Paul Ehrlich´s 150th Birthday. Nürnberg (DE), 09.09.2004-11.09.2004] R&D Projects: GA AV ČR IAA4031302 Institutional research plan: CEZ:AV0Z4031919 Keywords : electromigration techniques * fluorometric detection * yeasts Subject RIV: CB - Analytical Chemistry, Separation

  4. Ionic liquids in enhancing the sensitivity of capillary electrophoresis: Off-line and on-line sample preconcentration techniques.

    Science.gov (United States)

    El-Hady, Deia Abd; Albishri, Hassan M; Wätzig, Hermann

    2016-07-01

    The popularity of ionic liquids (ILs) has grown during the last decade in enhancing the sensitivity of CE through different off-line or on-line sample preconcentration techniques. Water-insoluble ILs were commonly used in IL-based liquid phase microextraction, in all its variants, as off-line sample preconcentration techniques combined with CE. Water-soluble ILs were rarely used in IL-based aqueous two phase system (IL-ATPS) as an off-line sample preconcentration approach combined with CE in spite of IL-ATPS predicted features such as more compatibility with CE sample injection due to its relatively low viscosity and more compatibility with CE running buffers avoid, in some cases, anion exchange precipitation. Therefore, the attentions for the key parameters affecting the performance of IL-ATPSs were generally presented and discussed. On-line CE preconcentration techniques containing IL-based surfactants at nonmicellar or micellar concentrations have become another interesting area to improve CE sensitivity and it is likely to remain a focus of the field in the endeavor because of their numerous to create rapid, simple and sensitive systems. In this article, significant contributions of ILs in enhancing the sensitivity of CE are described, and a specific overview of the relevant examples of their applications is also given. PMID:27067143

  5. Combining Multiple Electrode Arrays for Two-Dimensional Electrical Resistivity Imaging Using the Unsupervised Classification Technique

    Science.gov (United States)

    Ishola, K. S.; Nawawi, M. N. M.; Abdullah, K.

    2015-06-01

    This article describes the use of k-means clustering, an unsupervised image classification technique, to help interpret subsurface targets. The k-means algorithm is employed to combine and classify the two-dimensional (2D) inverse resistivity models obtained from three different electrode arrays. The algorithm is initialized through the selection of the number of clusters, number of iterations and other parameters such as stopping criteria. Automatically, it seeks to find groups of closely related resistivity values that belong to the same cluster and are more similar to each other than resistivity values belonging to other clusters. The approach is applied to both synthetic and field data. The 2D postinversions of the resistivity data were preprocessed by resampling and interpolating to the same coordinate. Following the preprocessing, the three images are combined into a single classified image. All the image preprocessing, manipulation and analysis are performed using the PCI Geomatics software package. The results of the clustering and classification are presented as classified images. An assessment of the performance of the individual and combined images for the synthetic models is carried out using an error matrix, mean absolute error and mean absolute percent error. The estimated errors show that images obtained from maximum values of the reconstructed resistivity for the different models give the best representation of the true models. Additionally, the overall accuracy and kappa values show good agreement between the combined classified images and true models. Depending on the model, the overall accuracy ranges from 86 to 99 %, while the kappa coefficient is in the range of 54-98 %. Classified images with kappa coefficients greater than 0.8 show strong agreement, while images with kappa coefficients greater than 0.5 but less than 0.8 give moderate agreement. For the field data, the k-mean classifier produces images that incorporate structural features of

  6. An Effective Technique for Enhancing Direction Finding Performance of Virtual Arrays

    Directory of Open Access Journals (Sweden)

    Wenxing Li

    2014-01-01

    Full Text Available The array interpolation technology that is used to establish a virtual array from a real antenna array is widely used in direction finding. The traditional interpolation transformation technology causes significant bias in the directional-of-arrival (DOA estimation due to its transform errors. In this paper, we proposed a modified interpolation method that significantly reduces bias in the DOA estimation of a virtual antenna array and improves the resolution capability. Using the projection concept, this paper projects the transformation matrix into the real array data covariance matrix; the operation not only enhances the signal subspace but also improves the orthogonality between the signal and noise subspace. Numerical results demonstrate the effectiveness of the proposed method. The proposed method can achieve better DOA estimation accuracy of virtual arrays and has a high resolution performance compared to the traditional interpolation method.

  7. Performance Study of Cryogenically Treated HSS Drills in Drillilg Gray Cast Iron Using Orthogonal Array Technique

    Directory of Open Access Journals (Sweden)

    B.R. Ramji

    2010-08-01

    Full Text Available The objective of this research was to study the performance of cryogenically treated HSS drills for drilling gray cast iron. Drilling experiments were conducted with cutting speeds: 560, 710, 900, 1120 rpm, feeds: 0.05, 0.08, 0.12, 0.19 mm/rev and a constant drill diameter: 8 mm. The cryogenic treatment cycle consisted of cooling the test samples from room temperature to cryogenic temperature of -178.9ºC in 3 h, soaking at cryogenic temperature for 24 h and w arming to room temperature in about 5 h. The thrust force and torque were measured using drill tool dynamometer. The surface roughness (Ra, Rz, Rq and R t of the drilled specimens were measured using talysurf. The experimental lay-out was designed using Taguchi’s Orthogonal Array technique. Signal-to-Noise Ratio analysis was performed to identify the effect of the parameters on the response variables. The treated drills were found superior to the non-treated in all the test conditions in terms of lesser thrust force, torque and also superior surface roughness of the specimens. The tool wear was studied using SEM.

  8. Identification of Landing Gear Aeroacoustic Noise Sources with the Synthetic Array Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this program, Innovative Technology Applications Company (ITAC), LLC and collaborators propose to advance "synthetic phased array" technology to improve...

  9. Laser-based capillary polarimeter.

    Science.gov (United States)

    Swinney, K; Hankins, J; Bornhop, D J

    1999-01-01

    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  10. Controllable end shape modification of ZnO nano-arrays/rods by a simple wet chemical etching technique

    International Nuclear Information System (INIS)

    The well-aligned ZnO nano-arrays/rods synthesized by a chemical bath deposition method on a highly conductive Si substrate were chemically etched in an ammonia chloride aqueous solution. An obvious end shape modification of ZnO nano-arrays/rods was realized in this report. The hexagonal frustum end of ZnO nano-arrays/rods changed into a pyramid and the diameter of ZnO nano-arrays/rods decreased gradually with the increasing etching time. The evolution mechanism of the wet etching process was discussed based on a proposed evolution model. Photoluminescence measurements indicated that the near band edge emissions of ZnO nano-arrays/rods increased greatly after wet etching. The controllable end shape modification of ZnO nano-arrays/rods on a highly conductive Si substrate by this simple wet etching technique will further explore the application of ZnO in field emission devices and 1D based nano-devices with various end shapes. (paper)

  11. Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle

    Science.gov (United States)

    Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

    1980-01-01

    Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

  12. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection.

    Science.gov (United States)

    Wang, Ning; Su, Ming; Liang, Shuxuan; Sun, Hanwen

    2016-05-15

    A rapid and effective method for effective separation and rapid simultaneous determination of six bioactive anthraquinones by capillary zone electrophoresis was developed. An accelerated solvent extraction procedure was used for the extraction of anthraquinones from slimming tea. Under the optimized conditions, the effective separation of six anthraquinones was achieved within 8 min. Good linearity was achieved, with a correlation coefficient (r) of ⩾ 0.999. The limit of detection ranged from 0.33 to 1.40 μg mL(-1). The intra- and inter-day relative standard deviation (RSD) of the six analytes was in the range of 2.3-3.9% and 3.2-4.9%, respectively. The average recovery of the six analytes from real tea samples was in the range of 86.15-98.30% with the RSD of 1.04-4.99%. The developed and validated method has speediness, high sensitivity, recovery and precision, and can be applied for the quality control of slimming tea. PMID:26775937

  13. Qualification of final closure for disposal container II - applicability of TOFD and phased array technique for overpack welding

    International Nuclear Information System (INIS)

    With a focus on carbon steel, which is one of the candidate materials for the disposal container used in the geological disposal of high-level radioactive waste in Japan, the defect detection capabilities were examined regarding engineering defects of the TOFD technique, an ultrasonic testing method, and the phased array TOFD technique as non-destructive test techniques for the inspection of the weld of a carbon steel overpack. Regarding the TOFD technique, a measurement was conducted concerning the influence of the crossing angle of the ultrasonic beams on the capability of detect flaws, for examining the detection characteristics of the technique in relation to the lid structure of an overpack, and it was pointed out that it is appropriate to consider the lower tip of slit as the reference flaw. Based on the measurements and calculations regarding sound pressure distribution, projections about the scope covered by one test session were made and the optimum testing conditions were examined. Regarding the phased array TOFP technique, the detectability and quantification characteristics were investigated, and comparisons with those of the TOFD technique and the phased array UT technique were made. From the viewpoint of securing long-term corrosion resistance for an overpack, the ways of thinking for ensuring the quality and long-term integrity of the final sealing area of a disposal container were examined. This study stresses that identifying and defining the defects that are harmful to corrosion allowance is important as well as achieving improvements in the welding and testing techniques, and that the question to solve in particular from now on is how to establish effective means to detect defects on the weld surface and the near surface and how to approach the level of tolerance concerning the defects on and near the surface. (orig.)

  14. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  15. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  16. Development of depth measurement technique for a flaw in weld area of stainless steel with twin matrix array ultrasonic probe

    International Nuclear Information System (INIS)

    A twin matrix array transducer to make possible to detect and measure a flaw with test direction through weld of austenitic stainless steel has been developed. Each transducer performs as transmitter and receiver and has 2 lines and 16 columns array elements respectively. With this transducer depth measurement tests for cracks by stress corrosion cracking (SCC) and fatigue on austenitic stainless steel weld pipe specimens have been carried out. As the results: (1) Corner echoes and tip echoes from SCCs and fatigue cracks could be detected with test direction through the weld of the 25 mm thickness stainless steel pipe specimens. (2) The depth measurements through the weld and in base metal corresponded well. Therefore we have evaluated that the twin matrix array transducer mode possible to measure flaw depth with both the test direction and was effective ultrasonic testing technique to be able to estimate and evaluate flaw depth with more accuracy and reliability. (author)

  17. Phased array technique for low signal-to-noise ratio wind tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  18. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    OpenAIRE

    Kim, Do Hyun; Kim, Moon Il; Park, Hyun Gyu

    2015-01-01

    Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, tech...

  19. Background Noise Reduction in Wind Tunnels using Adaptive Noise Cancellation and Cepstral Echo Removal Techniques for Microphone Array Applications

    OpenAIRE

    Spalt, Taylor B

    2010-01-01

    Two experiments were conducted to investigate Adaptive Noise Cancelling and Cepstrum echo removal post-processing techniques on acoustic data from a linear microphone array in an anechoic chamber. A point source speaker driven with white noise was used as the primary signal. The first experiment included a background speaker to provide interference noise at three different Signal-to-Noise Ratios to simulate noise propagating down a wind tunnel circuit. The second experiment contained only the...

  20. DNA Microarray Based on Arrayed-Primer Extension Technique for Identification of Pathogenic Fungi Responsible for Invasive and Superficial Mycoses▿

    OpenAIRE

    Campa, Daniele; Tavanti, Arianna; Gemignani, Federica; Mogavero, Crocifissa S.; Bellini, Ilaria; Bottari, Fabio; Barale, Roberto; Landi, Stefano; Senesi, Sonia

    2007-01-01

    An oligonucleotide microarray based on the arrayed-primer extension (APEX) technique has been developed to simultaneously identify pathogenic fungi frequently isolated from invasive and superficial infections. Species-specific oligonucleotide probes complementary to the internal transcribed spacer 1 and 2 (ITS1 and ITS2) region were designed for 24 species belonging to 10 genera, including Candida species (Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida tropi...

  1. Advances in capillary electrophoresis

    International Nuclear Information System (INIS)

    In the 1980s, capillary electrophoresis (CE) developed rapidly into a first-class analytical separation technique. Its advances in instru-mentation and method development will not only enhance or complement existing mature separation techniques such as liquid chromatography and conventional slab gel electrophoresis, but will also severely challenge these separation methods. A brief overview of most striking achievement of CE in the 1980s is given, which illustrates the challenge to liquid chromatography and conventional slab gel electrophoresis, and some detailed discussions are presented to highlight the advantages of CE. New developments in CE that can be expected for the 1990s include especially column technology, separation chemistry and instrumentation, which will serve further to diversify and improve the applicability of this technique in areas which are poorly addressed by other separation methods. This paper considers and speculates on the technological advancements that can be expected to emerge for CE in the 1990s. (author). 95 refs.; 14 figs

  2. Capillary detector with deuterated scintillator for inertial confinement fusion neutron images

    International Nuclear Information System (INIS)

    We demonstrate 325 μm spatial resolution in a 14 MeV neutron detector made with a capillary array filled with a deuterated liquid scintillator. A 10 μm source resolution in an image formed by 14 MeV neutrons is now achievable on a 25 m line-of-sight path for implosions at the Laser Mega Joule and the National Ignition Facilities. Analysis of penumbral and annular imaging techniques using this capillary array technology predicts good signal-to-noise ratios for images formed by targets yielding 1015 neutrons or more. Experimental images of individual scattered recoil ions and measurement of their resulting light distributions are presented and are well understood. Neutron imaging of deuterium-filled capsules is also found to be feasible, based on the light-yield calibration of the neutron detector

  3. Ordered Au Nanodisk and Nanohole Arrays: Fabrication and Applications

    KAUST Repository

    Zheng, Yue Bing

    2010-01-01

    We have utilized nanosphere lithography (NSL) to fabricate ordered Au nanodisk and nanohole arrays on substrates and have studied the localized surface plasmon resonance (LSPR) of the arrays. Through these investigations, we demonstrate that the angle- dependent behavior of the LSPR in the Au nanodisk arrays enables real-time observation of exciton-plasmon couplings. In addition, we show that the NSL-fabricated Au nanohole arrays can be applied as templates for patterning micro-/nanoparticles under capillary force. The unique structural and plasmonic characteristics of the Au nanodisk and nano- hole arrays, as well as the low-cost and high-throughput NSL-based nanofabrication technique, render these arrays excellent platforms for numerous engineering applications. © 2010 by ASME.

  4. One-step multiple component isolation from the oil of Crinitaria tatarica (Less) Sojak by preparative capillary gas chromatography with characterization by spectroscopic and spectrometric techniques

    Science.gov (United States)

    In the present work multiple component isolation from the oil of Crinitaria tatarica (Less.) Sojak. by Preparative Capillary Gas Chromatography (PCGC) with characterization by mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy have been carried out. Gas chromatography (GC-FID) ...

  5. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  6. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  7. Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers.

    Science.gov (United States)

    Matatagui, D; Fernández, M J; Fontecha, J; Sayago, I; Gràcia, I; Cané, C; Horrillo, M C; Santos, J P

    2014-03-01

    The electrospinning technique has allowed that very different materials are deposited as sensitive layers on Love-wave devices forming a low cost and successful sensor array. Their excellent sensitivity, good linearity and short response time are reported in this paper. Several materials have been used to produce the nanofibers: polymers as Polyvinyl alcohol (PVA), Polyvinylpyrrolidone (PVP) and Polystirene (PS); composites with polymers as PVA+SnCl4; combined polymers as PS+Poly(styrene-alt-maleic anhydride) (PS+PSMA) and metal oxides (SnO2). In order to test the array, well-known chemical warfare agent simulants (CWAs) have been chosen among the volatile organic compounds due to their importance in the security field. Very low concentrations of these compounds have been detected by the array, such as 0.2 ppm of DMMP, a simulant of sarin nerve gas, and 1 ppm of DPGME, a simulant of nitrogen mustard. Additionally, the CWA simulants used in the experiment have been discriminated and classified using pattern recognition techniques, such as principal component analysis and artificial neural networks. PMID:24468389

  8. Sizing the height of discontinuities, their characterisation in planar/ volumetric by phased array technique based on diffracted echoes

    International Nuclear Information System (INIS)

    This report demonstrate and discuss the result of experimental works carried out with the scope to study a procedure for improving the characterization (planar volumetric) and sizing the height of discontinuities detected by ultrasonic computerized systems like TOFD, PHASED ARRAY, C-B SCAN. To comply with code case 2235.9 the acceptance criteria illustrated in Tab 1,2,3 shall be applied. For TOFD the procedure for the calculation of the height is well determined and it is the most accurate with respect to any other ultrasonic technique. For PHASED ARRAY the procedures are on developing path. The aim of the present experimental test is to found criteria for the calculation of the height where Phased Array Technique is used. In addition the research has the scope to identify procedure for the characterization of discontinuities in planar and volumetric. The results of the experimental tests has been demonstrated two important achievements:1) The distance between the diffracted echoes is proportional to the height of the discontinuity;2) The ratio between the amplitude of the diffracted echoes could be considered a good criteria for the characterization of discontinuities in planar or volumetric. (author)

  9. Coherent-array HF Doppler sounding of traveling ionospheric disturbances. I - Basic technique

    Science.gov (United States)

    Jacobson, A. R.; Carlos, R. C.

    1989-04-01

    The paper presents an introduction to the use of phase-coherent, multireceiver HF Doppler sounding arrays for measuring the horizontal velocity of traveling ionospheric disturbances (TIDs). The point of departure is the theorem of Pfister (1971) relating ray Doppler to ray zenith angle for a monostatic full reflection sounder. Retaining the simple model of a specular, smooth ionospheric reflector which is deformed by a propagating undulation, the theorem is first generalyzed to bistatic sounding geometry and then the effects of amplitude are included in addition to phase. Next, these results are cast into an algorithm for treating multireceiver phase sounders containing many diverse baselines, in order to obtain an accurate and unambiguous solution in the plane of wave slowness (inverse of velocity). The point spread function of this solution is controlled gy process bandwidth and by array geometry.

  10. A new layout optimization technique for interferometric arrays, applied to the MWA

    CERN Document Server

    Beardsley, A P; Morales, M F; Cappallo, R C; Goeke, R; Emrich, D; Lonsdale, C J; Arcus, W; Barnes, D; Bernardi, G; Bowman, J D; Bunton, J D; Corey, B E; Deshpande, A; deSouza, L; Gaensler, B M; Greenhill, L J; Herne, D; Hewitt, J N; Kaplan, D L; Kasper, J C; Kincaid, B B; Koeing, R; Kratzenberg, E; Lynch, M J; McWhirter, S R; Mitchell, D A; Morgan, E; Oberoi, D; Ord, S M; Pathikulangara, J; Prabu, T; Remillard, R A; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Shankar, N Uday; Srivani, K S; Stevens, J; Subrahmanyan, R; Tingay, S J; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2012-01-01

    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but sur...

  11. Techniques for heating eccentrically located tumors with the BSD annular phased array system (APAS): Clinical experience

    International Nuclear Information System (INIS)

    The authors are currently investigating the potential for treatment optimization with the BSD APAS in tumors which are eccentrically located within the lower abdomen and pelvis. Attempts have been made to manipulate electric field (E-field) distribution during treatments through frequency changes and partial array activation (driving less than all four quadrants). Field shifts are qualitatively documented using the manufacturer's supplied diode array probes located at the patient/bolus interface in anterior, posterior and bilateral positions. Preliminary findings indicate that the internal E-field distributions can be manipulated to result in better treatment tolerance and better temperature distributions in selected target volumes. Phantom and clinical data are presented demonstrating the utility of these approaches

  12. Discrimination of honeys using colorimetric sensor arrays, sensory analysis and gas chromatography techniques.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Xiaowei, Huang; Jiyong, Shi; Mariod, Abdalbasit Adam

    2016-09-01

    Aroma profiles of six honey varieties of different botanical origins were investigated using colorimetric sensor array, gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis. Fifty-eight aroma compounds were identified, including 2 norisoprenoids, 5 hydrocarbons, 4 terpenes, 6 phenols, 7 ketones, 9 acids, 12 aldehydes and 13 alcohols. Twenty abundant or active compounds were chosen as key compounds to characterize honey aroma. Discrimination of the honeys was subsequently implemented using multivariate analysis, including hierarchical clustering analysis (HCA) and principal component analysis (PCA). Honeys of the same botanical origin were grouped together in the PCA score plot and HCA dendrogram. SPME-GC/MS and colorimetric sensor array were able to discriminate the honeys effectively with the advantages of being rapid, simple and low-cost. Moreover, partial least squares regression (PLSR) was applied to indicate the relationship between sensory descriptors and aroma compounds. PMID:27041295

  13. Improved Detection and Location of Ocean Microseism Signals using Array Techniques

    Science.gov (United States)

    Reading, A. M.; Gal, M.; Koper, K. D.; Tkalcic, H.

    2015-12-01

    We present and evaluate a range of approaches that may be used to investigate ocean microseisms using seismic array data. At amplitudes below the dominant incoming signal, the ambient seismic energy (background noise) associated with microseisms arrives from multiple directions at any one time. Thus we address the challenge of detecting weaker signals from unpredictable directions in the presence of other strong signals. Our aim is to extract the most accurate information possible from such weaker signals in order to expand the capability of ocean storm studies, using seismology, including the ability to extract storm patterns from archive seismic array records. Detection of weaker microseism signals may be improved using algorithms widely used in astronomy. One example is the CLEAN algorithm which has wide usage in radio astronomy. This algorithm operates by finding the position and strength of point sources and iteratively deconvolving their contribution to the image. It may be combined to optimum effect with the previously published (Incoherently Averaged Signal) IAS Capon implementation for an accurate detection of weaker sources. Having detected weaker sources, they may be backprojected using a suitable Earth model, taking into account a correction for the mislocation due to slowness-azimuth station corrections. The microseism generation locations inferred in this manner are strongly frequency dependent, even within relatively restricted frequency ranges (0.325-0.725 Hz) for some arrays. Our advances in seismic array processing, with a focus on methods appropriate to weaker ambient noise signals, have led to insights, for example, regarding the generation of seismic noise. We find that secondary microseisms in the lower frequency band are generated mainly by ocean swell whereas higher frequency bands are generated by local wind conditions. These arrivals are investigated over a two-decade time frame for the Southern Ocean and west Pacific Ocean.

  14. An opportunistic array beamforming technique based on binary multiobjective wind driven optimization method.

    OpenAIRE

    Zhenkai Zhang; Sana Salous; Hailin Li; Yubo Tian

    2015-01-01

    We present a novel binary version of multiobjective wind driven optimization (WDO) for emitted beamforming of opportunistic array radar, which is assumed as a multiobjective optimization problem. Firstly, the emitted signal model and objective functions of optimization are presented. Then the algorithm proposes a new definition of the position vector of air parcel, and brings a good discretization interpretation of continuous WDO. For multiobjective optimization, the grey relational grade (GR...

  15. Development of an Efficient Design Technique for the Optimisation of Mooring Systems for Wave Energy Arrays

    OpenAIRE

    Kirrane, P.; Fabricius, P; Morvan, R.

    2011-01-01

    Research, funded by the Marine Institute, was carried out on mooring systems for wave energy arrays. An outline of the research results and outcomes are presented in this report. The objectives of the research were to: review the wave energy industry and define design parameters; establish a comprehensive set of design curves to facilitate the selection of a preliminary mooring system; develop trends in system response from the evaluation of a broad range of Wave Energy Converter (WEC) specif...

  16. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors

    Directory of Open Access Journals (Sweden)

    Kaiming Nie

    2016-01-01

    Full Text Available This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM. The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs are used to quantize the time of photons’ arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor’s resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip’s output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5–20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes.

  17. A Full Parallel Event Driven Readout Technique for Area Array SPAD FLIM Image Sensors.

    Science.gov (United States)

    Nie, Kaiming; Wang, Xinlei; Qiao, Jun; Xu, Jiangtao

    2016-01-01

    This paper presents a full parallel event driven readout method which is implemented in an area array single-photon avalanche diode (SPAD) image sensor for high-speed fluorescence lifetime imaging microscopy (FLIM). The sensor only records and reads out effective time and position information by adopting full parallel event driven readout method, aiming at reducing the amount of data. The image sensor includes four 8 × 8 pixel arrays. In each array, four time-to-digital converters (TDCs) are used to quantize the time of photons' arrival, and two address record modules are used to record the column and row information. In this work, Monte Carlo simulations were performed in Matlab in terms of the pile-up effect induced by the readout method. The sensor's resolution is 16 × 16. The time resolution of TDCs is 97.6 ps and the quantization range is 100 ns. The readout frame rate is 10 Mfps, and the maximum imaging frame rate is 100 fps. The chip's output bandwidth is 720 MHz with an average power of 15 mW. The lifetime resolvability range is 5-20 ns, and the average error of estimated fluorescence lifetimes is below 1% by employing CMM to estimate lifetimes. PMID:26828490

  18. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique

    OpenAIRE

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; B.G. Cheon; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.

    2013-01-01

    We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is ...

  19. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Urban, F; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We measure the spectrum of cosmic rays with energies greater than $10^{18.2}$ eV with the Fluorescence Detectors (FDs) and the Surface Detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27 2008 to September 7 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  20. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, F., E-mail: felice.friedrich@tu-berlin.de; Herfurth, N.; Teodoreanu, A.-M.; Boit, C. [TU Berlin, FG HLB/PVcomB, Sekr. E4, Einsteinufer 19, D-10587 Berlin (Germany); Sontheimer, T.; Preidel, V.; Rech, B. [Helmholtz-Zentrum Berlin für Materialien und Energie, E-IS, Kekuléstr. 5, D-12489 Berlin (Germany)

    2014-06-16

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  1. Phased arrays techniques and split spectrum processing for inspection of thick titanium casting components

    International Nuclear Information System (INIS)

    In aircraft structures, titanium parts and engine members are critical structural components, and their inspection crucial. However, these structures are very difficult to inspect ultrasonically because of their large grain structure that increases noise drastically. In this work, phased array inspection setups were developed to detected small defects such as simulated inclusions and porosity contained in thick titanium casting blocks, which are frequently used in the aerospace industry. A Cut Spectrum Processing (CSP)-based algorithm was then implemented on the acquired data by employing a set of parallel bandpass filters with different center frequencies. This process led in substantial improvement of the signal to noise ratio and thus, of detectability

  2. A novel synthetic aperture technique for breast tomography with toroidal arrays

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLLEGE

    2009-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. This paper introduces a new method for three-dimensional synthetic aperture diffraction tomography that maximizes the resolution in the scanning direction and provides quantitative reconstructions of the acoustic properties of the object. The method is validated by means of numerical simulations.

  3. Micro-contacting of single and periodically arrayed columnar silicon structures by focused ion beam techniques

    International Nuclear Information System (INIS)

    Micron-sized, periodic crystalline Silicon columns on glass substrate were electrically contacted with a transparent conductive oxide front contact and a focused ion beam processed local back contact. Individual column contacts as well as arrays of >100 contacted columns were processed. Current-voltage characteristics of the devices were determined. By comparison with characteristics obtained from adapted device simulation, the absorber defect density was reconstructed. The contacting scheme allows the fabrication of testing devices in order to evaluate the electronic potential of promising semiconductor microstructures.

  4. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, Aliaksei [NICADD, DeKalb; Edstrom, Dean [Fermilab; Gai, Wei [Argonne, HEP; Ha, Gwanghui [Argonne, HEP; Piot, Philippe [NICADD, DeKalb; Power, John [Argonne, HEP; Qiang, Gao [Unlisted, CN; Ruan, Jinhao [Fermilab; Santucci, James [Fermilab; Wisniewski, Eric [Argonne, HEP

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  5. AN EFFICIENT SUPER RESOLUTION TECHNIQUE FOR LOSS LESS COMPRESSED BAYER COLOUR FILTER ARRAY IMAGES

    Directory of Open Access Journals (Sweden)

    K.Chiranjeevi,

    2011-05-01

    Full Text Available In digital cameras, Bayer color filter array(CFA images are captured and demosaicing is carried out before compression. Recently, it was found that compression-first schemes outperform the conventionaldemosaicing-first schemes in terms of output image quality. An efficient prediction-based lossless compression and super-resolution schemes are proposed in this paper. Compressed image is coded withrice code. The proposed compression and super resolution schemes can achieve a better compression and high image quality than conventional lossless CFA image coding schemes.

  6. Fabrication of a double-sided micro-lens array by a glass molding technique

    International Nuclear Information System (INIS)

    In recent years, micro-lens arrays (MLAs) have become important elements of optical systems. One function of MLAs is to create a uniform intensity of light. Compared with one-sided MLAs, the uniformity of light intensity increases with double-sided MLAs. MLAs fabricated by glass can be used in higher temperature environments or in high-energy systems. Glass-based MLAs can be fabricated by laser machining, photolithography, precision diamond grinding process and precision glass molding (PGM) technologies, but laser machining, photolithography and precision diamond grinding process technologies are not the perfect approach for mass production. Therefore, this paper proposes a method to fabricate a mold by laser micro-machining and a double-sided MLA by a PGM process. First, a micro-hole array was fabricated on the surface of a silicon carbide mold. A double-sided MLA using two molds was then formed by a PGM process. In this paper, the PGM process parameters including molding temperature and molding force are discussed. Moreover, the profile of a double-sided MLA is discussed. Finally, a double-sided MLA with a diameter of 20 mm, and lenses with a height of 52 µm, a radius of 851 µm and a pitch of 700 µm were formed on glass

  7. An Opportunistic Array Beamforming Technique Based on Binary Multiobjective Wind Driven Optimization Method

    Directory of Open Access Journals (Sweden)

    Zhenkai Zhang

    2015-01-01

    Full Text Available We present a novel binary version of multiobjective wind driven optimization (WDO for emitted beamforming of opportunistic array radar, which is assumed as a multiobjective optimization problem. Firstly, the emitted signal model and objective functions of optimization are presented. Then the algorithm proposes a new definition of the position vector of air parcel, and brings a good discretization interpretation of continuous WDO. For multiobjective optimization, the grey relational grade (GRG is then used to measure the similarity between the best two solutions for these two objectives. The best pressure locations with the maximum GRG will be recorded as the best two candidate solutions to the problem, and a final optimization result will be selected according to the importance of the two objectives. Finally, the proposed improved WDO has been applied for the optimal design of beamforming of the opportunistic antenna array, which needs a trade-off between the 3 dB main beam width and sidelobe level. The simulation results show that the proposed method outperforms conventional particle swarm optimization (PSO in the optimal beamforming by achieving more reduction in the sidelobe level and saving more runtime.

  8. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.A.

    1993-05-01

    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  9. Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique.

    Science.gov (United States)

    He, Miao; Yuan, Xiaocong; Bu, Jing; Cheong, Wai Chye

    2004-05-01

    We report a simple method for fabricating a concave refractive microlens array (MLA) in solgel glass by using a proximity-effect-assisted reflow technique. The solgel concave refractive MLA that we fabricated had excellent surface smoothness; good dimensional conformity, with an 8.23% nonuniformity of the microlens elements; and structural perfection, with a biggest deviation of 1% from a perfect concave spherical crown. The relative error between the measured and the designed values of the concave MLA's focal length was only 1.83%. Compared with the conventional fabrication techniques for concave MLAs, the proposed method has significant advantages including simplicity, low cost, good element conformity, and smooth device surface. PMID:15143656

  10. Development of the phased array ultrasonic testing technique for nuclear power plant's small bore piping socket weld

    International Nuclear Information System (INIS)

    Failure of small bore piping welds is a recurring problem at nuclear power plants. And the socket weld cracking in small bore piping has caused unplanned plant shutdowns for repair and high economic impact on the plants. Consequently, early crack detection, including the detection of manufacturing defects, is of the utmost importance. Until now, the surface inspection methods has been applied according to ASME Section XI requirements. But the ultrasonic inspection as a volumetric method is also applying to enforce the inspection requirement. However, the conventional manual ultrasonic inspection techniques are used to detect service induced fatigue cracks. And there was uncertainty on manual ultrasonic inspection because of limited access to the welds and difficulties with contact between the ultrasonic probe and the OD(outer diameter) surface of small bore piping. In this study, phased array ultrasonic inspection technique is applied to increase inspection speed and reliability. To achieve this object, the 3.5 MHz phased array ultrasonic transducer are designed and fabricated. The manually encoded scanner was also developed to enhance contact conditions and maintain constant signal quality. Additionally inspection system is configured and inspection procedure is developed.

  11. Development of three-dimension microelectrode array for bioelectric measurement using the liquidmetal-micromolding technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran, E-mail: liuran@tsinghua.edu.cn; Yang, Xueyao; Chen, Weixing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Jin, Cuiyun; Fu, Jingjing [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Jing [Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084 (China); Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-11-04

    A method of manufacturing three-dimension microneedle electrode arrays is presented in this paper using the micromolding technology with liquid metal at room temperature, based on the physical property of the Bi-In-Sn liquid metal alloy, being its melting point especially low. Observed under scanning electron microscopy, the needle body of the electrode chip manufactured using this method has a good consistency. Skin penetration test in-vitro indicates that the microneedle electrode can pierce the stratum corneum and cross the high-impedance layer to acquire electrical signals. Electrical impedance and polarization voltage experimental results show that the electrode chips have great electric characteristics and meet the practical application demands.

  12. Development of three-dimension microelectrode array for bioelectric measurement using the liquidmetal-micromolding technique

    Science.gov (United States)

    Liu, Ran; Yang, Xueyao; Jin, Cuiyun; Fu, Jingjing; Chen, Weixing; Liu, Jing

    2013-11-01

    A method of manufacturing three-dimension microneedle electrode arrays is presented in this paper using the micromolding technology with liquid metal at room temperature, based on the physical property of the Bi-In-Sn liquid metal alloy, being its melting point especially low. Observed under scanning electron microscopy, the needle body of the electrode chip manufactured using this method has a good consistency. Skin penetration test in-vitro indicates that the microneedle electrode can pierce the stratum corneum and cross the high-impedance layer to acquire electrical signals. Electrical impedance and polarization voltage experimental results show that the electrode chips have great electric characteristics and meet the practical application demands.

  13. On splice site prediction using weight array models: a comparison of smoothing techniques

    International Nuclear Information System (INIS)

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called 'splicing'. The positions where introns are cut and exons are spliced together are called 'splice sites'. Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed

  14. Digitally focused array ultrasonic testing technique for carbon fiber composite structures

    Science.gov (United States)

    Salchak, Y.; Zhvyrblya, V.; Sednev, D.; Lider, A.

    2016-06-01

    Composite fiber reinforced polymers are highly promising structures. At present, they are widely used in different areas such as aeronautics and nuclear industries. There is a great number of advantages of composite structures such as design flexibility, low cost per cubic inch, resistance to corrosion, lower material costs, lighter weight and improved productivity. However, composites degradation may be caused by different mechanisms such as overload, impact, overheating, creep and fatigue. Comparing to inspection of other materials some unique consideration is required for testing and analysis. Ultrasound testing is the most common method for inspection of composite structures. Digitally Focused Array Technology is considered as novel approach which enables fast and effective quantitative automatic testing. In this study new methodology of quality assurance of composite structure components based on DFA is performed.

  15. Development of three-dimension microelectrode array for bioelectric measurement using the liquidmetal-micromolding technique

    International Nuclear Information System (INIS)

    A method of manufacturing three-dimension microneedle electrode arrays is presented in this paper using the micromolding technology with liquid metal at room temperature, based on the physical property of the Bi-In-Sn liquid metal alloy, being its melting point especially low. Observed under scanning electron microscopy, the needle body of the electrode chip manufactured using this method has a good consistency. Skin penetration test in-vitro indicates that the microneedle electrode can pierce the stratum corneum and cross the high-impedance layer to acquire electrical signals. Electrical impedance and polarization voltage experimental results show that the electrode chips have great electric characteristics and meet the practical application demands

  16. On splice site prediction using weight array models: a comparison of smoothing techniques

    Science.gov (United States)

    Taher, Leila; Meinicke, Peter; Morgenstern, Burkhard

    2007-11-01

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called "splicing". The positions where introns are cut and exons are spliced together are called "splice sites". Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed.

  17. Flipped parameter technique applied on source localization in energy constraint sensor arrays

    OpenAIRE

    Pavlović Vlastimir D.; Veličković Zoran S.

    2009-01-01

    In this paper novel flipped parameter technique (FPT) for time delay estimation (TDE) in source localization problem is described. We propose passive source localization technique based on the development of an energy efficient algorithm that can reduce intersensor and interarray communication. We propose a flipped parameter (FP) which can be defined for any sensor in distributed sensor subarrays during the observation period. Unlike classical TDE methods that evaluate cross-correlation funct...

  18. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas

    2008-07-01

    phase bridges is observed. The water may pass the capillary discontinuity before inlet core is at endpoint for spontaneous imbibition. The observations of the water flood experiments have been validated using numerical simulators Eclipse and Sensor. Experimentally measured capillary pressure and relative permeability curves have been used to history match the observed production of the waterfloods. The observed variations in production mechanisms at wettability change are confirmed. Direct measurement of saturation methods for measuring capillary pressure scanning curves have been investigated and compared to conventional centrifuge techniques. The same trends are observed for curves measured at different wettabilities, and the capillary pressure curves measured using DMS methods have also been validated in numerical simulations of type Eclipse and Sensor. A feasibility study to develop a new method of measuring capillary pressure at various wettabilities has been performed with encouraging results. The conclusion is that the work should be further developed. The method has potential to enable capillary pressure measurements using live crude oil at reservoir conditions. All in all, several experimental methods applicable in future SCAL synthesis have been presented. The observations are consistent and underline the production mechanisms of fractured chalk reservoirs, and will serve as inspiration in the future evaluations of tertiary oil recovery processes. An innovative approach to the measurement of capillary pressure is suggested.

  19. Flipped parameter technique applied on source localization in energy constraint sensor arrays

    Directory of Open Access Journals (Sweden)

    Pavlović Vlastimir D.

    2009-01-01

    Full Text Available In this paper novel flipped parameter technique (FPT for time delay estimation (TDE in source localization problem is described. We propose passive source localization technique based on the development of an energy efficient algorithm that can reduce intersensor and interarray communication. We propose a flipped parameter (FP which can be defined for any sensor in distributed sensor subarrays during the observation period. Unlike classical TDE methods that evaluate cross-correlation function, FPT requires evaluation based upon single sensor signal. The computed cross correlation between a signal and its analytic 'flipped' pair (flipped correlation is a smooth function which peak (time delay can be accurately detected. Flipped parameters are sufficient to determine all differential delays of the signals related to the same source. The flipped parameter technique can be used successfully in two-step methods of passive source localization with significantly less energy in comparison to the classic cross correlation. The use of FPT method is especially significant for the energy constrain distributed sensor subarrays. Using synthetic seismic signals, we illustrate the error of the source localization for classical and proposed method in the presence of noise. We demonstrate the performance improvement in noise environment of the proposed technique in comparison to the classic methods that use real signals. The proposed technique gives accurate results for both coherent and non-coherent signals.

  20. Exponential asymptotics and capillary waves

    OpenAIRE

    Chapman, S. J.; Vanden-Broeck, J.

    2002-01-01

    Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....

  1. Nonlinear waves in capillary electrophoresis

    OpenAIRE

    Ghosal, Sandip; Chen, Zhen

    2012-01-01

    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care and forensics. In capillary electrophoresis the sample migrates in a microcapillary in the presence of a background electrolyte. When the ionic concentration of the sample is sufficiently high, the signal is known to exhibit features reminiscent of nonlinear waves including sharp concentration ‘shocks’. In this paper we consider a simplified model consisting of a ...

  2. Development and optimization of a capillary zone electrophoresis technique for simultaneous determination of miconazole nitrate and hydrocortisone acetate in a cream pharmaceutical formulation.

    Science.gov (United States)

    Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Ragab, Marwa A A

    2013-01-01

    A simple, fast, inexpensive, and reliable capillary zone electrophoresis (CZE) method for the determination of a mixture of miconazole nitrate (MCZ) and hydrocortisone acetate (HCZ) in a cream formulation has been developed and validated. Optimum conditions were sodium dihydrogen phosphate buffer (50 mM, pH 4) and 30 kV applied voltage in a 85 cm x 75 pm id capillary. Direct UV detection at 230 nm led to adequate sensitivity without interference from the sample excipients. MCZ and HCZ migrated in approximately 165 and 415 s, respectively. The analytical curves had a coefficient of correlation, r, of 0.9999 and 0.9996 for MCZ and HCZ, respectively. The LOD and LOQ were 0.28 and 0.93 microg/mL for MCZ and 0.38 and 1.27 microg/mL for HCZ, respectively. Thus, excellent accuracy and precision were obtained. Recoveries varied from 98 to 102%, and intraday and interday precision, calculated as the RSD, were less than 2.0% for each drug. The proposed CZE method displayed advantageous performance characteristics and can be considered suitable for QC of the MCZ and HCZ cream formulation. PMID:24645507

  3. Novel temperature control technique for a medicinal herb dryer system powered by a photovoltaic array

    International Nuclear Information System (INIS)

    Each plant has its own optimal drying temperature, especially for the medicinal herbs, because they are sensitive to heat. If the drying temperature becomes more than the optimal value, some chemical reactions will occur and influence the quality of the dried herb, such as color, taste, and aroma. While if the drying temperature becomes lower than the optimal value, the drying process will slow down; and consequently an expected degradation in the quality of the herb may occur, due to insects and fungi infestation which increase in moist conditions. This paper presents a new temperature control technique for a medicinal herb dryer system. The technique fixes the drying temperature of the medicinal herbs at 40 degree C, even in cases of rapidly changing atmospheric conditions. The control of the dryer temperature is achieved through using the proportional integral (PI) controller. The designed dryer contains two systems, which are the thermal and the electrical systems. The thermal system is designed to heat the drying air by using the solar energy and bio-gas fuel. Whereas, the electrical system, which contains a photovoltaic (PV) modules and a battery, is designed to supply the different electrical loads of the dryer system. The control technique is investigated through simulation work by using MATLAB-SIMULINK. The simulation results indicate the high capability of the proposed technique in controlling the drying temperature, even in cases of rapidly changing atmospheric conditions

  4. Digital pulse-timing technique for the neutron detector array NEDA

    International Nuclear Information System (INIS)

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in. diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in. by 5 in. BC501A liquid scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CFD algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes

  5. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    Science.gov (United States)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-07-01

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  6. Fabrication of microlens array on silicon surface using electrochemical wet stamping technique

    Science.gov (United States)

    Lai, Lei-Jie; Zhou, Hang; Zhu, Li-Min

    2016-02-01

    This paper focuses on the fabrication of microlens array (MLA) on silicon surface by taking advantage of a novel micromachining approach, the electrochemical we stamping (E-WETS). The E-WETS allows the direct imprinting of MLA on an agarose stamp into the substrate through a selective anodic dissolution process. The pre-patterned agarose stamp can direct and supply the solution preferentially on the contact area between the agarose stamp and the substrate, to which the electrochemical reaction is confined. The anodic potential vs. saturated calomel electrode is optimized and 1.5 V is chosen as the optimum value for the electrochemical polishing of p-Si. A refractive MLA on a PMMA mold is successfully transferred onto the p-Si surface. The machining deviations of the fabricated MLA from those on the mold are 0.44% in diameter and 2.1% in height respectively, and the machining rate in HF is around 1.1 μm/h. The surface roughness of the fabricated MLA is less than 12 nm owing to the electrochemical polishing process. The results demonstrate that E-WETS is a promising approach to fabricate MLA on p-Si surface with high accuracy and efficiency.

  7. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T

    2012-02-03

    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  8. High-Throughput Genetic Analysis and Combinatorial Chiral Separations Based on Capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Wenwan Zhong

    2003-08-05

    Capillary electrophoresis (CE) offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. They designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one rn. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, the sequence of a short DNA template can be acquired without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a high level of confidence. the CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this Ce-based approach can serve as an alternative to the DNA array techniques in gene expression analysis.

  9. Sensor Emplacement Techniques and Seismic Noise Analysis for USArray Transportable Array Seismic Stations

    Science.gov (United States)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Woodward, R.; Sauter, A.

    2013-12-01

    In preparation for the upcoming deployment of EarthScope's USArray Transportable Array (TA) in Alaska, the National Science Foundation (NSF) has supported exploratory work on seismic station design, sensor emplacement, and communication concepts appropriate for this challenging high-latitude environment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and in the lower-48 of the U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the weight of the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the state. We will review the methods used for directly emplacing broadband seismometers in comparison to the current methods used for the lower-48 TA. These new methods primarily focus on using a portable drill to make a bored hole three to five meters, beneath the active layer of the permafrost, or by coring 1-2 meters deep into surface bedrock. Both methods are logistically effective in preliminary trials. Subsequent station performance has been assessed quantitatively using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations can sometimes exceed that of the quietest TA stations in the lower-48, particularly horizontal components at long periods. A

  10. Compton-suppression and add-back techniques for the highly segmented TIGRESS HPGe clover detector array

    International Nuclear Information System (INIS)

    Methods to optimize the performance of the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS), an array of 12 large-volume, 32-fold segmented HPGe clover detectors to be used at the ISAC-II radioactive ion beam facility, have been developed based on GEANT4 Monte Carlo simulations. These methods rely on the segmentation of the outer electrical contacts of the TIGRESS HPGe clovers, and on the 20-fold segmentation of the Compton-suppression shields. The clover segmentation is utilized to make event-by-event decisions as to whether the γ-ray energy depositions in neighbouring crystals and clovers will be summed. The Compton suppressor segmentation is used to veto events selectively, and to reduce false suppression in experiments with high γ-ray multiplicity. Procedures to determine the optimal techniques and configurations of the array for a particular experiment, dependent on the expected γ-ray energies and multiplicities, and the velocity of the recoil ions, are presented

  11. Visualization and quantitative research of stress corrosion cracking using the three-dimensional phased array ultrasonic technique

    International Nuclear Information System (INIS)

    The three-dimensional phased-array (3D-PA) ultrasonic technique has been applied to a stress corrosion cracking (SCC) in base metal, and its results for sizing have been quantitatively evaluated. The 3D-PA allows operators to scan objects volumetrically and to display results as 3D images facilitating evaluation processes considerably. The scanning pattern used is called the moving rotational sectorial-scan (MRS-scan) and it is composed of many sectors of different azimuth angles as moving the probe linearly. The MRS-scan significantly improves the inspection of flaws without skillful searching motion of the probe, because the flaws are stereoscopically insonified by a number of ultrasonic beams coming from various directions. The SCC was evaluated by the MRS-scan with a matrix array probe. Not only the deepest tip but also all parts of the crack were able to be successfully visualized and sized with an accuracy of the root mean square error of 0.9 mm. (author)

  12. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    Science.gov (United States)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-05-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  13. Development of under-sodium three-dimensional visual inspection technique using matrix-arrayed ultrasonic transducer

    International Nuclear Information System (INIS)

    We have developed an advanced under-sodium ultrasonic visual inspection technique in order to observe in-vessel structures in a Fast Breeder Reactor (FBR) whose reactor vessel is filled with opaque liquid sodium. The final goal of this work is achievement of resolution equivalent to that of an image obtained by optical fiber scope. The under-sodium ultrasonic visualizing system consists of a matrix-arrayed transducer and a signal-processing device. The matrix-arrayed transducer, in which 36x36 piezoelectric elements are arranged with 5 mm interval and sealed by a thin metal diaphragm, can realize a 3-dimensional image with high resolution. Regarding signal processing, the 3-dimensional image synthetic processing and the cross correlation processing for the purpose of improving S/N ratio of ultrasonic echoes are implemented on a high-speed parallel processor. Under-sodium imaging test was carried out, and it was confirmed that a 3-dimensional image of the blind target, which was prepared without information beforehand, could be visualized clearly with less than 2.0 mm resolution under-sodium. (author)

  14. Use of capillary electrophoresis and indirect detection to quantitate in-capillary enzyme-catalyzed microreactions.

    Science.gov (United States)

    Zhang, Y; el-Maghrabi, M R; Gomez, F A

    2000-04-01

    The use of capillary electrophoresis and indirect detection to quantify reaction products of in-capillary enzyme-catalyzed microreactions is described. Migrating in a capillary under conditions of electrophoresis, plugs of enzyme and substrate are injected and allowed to react. Capillary electrophoresis is subsequently used to measure the extent of reaction. This technique is demonstrated using two model systems: the conversion of fructose-1,6-bisphosphate to dihydroxyacetone phosphate and glyceraldehyde-3-phosphate by fructose-biphosphate aldolase (ALD, EC 4.1.2.13), and the conversion of fructose-1,6-bisphosphate to fructose-6-phosphate by fructose-1,6-bisphospatase (FBPase, EC 3.1.3.11). These procedures expand the use of the capillary as a microreactor and offer a new approach to analyzing enzyme-mediated reactions. PMID:10892022

  15. The International Telecommunications Satellite (INTELSAT) Solar Array Coupon (ISAC) atomic oxgyen flight experiment: Techniques, results and summary

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1993-01-01

    Techniques and results of the ISAC flight experiment are presented, and comparisons between flight tests results and ground based testing are made. The ISAC flight experiment, one component of a larger INTELSAT 6 rescue program, tested solar array configurations and individual silver connects in ground based facilities and during STS-41 (Space Shuttle Discovery). In addition to the INTELSAT specimens, several materials, for which little or no flight data exist, were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, polymeric materials, and inorganic materials were exposed to an oxygen atom fluence of 1.2 x 10(exp 20) atoms. Many of the samples were selected to support Space Station Freedom design and decision-making.

  16. Reduction of sidewall roughness, insertion loss and crosstalk of polymer arrayed waveguide grating using vapor-redissolution technique

    International Nuclear Information System (INIS)

    An efficient vapor-redissolution technique is used to greatly reduce sidewall scattering loss in the polymer arrayed waveguide grating (AWG) fabricated on a silicon substrate. Smoother sidewalls are achieved and verified by a scanning electron microscopy. Reduction of sidewall scattering loss is further measured for the loss measurement of both straight waveguides and AWG devices. The sidewall loss in straight polymer waveguide is decreased by 2.1 dB/cm, the insertion loss of our AWG device is reduced by about 5.5 dB for the central channel and 6.7 dB for the edge channels, and the crosstalk is reduced by 2.5 dB after the vapor-redissoluton treatment

  17. Sample-inverted reflow technique for fabrication of a revolved-hyperboloid microlens array in hybrid solgel glass.

    Science.gov (United States)

    He, Miao; Yuan, Xiaocong; Bu, Jing

    2004-09-01

    We propose a novel fabrication method, which is referred to as the sample-inverted reflow technique, to fabricate a refractive microlens array (MLA) with a revolved-hyperboloid profile in a solgel material. The fabricated solgel MLA demonstrates an excellent smooth profile with a fabrication error much less than the difference between the revolved hyperboloid and the spherical surface. In an application of coupling a laser diode (LD) to a single-mode fiber (SMF), we propose a two-MLA coupling scheme in which two revolved-hyperboloid MLAs are used between the LD and the SMF. In this configuration the coupling efficiency achieves 81.7% (-0.88 dB). PMID:15455761

  18. General Matrix Inversion Technique for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms

    Science.gov (United States)

    Mach, D. M.; Koshak, W. J.

    2007-01-01

    A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).

  19. Evaluation of a new approach for the inspection of austenitic dissimilar welds using ultrasonic phased array techniques

    International Nuclear Information System (INIS)

    The inspection of the safe-end weld of pressurized water reactors is well known to be challenging. The fundamental obstacle to accurately characterising the defects of austenitic welds is the distortion of the sound field due to the anisotropic inhomogeneous material. This paper describes the evaluation of the next generation of ultrasonic procedures which use phased array techniques and models to account for the distortion of the sound field, such that the detection, positioning and sizing of defects is improved in comparison to current capabilities. Electron back scatter diffraction (EBSD) techniques were used to evaluate the texture of the weld and then the microstructural information was input to a model capable of propagating ultrasonic waves through the anisotropic inhomogeneous medium. With knowledge of the distortion, 2 strategies were developed for improving inspection: 1) adapting focal laws using time reversal concepts to improve sensitivity and 2) generating translation tables to correct positional and sizing errors of indications. This paper presents the final results of the project funded by the UK Technology Strategy Board. (authors)

  20. Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method

    International Nuclear Information System (INIS)

    Single-walled carbon nanotube (CNT) arrays have been assembled on various substrates over mm-scale surface areas by combining fluidic alignment with soft lithography (micropatterning in capillaries) techniques. The feature size of the nanotube patterns reaches down to submicrometre scale. To this end, tailored substrate surface modification and pre-alignment of chopped CNTs in suspension are highly critical

  1. Large-scale submicron horizontally aligned single-walled carbon nanotube surface arrays on various substrates produced by a fluidic assembly method.

    Science.gov (United States)

    Yan, Y H; Li, S; Chen, L Q; Chan-Park, M B; Zhang, Qing

    2006-11-28

    Single-walled carbon nanotube (CNT) arrays have been assembled on various substrates over mm-scale surface areas by combining fluidic alignment with soft lithography (micropatterning in capillaries) techniques. The feature size of the nanotube patterns reaches down to submicrometre scale. To this end, tailored substrate surface modification and pre-alignment of chopped CNTs in suspension are highly critical. PMID:21727344

  2. Capillary zone electrophoresis and capillary isotachophoresis applied to physicochemical characterization of oligo- and polypeptides

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav; Šolínová, Veronika; Tůmová, Tereza; Koval, Dušan; Ibrahim, A.; Chamieh, J.; Cottet, H.

    Helsinki: -, 2015. L4B. [International Symposium on Electro- and Liquid Phase-Separation Techniques (ITP2015) /22./ and Nordic Separation Science Symposium (NoSSS2015) /8./. 30.08.2015-03.09.2015, Helsinki] R&D Projects: GA ČR(CZ) GA13-17224S Institutional support: RVO:61388963 Keywords : capillary electrophoresis * capillary isotachophoresis * effective charge Subject RIV: CB - Analytical Chemistry, Separation

  3. Capillary isoelectric focusing of proteins and microorganisms in uncoated capillaries with UV and fluorimetric detection

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Šlais, Karel; Růžička, F.; Holá, V.; Horký, J.

    Roma : Universita di Roma, 2004, P43. [ITP 2004. International Symposium on Capillary Electroseparation Techniques /14./. Roma (IT), 12.09.2004-15.09.2004] R&D Projects: GA AV ČR IAA4031302; GA AV ČR IBS4031201; GA ČR GA203/02/1447 Institutional research plan: CEZ:AV0Z4031919 Keywords : CIEF ioanalytes * uncoated capillaries Subject RIV: CB - Analytical Chemistry, Separation

  4. Development of a High-Throughput Multiplex PCR and Capillary Electrophoresis Technique for Serotype Determination of Salmonella Enterica Food Animal Isolates

    Science.gov (United States)

    Background: Previously, a multiplex PCR technique was developed to identify the top 30 human clinical serotypes of Salmonella enterica. To improve the speed, ease of use, utility and discriminatory ability of the technique, additional primers were added and the PCR product discrimination and analysi...

  5. Single Event Analysis and Fault Injection Techniques Targeting Complex Designs Implemented in Xilinx-Virtex Family Field Programmable Gate Array (FPGA) Devices

    Science.gov (United States)

    Berg, Melanie D.; Label, Kenneth; Kim, Kim

    2014-01-01

    An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.

  6. Analysis of organic acids in Macedonian wines by capillary electrophoresis

    OpenAIRE

    Jancovska, Maja; Ivanova, Violeta; Gulaboski, Rubin; Belder, Detlev

    2013-01-01

    Capillary electrophoresis as a separation technique can be applied for analysis of organic acids in white and red wines, providing high resolution separation of the analytes. Organic acids such as of tartaric, malic, lactic citric and succinic acids have been analysed in many Macedonian red and white wines by capillary electrophoresis, and results have been discussed.

  7. Micropatterning of poly(dimethylsiloxane) using a photoresist lift-off technique for selective electrical insulation of microelectrode arrays

    International Nuclear Information System (INIS)

    A poly(dimethylsiloxane) (PDMS) patterning method based on a photoresist lift-off technique to make an electrical insulation layer with selective openings is presented. The method enables creating PDMS patterns with small features and various thicknesses without any limitation on the designs and without the need for complicated processes or expensive equipment. Patterned PDMS layers were created by spin-coating liquid phase PDMS on top of a substrate having sacrificial photoresist patterns, followed by a photoresist lift-off process. The thickness of the patterned PDMS layers could be accurately controlled (6.5–24 µm) by adjusting processing parameters such as PDMS spin-coating speeds, PDMS dilution ratios and sacrificial photoresist thicknesses. PDMS features as small as 15 µm were successfully patterned and the effects of each processing parameter on the final patterns were investigated. Electrical resistance tests between adjacent electrodes with and without the insulation layer showed that the patterned PDMS layer functions properly as an electrical insulation layer. Biocompatibility of the patterned PDMS layer was confirmed by culturing primary neuron cells on top of the layer for up to two weeks. An extensive neuronal network was successfully formed, showing that this PDMS patterning method can be applied to various biosensing microdevices. The utility of this fabrication method was further demonstrated by successfully creating a patterned electrical insulation layer on flexible substrates containing multi-electrode arrays

  8. Capillary saturation and desaturation.

    Science.gov (United States)

    Hilfer, R; Armstrong, R T; Berg, S; Georgiadis, A; Ott, H

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment. PMID:26764820

  9. Capillary saturation and desaturation

    Science.gov (United States)

    Hilfer, R.; Armstrong, R. T.; Berg, S.; Georgiadis, A.; Ott, H.

    2015-12-01

    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment.

  10. Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Schoerner, K., E-mail: karsten.schoerner.ext@siemens.co [Corporate Technology, Siemens AG, 81739 Muenchen (Germany); Physik-Department, Technische Universitaet Muenchen, 85748 Garching (Germany); Goldammer, M.; Stephan, J. [Corporate Technology, Siemens AG, 81739 Muenchen (Germany)

    2011-02-01

    Research highlights: {yields} We propose a scatter correction method employing a beam-hole array. {yields} Beam-hole and beam-stop array techniques are compared in respect of geometric and scattering properties. {yields} The beam-hole array method reduces overall scattering compared to a beam-stop array. {yields} Application of the beam-hole array method is successfully demonstrated for a CT of ceramic specimen. -- Abstract: In industrial X-ray cone-beam computed tomography, the inspection of large-scale samples is important because of increasing demands on their quality and long-term mechanical resilience. Large-scale samples, for example made of aluminum or iron, are strongly scattering X-rays. Scattered radiation leads to artifacts such as cupping, streaks, and a reduction in contrast in the reconstructed CT-volume. We propose a scatter correction method based on sampling primary signals by employing a beam-hole array (BHA). In this indirect method, a scatter estimate is calculated by subtraction of the sampled primary signal from the total signal, the latter taken from an image where the BHA is absent. This technique is considered complementary to the better known beam-stop array (BSA) method. The two scatter estimation methods are compared here with respect to geometric effects, scatter-to-total ratio and practicability. Scatter estimation with the BHA method yields more accurate scatter estimates in off-centered regions, and a lower scatter-to-total ratio in critical image regions where the primary signal is very low. Scatter correction with the proposed BHA method is then applied to a ceramic specimen from power generation technologies. In the reconstructed CT volume, cupping almost completely vanishes and contrast is enhanced significantly.

  11. Application of Manifold Separation Technique in Non-uniform Circular Array%流形分离在非均匀圆阵上的应用

    Institute of Scientific and Technical Information of China (English)

    卢海杰; 章新华; 熊鑫

    2011-01-01

    流形分离技术(MST)将任意结构阵列的阵列流形矢量分解为采样矩阵(只与阵列结构有关)和范德蒙德结构矢量的乘积(只与来波有关),使只适用于均匀线列阵的DOA估计方法可用于任意结构阵列.建立了任意结构阵列模型,选取非均匀圆阵作为研究示例,将MST中采样矩阵的求取转化为最小二乘问题,而后利用root-MUSIC对范德蒙德结构进行DOA估计.仿真分析表明:通过MST,只适用于均匀线列阵的求根类高分辨算法可用于任意结构阵列.%Manifold separation technique (MST) is used to decompose a manifold vector of arbitrary geometrical array into the products of a sampling matrix ( dependent on the antenna array only) and a Vandermonde structure vector (dependent on the wavefield only). This allows the fast direction-of-arrival ( DOA) algorithms for uniform linear arrays to be used for the arbitrary geometrical arrays. A model is established for arbitrary geometrical array, and a non-uniform circular array is taken for example. The sampling matrix of MST is obtained by least-square. As a result, root-MUSIC can be used to estimate the DOA of Vandermode structure. The simulation proves that the high resolution rooting algorithm only suitable for uniform linear array can be used for arbitrary structural array via MST.

  12. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger

    2011-05-09

    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  13. Effective air thickness in a glass capillary for the in-air material analysis

    International Nuclear Information System (INIS)

    In order to establish in-air material analysis techniques with a glass capillary, we have measured energy distributions of extracted alpha particles in air using the glass capillary. We have estimated the effective air thickness in the glass capillary and found it to be compatible with a simple calculation. (paper)

  14. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  15. Identification of morphological similar species of genus monilinia by capillary and gel format of the electromigration techniques and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Kubesová, Anna; Horká, Marie; Šalplachta, Jiří; Zapletalová, E.; Horký, J.

    2011. P1-G-226-TU. ISBN 978-963-89335-0-8. [International Symposium on High-Performance Liquid Phase Separations and Related Techniques /36./. 19.06.2011-23.06.2011, Budapest] R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : CIEF * CZE * gel IEF Subject RIV: CB - Analytical Chemistry, Separation

  16. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  17. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    International Nuclear Information System (INIS)

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  18. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  19. Self-polarization smoothing technique based on 2×2 beam array and type II+II third-harmonic generation system.

    Science.gov (United States)

    Fuquan, Li; Fang, Wang; Wei, Han; Bin, Feng; Lidan, Zhou

    2013-05-10

    Polarization smoothing (PS) is highly desired for inertial confinement fusion, high-power laser facilities. A self-PS technique based on 2×2 beam array and type II+II third-harmonic generation (THG) system is proposed in this paper. This scheme takes advantage of a type II+II THG system, which induces a 35° angle between the polarization states of output third-harmonic laser and input fundamental laser. It rotates two THG systems in a 2×2 beam array by 180° to obtain a 70° polarization angle between two sets of output lasers. Simulation results show that the intensity contrast of the overlapped focal spot can be reduced at 1.34× without inserting any additional optics. This approaches the maximum value of various PS techniques (i.e., 1.41×). PMID:23669860

  20. Electrical resistance of muscle capillary endothelium.

    OpenAIRE

    Olesen, S P; Crone, C

    1983-01-01

    A recently developed technique for in vivo determination of the electrical resistance of vascular endothelium in microvessels was applied to the vessels in a thin frog muscle, m. cutaneus pectoris. The technique consists of injection of current via a glass micropipette into a capillary and measurement of the resulting intra- and extravascular potential profiles with another micropipette placed at various distances from the current source. The theory of Peskoff and Eisenberg (1974) was used to...

  1. Development of the microphone array measurement technique for application to cryogenic wind tunnels; Entwicklung der Mikrofonarraymesstechnik fuer die experimentelle Anwendung in kryogenen Windkanaelen

    Energy Technology Data Exchange (ETDEWEB)

    Ahlefeldt, Thomas

    2013-02-01

    The present work deals with the development of the microphone array measurement technique for application to cryogenic wind tunnels at temperatures down to 100 K. In contrast to conventional wind tunnels, in cryogenic wind tunnels the Reynolds number can be changed independent of the Mach number. Therefore the applicability of the microphone array measurement technique to cryogenic wind tunnels allows the independent investigation of Mach and Reynolds number effects for aeroacoustic sources. For this purpose two microphone arrays suitable for cryogenic application have been developed. A small array was used for a validation experiment using a single-rod configuration as an aeroacoustic noise source; the experience gained therefrom being then used to develop a larger array. This array was used to finally demonstrate the applicability of the measuring technology to an airplane half model. For the development of both arrays several factors had to be considered, such as, for example, the contraction arising from the low temperatures and the influence of the temperature on the microphone frequency response. In the validation experiment, acoustic array measurements have been performed using the small microphone array with 21 microphones in a cryogenic wind tunnel for various Mach and Reynolds numbers, using a single-rod configuration. The aeroacoustic source induced by the rod could be identified by the microphone.array at ambient as well as at cryogenic temperatures. The radiated sound powers were compared with predictions from two models: one model was based on a dimensional analysis of the measured data without taking into consideration the Reynolds number. The measured data with this model could be better fitted by a speed law with the exponent 6.7 rather than the expected 6.0. The second model was based on an analytical model for sound radiation from a single-rod configuration which took into account variables dependent on the Reynolds number. The comparison with

  2. Determination of N-Methylcarbamate Pesticides in Vegetables by Solid-phase Extraction and Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Introduction Capillary electrochromatography(CEC) is a hybrid technique that couples the good selectivity of high-performance liquid chromatography ( HPLC ) and the high separation efficiency of capillary electrophoresis (CE).

  3. Capillary electrophoresis - electrospray ionization mass spectrometry in small diameter capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, J.H.; Goodlett, D.R.; Udseth, H.R.; Smith, R.D.

    1992-06-01

    Methods (such as small inner diameter capillaries) are being explored to increase analyte sensitivity in capillary electrophoresis- electrospray ionization/mass spectroscopy(CE-ESI/MS). Results are reported for melittin in a protein mixture, with 10 to 100 {mu}m ID capillaries; and for a mixture of aprotinin, cytochrome c, myoglobin, and carbonic anhydrase, with 5 to 50 {mu}m ID capillaries. It is shown that an increase in solute sensitivity occurs when small ID capillaries ({lt} 20 {mu}m) are used in CE-ESI/MS for both a peptide and a protein mixture. 3 figs. (DLC)

  4. Array tomography: production of arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  5. Direct coupling of supported liquid membranes to capillary electrophoresis for analysis of complex samples: A tutorial

    OpenAIRE

    Kubáň, P. (Pavel); Boček, P. (Petr)

    2013-01-01

    This tutorial provides an overview of direct coupling of extraction techniques based on supported liquid membranes to capillary electrophoresis for treatment and subsequent analysis of complex samples.

  6. Absolute absorbed dose measurements with an array of ionization chambers as part of a routine procedure of quality control for the VMAT technique

    International Nuclear Information System (INIS)

    Arcotheraphy techniques volumetric modulated (VMAT) treatments involve continuous variation of the gantry rotation speed, positions of the sheets and dose rate. Since all treatments are administered by continuous arcs, these techniques require quality control procedures to ensure quick and easy constancy of the calibration factor (total absorbed dose) for any gantry angle. We report here a simple method of quality control for the measurement of the calibration factor using an array of ionization chambers. The measurements were performed on a unit of 6 MV Elekta Synergy with VMAT, belonging to the Radiation Oncology service of the Defense Central Hospital Gomez Ulla.

  7. Analysis of neutral volatile aroma components in Tilsit cheese using a combination of dynamic headspace technique, capillary gas chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Tilsit cheese is made by the influence of lab ferment and starter cultures on milk. The ripening is done by repeated inoculation of the surface of the Tilsit cheese with yeasts and read smear cultures. This surface flora forms the typical aroma of the Tilsit cheese during the ripening process. The aim of the work was to receive general knowledge about the kind and amount of the neutral volatile aroma components of Tilsit cheese. Beyond this the ability of forming aroma components by read smear cultures and the dispersion of these components in cheese was to be examined. The results were intended to evaluate the formation of aroma components in Tilsit cheese. The semi-quantitative analyses of the aroma components of all samples were done by combining dynamic headspace extraction, gas chromatography and mass spectrometry. In this process the neutral volatile aroma components were extracted by dynamic headspace technique, adsorbed on a trap, thermally desorbed, separated by gas chromatography, detected and identified by mass spectrometry. 63 components belonging to the chemical classes of esters, ketones, aldehydes, alcohols and sulfur containing substances as well as aromatic hydrocarbons, chlorinated hydrocarbons and hydrocarbons were found in the analysed cheese samples of different Austrian Tilsit manufacturing plants. All cheese samples showed a qualitative equal but quantitative varied spectrum of aroma components. The cultivation of pure cultures on a cheese agar medium showed all analysed aroma components to be involved in the biochemical metabolism of these cultures. The ability to produce aroma components greatly differed between the strains and it was not possible to correlate this ability with the taxonomic classification of the strains. The majority of the components had a non-homogeneous concentration profile in the cheese body. This was explained by effects of diffusion and temporal and spatial different forming of components by the metabolism of the

  8. Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique

    International Nuclear Information System (INIS)

    In this paper we demonstrate femtosecond laser fabrication of micro-tubes with a height of several tens of micrometers in the photopolymer SZ2080 by three different methods: direct laser writing, using the optical vortex beam and holographic lithography. The flexibility of direct laser writing and dramatic increase of production efficiency by applying the vortex-shaped beam and four-beam interference approaches are presented. Sample arrays of micro-tubes were successfully manufactured applying all three methods and the fabrication quality as well as efficiency of the methods is compared. The processing time of a single micro-tube with 60 µm height and 3 µm inner radius is reduced 400 times for the holographic lithography technique and 500 times for the optical vortex method compared with the direct laser writing technique. The processing time of a micro-tube array containing 400 micro-tubes is the shortest for the holographic lithography method but not for the optical vortex method as in the case of a single micro-tube, because the holographic lithography method does not require time for sample translation. Additionally, the holographic lithography enables manufacturing of the whole micro-tube array by a single exposure. Although point-by-point photo-structuring ensures unmatched complexity of manufactured microstructures, employing nowadays high repetition rate amplified femtosecond lasers combined with beam shaping or several beam interference can envisage industrial applications for practical demands. (paper)

  9. Fabrication of microlens arrays on soda-lime glass using a laser direct-write technique and a thermal treatment assisted by a CO2 laser

    Science.gov (United States)

    Delgado, Tamara; Nieto, Daniel; Flores-Arias, María Teresa

    2015-10-01

    A low-cost method for fabricating microlens arrays on commercial soda-lime glass is presented. The hybrid technique is composed by a laser direct writing technique and a laser assisted post-thermal treatment. In particular we use a nanosecond Q-Switch Nd:YVO4 laser for fabricating the initial structure of microposts on soda-lime glass substrates and a CO2 laser combined with a furnace for reshaping and improving its morphological and optical qualities. This new fabrication approach lets us obtain a high quality microlenses array with a diameter of 50 μm, sag 1.5 μm, focal length 1 mm and a spot size of 7.8 μm. Furthermore, the proposed technique preserves the advantages of the laser direct-write technique in terms of design flexibility, simplicity, fast prototyping, low cost and so on; while the alternative laser assisted thermal treatment lets us overcome the bounding problems presented in other conventional thermal treatments.

  10. Capillary Flows along Open Channel Conduits: the Open-Star Section

    Science.gov (United States)

    Weislogel, Mark; Chen, Yongkang; Nguyen, Thanh; Geile, John; Callahan, Michael

    2014-11-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of related work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an ``open-star'' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport rates. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings. NASA NNX09AP66A, Glenn Research Center.

  11. Certain investigations on the reduction of side lobe level of an uniform linear antenna array using biogeography based optimization technique with sinusoidal migration model and simplified-BBO

    Indian Academy of Sciences (India)

    T S Jeyali Laseetha; R Sukanesh

    2014-02-01

    In this paper, we propose biogeography based optimization technique, with linear and sinusoidal migration models and simplified biogeography based optimization (S-BBO), for uniformly spaced linear antenna array synthesis to maximize the reduction of side lobe level (SLL). This paper explores biogeography theory. It generalizes two migration models in BBO namely, linear migration model and sinusoidal migration model. The performance of SLL reduction in ULA is investigated. Our performance study shows that among the two, sinusoidal migration model is a promising candidate for optimization. In our work, simplified – BBO algorithmis also deployed. This determines an optimum set value for amplitude excitations of antenna array elements that generate a radiation pattern with maximum side lobe level reduction. Our detailed investigation also shows that sinusoidal migration model of BBO performs better compared to the other evolutionary algorithms discussed in this paper.

  12. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  13. Micropattern array with gradient size (µPAGS) plastic surfaces fabricated by PDMS (polydimethylsiloxane) mold-based hot embossing technique for investigation of cell–surface interaction

    International Nuclear Information System (INIS)

    Recently, it was found that the variations of physical environment significantly affect cell behaviors including cell proliferation, migration and differentiation. Through a plastic surface with controlled mechanical properties such as stiffness, one can change the orientation and migration of cells in a particular direction, thereby determining cell behaviors. In this study, we demonstrate a polydimethylsiloxane (PDMS) mold-based hot embossing technique for rapid, simple and low-cost replication of polystyrene (PS) surfaces having micropatterns. The PDMS mold was fabricated by UV-photolithography followed by PDMS casting; the elastomeric properties of PDMS enabled us to obtain conformal contact of the PDMS mold to a PS surface and to create high transcription quality of micropatterns on the PS surface. Two different types of circular micropillar and microwell arrays were successfully replicated on the PS surfaces based on the suggested technique. The micropatterns were designed to have various diameters (2–150 µm), spacings (2–160 µm) and heights (1.4, 2.4, 8.2 and 14.9 µm), so as to generate the gradient of physical properties on the surface. Experimental parametric studies indicated that (1) the embossing temperature became a critical processing parameter as the aspect ratio of micropattern increased and (2) the PDMS mold-based hot embossing could successfully replicate micropatterns, even having an aspect ratio of 2.7 for micropattern diameter of 6 µm, with an optimal processing condition (embossing pressure and temperature of 0.4 MPa and 130 °C, respectively) in this study. We carried out cell experiments with adipose-derived stem cells on the replicated PS surface with the height of 1.4 µm to investigate cellular behaviors in response to the micropattern array with gradient size. Cellular experiment results showed that the micropillar-arrayed surface improved cell proliferation as compared with the microwell-arrayed surface. We could also estimate

  14. 一种稳健的柔性阵波束形成方法%A robust beamforming technique for flexible arrays

    Institute of Scientific and Technical Information of China (English)

    刘贯领; 汪素萍; 余小琴

    2011-01-01

    Due to the course and speed change induced by ship maneuvering and the unpredictable underwater turbulence, wind and other factors, the shape distortion of flexible arrays are inevitable. On the one hand, this leads to severe performance degradation of most of the present beamforming techniques that either assumes the array shape is undistorted or neglects the distortion; On the other hand, robust array shape estimation method is yet unavailable. In this paper, a robust technique is proposed to estimate the direction of arrival of targets without any a priori knowledge of the exact array element positions. The array is divided into a small segments with known shape and several other segment with unknown shapes. Only the cross-correlation relationships among these sub-arrays are used to obtain the weight vector.%由于航向、航速的改变以及水流、风浪等因素的影响,柔性线列阵在实际应用过程中阵型畸变足不可避免的.一方面,这种畸变使得许多假设阵型无畸变的波束形成方法的性能受到严重的影响:另一方面,目前很多的阵型估计方法仍不是很成熟,很难准确估计阵元的实际位置.本文提出将柔性阵列分为一段阵元位置已知的子阵和若干段阵元未知的子阵,利用不同子阵接收信号的互相关即可获得所需要的波束形成加权系数,从而在不需要知道阵元确切位置信息的情况下实现目标方法的估计.

  15. Correction of Faulty Sensors in Phased Array Radars Using Symmetrical Sensor Failure Technique and Cultural Algorithm with Differential Evolution

    OpenAIRE

    Khan, S. U.; I.M. Qureshi; F. Zaman; B. Shoaib; A. Naveed; Basit, A.

    2014-01-01

    Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evol...

  16. Measurements of an ion beam diameter extracted into air through a glass capillary

    International Nuclear Information System (INIS)

    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect

  17. High sensitivity radiation detector for capillary electrophoresis

    International Nuclear Information System (INIS)

    Capillary electrophoresis is an important new instrumental technique capable of high resolution separation and analysis of small quantities of nucleotides, amino acids, peptides, and proteins with very high efficiency and throughput. The unprecedented sensitivity of this technique will be useful for such new applications as in vivo labeling and identification of trace substances and single cell work. The principle limitation of this technique for radiolabeled molecules has been identified as the sensitivity of the detector, primarily due to the small sample volume (32P-labeled biomolecules with unprecedented sensitivity. This detector can be easily retrofitted into existing CE apparatus

  18. A New Technique for Spectral Analysis of Ionospheric TEC Fluctuations Observed with the Very Large Array VHF System: From QP Echoes to MSTIDs

    CERN Document Server

    Helmboldt, J F; Intema, H T; Dymond, K F

    2012-01-01

    We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) through the nighttime, midlatitude ionosphere to demonstrate the phenomena observable with this instrument. In a companion paper, we showed that the VLA can detect fluctuations in total electron content (TEC) with amplitudes of <0.001 TECU and can measure TEC gradients with a precision of about 0.0002 TECU/km. We detail two complementary techniques for producing spectral analysis of these TEC gradient measurements. The first is able to track individual waves with wavelengths of about half the size of the array (~20 km) or more. This technique was successful in detecting and characterizing many medium-scale traveling ionospheric disturbances (MSTIDs) seen intermittently throughout the night and has been partially validated using concurrent GPS measurements. Smaller waves are also seen with this technique at nearly all times, many of which move in similar directions as the det...

  19. Direction of Onset estimation using Multiple Signal Classification, Estimation of Signal Parameter by Revolving Invariance Techniques and Maximumlikelihood Algorithms for Antenna arrays

    Directory of Open Access Journals (Sweden)

    Yuvaraja.T

    2015-12-01

    Full Text Available In this paper a comparison of the performance of three famous Eigen structure based Direction of arrival (DOA algorithms known as the Multiple Signal Classification (MUSIC, the Estimation of Signal Parameter via Rotational Invariance Techniques (ESPRIT and a non-subspace method maximum-likelihood estimation (MLE has been extensively studied in this research work The performance of this DOA estimation algorithm based on Uniform Linear Array (ULA. We estimated various DOA using MATLAB, results shows that MUSIC algorithm is more accurate and stable compared to ESPRIT and MLE algorithms.

  20. 3D MR angiography of the entire aorta: modified application of the body-phased array coil for a single-shot technique

    International Nuclear Information System (INIS)

    Objective: Evaluation of different contrast-enhanced MR angiography imaging protocols for visualization of the entire aorta in breath-hold technique. Methods and patients: Three different CE (0.15 mmol/kg) MRA protocols were evaluated by phantom and patient studies: (1) two separate MRA with conventional application of the body-phased array coil; (2) a single-shot MRA with modified application of the body-phased array coil; (3) a single-shot MRA with the body coil. Duplex sonography, CTA and DSA were used as standard of reference. Results: In all examinations the entire aorta could be visualized. The best SNR was acquired with protocol (1). The SNR of protocol (2) was reduced if the sagittal body diameter of the patient was greater than 20 cm and decreased significantly with diameters over 30 cm. By the use of protocol (3) the SNR was notably poor. The quality scored for the visualization of the entire aorta was 97.5% (protocol 1); 92.5% (protocol 2); and 80.0% (protocol 3). Conclusion: In most cases the modified application of the body-phased array coil allows the imaging of the entire aorta as a single-shot 3D CE MRA in diagnostic quality

  1. Frequency-domain array technique analysis for the rupture duration time and geometrical characteristics of the 2001 Kunlun Mountain Pass earthquake

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-xia; XU Li-sheng; CHEN Yun-tai; LI Chun-lai; Klaus Stammler

    2008-01-01

    In this paper, we briefly describe the principle of tracking energy radiation sources of large earthquakes using frequency-domain far-field array technique, present general steps of tracking energy radiation sources, and take the 2001 Kunlun Mountain Pass earthquake as an example to analyze key factors for setting parameters while processing data. Using broadband waveform data from a seismic array in Ethiopia and Kenya (EK Array), we obtain that the rapture initiation point of the 2001 Kunlun Mountain Pass earthquake is located in the east of Buka Daban Peak (35.92°N, 91.70°E), and the rupture duration time is less than 160 s, the rupture length about 520 km, with 180 km in the west of the initiation point and 340 km in the east, respectively. The western segment of the earthquake fault bends towards southwest near Buka Daban Peak, which is in concordance with the surface rupture trace. The eastern segment apparently bends towards northeast near Xidatan, which is in agreement with the strike of Xidatan fault, but 30 km away from Xidatan fault. In addition, the results imply that the western segment of the earthquake fault appears erect while the eastern segment appears to be gradually dipping southwards.

  2. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  3. The alveolar-capillary membrane diffusing capacity and the pulmonary capillary blood volume in heart transplant candidates

    OpenAIRE

    Al-Rawas, O; Carter, R.; Stevenson, R; Naik, S; Wheatley, D

    2000-01-01

    OBJECTIVES—To determine the mechanism of impairment of pulmonary transfer factor for carbon monoxide (TLCO) in heart transplant candidates, as this is the most common lung function abnormality.
SETTING—Regional cardiopulmonary transplant centre.
METHODS—TLCO and its components (the diffusing capacity of the alveolar-capillary membrane (DM) and the pulmonary capillary blood volume (VC)) were measured using the Roughton and Forster method and the single breath technique in 38 patients with seve...

  4. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    A method for measurement of capillary permeability using external registration of gamma emitting isotopes after close arterial bolus injection was applied to the isolated inguinal fat pad in slightly fasting rabbits. An average extraction of 26 per cent for 51Cr-EDTA was found at a plasma flow of...... about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  5. Capillary Versus Aspiration Biopsy: Effect of Needle Size and Length on the Cytopathological Specimen Quality

    International Nuclear Information System (INIS)

    Purpose: To test the value of the nonaspiration, or capillary, biopsy technique by experimental comparison with the conventional fine-needle aspiration technique using various needle gauges and lengths. Methods: On fresh hepatic and renal tissue from five autopsies, multiple biopsy specimens were taken with 20, 22, and 23-gauge Chiba needles of 5, 10, 15, and 20-cm length, using the aspiration technique and the capillary technique. The resultant specimens were graded on the basis of a grading scheme by a cytopathologist who was blinded to the biopsy technique. Results: The capillary technique obtained less background blood or clot which could obscure diagnostic tissue, although not significantly different from the aspiration technique (p= 0.2). However, for the amount of cellular material obtained, retention of appropriate architecture, and mean score, the capillary technique performed statistically worse than aspiration biopsy (p < 0.01). In addition, with decreasing needle caliber (increasing needle gauge) and increasing length, the capillary biopsy was inferior to the aspiration biopsy. Conclusion: The capillary biopsy technique is inferior to the aspiration technique according to our study. When the capillary technique is to be applied, preference should be given to larger caliber, shorter needles

  6. Correction of Faulty Sensors in Phased Array Radars Using Symmetrical Sensor Failure Technique and Cultural Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    S. U. Khan

    2014-01-01

    Full Text Available Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evolution (CADE which is used for the reduction of sidelobe levels and placement of nulls at their original positions. Fitness function is used to minimize the error between the desired and estimated beam patterns along with null constraints. Simulation results for various scenarios have been given to exhibit the validity and performance of the proposed algorithm.

  7. Commissioning of a 3D pretreatment quality-assurance system in volumetric techniques based in 2D detector arrays

    International Nuclear Information System (INIS)

    The present experience about intensity-modulated radiation therapy pre-treatment QA points to a paradigm shift oriented to metrics based in clinically relevant parameters. This work shows the commissioning of a QA system used in the verification of volumetric treatments based in 2D ion chamber arrays. This system accomplishes with the initial hypothesis making the dose calculation and reconstruction in actual patient anatomy possible from measurements taken during the verification process. Beam reference parameters are compared with those obtained with the system: absolute dose, output factors and relative dose distributions. Simple test cases are evaluated comparing dose-volume parameters and ion chamber-based measurements. Finally the system is applied to the verification of 12 actual clinical test cases, comparing ion chamber measurements, usual planar dose distributions analysis, dose-volume parameters from each anatomic site and 3D gamma tests. Results make the potential advantage of these systems clear compared with those based in traditional metrics. (Author)

  8. Tapered capillary optics

    Science.gov (United States)

    Hirsch, Gregory

    1998-01-01

    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  9. Development of the LLT-phased-array technique for detection and characterization of surface or near-surface flaws in welds or claddings of nuclear system components. Final report

    International Nuclear Information System (INIS)

    The aim of the investigation was to use the mode converted geometrical wave path obtained at surface connected or near surface flaws to detect and to size these defects especially in welds and in or near the cladding. The LTT-technique applied to detect and size flaws near the surface - so called LLT-O-technique - should be used as a sizing technique and less as a detection technique. This is based upon the fact that the corner echo or the 70 SEL-technique is more sensitive for detection and that the amplitude obtained by using the LLT-technique is monotoneously increasing over a wider range compared to the corner echo technique. The amplitude as a function of the flaw depth extension can be calculated. One of the basic parameter is the distance between the transmitter and receiver. This distance can be optimized by numerical modelling. The results of this modelling could be confirmed by the experimental investigations. One of the advantages of the LLT technique compared to the tandem technique is, that the transmitter and receiver is combined in one single probe. To be able to change the direction of transmitting longitudinal waves and receiving shear waves under an other angle the concept of phased array technique has been used. The experiments however showed that this single array probe concept was not realizable. The numerical simulations showed that the transmitter phased array probe and the receiver phased array probe have to be separated by a longer distance with the consequence that the two probes can not be combined into a single probe. The procedure to evaluate the depth extension of the flaws is to hold the transmitter array fixed and to move the receiver array. (orig.)

  10. Capillary optics for radiation focusing

    International Nuclear Information System (INIS)

    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using 58Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics

  11. Microcrystallization of a Solution-Processable Organic Semiconductor in Capillaries for High-Performance Ambipolar Field-Effect Transistors.

    Science.gov (United States)

    Watanabe, Satoshi; Fujita, Takuma; Ribierre, Jean-Charles; Takaishi, Kazuto; Muto, Tsuyoshi; Adachi, Chihaya; Uchiyama, Masanobu; Aoyama, Tetsuya; Matsumoto, Mutsuyoshi

    2016-07-13

    We report on the use of microcrystallization in capillaries to fabricate patterned crystalline microstructures of the low-bandgap ambipolar quinoidal quaterthiophene derivative (QQT(CN)4) from a chloroform solution. Aligned needle-shaped QQT(CN)4 crystals were formed in thin film microstructures using either open- or closed- capillaries made of polydimethylsiloxane (PDMS). Their charge transport properties were evaluated in a bottom-gate top-contact transistor configuration. Hole and electron mobilities were found to be as high as 0.17 and 0.083 cm(2) V(-1) s(-1), respectively, approaching the values previously obtained in individual QQT(CN)4 single crystal microneedles. It was possible to control the size of the needle crystals and the microline arrays by adjusting the structure of the PDMS mold and the concentration of QQT(CN)4 solution. These results demonstrate that the microcrystallization in capillaries technique can be used to simultaneously pattern organic needle single crystals and control the microcrystallization processes. Such a simple and versatile method should be promising for the future development of high-performance organic electronic devices. PMID:27150559

  12. Pressure resistance of glass capillaries for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Holtappels, Kai; Beckmann-Kluge, Martin; Gebauer, Marek [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Eliezer, Dan

    2011-07-01

    A crucial problem in the development of new hydrogen technologies is the need for lightweight and safe storage of acceptable amounts of hydrogen, in particular for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure the safe infusion, storage, and controlled release of hydrogen gas, even when storage pressures of up to 1200 bar are applied. This technology enables the storage of a significantly higher amount of hydrogen than other approaches. It has already surpassed the US Department of Energy's 2010 target, and is expected to meet the DOE's 2015 target in the near future. The main determinant in this storage technology is the pressure resistance of glass capillaries. It is well known that quartz, for example, is three times stronger than steel. At the same time, the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in relation to various capillary materials and dimensions, wall thicknesses etc. in order to find out optimal parameters for the 'final' capillaries. (orig.)

  13. Mecanismos de Separação em Eletroforese Capilar Separation Mechanisms in Capillary Electrophoresis

    OpenAIRE

    Tavares, Marina F. M.

    1997-01-01

    Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (fr...

  14. An overnight parcel logistics company's capillary distribution network design by stochastical modeling

    OpenAIRE

    Rioja San Martín, Oscar

    2015-01-01

    In this research, an overnight parcel logistics company's (hereby referred to as OPLC) capillary distribution network will be modelled by stochastic techniques. Specifically, the capillary distribution networks this parcel logistics company has in Sant Cugat del Vallés . A capillary distribution network is com posed by the routes and the vehicles in charge of the delivery and collection of parcels to the final client or point of sale. It is also known as last mile distribution. The OPLC ne...

  15. Capillary plasma jet: A low volume plasma source for life science applications

    International Nuclear Information System (INIS)

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization

  16. Capillary plasma jet: A low volume plasma source for life science applications

    Energy Technology Data Exchange (ETDEWEB)

    Topala, I., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Alexandru Ioan Cuza University of Iasi, Faculty of Physics, Iasi Plasma Advanced Research Center (IPARC), Bd. Carol I No. 11, Iasi 700506 (Romania); Nagatsu, M., E-mail: ionut.topala@uaic.ro, E-mail: tmnagat@ipc.shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-02-02

    In this letter, we present results from multispectroscopic analysis of protein films, after exposure to a peculiar plasma source, i.e., the capillary plasma jet. This plasma source is able to generate very small pulsed plasma volumes, in kilohertz range, with characteristic dimensions smaller than 1 mm. This leads to specific microscale generation and transport of all plasma species. Plasma diagnosis was realized using general electrical and optical methods. Depending on power level and exposure duration, this miniature plasma jet can induce controllable modifications to soft matter targets. Detailed discussions on protein film oxidation and chemical etching are supported by results from absorption, X-ray photoelectron spectroscopy, and microscopy techniques. Further exploitation of principles presented here may consolidate research interests involving plasmas in biotechnologies and plasma medicine, especially in patterning technologies, modified biomolecule arrays, and local chemical functionalization.

  17. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    International Nuclear Information System (INIS)

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  18. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    Energy Technology Data Exchange (ETDEWEB)

    Yusvana, Rama; Markx, Gerard H [School of Engineering and Physical Science, Department of Chemical Engineering, Heriot-Watt University, Riccarton Campus, Edinburgh - EH14 4AS (United Kingdom); Headon, Denis, E-mail: g.h.markx@hw.ac.u [Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, Edinburgh - EH25 9PS (United Kingdom)

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  19. Capillary zone electrophoresis and packed capillary column liquid chromatographic analysis of recombinant human interleukin-4.

    Science.gov (United States)

    Bullock, J

    1993-02-24

    Capillary zone electrophoresis (CZE) and packed capillary column liquid chromatography (micro-LC) have been applied to the analysis of the recombinant human protein interleukin-4 (rhIL-4). Separations for both the parent protein and its enzymatic digest were developed for the purpose of characterizing protein purity and identity. CZE separations of the intact protein were investigated over the pH range of 4.5 to 8.0 using uncoated fused silica capillaries. Gradient reversed-phase micro-LC was performed using 0.32 mm packed capillary columns at flow-rates of 5-6 microliters/min. Emphasis was placed on the ability of these methods to separate close structural variants and degradation products of the protein. Peptide mapping of the tryptic digest of rhIL-4 using a combination of CZE and micro-LC provided complimentary high resolution methods for establishing protein identity. Reproducible separations were achieved using sub-picomol amounts of sample. The advantages and problems encountered with these two techniques for characterizing rhIL-4 were assessed. PMID:8450025

  20. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  1. Structural and photoluminescence studies of highly crystalline un-annealed ZnO nanorods arrays synthesized by hydrothermal technique

    International Nuclear Information System (INIS)

    To investigate the effect of a seed layer on the growth and properties of ZnO nanorods using hydrothermal technique, various thickness of sputter deposited ZnO thin films were used. The changes in crystallinity, orientation, and optical properties of the nanorods synthesized on these ZnO thin films were examined. These properties were studied simultaneously in two series of samples, wherein in one series the nanorods were unannealed while in the other series they were annealed. Structural characterization revealed that both categories of nanorods were highly crystalline, with a hexagonal phase, and grew along the [0001] direction. The density of the nanorods per unit area increased as the thickness of the seed layer decreased. We also found that the defect related emission in photoluminescence spectra was quite low in both the annealed and non-annealed samples series. Typically, the decay curves obtained from these ZnO nanorods show a combination of two exponential decays. The nonradiative fast decay component was affected by the thickness of the seed layer and its values were higher than those of previously reported ZnO nanostructures grown by the hydrothermal technique. This comprehensive study shows that as grown nanorods lead directly to a high crystalline quality. -- Highlights: • Highly crystalline, oriented and un-annealed ZnO nanorods were grown on silicon substrate by aqueous hydrothermal technique. • Vertically well aligned ZnO nanorods synthesized in absence of metal catalysts or additives. • Structural and optical properties were studied in un-annealed and annealed ZnO nanorod samples. • Defect related emission in photoluminescence spectra is quite low in both the annealed and non-annealed ZnO samples

  2. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi

    2013-02-01

    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  3. Analysis of Capillary Rise in Asymmetric Branch-Like Capillary

    Science.gov (United States)

    Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Yang, Zhihui; Su, Shuai; Ren, Kai; Huang, Heyu

    2016-05-01

    Transport in porous media is common in nature, attracting many attentions for a long time. Tree-like network model is often used as a simplification for porous space, expressing the complexity of pore spaces instead of capillary bundle. To investigate spontaneous imbibition characteristics in this network, a dynamic asymmetric branch-like capillary model is used to represent basic network structure, using fractal method to represent tortuosity. This work investigates the influence of parameters on imbibition process in the branch-like capillary model. An analytical equation for the imbibition mass versus time is derived. Parameters from capillary structures to liquid properties are taken into account and analyzed based on the numerical solution of the equation. It is found that the imbibition process in asymmetric branch-like capillary model can be recognized by four sections and brunching tubes are positive for imbibition process. Concomitantly, meniscus arrest event is simulated and discussed. Moreover, the influence of parameters on imbibition process is discussed. These parameters can be classified as static and dynamic. Static parameters mainly change the capillary force, which are related to the ultimate imbibition mass or imbibition ability, while dynamic parameters mainly have influence on resistance of flowing fluid, which are related to the imbibition speed in the imbibition process.

  4. Capillary electrophoretic determination of antimigraine formulations containing caffeine, ergotamine, paracetamol and domperidone or metoclopramide.

    Science.gov (United States)

    Sultan, Maha A; Maher, Hadir M; Alzoman, Nora Z; Alshehri, Mona M; Rizk, Mohamed S; Elshahed, Mona S; Olah, Ileana V

    2013-07-01

    A novel, fast, sensitive and specific technique using capillary electrophoresis coupled to a diode array detector has been developed for the separation and simultaneous determination of two antimigraine mixtures in tablet formulation. The two combinations are ergotamine tartrate (ERG), caffeine (CAF) and paracetamol (PAR) with either domperidone (DOM), combination (I) or metoclopramide (MET), combination (II). The proposed method utilized a fused silica capillary (55 cm × 75 µm i.d.) and background electrolyte composed of phosphate buffer (25 mM, pH 9.8). The separation was achieved at 20 KV applied voltage and at 25°C. The described method was linear over the range of 1-80 and 2-100 µg/mL for CAF and MET, respectively, and 1-80 µg/mL for DOM, ERG and PAR. Intra-day and inter-day relative standard deviation (n = 5) was ≤1.10%. The limits of detection of CAF and PAR were 0.20 and 0.10 µg/mL, respectively, and 0.50 µg/mL for MET, DOM and ERG. Other aspects of analytical validation were also evaluated. The proposed method was successfully applied to the analysis of the two combinations in their tablets. Therefore, the proposed method is suitable for the routine control of these ingredients in multicomponent dosage forms. PMID:23180758

  5. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)

    2015-07-01

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  6. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  7. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    International Nuclear Information System (INIS)

    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account

  8. Surface Tension and Capillary Rise

    Science.gov (United States)

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  9. Capillary electrophoresis electrospray ionization mass spectrometry interface

    Science.gov (United States)

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  10. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  11. Acupuncture Sample Injection for Microchip Capillary Electrophoresis and Electrokinetic Chromatography.

    Science.gov (United States)

    Ha, Ji Won; Hahn, Jong Hoon

    2016-05-01

    A simple nanoliter-scale injection technique was developed for polydimethylsiloxane (PDMS) microfluidic devices to form the well-defined sample plugs in microfluidic channels. Sample injection was achieved by performing acupuncture on a channel with a needle and applying external pressure to a syringe. This technique allowed us to achieve reproducible injection of a 3-nL segment into a microchannel for PDMS microchip-based capillary electrophoresis (CE). Capillary zone electrophoresis (CZE) and capillary electrochromatography (CEC) with bead packing were successfully performed by applying a single potential in the most simplified straight channel. The advantages of this acupuncture injection over the electrokinetic injection in microchip CE include capability of minimizing sample loss and voltage control hardware, capability of serial injections of different sample solutions into a same microchannel, capability of injecting sample plugs into any position of a microchannel, independence on sample solutions during the loading step, and ease in making microchips due to the straight channel, etc. PMID:27056036

  12. Unsteady motion of the parasitic capillary ripples on the gravity-capillary waves

    International Nuclear Information System (INIS)

    Parasitic capillary ripples generated on the forward face of the gravity-capillary waves are investigated experimentally. Using the optical technique, the slope angle of the wave is measured with sufficient space and time resolution to characterize the small ripple fluctuations. The ripple generation and its steepness is considered from the point of dominant wave asymmetry. The unsteady motion of ripples is analyzed by the two-points optical measurements. Dominant wave has the same phase speed with ripple on average, however the relative distance to the dominant wave fluctuates which can't be negligible comparing with the ripple wavelength. That is, the non-linear interactions with the dominant wave assumed to be essential. (authors)

  13. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Růžička, F.; Kubesová, Anna; Holá, V.; Šlais, Karel

    2009-01-01

    Roč. 81, č. 10 (2009), s. 3997-4004. ISSN 0003-2700 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electromigration techniques * optimization of the separation * microscopic filamentous fungi Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.214, year: 2009

  14. Application of capillary electrophoresis in agricultural and soil chemistry research

    Science.gov (United States)

    As a modern analytical technique, capillary electrophoresis (CE) has become an attractive method for characterizing molecules wit high structural complexity and a wide range of molecular weights. CE can be used to analyze many natural chemical components such as acids, biogenic amines, peptides, pro...

  15. A submicron synchrotron X-ray beam generated by capillary optics

    International Nuclear Information System (INIS)

    A novel capillary optics technique for focusing synchrotron X-ray beams has been applied in an experiment performed at the DORIS storage ring at HASYLAB. This new technqiue, which utilizes the total reflection properties of X-rays inside small capillaries, has recently been applied to generate microbeams of X-rays, with a beam size down to about 10 μm using conventional X-ray tubes. The result from our recent experiment shows that capillary optics can also be used to generate a submicron beam of X-rays from a synchrotron light source. A description of the capillary unit, and the alignment procedure is given. The influence of the thermal load on the device caused by the intense flux of synchrotron radiation will be discussed. Future perspectives of the capillary techniques as applied to synchrotron radiation will be discussed. (orig.)

  16. Study of separation of PAMAM dendrimers by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Sedláková, Pavla; Svobodová, Jana; Mikšík, Ivan; Tomás, H.

    Paris : Ecole Supérieure de Physique et Chimie Industrielles de Paris, 2006. s. 59-59. [ITP 2006 - International Symposium on Capillary Electroseparation Techniques /15./. 28.08.2006-30.08.2006, Paris] R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA203/05/2539; GA ČR(CZ) GA203/06/1044 Institutional research plan: CEZ:AV0Z50110509 Keywords : dendrimer * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  17. Laser-capillary interaction for the EXIN project

    Science.gov (United States)

    Bisesto, F. G.; Anania, M. P.; Bacci, A. L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Pompili, R.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2016-09-01

    The EXIN project is under development within the SPARC_LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  18. Capillary electrophoresis and isotachophoresis employed for physicochemical characterization of peptides

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav; Šolínová, Veronika; Koval, Dušan; Ibrahim, A.; Cottet, H.

    Natal: -, 2014. s. 41. [ITP & LACE 2014. International Symposium on Electro- and Liquid Phase-Separation Techniques /21./ and Latin-American Symposium on Biotechnology, Biomedical, Biopharmaceutical, and Industrial Applications of Capillary Electrophoresis and Microchip Technology /20./. 04.10.2014-08.10.2014, Natal] R&D Projects: GA ČR(CZ) GAP206/12/0453; GA ČR(CZ) GA13-17224S Grant ostatní: GA AV ČR(CZ) M200551207 Institutional support: RVO:61388963 Keywords : capillary electrophoresis * peptides * electrophoretic mobility Subject RIV: CB - Analytical Chemistry, Separation

  19. Differentiation of enantiomers by capillary electrophoresis.

    Science.gov (United States)

    Scriba, Gerhard K E

    2013-01-01

    Capillary electrophoresis (CE) has matured to one of the major liquid phase enantiodifferentiation techniques since the first report in 1985. This can be primarily attributed to the flexibility as well as the various modes available including electrokinetic chromatography (EKC), micellar electrokinetic chromatography (MEKC), and microemulsion electrokinetic chromatography (MEEKC). In contrast to chromatographic techniques, the chiral selector is mobile in the background electrolyte. Furthermore, a large variety of chiral selectors are available that can be easily combined in the same separation system. In addition, the migration order of the enantiomers can be adjusted by a number of approaches. In CE enantiodifferentiations the separation principle is comparable to chromatography while the principle of the movement of the analytes in the capillary is based on electrophoretic phenomena. The present chapter will focus on mechanistic aspects of CE enantioseparations including enantiomer migration order and the current understanding of selector-selectand structures. Selected examples of the basic enantioseparation modes EKC, MEKC, and MEEKC will be discussed. PMID:23666080

  20. 毛细管超速离心技术在分离混合视野红细胞的应用研究%The applied research of separating red cells with mixed-field by capillary ultracentrifugation technique

    Institute of Scientific and Technical Information of China (English)

    周守容; 刘斌; 梁伟

    2014-01-01

    Objective To analyze the capability of separating red blood cells with mixed field by ultracentrifu-gation technique. Methods Five mL fresh blood of type A was obtained from Shanghai Blood Center blood donors , meanwhile, 5 mL blood of type B was gotten, the preserving time of which was 7 d and 14 d in vitro respectively. All the three samples were washed three times with saline to make packed red blood cells , then added the normal plasma of type A and B, so that all samples were prepared to an appropriate hematocrit of 80%, next, the 3%, 6%of proportion of old cells in fresh A cell were reconstituted to simulate the mixed field artificially. The cell mixing ratio of proximal and distal end was read by comparing with a range of standard ratio after the samples were centrifuged with the speed of 11 000 r/min for 5 min, furthermore, the impact of different of preserving time in vitro on the effect of ultracentrifugation was also observed and all the above mentioned experiments were repeated three times. Results The percentage of B cells for the two samples (3%and 6%) was significantly higher than the initial mixing cell ratio (Z=-2.121, P=0.034) in the distal end, and fresh cells A cells were relocated in the proximal end, it demonstrated that the old and fresh red cells can be separated effectively by the ultracentrifugation technology. In addition , the difference of concentration ratio between 7 d and 14 d cells wasn′t significant(Z=-1.826, P=0.068), the previous percentage of B cells was increased about 1 times by ultracentrifugation. Conclusion The cells with mixed field can be separated effectively using the capillary ultracentr-ifugation technology and should be introduced in the clinical transfusion-related laboratories.%目的:分析毛细管超速离心技术对混合视野红细胞的分离能力。方法取来自上海血液中心献血员的新鲜A型血液5 mL、离体7 d和14 d的陈旧性B型血液各5 mL,分别用0.9%氯化钠注射液洗涤3

  1. Capacitive measurement of mercury column heights in capillaries.

    Science.gov (United States)

    Frey, Sarah; Richert, Ranko

    2010-03-01

    The detection of changes in volume, e.g., in expansivity or aging measurements, are often translated into mercury column height within a glass capillary. We propose a capacitive technique for measuring the meniscus position using a cylindrical capacitor with mercury as the inner electrode, the capillary material as the dielectric, and a metal coat covering the outside surface of the capillary as the second electrode. The measured capacitance changes linearly with meniscus height, as long as the top mercury level remains within the range of the outer electrode. With the demonstrated noise level of 48 nm for our preliminary setup, meniscus height changes beyond 100 nm can be observed via the capacitance. PMID:20370203

  2. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    Science.gov (United States)

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  3. Modelization and simulation of capillary barriers

    International Nuclear Information System (INIS)

    Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)

  4. Capillary blood flow imaging within human finger cuticle using optical microangiography

    OpenAIRE

    Baran, Utku; Shi, Lei; Ruikang K. Wang

    2013-01-01

    We report non-invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra-high sensitive optical microangiography (UHS-OMAG) techniques. Wide velocity range DOMAG method is applied to provide RBC axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS-OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising t...

  5. Chiral Separation by Capillary Zone Electrophoresis Used Cyclodextrins and Their Derivatives as Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3

  6. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    OpenAIRE

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme ...

  7. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  8. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  9. Capillary Rise in a Wedge

    Science.gov (United States)

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  10. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems

  11. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    Science.gov (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  12. DNA Micro-Array Gene Expression Profi ling of Angiogenesis in Collagen Gel Culture

    OpenAIRE

    Masumi Akita; Keiko Fujita

    2008-01-01

    We examined angiogenesis-related gene expression profiles using collagen gel culture and a DNA chip. After isolation of total RNA from cultures before and after capillary tube formation, a mouse whole-genome array study was performed. Seventy-three out of over 35,000 transcripts were expressed after capillary tube formation. The majority of genes did not show any significant differences between before and after capillary tube formation. However, there were 7 upregulated genes; tumor necrosis ...

  13. Separation of Trivalent Actinides from Lanthanides Using a Capillary Electrophoresis

    International Nuclear Information System (INIS)

    A separation of 241Am(III) from 152,154Eu(III) was carried out using a capillary electrophoresis technique in a mixed solvent (CH3OH/H2O) system containing thiocyanate ion. First, the formation constants (βn) between thiocyanate ion and Eu(III) or Am(III) were investigated in the mixed solvent solutions by a back-extraction technique using bis (2-ethylhexyl) hydrogen phosphate-toluene. The mean charges calculated on the basis of the data of βn for Eu(III) were comparatively higher than those for Am(III). Based on the differences between the mean charges of Eu(III) and Am(III), separations for Am(III)/Eu(III) by means of capillary electrophoresis technique were tried in the (H+, Na+)(SCN-, ClO4-) mixed solvent solutions. It was proved that Am(III) was completely separated from Eu(III). (authors)

  14. Multichannel arrays on polymer substrates: toward a disposable proteomics chip

    Science.gov (United States)

    Becker, Holger; Ehrfeld, Wolfgang; Pommersheim, Rainer

    1999-03-01

    Miniaturization is dramatically changing the shape of biotechnology. After the first wave of discoveries inventions in the field of analytical methods and DNA-probes on silicon chips, the trend in recent years has been to more complex and integrated systems in terms of microfabrication for production purposes mainly focused on polymer substrates. Additionally, an increased complexity in the biochemical functionality for tasks like cell handling, cell lysis, polymerase chain reaction, DNA-sequencing and recently in the field of proteomics research can be observed. In this paper we describe the practical approach to a polymer substrate based, microfabricated chip-based multichannel array for 2D capillary electrophoresis. This chip can be fabricated by classical mass production techniques like hot embossing or injection modeling, and has the potential for on-chip-integration of electrodes and detection system.

  15. Aligators for Arrays (Tool Paper)

    Science.gov (United States)

    Henzinger, Thomas A.; Hottelier, Thibaud; Kovács, Laura; Rybalchenko, Andrey

    This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators' loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurrence and algebraic solving techniques for reasoning about arrays.

  16. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  17. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  18. Aligators for arrays

    OpenAIRE

    Henzinger, Thomas A.; Hottelier, Thibaud; Kovács, Laura; Rybalchenko, Andrey

    2010-01-01

    This paper presents Aligators, a tool for the generation of universally quantified array invariants. Aligators leverages recurrence solving and algebraic techniques to carry out inductive reasoning over array content. The Aligators’ loop extraction module allows treatment of multi-path loops by exploiting their commutativity and serializability properties. Our experience in applying Aligators on a collection of loops from open source software projects indicates the applicability of recurren...

  19. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  20. Capillary hemangioma of palatal mucosa

    OpenAIRE

    Bharti, Vipin; Singh, Jagmohan

    2012-01-01

    Hemangiomas are common tumors characterized microscopically by proliferation of blood vessels. The congenital hemangioma is often present at birth and may become more apparent throughout life. They are probably developmental rather than neoplastic in origin. Despite their benign origin and behavior, hemangiomas in the oral cavity are always of clinical importance to the dental profession and require appropriate clinical management. This case report presents a case of capillary hemangioma of a...

  1. Inertial Rise in Short Capillaries

    CERN Document Server

    Shardt, Orest; Derksen, J J; Mitra, Sushanta K

    2013-01-01

    In this fluid dynamics video we show capillary rise experiments with diethyl ether in short tubes. The height of each short tube is less than the maximum height the liquid can achieve, and therefore the liquid reaches the top of the tube while still rising. Over a narrow range of heights, the ether bulges out from the top of the tube and spreads onto the external wall.

  2. Treelike networks accelerating capillary flow

    Science.gov (United States)

    Shou, Dahua; Ye, Lin; Fan, Jintu

    2014-05-01

    Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006), 10.1103/PhysRevE.73.066302; J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007), 10.1103/PhysRevE.75.056301]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.

  3. Shutter array technique for real-time non-invasive extraction of individual channel responses in multi-channel CPV modules

    Science.gov (United States)

    Cook, John P. D.; Yandt, Mark D.; Kelly, Michael; Wheeldon, Jeffrey F.; Hinzer, Karin; Schriemer, Henry

    2013-10-01

    Concentrator photovoltaic (CPV) solar energy systems use optics to concentrate direct normal incidence (DNI) sunlight onto multi-junction photovoltaic (MJPV) cells fabricated from III-V compound semiconductors on germanium substrates. The MJPV receiver, which integrates cell and bypass diode, is then mated with its concentrating optic to form a channel, and several such channels form a CPV module, in which the receivers are connected electrically in series. The two ends of the module receiver string are brought out to a single pair of electrical connections, at which point the lightcurrent- voltage (L-I-V) response of the entire module can be tested. With commercial CPV modules commonly sealed against outdoor exposure, there are no other accessible test points, and field installation on trackers further complicates access to performance data. There are many physical phenomena influencing module performance, and in early development and commercialization some of these may not yet be completely under control. Unambiguous diagnosis of such phenomena from one full-module L-I-V curve is problematic. Simple, fast test methods are needed to develop more detailed information from full-module on-tracker testing, without opening up modules in the field. We describe a test protocol, using a simple optical shutter array constructed to fit mechanically over the module. When module L-I-V curves are recorded for each of various combinations of open and closed shutters, the information can be used to identify one or more anomalous channels, and to further identify the kind of anomaly present, such as optical misalignment, conductor failure, series or shunt resistance, and so on. Simulated results from anomaly models can be compared with the measured results to identify the anomalous behaviour. Results herein are compared with direct single-channel measurements to verify the technique. The L-I-V response curves were obtained in continuous real time, an approach found to be more

  4. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2016-06-01

    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  5. On-column radioisotope detection for capillary electrophoresis

    International Nuclear Information System (INIS)

    Three on-line radioactivity detection schemes for capillary electrophoresis are described. The first detector system utilizes a commercially available semiconductor device positioned external to the separation channel and responding directly to impinging γ or high-energy β radiation. The second detector system utilizes a commercially available plastic scintillator material and a cooled photomultiplier tube operated in the photon counting mode. The third detector system utilizes a plastic scintillator material and two room-temperature photomultiplier tubes operated in the coincidence counting mode. The system performance and detector efficiency are evaluated for each of the detection schemes using synthetic mixtures of 32P-labeled sample molecules. The detection limits are determined to be in the low nanocurie range for separations performed under standard conditions (an injected sample quantity of 1 nanocurie corresponds to 110 x 10-18 moles of 32P). The lower limit of detection is extended to the sub-nanocurie level by using flow (voltage) programming to increase the residence time of labeled sample components in the detection volume. The separation of 32P-labeled oligonucleotide mixtures using polyacrylamide gel-filled capillaries and on-line radioisotope detection is also presented. When desired, the residence time can be made almost arbitrarily long by freezing the contents of the capillary, permitting autoradiograms to be recorded. This last technique is applied to gel-filled capillaries and provides a detection sensitivity of a few DPM per separated component, corresponding to subattomole amounts of radiolabel

  6. A new vertex detector made of glass capillaries

    International Nuclear Information System (INIS)

    We have developed a new detector technique that allows high quality imaging of ionizing particle tracks with very high spatial and time resolution. Central to this technique are liquid-core fibres of about 20 μm diameter read out by an optoelectronic system including a CCD. The fibres act simultaneously as target, detector and light guides. A large-volume prototype, consisting of 5 x 105 capillaries of 20 μm diameter and 180 cm length, has been tested in the CERN wide-band neutrino beam. A sample of high-multiplicity neutrino interactions was recorded, demonstrating the imaging quality of this detector. First results from the reconstruction of these events are reported. A track residual of 28 μm and a vertex resolution of 30 μm has been achieved. Future applications of capillary detectors for neutrino and beauty physics are being investigated within the framework of the RD46 collaboration. (orig.)

  7. Anion analysis using capillary electrophoresis in the Halden reactor

    International Nuclear Information System (INIS)

    A significant investment has been made over the last decade in water chemistry analysis capability at the Halden Reactor, reflecting both the need to maintain system reliability and to provide chemical analyses for the increasing number of corrosion and chemistry-related experiments being performed in the reactor. Control of concentrations of anionic species (chloride, sulphate and nitrate) is of crucial importance in reducing the potential of stainless steel components to undergo stress corrosion cracking. Currently at Halden, samples must be taken from the coolant in the reactor itself, several auxiliary systems and approximately 10 test loop systems. Previously, anion analyses were performed using ion chromatography. In 1996, this technique was superseded by capillary electrophoresis since the latter has several advantages over the former, including speed of analysis. This paper will present operational experience of using capillary electrophoresis from two different suppliers. A discussion of the advantages and disadvantages of the technique over ion chromatography is included. (author)

  8. High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique

    Science.gov (United States)

    Leclerc, D.; Brosson, P.; Pommereau, F.; Ngo, R.; Doussiere, P.; Mallecot, F.; Gavignet, P.; Wamsler, I.; Laube, G.; Hunziker, W.

    1995-05-01

    A high performance four-tilted stripe semiconductor optical amplifier array, with low polarization sensitivity and very low-gain ripple, compatible with self-aligned flip-chip mounting on a Si motherboard is reported. Up to 32 dB of internal gain with 2-dB polarization sensitivity is obtained. A multifiber module has been realized, following an almost static optical alignment procedure, showing no degradation of the SOA array performances. Fiber-to-fiber gain, measured on the four stripes, is 14.4 +/- 1.3 dB with a gain ripple below +/- 0.1 dB.

  9. Kinetic Derivation of the Hydrodynamic Equations for Capillary Fluids

    OpenAIRE

    De Martino, S.; Falanga, M.; Tzenov, S. I.

    2004-01-01

    Based on the generalized kinetic equation for the one-particle distribution function with a small source, the transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic feature of this new technique to obtain the hydrodynamic limit is that the latter has been partially incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from the characteristic function for the local moments of the distribu...

  10. Chiral capillary electrophoresis separations of charged helical molecules

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Severa, Lukáš; Teplý, Filip; Kašička, Václav

    New Orleans: -, 2014. P1309. [HPLC 2014. International Symposium on High Performance Liquid Phase Separations and Related Techniques /41./. 11.05.2014-15.05.2014, New Orleans] R&D Projects: GA ČR GA13-19213S; GA ČR GA13-32974S Grant ostatní: AV ČR(CZ) M200551208 Institutional support: RVO:61388963 Keywords : helquats * capillary electrophoresis * chiral separation Subject RIV: CB - Analytical Chemistry, Separation

  11. Chiral separation of helical dyes by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Reyes Gutierrez, Paul Eduardo; Jirásek, Michael; Severa, Lukáš; Novotná, P.; Teplý, Filip; Kašička, Václav

    Geneva: -, 2015. s. 275. [HPLC 2015. International Symposium on High Performance Liquid Phase Separations and Related Techniques /42./. 21.06.2015-25.06.2015, Geneva] R&D Projects: GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : capillary electrophoresis * chiral separation * helicene * sulfated cyclodextrin * cationic dye Subject RIV: CB - Analytical Chemistry, Separation

  12. Nonlinear Model for Capillary-Tissue Oxygen Transport and Metabolism

    OpenAIRE

    Li, Zheng; Yipintsoi, Tada; BASSINGTHWAIGHTE, JAMES B.

    1997-01-01

    Oxygen consumption in small tissue regions cannot be measured directly, but assessment of oxygen transport and metabolism at the regional level is possible with imaging techniques using tracer 15O-oxygen for positron emission tomography. On the premise that mathematical modeling of tracer kinetics is the key to the interpretation of regional concentration-time curves, an axially-distributed capillary-tissue model was developed that accounts for oxygen convection in red blood cells and plasma,...

  13. MEASUREMENTS OF THE BLOOD CAPILLARY PRESSURE AND ARTERIAL ELASTICITY

    Institute of Scientific and Technical Information of China (English)

    HuangMengcai; GuZhong; HangWenjing; ZhongQuan; TangFuyong

    1990-01-01

    Describe some new fully automatic instruments for the measurements of the blood capillary pressure (Pcap) and arterial elastic properties in human fingers using a photoelectric plethysmographic technique, With these instruments, the value of Pcap was in good agreement with those reported by other investigators, the arterial elastic properties in human fingers have been successfully measured. The measurements of Pcap and arterial elasticity are now required in clinics because they provide useful and important information for evaluating vascular haemodynamics.

  14. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  15. Microfluidic PMMA interfaces for rectangular glass capillaries

    International Nuclear Information System (INIS)

    We present the design and fabrication of a polymeric capillary fluidic interface fabricated by micro-milling. The design enables the use of glass capillaries with any kind of cross-section in complex microfluidic setups. We demonstrate two different designs of the interface; a double-inlet interface for hydrodynamic focusing and a capillary interface with integrated pneumatic valves. Both capillary interfaces are presented together with examples of practical applications. This communication shows the design optimization and presents details of the fabrication process. The capillary interface opens up for the use of complex microfluidic systems in single-use glass capillaries. They also enable simple fabrication of glass/polymer hybrid devices that can be beneficial in many research fields where a pure polymer chip negatively affects the device's performance, e.g. acoustofluidics. (technical note)

  16. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  17. Serum proteins analysis by capillary electrophoresis

    OpenAIRE

    Uji, Yoshinori; Okabe, Hiroaki

    2001-01-01

    The purpose of this study was to evaluate the efficacy of multi-capillary electrophoresis instrument in clinical laboratory. An automated clinical capillary electrophoresis system was evaluated for performing serum proteins electrophoresis and immuno-fixation electrophoresis by subtraction. In this study the performance of capillary electrophoresis was compared with the cellulose acetate membrane electrophoresis and agarose gel immunofixation electrophoresis for serum proteins. The results of...

  18. Cytokine Analysis by Immunoaffinity Capillary Electrophoresis

    OpenAIRE

    Mendonca, Mark; Kalish, Heather

    2013-01-01

    Immunoaffinity capillary electrophoresis (ICE) is a powerful tool used to detect and quantify target proteins of interest in complex biological fluids. The target analyte is captured and bound to antibodies immobilized onto the wall of a capillary, labeled in situ with a fluorescent dye, eluted and detected online using laser-induced fluorescence following electrophoretic separation. Here, we illustrate how to construct an immunoaffinity capillary and utilize it to run ICE in order to capture...

  19. LCD array and IS900 efficiency in relation to traditional diagnostic techniques for diagnosis of Mycobacterium avium subspecies paratuberculosis in cattle in Egypt.

    Science.gov (United States)

    ElSayed, Mohamed Sabry Abd ElRaheam

    2014-06-01

    This study aimed to compare traditional tests (Johnin test, fecal staining and fecal culture) with advanced laboratory tests (ELISA, LCD array and IS900 PCR) for detection of Johne's disease. A total of 365 Holstein-Friesian dairy cattle (40 express profuse diarrhea unresponsive to treatment and 325 contacting them) tested with Johnin test, blood collected for ELISA and fecal samples for fecal staining as well as fecal culture, application of LCD array and PCR using IS900 on DNA extracted from Mycobacterium paratuberculosis bacilli (from feces and culture). Johnin test was 40/40 (100%) and 25/325 (7.69%), fecal staining was 13 (37.1%) and 2 (50%), ELISA was 35/40 (87.5%) and 4/25 (16%) for clinical cattle and apparently healthy contacting them respectively. Isolation was 12/13 (92.3%) of the (Johnin test +ve, ELISA +ve and Acid Fast Bacilli +ve) from the clinically positive cattle and 1/2 (50%) of the (Johnin test +ve, ELISA +ve and Acid Fast Bacilli +ve) from apparently healthy contacting them while LCD array and IS900 gave 100% confirming the isolation results. In conclusion, LCD array depending on 16S RNA and DNA hybridization with specific probes for detection of M. paratuberculosis are fast, sensitive and labor-saving when combined with IS900. PMID:26786331

  20. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰

    2010-01-01

    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  1. Evaluation and management of Periocular Capillary Hemangioma: A review

    International Nuclear Information System (INIS)

    To review the salient features of periocular capillary hemangioma, provide the ophthalmologist with clinical, diagnostic and histological features characteristic of the tumor and discuss various methods of management. Methods were literature review of periocular capillary hemangioma, diagnostic evaluation with emphasis on treatment through the presentation of illustrative clinical cases. Capillary hemangioma is the most common benign vascular tumor found on the head and neck area including eyelids and orbit. The lesion typically manifests within the first few weeks of life, grows rapidly in the first year during the proliferative phase, then invariably and slowly regresses over the next 4 to 5 years during the involutional phase. The lesion may resolve without leaving any significant cosmetic sequelae in vast majority of patients, however, the functional defects in the form of amblyopia, squint, facial disfigurement and rarely optic atrophy may persist long after complete resolution of the tumor. The diagnosis of the capillary hemangioma requires a combination of clinical and imaging studies such as ultrasonography, computerized tomography, magnetic resonance imaging and angiography in selected cases. With the advent of less invasive diagnostic techniques, the need for biopsy in capillary hemangioma has decreased. Nevertheless, it should be differentiated from other periocular tumors such as rhabdomyosarcoma, lymphangioma, chloroma, neuroblastoma, orbital cyst, and orbital cellulites. Treatment is indicated to prevent amblyopia or cosmetic disfigurement. If indicated, intra-lesional corticosteroids may be used to enhance resolution of the tumor. Other forms of treatment tried with variable success include systematic and topical corticosteroids, radiation, surgical excision and intravenous embolization of the tumor. Indecent years, laser ablation of the tumor has been found effective in some cases. Interferon-u has been utilized effectively in cases of capillary

  2. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7

    2012-01-01

    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  3. Microbeam-coupled capillary electrophoresis

    International Nuclear Information System (INIS)

    Within the first few microseconds following a charged particle traversal of a cell, numerous oxygen and nitrogen radicals are formed along the track. Presented here is a method, using capillary electrophoresis, for simultaneous measurement, within an individual cell, of specific reactive oxygen species, such as the superoxide radical (O2-*) as well as the native and oxidised forms of glutathione, an ubiquitous anti-oxidant that assists the cell in coping with these species. Preliminary data are presented as well as plans for integrating this system into the charged particle microbeam at Columbia University. (authors)

  4. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D

    1992-01-01

    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  5. Exotic containers for capillary surfaces

    Science.gov (United States)

    Concus, Paul; Finn, Robert

    1991-01-01

    This paper discusses 'exotic' rotationally symmetric containers that admit an entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier work to a larger class of parameters and clarifies and simplifies the governing differential equations, while expressing them in a parametric form appropriate for numerical integration. A unified presentation suitable for both zero and nonzero gravity is given. Solutions for the container shapes are depicted graphically along with members of the free-surface continuum, and comments are given concerning possible physical experiments.

  6. Vectorial detection of sub-microscale capillary curvature by laser beam profile

    Science.gov (United States)

    Verma, Gopal; Singh, Kamal P.

    2015-10-01

    We demonstrate a simple and non-invasive optical technique to detect direction and magnitude of long-range, sub-microscale capillary curvature of fluid interfaces in various situations. By analyzing magnitude and direction of the distorted spatial profile of the laser beam, following its weak Fresnel's reflection from the air-water interface, ultra-low curvature of 0.1 μm-1 caused by dipped slides, glass tubes, and microscopic twisted silk fibers was measured up to six capillary lengths away from the object. The flexibility of this technique allows us to measure curvature of remotely placed fluid-fluid interfaces and interaction between capillary curves of multiple objects. The high sensitivity of our technique is demonstrated in measuring magnetic susceptibility of water and the full spatial profile of deformation under weak magnetic field. This technique might find applications in precision measurements in optofluidics and interface physics.

  7. Nanohole Array-Directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis.

    Science.gov (United States)

    Kumar, Shailabh; Wolken, Gregory G; Wittenberg, Nathan J; Arriaga, Edgar A; Oh, Sang-Hyun

    2015-12-15

    We present periodic nanohole arrays fabricated in free-standing metal-coated nitride films as a platform for trapping and analyzing single organelles. When a microliter-scale droplet containing mitochondria is dispensed above the nanohole array, the combination of evaporation and capillary flow directs individual mitochondria to the nanoholes. Mammalian mitochondria arrays were rapidly formed on chip using this technique without any surface modification steps, microfluidic interconnects, or external power sources. The trapped mitochondria were depolarized on chip using an ionophore with results showing that the organelle viability and behavior were preserved during the on-chip assembly process. Fluorescence signal related to mitochondrial membrane potential was obtained from single mitochondria trapped in individual nanoholes revealing statistical differences between the behavior of polarized vs depolarized mammalian mitochondria. This technique provides a fast and stable route for droplet-based directed localization of organelles-on-a-chip with minimal limitations and complexity, as well as promotes integration with other optical or electrochemical detection techniques. PMID:26593329

  8. Analysis of hydrosoluble organic chelating agents. Potentialities of capillary electrophoresis and ionic chromatography

    International Nuclear Information System (INIS)

    Capillary electrophoresis and ion exchange chromatography are good techniques for the determination of organic chelating agents as mono or poly-carboxylates. Ion exchange chromatography allows to obtain very high sensitivities (a few μg/L). Capillary electrophoresis generates practically none analytical waste; this technique is then very interesting for nuclear industry. This microanalysis technique has been here carried out for the determination of organic chelating agents in leaching water of an old waste for which an important release rate of radio-toxic metals had been found. Thus, formate and especially acetate ions have been correlated with this unusual behaviour

  9. Synthesis, structural and optical properties of pure and rare-earth ion doped TiO{sub 2} nanowire arrays by a facile hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Raghavan, Chinnambedu Murugesan; Grandhe, Bhaskar kumar; Kim, Sang Su [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan 617-736 (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-11-29

    Single crystalline pure and rare-earth metal ions (Eu{sup 3+} and Ce{sup 3+}) doped TiO{sub 2} nanowire arrays were prepared on conductive fluorine doped indium tin oxide substrates by a facile hydrothermal method. Initially the conditions and parameters were optimized to prepare the high quality TiO{sub 2} nanowire arrays in the absence of organic additives. The average diameter and length of the TiO{sub 2} nanowire were found to be ∼ 30–50 nm and ∼ 0.5–1.5 μm, respectively. The formations of rutile phase structure in all the samples were confirmed by x-ray diffractometric analysis while the transmission electron microscopy confirms the single crystallinity and the maximum orientation of growth direction along [001] for the as-grown TiO{sub 2} nanowire. The optical properties of all the samples were analyzed using photoluminescence spectroscopy. The photocatalytic properties of the pure and doped TiO{sub 2} were investigated for the decomposition of organic toludine blue-O dye under ultraviolet irradiation. The result demonstrates that the Ce{sup 3+}: TiO{sub 2} decomposed almost 90% of the organic dye within 80 min. - Highlights: • Rare-earth (RE) doped TiO{sub 2} nanowire arrays were prepared by hydrothermal method • RE doping enhanced the growth rate of TiO{sub 2} nanowire arrays • The catalysts used to check their photocatalytic activity by toludine blue-O dye • RE doped TiO2 act as unprecedented photocatalyst for organic dye decomposition.

  10. Development of ultrasonic testing technique for anchor bolts. Part 2. Development of nondestructive examination method for fatigue cracks by ultrasonic phased array technology

    International Nuclear Information System (INIS)

    Cracks may initiate in anchor bolts in nuclear power plants due to a severe earthquake. Moreover, number of fatigue cracks have been found in the anchor bolts in aged nuclear and thermal power plants. Ultrasonic phased array technology is effective to detect such cracks, and a method is proposed to determine crack depth by using refection echo at the vicinity of crack according to simulation results of wave propagation within bolts. However, detectability of crack and applicability of this method for crack sizing are not known though they are essential to evaluation of crack in bolts by ultrasonic phased array technology. In this report, we prepared M24 and M30 bolt specimens with various slits and fatigue cracks introduced. Three linear array probes with respective frequency of 2, 5 and 10 MHz are used to measure these specimens. The investigation of fracture surface is also performed after finishing all measurements. Measurement results show the following: (1) the frequency of 10 MHz is more appropriate than frequencies of 5 and 2 MHz for detecting crack in bolts; (2) it is easy to detect 1-mm-deep cracks; and (3) it is possible to determine crack depth for M30 bolts with the deviation of 2 mm from actual depth by proposed method, but difficult for M24 bolts. (author)

  11. An enhanced capillary electrophoresis method for characterizing natural organic matter.

    Science.gov (United States)

    Cottrell, Barbara A; Cheng, Wei Ran; Lam, Buuan; Cooper, William J; Simpson, Andre J

    2013-02-21

    Natural organic matter (NOM) is ubiquitous and is one of the most complex naturally occurring mixtures. NOM plays an essential role in the global carbon cycle; atmospheric and natural water photochemistry; and the long-range transport of trace compounds and contaminants. There is a dearth of separation techniques capable of resolving this highly complex mixture. To our knowledge, this is the first reported use of ultrahigh resolution counterbalance capillary electrophoresis to resolve natural organic matter. The new separation strategy uses a low pH, high concentration phosphate buffer to reduce the capillary electroosmotic flow (EOF). Changing the polarity of the electrodes reverses the EOF to counterbalance the electrophoretic mobility. Sample stacking further improves the counterbalance separation. The combination of these conditions results in an electropherogram comprised up to three hundred peaks superimposed on the characteristic "humic hump" of NOM. Fraction collection, followed by three-dimensional emission excitation spectroscopy (EEMs) and UV spectroscopy generated a distinct profile of fluorescent and UV absorbing components. This enhanced counterbalance capillary electrophoresis method is a potentially powerful technique for the characterization and separation of NOM and complex environmental mixtures in general. PMID:23289095

  12. Self-Assembly of Microscale Parts through Magnetic and Capillary Interactions

    Directory of Open Access Journals (Sweden)

    Madan Dubey

    2011-03-01

    Full Text Available Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

  13. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    Science.gov (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  14. Diagnostics of a high current capillary discharge

    International Nuclear Information System (INIS)

    We have demonstrated that thin (10 to 25 μm diameter) capillaries can be fabricated in suitably configured insulators for use in pulse power machines. Large currents can be used to heat these capillaries which produce photons with an energies greater than 1 keV

  15. Pulmonary capillary haemangiomatosis in a premature infant

    International Nuclear Information System (INIS)

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  16. Pulmonary capillary haemangiomatosis in a premature infant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cicero J.T.A.; Massie, John; Mandelstam, Simone A. [University of Melbourne, Royal Children' s Hospital, Parkville, VIC (Australia)

    2005-06-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  17. Development of capillary zone electrophoresis-mass spectrometry

    International Nuclear Information System (INIS)

    Recently we described the first on-line combination of CZE with mass spectrometry, which also represented the first reported direct combination of any electrophoretic separation technique with mass spectrometry. This development was based upon the recognition that both ends of the CZE capillary did not have to be immersed in buffer reservoirs, as conventionally practiced. This provided a basis for new detection methods in which the electro-osmotically induced flow could be analyzed at the column terminus. The strong electro-osmotic flow in CZE, which results from the strong zeta potential of most amenable capillary surfaces, is sufficiently large under many conditions to result in elution of ions having both positive and negative electrophoretic mobilities in a single separation. Nonaqueous buffers also allow compounds to be separated which are somewhat less polar than feasible in aqueous systems, effectively providing a range of applications which should overlap with those of SFC

  18. Capillary electrophoresis in pharmaceutical analysis: a survey on recent applications.

    Science.gov (United States)

    Suntornsuk, Leena

    2007-10-01

    Capillary electrophoresis (CE) has a significant role in drug discovery and manufacturing processes and has a potential to grow further, due to new developments that can provide highly sensitive and high throughput analysis. This review illustrates recent applications of CE in pharmaceutical analysis (2005-present). The history, principles, instruments, and conventional modes of CE are briefly described. Applications for drug analysis by various techniques of CE are presented in six tables: capillary zone electrophoresis (CZE) (Table I), micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) (Table II), non-aqueous CE (NACE) (Table III), chiral CE (Table IV), CE-mass spectrometry (MS) microchip CE (Table V), and multiplexed CE (MCE) (Table VI). PMID:17988444

  19. The Murchison Widefield Array

    NARCIS (Netherlands)

    Mitchell, Daniel A.; Greenhill, Lincoln J.; Ord, Stephen M.; Bernardi, Gianni

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imagin

  20. Wavenumber response of Shanghai Seismic Array

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Seismic array can be traced back to 1950s when it mainly aimed at detecting and distinguishing the signals of nuclear explosion and seismic signals. The research on seismic array includes seismic array techniques and applications of array in geophysics. Array techniques involve array design and data processing methods (Anne, 1990). Nowadays, the continuous development of seismic array¢s theory could relate to many scientific issues in geophysical field (Tormod, 1989; Mykkeltveit, Bungum, 1984). Seismic array is mainly applied to detect weak events. The response characteristic of array is an important indication of array¢s detection ability. Therefore, when we study an array or construct an array, one of the neces-sary works is to calculate the response characteristics of the array (Harjes, 1990). The aperture and layout of array are two dominating geometrical features. The typical aperture of interna-tional array is generally from several to tens kilometers. For instance, arrays with aperture of dozens kilometers aperture are KSA, WRA, YKA, etc, while arrays with several kilometer aperture are ARC, FIN, GEE, etc. Moreo-ver, in the view of array¢s layout, NOR, GER, etc have circle layout, while WRA, YKA, etc have decussating layout. This paper mainly discusses the relation between deployment of array and wavenumber response. With the example of constructing Shanghai Seismic Array, this paper provides one practical solution to search the proper array deployment. In this paper, the simple delay beam technique is adopted to calculate the response characteris-tics of array. Certainly, the different processing methods have different result, but the result from the simple delay beam processing could be enough to reflect the feature of an array.

  1. High-performance liquid chromatographic, capillary electrophoretic and capillary electrophoretic-electrospray ionisation mass spectrometric analysis of selected alkaloid groups.

    Science.gov (United States)

    Stöckigt, Joachim; Sheludk, Yuri; Unger, Matthias; Gerasimenko, Irina; Warzecha, Heribert; Stöckigt, Detlef

    2002-08-16

    Systems for efficient separation of selected alkaloid groups by high performance liquid chromatography (HPLC), capillary electrophoresis (CE) and capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS) are described. The optimized HPLC system was applied for the separation of 23 standard indole alkaloids as well as for qualitative and quantitative analyses of crude alkaloid extracts of Rauvolfia serpentina X Rhazya stricta hybrid cell cultures. The developed conditions for CE analysis proved to be efficient for separation of mixtures of standard indole and beta-carboline alkaloids. The described buffer system is also applicable in the combination of CE with electrospray ionisation mass spectrometry. This analytical technique allowed the separation and identification of components of standard indole alkaloid mixture as well as crude extracts of R. serpentina roots, R. serpentina cell suspension cultures and cortex of Aspidosperma quebracho-blanco. The influence of buffer composition and analyte structures on separation is discussed. PMID:12219932

  2. Blood Perfusion in Microfluidic Models of Pulmonary Capillary Networks: Role of Geometry and Hematocrit

    Science.gov (United States)

    Stauber, Hagit; Waisman, Dan; Sznitman, Josue; Technion-IIT Team; Department of Neonatology Carmel Medical Center; Faculty of Medicine-Technion IIT Collaboration

    2015-11-01

    Microfluidic platforms are increasingly used to study blood microflows at true physiological scale due to their ability to overcome manufacturing obstacle of complex anatomical morphologies, such as the organ-specific architectures of the microcirculation. In the present work, we utilize microfluidic platforms to devise in vitro models of the underlying pulmonary capillary networks (PCN), where capillary lengths and diameters are similar to the size of RBCs (~ 5-10 μm). To better understand flow characteristics and dispersion of red blood cells (RBCs) in PCNs, we have designed microfluidic models of alveolar capillary beds inspired by the seminal ``sheet flow'' model of Fung and Sobin (1969). Our microfluidic PCNs feature confined arrays of staggered pillars with diameters of ~ 5,7 and 10 μm, mimicking the dense structure of pulmonary capillary meshes. The devices are perfused with suspensions of RBCs at varying hematocrit levels under different flow rates. Whole-field velocity patterns using micro-PIV and single-cell tracking using PTV are obtained with fluorescently-labelled RBCs and discussed. Our experiments deliver a real-scale quantitative description of RBC perfusion characteristics across the pulmonary capillary microcirculation.

  3. Array tomography: imaging stained arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  4. Capillary Discharge XUV Radiation Source

    Directory of Open Access Journals (Sweden)

    M. Nevrkla

    2009-01-01

    Full Text Available A device producing Z-pinching plasma as a source of XUV radiation is described. Here a ceramic capacitor bank pulse-charged up to 100 kV is discharged through a pre-ionized gas-filled ceramic tube 3.2 mm in diameter and 21 cm in length. The discharge current has amplitude of 20 kA and a rise-time of 65 ns. The apparatus will serve as experimental device for studying of capillary discharge plasma, for testing X-ray optics elements and for investigating the interaction of water-window radiation with biological samples. After optimization it will be able to produce 46.9 nm laser radiation with collision pumped Ne-like argon ions active medium. 

  5. Geometry of the capillary net in human hearts.

    Science.gov (United States)

    Rakusan, K; Cicutti, N; Spatenka, J; Samánek, M

    1997-01-01

    The geometry of the coronary capillary bed in human hearts was studied using samples obtained during cardiac surgery of children operated for tetralogy of Fallot and samples from fresh normal hearts used for valve harvesting. The results revealed a similar coronary capillary density and heterogeneity of capillary spacing in samples from both groups. A double-staining method was used to distinguish between capillary segments close to the feeding arteriole (proximal capillaries) and segments distant from the arteriole (distal capillaries). In both groups of hearts, capillary segment length was consistently shorter on the venular than the arteriolar portion of the capillary. Similarly, capillary domain areas were also smaller and the resulting capillary supply unit was smaller along venular portions compared to arteriolar regions of the capillary bed. This distinctive geometry would provide advantageous geometric conditions for tissue oxygen supply. PMID:9176723

  6. Radiofrequency current source (RFCS) drive and decoupling technique for parallel transmit arrays using a high-power metal oxide semiconductor field-effect transistor (MOSFET).

    Science.gov (United States)

    Lee, Wonje; Boskamp, Eddy; Grist, Thomas; Kurpad, Krishna

    2009-07-01

    A radiofrequency current source (RFCS) design using a high-power metal oxide semiconductor field effect transistor (MOSFET) that enables independent current control for parallel transmit applications is presented. The design of an RFCS integrated with a series tuned transmitting loop and its associated control circuitry is described. The current source is operated in a gated class AB push-pull configuration for linear operation at high efficiency. The pulsed RF current amplitude driven into the low impedance transmitting loop was found to be relatively insensitive to the various loaded loop impedances ranging from 0.4 to 10.3 ohms, confirming current mode operation. The suppression of current induced by a neighboring loop was quantified as a function of center-to-center loop distance, and was measured to be 17 dB for nonoverlapping, adjacent loops. Deterministic manipulation of the B(1) field pattern was demonstrated by the independent control of RF phase and amplitude in a head-sized two-channel volume transmit array. It was found that a high-voltage rated RF power MOSFET with a minimum load resistance, exhibits current source behavior, which aids in transmit array design. PMID:19353658

  7. Joule heating effects in capillary electrophoresis - designing electrophoretic microchips

    Directory of Open Access Journals (Sweden)

    D. Witkowski

    2009-12-01

    Full Text Available Purpose: Computer simulations are widely used for designing, which contributes to a cheaper equipment developing process. In the last years computer simulations have begun to be also applied in different instances of microfluidics, especially in microchip electrophoresis (where an electrophoresis process takes place in the microcapillaries manufactured on the surface of the small plate which is interesting for us. However, there are no many commercial programs enabling simulations of microfluidics. The programs existing in the market are recently developed as microscale brings new possibilities but also unpredictable effects and challenging problems. The aim of this paper is to develop a mature technique helpful in designing electrophoretic microchips [1-4].Design/methodology/approach: Temperature distributions occurring during capillary electrophoresis because of Joule heating effects will be calculated with use of the CoventorWare™ software.Findings: Computer simulations with the model of capillary, with the same geometry as the real one, are presented. Numerical simulation results are compared with the real data from the capillary electrophoresis process.Practical implications: This is the first step to create a reliable tool for designing microfluidic devices.Originality/value: This comparison shows an ability of the CoventorWare™ software to design electrophoretic microchips.

  8. Chiral Separation by Capillary Zone Electrophoresis Used Cyclodextrins and Their Derivatives as Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    HOU; JingGuo

    2001-01-01

    Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3]  ……

  9. Electromigration techniques theory and practice

    CERN Document Server

    Dziubakiewicz, Ewelina; Szumski, Michal

    2013-01-01

    The book provides the broad knowledge on electromigration techniques including: theory of CE, description of instrumentation, theory and practice in micellar electrokinetic chromatography, isotachophoresis, capillary isoelectric focusing, capillary and planar electrochromatography (including description of instrumentation and packed and monolithic column preparation), 2D-gel electrophoresis (including sample preparation) and lab-on-a-chip systems. The book also provides the most recent examples of applications including food, environmental, pharmaceutical analysis as well as proteomics.

  10. 1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

    International Nuclear Information System (INIS)

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ∼0.6 eVspectral bandpass, 10 (micro)m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser(λ = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  11. 1-to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry, Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-07-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a {approx}0.6 eVspectral bandpass, 10 {micro}m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser({lambda} = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  12. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  13. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial.

    Science.gov (United States)

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N

    2016-09-01

    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. PMID:27543015

  14. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity

    International Nuclear Information System (INIS)

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min−1 using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing. (paper)

  15. Ultra-high aspect ratio Si nanowires fabricated with plasma etching: plasma processing, mechanical stability analysis against adhesion and capillary forces and oleophobicity.

    Science.gov (United States)

    Zeniou, A; Ellinas, K; Olziersky, A; Gogolides, E

    2014-01-24

    Room-temperature deep Si etching using time-multiplexed deep reactive ion etching (DRIE) processes is investigated to fabricate ultra-high aspect ratio Si nanowires (SiNWs) perpendicular to the silicon substrate. Nanopatterning is achieved using either top-down techniques (e.g. electron beam lithography) or colloidal polystyrene (PS) sphere self-assembly. The latter is a faster and more economical method if imperfections in diameter and position can be tolerated. We demonstrate wire radii from below 100 nm to several micrometers, and aspect ratios (ARs) above 100:1 with etching rates above 1 μm min(-1) using classical mass flow controllers with pulsing rise times of seconds. The mechanical stability of these nanowires is studied theoretically and experimentally against adhesion and capillary forces. It is shown that above ARs of the order of 50:1 for spacing 1 μm, SiNWs tend to bend due to adhesion forces between them. Such large adhesion forces are due to the high surface energy of silicon. Wetting the SiNWs with water and drying also gives rise to capillary forces. We find that capillary forces may be less important for SiNW collapse/bending compared to adhesion forces of dry SiNWs, contrary to what is observed for polymeric nanowires/nanopillars which have a much lower surface energy compared to silicon. Finally we show that SiNW arrays have oleophobic and superoleophobic properties, i.e. they exhibit excellent anti-wetting properties for a wide range of liquids and oils due to the re-entrant profile produced by the DRIE process and the well-designed spacing. PMID:24346308

  16. Capillary electrochromatography using fibers as stationary phases.

    Science.gov (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T

    2001-10-01

    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method. PMID:11669512

  17. Uptake of water droplets by nonwetting capillaries

    CERN Document Server

    Willmott, Geoff R; Hendy, Shaun C

    2010-01-01

    We present direct experimental evidence that water droplets can spontaneously penetrate non-wetting capillaries, driven by the action of Laplace pressure due to high droplet curvature. Using high-speed optical imaging, microcapillaries of radius 50 to 150 micron, and water microdroplets of average radius between 100 and 1900 micron, we demonstrate that there is a critical droplet radius below which water droplets can be taken up by hydrophobised glass and polytetrafluoroethylene (PTFE) capillaries. The rate of capillary uptake is shown to depend strongly on droplet size, with smaller droplets being absorbed more quickly. Droplet size is also shown to influence meniscus motion in a pre-filled non-wetting capillary, and quantitative measurements of this effect result in a derived water-PTFE static contact angle between 96 degrees and 114 degrees. Our measurements confirm recent theoretical predictions and simulations for metal nanodroplets penetrating carbon nanotubes (CNTs). The results are relevant to a wide ...

  18. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms.

    Science.gov (United States)

    Farina-Gomez, Noemi; Puerta, Angel; Gonzalez, Monica; Diez-Masa, Jose Carlos; de Frutos, Mercedes

    2016-04-22

    Glycoproteins expressed in the human body can experience modifications as result of pathological situations. Detection of those changes can be useful as disease biomarkers. As a result of these modifications, size and/or electrical charge of the glycoprotein can be altered. Migration in capillary zone electrophoresis (CZE) is governed by the size to charge ratio of the analyte and therefore this separation technique can be used to monitor those modifications. At its turn, the alteration of the electrophoretical pattern of a given glycoprotein could be used as disease biomarker. To this aim, high repeatability for separation of a large number of peaks for a given glycoprotein is desirable. For prostate cancer, new markers are needed to decrease the high number of false positive results provided by the biomarkers currently used in clinics. In this sense, CZE methods for analysis of the several prostate specific antigen (PSA) peaks which this glycoprotein exhibit, called isoforms and containing one or more glycoforms, could be useful to study the PSA pattern as prostate cancer marker. In this study two complementary strategies to achieve both lot-to-lot capillary repeatability and high resolution of a large number of PSA isoforms are developed. Better performance and precision have been obtained for capillaries conditioned with HCl than for those conditioned with NaOH. Optimization of the background electrolyte (BGE) pH value to 8.0 and inclusion of 3M urea on its composition were the two factors of highest impact for enhancing resolution of the highest number of PSA peaks. Under the optimized conditions for capillary conditioning and BGE pH and composition, long-term resolution of 10 isoforms of PSA was achieved. Inter-day (n=3) %RSD was 0.55 for the ratio tm/tEOF, 1.15 for μeff, and 5.02 for % Acorr of the PSA peaks. PMID:27018191

  19. Capillary Electrophoresis coupled with Automated Fraction Collection

    OpenAIRE

    Huge, Bonnie Jaskowski; Flaherty, Ryan; Dada, Oluwatosin O.; Dovichi, Norman J.

    2014-01-01

    A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1 mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standa...

  20. The capillary electrophoresis of the influenza viruses

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Kubesová, Anna; Kubíček, O.; Kubíčková, Z.; Rosenbergová, K.; Šlais, Karel

    Tallinn: Tallinn University of Technology, 2009 - (Borissova, M.; Vaher, M.). s. 93 ISBN 978-9985-59-930-3. [Nordic Separation Science Society (NoSSS) International Conference /5./. 26.08.2009-29.08.2009, Tallinn] R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary isoelectric focusing * capillary electrophoresis * influenza swine and equine viruses Subject RIV: CB - Analytical Chemistry, Separation

  1. Selectivity and detection in capillary electrophoresis

    OpenAIRE

    Khaled, Maha Yehia

    1994-01-01

    This work is a contribution to the minimization of some of the selectivity and detection limitations in capillary electrophoresis. A more practical design of an electrochemical detector is introduced with simultaneous on-line UV detection (1), for the selective detection of a number of pungent and neurological compounds, the piperines and the capsacinoids. Commercially available microelectrodes together with large 25 μm id fused silica capillary columns are used for the fir...

  2. Capillary electrokinetic separations with optical detection. Technical progress report, February 1, 1993--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M.J.

    1998-02-01

    The seminal work of Jorgenson in 1981 ushered in the modern era of capillary electrophoresis (CE). Since that time, research activities involving capillary electrokinetic methods of separation have grown exponentially. Numerous conferences, symposia, monographs, and dedicated journals attest to the maturing of these techniques. While many of the obvious approaches have been explored, and instrumentation is reasonably well-developed, the full potential of CE has clearly not yet been reached. Moreover, CE techniques are not universally accepted as desirable alternatives to traditional chromatographic and electrophoretic methods of separation. Thus, it is likely that research into various aspects of capillary electrokinetic separations will continue at a torrid pace for at least the remainder of this decade.

  3. Analog to Digital Conversion Techniques in Array Image Sensors%阵列型图像传感器模数转换技术

    Institute of Scientific and Technical Information of China (English)

    陈楠; 姚立斌

    2014-01-01

    阵列型图像传感器的信号读出方式对整个传感器的性能有较大的影响。在新型的数字化图像传感器中,光电信号的多路传输在数字域实现,实现了信号的无损传输,提高了图像传感器的通道隔离度及抗干扰能力。模拟数字转换器(ADC)是数字化图像传感器的重要组成部分,其性能对整个成像系统的性能有重大影响。以阵列型图像传感器对ADC的要求入手,分析了ADC各性能参数对阵列型图像传感器性能的影响,介绍了数字化图像传感器的各类结构及适用于阵列型图像传感器的不同ADC及其实现方式。CMOS工艺技术的发展使得像素级ADC技术进入实用化阶段,像素级ADC技术可以利用数字积分技术有效提高图像传感器的动态范围,使得光电信号积分及多路传输都在数字域进行,极大地提高了图像传感器的性能。%The photo signal readout plays an important role in array image sensors. The digital image sensor enables photo signal multiplexing and transmission losslessly in digital domain, increasing the channel isolation and making the sensor immune to interference. Analog to digital converter is a major component in digital image sensors and it is critical to the performance of the image sensor. Based on the requirements of the array image sensor to ADCs, the influences of the ADC to the image sensor performance are analyzed. The digital image sensor architectures and different types of ADC implementation are introduced. The development of the CMOS technologies makes the pixel-level ADC applicable, extending the dynamic range of the image sensor and enabling the signal integration in digital domain which improves the image sensor performance greatly.

  4. Kinetic Derivation of the Hydrodynamic Equations for Capillary Fluids

    CERN Document Server

    De Martino, S; Tzenov, Stephan I

    2004-01-01

    Based on the generalized kinetic equation for the one-particle distribution function with a small source, the transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic feature of this new technique to obtain the hydrodynamic limit is that the latter has been partially incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from the characteristic function for the local moments of the distribution function. The Fick's law appears as a consequence of the transformation law for the hydrodynamic quantities under time inversion.

  5. Hub Height Ocean Winds over the North Sea Observed by the NORSEWInD Lidar Array: Measuring Techniques, Quality Control and Data Management

    Directory of Open Access Journals (Sweden)

    Matthew Stickland

    2013-09-01

    Full Text Available In the North Sea, an array of wind profiling wind lidars were deployed mainly on offshore platforms. The purpose was to observe free stream winds at hub height. Eight lidars were validated prior to offshore deployment with observations from cup anemometers at 60, 80, 100 and 116 m on an onshore met mast situated in flat terrain. The so-called “NORSEWInD standard” for comparing lidar and mast wind data includes the criteria that the slope of the linear regression should lie within 0.98 and 1.01 and the linear correlation coefficient higher than 0.98 for the wind speed range 4–16 m∙s−1. Five lidars performed excellently, two slightly failed the first criterion and one failed both. The lidars were operated offshore from six months to more than two years and observed in total 107 months of 10-min mean wind profile observations. Four lidars were re-evaluated post deployment with excellent results. The flow distortion around platforms was examined using wind tunnel experiments and computational fluid dynamics and it was found that at 100 m height wind observations by the lidars were not significantly influenced by flow distortion. Observations of the vertical wind profile shear exponent at hub height are presented.

  6. The Murchison Widefield Array

    CERN Document Server

    Mitchell, Daniel A; Ord, Stephen M; Bernardi, Gianni; Wayth, Randall B; Edgar, Richard G; Clark, Michael A; Dal, Kevin; Pfister, Hanspeter; Gleadow, Stewart J; Arcus, W; Briggs, F H; Benkevitch, L; Bowman, J D; Bunton, J D; Burns, S; Cappallo, R J; Corey, B E; de Oliveira-Costa, A; Desouza, L; Doeleman, S S; Derome, M F; Emrich, D; Glossop, M; Goeke, R; Krishna, M R Gopala; Hazelton, B; Herne, D E; Hewitt, J N; Kamini, P A; Kaplan, D L; Kasper, J C; Kincaid, B B; Kocz, J; Kowald, E; Kratzenberg, E; Kumar, D; Lonsdale, C J; Lynch, M J; Madhavi, S; Matejek, M; McWhirter, S R; Morales, M F; Morgan, E; Oberoi, D; Pathikulangara, J; Prabu, T; Rogers, A; Salah, J E; Sault, R J; Shankar, N Udaya; Srivani, K S; Stevens, J; Tingay, S J; Vaccarella, A; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C

    2010-01-01

    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.

  7. The Cherenkov Telescope Array

    OpenAIRE

    Bigongiari, Ciro

    2016-01-01

    The Cherenkov Telescope Array (CTA) is planned to be the next generation ground based observatory for very high energy (VHE) gamma-ray astronomy. Gamma-rays provide a powerful insight into the non-thermal universe and hopefully a unique probe for new physics. Imaging Cherenkov telescopes have already discovered more than 170 VHE gamma-ray emitters providing plentiful of valuable data and clearly demonstrating the power of this technique. In spite of the impressive results there are indication...

  8. Improving the Detection Limit in a Capillary Raman System for In Situ Gas Analysis by Means of Fluorescence Reduction

    OpenAIRE

    Simone Rupp; Andreas Off; Hendrik Seitz-Moskaliuk; James, Timothy M.; Telle, Helmut H.

    2015-01-01

    Raman spectroscopy for low-pressure or trace gas analysis is rather challenging, in particular in process control applications requiring trace detection and real-time response; in general, enhancement techniques are required. One possible enhancement approach which enjoys increasing popularity makes use of an internally-reflective capillary as the gas cell. However, in the majority of cases, such capillary systems were often limited in their achievable sensitivity by a significant fluorescenc...

  9. Qualification according to PDI's techniques UT EPRI methodology Phased Array for the inspection of vessels of PWR reactor with advanced robotic equipment

    International Nuclear Information System (INIS)

    The techniques and procedures qualified in the program EPRI PDI are directly applicable in plants whose reference code is ASME XI - specifically the Appendix VIII-, mainly USA and countries in which it is established American PWR technology. While countries with reactors in operation technology ABB (Sweden) or type VVER (Finland and Eastern countries) requires a qualification of specific technical type ENIQ, PDI qualification is a valuable reference since it allows to deal with such qualifications with guarantees. (Author)

  10. Capillary fracture of soft gels.

    Science.gov (United States)

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent. PMID:24229192

  11. Hybrid Beamforming and Steering With Reconfigurable Arrays

    OpenAIRE

    Hooi, Fong Ming; Thomenius, Kai E.; Fisher, Rayette; Carson, Paul L.

    2010-01-01

    Reconfigurable arrays offer an advantage over traditional ultrasound arrays because of their flexibility in channel selection. To improve ultrasound beamforming and coverage through beam steering, we propose a hybrid beamforming technique to elongate the depth of focus of transmit beams and a method of element selection that improves steering capabilities that take advantage of array reconfigurability using annular rings. A local minimization technique to optimize the hybrid aperture is discu...

  12. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo

    2002-01-01

    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  13. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.;

    2010-01-01

    of nanoparticles, i.e. in CE mode, the protein samples adsorbed completely to the capillary walls and could not be recovered. In contrast, nanoparticle-based capillary electroseparation resolved green fluorescent protein from several of its impurities within I min. Furthermore, a mixture of native green...... fluorescent protein and two of its single-amino-acid-substituted variants was separated within 2.5 min with efficiencies of 400 000 plates/m. The nanoparticles prevent adsorption by introducing a large interacting surface and by obstructing the attachment of the protein to the capillary wall. A one......Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence...

  14. Capillary-Tube Model and Experiment of Multiphase Flow in Capillary Fringes

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 唐杰; 吕贤弼

    2002-01-01

    Contamination of soil and groundwater by organic substances is causing more and more problems worldwide. Analysis of the movement and distribution of nonaqueous phase liquids (NAPLs) in subsurface domain is critical for contaminant remediation. Two-dimensional experiments were conducted in a transparent plexiglass trough (105.0 cm×70.0 cm×1.5 cm) to simulate the release and redistribution of gasoline and kerosene in porous media. The results show that before the contaminant distribution reaches equilibrium, the movement of light NAPLs (LNAPLs) can be divided into four sub-stages. After the contaminant front reaches the upper boundary of the capillary fringe, contaminant movement along the upper boundary of the capillary fringe is the primary transport process. Most of the contaminants then move into the capillary fringe except for the residual part. One-dimensional and two-dimensional capillary tube models were developed to analyze the movement of LNAPLs in the capillary fringe.

  15. Urine Metabolite Profiling of Human Colorectal Cancer by Capillary Electrophoresis Mass Spectrometry Based on MRB

    Directory of Open Access Journals (Sweden)

    Jin-Lian Chen

    2012-01-01

    (P<0.05. Conclusion. The technique of capillary electrophoresis mass spectrometry based on MRB could reveal the significant metabolic alterations during progression of colorectal cancer, and the method is feasible and may be useful for the early diagnosis of colorectal cancer.

  16. Capillary electromigration separation of proteins and microorganisms dynamically modified by chromophoric nonionogenic surfactant

    Czech Academy of Sciences Publication Activity Database

    Horká, Marie; Růžička, F.; Holá, V.; Kahle, Vladislav; Moravcová, Dana; Šlais, Karel

    2009-01-01

    Roč. 81, č. 16 (2009), s. 6897-6904. ISSN 0003-2700 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electromigration techniques * yellow nonionogenic surfactant * proteins and microorganisms in the urine Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.214, year: 2009

  17. Development of simple platform for two-dimensional capillary liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Šesták, Jozef; Kahle, Vladislav

    Geneve, 2015. s. 317-317. ISBN N. [HPLC 2015. International Symposium on High Performance Liquid Phase Separations and Related Techniques /42./. 21.06.2015-25.06.2015, Geneva] R&D Projects: GA MV VG20112015021; GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : 2D-LC * micro-LC * capillary column * instrumentation Subject RIV: CB - Analytical Chemistry, Separation

  18. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci Multiple Locus Variable-Number Tandem Repeats Analysis

    Directory of Open Access Journals (Sweden)

    Ciervo Alessandra

    2006-04-01

    Full Text Available Abstract Background The genome of Bacillus anthracis, the etiological agent of anthrax, is highly monomorphic which makes differentiation between strains difficult. A Multiple Locus Variable-number tandem repeats (VNTR Analysis (MLVA assay based on 20 markers was previously described. It has considerable discrimination power, reproducibility, and low cost, especially since the markers proposed can be typed by agarose-gel electrophoresis. However in an emergency situation, faster genotyping and access to representative databases is necessary. Results Genotyping of B. anthracis reference strains and isolates from France and Italy was done using a 25 loci MLVA assay combining 21 previously described loci and 4 new ones. DNA was amplified in 4 multiplex PCR reactions and the length of the resulting 25 amplicons was estimated by automated capillary electrophoresis. The results were reproducible and the data were consistent with other gel based methods once differences in mobility patterns were taken into account. Some alleles previously unresolved by agarose gel electrophoresis could be resolved by capillary electrophoresis, thus further increasing the assay resolution. One particular locus, Bams30, is the result of a recombination between a 27 bp tandem repeat and a 9 bp tandem repeat. The analysis of the array illustrates the evolution process of tandem repeats. Conclusion In a crisis situation of suspected bioterrorism, standardization, speed and accuracy, together with the availability of reference typing data are important issues, as illustrated by the 2001 anthrax letters event. In this report we describe an upgrade of the previously published MLVA method for genotyping of B. anthracis and apply the method to the typing of French and Italian B. anthracis strain collections. The increased number of markers studied compared to reports using only 8 loci greatly improves the discrimination power of the technique. An Italian strain belonging to the

  19. 换热器管板角焊缝相控阵自动超声检测技术研究%Research on Phased Array Automatically Ultrasonic Testing Technique of Tube to Tube-sheet Welds in Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    郭伟灿; 钱盛杰; 凌张伟

    2015-01-01

    在换热器的制作过程中,换热管与管板常采用焊接形式,焊缝的质量是保证换热器长期正常运行的关键。常规的超声检测方法具有系统复杂、检测效率低等缺点。因此,提出了相控阵超声检测技术,并开发了相控阵超声检测系统,以实现对管板角焊缝的自动超声检测。系统由周向步进电机实现周向扫查,纵向扫查采用相控阵探头电子线扫查,从而实现超声 C 扫描检测。通过带有气孔、未熔合等典型缺陷对检测系统进行试验研究。结果表明,该技术可以有效地检测出换热器管板角焊缝中的典型缺陷。%In the process of produce heat exchangers,heat exchanger′s tube and tube sheet conjunction adopt the form of welding,the quality of welding is the key insurance for the long and normal operation of the heat exchangers.The conventional ultrasonic testing method has many disadvantages like complicated system and low efficiency of detection.Thus,it puts forward the phased array ultrasonic testing technique and develops the ultrasonic testing system to accomplish the automatically ultrasonic testing of the tube to tube-sheet welds.The ultrasonic C-scan was carried out by the ultrasonic testing system with its circumfer-ential scanning by a mechanical scanning device while the axial electronic linear scanning by the phased array probe.At last,the tests on samples with typical flaws such as porosity flaws and the incomplete fu-sion flaws were performed by the ultrasonic testing system.Experiment results showed that the phased ar-ray ultrasonic technique could effectively detect the typical flaws in the tube to tube-sheet welds of heat exchanger.

  20. Capillary liquid chromatography-microchip atmospheric pressure chemical ionization-mass spectrometry.

    Science.gov (United States)

    Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto

    2006-07-01

    A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS. PMID:16804601

  1. Nanopattern transfer from high-density self-assembled nanosphere arrays on prepatterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Hirotaka; Tamura, Hiroaki; Takeuchi, Mitsuo; Inomata, Akihiro; Yanagida, Yoshiaki; Matsushita, Naohisa; Uzumaki, Takuya; Tanaka, Atsushi [Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588 (Japan); Komoriya, Hitoshi, E-mail: oshimah@jp.fujitsu.co [Fujitsu Laboratories Limited, 10-1 Morinosato-Wakamiya, Atsugi 243-0197 (Japan)

    2009-11-11

    We have fabricated nanoimprint moulds with high-density well-defined nanopatterns by pattern transfer from self-assembled nanosphere arrays on prepatterned substrates. Silica nanospheres of 100 and 25 nm diameter were regularly arranged over large areas in a self-assembling manner by capillary force via a dip-coating technique on topographically patterned substrates having 220 nm pitch line/space patterns. The nanosphere arrays were used as etching masks, and nanodot arrays with the same arrangements were created on the silica substrate surfaces by reactive ion etching (RIE). By developing a combined pattern transfer process using Ru and SiO{sub x} mask layers and CF{sub 4} and O{sub 2} RIE, the aspect ratio between the height and diameter of the nanodots made from the 25 nm nanospheres is improved to about two. It is demonstrated that the nanopatterns of the moulds can be inversely transferred into polymer surfaces reproducibly by UV nanoimprint process.

  2. The capillary hysteresis model HYSTR: User's guide

    International Nuclear Information System (INIS)

    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure φ and liquid saturation (S1) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions

  3. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  4. EUV radiation from nitrogen capillary discharge

    Science.gov (United States)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav

    2014-08-01

    In the last decade EUV sources attract interest from researchers over the world. One of the main motivations is EUV lithography, which could lead to further miniaturization in electronics. Nitrogen recombination laser at wavelength of 13.4 nm based on capillary discharge Z-pinch configuration could be used in experiments with testing of resolution of photoresist for EUV lithography (close to wavelength of 13.5 nm Si/Mo multilayer mirrors have a high reflectivity at normal incidence angles). In this work, pinching of nitrogen-filled capillary discharge is studied for the development of EUV laser, which is based on recombination pumping scheme. The goal of this study is achieving the required plasma conditions using a capillary discharge Z-pinch apparatus. In experiments with nitrogen, the capillary length was shortened from 232 mm to 90 mm and current quarter-period was changed from 60 ns to 50 ns in contrast with early experiments with Ne-like argon laser. EUV radiation from capillary discharge was registered by X-ray vacuum diode for different pressure, amplitude and duration of pre-pulse and charging voltage of the Marx generator.

  5. Application of a refractive bubbles-in-capillary x-ray lens to X pinch experiments

    OpenAIRE

    Pikuz, S. A.; Asadchikov, V. E.; Chandler, K. M.; Hammer, D. A.; Dudchik, Yu. I.; Kolchevsky, N. N.; Komarov, F. F.; Mitchell, M D; Popov, A V; Shelkovenko, T. A.; Senin, R. A.; Suloev, I. A.; Vinogradov, A. V.

    2003-01-01

    A new type of x-ray refractive lens, the refractive bubbles-in-capillary lens ~RBC lens!, for plasma diagnostics is presented. The lens consists of a glass capillary filled with a large number of biconcave microlenses. The fabrication technique for the lens is described. It is shown that the microlenses have a spherical shape and can focus x-ray radiation with photon energies E .4 keV. Ray-tracing and analytical calculations of lens properties have been performed and have predicted high efficie...

  6. New adventures in chiral separation of helical molecules by capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Reyes Gutierrez, Paul Eduardo; Severa, Lukáš; Jirásek, Michael; Teplý, Filip; Kašička, Václav

    Natal: -, 2014. s. 80. [ITP & LACE 2014. International Symposium on Electro- and Liquid Phase-Separation Techniques /21./ and Latin-American Symposium on Biotechnology, Biomedical, Biopharmaceutical, and Industrial Applications of Capillary Electrophoresis and Microchip Technology /20./. 04.10.2014-08.10.2014, Natal] R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : helquats * capillary electrophoresis * chiral separation Subject RIV: CB - Analytical Chemistry, Separation

  7. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  8. Effects of oleic acid on pulmonary capillary leak and thromboxanes

    International Nuclear Information System (INIS)

    The role of arachidonic acid metabolites in oleic acid-induced lung injury in anesthetized dogs was investigated. Oleic acid was administered as a bolus injection into the pulmonary artery after either indomethacin (10 mg/kg iv) or vehicle. Measurements of hemodynamic parameters, mean systemic (MAP), pulmonary capillary wedge, and pulmonary artery pressures (PAP), cardiac output, arterial blood gases, extravascular lung waters (EVLW) by thermaldye double indicator dilution techniques and plasma immunoreactive thromboxane B2 (iTxB2), by radioimmunoassay were obtained at zero time (baseline) and 20 min following each oleic acid injection. A new noninvasive technique was employed to measure pulmonary capillary protein leak by the scintigraphic analysis of intravenously administered technetium-99m radiolabeled human serum albumin (99mTc -HSA) in the cardiac and lung regions. Oleic acid injection caused a significant dose related fall in MAP, arterial pO2, and cardiac output, and increases in EVLW and plasma iTxB2 in the vehicle pretreated animals, while mean PAP remained unchanged. In contrast, in the indomethacin pretreated dogs, MAP, EVLW, cardiac output, and plasma iTxB2 levels did not change from baseline values and there was an increase in mean PAP. Pulmonary vascular resistance was significantly elevated in both groups

  9. [Does bilirubin interfere with capillary electrophoresis of serum proteins?].

    Science.gov (United States)

    Hellara, Ilhem; Fekih, Ons; Triki, Sonia; Elmay, Ahlem; Neffati, Fadoua; Najjar, Mohamed Fadhel

    2014-01-01

    Capillary electrophoresis of serum proteins is a fast, reliable and simple technique, but many interference exist. The objective of our work is to study the interference of bilirubin on this technique; 70 icteric sera were analysed on Capillarys ™ (Sebia). A second electrophoresis was performed on 40 samples after bilirubin photodegradation. The bilirubin and serum proteins were determinated respectively by Jendrassik and Grof and biuret methods on Konélab 20i ™ (Thermo Electron Corporation). We found abnormal spreading of the albumin fraction of the anode side wich constitute sometimes an isolated fraction in the traditional area of pre-albumin migration. This fraction varies from 2.0 ± 2.0% (0.0 to 7.3%) or 0.98 ± 1.53 g/L (0 to 5.3 g/L) and it seems to be related to the direct bilirubin since, following overloading sera with a solution of bilirubin, no further fraction was recovered. An average decrease of bilirubin after photodegradation of 58 ± 17% (26-89%) is followed by a decrease in the same order 64 ± 38% (10-100%) of the additional fraction. Acetate cellulose electrophoresis of the same samples showed no variation. The high bilirubin levels seem modify slightly the electrophoretic profile. However the impact of the interference on the interpretation of electrophoretic trace is negligible. PMID:24492101

  10. Capillary filling in closed end nanochannels.

    Science.gov (United States)

    Phan, Vinh Nguyen; Nguyen, Nam-Trung; Yang, Chun; Joseph, Pierre; Djeghlaf, Lyes; Bourrier, David; Gue, Anne-Marie

    2010-08-17

    We investigated the interactions between liquid, gas, and solid phases in the capillary filling process of closed-end nanochannels. This paper presents theoretical models without and with absorption and diffusion of gas molecules in the liquid. Capillary filling experiments were carried out in closed-end silicon nanochannels with different lengths. The theoretical and measured characteristics of filling length versus time are compared. The results show that the filling process consists of two stages. The first stage resembles the capillary filling process in an open-end nanochannel. However, a remarkable discrepancy between the experimental results and the theory without gas absorption is observed in the second stage. A closer investigation of the second stage reveals that the dissolution of gas in the liquid is important and can be explained by the model with gas absorption and diffusion. PMID:20695566

  11. Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins

    Directory of Open Access Journals (Sweden)

    Miriam S. Goyder

    2012-04-01

    Full Text Available We present a top down separation platform for yeast ribosomalproteins using affinity chromatography and capillary electrophoresiswhich is designed to allow deposition of proteins ontoa substrate. FLAG tagged ribosomes were affinity purified, andrRNA acid precipitation was performed on the ribosomes followedby capillary electrophoresis to separate the ribosomalproteins. Over 26 peaks were detected with excellent reproducibility(<0.5% RSD migration time. This is the first reportedseparation of eukaryotic ribosomal proteins using capillaryelectrophoresis. The two stages in this workflow, affinity chromatographyand capillary electrophoresis, share the advantagesthat they are fast, flexible and have small sample requirementsin comparison to more commonly used techniques. This methodis a remarkably quick route from cell to separation that hasthe potential to be coupled to high throughput readout platformsfor studies of the ribosomal proteome. [BMB reports2012; 45(4: 233-238

  12. A single-probe capillary microgripper induced by dropwise condensation and inertial release

    Science.gov (United States)

    Fan, Zenghua; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2015-11-01

    A micromanipulation method based on liquid droplets is widely used as a non-destructive technology to pick-and-place micrometer-scale objects. We focus on the development of a single-probe capillary microgripper to execute reliable micromanipulation tasks. By controlling dropwise condensation on a probe tip, the water droplet volume on the hydrophobic tip surface can be varied dynamically, which helps establish appropriate capillary lifting forces during capturing tasks. An inertia-releasing strategy was utilized to implement a piezoelectric actuator integrated with the capillary microgripper and to address release problems caused by adhesion force action. The influence of droplet formation and the capillary lifting force generated during the manipulation process were characterized experimentally. Micromanipulation tests were conducted using a customized motion platform with viewing microscopes to verify the performance potential of the capillary microgripping tool. Experimental results indicated that polystyrene microspheres with 20-100 μm radii and micro-silicon chips (1.63-12.1 μN) were grasped reliably, and that adhered micro-objects could be placed on a target using the proposed microhandling technique of inertial release in ambient conditions.

  13. Reduced capillary density in the myocardium of uremic rats--a stereological study.

    Science.gov (United States)

    Amann, K; Wiest, G; Zimmer, G; Gretz, N; Ritz, E; Mall, G

    1992-11-01

    Using stereological techniques capillaries, interstitium and myocardial fibers were analyzed in perfusion-fixed hearts of subtotally nephrectomized male Sprague-Dawley rats with uremia of 14 months duration (or their sham-operated controls). Uremic rats had higher systolic blood pressure (140 +/- 20.3 mm Hg vs. 119 +/- 6.61 mm Hg) and left ventricular weight/body weight ratio (3.37 +/- 0.09 mg/kg vs. 2.01 +/- 0.12 mg/kg) than controls, and had slight anemia (Hct 35.0 +/- 3.16% vs. 40.4 +/- 3.3%). Length density (Lv) of capillaries, that is, capillary length per unit myocardial volume, was significantly (P < 0.001) decreased in uremia (2485 +/- 264 mm/mm3 vs. 3329 +/- 194 mm/mm3) versus controls. In parallel, surface density and volume density of the capillary lumina were also reduced (7.95 +/- 1.69 cm3/cm3 vs. 11.4 +/- 1.8 cm3/cm3) in the uremic rats. We conclude that in experimental uremia, cardiac hypertrophy is not accompanied by a commensurate increase in capillaries. PMID:1453595

  14. Capillary interactions in nano-particle suspensions

    International Nuclear Information System (INIS)

    We have investigated the structures formed by colloidal particles suspended in solvents at volume fractions below 10% and interacting through capillary bridges. Such systems resemble colloidal gas of sticky nano-spheres that form pearl-necklace like chains that, in turn, induce strong viscoelasticity due to the formation of 3-D fractal network. The capillary force dominates the electrostatic and Van der Waals forces in solutions and can bridge multiple particles depending of the volume of the capillary bridge. We have investigated the morphology of the structures formed at different fractions of the bridging fluid. Small-angle neutron scattering (SANS) is used to study nanoparticles with an average diameter of 10 nm in polar and non-polar organic solvents at ambient temperatures. SANS intensity as a function of the scattering vector is analyzed as a product of a form factor, that depends on the particle shape, and a structure factor, that characterizes the interparticle inter reactions. The interaction of particles in polar solvents is considered to be through electrostatic repulsion and the data is successfully fitted by Hayter-Penfold mean spherical approximation (HPMSA). Computer simulations of a pearl necklace-like chain of spheres is conducted to explain the structure factor when capillary bridges are present. Alternatively, we have analyzed the slope of the intensity at low scattering vector in a double logarithmic plot to determine the dimension of the fractal structures formed by the particles at different volume fraction of the bridging fluid. We have also studied the properties of the capillary bridge between a pair of particles. The significance of this study is to explore the possibility of using capillary force as a tool to engineer new colloidal structures and materials in solutions and to optimize their viscoelastic properties. (author)

  15. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  16. Capillary Rise of Liquids in Nanopores

    CERN Document Server

    Huber, Patrick; Kityk, Andriy V

    2006-01-01

    We present measurements on the spontaneous imbibition (capillary rise) of water, a linear hydrocarbon (n-C16H34) and a liquid crystal (8OCB) into the pore space of monolithic, nanoporous Vycor glass (mean pore radius 5 nm). Measurements on the mass uptake of the porous hosts as a function of time, m(t), are in good agreement with the Lucas-Washburn square root of time prediction, typical of imbibition of liquids into porous hosts. The relative capillary rise velocities scale as expected from the bulk fluid parameters.

  17. A lymph nodal capillary-cavernous hemangioma.

    Science.gov (United States)

    Dellachà, A; Fulcheri, E; Campisi, C

    1999-09-01

    A capillary-cavernous hemangioma in an obturator lymph node was found incidentally in a 64 year-old woman who had undergone unilateral salpingo-oophorectomy and lymphadenectomy for an ovarian neoplasm. Vascular tumors of lymph nodes are briefly reviewed including eight previously described nodal capillary-cavernous hemangiomas. The association with other splanchnic hemangiomas is pointed out and the likelihood that the lesion is a hamartoma rather than a true neoplasm is addressed. Despite its rarity, this entity needs to be recognized by lymphologists who image lymph nodes by lymphangiography as well as by lymph nodal pathologists. PMID:10494525

  18. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  19. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  20. TESTICULAR CAPILLARY HEMANGIOMA: DESCRIPTION OF A CASE

    Directory of Open Access Journals (Sweden)

    A. S. Markova

    2014-07-01

    Full Text Available The paper describes a clinical case of testicular capillary hemangioma in a 24-year-old man undergone a partial resection of the testis with the intraoperative morphological examination. Testicular capillary hemangioma is a rare benign tumor of a vascular origin, which can be similar to malignant testicular tumors on the clinical presentation, as well as on the imaging methods, in particular to seminoma. The intraoperative histological study can assist in avoiding organ-removing surgical interventions in diagnostically ambiguous cases if a benign testicular tumor is diagnosed.

  1. Demonstrating Chemical and Analytical Concepts in the Undergraduate Laboratory Using Capillary Electrophoresis and Micellar Electrokinetic Chromatography

    Science.gov (United States)

    Palmer, Christopher P.

    1999-11-01

    This paper describes instrumental analysis laboratory exercises that utilize capillary electrophoresis and micellar electrokinetic chromatography to demonstrate several analytical and chemical principles. Alkyl parabens (4-hydroxy alkyl benzoates), which are common ingredients in cosmetic formulations, are separated by capillary electrophoresis. The electrophoretic mobilities of the parabens can be explained on the basis of their relative size. 3-Hydroxy ethylbenzoate is also separated to demonstrate the effect of substituent position on the acid dissociation constant and the effect this has on electrophoretic mobility. Homologous series of alkyl benzoates and alkyl phthalates (common plasticizers) are separated by micellar electrokinetic chromatography at four surfactant concentrations. This exercise demonstrates the separation mechanism of micellar electrokinetic chromatography, the concept of chromatographic phase ratio, and the concepts of micelle formation. A photodiode array detector is used in both exercises to demonstrate the advantages and limitations of the detector and to demonstrate the effect of pH and substituent position on the spectra of the analytes.

  2. Physico-chemical characterization of liposomes and drug substance-liposome interactions in pharmaceutics using capillary electrophoresis and electrokinetic chromatography

    DEFF Research Database (Denmark)

    Franzen, Ulrik; Østergaard, Jesper

    2012-01-01

    electrophoresis and liposome electrokinetic chromatography for the characterization of liposomes in a pharmaceutical context. Capillary electrophoretic techniques have been used for the measurement of electrophoretic mobility, which provides information on liposome surface charge, size and membrane permeability...... of liposomes. The use of liposome electrokinetic chromatography and capillary electrophoresis for determination of liposome/water partitioning and characterization of drug-liposome interactions is reviewed. A number of studies indicate that capillary electrophoresis may have a role in the...... characterization of liposome drug delivery systems, e.g., for the investigation of encapsulation efficiency and drug leakage. The well-known characteristics of capillary electrophoresis, i.e., low sample volume requirement, high separation efficiency in aqueous media without a stationary phase, minimal sample...

  3. Optically interconnected phased arrays

    Science.gov (United States)

    Bhasin, Kul B.; Kunath, Richard R.

    1988-01-01

    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed.

  4. Quantification of nucleotides by ICPMS: coupling of ICPMS with capillary electrophoresis or capillary HPLC

    International Nuclear Information System (INIS)

    Full text: Quantification of nucleotides in small volumes of biological samples has eagerly been demanded. A method using ICPMS coupled with capillary electrophoresis or capillary liquid chromatography is reported. A new interface system, which consists of a double tube nebulizer inserted with a fused silica capillary tube and a cylinder mini-chamber with a sheath gas inlet, was designed. Moreover, the surface conditions of the sampling and skimmer cones, and the introduction of H2 gas into the plasma were found to significantly improve the signal/background ratio for phosphorus determination at m/z 31. (author)

  5. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  6. A Rare Association of Trigeminal Autonomic Cephalgia: Pontine Capillary Telangiectasia

    OpenAIRE

    Gocmen, Rahsan; Kurt, Erdal; Arslan, Sabina; Unal-Cevik, Isin; Karli Oguz, Kader; Tezer, F Irsel

    2015-01-01

    This report describes a case of pontine capillary telangiectasia in a 43-year-old woman with a clinical diagnosis of trigeminal autonomic cephalgia. The possible association with pontine capillary telangiectasia and trigeminal autonomic cephalgia is discussed.

  7. Drying induced upright sliding and reorganization of carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li Qingwen [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); De Paula, Raymond [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhang Xiefei [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zheng Lianxi [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Arendt, Paul N [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mueller, Fred M [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhu, Y T [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tu Yi [CVD-First Nano, 1860 Smithtown Avenue, Ronkonkoma, NY 11779 (United States)

    2006-09-28

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns.

  8. Drying induced upright sliding and reorganization of carbon nanotube arrays

    International Nuclear Information System (INIS)

    Driven by capillary force, wet carbon nanotube (CNT) arrays have been found to reorganize into cellular structures upon drying. During the reorganization process, individual CNTs are firmly attached to the substrate and have to lie down on the substrate at cell bottoms, forming closed cells. Here we demonstrate that by modifying catalyst structures, the adhesion of CNTs to the substrate can be weakened. Upon drying such CNT arrays, CNTs may slide away from their original sites on the surface and self-assemble into cellular patterns with bottoms open. It is also found that the sliding distance of CNTs increases with array height, and drying millimetre tall arrays leads to the sliding of CNTs over a few hundred micrometres and the eventual self-assembly into discrete islands. By introducing regular vacancies in CNT arrays, CNTs may be manipulated into different patterns

  9. Silicon Heat Pipe Array

    Science.gov (United States)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  10. Application of CHESS single-bounce capillaries at synchrotron beamlines

    Science.gov (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.

    2014-03-01

    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  11. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  12. Modeling of Throttling Process inside Capillary Tube

    Czech Academy of Sciences Publication Activity Database

    Vinš, Václav; Vacek, V.

    Praha : ČVUT, 2009, s. 250-251. ISBN 978-80-01-04286-1. [ANNUAL CTU UNIVERSITY-WIDE SEMINAR /18./. Praha (CZ), 16.02.2009-20.02.2009] Institutional research plan: CEZ:AV0Z20760514 Keywords : capillary tube * numerical model * metastable flow Subject RIV: BJ - Thermodynamics https://workshop.cvut.cz/2009/

  13. Planetary In Situ Capillary Electrophoresis System (PISCES)

    Science.gov (United States)

    Willis, P. A.; Stockton, A. M.; Mora, M. F.; Cable, M. L.; Bramall, N. E.; Jensen, E. C.; Jiao, H.; Lynch, E.; Mathies, R. A.

    2012-10-01

    We propose to develop PISCES, a 3-kg, 2W, flight-capable microfluidic lab-on-a-chip capillary electrophoresis analyzer capable of ingesting solid, liquid, or gas samples and performing a suite of chemical analyses with parts per trillion sensitivity.

  14. Imbibition of ``Open Capillary'': Fundamentals and Applications

    Science.gov (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko

    2015-11-01

    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  15. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  16. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-01

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  17. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  18. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores

    Science.gov (United States)

    Wang, Sen; Javadpour, Farzam; Feng, Qihong

    2016-02-01

    We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems.

  19. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores

    Science.gov (United States)

    Wang, Sen; Javadpour, Farzam; Feng, Qihong

    2016-01-01

    We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445

  20. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores.

    Science.gov (United States)

    Wang, Sen; Javadpour, Farzam; Feng, Qihong

    2016-01-01

    We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%--samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445

  1. A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets

    OpenAIRE

    Seichepine, Florent; Salomon, Sven; Collet, Maéva; Guillon, Samuel; Nicu, Liviu; Larrieu, Guilhem; Flahaut, Emmanuel; Vieu, Christophe

    2012-01-01

    The wafer scale integration of carbon nanotubes (CNT) remains a challenge for electronic and electromechanical applications. We propose a novel CNT integration process relying on the combination of controlled capillary assembly and buried electrode dielectrophoresis (DEP). This process enables us to monitor the precise spatial localization of a high density of CNTs and their alignment in a pre-defined direction. Large arrays of independent and low resistivity (4.4 x 10-5 omega m) interconnect...

  2. Laser ablation construction of on-column reagent addition devices for capillary electrophoresis.

    Science.gov (United States)

    Rezenom, Yohannes H; Lancaster, Joseph M; Pittman, Jason L; Gilman, S Douglass

    2002-04-01

    A simple and reproducible technique for constructing perfectly aligned gaps in fused-silica capillaries has been developed for postcolumn reagent addition with capillary electrophoresis. This technique uses laser ablation with the second harmonic of a Nd:YAG laser (532 nm) at 13.5 mJ/pulse and a repetition rate of 15 Hz to create these gaps. A capillary is glued to a microscope slide and positioned at the focal point of a cylindrical lens using the focused beam from a laser pointer as a reference. Gaps of 14.0 +/- 2.2 microm (n = 33) at the bore of the capillary are produced with a success rate of 94% by ablation with 400 pulses. This simple method of gap construction requires no micromanipulation under a microscope, hydrofluoric acid etching, or use of column fittings. These structures have been used for reagent addition for postcolumn derivatization with laser-induced fluorescence detection and have been tested for the separation of proteins and amino acids. Detection limits of 6 x 10(-7) and 1 x 10(-8) M have been obtained for glycine and tranferrin, respectively. Separation efficiencies obtained using these gap reactors range from 38,000 to 213,000 theoretical plates. PMID:12043598

  3. Spatial normalization of array-CGH data.

    OpenAIRE

    Brennetot Caroline; Manié Élodie; Liva Stéphane; Brito Isabel; Hupé Philippe; Neuvial Pierre; Radvanyi François; Aurias Alain; Barillot Emmanuel

    2006-01-01

    Abstract Background Array-based comparative genomic hybridization (array-CGH) is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continu...

  4. Spatial normalization of array-CGH data.

    OpenAIRE

    Neuvial, Pierre; Hupé, Philippe; Brito, Isabel; Liva, Stéphane; Manié, Elodie; Brennetot, Caroline; Radvanyi, François; Aurias, Alain; Barillot, Emmanuel

    2006-01-01

    BACKGROUND: Array-based comparative genomic hybridization (array-CGH) is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spat...

  5. Phased arrays: inline flow line hub inspection using phased arrays

    NARCIS (Netherlands)

    Bloom, J.G.P.; Chougrani, K.; Rundberg, H.; Oldenziel, G.; Deleye, X.; Martina, Q.

    2011-01-01

    The feasibility of the inspection of flow line hubs using the phased array technique was investigated to determine the surface area of the seal area degraded by corrosion. A clean model of the hub was simulated to gain insight into the geometrical echoes and to determine the area covered by the ultr

  6. Inference engine using optical array logic

    Science.gov (United States)

    Iwata, Masaya; Tanida, Jun; Ichioka, Yoshiki

    1990-07-01

    An implementation method for an inference engine using optical array logic is presented. Optical array logic is a technique for parallel neighborhood operation using spatial coding and 2-D correlation. For efficient execution of inference in artificial intelligence problems, a large number of data must be searched effectively. To achieve this demand, a template matching technique is applied to the inference operation. By introducing a new function of data conversion, the inference operation can be implemented with optical array logic, which utilizes parallelism in optical techniques.

  7. Investigation of Melamine Presence in Canned Tuna Fish by Capillary Zone Electrophoresis Method

    OpenAIRE

    Er Demirhan, Buket; Demirhan, Burak; Yarımkaya Baş, Sezen; Yentür, Gülderen; Bayhan Öktem, Aysel

    2015-01-01

    Melamine is widely used as a chemical in food industry and may lead to kidney damage. The aim of this study was to determine melamine and pH value of 80 canned tuna fish samples of four different brands (A, B, C, D) sold in Ankara, Turkey. Quantitative determination of melamine in canned tuna fish samples was carried out by capillary zone electrophoresis with diode array detector (CZE-DAD). The limits of detection and quantitation for melamine were found to be 0.21 mg kg-1and 0.68 mg kg-1, re...

  8. Capillary Interactions between a Probe Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ning; WANG Le-Feng; RONG Wei-Bin

    2008-01-01

    To understand capillary interactions between probe tips and nanoparticles under ambient conditions,a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases.It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force.The capillary force decreases with the increasing separation distances,and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances.The applicability of the symmetric meniscus approximation is discussed.

  9. Capillary Penetration into Inclined Circular Glass Tubes.

    Science.gov (United States)

    Trabi, Christophe L; Ouali, F Fouzia; McHale, Glen; Javed, Haadi; Morris, Robert H; Newton, Michael I

    2016-02-01

    The spontaneous penetration of a wetting liquid into a vertical tube against the force of gravity and the imbibition of the same liquid into a horizontal tube (or channel) are both driven by capillary forces and described by the same fundamental equations. However, there have been few experimental studies of the transition from one orientation to the other. We report systematic measurements of capillary penetration of polydimethylsiloxane oils of viscosities 9.6, 19.2, and 48.0 mPa·s into glass capillary tubes. We first report the effect of tube radii R between 140 and 675 μm on the dynamics of spontaneous imbibition. We show that the data can be fitted using the exact numerical solution to the governing equations and that these are similar to fits using the analytical viscogravitational approximation. However, larger diameter tubes show a rate of penetration slower than expected using an equilibrium contact angle and the known value of liquid viscosity. To account for the slowness, an increase in viscosity by a factor (η/ρ)scaling is needed. We show full agreement with theory requires the ratio R/κ(-1) ∼ 0.1 or less, where κ(-1) is the capillary length. In addition, we propose an experimental method that enables the determination of the dynamic contact angle during imbibition, which gives values that agree with the literature values. We then report measurements of dynamic penetration into the tubes of R = 190 and 650 μm for a range of inclination angles to the horizontal, φ, from 5 to 90°. We show that capillary penetration can still be fitted using the viscogravitational solution, rather than the Bosanquet solution which describes imbibition without gravity, even for inclination angles as low as 10°. Moreover, at these low angles, the effect of the tube radius is found to diminish and this appears to relate to an effective capillary length, κ(-1)(φ) = (γLV/ρg sin φ)(1/2). PMID:26738739

  10. A novel covalent coating of capillaries for capillary electrophoresis coupled to matrix assisted laser desorption ionization

    International Nuclear Information System (INIS)

    Capillary electrophoresis (CE) offers the advantage of flexibility and method development. It excels in the area of separation of ions, chiral, polar, and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused-silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coatings is an approach to prevent adsorption phenomena and improve the repeatability of these analytes. In this work, new capillary coatings consisting of (I) derivatized polystyrene nanoparticles (PS) and (II) derivatized fullerenes, were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time ≤ 0.5 % for run to run and ≤ 9.5 % for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 up to pH 10.0. The actual potential of the coated capillaries was tested by combining CE with matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS) for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-TOF-MS system was investigated by analysing a five protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss Prot database in order to search for matching tryptic fragments using the Mascot software. The sequence coverage of analysed proteins was between 36-68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS. (author)

  11. Maximum gain of Yagi-Uda arrays

    DEFF Research Database (Denmark)

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.; Bach Andersen, J.

    1971-01-01

    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum...

  12. A microsensor array for biochemical sensing

    NARCIS (Netherlands)

    Van Steenkiste, Filip; Baert, Kris; Debruyker, Dirk; Spiering, Vincent; Schoot, van der Bart; Arquint, Philippe; Born, Reinhard; Schumann, Klaus

    1997-01-01

    A microsensor array to measure chemical properties of biological liquids is presented. A hybrid integration technique is used to mount four sensor chips on a micro flow channel: a pressure, temperature, pH, combined pO2 and pCO2 sensor chip. This results in a microsensor array which is developed to

  13. Integrated out-of-plane nanoelectrospray thruster arrays for spacecraft propulsion

    International Nuclear Information System (INIS)

    Nanoelectrosprays, well known for their use in sample injection for the mass spectrometry of large biomolecules, can also be used in other applications such as spacecraft propulsion. The thrust generated by a single electrospray emitter is well below 1 µN, which is several orders of magnitude below the required thrust for planned formation flying missions. This paper presents the process flow and the microfabrication of large 2D arrays of out-of-plane nanoelectrospray capillary emitters with integrated extractor electrodes as well as electrospray results. The capillaries, 70 µm high and with 24 µm inner diameter, are etched from one silicon-on-insulator wafer. The extractor electrodes are from another silicon-on-insulator wafer. Both parts are passively aligned to within 2 µm, centering each capillary under one extractor electrode, thus ensuring highly uniform emitter characteristics over large arrays. Low hydraulic impedance has been a major problem in out-of-plane electrospray designs in the past, which is solved here by adding a post-processing step in which the capillaries are filled with 5 µm silica microspheres fixed in place by silanization. Finally, this paper reports on successful spray tests carried out under vacuum conditions with single and arrays of capillaries spraying the ionic liquid EMI-Tf2 N demonstrating the operation of our nanoelectrospray thrusters in an ionic mode

  14. Direct withdrawal of zones during preparative capillary type isotachophoresis.

    Directory of Open Access Journals (Sweden)

    Yamada,Teruo

    1982-10-01

    Full Text Available This study used a Shimadzu IP-1B capillary type isotachophoretic apparatus with a potential gradient detector. An ipp-1 withdrawal cell was fitted to this and a technique for withdrawing individual components directly through this port was developed using a microsyringe. The recovery rate was up to 45% for individual target components. When 100% withdrawal of the target component was attempted by withdrawing a volume four times the calculated volume (so that the zones both before and after the target component were also included, the best recovery rate was only 78%. In all cases, the results varied less than 3%. The limit for analysis of individual components of a 0.01 M solution was around 3 microliters. If this volume was exceeded, the ion quantity was too large for the volume of the microcapillary tube and mixed zones formed such that complete separation and analysis of individual components became impossible.

  15. Quantitation of Leishmania lipophosphoglycan repeat units by capillary electrophoresis.

    Science.gov (United States)

    Barron, Tamara L; Turco, Salvatore J

    2006-04-01

    The glycosylphosphatidylinositol (GPI)-anchored lipophosphoglycan (LPG) of Leishmania is the dominant cell surface glycoconjugate of these pathogenic parasites. LPG is structurally characterized by a series of phosphoglycan repeat units. Determining the number of repeat units per LPG molecule has proven difficult using current technologies, such as mass spectrometry. As an alternative method to quantitate the number of repeat units in LPG, a procedure based on capillary electrophoretic analysis of the proportion of mannose to 2,5-anhydromannose (derived from the nonacetylated glucosamine of the GPI anchor of LPG) was developed. The CE-based technique is sensitive and relatively rapid compared to GC-MS-based protocols. Its application was demonstrated in quantitating the number of LPG repeat units from several species of Leishmania as well as from two life-cycle stages of these organisms. PMID:16310310

  16. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K

    2015-01-01

    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  17. Probing Antigen-Antibody Interaction Using Fluorescence Coupled Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Pengju Jiang

    2013-09-01

    Full Text Available In this report, the use of fluorescence detection coupled capillary electrophoresis (CE-FL allowed us to fully characterize the antigen-antibody interaction. CE-FL allowed separation of unbound quantum dots (QDs and ligand bound QDs and also revealed an ordered assembly of biomolecules on QDs. Further, we observed FRET from QDs donor to DyLight acceptor, which were covalently conjugated with human IgG and goat anti-human IgG, respectively. The immunocomplex was formed and the mutual affinity of the antigen and antibody brought QDs and DyLight close enough to allow FRET to occur. This novel CE-based technique can be easily extended to other FRET systems based on QDs and may have potential application in the detection of antibodies.

  18. a Comprehensive Model for Capillary Pressure Difference across a Drop/bubble Flowing Through a Constricted Capillary

    Science.gov (United States)

    Liang, Mingchao; Wei, Junhong; Han, Hongmei; Fu, Chengguo; Liu, Jianjun

    2015-09-01

    The capillary pressure is one of the crucial parameters in many science and engineering applications such as composite materials, interface science, chemical engineering, oil exploration, etc. The drop/bubble formation and its mechanisms that affect the permeability of porous media have steadily attracted much attention in the past. When a drop/bubble moves from a larger capillary to a smaller one, it is often obstructed by an additional pressure difference caused by the capillary force. In this paper, a comprehensive model is derived for the capillary pressure difference when a drop/bubble flows through a constricted capillary, i.e. a geometrically constricted passage with an abrupt change in radius. The proposed model is expressed as a function of the smaller capillary radius, pore-throat ratio, contact angle, surface tension and length of the drop/bubble in the smaller capillary. The model predictions are compared with the available experimental data, and good agreement is found between them.

  19. Transversally periodic solitary gravity-capillary waves.

    Science.gov (United States)

    Milewski, Paul A; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  20. Capillary droplets on Leidenfrost micro-ratchets

    CERN Document Server

    Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef

    2012-01-01

    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.

  1. Capillary flow through heat-pipe wicks

    Science.gov (United States)

    Eninger, J. E.

    1975-01-01

    Theoretical expressions are obtained for the capillary-pressure limit and permeability of a fibrous wick in terms of the porosity and fiber diameter. Hysteresis in capillary pressure is included through the introduction of an empirical hysteresis constant. A partial-saturation model based on the statistical distribution of local porosity requires an additional empirical constant, the standard deviation. The theory is compared to results of a beta-ray absorption experiment that measured the liquid content of a partially saturated wick and to results of permeability measurements on partially and fully saturated wicks. A simple wick-weighing experiment is described that yields values for the empirical hysteresis constant and the standard deviation. Theoretical results are used to design an optimum wick.

  2. Capillary Hemangioma of the Fallopian Tube.

    Science.gov (United States)

    Katiyar, Richa; Patne, Shashikant C U; Bharti, Shreekant; Jain, Madhu

    2016-04-01

    Neoplastic lesions of the fallopian tube are rarely seen by surgical pathologists. Haemangioma of the fallopian tube is an extremely rare benign neoplasm. A 30-year-old lady with polymenorrhea and dysmenorrhea underwent hysterectomy and bilateral salpingo-oophorectomy. Her left fallopian tube showed a 2mm sized solid nodule in the wall. Histopathological examination revealed a well-defined vascular lesion in the left fallopian tube, consistent with capillary haemangioma. The vascular endothelium was highlighted by CD34 immunostaining. Our literature review has identified 10 cases of cavernous haemangioma of the fallopian tube. To the best of our knowledge, we report the first ever case of capillary haemangioma of the fallopian tube. This is also the smallest detected haemangioma in the fallopian tube. PMID:27190899

  3. Chemical Power for Microscopic Robots in Capillaries

    CERN Document Server

    Hogg, Tad

    2009-01-01

    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

  4. The geometry and wetting of capillary folding

    CERN Document Server

    Péraud, Jean-Philippe

    2014-01-01

    Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial application provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

  5. Capillary solitons on a levitated medium.

    Science.gov (United States)

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T

    2015-07-01

    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  6. Hemocompatibility of titania nanotube arrays.

    Science.gov (United States)

    Smith, Barbara S; Yoriya, Sorachon; Grissom, Laura; Grimes, Craig A; Popat, Ketul C

    2010-11-01

    Hemocompatibility is a key consideration for the long-term success of blood contacting biomaterials; hence, there is a critical need to understand the physiological response elicited from blood/nano-biomaterial interactions. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets, and clotting kinetics of whole blood on titania nanotube arrays. Previous studies have demonstrated improved mesenchymal stem cell functionality, osteoblast phenotypic behavior, localized drug delivery, and the production of endothelial cell ECM on titania nanotube arrays. Furthermore, these titania nanotube arrays have elicited minimal levels of monocyte activation and cytokine secretion, thus exhibiting a very low degree of immunogenicity. Titania nanotube arrays were fabricated using anodization technique and the surface morphology was examined through scanning electron microscopy (SEM). The crystalline phases were identified using glancing angled X-ray diffraction (GAXRD). Nanoindentation and scratch tests were used to characterize the mechanical properties of titania nanotube arrays. The adsorption of key blood proteins (albumin, fibrinogen, and immunoglobulin-g) was evaluated using a micro-BCA assay and X-ray photoelectron spectroscopy (XPS). The adhesion and activation of platelets was investigated using live-cell staining, MTT assay, and SEM. Whole blood clotting kinetics was evaluated by measuring the free hemoglobin concentration, and SEM was used to visualize the clot formation. Our results indicate increased blood serum protein adsorption, platelet adhesion and activation, and whole blood clotting kinetics on titania nanotube arrays. PMID:20629021

  7. EUV radiation from nitrogen capillary discharge

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Štraus, Jaroslav; Schmidt, Jiří

    Vol. 32. Singapore: World Scientific Publishing Co, 2014, "1460329-1 "-"1460329-7". ISSN 2010-1945. [International Conference on Plasma Science and Applications, ICPSA 2013. Singapore (SG), 04.12.2013-06.12.2013] R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:61389021 Keywords : EUV radiation * capillary discharge * EUV source * Z-pinch Subject RIV: BL - Plasma and Gas Discharge Physics http://www. world scientific.com/doi/abs/10.1142/S2010194514603299

  8. Capillary Electrophoresis in the Presence of Fosfomycin

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fosfomyein, a sodim salt of cis-(3-methyloxiranyl) phosphonic acid, was used as electrolyte in binary methanol-water media for capillary electrophoresis. The variety of electroosmotic flow with pH*,methanol concentration and ionic strength was investigated. The migration behavior of nine bases was examined under various conditions, and the separation of thymine, cytosine, 5-flurouracil, 4,6-diamino-pyrimidine, purine was accomplished.

  9. Subsidence and capillary effects in chalks

    OpenAIRE

    Delage, Pierre; Schroeder, Christian; Cui, Yu-Jun

    1996-01-01

    Based on the concepts of the mechanics of unsaturated soils where capillary phenomena arise between the wetting fluid (water) and the non-wetting one (air), the subsidence of chalks containing oil (non-wetting fluid) during water injection (wetting fluid) is analysed. It is shown that the collapse phenomenon of unsaturated soils under wetting provides a physical explanation and a satisfactory prediction of the order of magnitude of the subsidence of the chalk. The use of a well established co...

  10. Identifying kinetically stable proteins with capillary electrophoresis

    OpenAIRE

    Zhang, Songjie; Xia, Ke; Chung, Wai Keen; Cramer, Steven M; Colón, Wilfredo

    2010-01-01

    Unlike most proteins, which are in equilibrium with partially and globally unfolded conformations, kinetically stable proteins (KSPs) are trapped in their native conformations and are often resistant to harsh environment. Based on a previous correlation between kinetic stability (KS) and a protein's resistance to sodium dodecyl sulfate (SDS), we show here a simple method to identify KSPs by SDS-capillary electrophoresis (CE). Control non-KSPs were fully denatured by SDS and formed protein:SDS...

  11. Separation of Peptides by Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel gradient pressurized capillary electrochromatography (pCEC) instrument wasdeveloped to separate peptides. Two gradient elution modes, hydrophobic and hydrophilicinteraction mode in pCEC, were performed on this instrument. Baseline separation of sixpeptides was obtained on two gradient modes with C18 column and strong cationic exchangecolumn respectively. The effects of mixer volume and total flow rate of pumps on resolutionwere also discussed.

  12. Hydrogen peroxide production in capillary underwater discharges

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.

    2007-01-01

    Roč. 40, č. 9 (2007), s. 2801-2809. ISSN 0022-3727 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water breakdown * capillary * AC discharge * conductive liquid * hydrogen peroxide formation * initial rate * energy yield Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.200, year: 2007

  13. Hydrogen peroxide production in capillary underwater discharges

    Czech Academy of Sciences Publication Activity Database

    De Baerdemaeker, F.; Šimek, Milan; Člupek, Martin; Lukeš, Petr; Leys, C.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 1132-1139. ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA AV ČR(CZ) IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * capillary * AC discharge * hydrogen peroxide formation * initial rate Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  14. Familial Pulmonary Capillary Hemangiomatosis Early in Life

    OpenAIRE

    Speer, Christian P.; Mark, Eugene J.; Johannes Wirbelauer; Alexander Marx; Helge Hebestreit

    2011-01-01

    Background. Pulmonary capillary hemangiomatosis (PCH) is a rare disease, especially in infancy. Four infants have been reported up to the age of 12 months. So far, no familial patients are observed at this age. Patients. We report three siblings, two female newborns and a foetus of 15-week gestation of unrelated, healthy parents suffering from histologically proven PCH. The first girl presented with increased O2 requirements shortly after birth and patent ductus arteriosus (PDA). She subseque...

  15. Hydrophilic polymer systems in capillary electrophoretic separations

    Czech Academy of Sciences Publication Activity Database

    Guryča, Vilém; Novotný, M. V.; Michálek, Jiří; Pacáková, V.

    Praha : Charles University, Department of Chemistry, Albertov, 2005, s. 8-12. ISBN 80-903103-1-1. [International Student Conference ‘Modern Analytical Chemistry’/2./. Praha (CZ), 26.09.2005-27.09.2005] Grant ostatní: National Institute of General Medical Sciences, U.S. Department of Health and Human Services(US) GM24349 Institutional research plan: CEZ:AV0Z40500505 Keywords : analytical glycobiology * capillary electrochromatography * hydrophilic acrylamide monoliths Subject RIV: CD - Macromolecular Chemistry

  16. Highly conductive, printable pastes from capillary suspensions

    Science.gov (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert

    2016-08-01

    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  17. Spatial reconstruction of facial skin capillaries

    Directory of Open Access Journals (Sweden)

    Makarchuk O.I.

    2010-01-01

    Full Text Available To define structural and functional changes of skin capillaries in women of different age groups in this work intraoperational biopsy material of skin of 205 women at the age from 19 to 75 years, that was taken during standard surgery instrumentations for different defects of face and neck skin correction, was investigated. Skin material of cheek face region, temple region of head and anterior neck region was morphologically processed. To define parameters of dermal capillars and spatial reconstruction of intrapapillary capillary loops, serial sections was investigated with the help of morphometry. It was determined, that microcirculation age changes include structural disorders of intrapapillary capillary loops. Essential struc-tural and functional changes observed in skin of cheek region in women of 33-40 years and in temple region of head and anterior neck region in women of 41-50 years. It is typical at the patients with nicotinic dependence, ischemic heart disease, hypertonic disease, a diabetes, and also adiposity of a different degree essential infringement of microvessels bed structure of a skin that gives the basis for allocation of the given contingent of patients as group high intraoperative and postoperative risk at carrying out of operative interventions for correction of face skin involutive changes.

  18. The order of condensation in capillary grooves.

    Science.gov (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo

    2013-05-15

    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented. PMID:23611878

  19. Capillary-scale polarimetry for flowing streams.

    Science.gov (United States)

    Swinney, K; Nodorft, J; Bornhop, D J

    2001-05-01

    A micro-polarimeter with a 40 nL probe volume was configured so that it is compatible with capillary-scale flowing stream analysis. The optical configuration consists of two polarizing optics, a capillary, a laser source and a photodetector which is very simple to configure with low cost components. This unique polarimeter is based upon the interaction of a linearly polarized laser beam and a capillary tube, in this case one with an inner diameter of 250 microns. Side illumination of the tube results in a 360 degrees fan of scattered light, which contains a set of interference fringes that change in response to optically active solutes. Solutes that exhibit optical activity are quantifiable and are detected by analyzing the polarization state of the backscattered light. The ability of the instrument to make extremely sensitive optical activity measurements in flowing streams is shown by the determination of (R)-mandelic acid, with a detection limit of 66 x 10(-6) M (507 x 10(-12) g), and the non-optically active control, glycerol. Additionally, the detector was configured to minimize refractive index perturbations. PMID:11394312

  20. Serial multiplier arrays for parallel computation

    Science.gov (United States)

    Winters, Kel

    1990-01-01

    Arrays of systolic serial-parallel multiplier elements are proposed as an alternative to conventional SIMD mesh serial adder arrays for applications that are multiplication intensive and require few stored operands. The design and operation of a number of multiplier and array configurations featuring locality of connection, modularity, and regularity of structure are discussed. A design methodology combining top-down and bottom-up techniques is described to facilitate development of custom high-performance CMOS multiplier element arrays as well as rapid synthesis of simulation models and semicustom prototype CMOS components. Finally, a differential version of NORA dynamic circuits requiring a single-phase uncomplemented clock signal introduced for this application.

  1. Multiple capillary isotachophoresis with repetitive hydrodynamic injections for performance improvement of the electromigration preconcentration.

    Science.gov (United States)

    Mai, Thanh Duc; Oukacine, Farid; Taverna, Myriam

    2016-07-01

    A novel electrokinetic preconcentration technique based on multiple isotachophoresis (M-ITP) realised in a micro-bored capillary to improve sensitivity for capillary electrophoresis with hydrodynamic injection was developed. The M-ITP operation relies on pressure-assisted pushing of a preconcentrated sample plug after the first ITP process back to the injection end of the capillary, followed by a large volume hydrodynamic injection prior to application of the second ITP step. This operational cycle was repeated as many times as desired with very good repeatability of the peak areas and peak heights at each ITP round (RSD less than 8%). Using imidazole and benzoate as models for cationic and anionic analytes, important insights into the mechanism of this electrokinetic preconcentration process with and without the presence of the electro-osmotic flow (EOF) at acidic and basic conditions were provided. Stacking of the benzoate ion, selected as one model analyte, in the presence of EOF and from a sample plug representing up to 300% of the total capillary length was successfully demonstrated. M-ITP was then demonstrated through the enrichment of the Aβ 1-40 amyloid peptide, considered as one of the biomarkers for biochemical diagnosis of Alzheimer's disease. Quantification of Aβ 1-40 down to 50nM with UV detection was made possible with 6 M-ITP cycles. PMID:27236482

  2. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    International Nuclear Information System (INIS)

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification

  3. Heatable sample holder for capillary experiments

    International Nuclear Information System (INIS)

    Complete text of publication follows. The transmission of charged particles through various types of capillaries has been recently in the center of interest. The observed ion guiding phenomenon offered new possibilities for fundamental investigations, characterization of the inner walls of the insulating tube and also holds various possible applications. Thereafter an intensive experimental investigation started to understand the basic properties of the guiding for ions using several insulating materials like PET, SiO2, and Al2O3. Another viewpoint of the experiments was how the guiding effect changes with the length or with the inner diameter of the capillary. Recently guiding of slow highly charged ions through a single glass macrocapillary has been studied, showing that guiding occurs even for macroscopic dimensions. As a completely new aspect we would like to measure the temperature dependence of the ion-guiding. The investigation of the temperature dependence of the guiding gives new possibilities both for a fundamental understanding of the guiding phenomenon and applications. The guiding maybe adjustable by changing the temperature of the capillary, namely it may improve the efficiency of the guiding power. In our future experiments we try to find the answer how the ion guiding ability of an insulating capillary changes as a function of temperature. For these experiments a completely new heatable sample holder was designed (see Fig. 1). Our preliminary results shows that the ion guiding ability of the capillary strongly decreases, when the temperature of the glass is raised from 20degC (room temperature) to 80degC. Acknowledgements The financial support received from the ITS-LEIF Project (RII3 026015) is gratefully acknowledged. This work was supported by the 'Stiftung Aktion Oesterreich-Ungarn', the grant 'Bolyai' from the Hungarian Academy of Sciences, the TeT Grant no. AT-7/2007, the Hungarian National Office for Research and Technology, as well as

  4. NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water

    Science.gov (United States)

    Prather, Cody A.; Bray, Joshua M.; Seymour, Joseph D.; Codd, Sarah L.

    2016-02-01

    Nuclear magnetic resonance (NMR) techniques were used to study the capillary trapping mechanisms relevant to carbon sequestration. Capillary trapping is an important mechanism in the initial trapping of supercritical CO2 in the pore structures of deep underground rock formations during the sequestration process. Capillary trapping is considered the most promising trapping option for carbon sequestration. NMR techniques noninvasively monitor the drainage and imbibition of air, CO2, and supercritical CO2 with DI H2O at low capillary numbers in a Berea sandstone rock core under conditions representative of a deep underground saline aquifer. Supercritical CO2 was found to have a lower residual nonwetting (NW) phase saturation than that of air and CO2. Supercritical CO2 behaves differently than gas phase air or CO2 and leads to a reduction in capillary trapping. NMR relaxometry data suggest that the NW phase, i.e., air, CO2, or supercritical CO2, is preferentially trapped in larger pores. This is consistent with snap-off conditions being more favorable in macroscale pores, as NW fluids minimize their contact area with the solid and hence prefer larger pores.

  5. Substrate integrated antennas and arrays

    CERN Document Server

    Cheng, Yu Jian

    2015-01-01

    Substrate Integrated Antennas and Arrays provides a single source for cutting-edge information on substrate integrated circuits (SICs), substrate integrated waveguide (SIW) feeding networks, SIW slot array antennas, SIC traveling-wave antennas, SIW feeding antennas, SIW monopulse antennas, and SIW multibeam antennas. Inspired by the author's extensive research, this comprehensive book:Describes a revolutionary SIC-based antenna technique with the potential to replace existing antenna technologiesExamines theoretical and experimental results connected to electrical and mechanical performanceExp

  6. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng

    2009-01-01

    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  7.  A Comparative Study on Fine Needle Aspiration Cytology versus Fine Needle Capillary Cytology in Thyroid Nodules

    OpenAIRE

    Prathvi Shetty; Divakar Shenoy; P. Sathyamoorthy Aithala; Celine George; Hilda Fernandes; Lobo, Geover J.; Leo F. Tauro

    2012-01-01

     Objectives: Fine needle aspiration cytology (FNAC/FNA) is the primary investigation for thyroid nodules. Fine needle capillary cytology (FNCC/FNC) is an alternative technique not commonly used, though it is easy to perform. Both the techniques have their own advantages and disadvantages. This study aims to compare these two cytological techniques for better specimen and cytological diagnosis.Methods: This prospective study was conducted on 50 patients attending the FR Muller Medical College ...

  8. Customization of fused silica capillary properties by supercritical water treatment: Application in electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Roth, Michal; Šlais, Karel; Šalplachta, Jiří; Planeta, Josef

    Universidad de La Laguna, 2013. s. 220. [International Symposium on Electro- and Liquid Phase-separation Techniques /20./. 06.10.2013-09.10.2013, Puerto de la Cruz, Tenerife] R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : fused silica capillary * supercritical water * electromigration separations Subject RIV: CB - Analytical Chemistry, Separation

  9. Open-tubular capillary electrochromatography with gold nanoparticles separation of peptides

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Lacinová, Kateřina; Zmatlíková, Zdeňka; Sedláková, Pavla; Král, V.; Sýkora, D.; Řezanka, P.; Kašička, Václav

    Tbilisi : -, 2011. s. 172-172. [International Symposium on Electro- and Liquid Phase-separation Techniques. ITP 2011 /18./. 28.08.2011-31.08.2011, Tbilisi] R&D Projects: GA ČR(CZ) GA203/08/1428; GA ČR(CZ) GA203/09/0675 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50110509 Keywords : capillary electrochromatography * gold nanoparticles * peptides Subject RIV: CB - Analytical Chemistry, Separation

  10. Separation and structure-mobility relationship study of cyclic antimicrobial peptides by capillary zone electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Tůmová, Tereza; Monincová, Lenka; Čeřovský, Václav; Kašička, Václav

    Helsinki: -, 2015. YS5. [International Symposium on Electro- and Liquid Phase-Separation Techniques (ITP2015) /22./ and Nordic Separation Science Symposium (NoSSS2015) /8./. 30.08.2015-03.09.2015, Helsinki] R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : structure-mobility relationship * antimicrobial peptides * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  11. Affinity Capillary Electrophoresis Applied to Investigation of Noncovalent Interactions of (Bio)molecules

    Czech Academy of Sciences Publication Activity Database

    Kašička, Václav; Růžička, Martin; Konášová, Renáta; Koval, Dušan; Čížková, Martina; Teplý, Filip

    Geneva: -, 2015. s. 66-67. [HPLC 2015. International Symposium on High Performance Liquid Phase Separations and Related Techniques /42./. 21.06.2015-25.06.2015, Geneva] R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * binding constant * DNA * oligophenylenes * dibenzo-18-crown-6-ether Subject RIV: CB - Analytical Chemistry, Separation

  12. Investigation of [Gly6]-antamanide complexes with small cations by capillary affinity electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Pangavhane, Sachinkumar; Kašička, Václav

    Helsinki: -, 2015. P2. [International Symposium on Electro- and Liquid Phase-Separation Techniques (ITP2015) /22./ and Nordic Separation Science Symposium (NoSSS2015) /8./. 30.08.2015-03.09.2015, Helsinki] R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : antamanide * complexes * affinity capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation

  13. Semiquantitative determination of some nitrogen compounds by the formation of charge-transfer complexes of diphenylamine with p-dimethylaminobenzaldehyde by capillary solid-state spot-tests

    Institute of Scientific and Technical Information of China (English)

    Ishaat; M.Khan

    2010-01-01

    The interactions of p-dimethylaminobenzaldehyde (p-DAB) and potassium hydrogen sulphate (PHS) in equimolar ratio with various concentration of diphenylamine (solid test material) have been investigated by capillary spot-tests technique in order to investigate the effect of temperature and volume of material in test-tube. The formation of the colored boundary in the capillary is taken for the detection of organic compounds by spot-tests at different temperature and volume of solid test material.

  14. Capillary electrophoresis in tapered capillary manufactured by etching with sub-supercritical water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Roth, Michal; Planeta, Josef

    Messina : Chromaleont S.r.L, 2012 - (Sandra, P.; Mondello, L.). s. 254 [International Symposium on Capillary Chromatography /36./ and GC x GC Symposium /9./. 27.5.2012-01.06.2012, Riva del Garda] R&D Projects: GA ČR(CZ) GAP206/11/0138; GA ČR(CZ) GAP106/12/0522; GA MV VG20112015021 Institutional research plan: CEZ:AV0Z40310501 Keywords : electrophoresis in tapered capillaries * supercritical water * complex samples Subject RIV: CB - Analytical Chemistry, Separation

  15. Continuous micro liquid delivery by evaporation on a gradient-capillary microstructure surface

    International Nuclear Information System (INIS)

    An evaporation-based micropump is proposed and fabricated for delivering liquid with constant flow rates of ∼100 nl s−1 continuously. The liquid is pumped by the surface transpiration in a micro evaporator, which consists of a gradient-capillary surface by microfabricating micropost arrays. The micropost arrays are patterned such that the gaps between microposts reduce gradually away from the center microwell to the surface edge, by which a capillary force is formed to pull the liquid spreading on the evaporator surface. A simple analytical model is proposed to obtain the primary characteristics of the micropump, by which the influences of the contact angle of fluid on the flow rate and also the corresponding parameters during the operation of micropump are analyzed. The most striking feature of the micropump is that it can be precisely and simply controlled only by varying the surface wall temperature. The results indicate that a very linear relationship between the flow rate and solid wall temperature can be achieved by the present design. Quite consistent variation trend of the flow rate with wall temperature can be obtained between the experimental tests and theoretical analysis. The present micropump concept may be potentially used in delivering a precisely controlled, continuous flow rate for many new applications in the fields of biotechnology, environmental testing and instrumentation for analytical chemistry

  16. Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging.

    Science.gov (United States)

    Leitner, Michael; Stock, Lorenz G; Traxler, Lukas; Leclercq, Laurent; Bonazza, Klaus; Friedbacher, Gernot; Cottet, Hervé; Stutz, Hanno; Ebner, Andreas

    2016-08-01

    Capillary zone electrophoresis (CZE) is a powerful analytical technique for fast and efficient separation of different analytes ranging from small inorganic ions to large proteins. However electrophoretic resolution significantly depends on the coating of the inner capillary surface. High technical efforts like Successive Multiple Ionic Polymer Layer (SMIL) generation have been taken to develop stable coatings with switchable surface charges fulfilling the requirements needed for optimal separation. Although the performance can be easily proven in normalized test runs, characterization of the coating itself remains challenging. Atomic force microscopy (AFM) allows for topographical investigation of biological and analytical relevant surfaces with nanometer resolution and yields information about the surface roughness and homogeneity. Upgrading the scanning tip to a molecular biosensor by adhesive molecules (like partly inverted charged molecules) allows for performing topography and recognition imaging (TREC). As a result, simultaneously acquired sample topography and adhesion maps can be recorded. We optimized this technique for electrophoresis capillaries and investigated the charge distribution of differently composed and treated SMIL coatings. By using the positively charged protein avidin as a single molecule sensor, we compared these SMIL coatings with respect to negative charges, resulting in adhesion maps with nanometer resolution. The capability of TREC as a functional investigation technique at the nanoscale was successfully demonstrated. PMID:27265903

  17. UAVSAR Phased Array Aperture

    Science.gov (United States)

    Chamberlain, Neil; Zawadzki, Mark; Sadowy, Greg; Oakes, Eric; Brown, Kyle; Hodges, Richard

    2009-01-01

    This paper describes the development of a patch antenna array for an L-band repeat-pass interferometric synthetic aperture radar (InSAR) instrument that is to be flown on an unmanned aerial vehicle (UAV). The antenna operates at a center frequency of 1.2575 GHz and with a bandwidth of 80 MHz, consistent with a number of radar instruments that JPL has previously flown. The antenna is designed to radiate orthogonal linear polarizations in order to facilitate fully-polarimetric measurements. Beam-pointing requirements for repeat-pass SAR interferometry necessitate electronic scanning in azimuth over a range of -20degrees in order to compensate for aircraft yaw. Beam-steering is accomplished by transmit/receive (T/R) modules and a beamforming network implemented in a stripline circuit board. This paper, while providing an overview of phased array architecture, focuses on the electromagnetic design of the antenna tiles and associated interconnects. An important aspect of the design of this antenna is that it has an amplitude taper of 10dB in the elevation direction. This is to reduce multipath reflections from the wing that would otherwise be detrimental to interferometric radar measurements. This taper is provided by coupling networks in the interconnect circuits as opposed to attenuating the output of the T/R modules. Details are given of material choices and fabrication techniques that meet the demanding environmental conditions that the antenna must operate in. Predicted array performance is reported in terms of co-polarized and crosspolarized far-field antenna patterns, and also in terms of active reflection coefficient.

  18. Capillary remodeling in bleomycin-induced pulmonary fibrosis.

    OpenAIRE

    Schraufnagel, D. E.; Mehta, D.; Harshbarger, R.; Treviranus, K.; Wang, N. S.

    1986-01-01

    Lung fibrosis is a process in which collagen is laid down and the delicate capillary-alveolar relationship is disturbed. The architectural changes which occur in the capillaries, a main element of the oxygen transferring unit, are difficult to illustrate without a three-dimensional tool, such as scanning electron microscopy. Therefore, a scanning electron microscopic study was undertaken to show the capillary changes of lung fibrosis. Fibrosis was induced in rats by intratracheal instillation...

  19. Nicked-sleeve interface for two-dimensional capillary electrophoresis

    OpenAIRE

    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.

    2013-01-01

    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface.

  20. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu

    2009-01-01

    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.