Sample records for capillaries

  1. Intramedullary capillary haemangioma.

    LENUS (Irish Health Repository)

    Kelleher, T


    Intramedullary capillary haemangioma is extremely rare and only four cases have been previously reported. We describe a further case, outlining the clinical, radiological, surgical and pathological features.

  2. Capillary saturation and desaturation. (United States)

    Hilfer, R; Armstrong, R T; Berg, S; Georgiadis, A; Ott, H


    Capillary desaturation experiments produce disconnected (trapped) ganglia of mesoscopic sizes intermediate between pore size and system size. Experimental evidence for interactions between these mesoscale clusters during desaturation is analyzed and discussed within the established microscopic and macroscopic laws of Newton, Young-Laplace, and Darcy. A theoretical expression for capillary number correlations is introduced that seems to have remained unnoticed. It expresses capillary desaturation curves in terms of stationary capillary pressures and relative permeabilities. The theoretical expression shows that the plateau saturation in capillary desaturation curves may in general differ from the residual nonwetting saturation defined through the saturation limit of the main hysteresis loop. Hysteresis effects as well as the difference between wetting and nonwetting fluids are introduced into the analysis of capillary desaturation experiments. The article examines experiments with different desaturation protocols and discusses the existence of a mesoscopic length scale intermediate between pore scale and sample scale. The theoretical expression is derived entirely within the existing traditional theory of two-phase flow in porous media and compared to a recent experiment. PMID:26764820

  3. Gas-Filled Capillary Model (United States)

    Steinhauer, L. C.; Kimura, W. D.


    We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.

  4. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H


    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  5. Derivatization in Capillary Electrophoresis. (United States)

    Marina, M Luisa; Castro-Puyana, María


    Capillary electrophoresis is a well-established separation technique in analytical research laboratories worldwide. Its interesting advantages make CE an efficient and potent alternative to other chromatographic techniques. However, it is also recognized that its main drawback is the relatively poor sensitivity when using optical detection. One way to overcome this limitation is to perform a derivatization reaction which is intended to provide the analyte more suitable analytical characteristics enabling a high sensitive detection. Based on the analytical step where the CE derivatization takes place, it can be classified as precapillary (before separation), in-capillary (during separation), or postcapillary (after separation). This chapter describes the application of four different derivatization protocols (in-capillary and precapillary modes) to carry out the achiral and chiral analysis of different compounds in food and biological samples with three different detection modes (UV, LIF, and MS). PMID:27645730

  6. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L


    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  7. Capillary electrophoresis - electrospray ionization mass spectrometry in small diameter capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Wahl, J.H.; Goodlett, D.R.; Udseth, H.R.; Smith, R.D.


    Methods (such as small inner diameter capillaries) are being explored to increase analyte sensitivity in capillary electrophoresis- electrospray ionization/mass spectroscopy(CE-ESI/MS). Results are reported for melittin in a protein mixture, with 10 to 100 {mu}m ID capillaries; and for a mixture of aprotinin, cytochrome c, myoglobin, and carbonic anhydrase, with 5 to 50 {mu}m ID capillaries. It is shown that an increase in solute sensitivity occurs when small ID capillaries ({lt} 20 {mu}m) are used in CE-ESI/MS for both a peptide and a protein mixture. 3 figs. (DLC)

  8. due to Capillary Forces

    Directory of Open Access Journals (Sweden)

    Hassen M. Ouakad


    Full Text Available We present modeling and analysis for the static behavior and collapse instabilities of doubly-clamped and cantilever microbeams subjected to capillary forces. These forces can be as a result of a volume of liquid trapped underneath the microbeam during the rinsing and drying process in fabrication. The model considers the microbeam as a continuous medium, the capillary force as a nonlinear function of displacement, and accounts for the mid-plane stretching and geometric nonlinearities. The capillary force is assumed to be distributed over a specific length underneath the microbeam. The Galerkin procedure is used to derive a reduced-order model consisting of a set of nonlinear algebraic and differential equations that describe the microbeams static and dynamic behaviors. We study the collapse instability, which brings the microbeam from its unstuck configuration to touch the substrate and gets stuck in the so-called pinned configuration. We calculate the pull-in length that distinguishes the free from the pinned configurations as a function of the beam thickness and gap width for both microbeams. Comparisons are made with analytical results reported in the literature based on the Ritz method for linear and nonlinear beam models. The instability problem, which brings the microbeam from a pinned to adhered configuration is also investigated. For this case, we use a shooting technique to solve the boundary-value problem governing the deflection of the microbeams. The critical microbeam length for this second instability is also calculated.

  9. Tapered capillary optics (United States)

    Hirsch, Gregory


    A metal or glass wire is etched with great precision into a very narrowly tapering cone which has the shape of the desired final capillary-optics bore. By controlling the rate of removal of the wire from an etchant bath, a carefully controlled taper is produced. A sensor measures the diameter of the wire as it leaves the surface of the etchant. This signal is used for feedback control of the withdrawal speed. The etched wire undergoes a treatment to produce an extremely low surface-roughness. The etched and smoothed wire is coated with the material of choice for optimizing the reflectivity of the radiation being focused. This could be a vacuum evaporation, sputtering, CVD or aqueous chemical process. The coated wire is either electroplated, built up with electroless plating, or encapsulated in a polymer cylinder such as epoxy to increase the diameter of the wire for easier handling and greater robustness. During this process, the wire is vertically oriented and tensioned to assure that the wire is absolutely straight. The coated and electroformed wire is bonded to a flat, rigid substrate and is then periodically segmented by cutting or etching a series of narrow slits or grooves into the wire. The wire is vertically oriented and tensioned during the bonding process to assure that it is straight. The original wire material is then chemically etched away through the slits or otherwise withdrawn to leave the hollow internal bore of the final tapered-capillary optical element.

  10. Capillary optics for radiation focusing

    Energy Technology Data Exchange (ETDEWEB)

    Peurrung, A.J.; Reeder, P.L.; Bliss, M.; Craig, R.A.; Lepel, E.A.; Stromswold, D.C.; Stoffels, J.; Sunberg, D.S.; Tenny, H.


    Capillary lens technology may ultimately bring benefits to neutron and x-ray-based science like conventional lenses with visible light. Although the technology is not yet 10 years old, these lenses have already had a significant impact in engineering, science, and medicine. Capillary lenses are advantageous when it is desirable to increase the radiation flux at a location without regard to its angular divergence. PNNL has worked to improve the technology in several ways. A single, optimally tapered capillary was manufactured, which allows intensity gains of a factor of 270 for an initially parallel, incident x-ray beam. Feasibility of constructing neutron lenses using {sup 58}Ni (particularly effective at reflecting neutrons) has been explored. Three applications for capillary optics have been identified and studied: neutron telescope, Gandolphi x-ray diffractometry, and neutron radiotherapy. A brief guide is given for determining which potential applications are likely to be helped by capillary optics.

  11. Ion guiding in alumina capillaries

    DEFF Research Database (Denmark)

    Juhász, Z.; Sulik, B.; Biri, S.;


    Transmission of a few keV impact energy Ne ions through capillaries in anodic alumina membranes has been studied with different ion counting methods using an energy dispersive electrostatic spectrometer, a multichannel plate (MCP) array and sensitive current-measurement. In the present work, we...... focus our attention to the measurements with the MCP array. The alumina capillaries were prepared by electro-chemical oxidation of aluminium foils. For the present experiments guiding of 3-6 keV Ne ions has been studied in two samples with capillary diameter of about 140 nm and 260 nm and with capillary...... length of about 15 μm. At these energies, the ions have been efficiently guided by the capillaries up to few degrees tilt angle. In this work, we compare the results obtained by the energy dispersive spectrometer to those studied by the MCP array. © 2008 Elsevier B.V. All rights reserved....

  12. Biomedical applications of capillary electrophoresis (United States)

    Kartsova, L. A.; Bessonova, E. A.


    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references.

  13. Instability of the capillary bridge (United States)

    Pare, Gounseti; Hoepffner, Jerome


    Capillary adhesion is a physical mechanism that maintains two bodies in contact by capillarity through a liquid ligament. The capillary bridge is an idealization of this capillary adhesion. In this study we first focus on the classical case of the stability of the capillary bridge. Secondly we study a slightly more complex configuration, imagining a flow in the capillary bridge as in the case of the dynamics of the neck of a liquid ligament, in its withdrawal under the effect of capillarity. Inspired by the experiments on soap films of Plateau, the configuration analyzed consists of an initially axisymmetric, mass of fluid held by surface tension forces between two parallel, coaxial, solid pipes of the same diameter. The results presented are obtained by numerical simulations using the free software, Gerris Flow Solver. We first focus on the capillary Venturi. In the static configuration the stability diagram of the capillary bridge obtained is in perfect agreement with the results of Lev A. Slobozhanin. In the dynamic case we develop a matlab code based on the one dimensional equations of Eggers and Dupont. The comparison of the bifurcation diagram obtained and the numerical simulations shows a good agreement.

  14. Surface Tension and Capillary Rise (United States)

    Walton, Alan J.


    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  15. Capillary Condensation in Confined Media

    CERN Document Server

    Charlaix, Elisabeth


    We review here the physics of capillary condensation of liquids in confined media, with a special regard to the application in nanotechnologies. The thermodynamics of capillary condensation and thin film adsorption are first exposed along with all the relevant notions. The focus is then shifted to the modelling of capillary forces, to their measurements techniques (including SFA, AFM and crack tips) and to their influence on AFM imaging techniques as well as on the static and dynamic friction properties of solids (including granular heaps and sliding nanocontacts). A great attention is spent in investigating the delicate role of the surface roughness and all the difficulties involved in the reduction of the probe size to nanometric dimensions. Another major consequence of capillary condensation in nanosystems is the activation of several chemical and corrosive processes that can significantly alter the surface properties, such as dissolution/redeposition of solid materials and stress-corrosion crack propagati...

  16. Capillary electrophoresis electrospray ionization mass spectrometry interface (United States)

    Smith, Richard D.; Severs, Joanne C.


    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  17. Laser-based capillary polarimeter. (United States)

    Swinney, K; Hankins, J; Bornhop, D J


    A laser-based capillary polarimeter has been configured to allow for the detection of optically active molecules in capillary tubes with a characteristic inner diameter of 250 microm and a 39-nL (10(-9)) sample volume. The simple optical configuration consists of a HeNe laser, polarizing optic, fused-silica capillary, and charge-coupled device (CCD) camera in communication with a laser beam analyzer. The capillary scale polarimeter is based on the interaction between a polarized laser beam and a capillary tube, which results in a 360 degree fan of scattered light. This array of scattered light contains a set of interference fringe, which respond in a reproducible manner to changes in solute optical activity. The polarimetric utility of the instrument will be demonstrated by the analysis of two optically active solutes, R-mandelic acid and D-glucose, in addition to the nonoptically active control, glycerol. The polarimetric response of the system is quantifiable with detection limits facilitating 1.7 x 10(-3) M or 68 x 10(-12) nmol (7 psi 10(-9) g) sensitivity. PMID:11315158

  18. Impacts on oil recovery from capillary pressure and capillary heterogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Bognoe, Thomas


    The main conclusions drawn from this thesis are; 7 scientific papers are published on a broad variety of subjects, and describes in detail the experiments and research treated in this thesis. Scientific research has been performed, investigating the subjects of capillary pressure and capillary heterogeneities from different angles. This thesis discusses the findings in this study and aims to illustrate the benefits of the results obtained for further development of other experiments, and/or even the industrial benefits in field development. The methods for wettability alteration have developed throughout the work. From producing heterogeneous wettability alterations, the methods have improved to giving both radial and lateral uniform wettability alterations, which also remains unaltered throughout the duration of the experimental work. The alteration of wettability is dependent on initial water saturation, flow rate, aging time and crude oil composition. Capillary pressure and relative permeability curves have been measured for core plugs at different wettabilities using conventional centrifuge methods. The trends observed are mostly consistent with theory. The production mechanisms of strongly and moderately water wet chalk has been investigated. At strongly water wet conditions in fractured chalk; the flow is governed by capillary forces, showing strong impact from the fractures. At moderately water wet conditions, the impact of the fractures are absent, and a dispersed water front is observed during the displacement. The oil recovery is about the same, at the two wettabilities. Fracture crossing mechanisms at the same wettability conditions have been mapped. And the observations are consistent with those of the water floods. During strongly water wet displacement, the fracture crossing is occurring once the inlet core has reached endpoint of spontaneous imbibition. At moderately water wet conditions the fracture crossing is less abrupt, and creation of wetting

  19. Non-Aqueous Capillary Electrophoresis (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  20. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole


    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  1. Capillary Rise in a Wedge (United States)

    Piva, M.


    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  2. DNA Sequencing Using capillary Electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Barry Karger


    The overall goal of this program was to develop capillary electrophoresis as the tool to be used to sequence for the first time the Human Genome. Our program was part of the Human Genome Project. In this work, we were highly successful and the replaceable polymer we developed, linear polyacrylamide, was used by the DOE sequencing lab in California to sequence a significant portion of the human genome using the MegaBase multiple capillary array electrophoresis instrument. In this final report, we summarize our efforts and success. We began our work by separating by capillary electrophoresis double strand oligonucleotides using cross-linked polyacrylamide gels in fused silica capillaries. This work showed the potential of the methodology. However, preparation of such cross-linked gel capillaries was difficult with poor reproducibility, and even more important, the columns were not very stable. We improved stability by using non-cross linked linear polyacrylamide. Here, the entangled linear chains could move when osmotic pressure (e.g. sample injection) was imposed on the polymer matrix. This relaxation of the polymer dissipated the stress in the column. Our next advance was to use significantly lower concentrations of the linear polyacrylamide that the polymer could be automatically blown out after each run and replaced with fresh linear polymer solution. In this way, a new column was available for each analytical run. Finally, while testing many linear polymers, we selected linear polyacrylamide as the best matrix as it was the most hydrophilic polymer available. Under our DOE program, we demonstrated initially the success of the linear polyacrylamide to separate double strand DNA. We note that the method is used even today to assay purity of double stranded DNA fragments. Our focus, of course, was on the separation of single stranded DNA for sequencing purposes. In one paper, we demonstrated the success of our approach in sequencing up to 500 bases. Other

  3. Exponential asymptotics and capillary waves


    Chapman, S. J.; Vanden-Broeck, J.


    Recently developed techniques in exponential asymptotics beyond all orders are employed on the problem of potential flows with a free surface and small surface tension, in the absence of gravity. Exponentially small capillary waves are found to be generated on the free surface where the equipotentials from singularities in the flow (for example, stagnation points and corners) meet it. The amplitude of these waves is determined, and the implications are considered for many quite general flows....

  4. Capillary electrophoresis in food authenticity. (United States)

    Kvasnicka, Frantisek


    Food authenticity is a term which simply refers to whether the food purchased by the consumer matches its description. False description can occur in many forms, from the undeclared addition of water or other cheaper materials, or the wrong declaration of the amount of a particular ingredient in the product, to making false statements about the source of ingredients i.e., their geographic, plant, or animal origin. The aim of this review is to summarize applications of capillary electrophoresis in food authentication.

  5. Inertial Rise in Short Capillaries

    CERN Document Server

    Shardt, Orest; Derksen, J J; Mitra, Sushanta K


    In this fluid dynamics video we show capillary rise experiments with diethyl ether in short tubes. The height of each short tube is less than the maximum height the liquid can achieve, and therefore the liquid reaches the top of the tube while still rising. Over a narrow range of heights, the ether bulges out from the top of the tube and spreads onto the external wall.

  6. Capillary Electrophoresis - Optical Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sepaniak, M. J.


    Molecular recognition systems are developed via molecular modeling and synthesis to enhance separation performance in capillary electrophoresis and optical detection methods for capillary electrophoresis. The underpinning theme of our work is the rational design and development of molecular recognition systems in chemical separations and analysis. There have been, however, some subtle and exciting shifts in our research paradigm during this period. Specifically, we have moved from mostly separations research to a good balance between separations and spectroscopic detection for separations. This shift is based on our perception that the pressing research challenges and needs in capillary electrophoresis and electrokinetic chromatography relate to the persistent detection and flow rate reproducibility limitations of these techniques (see page 1 of the accompanying Renewal Application for further discussion). In most of our work molecular recognition reagents are employed to provide selectivity and enhance performance. Also, an emerging trend is the use of these reagents with specially-prepared nano-scale materials. Although not part of our DOE BES-supported work, the modeling and synthesis of new receptors has indirectly supported the development of novel microcantilevers-based MEMS for the sensing of vapor and liquid phase analytes. This fortuitous overlap is briefly covered in this report. Several of the more significant publications that have resulted from our work are appended. To facilitate brevity we refer to these publications liberally in this progress report. Reference is also made to very recent work in the Background and Preliminary Studies Section of the Renewal Application.

  7. Critical Capillary Number of Interfacial Film Displacement in a Capillary Tube

    CERN Document Server

    Yan, Changfei


    The role of surface tension and wettability in the dynamics of air-liquid interfaces during immiscible fluid displacement flows in capillary tube driven by pressure has been investigated. The contact angle and capillary number drive the force wetting processes which is controlled by the balance between the capillary and the viscous lubrication forces. The dynamic wetting condition with the critical capillary number is studied analytically and validated experimentally, which demonstrates that the critical capillary number is associated with the contact angle, slip length and capillary radius.

  8. Progression of Diabetic Capillary Occlusion: A Model.

    Directory of Open Access Journals (Sweden)

    Xiao Fu


    Full Text Available An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

  9. Capillary pumped loop body heat exchanger (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)


    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  10. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries. (United States)

    Ershov; Zorin; Starov


    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  11. Analysis of Small Ions with Capillary Electrophoresis. (United States)

    Aulakh, Jatinder Singh; Kaur, Ramandeep; Malik, Ashok Kumar


    Small inorganic ions are easily separated through capillary electrophoresis because they have a high charge-to-mass ratio and suffer little from some of the undesired phenomenon affecting higher molecular weight species like adsorption to the capillary wall, decomposition, and precipitation. This chapter is focused on the analysis of small ions other than metal ions using capillary electrophoresis. Methods are described for the determination of ions of nitrogen, phosphorus, sulfur, fluorine, chlorine, bromine, and iodine. PMID:27645739

  12. A New Conductivity Detector for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A new conductivity detector for capillary electrophoresis consisting of an electrochemical cell and a conductive meter was developed. In the cell, the microelectrode and capillary were inserted through the cell wall and fixed by screws and sealing ring, the ends of microelectrode and capillary were located by a guide with two cross holes. LOD for K+ was 1.5×10-5 mol/L.

  13. Serum proteins analysis by capillary electrophoresis


    Uji, Yoshinori; Okabe, Hiroaki


    The purpose of this study was to evaluate the efficacy of multi-capillary electrophoresis instrument in clinical laboratory. An automated clinical capillary electrophoresis system was evaluated for performing serum proteins electrophoresis and immuno-fixation electrophoresis by subtraction. In this study the performance of capillary electrophoresis was compared with the cellulose acetate membrane electrophoresis and agarose gel immunofixation electrophoresis for serum proteins. The results of...

  14. Slope wavenumber spectrum models of capillary and capillary-gravity waves

    Institute of Scientific and Technical Information of China (English)

    贾永君; 张杰; 王岩峰


    Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using th...

  15. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter


    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then......, the bottom plate is lowered under gravity to produce a specified strain. The sample is thereby stretched into a filament. Provided the filament is sufficiently long, surface tension will induce a thinning of the filament until breakup in finite time. The numerical simulations are performed with a Lagrangian...

  16. Electromigration dispersion in Capillary Electrophoresis

    CERN Document Server

    Chen, Zhen; 10.1007/s11538-011-9708-7


    In a previous paper (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, vol. 72, pg. 2047) it was shown that the evolution of the solute concentration in capillary electrophoresis is described by a nonlinear wave equation that reduced to Burger's equation if the nonlinearity was weak. It was assumed that only strong electrolytes (fully dissociated) were present. In the present paper it is shown that the same governing equation also describes the situation where the electrolytic buffer consists of a single weak acid (or base). A simple approximate formula is derived for the dimensionless peak variance which is shown to agree well with published experimental data.

  17. Capillary electrophoresis theory and practice

    CERN Document Server

    Grossman, Paul D


    This book is designed to be a practical guide, used by wide audience, including those new to CE, those more experienced, routine users, those interested in technology development, and those involved with applications research. References have been emphasized to allow the reader to explore the detailed specifics and theoretical foundations.This book draws together the rapidly evolving, diverse, and multidisciplinary subject of capillary electrophoresis (CE). It is designed as a practical guide to be used by a wide audience, including those new to CE as well as more experienced users. T

  18. Nonaqueous Capillary Electrophoresis Mass Spectrometry. (United States)

    Klampfl, Christian W; Himmelsbach, Markus


    The term nonaqueous capillary electrophoresis (NACE) commonly refers to capillary electrophoresis with purely nonaqueous background electrolytes (BGE). Main advantages of NACE are the possibility to analyze substances with very low solubility in aqueous media as well as separation selectivity that can be quite different in organic solvents (compared to water)-a property that can be employed for manipulation of separation selectivities. Mass spectrometry (MS) has become more and more popular as a detector in CE a fact that applies also for NACE. In the present chapter, the development of NACE-MS since 2004 is reviewed. Relevant parameters like composition of BGE and its influence on separation and detection in NACE as well as sheath liquid for NACE-MS are discussed. Finally, an overview of the papers published in the field of NACE-MS between 2004 and 2014 is given. Applications are grouped according to the field (analysis of natural products, biomedical analysis, food analysis, analysis of industrial products, and fundamental investigations). PMID:27645734

  19. Atomic Force Controlled Capillary Electrophoresis (United States)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham


    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  20. Cryogenic Capillary Screen Heat Entrapment (United States)

    Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.


    Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

  1. Diagnostics of a high current capillary discharge

    International Nuclear Information System (INIS)

    We have demonstrated that thin (10 to 25 μm diameter) capillaries can be fabricated in suitably configured insulators for use in pulse power machines. Large currents can be used to heat these capillaries which produce photons with an energies greater than 1 keV

  2. Pulmonary capillary haemangiomatosis in a premature infant

    International Nuclear Information System (INIS)

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  3. Pulmonary capillary haemangiomatosis in a premature infant

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cicero J.T.A.; Massie, John; Mandelstam, Simone A. [University of Melbourne, Royal Children' s Hospital, Parkville, VIC (Australia)


    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder characterized by widespread capillary proliferation in the lung, infiltrating the interstitium and the alveolar walls. We present the HRCT features of PCH in a surviving ex-premature infant. To our knowledge, this is a unique case of the radiological features of PCH in a young living infant. (orig.)

  4. Sheathless interface for coupling capillary electrophoresis with mass spectrometry (United States)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.


    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  5. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial. (United States)

    Galievsky, Victor A; Stasheuski, Alexander S; Krylov, Sergey N


    Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy. PMID:27543015

  6. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.;


    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  7. Capillary electrochromatography using fibers as stationary phases. (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T


    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method.

  8. Capillary detectors for high resolution tracking

    CERN Document Server

    Annis, P


    We present a new tracking device based on glass capillary bundles or layers filled with highly purified liquid scintillator and read out at one end by means of image intensifiers and CCD devices. A large-volume prototype consisting of 5 × 105 capillaries with a diameter of 20 μm and a length of 180 cm and read out by a megapixel CCD has been tested with muon and neutrino beams at CERN. With this prototype a two track resolution of 33 μm was achieved with passing through muons. Images of neutrino interactions in a capillary bundle have also been acquired and analysed. Read-out chains based on Electron Bombarded CCD (EBCCD) and image pipeline devices are also investigated. Preliminary results obtained with a capillary bundle read out by an EBCCD are presented.

  9. Capillary electrochromatography using fibers as stationary phases. (United States)

    Jinno, K; Watanabe, H; Saito, Y; Takeichi, T


    Fiber-packed capillary columns have been evaluated in chromatographic performance in capillary electrochromatography (CEC). The change of electroosmotic flow (EOF) velocity and selectivity using different kinds of fiber materials was examined. Although the EOF velocity among the different fiber packed columns was almost the same, retention of parabens was larger on the Kevlar-packed column than on the Zylon-packed one, and was larger on the as-span-type fiber-packed column than on the high-modulus-type packed one. Using 200 microm ID x 5 cm Kevlar packed column combined with a 100 microm ID x 20 cm precolumn capillary and a 530 microm ID x 45 cm postcolumn capillary, the separation of three parabens within 30 s was achieved. Other compounds were also separated in a few minutes by the fiber-packed CEC method. PMID:11669512

  10. Capillary Optics generate stronger X-rays (United States)


    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  11. Selectivity and detection in capillary electrophoresis


    Khaled, Maha Yehia


    This work is a contribution to the minimization of some of the selectivity and detection limitations in capillary electrophoresis. A more practical design of an electrochemical detector is introduced with simultaneous on-line UV detection (1), for the selective detection of a number of pungent and neurological compounds, the piperines and the capsacinoids. Commercially available microelectrodes together with large 25 μm id fused silica capillary columns are used for the fir...

  12. Capillary fracture of soft gels (United States)

    Bostwick, Joshua B.; Daniels, Karen E.


    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L∝t3/4. We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  13. Cell adhesion during bullet motion in capillaries. (United States)

    Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji


    A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis.

  14. Capillary fracture of soft gels. (United States)

    Bostwick, Joshua B; Daniels, Karen E


    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent. PMID:24229192

  15. A Novel Polybrene/Chondroitin Sulfate C Double Coated Capillary and Its Application in Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    DU,Ying-Xiang(杜迎翔); HONDA,Susumu; TAGA,Atsushi; LIU,Wen-Ying(刘文英); SUZUKI,Shigeo


    A new capillary coated by double polymer, polybrene/chondroitin sulfate C (P/CC), was developed using a simple procedure. The P/CC double coated capillary showed long lifetime,strong chemical stability and good reproducibility. It endured during more than 100 replicated analyses and was also tolerant to HCl (1 mol/L), NaOH (0.01 mol/L), CH3OH and CH3CN. The P/CC double coated capillary can be applied to basic drug analyses. The adsorption of basic drugs to the capillary wall was suppressed and the peak tailing greatly decreased. The use of the P/CC double coated capillary allowed excelent separation of the enantiomers of some basic drugs by using chondroitin sulfate C as the chiral selector, ami the peak symmetry of basic drugs was further improved under these conditions.

  16. Capillary-Tube Model and Experiment of Multiphase Flow in Capillary Fringes

    Institute of Scientific and Technical Information of China (English)

    武晓峰; 唐杰; 吕贤弼


    Contamination of soil and groundwater by organic substances is causing more and more problems worldwide. Analysis of the movement and distribution of nonaqueous phase liquids (NAPLs) in subsurface domain is critical for contaminant remediation. Two-dimensional experiments were conducted in a transparent plexiglass trough (105.0 cm×70.0 cm×1.5 cm) to simulate the release and redistribution of gasoline and kerosene in porous media. The results show that before the contaminant distribution reaches equilibrium, the movement of light NAPLs (LNAPLs) can be divided into four sub-stages. After the contaminant front reaches the upper boundary of the capillary fringe, contaminant movement along the upper boundary of the capillary fringe is the primary transport process. Most of the contaminants then move into the capillary fringe except for the residual part. One-dimensional and two-dimensional capillary tube models were developed to analyze the movement of LNAPLs in the capillary fringe.

  17. Synthetic Capillaries to Control Microscopic Blood Flow (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.


    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  18. EUV radiation from nitrogen capillary discharge (United States)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav


    In the last decade EUV sources attract interest from researchers over the world. One of the main motivations is EUV lithography, which could lead to further miniaturization in electronics. Nitrogen recombination laser at wavelength of 13.4 nm based on capillary discharge Z-pinch configuration could be used in experiments with testing of resolution of photoresist for EUV lithography (close to wavelength of 13.5 nm Si/Mo multilayer mirrors have a high reflectivity at normal incidence angles). In this work, pinching of nitrogen-filled capillary discharge is studied for the development of EUV laser, which is based on recombination pumping scheme. The goal of this study is achieving the required plasma conditions using a capillary discharge Z-pinch apparatus. In experiments with nitrogen, the capillary length was shortened from 232 mm to 90 mm and current quarter-period was changed from 60 ns to 50 ns in contrast with early experiments with Ne-like argon laser. EUV radiation from capillary discharge was registered by X-ray vacuum diode for different pressure, amplitude and duration of pre-pulse and charging voltage of the Marx generator.

  19. Capillary rise of water in hydrophilic nanopores

    CERN Document Server

    Gruener, Simon; Wallacher, Dirk; Kityk, Andriy V; Huber, Patrick; 10.1103/PhysRevE.79.067301


    We report on the capillary rise of water in three-dimensional networks of hydrophilic silica pores with 3.5nm and 5nm mean radii, respectively (porous Vycor monoliths). We find classical square root of time Lucas-Washburn laws for the imbibition dynamics over the entire capillary rise times of up to 16h investigated. Provided we assume two preadsorbed strongly bound layers of water molecules resting at the silica walls, which corresponds to a negative velocity slip length of -0.5nm for water flow in silica nanopores, we can describe the filling process by a retained fluidity and capillarity of water in the pore center. This anticipated partitioning in two dynamic components reflects the structural-thermodynamic partitioning in strongly silica bound water layers and capillary condensed water in the pore center which is documented by sorption isotherm measurements.

  20. Novel absorption detection techniques for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Y.


    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  1. Mach-like capillary-gravity wakes. (United States)

    Moisy, Frédéric; Rabaud, Marc


    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  2. Capillary Rise of Liquids in Nanopores

    CERN Document Server

    Huber, Patrick; Kityk, Andriy V


    We present measurements on the spontaneous imbibition (capillary rise) of water, a linear hydrocarbon (n-C16H34) and a liquid crystal (8OCB) into the pore space of monolithic, nanoporous Vycor glass (mean pore radius 5 nm). Measurements on the mass uptake of the porous hosts as a function of time, m(t), are in good agreement with the Lucas-Washburn square root of time prediction, typical of imbibition of liquids into porous hosts. The relative capillary rise velocities scale as expected from the bulk fluid parameters.

  3. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng


    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  4. A lymph nodal capillary-cavernous hemangioma. (United States)

    Dellachà, A; Fulcheri, E; Campisi, C


    A capillary-cavernous hemangioma in an obturator lymph node was found incidentally in a 64 year-old woman who had undergone unilateral salpingo-oophorectomy and lymphadenectomy for an ovarian neoplasm. Vascular tumors of lymph nodes are briefly reviewed including eight previously described nodal capillary-cavernous hemangiomas. The association with other splanchnic hemangiomas is pointed out and the likelihood that the lesion is a hamartoma rather than a true neoplasm is addressed. Despite its rarity, this entity needs to be recognized by lymphologists who image lymph nodes by lymphangiography as well as by lymph nodal pathologists. PMID:10494525

  5. Intracerebral Capillary Hemangioma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Youn, In Young; Kim, Jae Kyun; Byun, Jun Soo [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of); Park, Eon Sub [Dept. of Radiology, Chung Ang University Medical Center, Chung Ang University College of Medicine, Seoul (Korea, Republic of)


    Intracerebral capillary hemangiomas are very rare benign vascular tumors that mostly occur during infancy. We described a 69-year-old man with generalized tonic-clonic seizures who was diagnosed with an intracranial mass. Multidetector computed tomography, magnetic resonance imaging and digital subtraction angiography studies were performed for evaluation of brain, and there was a well-enhancing mass found in the right temporal lobe without a definite feeding vessel. The patient underwent surgery and the pathologic examination demonstrated marked proliferation of small vessels with a lobular pattern in the brain parenchyma, which was confirmed to be capillary hemangioma.

  6. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  7. A Rare Association of Trigeminal Autonomic Cephalgia: Pontine Capillary Telangiectasia


    Gocmen, Rahsan; Kurt, Erdal; Arslan, Sabina; Unal-Cevik, Isin; Karli Oguz, Kader; Tezer, F Irsel


    This report describes a case of pontine capillary telangiectasia in a 43-year-old woman with a clinical diagnosis of trigeminal autonomic cephalgia. The possible association with pontine capillary telangiectasia and trigeminal autonomic cephalgia is discussed.

  8. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria


    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  9. Application of CHESS single-bounce capillaries at synchrotron beamlines (United States)

    Huang, R.; Szebenyi, T.; Pfeifer, M.; Woll, A.; Smilgies, D.-M.; Finkelstein, K.; Dale, D.; Wang, Y.; Vila-Comamala, J.; Gillilan, R.; Cook, M.; Bilderback, D. H.


    Single-bounce capillaries are achromatic X-ray focusing optics that can provide efficient and high demagnification focusing with large numerical apertures. Capillary fabrication at CHESS can be customized according to specific application requirements. Exemplary applications are reviewed in this paper, as well as recent progress on condensers for high-resolution transmission X-ray microscopy and small focal size capillaries.

  10. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications. (United States)

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf


    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  11. Design criteria for SW-205 capillary system

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, W.J.


    This design criteria covers the converting of the SW-250 Capillary System from fumehood manual operation to sealed glovebox automated operation. The design criteria contains general guidelines and includes drawings reflecting a similar installation at another site. Topics include purpose and physical description, architectural-engineering requirements, reference document, electrical, fire protection, occupational safety and health, quality assurance, and security.

  12. Planetary In Situ Capillary Electrophoresis System (PISCES) (United States)

    Willis, P. A.; Stockton, A. M.; Mora, M. F.; Cable, M. L.; Bramall, N. E.; Jensen, E. C.; Jiao, H.; Lynch, E.; Mathies, R. A.


    We propose to develop PISCES, a 3-kg, 2W, flight-capable microfluidic lab-on-a-chip capillary electrophoresis analyzer capable of ingesting solid, liquid, or gas samples and performing a suite of chemical analyses with parts per trillion sensitivity.

  13. Imbibition of ``Open Capillary'': Fundamentals and Applications (United States)

    Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko


    Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.

  14. Shift dynamics of capillary self-alignment

    NARCIS (Netherlands)

    Arutinov, G.; Mastrangeli, M.; Smits, E.C.P.; Heck, G.V.; Schoo, H.F.M.; Toonder, J.J.M. den; Dietzel, A.H.


    This paper describes the dynamics of capillary self-alignment of components with initial shift offsets from matching receptor sites. The analysis of the full uniaxial self-alignment dynamics of foil-based mesoscopic dies from pre-alignment to final settling evidenced three distinct, sequential regim

  15. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  16. Macroscopic theory for capillary-pressure hysteresis. (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry


    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials. PMID:25646688

  17. Numerical simulations of capillary barrier field tests

    International Nuclear Information System (INIS)

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior

  18. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang


    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  19. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman


    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  20. Method of making tapered capillary tips with constant inner diameters (United States)

    Kelly, Ryan T.; Page, Jason S.; Tang, Keqi; Smith, Richard D.


    Methods of forming electrospray ionization emitter tips are disclosed herein. In one embodiment, an end portion of a capillary tube can be immersed into an etchant, wherein the etchant forms a concave meniscus on the outer surface of the capillary. Variable etching rates in the meniscus can cause an external taper to form. While etching the outer surface of the capillary wall, a fluid can be flowed through the interior of the capillary tube. Etching continues until the immersed portion of the capillary tube is completely etched away.

  1. Capillary Interactions between a Probe Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    SUN Li-Ning; WANG Le-Feng; RONG Wei-Bin


    To understand capillary interactions between probe tips and nanoparticles under ambient conditions,a theoretical model of capillary forces between them is developed based on the geometric relations. It is found that the contribution of surface tension force to the total capillary force attains to similar order of magnitude as the capillary pressure force in many cases.It is also shown that the tip shape and the radial distance of the meniscus have great influence on the capillary force.The capillary force decreases with the increasing separation distances,and the variance of the contact angles may change the magnitudes of capillary forces several times at large radial distances.The applicability of the symmetric meniscus approximation is discussed.

  2. The geometry and wetting of capillary folding

    CERN Document Server

    Péraud, Jean-Philippe


    Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial application provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

  3. Capillary flow through heat-pipe wicks (United States)

    Eninger, J. E.


    Theoretical expressions are obtained for the capillary-pressure limit and permeability of a fibrous wick in terms of the porosity and fiber diameter. Hysteresis in capillary pressure is included through the introduction of an empirical hysteresis constant. A partial-saturation model based on the statistical distribution of local porosity requires an additional empirical constant, the standard deviation. The theory is compared to results of a beta-ray absorption experiment that measured the liquid content of a partially saturated wick and to results of permeability measurements on partially and fully saturated wicks. A simple wick-weighing experiment is described that yields values for the empirical hysteresis constant and the standard deviation. Theoretical results are used to design an optimum wick.

  4. Capillary Electrophoresis in Food and Foodomics. (United States)

    Ibáñez, Clara; Acunha, Tanize; Valdés, Alberto; García-Cañas, Virginia; Cifuentes, Alejandro; Simó, Carolina


    Quality and safety assessment as well as the evaluation of other nutritional and functional properties of foods imply the use of robust, efficient, sensitive, and cost-effective analytical methodologies. Among analytical technologies used in the fields of food analysis and foodomics, capillary electrophoresis (CE) has generated great interest for the analyses of a large number of compounds due to its high separation efficiency, extremely small sample and reagent requirements, and rapid analysis. The introductory section of this chapter provides an overview of the recent applications of capillary electrophoresis (CE) in food analysis and foodomics. Relevant reviews and research articles on these topics are tabulated including papers published in the period 2011-2014. In addition, to illustrate the great capabilities of CE in foodomics the chapter describes the main experimental points to be taken into consideration for a metabolomic study of the antiproliferative effect of carnosic acid (a natural diterpene found in rosemary) against HT-29 human colon cancer cells. PMID:27645749

  5. Electrokinetic Flow and Dispersion in Capillary Electrophoresis (United States)

    Ghosal, Sandip


    Electrophoretic separation of a mixture of chemical species is a fundamental technique of great usefulness in biology, health care, and forensics. In capillary electrophoresis (which has evolved from its predecessor, slab-gel electrophoresis), the sample migrates through a single microcapillary instead of through the network of pores in a gel. A fundamental design problem is to minimize dispersion in the separation direction. Molecular diffusion is inevitable and sets a theoretical limit on the best separation that can be achieved. But in practice, there are a number of effects arising out of the interplay between fluid flow, chemistry, thermal effects, and electric fields that result in enhanced dispersion. This paper reviews the subject of fluid flow in such capillary microchannels and examines the various causes of enhanced dispersion that limit the efficiency of separation.

  6. Transversally periodic solitary gravity-capillary waves. (United States)

    Milewski, Paul A; Wang, Zhan


    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  7. Capillary solitons on a levitated medium. (United States)

    Perrard, S; Deike, L; Duchêne, C; Pham, C-T


    A water cylinder deposited on a heated channel levitates on its own generated vapor film owing to the Leidenfrost effect. This experimental setup permits the study of the one-dimensional propagation of surface waves in a free-to-move liquid system. We report the observation of gravity-capillary waves under a dramatic reduction of gravity (up to a factor 30), leading to capillary waves at the centimeter scale. The generated nonlinear structures propagate without deformation and undergo mutual collisions and reflections at the boundaries of the domain. They are identified as Korteweg-de Vries solitons with negative amplitude and subsonic velocity. The typical width and amplitude-dependent velocities are in excellent agreement with theoretical predictions based on a generalized Korteweg-de Vries equation adapted to any substrate geometry. When multiple solitons are present, they interact and form a soliton turbulencelike spectrum. PMID:26274114

  8. Capillary Hemangioma of the Fallopian Tube. (United States)

    Katiyar, Richa; Patne, Shashikant C U; Bharti, Shreekant; Jain, Madhu


    Neoplastic lesions of the fallopian tube are rarely seen by surgical pathologists. Haemangioma of the fallopian tube is an extremely rare benign neoplasm. A 30-year-old lady with polymenorrhea and dysmenorrhea underwent hysterectomy and bilateral salpingo-oophorectomy. Her left fallopian tube showed a 2mm sized solid nodule in the wall. Histopathological examination revealed a well-defined vascular lesion in the left fallopian tube, consistent with capillary haemangioma. The vascular endothelium was highlighted by CD34 immunostaining. Our literature review has identified 10 cases of cavernous haemangioma of the fallopian tube. To the best of our knowledge, we report the first ever case of capillary haemangioma of the fallopian tube. This is also the smallest detected haemangioma in the fallopian tube. PMID:27190899

  9. Modeling Microscopic Chemical Sensors in Capillaries

    CERN Document Server

    Hogg, Tad


    Nanotechnology-based microscopic robots could provide accurate in vivo measurement of chemicals in the bloodstream for detailed biological research and as an aid to medical treatment. Quantitative performance estimates of such devices require models of how chemicals in the blood diffuse to the devices. This paper models microscopic robots and red blood cells (erythrocytes) in capillaries using realistic distorted cell shapes. The models evaluate two sensing scenarios: robots moving with the cells past a chemical source on the vessel wall, and robots attached to the wall for longer-term chemical monitoring. Using axial symmetric geometry with realistic flow speeds and diffusion coefficients, we compare detection performance with a simpler model that does not include the cells. The average chemical absorption is quantitatively similar in both models, indicating the simpler model is an adequate design guide to sensor performance in capillaries. However, determining the variation in forces and absorption as cells...

  10. Metal Ions Analysis with Capillary Zone Electrophoresis. (United States)

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder


    Capillary electrophoresis has recently attracted considerable attention as a promising analytical technique for metal ion separations. Significant advances that open new application areas for capillary electrophoresis in the analysis of metal species occurred based on various auxiliary separation principles. These are mainly due to complexation, ion pairing, solvation, and micellization interactions between metal analytes and electrolyte additives, which alter the separation selectivity in a broad range. Likewise, many separation studies for metal ions have been concentrated on the use of preelectrophoresis derivatization methodology. Approaches suitable for manipulation of selectivity for different metal species including metal cations, metal complexes, metal oxoanions, and organometallic compounds, are discussed, with special attention paid to the related electrophoretic system variables using illustrative examples. PMID:27645740

  11. Capillary droplets on Leidenfrost micro-ratchets

    CERN Document Server

    Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef


    Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.

  12. Chemical Power for Microscopic Robots in Capillaries

    CERN Document Server

    Hogg, Tad


    The power available to microscopic robots (nanorobots) that oxidize bloodstream glucose while aggregated in circumferential rings on capillary walls is evaluated with a numerical model using axial symmetry and time-averaged release of oxygen from passing red blood cells. Robots about one micron in size can produce up to several tens of picowatts, in steady-state, if they fully use oxygen reaching their surface from the blood plasma. Robots with pumps and tanks for onboard oxygen storage could collect oxygen to support burst power demands two to three orders of magnitude larger. We evaluate effects of oxygen depletion and local heating on surrounding tissue. These results give the power constraints when robots rely entirely on ambient available oxygen and identify aspects of the robot design significantly affecting available power. More generally, our numerical model provides an approach to evaluating robot design choices for nanomedicine treatments in and near capillaries.

  13. Electrical resistance of muscle capillary endothelium.


    Olesen, S P; Crone, C


    A recently developed technique for in vivo determination of the electrical resistance of vascular endothelium in microvessels was applied to the vessels in a thin frog muscle, m. cutaneus pectoris. The technique consists of injection of current via a glass micropipette into a capillary and measurement of the resulting intra- and extravascular potential profiles with another micropipette placed at various distances from the current source. The theory of Peskoff and Eisenberg (1974) was used to...

  14. Separation of Peptides by Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)


    A novel gradient pressurized capillary electrochromatography (pCEC) instrument wasdeveloped to separate peptides. Two gradient elution modes, hydrophobic and hydrophilicinteraction mode in pCEC, were performed on this instrument. Baseline separation of sixpeptides was obtained on two gradient modes with C18 column and strong cationic exchangecolumn respectively. The effects of mixer volume and total flow rate of pumps on resolutionwere also discussed.

  15. Capillary Electrophoresis in the Presence of Fosfomycin

    Institute of Scientific and Technical Information of China (English)


    Fosfomyein, a sodim salt of cis-(3-methyloxiranyl) phosphonic acid, was used as electrolyte in binary methanol-water media for capillary electrophoresis. The variety of electroosmotic flow with pH*,methanol concentration and ionic strength was investigated. The migration behavior of nine bases was examined under various conditions, and the separation of thymine, cytosine, 5-flurouracil, 4,6-diamino-pyrimidine, purine was accomplished.

  16. Subsidence and capillary effects in chalks


    Delage, Pierre; Schroeder, Christian; Cui, Yu-Jun


    Based on the concepts of the mechanics of unsaturated soils where capillary phenomena arise between the wetting fluid (water) and the non-wetting one (air), the subsidence of chalks containing oil (non-wetting fluid) during water injection (wetting fluid) is analysed. It is shown that the collapse phenomenon of unsaturated soils under wetting provides a physical explanation and a satisfactory prediction of the order of magnitude of the subsidence of the chalk. The use of a well established co...

  17. Familial Pulmonary Capillary Hemangiomatosis Early in Life


    Speer, Christian P.; Mark, Eugene J.; Johannes Wirbelauer; Alexander Marx; Helge Hebestreit


    Background. Pulmonary capillary hemangiomatosis (PCH) is a rare disease, especially in infancy. Four infants have been reported up to the age of 12 months. So far, no familial patients are observed at this age. Patients. We report three siblings, two female newborns and a foetus of 15-week gestation of unrelated, healthy parents suffering from histologically proven PCH. The first girl presented with increased O2 requirements shortly after birth and patent ductus arteriosus (PDA). She subseque...

  18. Capillary-scale polarimetry for flowing streams. (United States)

    Swinney, K; Nodorft, J; Bornhop, D J


    A micro-polarimeter with a 40 nL probe volume was configured so that it is compatible with capillary-scale flowing stream analysis. The optical configuration consists of two polarizing optics, a capillary, a laser source and a photodetector which is very simple to configure with low cost components. This unique polarimeter is based upon the interaction of a linearly polarized laser beam and a capillary tube, in this case one with an inner diameter of 250 microns. Side illumination of the tube results in a 360 degrees fan of scattered light, which contains a set of interference fringes that change in response to optically active solutes. Solutes that exhibit optical activity are quantifiable and are detected by analyzing the polarization state of the backscattered light. The ability of the instrument to make extremely sensitive optical activity measurements in flowing streams is shown by the determination of (R)-mandelic acid, with a detection limit of 66 x 10(-6) M (507 x 10(-12) g), and the non-optically active control, glycerol. Additionally, the detector was configured to minimize refractive index perturbations. PMID:11394312

  19. Spatial reconstruction of facial skin capillaries

    Directory of Open Access Journals (Sweden)

    Makarchuk O.I.


    Full Text Available To define structural and functional changes of skin capillaries in women of different age groups in this work intraoperational biopsy material of skin of 205 women at the age from 19 to 75 years, that was taken during standard surgery instrumentations for different defects of face and neck skin correction, was investigated. Skin material of cheek face region, temple region of head and anterior neck region was morphologically processed. To define parameters of dermal capillars and spatial reconstruction of intrapapillary capillary loops, serial sections was investigated with the help of morphometry. It was determined, that microcirculation age changes include structural disorders of intrapapillary capillary loops. Essential struc-tural and functional changes observed in skin of cheek region in women of 33-40 years and in temple region of head and anterior neck region in women of 41-50 years. It is typical at the patients with nicotinic dependence, ischemic heart disease, hypertonic disease, a diabetes, and also adiposity of a different degree essential infringement of microvessels bed structure of a skin that gives the basis for allocation of the given contingent of patients as group high intraoperative and postoperative risk at carrying out of operative interventions for correction of face skin involutive changes.

  20. Drinking in Space: The Capillary Beverage Experiment (United States)

    Wollman, Andrew; Weislogel, Mark; Jenson, Ryan; Graf, John; Pettit, Donald; Kelly, Scott; Lindgren, Kjell; Yui, Kimiya


    A selection from as many as 50 different drinks including coffees, teas, and fruit smoothies are consumed daily by astronauts aboard the International Space Station. For practical reasons, the drinks are generally sipped through straws inserted in sealed bags. We present the performance of a special cup designed to allow the drinking operation in much the same manner as on earth, only with the role of gravity replaced by the combined effects of surface tension, wetting, and special container geometry. One can finally `smell the coffee.' Six so-called Space Cups are currently in orbit as part of the Capillary Beverage Experiment which aims to demonstrate specific passive control of poorly wetting aqueous capillary systems through a fun mealtime activity. The mathematical fluid mechanical design process with full numerical simulations is presented alongside experimental results acquired using a drop tower and low-g aircraft before complete characterization aboard the Space Station. Astronaut commentary is both humorous and informative, but the insightful experimental results of the potable space experiment testify to the prospects of new no-moving-parts capillary solutions for certain water-based life support operations aboard spacecraft.

  1. The order of condensation in capillary grooves. (United States)

    Rascón, Carlos; Parry, Andrew O; Nürnberg, Robert; Pozzato, Alessandro; Tormen, Massimo; Bruschi, Lorenzo; Mistura, Giampaolo


    We consider capillary condensation in a deep groove of width L. The transition occurs at a pressure p(co)(L) described, for large widths, by the Kelvin equation p(sat) - p(co)(L) = 2σ cosθ/L, where θ is the contact angle at the side walls and σ is the surface tension. The order of the transition is determined by the contact angle of the capped end θcap; it is continuous if the liquid completely wets the cap, and first-order otherwise. When the transition is first-order, corner menisci at the bottom of the capillary lead to a pronounced metastability, determined by a complementary Kelvin equation Δp(L) = 2σ sinθcap/L. On approaching the wetting temperature of the capillary cap, the corner menisci merge and a single meniscus unbinds from the bottom of the groove. Finite-size scaling shifts, crossover behaviour and critical singularities are determined at mean-field level and beyond. Numerical and experimental results showing the continuous nature of condensation for θcap = 0 and the influence of corner menisci on adsorption isotherms are presented. PMID:23611878

  2. Highly conductive, printable pastes from capillary suspensions (United States)

    Schneider, Monica; Koos, Erin; Willenbacher, Norbert


    We have used the capillary suspension phenomenon to design conductive pastes for printed electronic applications, such as front side metallization of solar cells, without non-volatile, organic additives that often deteriorate electrical properties. Adding a small amount of a second, immiscible fluid to a suspension creates a network of liquid bridges between the particles. This capillary force-controlled microstructure allows for tuning the flow behavior in a wide range. Yield stress and low-shear viscosity can be adjusted such that long-term stability is provided by inhibiting sedimentation, and, even more importantly, narrow line widths and high aspect ratios are accessible. These ternary mixtures, called capillary suspensions, exhibit a strong degree of shear thinning that allows for conventional coating or printing equipment to be used. Finally, the secondary fluid, beneficial for stability and processing of the wet paste, completely evaporates during drying and sintering. Thus, we obtained high purity silver and nickel layers with a conductivity two times greater than could be obtained with state-of-the-art, commercial materials. This revolutionary concept can be easily applied to other systems using inorganic or even organic conductive particles and represents a fundamental paradigm change to the formulation of pastes for printed electronics.

  3. A covalent modified hydrophilic capillary for enhanced capillary electrophoresis of biopolymers

    Institute of Scientific and Technical Information of China (English)

    Lian Guo Shan; Xue Yu; Yin Mao Wei; Xiao Hui Zheng; Jian Bin Zheng


    δ-Gluconolactone was covalently coupled to aminopropyl derivatized capillary,which created hydrophilic brushes on the inner wall of the capillary.The coated capillary was shown to generate a stable electroosmotic flow(EOF)in the investigated pH range of 2.0-9.0 and to suppress effectively the adsorption of proteins.And it enabled separation of some biopolymer mixtures including basic proteins,DNA and tryptic digested bovine serum albumin(BSA)within 15 min with efficiencies up to 450,000 plates/m.The intra-and inter-day reproducibility of the coating referring to the retention times of proteins were satisfactory with mean relative standard deviations(R.S.D.)of 0.8 and 1.7%,respectively.

  4. In-capillary derivatization and capillary electrophoresis separation of amino acid neurotransmitters from brain microdialysis samples. (United States)

    Denoroy, Luc; Parrot, Sandrine; Renaud, Louis; Renaud, Bernard; Zimmer, Luc


    A new in-capillary derivatization method with naphtalene-2,3-dicarboxyaldehyde (NDA)/CN(-) has been developed for capillary electrophoresis with laser-induced fluorescence detection of brain microdialysate amino acids. Samples are sandwiched between two plugs of reagent mixture at the capillary inlet and subsequently separated. Highest derivatization yields are obtained by using a reagent to sample plug length ratio equal to 4, performing a first electrophoretic mixing followed by a zero potential amplification step before applying the separation voltage and using a NaCN to NDA concentration ratio equal to 1. This new single-step methodology allows the analysis of amino acid neurotransmitters in rat brain microdialysis samples.

  5. An axial approach to detection in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.A.


    Our approach involves on-axis illumination of the compounds inside the capillary detection region and is applied to absorbance and fluorescence detection. Absorbance measurements were made by focussing an incident laser beam into one capillary end; by using signals collected over the entire length of analyte band, this enhances the analytical path length of conventional absorbance detection 60x. This instrument offers a 15x improvement in detection limits. Three fluorescence detection experiments are discussed, all of which involve insertion of an optical fiber into capillary. The first uses a high refractive index liquid phase to obtain total internal reflectance along capillary axis, this reducing light scatter. The second uses a charge-coupled device camera for simultaneous imaging of a capillary array (this may be useful in genome sequencing, etc.). The third is a study of fluid motion inside the capillary under pressure-driven and electroosmotic flow. The thesis is divided into four parts. Figs, tabs.

  6. Capillary remodeling in bleomycin-induced pulmonary fibrosis.


    Schraufnagel, D. E.; Mehta, D.; Harshbarger, R.; Treviranus, K.; Wang, N. S.


    Lung fibrosis is a process in which collagen is laid down and the delicate capillary-alveolar relationship is disturbed. The architectural changes which occur in the capillaries, a main element of the oxygen transferring unit, are difficult to illustrate without a three-dimensional tool, such as scanning electron microscopy. Therefore, a scanning electron microscopic study was undertaken to show the capillary changes of lung fibrosis. Fibrosis was induced in rats by intratracheal instillation...

  7. Nicked-sleeve interface for two-dimensional capillary electrophoresis


    Flaherty, Ryan J.; Huge, Bonnie J.; Bruce, Spencer M.; Dada, Oluwatosin O.; Dovichi, Norman J.


    We report an improved interface for two-dimensional capillary electrophoresis. This interface is based on capillary tubing and a Plexiglas chip, both of which were milled using a micro-dicing saw. The interface was evaluated and compared to a traditional interface design for both pseudo one-dimensional and two-dimensional capillary electrophoresis. We observe less than 70% transfer efficiency for the traditional design and greater than 90% transfer efficiency with this new interface.

  8. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)

    Wei Chang; Tusyo-shi Komazu


    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva, the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic silica capillary when it was used to concentrate catecholamines.

  9. High Performance Wafer-Based Capillary Electrochromatography Project (United States)

    National Aeronautics and Space Administration — The Phase II research comprises designing, constructing, and testing a chip-based capillary electrochromatography (CEC) prototype for separation and analysis of...

  10. A Prediction Model of the Capillary Pressure J-Function (United States)

    Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.


    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  11. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography ? a high performance and low power...

  12. Capillary-Condenser-Pumped Heat-Transfer Loop (United States)

    Silverstein, Calvin C.


    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  13. Capillary Micro-Flow Through a Fiber Bundle(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; TAN Hua; GAO Guo-qiang


    The present work considered the capillary micro-flow through a fiber bundle. The resin heights in the fiber bundle as a function of time were used to determine the experimental values of capillary pressure and the permeability by the nonlinear regression fitting method. The fitting curves showed a good agreement with experiments. However, these values of capillary pressure from short- time experiments were much lower than the theoretical results from the Yang-Laplace Equation. More accurate capillary pressure was predicted from the presented long-run experiment.

  14. Novel Micro-Capillary Electrochromatography for Mars Organic Detector Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a powerful new technology - next generation Micro-Capillary Electrochromatography - a high performance and low power...

  15. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;


    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain...

  16. Electroviscous effects in capillary filling of nanochannels

    DEFF Research Database (Denmark)

    Mortensen, Asger; Kristensen, Anders


    maximum in the mesoscopic regime where the channel height (or more generally the hydraulic radius) is comparable to the screening length. However, for realistic estimates of central parameters, we find that the electroviscous contribution to the apparent viscosity is at most a 1% effect.......We theoretically examine the widespread hypothesis of an electroviscous origin of the increase in apparent viscosity observed in recent experiments on capillary filling of nanochannels. Including Debye-layer corrections to the hydraulic resistance, we find that the apparent viscosity reaches a...

  17. Capillary-Pumped Heat-Transfer Loop (United States)


    New type of capillary-pumped heat-transfer loop primes itself at startup. Removes substantial quantities of heat like that generated by people and equipment in rooms and vehicles. Creates continuous path for its working fluid; both vapor and liquid move in same direction. Key element in operation of loop is formation of slugs of liquid, condensed from vapor and moved along loop by vapor bubbles before and after it. Both evaporator and condenser contain axial arteries carrying water. Heat entering evaporator from heat source provides energy for transport of fluid and heat. Dimensions in inches.

  18. Capillary Network, Cancer and Kleiber Law

    CERN Document Server

    Dattoli, G; Licciardi, S; Guiot, C; Deisboeck, T S


    We develop a heuristic model embedding Kleiber and Murray laws to describe mass growth, metastasis and vascularization in cancer. We analyze the relevant dynamics using different evolution equations (Verhulst, Gompertz and others). Their extension to reaction diffusion equation of the Fisher type is then used to describe the relevant metastatic spreading in space. Regarding this last point, we suggest that cancer diffusion may be regulated by Levy flights mechanisms and discuss the possibility that the associated reaction diffusion equations are of the fractional type, with the fractional coefficient being determined by the fractal nature of the capillary evolution.

  19. Experimental study on capillary filling in nanochannels (United States)

    Yang, Min; Cao, Bing-Yang; Wang, Wei; Yun, He-Ming; Chen, Bao-Ming


    We investigated the capillary filling kinetics of deionized water in nanochannels with heights of 50-120 nm. The measured position of the moving meniscus was proportional to the square root of time, as predicted by the LW equation. However, the extracted slopes were significantly smaller than the predictions based on the bulk properties. This unusual behavior was found to be mainly caused by the electro-viscous effect and dynamic contact angle, which was significantly larger than the static angle. In addition, when the filling distance reached about 600 μm, bubbles tended to be formed, leading to the main meniscus was almost immobile.

  20. Capillary zone electrophoresis and packed capillary column liquid chromatographic analysis of recombinant human interleukin-4. (United States)

    Bullock, J


    Capillary zone electrophoresis (CZE) and packed capillary column liquid chromatography (micro-LC) have been applied to the analysis of the recombinant human protein interleukin-4 (rhIL-4). Separations for both the parent protein and its enzymatic digest were developed for the purpose of characterizing protein purity and identity. CZE separations of the intact protein were investigated over the pH range of 4.5 to 8.0 using uncoated fused silica capillaries. Gradient reversed-phase micro-LC was performed using 0.32 mm packed capillary columns at flow-rates of 5-6 microliters/min. Emphasis was placed on the ability of these methods to separate close structural variants and degradation products of the protein. Peptide mapping of the tryptic digest of rhIL-4 using a combination of CZE and micro-LC provided complimentary high resolution methods for establishing protein identity. Reproducible separations were achieved using sub-picomol amounts of sample. The advantages and problems encountered with these two techniques for characterizing rhIL-4 were assessed. PMID:8450025

  1. Capacitively coupled contactless conductivity detection and sequential injection analysis in capillary electrophoresis and capillary electro-chromatography


    Mai, Thanh Duc


    This thesis focuses on the applications of capacitively coupled contactless conductivity detection (C4D) in capillary electrophoresis (CE) hybridized with high-performance liquid chromatography (HPLC), i.e. in capillary electrochromatography and pressure-assisted capillary electrophoresis, as well as on the development and applications of an extension of CE-C4D with sequential injection analysis (SIA). At first, the in-house built C4D was used for electro-chromatographic determinations of...

  2. Capillary surface discontinuities above reentrant corners (United States)

    Korevaar, H. J.


    A particular configuration of a vertical capillary tube for which S is the equilibrium interface between two fluids in the presence of a downward pointing gravitational field was investigated. S is the graph a function u whose domain is the (horizontal) cross section gamma of the tube. The mean curvature of S is proportional to its height above a fixed reference plane and lambda is a prescribed constant and may be taken between zero and pi/2. Domains gamma for which us is a bounded function but does not extend continuously to d gamma are sought. Simple domains are found and the behavior of u in those domains is studied. An important comparison principle that has been used in the literature to derive many of the results in capillarity is reviewed. It allows one to deduce the approximate shape of a capillary surface by constructing comparison surfaces with mean curvature and contact angle close to those of the (unknown) solution surface. In the context of nonparametric problems the comparison principle leads to height estimates above and below for the function u. An example from the literature where these height estimates have been used successfully is described. The promised domains for which the bounded u does not extend continuously to the boundary are constructed. The point on the boundary at which u has a jump discontinuity will be the vertext of a re-entrant corner having any interior angle theta pi. Using the comparison principle the behavior of u near this point is studied.

  3. Critical Velocity in Open Capillary Channel Flows (United States)

    Rosendahl, Uwe; Dreyer, Michael E.; Rath, Hans J.; Motil, Brian; Singh, Bhim S. (Technical Monitor)


    We investigate forced liquid flows through open capillary channels with free surfaces experimentally. The experiments were performed under low gravity conditions in the Bremen Drop Tower and on board the sounding rocket TEXUS-37. Open capillary channels (vanes) are used in surface tension tanks to transport the propellant and to provide a flow path for the bubble-free liquid supply to the thrusters. Since the free surfaces can only withstand a certain pressure differential between the liquid and ambient, the flow rate in the channel is limited. The maximum flow rate is achieved when the surfaces collapse and gas is ingested into the outlet. Since experimental and theoretical data of this flow rate limitation is lacking, the safety factors for the application of vanes in surface tension tanks must be unnecessary high. The aim of the investigation is to determine the maximum liquid flow rate and the corresponding critical flow velocity. The characteristic nondimensional parameters, OHNESORGE number, and gap ratio, cover a wide range of usual vanes. For the theoretical approach a one-dimensional momentum balance was set up. The numerical solution yields the maximum volume flux and the position of the free surface in good agreement with the experiments.

  4. CMOS absorbance detection system for capillary electrophoresis

    International Nuclear Information System (INIS)

    This paper presents a cost-effective portable photodetection system for capillary electrophoresis absorptiometry. By using a CMOS BDJ (buried double p-n junction) detector, a dual-wavelength method for absorbance measurement is implemented. This system includes associated electronics for low-noise pre-amplification and A/D conversion, followed by digital signal acquisition and processing. Two signal processing approaches are adopted to enhance the signal to noise ratio. One is variable time synchronous detection, which optimizes the sensitivity and measuring rate compared to a conventional synchronous detection technique. The other is a statistical approach based on principal component analysis, which allows optimal estimation of detected signal. This system has been designed and tested in capillary electrophoresis conditions. Its operation has been verified with performances comparable to those of a commercialized spectrophotometric system (HP-3D CE). With potential on-chip integration of associated electronics, it may be operated as an integrable detection module for microchip electrophoresis and other microanalysis systems

  5. Capillary wrinkling of thin bilayer polymeric sheets (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  6. Using capillary electrophoresis to characterize polymeric particles. (United States)

    Riley, Kathryn R; Liu, Sophia; Yu, Guo; Libby, Kara; Cubicciotti, Roger; Colyer, Christa L


    Capillary electrophoresis (CE) was used for the characterization of a variety of polymeric micron and sub-micron particles based on size, surface functionality, and binding properties. First, a robust capillary zone electrophoresis (CZE) method was developed for the baseline separation and quantitation of commercially available polystyrene particles with various surface modifications (including amino, carboxylate, and sulfate functional groups) and various sizes (0.2, 0.5, 1.0, and 3.0μm). The separation of DNA-templated polyacrylamide particles from untemplated particles (as used for the Ion Torrent Personal Genome Machine) was demonstrated. Finally, using the 29-base thrombin aptamer and thrombin protein as a model system, a study was undertaken to determine dissociation constants for the aptamer and protein in free solution and when the aptamer was conjugated to a particle, with the goal of better understanding how the use of solid substrates, like particles, affects selection and binding processes. Dissociation constants were determined and were found to be approximately 5-fold higher for the aptamer conjugated to a particle relative to that in free solution. PMID:27543386

  7. A Simple Double-Source Model for Interference of Capillaries (United States)

    Hou, Zhibo; Zhao, Xiaohong; Xiao, Jinghua


    A simple but physically intuitive double-source model is proposed to explain the interferogram of a laser-capillary system, where two effective virtual sources are used to describe the rays reflected by and transmitted through the capillary. The locations of the two virtual sources are functions of the observing positions on the target screen. An…

  8. Soft x-ray amplification in an ablative capillary discharge

    International Nuclear Information System (INIS)

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm-1. The electron density is about 2 x 1019 cm-3. This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  9. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.


    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC) wit

  10. Analysis of organic acids in Macedonian wines by capillary electrophoresis


    Jancovska, Maja; Ivanova, Violeta; Gulaboski, Rubin; Belder, Detlev


    Capillary electrophoresis as a separation technique can be applied for analysis of organic acids in white and red wines, providing high resolution separation of the analytes. Organic acids such as of tartaric, malic, lactic citric and succinic acids have been analysed in many Macedonian red and white wines by capillary electrophoresis, and results have been discussed.

  11. Blepharospasm in a patient with pontine capillary telangiectasia


    Gilbert, AL; Dillon, WP; Horton, JC


    Blepharospasm is rarely due to an identifiable etiology. In the majority of cases, imaging fails to reveal any structural lesion. Here we describe an otherwise healthy patient with blepharospasm who was found to have pontine capillary telangiectasia. We propose a potential association between blepharospasm and pontine capillary telangiectasia. © 2012 The American Society of Ophthalmic Plastic and Reconstructive Surgery, Inc.

  12. Pore capillary pressure and saturation of methane hydrate bearing sediments

    Institute of Scientific and Technical Information of China (English)

    SUN Shicai; LIU Changling; YE Yuguang; LIU Yufeng


    To better understand the relationship between the pore capillary pressure and hydrate saturation in sedi-ments, a new method was proposed. First, the phase equilibria of methane hydrate in fine-grained silica sands were measured. As to the equilibrium data, the pore capillary pressure and saturation of methane hydrate were calculated. The results showed that the phase equilibria of methane hydrates in fine-grained silica sands changed due to the depressed activity of pore water caused by the surface group and negatively charged characteristic of silica particles as well as the capillary pressure in small pores together. The capil-lary pressure increased with the increase of methane hydrate saturation due to the decrease of the available pore space. However, the capillary-saturation relationship could not yet be described quantitatively because of the stochastic habit of hydrate growth.

  13. Validation of STR typing by capillary electrophoresis. (United States)

    Moretti, T R; Baumstark, A L; Defenbaugh, D A; Keys, K M; Brown, A L; Budowle, B


    With the use of capillary electrophoresis (CE), high-resolution electrophoretic separation of short tandem repeat (STR) loci can be achieved in a semiautomated fashion. Laser-induced detection of fluorescently labeled PCR products and multicolor analysis enable the rapid generation of multilocus DNA profiles. In this study, conditions for typing PCR-amplified STR loci by capillary electrophoresis were investigated using the ABI Prism 310 Genetic Analyzer (Applied Biosystems). An internal size standard was used with each run to effectively normalize mobility differences among injections. Alleles were designated by comparison to allelic ladders that were run with each sample set. Multiple runs of allelic ladders and of amplified samples demonstrate that allele sizes were reproducible, with standard deviations typically less than 0.12 bases for fragments up to 317 bases in length (largest allele analyzed) separated in a 47 cm capillary. Therefore, 99.7% of all alleles that are the same length should fall within the measurement error window of +/- 0.36 bases. Microvariants of the tetranucleotide repeats were also accurately typed by the analytical software. Alleles differing in size by one base could be resolved in two-donor DNA mixtures in which the minor component comprised > or = 5% of the total DNA. Furthermore, the quantitative data format (i.e., peak amplitude) can in some instances assist in determining individual STR profiles in mixed samples. DNA samples from previously typed cases (typed for RFLP, AmpliType PM+DQA1, and/or D1S80) were amplified using AmpFlSTR Profiler Plus and COfiler and were evaluated using the ABI Prism 310. Most samples yielded typable results. Compared with previously determined results for other loci, there were no discrepancies as to the inclusion or exclusion of suspects or victims. CE thus provides efficient separation, resolution, sensitivity and precision, and the analytical software provides reliable genotyping of STR loci. The

  14. Determination of Amino Acids in Single Human Lymphocytes after On-capillary Derivatization by Capillary Zone Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)


    Amino acids in individual human lymphocytes were determined by capillary zone electrophoresis with electrochemical detection after on-capillary derivatization. In order to inject cells easily, a cell injector was designed. Four amino acids (serine, alanine, taurine, and glycine) in single human lymphocytes have been identified. Quantitation has been accomplished through the use of calibration curves.

  15. Gravity-capillary free-surface flows

    CERN Document Server

    Vanden-Broeck, Jean-Marc


    Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.

  16. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida;


    Rare sequence variants in "high-risk" disease genes, often referred as unclassified variants (UVs), pose a serious challenge to genetic testing. However, UVs resulting in splicing alterations can be readily assessed by in vitro assays. Unfortunately, analytical and clinical interpretation...... of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...... International Agency for Research on Cancer guidelines), we performed qPCR and/or minigene assays. The latter were performed with a new splicing vector (pSAD) developed by authors of the present manuscript (patent #P201231427 CSIC). We have identified three clinically relevant Class-5 variants (c.682-2A>G, c...

  17. Current opinions of capillary leak syndrome

    Institute of Scientific and Technical Information of China (English)

    SU Jun; WANG Jin-quan; ZHANG Ying


    Capillary leak syndrome(CLS) in critically ill patients is common, and the clinical manifestations of CLS include systemic edema, hypoproteinemia, effective circulating blood volume reduction and blood concentrated.The common pathogenesy is sepsis, severe trauma, cardiopulmonary bypass and so on.CLS is divided into leakage period and recovery period usually. Clinical manifestation and treatment in different period are different in each pathophysiologic process.Although the methods of treatment are more, effective treatment measures are in shortage. More therapeutic measures are studied currently which include improvement of endothelial cell function, macromolecular colloidal solution application, continuous blood purification and so on. It is a guiding value to understand the pathological mechanism, clinical manifestations, diagnosis and treatment of the CLS.

  18. Capillary Pumped Heat Transfer (CHT) Experiment (United States)

    Hallinan, Kevin P.; Allen, J. S.


    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  19. Guiding of charged particles through capillaries in insulating materials (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori


    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  20. Capillary bundle model of hydraulic conductivity for frozen soil (United States)

    Watanabe, Kunio; Flury, Markus


    We developed a capillary bundle model to describe water flow in frozen soil. We assume that the soil can be represented as a bundle of cylindrical capillaries. We consider that the freezing point in the capillaries is depressed according to the Gibbs-Thomson effect and that when stable ice forms in a capillary, the ice forms in the center of the capillaries, leaving a circular annulus open for liquid water flow. We use the model to demonstrate how the hydraulic conductivity changes as a function of temperature for both saturated and unsaturated soils, using a sand and two silt loam soils as examples. As temperature decreases, more and more ice forms, and the water flux consequently decreases. In frozen soil near 0°C, water predominantly flows through ice-free capillaries, so that the hydraulic conductivity of frozen soil is similar to that of an unfrozen soil with a water content equal to the unfrozen water content of the frozen soil. At low temperatures, however, ice forms in almost all capillaries, and the hydraulic conductivity of frozen soil is greater than that of unfrozen soil with the same water potential.

  1. Trapped liquid drop at the end of capillary. (United States)

    Wang, Zhengjia; Yen, Hung-Yu; Chang, Cheng-Chung; Sheng, Yu-Jane; Tsao, Heng-Kwong


    The liquid drop captured at the capillary end, which is observed in capillary valve and pendant drop technique, is investigated theoretically and experimentally. Because of contact line pinning of the lower meniscus, the lower contact angle is able to rise from the intrinsic contact angle (θ*) so that the external force acting on the drop can be balanced by the capillary force. In the absence of contact angle hysteresis (CAH), the upper contact angle remains at θ*. However, in the presence of CAH, the upper contact angle can descend to provide more capillary force. The coupling between the lower and upper contact angles determines the equilibrium shape of the captured drop. In a capillary valve, the pinned contact line can move across the edge as the pressure difference exceeds the valving pressure, which depends on the geometrical characteristic and wetting property of the valve opening. When CAH is considered, the valving pressure is elevated because the capillary force is enhanced by the receding contact angle. For a pendant drop under gravity, the maximal capillary force is achieved as the lower contact angle reaches 180° in the absence of CAH. However, in the presence of CAH, four regimes can be identified by three critical drop volumes. The lower contact angle can exceed 180°, and therefore the drop takes on the shape of a light bulb, which does not exist in the absence of CAH. The comparisons between Surface Evolver simulations and experiments are quite well. PMID:24004041

  2. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels (United States)

    Allen, Jeffrey S.


    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  3. Demonstration of a high repetition rate capillary discharge waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J., E-mail:; Pieronek, C.; Daniels, J.; Bulanov, S. S.; Waldron, W. L.; Mittelberger, D. E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, F.; Antipov, S.; Butler, J. E. [Euclid TechLabs, Gaithersburg, Maryland 20879 (United States); Bobrova, N. A.; Sasorov, P. V. [Keldysh Institute of Applied Mathematics, Moscow (Russian Federation)


    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  4. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Kutter, Jörg Peter; Olsson, Lisbeth


    . Current methods are limited in their ability to quantify all of these enzymes when all are present simultaneously in a mixture. Five different cellulases (two cellobiohydrolases and three endoglucanases) and one hemicellulase (endoxylanase) were separated using capillary electrophoresis (CE) in a fused...... silica capillary at pH values close to neutral. The improvement of the separation of these six proteins by the addition of alpha, omega-diaminoalkanes with chain lengths from three to seven carbon units was investigated. Dynamically coating the capillary with 1,3-diaminopropane resulted in separation of...

  5. High Performance Wafer-Based Capillary Electrochromatography Project (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop wafer-based capillary electrochromatography for lab-on-a-chip (LOC) applications. These microfluidic devices will be...

  6. Plasma Dynamics of Capillary Discharges for the BELLA project (United States)

    Stoltz, Peter; Hakim, Ammar; Loverich, John; Fillmore, David; Johnson, Jeffrey; Geddes, Cameron; Esarey, Eric; Mittelberger, Daniel; Bulanov, Stepan; Gonsalves, Anthony; Leemans, Wim


    Capillary discharges to form a meter-scale plasma waveguide are important for 10 GeV scale laser plasma accelerator experiments on the BELLA laser in progress at Lawrence Berkeley National Laboratory. We present simulation results of capillary plasma properties, including radial density and temperature profiles, using the Nautilus code. An effect known to play a dominant role is the transfer of heat from the plasma to the capillary wall. We present benchmark results for heat transfer modeling with Nautilus in the regime of interest to capillary discharges. We also discuss the relative importance of diffusion, Ohm's law, and applied solenoidal fields on the radial profiles needed for experiments. For instance, some previous models estimate applied solenoidal fields could increase on-axis temperatures by roughly a factor of two, and we compare with these estimates. Finally, we compare radial profile results with other simulation results and with recent measurements made at LBNL.

  7. Study of a heat rejection system using capillary pumping (United States)

    Neal, L. G.; Wanous, D. J.; Clausen, O. W.


    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.

  8. Improved Refrigerant Characteristics Flow Predictions in Adiabatic Capillary Tube

    Directory of Open Access Journals (Sweden)

    Shodiya Sulaimon


    Full Text Available This study presents improved refrigerant characteristics flow predictions using homogenous flow model in adiabatic capillary tube, used in small vapor compression refrigeration system. The model is based on fundamental equations of mass, momentum and energy. In order to improve the flow predictions, the inception of vaporization in the capillary tube is determined by evaluating initial vapor quality using enthalpy equation of refrigerant at saturation point and the inlet entrance effect of the capillary tube is also accounted for. Comparing this model with experimental data from open literature showed a reasonable agreement. Further comparison of this new model with earlier model of Bansal showed that the present model could be use to improve the performance predictions of refrigerant flow in adiabatic capillary tube.

  9. Giant congenital capillary hemangioma of pericranium--case report. (United States)

    Tokuda, Y; Uozumi, T; Sakoda, K; Yamada, K; Yamanaka, M; Nomura, S; Hamasaki, T


    The authors report a newborn male infant with a giant congenital capillary hemangioma of the pericranium. An elastic mass, measuring 6.5 x 6.9 x 3.9 cm, was located in the parieto-occipital region. Neurological examination revealed no abnormality. Angiographically, the tumor was fed symmetrically by the bilateral superficial temporal, occipital, and middle meningeal arteries. At surgery, the encapsulated tumor appeared to have arisen from the periosteum and was removed completely. Histological diagnosis was capillary hemangioma. Capillary hemangioma is a common benign tumor in infancy and usually present as a strawberry mark or port-wine stain. However, when the tumors seat relatively deeply as in the present case, they produce little or no discoloration in the overlying skin. Angiography is then useful to differentiate capillary hemangioma from other lesions and to choose an appropriate treatment. PMID:1714050

  10. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas (United States)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.


    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  11. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya


    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  12. A capillary based chemiluminscent multi-target immunoassay. (United States)

    Cao, Yuan-Cheng


    Renewed interest in capillary format immunoassays has lead to increasingly costly and complex approaches to preparation and readout. This study describes a simple multi-target method based on a capillary platform using horseradish peroxidase (HRP) labelled IgG to visualize an antibody antigen complex. When goat-anti-human IgG was employed as the probe and human IgG as target, the system allowed detection of target to less than 1 ng/mL using a standard detection approach. The capillaries were read visually or with a commercial grade CCD camera. Multi-target detection was demonstrated using a model system of rat-anti-mouse, goat-anti-human and mouse-anti-rat IgG. These probes were encoded to different locations in the capillary, providing a simple inexpensive approach to achieve multi-target assays. PMID:25731812

  13. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth. (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham


    Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an

  14. Stability of capillary gels for automated sequencing of DNA. (United States)

    Swerdlow, H; Dew-Jager, K E; Brady, K; Grey, R; Dovichi, N J; Gesteland, R


    Recent interest in capillary gel electrophoresis has been fueled by the Human Genome Project and other large-scale sequencing projects. Advances in gel polymerization techniques and detector design have enabled sequencing of DNA directly in capillaries. Efforts to exploit this technology have been hampered by problems with the reproducibility and stability of gels. Gel instability manifests itself during electrophoresis as a decrease in the current passing through the capillary under a constant voltage. Upon subsequent microscopic examination, bubbles are often visible at or near the injection (cathodic) end of the capillary gel. Gels have been prepared with the polyacrylamide matrix covalently attached to the silica walls of the capillary. These gels, although more stable, still suffer from problems with bubbles. The use of actual DNA sequencing samples also adversely affects gel stability. We examined the mechanisms underlying these disruptive processes by employing polyacrylamide gel-filled capillaries in which the gel was not attached to the capillary wall. Three sources of gel instability were identified. Bubbles occurring in the absence of sample introduction were attributed to electroosmotic force; replacing the denaturant urea with formamide was shown to reduce the frequency of these bubbles. The slow, steady decline in current through capillary sequencing gels interferes with the ability to detect other gel problems. This phenomenon was shown to be a result of ionic depletion at the gel-liquid interface. The decline was ameliorated by adding denaturant and acrylamide monomers to the buffer reservoirs. Sample-induced problems were shown to be due to the presence of template DNA; elimination of the template allowed sample loading to occur without complications.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Pulmonary Surfactant Surface Tension Influences Alveolar Capillary Shape and Oxygenation


    Ikegami, Machiko; Weaver, Timothy E.; Grant, Shawn N.; Whitsett, Jeffrey A.


    Alveolar capillaries are located in close proximity to the alveolar epithelium and beneath the surfactant film. We hypothesized that the shape of alveolar capillaries and accompanying oxygenation are influenced by surfactant surface tension in the alveolus. To prove our hypothesis, surfactant surface tension was regulated by conditional expression of surfactant protein (SP)-B in Sftpb−/− mice, thereby inhibiting surface tension–lowering properties of surfactant in vivo within 24 hours after d...

  16. Optimized photonic crystal fibers supporting efficient capillary electrophoresis (United States)

    Calcerrada, M.; García-Ruiz, C.; Roy, P.; Gonzalez-Herraez, M.


    In this paper we present preliminary results on the use of Photonic Crystal Fibers (PCFs) in a conventional capillary electrophoresis system to separate and detect fluorescent species. PCFs show interesting advantages over conventional capillaries for this application, including larger surface-to-volume ratio and potential for higher resolution with comparable sensitivity. Our results illustrate some of these advantages, and we point out the need for stringent tolerances in the fabrication of specific PCFs for this application.

  17. Spatiotemporal phase-matching in capillary high-harmonic generation


    Rogers, Edward T.F.; Stebbings, Sarah L; de Paula, Ana M.; Froud, Christopher A.; Praeger, Matthew; Mills, Benjamin; Grant-Jacob, James; Brocklesby, William S; Frey, Jeremy G


    We present a simple phase-matching model that takes into account the full spatiotemporal nature of capillary high-harmonic generation. Spectra predicted from the model are compared to experimental results for a number of gases and are shown to reproduce the spectral envelope of experimentally generated harmonics. The model demonstrates that an ionization-induced phase mismatch is limiting the energy of the generated harmonics in current capillary high-harmonic generation experiments. The succ...

  18. Modified monolithic silica capillary for preconcentration of catecholamines

    Institute of Scientific and Technical Information of China (English)


    Preconcentration of catecholamines by the modified monolithic silica in the capillary was investigated in this study. In order to achieve a microchip-based method for determining catecholamines in the saliva,the monolithic silica was fabricated in the capillary and the monolithic silica was chemically modified by on-column reaction with phenylboronate. Different modified methods were compared. The concentration conditions were optimized. This study indicates the applicability of the modified monolithic sili...

  19. Fabrication and Visualization of Capillary Bridges in Slit Pore Geometry


    Broesch, David J.; Frechette, Joelle


    A procedure for creating and imaging capillary bridges in slit-pore geometry is presented. High aspect ratio hydrophobic pillars are fabricated and functionalized to render their top surfaces hydrophilic. The combination of a physical feature (the pillar) with a chemical boundary (the hydrophilic film on the top of the pillar) provides both a physical and chemical heterogeneity that pins the triple contact line, a necessary feature to create stable long but narrow capillary bridges. The subst...

  20. Capillary Flow in an Interior Corner (United States)

    Weislogel, Mark Milton


    The design of fluids management processes in the low-gravity environment of space requires an accurate model and description of capillarity-controlled flow in containers of irregular geometry. Here we consider the capillary rise of a fluid along an interior corner of a container following a rapid reduction in gravity. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the corner, small inertia, and low gravity. New similarity solutions are found and a list of closed form expressions is provided for flow rate and column length. In particular, it is found that the flow is proportional to t(exp 1/2) for a constant height boundary condition, t(exp 2/5) for a spreading drop, and t(exp 3/5) for constant flow. In the experimental portion of the work, measurements from a 2.2s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. Comprehensive comparisons are made which illustrate the applicability of the analytic results to low-g fluid systems design.

  1. Idiopathic systemic capillary leak syndrome in children. (United States)

    Hsu, Peter; Xie, Zhihui; Frith, Katie; Wong, Melanie; Kakakios, Alyson; Stone, Kelly D; Druey, Kirk M


    Adult subjects with systemic capillary leak syndrome (SCLS) present with acute and recurrent episodes of vascular leak manifesting as severe hypotension, hypoalbuminemia, hemoconcentration, and generalized edema. We studied clinical disease characteristics, serum cytokine profiles, and treatment modalities in a cohort of children with documented SCLS. Six children with SCLS were recruited from the United States, Australia, Canada, and Italy. Serum cytokines from SCLS subjects and a group of 10 healthy children were analyzed. Children with SCLS (aged 5-11 years old) presented with at least 1 acute, severe episode of hypotension, hypoalbuminemia, and hemoconcentration in the absence of underlying causes for these abnormalities. In contrast to what is observed in adult SCLS, identifiable infectious triggers precipitated most episodes in these children, and none of them had a monoclonal gammopathy. We found elevated levels of chemokine (C-C motif) ligand 2 (CCL2), interleukin-8, and tumor necrosis factor α in baseline SCLS sera compared with the control group. All patients are alive and well on prophylactic therapy, with 4 patients receiving intravenous or subcutaneous immunoglobulins at regular intervals. The clinical manifestations of pediatric and adult SCLS are similar, with the notable exceptions of frequent association with infections and the lack of monoclonal gammopathy. Prophylactic medication, including high dose immunoglobulins or theophylline plus verapamil, appears to be safe and efficacious therapy for SCLS in children. PMID:25713284

  2. Fabricating PFPE Membranes for Capillary Electrophoresis (United States)

    Lee, Michael C.; Willis, Peter A.; Greer, Frank; Rolland, Jason


    A process has been developed for fabricating perfluoropolyether (PFPE) membranes that contain microscopic holes of precise sizes at precise locations. The membranes are to be incorporated into laboratory-on-a-chip microfluidic devices to be used in performing capillary electrophoresis. The present process is a modified version of part of the process, described in the immediately preceding article, that includes a step in which a liquid PFPE layer is cured into solid (membrane) form by use of ultraviolet light. In the present process, one exploits the fact that by masking some locations to prevent exposure to ultraviolet light, one can prevent curing of the PFPE in those locations. The uncured PFPE can be washed away from those locations in the subsequent release and cleaning steps. Thus, holes are formed in the membrane in those locations. The most straightforward way to implement the modification is to use, during the ultraviolet-curing step, an ultraviolet photomask similar to the photomasks used in fabricating microelectronic devices. In lieu of such a photomask, one could use a mask made of any patternable ultraviolet-absorbing material (for example, an ink or a photoresist).


    Directory of Open Access Journals (Sweden)

    Erika Cvetko


    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  4. Principles of Micellar Electrokinetic Capillary Chromatography Applied in Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Árpád Gyéresi


    Full Text Available Since its introduction capillary electrophoresis has shown great potential in areas where electrophoretic techniques have rarely been used before, including here the analysis of pharmaceutical substances. The large majority of pharmaceutical substances are neutral from electrophoretic point of view, consequently separations by the classic capillary zone electrophoresis; where separation is based on the differences between the own electrophoretic mobilities of the analytes; are hard to achieve. Micellar electrokinetic capillary chromatography, a hybrid method that combines chromatographic and electrophoretic separation principles, extends the applicability of capillary electrophoretic methods to neutral analytes. In micellar electrokinetic capillary chromatography, surfactants are added to the buffer solution in concentration above their critical micellar concentrations, consequently micelles are formed; micelles that undergo electrophoretic migration like any other charged particle. The separation is based on the differential partitioning of an analyte between the two-phase system: the mobile aqueous phase and micellar pseudostationary phase. The present paper aims to summarize the basic aspects regarding separation principles and practical applications of micellar electrokinetic capillary chromatography, with particular attention to those relevant in pharmaceutical analysis.

  5. Temperature control of ion guiding through tapered capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Elisabeth, E-mail: [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Stolterfoht, Nikolaus [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin (Germany); Allinger, Peter; Wampl, Stefan [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Wang, Yuyu [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu (China); Simon, Marius J. [Labor für Ionenstrahlphysik, ETH Zürich, 8093 Zürich (Switzerland); Aumayr, Friedrich, E-mail: [Institute of Applied Physics, TU Wien – Vienna University of Technology, 1040 Vienna (Austria)


    We investigate the guiding of Ar{sup 7+} ions (kinetic energy of 4.5 keV) through a single macroscopic tapered glass capillary of conical shape as a function of capillary tilt angle with respect to the incident ion beam direction. At room temperature a minimum in the transmitted ion intensity appears around the forward direction, which was previously observed and interpreted by a blocking of the transmission by repulsive Coulomb forces due to a uniformly charged ring shaped region in the centre part of the capillary. By heating the tapered capillary to temperatures around 100 °C and thus drastically increasing the electrical conductivity of the capillary material we no longer observe a minimum in the transmission curve but the transmission curve now has its maximum in forward direction. Since the maximum transmission at high temperature in forward direction is still smaller than the minimum in transmitted intensity at room temperature, we conclude that even at room temperature and in forward direction the focusing effect due to guiding is dominant and only partially weakened by blocking. Our experimental results are well reproduced in simulations using a theoretical model originally developed for straight nano-capillaries.

  6. A Fractal Model for Capillary Pressure of Porous Media

    Directory of Open Access Journals (Sweden)

    Boqi Xiao


    Full Text Available Capillary pressure is a basic parameter in the study of the behavior of porous media containing two or more immiscible fluid phases. In this study, the capillary pressure of porous media is predicted based on based on fractal property of pore in porous media. The formula of calculating the capillary pressure of porous media is given. The capillary pressure of porous media is expressed as a function of porosity, fractal dimension of pore and saturation. Based on the parametric effect analysis, we conclude that the capillary pressure of porous media is negatively correlated with the porosity and saturation. Besides, it is shown that the capillary pressure of unsaturated porous media decreases with the increase of saturation. No additional empirical constant is introduced. This model contains less empirical constants than the conventional correlations. The model predictions are compared with the existing experimental data and good agreement between the model predictions and experimental data is found. The validity of the present fractal model is thus verified.

  7. Fabrication and visualization of capillary bridges in slit pore geometry. (United States)

    Broesch, David J; Frechette, Joelle


    A procedure for creating and imaging capillary bridges in slit-pore geometry is presented. High aspect ratio hydrophobic pillars are fabricated and functionalized to render their top surfaces hydrophilic. The combination of a physical feature (the pillar) with a chemical boundary (the hydrophilic film on the top of the pillar) provides both a physical and chemical heterogeneity that pins the triple contact line, a necessary feature to create stable long but narrow capillary bridges. The substrates with the pillars are attached to glass slides and secured into custom holders. The holders are then mounted onto four axis microstages and positioned such that the pillars are parallel and facing each other. The capillary bridges are formed by introducing a fluid in the gap between the two substrates once the separation between the facing pillars has been reduced to a few hundred micrometers. The custom microstage is then employed to vary the height of the capillary bridge. A CCD camera is positioned to image either the length or the width of the capillary bridge to characterize the morphology of the fluid interface. Pillars with widths down to 250 µm and lengths up to 70 mm were fabricated with this method, leading to capillary bridges with aspect ratios (length/width) of over 100(1). PMID:24457446

  8. Wall modified photonic crystal fibre capillaries as porous layer open tubular columns for in-capillary micro-extraction and capillary chromatography. (United States)

    Kazarian, Artaches A; Sanz Rodriguez, Estrella; Deverell, Jeremy A; McCord, James; Muddiman, David C; Paull, Brett


    Wall modified photonic crystal fibre capillary columns for in-capillary micro-extraction and liquid chromatographic separations is presented. Columns contained 126 internal parallel 4 μm channels, each containing a wall bonded porous monolithic type polystyrene-divinylbenzene layer in open tubular column format (PLOT). Modification longitudinal homogeneity was monitored using scanning contactless conductivity detection and scanning electron microscopy. The multichannel open tubular capillary column showed channel diameter and polymer layer consistency of 4.2 ± 0.1 μm and 0.26 ± 0.02 μm respectively, and modification of 100% of the parallel channels with the monolithic polymer. The modified multi-channel capillaries were applied to the in-capillary micro-extraction of water samples. 500 μL of water samples containing single μg L(-1) levels of polyaromatic hydrocarbons were extracted at a flow rate of 10 μL min(-1), and eluted in 50 μL of acetonitrile for analysis using HPLC with fluorescence detection. HPLC LODs were 0.08, 0.02 and 0.05 μg L(-1) for acenaphthene, anthracene and pyrene, respectively, with extraction recoveries of between 77 and 103%. The modified capillaries were also investigated briefly for direct application to liquid chromatographic separations, with the retention and elution of a standard protein (cytochrome c) under isocratic conditions demonstrated, proving chromatographic potential of the new column format, with run-to-run retention time reproducibility of below 1%.

  9. The alveolar-capillary membrane diffusing capacity and the pulmonary capillary blood volume in heart transplant candidates


    Al-Rawas, O; Carter, R.; Stevenson, R; Naik, S; Wheatley, D


    OBJECTIVES—To determine the mechanism of impairment of pulmonary transfer factor for carbon monoxide (TLCO) in heart transplant candidates, as this is the most common lung function abnormality.
SETTING—Regional cardiopulmonary transplant centre.
METHODS—TLCO and its components (the diffusing capacity of the alveolar-capillary membrane (DM) and the pulmonary capillary blood volume (VC)) were measured using the Roughton and Forster method and the single breath technique in 38 patients with seve...

  10. Capillary electrophoresis: Imaging of electroosmotic and pressure driven flow profiles in fused silica capillaries (United States)

    Williams, George O., Jr.


    This study is a continuation of the summer of 1994 NASA/ASEE Summer Faculty Fellowship Program. This effort is a portion of the ongoing work by the Biophysics Branch of the Marshall Space Flight Center. The work has focused recently on the separation of macromolecules using capillary electrophoresis (CE). Two primary goals were established for the effort this summer. First, we wanted to use capillary electrophoresis to study the electrohydrodynamics of a sample stream. Secondly, there was a need to develop a methodology for using CE for separation of DNA molecules of various sizes. In order to achieve these goals we needed to establish a procedure for detection of a sample plug under the influence of an electric field Detection of the sample with the microscope and image analysis system would be helpful in studying the electrohydrodynamics of this stream under load. Videotaping this process under the influence of an electric field in real time would also be useful. Imaging and photography of the sample/background electrolyte interface would be vital to this study. Finally, detection and imaging of electroosmotic flow and pressure driven flow must be accomplished.

  11. Fluid trapping during capillary displacement in fractures (United States)

    Yang, Zhibing; Neuweiler, Insa; Méheust, Yves; Fagerlund, Fritjof; Niemi, Auli


    The spatial distribution of fluid phases and the geometry of fluid-fluid interfaces resulting from immiscible displacement in fractures cast decisive influence on a range of macroscopic flow parameters. Most importantly, these are the relative permeabilities of the fluids as well as the macroscopic irreducible saturations. They also influence parameters for component (solute) transport, as it usually occurs through one of the fluid phase only. Here, we present a numerical investigation on the critical role of aperture variation and spatial correlation on fluid trapping and the morphology of fluid phase distributions in a geological fracture. We consider drainage in the capillary dominated regime. The correlation scale, that is, the scale over which the two facing fracture walls are matched, varies among the investigated geometries between L/256 and L (self-affine fields), L being the domain/fracture length. The aperture variability is quantified by the coefficient of variation (δ), ranging among the various geometries from 0.05 to 0.25. We use an invasion percolation based model which has been shown to properly reproduce displacement patterns observed in previous experiments. We present a quantitative analysis of the size distribution of trapped fluid clusters. We show that when the in-plane curvature is considered, the amount of trapped fluid mass first increases with increasing correlation scale Lc and then decreases as Lc further increases from some intermediate scale towards the domain length scale L. The in-plane curvature contributes to smoothening the invasion front and to dampening the entrapment of fluid clusters of a certain size range that depends on the combination of random aperture standard deviation and spatial correlation.

  12. Interplay between flow and diffusion in capillary alginate hydrogels. (United States)

    Schuster, Erich; Sott, Kristin; Ström, Anna; Altskär, Annika; Smisdom, Nick; Gebäck, Tobias; Lorén, Niklas; Hermansson, Anne-Marie


    Alginate gels with naturally occurring macroscopic capillaries have been used as a model system to study the interplay between laminar flow and diffusion of nanometer-sized solutes in real time. Calcium alginate gels that contain homogeneously distributed parallel-aligned capillary structures were formed by external addition of crosslinking ions to an alginate sol. The effects of different flow rates (0, 1, 10, 50 and 100 μl min(-1)) and three different probes (fluorescein, 10 kDa and 500 kDa fluorescein isothiocyanate-dextran) on the diffusion rates of the solutes across the capillary wall and in the bulk gel in between the capillaries were investigated using confocal laser scanning microscopy. The flow in the capillaries was produced using a syringe pump that was connected to the capillaries via a tube. Transmission electron microscopy revealed an open aggregated structure close to the capillary wall, followed by an aligned network layer and the isotropic network of the bulk gel. The most pronounced effect was observed for the 1 nm-diameter fluorescein probe, for which an increase in flow rate increased the mobility of the probe in the gel. Fluorescence recovery after photobleaching confirmed increased mobility close to the channel, with increasing flow rate. Mobility maps derived using raster image correlation spectroscopy showed that the layer with the lowest mobility corresponded to the anisotropic layer of ordered network chains. The combination of microscopy techniques used in the present study elucidates the flow and diffusion behaviors visually, qualitatively and quantitatively, and represents a promising tool for future studies of mass transport in non-equilibrium systems.

  13. Experimental investigation on diabatic flow of R-134a through spiral capillary tube

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Mohd. Kaleem [Department of Mechanical Engineering, Thapar University, Patiala 147 004 (India); Kumar, Ravi; Sahoo, Pradeep K. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology, Roorkee 247 667, Uttarakhand (India)


    The present experimental investigation has been carried out to investigate the effects of various geometric parameters on the mass flow rate of R-134a through diabatic spiral capillary tube. In diabatic flow, the capillary tube is bonded with the compressor suction-line to form a counter-flow exchanger. The lateral type of diabatic capillary tube has been investigated in the present experimental study. The major geometric parameters investigated are capillary tube diameter, capillary tube length and coil pitch. In addition, effect of inlet subcooling on the mass flow rate through diabatic spiral capillary tube is also done. A comparison of the performance of diabatic spiral capillary tube has been made with adiabatic spiral capillary tube. Generalized empirical correlation for diabatic spiral capillary tube has also been proposed. It has been found that the predictions of the proposed correlation lie in the error band of {+-}7%. (author)

  14. Advances in Capillary Chromatography%毛细管色谱的进展

    Institute of Scientific and Technical Information of China (English)


    Capillary columns are used in both capillary liquid chromatography and capillary electrochromatography. The design for capillary liquid chromatography is discussed in comparison with capillary gas chromatography. The difference of diffusion coefficient in gas and liquid phase is a key role. The study for obtaining a high performance capillary liquid chromatography is discussed. Capillary electrochromatography is recently interesting for its instinct ability to realize a high performance chromatography. Capillary electrochromatography with and without pressurized flow is reviewed briefly. Instrumentation for capillary electrochromatography with pressurized flow is discussed. The port of splitting, and gradient elution of both solution and potential are described. The new findings of both the variation of column resistance and capacity factor according to the value of applied electric voltage are also discussed.

  15. On the performance of capillary barriers as landfill cover (United States)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  16. On the performance of capillary barriers as landfill cover

    Directory of Open Access Journals (Sweden)

    M. Kämpf


    Full Text Available Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m. In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  17. Natural Attenuation of Nonvolatile Contaminants in the Capillary Fringe. (United States)

    Kurt, Zohre; Mack, E Erin; Spain, Jim C


    When anoxic polluted groundwater encounters the overlying vadose zone an oxic/anoxic interface is created, often near the capillary fringe. Biodegradation of volatile contaminants in the capillary fringe can prevent vapor migration. In contrast, the biodegradation of nonvolatile contaminants in the vadose zone has received comparatively little attention. Nonvolatile compounds do not cause vapor intrusion, but they still move with the groundwater and are major contaminants. Aniline (AN) and diphenylamine (DPA) are examples of toxic nonvolatile contaminants found often at dye and munitions manufacturing sites. In this study, we tested the hypothesis that bacteria can aerobically biodegrade AN and DPA in the capillary fringe and decrease the contaminant concentrations in the anoxic plume beneath the vadose zone. Laboratory multiport columns that represented the unsaturated zone were used to evaluate degradation of AN or DPA in contaminated water. The biodegradation fluxes of the contaminants were estimated to be 113 ± 26 mg AN·m(-2)·h(-1) and 76 ± 18 mg DPA·m(-2)·h(-1) in the presence of bacteria known to degrade AN and DPA. Oxygen and contaminant profiles along with enumeration of bacterial populations indicated that most of the biodegradation took place within the lower part of the capillary fringe. The results indicate that bacteria capable of contaminant biodegradation in the capillary fringe can create a sink for nonvolatile contaminants. PMID:27523982

  18. Basement membrane changes in capillaries of the ageing human retina (United States)

    Powner, Michael B; Scott, Andrew; Zhu, Meidong; Munro, Peter M G; Foss, Alexander J E; Hageman, Gregory S; Gillies, Mark C; Fruttiger, Marcus


    Objectives The ultrastructural appearance of retinal capillaries can yield important information about disease mechanisms, but is not well characterised in human post mortem samples. We therefore aimed to create a baseline for the appearance of capillaries and establish how this is influenced by post mortem fixation delays and donor age. Methods Electron microscopy was used to characterise retinal capillaries in 20 anonymous donors (with no known eye diseases) of various ages and with various post mortem fixation delays. In addition, samples from six patients with conditions that are known to affect the retinal vasculature (four cases of type 2 diabetes without diabetic retinopathy, one case of diabetic retinopathy and one case of macular telangiectasia type 2) were analysed. Results Vacuoles were found in capillary basement membranes at the vessel—glia interface in all samples, from both the normal and disease cases. Vacuole frequency increased with donor age but was not influenced by post mortem fixation delays. Conclusion Vacuoles in the basement membrane are a normal feature of adult human retinal capillaries and do not indicate disease. Their incidence increases with age and might be a contributing factor to late-onset pathologies of the retinal vasculature. PMID:21606466

  19. Capillary plexuses are vulnerable to neutrophil extracellular traps. (United States)

    Boneschansker, Leo; Inoue, Yoshitaka; Oklu, Rahmi; Irimia, Daniel


    Capillary plexuses are commonly regarded as reliable networks for blood flow and robust oxygen delivery to hypoxia sensitive tissues. They have high levels of redundancy to assure adequate blood supply when one or more of the capillaries in the network are blocked by a clot. However, despite having extensive capillary plexuses, many vital organs are often subject to secondary organ injury in patients with severe inflammation. Recent studies have suggested that neutrophils play a role in this pathology, even though their precise contribution remains elusive. Here we investigate the effect of chromatin fibres released from overly-activated neutrophils (neutrophil extracellular traps, NETs) on the flow of blood through microfluidic networks of channels replicating geometrical features of capillary plexuses. In an in vitro setting, we show that NETs can decouple the traffic of red blood cells from that of plasma in microfluidic networks. The effect is astonishingly disproportionate, with NETs from less than 200 neutrophils resulting in more than half of a 0.6 mm(2) microfluidic network to become void of red blood cell traffic. Importantly, the NETs are able to perturb the blood flow in capillary networks despite the presence of anti-coagulants. If verified to occur in vivo, this finding could represent a novel mechanism for tissue hypoxia and secondary organ injury during severe inflammation in patients already receiving antithrombotic and anticoagulant therapies. PMID:26797289

  20. Pressure resistance of glass capillaries for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Holtappels, Kai; Beckmann-Kluge, Martin; Gebauer, Marek [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Eliezer, Dan


    A crucial problem in the development of new hydrogen technologies is the need for lightweight and safe storage of acceptable amounts of hydrogen, in particular for portable or mobile applications. A new and innovative technology based on capillary arrays has been developed. These systems ensure the safe infusion, storage, and controlled release of hydrogen gas, even when storage pressures of up to 1200 bar are applied. This technology enables the storage of a significantly higher amount of hydrogen than other approaches. It has already surpassed the US Department of Energy's 2010 target, and is expected to meet the DOE's 2015 target in the near future. The main determinant in this storage technology is the pressure resistance of glass capillaries. It is well known that quartz, for example, is three times stronger than steel. At the same time, the density is about three times lower which means that much less material is necessary to reach the same pressure resistance. The pressure resistance of single capillaries has been determined in relation to various capillary materials and dimensions, wall thicknesses etc. in order to find out optimal parameters for the 'final' capillaries. (orig.)

  1. The capillary hysteresis model HYSTR: User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A.; Bodvarsson, G.S.


    The potential disposal of nuclear waste in the unsaturated zone at Yucca Mountain, Nevada, has generated increased interest in the study of fluid flow through unsaturated media. In the near future, large-scale field tests will be conducted at the Yucca Mountain site, and work is now being done to design and analyze these tests. As part of these efforts a capillary hysteresis model has been developed. A computer program to calculate the hysteretic relationship between capillary pressure {phi} and liquid saturation (S{sub 1}) has been written that is designed to be easily incorporated into any numerical unsaturated flow simulator that computes capillary pressure as a function of liquid saturation. This report gives a detailed description of the model along with information on how it can be interfaced with a transport code. Although the model was developed specifically for calculations related to nuclear waste disposal, it should be applicable to any capillary hysteresis problem for which the secondary and higher order scanning curves can be approximated from the first order scanning curves. HYSTR is a set of subroutines to calculate capillary pressure for a given liquid saturation under hysteretic conditions.

  2. Applications on thermostable polar capillary GC columns

    Directory of Open Access Journals (Sweden)

    Lercker, G.


    Full Text Available The composition, the effect of processing and storage, and the overall quality of food lipids can be evaluated by gas chromatography (GC. GC analyses are carried out on non-polar or polar capillary columns, which separate the various lipid components according to their polarity and boiling points. However, there are components with high-boiling points that require higher temperatures in order to be better resolved. Thermostable polar GC columns with a relatively low column bleeding, can be used for this scope. These columns generate GC traces with different separation characteristics, which can lead to the identification of components that cannot be completely resolved with non-polar GC columns. Thermostable polar GC columns are suitable for the separation of different lipid classes and can be utilised for a fast screening of the total unsaponifiable matter of the oil or lipid extract. A series of examples for the analysis of food lipids with thermostable polar GC columns, are here described.La composición, el efecto del procesamiento y el almacenamiento, y la calidad total de los alimentos grasos se pueden evaluar por cromatografía de gases (GC. El análisis cromatográfico se lleva a cabo con columnas capilares polares y apolares que separan los diferentes componentes lipídicos de acuerdo a su polaridad y punto de ebullición. Sin embargo, existen componentes con altos puntos de ebullición que requieren temperaturas más elevadas para lograr una mejor separación. Las columnas polares termoestables de cromatografía de gases con un “sangrado” relativamente bajo, se pueden usar para esta actividad. Estas columnas generan cromatogramas con características diferentes que pueden conducir a la identificación de componentes que no pueden ser completamente resueltos con columnas no polares. Las columnas polares termoestables de cromatografía de gases son óptimas para la separación de las diferentes clases de lípidos y pueden ser

  3. Capillary flow in an interior corner (United States)

    Weislogel, Mark M.; Lichter, Seth


    The design of fluids management processes in the low-gravity environment of space requires an accurate description of capillarity-controlled flow in containers. Here we consider the spontaneous redistribution of fluid along an interior corner of a container due to capillary forces. The analytical portion of the work presents an asymptotic formulation in the limit of a slender fluid column, slight surface curvature along the flow direction z, small inertia, and low gravity. The scaling introduced explicitly accounts for much of the variation of flow resistance due to geometry and so the effects of corner geometry can be distinguished from those of surface curvature. For the special cases of a constant height boundary condition and a constant flow condition, the similarity solutions yield that the length of the fluid column increases as t1/2 and t3/5, respectively. In the experimental portion of the work, measurements from a 2.2 s drop tower are reported. An extensive data set, collected over a previously unexplored range of flow parameters, includes estimates of repeatability and accuracy, the role of inertia and column slenderness, and the effects of corner angle, container geometry, and fluid properties. At short times, the fluid is governed by inertia (t[less, similar]tLc). Afterwards, an intermediate regime (tLc[less, similar]t[less, similar] tH) can be shown to be modelled by a constant-flow-like similarity solution. For t[gt-or-equal, slanted]tH it is found that there exists a location zH at which the interface height remains constant at a value h(zH, t)=H which can be shown to be well predicted. Comprehensive comparison is made between the analysis and measurements using the constant height boundary condition. As time increases, it is found that the constant height similarity solution describes the flow over a lengthening interval which extends from the origin to the invariant tip solution. For t[dbl greater-than sign]tH, the constant height solution

  4. Computational modelling of slug flow in a capillary microreactor (United States)

    Kashid, M. N.; Platte, F.; Agar, D. W.; Turek, S.


    The benefits of slug flow capillary microreactor exhibit the ability to adjust two individual transport mechanisms, i.e., convection inside the slug and diffusion between two consecutive slugs. The mass transfer rate is enhanced by internal circulation, which arises due to the shear between slug axis and continuous phase or capillary wall. The knowledge of circulation patterns within the slug plays an important role in the design of a capillary microreactor. Apart from this, well defined slug flow generation is a key activity in the development of methodology to study hydrodynamics and mass transfer. In the present paper we discuss computational fluid dynamics (CFD) modelling aspects of internal circulations (single phase) and slug flow generation (two-phase).

  5. Three-Dimensional Reconstruction of Erythrocyte in the Capillary

    CERN Document Server

    Fan, Yifang; Li, Zhiyu; Lin, Wentao; Wei, Yuan; Zhong, Xing; Newman, Tony; Lv, Changsheng; Fan, Yuzhou


    The dynamic analysis of erythrocyte deformability is used as an important means for early diagnosis of blood diseases and blood rheology. Yet no effective method is available in terms of three-dimensional reconstruction of erythrocytes in a capillary. In this study, ultrathin serial sections of skeletal muscle tissue are obtained from the ultramicrotome, the tomographic images of an erythrocyte in a capillary are captured by the transmission electron microscope, and then a method to position and restore is devised to demonstrate the physiological relationship between two adjacent tomographic images of an erythrocyte. Both the modeling and the physical verification reveal that this method is effective, which means that it can be used to make three-dimensional reconstruction of an erythrocyte in a capillary. An example of reconstructed deformation of erythrocyte based on the serial ultrathin sections is shown at the end of this paper.

  6. The fine structure of capillaries and small arteries. (United States)



    Details of capillary endothelia of the mammalian heart are described and compared with capillaries of other organs and tissues. Continuous invagination and pinching off of the plasma membrane to form small vesicles which move across the cytoplasm are suggested as constituting a means of active and selective transmission through capillary walls (12). This might be designated as cytopempsis (transmission by cell). The fine structure of the different layers in the walls of small heart arteries is demonstrated. Endothelial protrusions extend through windows of the elestica interna to make direct contact with smooth muscle plasma membranes. The elastica interna appears to vary greatly in both thickness and density, and probably restricts filtration, diffusion, and osmosis to such an extent that windows and the transport mechanisms described (cytopempsis) are necessary for the functional integrity of the smooth muscle layer. The contractile material consists of very fine, poorly oriented filaments. PMID:13438930

  7. Capillary Rise of Magnetohydrodynamics Liquid into Deformable Porous Material

    Directory of Open Access Journals (Sweden)

    Javed I Siddique


    Full Text Available We have developed a mathematical model for capillary rise of magnetohydrodynamic fluids. The liquid starts to imbibe because of capillary suction in an undeformed and initially dry sponge-like porous material. The driving force in our model is a pressure gradient across the evolving porous material that induces a stress gradient which in turn causes deformation that is characterized by a variable solid fraction. The problem is formulated as a non–linear moving boundary problem which we solve using the method of lines approach after transforming to a fixed computational domain. The summary of our finding includes a notable reduction in capillary rise and a decrease in solid deformation due to magnetic effects.

  8. Dynamic capillary wetting studied with dissipative particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cupelli, Claudio; Glatzel, Thomas; Zengerle, Roland; Santer, Mark [Laboratory for MEMS applications, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Henrich, Bjoern; Moseler, Michael [Freiburg Materials Research Center (FMF), Stefan-Meier-Strasse 21, 79104 Freiburg (Germany)], E-mail:


    We present a study on dynamic capillary wetting in the framework of dissipative particle dynamics (DPD) based on a novel wall model for wetting on solid boundaries. We consider capillary impregnation of a slit pore in two situations: (i) forced (piston-driven) steady state flow and (ii) capillarity driven imbibition out of a finite reservoir. The dynamic contact angle behavior under condition (i) is consistent with the hydrodynamic theories of Cox under partial wetting conditions and Eggers for complete wetting. The flow field near the contact line shows a region of apparent slip flow which provides a natural way of avoiding a stress singularity at the triple line. The dynamics of the capillary imbibition, i.e. condition (ii), is consistently described by the Lucas-Washburn equation augmented by expressions that account for inertia and the influence of the dynamic contact angle.

  9. Rapid fabrication of supercapacitor electrodes using bionanoscaffolds in capillary microfluidics (United States)

    Zang, F.; Chu, S.; Gerasopoulos, K.; Culver, J. N.; Ghodssi, R.


    This paper reports the utilization of capillary microfluidics to rapidly create nanostructure-patterned electrodes for energy storage applications. Using patterned photoresist as open-channel capillary microfluidics, Tobacco mosaic virus (TMV) bio-nanoscaffolds suspended in solution are autonomously delivered onto planar gold electrodes over a 1 cm2 area. The TMVs assemble on the electrode and form a dense bio-nanoscaffold layer due to enhanced evaporation-assisted assembly in the open-channel capillary microfluidic device within an hour. The TMV structures are coated with Ni/NiO through electroless plating and thermal oxidation to form supercapacitor electrodes. The galvanostatic charge/discharge cycle showed a 3.6-fold increase in areal capacitance for the nanostructured electrode compared to planar structures.

  10. Enantiomeric resolution of multiple chiral centres racemates by capillary electrophoresis. (United States)

    Ali, Imran; Suhail, Mohd; Al-Othman, Zeid A; Alwarthan, Abdulrahman; Aboul-Enein, Hassan Y


    Enantiomeric resolution of multichiral centre racemates is an important area as some multichiral centre racemates are of great medicinal importance. However, enantioseparation of such types of racemates is a challenging task. Amongst many analytical techniques, capillary electrophoresis is a powerful technique and may be used to resolve such racemates. Only few papers are available describing enantiomeric resolution of such racemates. Therefore, efforts have been made to describe the enantiomeric resolution of multichiral centre racemates by capillary electrophoresis. This article discusses the importance of multichiral racemates, the need for capillary electrophoresis in enantiomeric resolution and chiral resolution of multichiral centre racemates using various chiral selectors. Further, attempts have been made to discuss the future challenges and prospects of enantiomeric resolution of multichiral racemates. The various chiral selectors used for the purpose are chiral crown ether, cyclodextrins, polysaccharides, macrocyclic glycopeptide antibiotics and ligand exchange.

  11. Capacitive measurement of mercury column heights in capillaries. (United States)

    Frey, Sarah; Richert, Ranko


    The detection of changes in volume, e.g., in expansivity or aging measurements, are often translated into mercury column height within a glass capillary. We propose a capacitive technique for measuring the meniscus position using a cylindrical capacitor with mercury as the inner electrode, the capillary material as the dielectric, and a metal coat covering the outside surface of the capillary as the second electrode. The measured capacitance changes linearly with meniscus height, as long as the top mercury level remains within the range of the outer electrode. With the demonstrated noise level of 48 nm for our preliminary setup, meniscus height changes beyond 100 nm can be observed via the capacitance. PMID:20370203

  12. Capillary-inertial colloidal catapults upon drop coalescence (United States)

    Chavez, Roger L.; Liu, Fangjie; Feng, James J.; Chen, Chuan-Hua


    Surface energy released upon drop coalescence is known to power the self-propelled jumping of liquid droplets on superhydrophobic solid surfaces, and the jumping droplets can additionally carry colloidal payloads toward self-cleaning. Here, we show that drop coalescence on a spherical particle leads to self-propelled launching of the particle from virtually any solid surface. The main prerequisite is an intermediate wettability of the particle, such that the momentum from the capillary-inertial drop coalescence process can be transferred to the particle. By momentum conservation, the launching velocity of the particle-drop complex is proportional to the capillary-inertial velocity based on the drop radius and to the fraction of the liquid mass in the total mass. The capillary-inertial catapult is not only an alternative mechanism for removing colloidal contaminants, but also a useful model system for studying ballistospore launching.

  13. Analysis of White Blood Cell Dynamics in Nailfold Capillaries (United States)

    Bourquard, Aurélien; Butterworth, Ian; Sánchez-Ferro, Alvaro; Giancardo, Luca; Soenksen, Luis; Cerrato, Carolina; Flores, Rafael; Castro-González, Carlos


    Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature. PMID:26738019

  14. Differential Capillary Effect Model of Fabric and Its Application

    Institute of Scientific and Technical Information of China (English)

    王其; 冯勋伟


    The concept of the differential capillary effect was presented by foreign scholars several years ago, and the principle was used to design sportswear fabrics with good wet permeability and good drying functions for famous sports teams. Because the differential capillary effect model was not established in theory,it was impossible to fulfill the best functions. In this paper, by setting up the differential capillary effect of fabric, the factors to influence wet permeability and drying functions of the model is discussed in theory, and the means to optimize the design of the fabric is presented and proven practically by the experiment. The optimum fabric with good permeability and good drying functions can be designed using the model at last.

  15. Photo inactivation of virus particles in microfluidic capillary systems. (United States)

    Ren, Yudan; Crump, Colin M; Mackley, Malcolm M; Li Puma, Gianluca; Reis, Nuno M


    It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is tuned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light, resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type-1 (HSV-1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high-throughput MicroCapillary Film with mean hydraulic diameter of 206 μm. Up to 99.96% of HSV-1 virus particles were effectively inactivated with a mean exposure time of up to 10 s, with undetectable collateral damage to solution proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non-invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules. Biotechnol. Bioeng. 2016;113: 1481-1492. © 2015 Wiley Periodicals, Inc. PMID:26694540

  16. Investigation into the suitability of capillary tubes for microcrystalline testing. (United States)

    Elie, Leonie E; Baron, Mark G; Croxton, Ruth S; Elie, Mathieu P


    A comparison between microcrystalline tests performed on microscope slides and flat capillary tubes with inner diameters ranging from 0.1 to 0.7 mm was carried out to explore the appropriateness of tubes for rapid testing of suspected drugs of abuse in the laboratory as well as in the field. Tests for mephedrone, cocaine, and phencyclidine were chosen as examples to investigate the handling of the capillary tubes, the influence on crystal habit, size, and the effects on the limit of detection. Image stacking software was used to increase the depth of field of micrographs taken from developed microcrystals greatly enhancing the interpretability even months after carrying out the microcrystalline test. Additionally, the potential of seeding capillary tubes with a reagent was studied. Pre-treatment of tubes would allow microcrystalline tests to be carried out quicker and anywhere without the necessity of taking along expensive and hazardous reagents. The sealing of capillary tubes containing developed microcrystalline tests in order to preserve results for a long period of time was successfully done by applying paraffin wax to the open ends. Finally, it was concluded that capillary tubes are suitable vessels for performing microcrystalline tests. The increased portability of the improved set-up allows tests to be safely executed outside laboratories without impairing the quality of the result. Findings were applied to six legal high samples purchased online between May and August 2011. The active ingredients like MDAI as well as cutting agents like caffeine were successfully identified using the microcrystalline test technique in capillary tubes.

  17. Density functional study of condensation in capped capillaries (United States)

    Yatsyshin, P.; Savva, N.; Kalliadasis, S.


    We study liquid adsorption in narrow rectangular capped capillaries formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal to the two planar walls. The most important transition in confined fluids is arguably condensation, where the pore becomes filled with the liquid phase which is metastable in the bulk. Depending on the temperature T, the condensation in capped capillaries can be first-order (at T≤slant {{T}\\text{cw}} ) or continuous (at T\\gt {{T}\\text{cw}} ), where {{T}\\text{cw}} is the capillary wetting temperature. At T \\gt {{T}\\text{cw}} , the capping wall can adsorb mesoscopic amounts of metastable under-condensed liquid. The onset of condensation is then manifested by the continuous unbinding of the interface between the liquid adsorbed on the capping wall and the gas filling the rest of the capillary volume. In wide capped capillaries there may be a remnant of wedge filling transition, which is manifested by the adsorption of liquid drops in the corners. Our classical statistical mechanical treatment predicts a possibility of three-phase coexistence between gas, corner drops and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we find that thick prewetting films of finite length may be nucleated at the capping wall below the boundary of the prewetting transition. Prewetting then proceeds in a continuous manner manifested by the unbinding interface between the thick and thin films adsorbed on the side walls. Our analysis is based on a detailed numerical investigation of the density functional theory for the fluid equilibria for a number of illustrative case studies.

  18. A novel ionic liquids grafted polysiloxane for capillary gas chromatography

    Institute of Scientific and Technical Information of China (English)

    Qing Quan Wei; Mei Ling Qi; Ruo Nong Fu


    A new ionic liquids grafted polysiloxane used as stationary phase for capillary gas chromatography(CGC)is described.The stationary phase of 1-vinyl-3-hexylimidazolium hexafluorophosphate anchored to polysiloxane(PMHS-[VHIm][PF6])was synthesized,characterized and coated onto capillary columns by static coating.The results show that the present stationary phase exhibits a very good chromatographic resolution and selectivity for Grob test mixture and alcohols with baseline resolution and symmetry peaks.The present work suggests that novel stationary phase has a great potential for further development and application.

  19. Freezing of capillary waves at the glass transition

    International Nuclear Information System (INIS)

    The freezing of capillary waves on glycerol surfaces is studied by in situ x-ray reflectivity measurements. A wide temperature range around the calorimetric glass transition temperature at Tg≅186 K is investigated. For T>250 K the obtained surface roughness as a function of the temperature differs significantly from the value predicted by the classical capillary waves theory. Below the temperature T≅250 K the magnitude of the roughness remains constant. Furthermore, a large hysteresis, i.e., a large difference of the roughnesses measured during cooling and heating of the sample, is observed. These findings are discussed in terms of viscosity effects

  20. A capillary-driven micromixer: idea and fabrication

    International Nuclear Information System (INIS)

    Microfluidic systems have been drawing attention upon the various branches of engineering science and the allied areas within biology and biomedicine. In this paper, a fabrication of a capillary-driven micromixer using photoresist JSR and glasses is proposed. We design three types of planar capillary-driven micormixers with different sizes of baffles in the channel. Flow tests have shown that the micromixer with a baffle gap of 100 μm and space of 100 μm reaches a best mixing performance of 93% in gray-level image analysis. (paper)

  1. A capillary-driven micromixer: idea and fabrication (United States)

    Lee, Chun-Te; Lee, Chun-Che


    Microfluidic systems have been drawing attention upon the various branches of engineering science and the allied areas within biology and biomedicine. In this paper, a fabrication of a capillary-driven micromixer using photoresist JSR and glasses is proposed. We design three types of planar capillary-driven micormixers with different sizes of baffles in the channel. Flow tests have shown that the micromixer with a baffle gap of 100 μm and space of 100 μm reaches a best mixing performance of 93% in gray-level image analysis.

  2. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre


    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent.The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom.It provides a comprehensive approach to various applications, such as capillary ad

  3. Laser-capillary interaction for the EXIN project (United States)

    Bisesto, F. G.; Anania, M. P.; Bacci, A. L.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Galletti, M.; Gallo, A.; Ghigo, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Pompili, R.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.


    The EXIN project is under development within the SPARC_LAB facility of the National Laboratory of Frascati (LNF-INFN). This project aims to accelerate pre-existing electron bunches with high brightness by exploiting the wakefield plasma acceleration technique, while preserving the initial brightness. The wakefield is excited inside a dielectric capillary by high intensity laser pulses produced by the FLAME laser interacting with a gas. In this work, we present numerical simulations in order to optimize energy coupling between our laser with super-Gaussian transverse profile and a dielectric capillary. Moreover, an overview of the experimental layout will be given.

  4. [Determination of acetochlor and oxyfluorfen by capillary gas chromatography]. (United States)

    Xiang, Wen-Sheng; Wang, Xiang-Jing; Wang, Jing; Wang, Qing


    A method is described for the determination of acetochlor and oxyfluorfen by capillary gas chromatography with FID and an SE-30 capillary column (60 m x 0.53 mm i. d., 1.5 microm), using dibutyl phthalate as the internal standard. The standard deviations for acetochlor and oxyfluorfen concentration(mass fraction) were 0.44% and 0.47% respectively. The relative standard deviations for acetochlor and oxyfluorfen were 0.79% and 0.88% and the average recoveries for acetochlor and oxyfluorfen were 99.3% and 101.1% respectively. The method is simple, rapid and accurate. PMID:16358708

  5. Intralesional bleomycin for the treatment of periocular capillary hemangiomas

    Directory of Open Access Journals (Sweden)

    Derrick P Smit


    Full Text Available Periocular infantile capillary hemangiomas do not always respond well to conventional treatment modalities such as systemic or intralesional corticosteroids, radiotherapy or debulking surgery. The authors describe the use of intralesional bleomycin injections (IBIs to treat potentially amblyogenic lesions in two cases where other modalities have failed. In both cases monthly IBIs successfully cleared the visual axis of the affected eye before the age of 1 year thus preventing permanent sensory deprivation amblyopia. A total of five and nine injections, respectively, were used and no significant side effects were noted. IBI appears to be a useful alternative in the treatment of periocular capillary hemangiomas refractory to more conventional modalities.

  6. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T


    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  7. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography. (United States)

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A


    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  8. Preparation of polyacrylamide gel-filled capillaries with step gradients and low UV-detection background

    Institute of Scientific and Technical Information of China (English)



    Polyacrylamide- filled capillaries with step gradients were designed and prepared with a newly established method,which is also suitable for producing other sorts of capillaries.The resulting capillaries allow the use of any UV light to approach the most sensitive detection and have the features of fast running speed and high separation efficiency In addition,the capillaries can he used continuously for more than two weeks.

  9. Cortical capillary dysfunction in patients suspected of Alzheimer’s disease

    DEFF Research Database (Denmark)

    Eskildsen, Simon Fristed; Gyldensted, Louise; Nagenthiraja, Kartheeban;

    Vascular risk factors are suspected to play a role in the etiology of Alzheimer’s disease. Recently, a model that relates capillary dysfunction to the development of AD was proposed[1]. The model predicts that capillary dysfunction in form of increased capillary transit time heterogeneity (CTH...

  10. New Sorbent for Bilirubin Removal from Human Plasma: Albumin Immobilized Microporous Membranous PTFE Capillaries

    Institute of Scientific and Technical Information of China (English)

    Lei ZHANG; Gu JIN


    In this study, we developed a tailored capillary sorbent for bilirubin removal. For immobilized bioligand, capillaries were grafted with epoxy groups using RIGP. The HSA immobilized capillaries has a high affinity adsorption capacity (71.2 mg bilirubin/g polymer) and a shorter adsorption equilibrium time (about 60 min).

  11. Measurement of inner surface roughness of capillary by an x-ray reflectivity method

    Institute of Scientific and Technical Information of China (English)

    Li Yu-De; Lin Xiao-Yan; Tan Zhi-Yuan; Sun Tian-Xi; Liu Zhi-Guo


    The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope(AFM). The roughness measured by this new method can reach the order of angstroms with high quality capillaries.

  12. Flow rate limitation in open capillary channel flows. (United States)

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E


    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.

  13. Atomic-scale friction : thermal effects and capillary condensation

    NARCIS (Netherlands)

    Jinesh, Kochupurackal Balakrishna Pillai


    This work entitled as "Atomic-scale friction: thermal effects and capillary condensation" is a study on the fundamental aspects of the origin of friction from the atomic-scale. We study two realistic aspects of atomic-scale friction, namely the effect of temperature and the effect of relative humidi

  14. Revisiting the Diffusion Problem in a Capillary Tube Geometry

    CERN Document Server

    Sullivan, Eric


    The present work revisits the problem of modeling diffusion above a stagnant liquid interface in a capillary tube geometry. In this revisitation we elucidate a misconception found in the classical model proposed by Bird et. al. Furthermore, we propose alternative explanations for thermally forced diffusion and provide a description of natural convection in the absence of forcing terms.

  15. Rapid inorganic ion analysis using quantitative microchip capillary electrophoresis

    NARCIS (Netherlands)

    Vrouwe, Elwin X.; Lüttge, Regina; Olthuis, Wouter; Berg, van den Albert


    Rapid quantitative microchip capillary electrophoresis (CE) for online monitoring of drinking water enabling inorganic ion separation in less than 15s is presented. Comparing cationic and anionic standards at different concentrations the analysis of cationic species resulted in non-linear calibratio

  16. Effect of surfactant on kinetics of thinning of capillary bridges (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark


    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  17. Following red blood cells in a pulmonary capillary

    CERN Document Server

    Mauroy, Benjamin


    The red blood cells or erythrocytes are biconcave shaped cells and consist mostly in a membrane delimiting a cytosol with a high concentration in hemoglobin. This membrane is highly deformable and allows the cells to go through narrow passages like the capillaries which diameters can be much smaller than red blood cells one. They carry oxygen thanks to hemoglobin, a complex molecule that have very high affinity for oxygen. The capacity of erythrocytes to load and unload oxygen is thus a determinant factor in their efficacy. In this paper, we will focus on the pulmonary capillary where red blood cells capture oxygen. We propose a camera method in order to numerically study the behavior of the red blood cell along a whole capillary. Our goal is to understand how erythrocytes geometrical changes along the capillary can affect its capacity to capture oxygen. The first part of this document presents the model chosen for the red blood cells along with the numerical method used to determine and follow their shapes a...

  18. Regulation of skeletal muscle capillary growth in exercise and disease. (United States)

    Haas, Tara L; Nwadozi, Emmanuel


    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.

  19. CPMG relaxation rate dispersion in dipole fields around capillaries. (United States)

    Kurz, F T; Kampf, T; Buschle, L R; Heiland, S; Schlemmer, H-P; Bendszus, M; Ziener, C H


    Transverse relaxation rates for Carr-Purcell-Meiboom-Gill (CPMG) sequences increase with inter-echo time in presence of microscopic magnetic field inhomogeneities due to nuclear spin diffusion. For a weak field approximation that includes diffusion effects, the CPMG relaxation rate shift for proton diffusion around capillaries in muscle tissue can be expressed in terms of a frequency correlation function and the inter-echo time. The present work provides an analytical expression for the local relaxation rate shift that is dependent on local blood volume fraction, diffusion coefficient, capillary radius, susceptibility difference and inter-echo time. Asymptotic regions of the model are in agreement with previous modeling results of Brooks et al., Luz et al. and Ziener et al. In comparison with simulation data, the model shows an equal or better accuracy than established approximations. Also, model behavior coincides with experimental data for rat heart and skeletal muscle. The present work provides analytical tools to extract sub-voxel information about uniform capillary networks that can be used to study capillary organization or micro-circulatory remodeling. PMID:27071310

  20. Capillary-force measurement on SiC surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.


    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness similar to 4-14 nm mainly

  1. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J


    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a heavy-chain-

  2. Investigation of X-ray lasing in a capillary discharge

    NARCIS (Netherlands)

    Ellwi, S. S.; Juschkin, L.; Ferri, S.; Kunze, H. J.; E. Louis,


    Using a new technique of an induced MHD instability in a capillary made of polyacetal we observed an intense spike (signal) of the Balmer-a line of C VI at 18.22 nm during the second half cycle of the discharge. The spike is identified as Amplified Spontaneous Emission (ASE), and enhancements are de

  3. Study of Oxidation of Glutathione by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A capillary electrophoresis method for the separation and quantification of reduced glutathione (GSH) and oxidized glutathione (GSSG) was developed. A baseline separation was achieved within five minutes. The effects of time and the concentrations of hydrogen peroxide (H2O2) on the oxidation of GSH were investigated.

  4. Capillary electrophoresis application in metal speciation and complexation characterization (United States)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  5. Numerical Simulation of Particle Distribution in Capillary Membrane during Backwash

    Directory of Open Access Journals (Sweden)

    Anik Keller


    Full Text Available The membrane filtration with inside-out dead-end driven UF-/MF- capillary membranes is an effective process for particle removal in water treatment. Its industrial application increased in the last decade exponentially. To date, the research activities in this field were aimed first of all at the analysis of filtration phenomena disregarding the influence of backwash on the operation parameters of filtration plants. However, following the main hypothesis of this paper, backwash has great potential to increase the efficiency of filtration. In this paper, a numerical approach for a detailed study of fluid dynamic processes in capillary membranes during backwash is presented. The effect of particle size and inlet flux on the backwash process are investigated. The evaluation of these data concentrates on the analysis of particle behavior in the cross sectional plane and the appearance of eventually formed particle plugs inside the membrane capillary. Simulations are conducted in dead-end filtration mode and with two configurations. The first configuration includes a particle concentration of 10% homogeneously distributed within the capillary and the second configuration demonstrates a cake layer on the membrane surface with a packing density of 0:6. Analyzing the hydrodynamic forces acting on the particles shows that the lift force plays the main role in defining the particle enrichment areas. The operation parameters contribute in enhancing the lift force and the heterogeneity to anticipate the clogging of the membrane.

  6. Polyimide polymer glass-free capillary columns for gas chromatography. (United States)

    Webster, Jackie G; Marine, Susan S; Danielson, Neil D


    Polymeric polyimide capillary tubing, both uncoated and coated with stationary phases of two polarities, is explored for use as capillary columns for gas chromatography (GC). These glass-free polyimide columns are flexible and their small winding diameter of less than a cm around a solid support makes them compatible for potential use in portable GC instruments. Polyimide columns with dimensions of 0.32 mm i.d. × 3 m are cleaned, annealed at 300°C, and coated using the static method with phenylmethylsilicone (PMS). Separations of volatile organics are investigated isothermally on duplicate sets of polyimide columns by GC with a flame ionization detector using split injection. Unlike the uncoated ones, the coated polyimide columns successfully separate Grob test mix classes of alkanes, amines, and fatty acid methyl esters. The relative standard deviations for retention time and peak area are 0.5 and 2.5 , respectively. With the 3 m PMS-coated column connected to a retention gap to permit operation at its optimum flow rate of 30 cm/s, a plate count of 3200 or plate height of 1 mm is possible. Lack of retention and tailing peaks are evident for the polyimide polymer capillary columns as compared to that of a 3 m commercial cross-linked PMS fused silica capillary. However, headspace analyses of an aromatic hydrocarbon mix and a Clearcoat automotive paint sample are viable applications on the PMS polyimide polymer column. PMID:21682994

  7. Miniaturized movable contactless conductivity detection cell for capillary electrophoresis. (United States)

    Macka, Miroslav; Hutchinson, Joseph; Zemann, Andreas; Shusheng, Zhang; Haddad, Paul R


    A miniaturized capacitively coupled contactless conductivity detector (mini-C(4)D) cell has been designed which is small enough to allow it to slide along the effective capillary length inside the capillary cassette of an Agilent capiillary electrophoresis system (CE) (or other CE brand of similar construction), including the possibility of positioning it close to the point of optical detection (4 cm), or even putting two such detector cells in one cassette. The cell was tested and the performance characteristics (noise, sensitivity, and peak width) were compared with those obtained with the previously used large C(4)D cell. No significant differences were observed. The mini-C(4)D was used in simultaneous separations of common cations and anions where its advantage over a larger C(4)D cell is the ability to vary the point of detection with the mini-C(4)D cell continuously at any point along the capillary length, so that the optimum apparent selectivity can be chosen. Other applications include providing a convenient second point of detection in addition to photometric detection, such as to measure accurately the linear velocity of a zone, or to allow placement of two mini-C(4)D cells in one capillary cassette simultaneously. PMID:12858387

  8. Water Films: Moisture that Extends Beyond the Capillary Wetting Front (United States)

    Dragila, M. I.; Ambrowiak, G.


    Imbibition dynamics were investigated by measuring upward imbibition rates in laboratory vertical columns that were filled with sandy loam soil media. The contribution of films and capillary water which drives the infiltrating wetting front was successfully quantified. It was demonstrated that films move ahead of the wetting front only after capillary water has ceased driving percolation, and that the hydraulic diffusion coefficient (Dh) of film flow varied from 10-70% of the hydraulic diffusion coefficient of capillary water. The magnitude of Dh depended upon particle size distribution, surface roughness and initial moisture content of the media. What is the potential value of this mechanism in soil moisture dynamics research? (1) In coarse textured soils with low capillary potential, film that stretches well beyond the capillary wetting front can provide moisture to microbiota and mycorhyza, thereby increasing nutrient diffusion to a broader area than by capillary based models (e.g., modeling of drip irrigation systems). Even though the potential role of films in these processes has been previously discussed, the magnitude of potential moisture delivery has not been measured. (2) Films surging ahead of a decelerating capillary front may reduce the effect of subsurface water repellency. It is known that over time, moisture decreases both the contact angle of water against silica and water repellent soils. Therefore, in time, a film may predispose sandy soil to greater imbibition capacity. (3) The need to maximize water efficiency becomes exceedingly important in drought threatened, semi-arid irrigated agriculture. A thoughtful, yet realistic balance must be reached between water conservation and crop production. As our climate changes and water needs increase, protecting against crop failure will require a more comprehensive understanding of the mechanisms that control soil moisture dynamics. This study adds to this conversation by investigating higher level

  9. Evaluation and management of Periocular Capillary Hemangioma: A review

    International Nuclear Information System (INIS)

    To review the salient features of periocular capillary hemangioma, provide the ophthalmologist with clinical, diagnostic and histological features characteristic of the tumor and discuss various methods of management. Methods were literature review of periocular capillary hemangioma, diagnostic evaluation with emphasis on treatment through the presentation of illustrative clinical cases. Capillary hemangioma is the most common benign vascular tumor found on the head and neck area including eyelids and orbit. The lesion typically manifests within the first few weeks of life, grows rapidly in the first year during the proliferative phase, then invariably and slowly regresses over the next 4 to 5 years during the involutional phase. The lesion may resolve without leaving any significant cosmetic sequelae in vast majority of patients, however, the functional defects in the form of amblyopia, squint, facial disfigurement and rarely optic atrophy may persist long after complete resolution of the tumor. The diagnosis of the capillary hemangioma requires a combination of clinical and imaging studies such as ultrasonography, computerized tomography, magnetic resonance imaging and angiography in selected cases. With the advent of less invasive diagnostic techniques, the need for biopsy in capillary hemangioma has decreased. Nevertheless, it should be differentiated from other periocular tumors such as rhabdomyosarcoma, lymphangioma, chloroma, neuroblastoma, orbital cyst, and orbital cellulites. Treatment is indicated to prevent amblyopia or cosmetic disfigurement. If indicated, intra-lesional corticosteroids may be used to enhance resolution of the tumor. Other forms of treatment tried with variable success include systematic and topical corticosteroids, radiation, surgical excision and intravenous embolization of the tumor. Indecent years, laser ablation of the tumor has been found effective in some cases. Interferon-u has been utilized effectively in cases of capillary

  10. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures. (United States)

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed


    The mass transport capacity (i.e., the capillary limit,) of homogeneous wicks is limited by the inverse relation between the capillary pressure and permeability. Hybrid wicks with two or more distinct pore sizes have been proposed as alternative geometries to enhance the capillary limit. In this study, the impact of the two hybridization schemes-in-plane and out-of-plane-on the capillary transport of hybrid wicks is studied. Experimental data from in-plane hybrid wicks in conjunction with a theoretical model show that local changes in the curvature of the liquid-vapor meniscus (i.e., pore size) do not result in a higher mass flow rate than that of a comparable homogeneous wick. Instead, a global change in the curvature of the liquid-vapor meniscus (as occurring in out-of-plane hybrid wicks) is necessary for obtaining mass flow rates greater than that of a homogeneous wick. Therefore, the physics of capillary limit and dryout in out-of-plane hybrid wicks is investigated using a hybrid wick consisting of a 1-μm-thick highly porous mesh suspended over a homogeneous array of micropillars. A study of the dryout process within the structure revealed that the presence of the mesh strongly alters the dryout mechanism. Visualization studies showed that out-of-plane hybrid wicks remain operational only as long as the liquid is constrained within the mesh pores; recession of the meniscus just below the mesh results in instantaneous local dryout. To maintain liquid within the mesh structure, the mesh thickness was increased, and it was determined that the mesh thickness plays the key role in the performance of an out-of-plane hybrid wick.

  11. Tuning capillary surface properties by charged polymeric coatings. (United States)

    Sola, Laura; Chiari, Marcella


    Separation of proteins in capillary electrophoresis (CE) is often hindered by their interactions with the silanols groups on the inner surface of the fused silica capillary. In particular, the positive charges of alkaline proteins establish electrostatic interactions with the negative charges of the surface, leading to peak broadening and loss of separation efficiency. Moreover, uncontrolled electroosmotic flow (EOF), severely impacts on analyte mobility causing either loss of resolution or loss of efficiency. Among several strategies, coatings are widely employed to mask capillary surface silanols and so to reduce protein adsorption and EOF. Here we report on the synthesis and characterization of a novel family of adsorbed polymeric coatings, which provide improved performance in terms of prevention of protein adsorption and EOF regulation. In particular, we have added to the polymer backbone, made of N, N-dimethylacrylamide, different ionizable monomers (weak acrylamido acids and bases commercially available with the trade name of Immobilines) to confer a net positive or negative charge to the polymer chain depending on the buffer pH. As a consequence, the separation of alkaline protein is drastically improved in different pH conditions, because the interactions with the inner capillary wall were completely prevented by electrostatic repulsion. The content of these ionogenic monomers can be adjusted, permitting a perfect control of the surface charge density, so EOF is finely and precisely regulated. We also investigated the conformational variation of the polymer on the surface by changing buffer pH using Dual Polarization Interferometry (DPI). The coating procedure is very simple and fast as it consists in the adsorption of a diluted aqueous solution of the polymer on the capillary walls. In addition, the coating is very stable under harsh conditions, can be used for several runs without any re-conditioning or re-coating steps and it is compatible with MS

  12. Carboxylic multi-walled carbon nanotubes as immobilized stationary phase in capillary electrochromatography. (United States)

    Sombra, Lorena; Moliner-Martínez, Yolanda; Cárdenas, Soledad; Valcárcel, Miguel


    Carboxylic multi-walled carbon nanotubes (c-MWNT) have been immobilized into a fused-silica capillary for capillary electrochromatography. The c-MWNT were successfully incorporated after the silanization and coupling with glutaraldehyde on the inner surface of the capillary. The electrochromatographic features of the c-MWNT immobilized stationary phase have been evaluated for the analysis of different compounds of pharmaceutical interest. The results indicated high electrochromatographic resolution, good capillary efficiency and retention factors. In addition, highly reproducible results between runs, days and capillaries were obtained.

  13. Capillary method for measuring near-infrared spectra of microlitre volume liquids

    Institute of Scientific and Technical Information of China (English)

    YUAN Bo; MURAYAMA Koichi


    The present study theoretically explored the feasibility of the capillary method for measuring near-infrared (NIR) spectra of liquid or solution samples with microlitre volume, which was proposed in our previous studies. Lambert-Beer absorbance rule was applied to establish a model for the integral absorbance of capillary, which was then implemented in numerical analyses of the effects of capillary on various spectral features and dynamic range of absorption measurement. The theoretical speculations indicated that the capillary method might be used in NIR spectroscopy, which was further supported by the empirical data collected from our experiments by comparison between capillary NIR spectra of several organic solvents and cuvette cell NIR spectra.

  14. Estimation of the number of alveolar capillaries by the Euler number (Euler-Poincaré characteristic). (United States)

    Willführ, Alper; Brandenberger, Christina; Piatkowski, Tanja; Grothausmann, Roman; Nyengaard, Jens Randel; Ochs, Matthias; Mühlfeld, Christian


    The lung parenchyma provides a maximal surface area of blood-containing capillaries that are in close contact with a large surface area of the air-containing alveoli. Volume and surface area of capillaries are the classic stereological parameters to characterize the alveolar capillary network (ACN) and have provided essential structure-function information of the lung. When loss (rarefaction) or gain (angiogenesis) of capillaries occurs, these parameters may not be sufficient to provide mechanistic insight. Therefore, it would be desirable to estimate the number of capillaries, as it contains more distinct and mechanistically oriented information. Here, we present a new stereological method to estimate the number of capillary loops in the ACN. One advantage of this method is that it is independent of the shape, size, or distribution of the capillaries. We used consecutive, 1 μm-thick sections from epoxy resin-embedded material as a physical disector. The Euler-Poincaré characteristic of capillary networks can be estimated by counting the easily recognizable topological constellations of "islands," "bridges," and "holes." The total number of capillary loops in the ACN can then be calculated from the Euler-Poincaré characteristic. With the use of the established estimator of alveolar number, it is possible to obtain the mean number of capillary loops per alveolus. In conclusion, estimation of alveolar capillaries by design-based stereology is an efficient and unbiased method to characterize the ACN and may be particularly useful for studies on emphysema, pulmonary hypertension, or lung development.

  15. Capillary action in a crack on the surface of asteroids with an application to 433 Eros (United States)

    Jiang, Yu; Baoyin, Hexi


    Some asteroids contain water ice, and a space mission landing on an asteroid may take liquid to the surface of the asteroid. Gas pressure is very weak on the surface of asteroids. Here we consider the capillary action in a crack on the surface of irregular asteroids. The crack is modeled as a capillary which has a fixed radius. An asteroid's irregular gravitational potential influences the height of the liquid in the capillary. The height of the liquid in the capillary on the surface of such asteroids is derived from the asteroid's irregular gravitational potential. Capillary mechanisms are expected to produce an inhomogeneaous distribution of emergent liquid on the surface. This result is applied to asteroid 433 Eros, which has an irregular, elongated, and concave shape. Two cases are considered: (1) we calculate the height of the liquid in the capillary when the direction of the capillary is perpendicular to the local surface of the asteroid; (2) we calculate the height of the liquid in the capillary when the direction of the capillary is parallel to the vector from the center of mass to the surface position. The projected height in the capillary on the local surface of the asteroid seems to depend on the assumed direction of the capillary.

  16. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.


    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.


    Directory of Open Access Journals (Sweden)

    Menderes LEVENT


    Full Text Available In this study, design and calibration of a capillary flowmeter set was represented. The capillary flowmeters will be used for measurements of small gas flows having laminar flow regime. The gases (such as, nitrogen, argon, methane, hydrogen and carbon-dioxide supplied from high pressure gas bottles and passed through capillary flowmeters (1 to 3 at various times. Each capillary flowmeter was made of glass and calibrated with one or two gases. Outlet of the capillary flowmeters were connected to the needle valves which have been used for regulating gas flowrates of the capillary flowmeters. Gases individually passed to a bubble flowmeter, and residence time of gases are recorded by using a stop watch. Then, from collected experimental results actual gas flowrates through the capillary flowmeters are calculated by using Hagen-Poiseuille equation.

  18. Intramuscular capillary-type hemangioma: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Sabri; Alomari, Ahmad I.; Chaudry, Gulraiz [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Division of Vascular and Interventional Radiology, Boston, MA (United States); Kozakewich, Harry P. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Pathology, Boston, MA (United States); Fishman, Steven J. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Surgery, Boston, MA (United States); Mulliken, John B. [Boston Children' s Hospital and Harvard Medical School, Vascular Anomalies Center, Boston, MA (United States); Boston Children' s Hospital and Harvard Medical School, Department of Plastic and Oral Surgery, Boston, MA (United States)


    Infantile hemangiomas demonstrate a pattern of proliferative growth in infancy followed by a slow phase of involution. In contrast a rare type of vascular tumor, intramuscular capillary-type hemangioma, usually presents beyond the period of infancy with nonspecific symptoms and no evidence of involution. The purpose of this study was to characterize the clinical, imaging, histopathological characteristics and management of intramuscular capillary-type hemangioma. We performed a retrospective review of a 20-year period to identify children diagnosed with intramuscular capillary-type hemangioma. Patient demographics, imaging and histopathological findings were recorded. We included 18 children (10 boys, 8 girls) with histologically proven intramuscular capillary-type hemangioma - and adequate imaging. The mean age at presentation was 8.1 years (range 1 day to 19 years). Twelve lesions involved muscles of the extremities, 4 were located in the trunk and 2 were in the head and neck. MRI had been performed in all children and demonstrated a soft-tissue mass with flow voids, consistent with fast flow. The lesion was well-circumscribed in 16 children and intralesional fat was seen in 14. Doppler US demonstrated a heterogeneous lesion, predominantly isoechoic to surrounding muscle, with enlarged arterial feeders. Enlarged feeding arteries, inhomogeneous blush and lack of arteriovenous shunting were noted on angiography (n = 5). The most common histopathological findings were lobules of capillaries with plump endothelium and at least some adipose tissue. The lesions were excised in six children. Two children were lost to follow-up. In the remaining 10, follow-up MRI studies ranging from 3 months to 10 years showed that the lesion enlarged in proportion to the child (n = 7), demonstrated slow growth (n = 2) or remained stable (n = 1). There was no change in imaging characteristics on follow-up. Intramuscular capillary-type hemangioma is a rare benign vascular tumor of

  19. On the capillary self-focusing in a microfluidic system

    CERN Document Server

    Hein, M; Afkhami, S


    A computational framework is developed to address capillary self-focusing in Step Emulsification. The microfluidic system consists of a single shallow and wide microchannel that merges into a deep reservoir. A continuum approach coupled with a volume of fluid method is used to model the capillary self-focusing effect. The original governing equations are reduced using the Hele-Shaw approximation. We show that the interface between the two fluids takes the shape of a neck narrowing in the flow direction just before entering the reservoir, in agreement with our experimental observations. Our computational model relies on the assumption that the pressure at the boundary, where the fluid exits into the reservoir, is the uniform pressure in the reservoir. We investigate this hypothesis by comparing the numerical results with experimental data. We conjecture that the pressure boundary condition becomes important when the width of the neck is comparable to the depth of the microchannel. A correction to the exit pres...

  20. A combined capillary cooling system for cooling fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails:,,,


    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  1. Dynamics of pre-ionized fast capillary discharge (United States)

    Hübner, J.; Vrba, P.; Straus, J.; Jancarek, A.; Nevrkla, M.


    The goal of this work is to determine the best conditions for pre-ionization of the nitrogen filled capillary plasma column applying an external exponentially damped or high-frequency alternating current. As we supposed, optimal pre-ionization conditions are achieved when the plasma is quiescent, motionless and isothermal, near the local thermodynamical equilibrium. At the time of optimal conditions for the pre-ionization plasma column, the main pulse is applied. This approach enables us to estimate the influence of such prepared plasma on the value of emitted energy during the main current pulse. For modeling of plasma during the pre-pulse and main pulse, the magneto-hydro-dynamics (MHD) NPINCH code [1] and the radiative-MHD Z* code [2] were used. The computer results are used for further improvement of x-ray-ultraviolet-capillary sources designed in IPP ASCR and CTU FNSPE laboratories in Prague.

  2. Nonlocal resonances in weak turbulence of gravity-capillary waves. (United States)

    Aubourg, Quentin; Mordant, Nicolas


    We report a laboratory investigation of weak turbulence of water surface waves in the gravity-capillary crossover. By using time-space-resolved profilometry and a bicoherence analysis, we observe that the nonlinear processes involve three-wave resonant interactions. By studying the solutions of the resonance conditions, we show that the nonlinear interaction is dominantly one dimensional and involves collinear wave vectors. Furthermore, taking into account the spectral widening due to weak nonlinearity explains why nonlocal interactions are possible between a gravity wave and high-frequency capillary ones. We observe also that nonlinear three-wave coupling is possible among gravity waves, and we raise the question of the relevance of this mechanism for oceanic waves. PMID:25910127

  3. Single particles accelerate final stages of capillary break up

    CERN Document Server

    Lindner, Anke; Wagner, Christian


    Droplet formation of suspensions is present in many industrial and technological processes such as coating and food engineering. Whilst the finite time singularity of the minimum neck diameter in capillary break-up of simple liquids can be described by well known self-similarity solutions, the pinching of non-Brownian suspension depends in a complex way on the particle dynamics in the thinning thread. Here we focus on the very dilute regime where the filament contains only isolated beads to identify the physical mechanisms leading to the pronounced acceleration of the filament thinning observed. This accelerated regime is characterized by an asymmetric shape of the filament with an enhanced curvature that depends on the size and the spatial distribution of the particles within the capillary thread.

  4. Performance of capillary discharge guided laser plasma wakefieldaccelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Esarey, Eric; Geddes, Cameron G.R.; Gonsalves,Anthony J.; Leemans, Wim P.; Panasenko, Dmitriy; Schroeder, Carl B.; Toth, Csaba; Hooker, S.M.


    A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL).The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

  5. Capillary channel flow experiments aboard the International Space Station. (United States)

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A


    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  6. Periocular capillary hemangiomas: Indications and options for treatment

    Directory of Open Access Journals (Sweden)

    Bang Genie


    Full Text Available Capillary hemangiomas are the most common periocular and orbital tumors of childhood that typically arise in infancy. Though the diagnosis is frequently made on clinical examination, various diagnostic modalities may be helpful in initial evaluation and follow-up. Tests may be necessary in diagnosing suspect cases or aid in the differentiation of potential malignant tumors. In the vast majority of cases these tumors undergo spontaneous involution without sequelae. However, some periocular and orbital capillary hemangiomas require intervention to prevent serious complications. Other tumors require treatment to lessen the surgical burden for cosmetic repair. When treatment is necessary, there are a number of therapeutic options available. As there is no standard, potential risks and benefits must be discussed with the family and treatment should be specific in each case. A complete understanding of the natural history of the tumor, indications for treatment, and response to different therapies is imperative in managing this common lesion.

  7. Fast capillary discharge: plasma dynamics and VUV spectroscopy diagnostics

    International Nuclear Information System (INIS)

    Experiments in a small and fast capillary discharge have been performed. Submillimeter capillaries with centimeters length were used. The discharge is operated in argon, with a cathode pressure of 100-500 mtorr. For an applied voltage of 10 kV, a peak current of 4 to 5 k A with a rise time of 2 to 5 ns is obtained (1012 A/s). In addition to usual electrical diagnostics, time-space resolution pinhole images and spectra in the region of 20 to 80 nm were performed. Dynamics of plasma compression can be studied from time resolved pinhole images. Detected spectra show that plasma consists of argon ions with ionization potential from Ar VII to Ar X.. (Author)

  8. Capillary flow of oil in a single foam microchannel

    CERN Document Server

    Piroird, Keyvan


    Under specific physico-chemical conditions, oil droplets are able to invade the liquid network of a foam without damaging it. We study experimentally the capillary suction of oil in a single foam channel, a Plateau border. Oil flows as an unbroken stream with a dynamics that differs from classical wicking in a capillary tube due to the deformability of the foam channel. The oil forms a long and stable liquid slug inside the Plateau border, which does not break into droplets as long as the oil is confined within the Plateau Border. Yet, destabilization occurs when oil is transferred from the Plateau border to a soap film, after the break-up of a soap film as may happen in real foams.

  9. Separation of Aminobenzoic Acids by Gold Nanoparticle modified Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YAN,Hongtao; LI,Tuo; GUO,Yanli


    A novel method for the separation of aminobenzoic acids by capillary electrophoresis was developed.The capillary was modified with gold nanoparticles.The effect of gold nanoparticles on the resolution and selectivity of separation was investigated.The influence of separation voltage,pH and buffer concentration on the separation of aminobenzoic acids was also examined.It was found that the presence of gold nanoparticles improved the precision of the analysis and increased the separation efficiency.Under the optimized experiment conditions,aminobenzoic acids were separated and determined.Linearity was established over the concentration range 0.5-40 μg·mL-1 with correlation coefficients of 0.9978-0.9992.The detection limits (S/N = 3) were from 0.1 to 0.5 μg·mL-1.

  10. Anomalous capillary filling and wettability reversal in nanochannels

    CERN Document Server

    Gravelle, Simon; Bocquet, Lydéric; Joly, Laurent


    This work revisits capillary filling dynamics in the regime of nanometric to subnanometric channels. Using molecular dynamics simulations of water in carbon nanotubes, we show that for tube radii below one nanometer, both the filling velocity and the Jurin rise vary non-monotonically with the tube radius. Strikingly, with fixed chemical surface properties, this leads to confinement-induced reversal of the tube wettability from hydrophilic to hydrophobic for specific values of the radius. By comparing with a model liquid metal, we show that these effects are not specific to water. Using complementary data from slit channels, we then show that they can be described using the disjoin-ing pressure associated with the liquid structuring in confinement. This breakdown of the standard continuum framework is of main importance in the context of capillary effects in nanoporous media, with potential interests ranging from membrane selectivity to mechanical energy storage.

  11. Atom guiding in single mode optical fiber capillary (United States)

    Romaniuk, Ryszard S.; Dorosz, Jan


    A relatively new method of atomic DeBroglie wave transmission in a hollow single mode optical fiber is presented. A slightly blue-detuned, from the atomic resonance, optical evanescent wave in the ring core of the capillary optical fiber creates a potential barrier for co-propagating or counter-propagating DeBroglie wave. The applied optical wavelength, associated with the used atomic transitions, was in the range 1100-400nm. Excited, metastable atoms of chromium, rubidium, cesium, helium, alkalis, etc., were transmitted in the capillary optical fiber. Initially the transmission was multimode and then single mode, with increasing efficiency. There are considered initial application perspectives of this transmission technology of DeBroglie wave for building of coherent cold sources of atoms, atom interferometers, and devices of the inverse lithography, which may possibly compete with the short-wave photo-lithography. The paper is a tutorial and has a teaching and technology review character.

  12. A Simple Theory of Capillary-Gravity Wave Turbulence (United States)

    Glazman, Roman E.


    Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.

  13. A Simulation of Blood Cells in Branching Capillaries

    CERN Document Server

    Isfahani, Amir H G; Freund, Jonathan B


    The multi-cellular hydrodynamic interactions play a critical role in the phenomenology of blood flow in the microcirculation. A fast algorithm has been developed to simulate large numbers of cells modeled as elastic thin membranes. For red blood cells, which are the dominant component in blood, the membrane has strong resistance to surface dilatation but is flexible in bending. Our numerical method solves the boundary integral equations built upon Green's functions for Stokes flow in periodic domains. This fluid dynamics video is an example of the capabilities of this model in handling complex geometries with a multitude of different cells. The capillary branch geometries have been modeled based upon observed capillary networks. The diameter of the branches varies between 10-20 mum. A constant mean pressure gradient drives the flow. For the purpose of this fluid dynamics video, the red blood cells are initiated as biconcave discs and white blood cells and platelets are initiated as spheres and ellipsoids resp...

  14. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)

    许国旺; R.Lehmann; 路鑫; H.M.Liebich; 张玉奎; 卢佩章


    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  15. Capillary electrophoretic study on UDP-sugars in cells

    Institute of Scientific and Technical Information of China (English)


    Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides. By using an uncoated capillary (70cm×50 μm) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.

  16. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering


    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  17. Thermal capillary waves in colloid-polymer mixtures in water

    International Nuclear Information System (INIS)

    We develop two colloid-polymer mixtures in water and study their phase and interface behaviour by means of confocal scanning laser microscopy. The systems consist either of silica or of poly(methylmethacrylate) particles, fluorescently labelled, with, as the polymer, xanthan. The fluid-fluid phase separation can be clearly followed in time and, depending on the concentrations and system details, we observe coarsening either of a bicontinuous spinodal structure or of a suspension of colloid-rich droplets. After phase separation has completed, we study the thermal capillary waves at the fluid-fluid interface. We construct correlation functions and compare with capillary wave theory. Finally, we demonstrate that these colloid-polymer systems are compatible with microfluidics.

  18. Thermal capillary waves in colloid-polymer mixtures in water

    Energy Technology Data Exchange (ETDEWEB)

    Jamie, E A G; Davies, G J; Howe, M D; Dullens, R P A; Aarts, D G A L [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom)], E-mail:


    We develop two colloid-polymer mixtures in water and study their phase and interface behaviour by means of confocal scanning laser microscopy. The systems consist either of silica or of poly(methylmethacrylate) particles, fluorescently labelled, with, as the polymer, xanthan. The fluid-fluid phase separation can be clearly followed in time and, depending on the concentrations and system details, we observe coarsening either of a bicontinuous spinodal structure or of a suspension of colloid-rich droplets. After phase separation has completed, we study the thermal capillary waves at the fluid-fluid interface. We construct correlation functions and compare with capillary wave theory. Finally, we demonstrate that these colloid-polymer systems are compatible with microfluidics.

  19. Quantitative Proteomics Using Ultralow Flow Capillary Electrophoresis–Mass Spectrometry


    Faserl, Klaus; Kremser, Leopold; Müller, Martin; Teis, David; Lindner, Herbert H.


    In this work, we evaluate the incorporation of an ultralow flow interface for coupling capillary electrophoresis (CE) and mass spectrometry (MS), in combination with reversed-phase high-pressure liquid chromatography (HPLC) fractionation as an alternate workflow for quantitative proteomics. Proteins, extracted from a SILAC (stable isotope labeling by amino acids in cell culture) labeled and an unlabeled yeast strain were mixed and digested enzymatically in solution. The resulting peptides wer...

  20. A Note on Viscous Capillary Fluids in Fast Rotation

    Directory of Open Access Journals (Sweden)

    Francesco Fanelli


    Full Text Available The present note is devoted to the study of singular perturbation problems for a Navier-Stokes-Korteweg system with Coriolis force. Such a model describes the motion of viscous compressible capillary fluids under the action of the Earth rotation. We are interested in the asymptotic behavior of a family of weak solutions in the limit for the Mach, the Rossby and the Weber numbers going to 0.

  1. Numerical Simulation of Unsteady Blood Flow through Capillary Networks. (United States)

    Davis, J M; Pozrikidis, C


    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  2. Combined Lymphedema and Capillary Malformation of the Lower Extremity


    Maclellan, Reid A.; Chaudry, Gulraiz; Greene, Arin K.


    Background: Primary lymphedema and capillary malformation are independent vascular malformations that can cause overgrowth of the lower extremity. We report a series of patients who had both types of malformations affecting the same leg. The condition is unique but may be confused with other types of vascular malformation overgrowth conditions (eg, Klippel–Trenaunay and Parkes Weber). Methods: Our Vascular Anomalies Center and Lymphedema Program databases were searched for patients with both ...

  3. Kinetic Derivation of the Hydrodynamic Equations for Capillary Fluids


    De Martino, S.; Falanga, M.; Tzenov, S. I.


    Based on the generalized kinetic equation for the one-particle distribution function with a small source, the transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic feature of this new technique to obtain the hydrodynamic limit is that the latter has been partially incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from the characteristic function for the local moments of the distribu...

  4. Asymptotic Behaviour of Capillary Problems governed by Disjoining Pressure Potentials


    Thomys, Oliver


    Introduction Capillarity describes the effects caused by the surface tension on liquids. When considering small amounts ofliquid,thesurfacetension becomes the dominating parameter. In this situation the arising mathematical task is to determine the occurring capillary surface. At the beginning of the research on this topic, problems such as the ascent of fluids in a circular tube, on a vertical wall or on a wedge were some of the first problems scientists were concerned with. At the beginning...

  5. Membrane diffusing capacity and pulmonary capillary volume in rheumatoid disease.


    Hills, E. A.; Geary, M


    In some patients with rheumatoid disease gas transfer across the lungs is abnormal. We measured the membrane component of gas transfer (Dm) and pulmonary capillary volume (Vc) in 48 patients with rheumatoid arthritis and in 48 normal volunteers matched for age, sex, and smoking habits. Volunteers had normal chest radiographs and normal forced expiratory volume in one second and vital capacity. There were no significant differences between the rheumatoid and control groups for Dm. Mean Vc in r...

  6. Metabolic Memory Phenomenon and Accumulation of Peroxynitrite in Retinal Capillaries

    Directory of Open Access Journals (Sweden)

    Renu A. Kowluru


    Full Text Available Aim. Diabetic retinopathy resists reversal after good glycemic control (GC is reinitiated, and preexisting damage at the time of intervention is considered as the major factor in determining the outcome of the GC. This study is to investigate the role of peroxynitrite accumulation in the retinal capillaries in the failure of retinopathy to reverse after reestablishment of GC, and to determine the effect of this reversal on the activity of the enzyme responsible for scavenging mitochondrial superoxide, MnSOD. Methods. In streptozotocin-diabetic rats, 6 months of poor glycemic control (PC, glycated hemoglobin, GHb>12.0% was followed by 6 additional months of GC (GHb about 6%. The trypsin-digested retinal microvessels were prepared for immunostaining of nitrotyrosine (a measure of peroxynitrite and for counting the number of acellular capillaries (a measure of histopathology. The retina from the other eye was used to quantify nitrotyrosine concentration, MnSOD activity and the total antioxidant capacity. Results. Reversal of hyperglycemia after 6 months of PC had no significant effect on nitrotyrosine concentration in the retina, on the nitrotyrosine-positive retinal capillary cells and on the number of acellular capillaries; the values were similar in PC-GC and PC groups. In the same rats retinal MnSOD activity remained inhibited and the total antioxidant capacity was subnormal 6 months after cessation of PC. Conclusions. Peroxynitrite accumulation in the retinal microvasculature, the site of histopathology, fails to normalize after reversal of hyperglycemia, and superoxide remains inadequately scavenged. This failure of reversal of peroxynitrite accumulation could be, in part, responsible for the resistance of diabetic retinopathy to reverse after termination of PC.

  7. Ceramic Wick For Capillary-Pumped Heat Pipe (United States)

    Seidenberg, Benjamin; Swanson, Theodore


    Fibrous ceramic wick allows choice of working fluid and high-temperature fabrication and/or operation. Wick material resists degradation at temperatures from -195 to +1,500 degrees C. Liquid refrigerant fills bore of silica/alumina wick. After flowing by capillary action through pores of wick, refrigerant evaporates from finned outer surface of wick and enters heat pipe, flowing toward condenser section.

  8. Capillary Electrophoresis-based Methodology Development for Biomolecule Analysis


    Li, Ni


    Capillary electrophoresis (CE) is a separation tool with wide applications in biomolecule analysis. Fast and high-resolution separation requiring minute sample volumes is advantageous to study multiple components in biological samples. Flexible modes and methods can be developed. In this thesis, I focus on developing and applying novel CE methods to study multi-target nucleic acid sensing with high sensitivity (Part I) and interactions between multiple components, i.e. proteins, nanoparticles...



    Salman, Nergis; Baysal, Nakiye; Adabag, Aysegul; Yildiz, Ugur; Akin, Istemihan


    Lobular capillary hemangioma (LCH) is a benign vascular tumor, also known as, pyogenic granuloma. LCH appears on the skin, the oral mucosa, and, rarely, on the nasal mucosa. Trauma, hormones, viral oncogenes, microscopic arteriovenous malformations, and angiogenic growth factors have been implicated in the etiology of LCH lesions. LCH most commonly presents in the third decade of life but may present in persons of any age. It is considerably rare in children; only a few cases have been report...

  10. Efficient computation of capillary-gravity generalized solitary waves

    CERN Document Server

    Dutykh, Denys; Duran, Angel


    This paper is devoted to the computation of capillary-gravity solitary waves of the irrotational incompressible Euler equations with free surface. The numerical study is a continuation of a previous work in several points: an alternative formulation of the Babenko-type equation for the wave profiles, a detailed description of both the numerical resolution and the analysis of the internal flow structure under a solitary wave. The numerical code used in this study is provided in open source for interested readers.

  11. Capillary Electrophoresis-Inductively Coupled Plasma Mass Spectrometry. (United States)

    Michalke, Bernhard


    During the recent years, capillary electrophoresis (CE) has been fully established as a powerful tool in separation sciences as well as in element speciation. This road of success is based on the rapid analysis time, low sample requirements, high separation efficiency, and low operating costs of CE. Inductively coupled plasma mass spectrometry (ICP-MS) is known for superior detection and multielement capability. Consequently, the combination of both instruments is approved for analysis of complex sample types at low element concentrations which require high detection power. Also the diversity of potential applications brings CE-ICP-MS coupling into central focus of element speciation. The key to successful combination of ICP-MS as an (multi-)element selective detector for CE is the availability of a suitable and effective interface.Therefore, this chapter summarizes the most important and basic principles about coupling of capillary electrophoresis to ICP-MS. Specifically, the major requirements for interfacing are described and technical solutions are given. Such solutions include the closing of the electrical circuit from CE at the nebulization, the adoption of flow rates for efficient nebulization, the reduction of a suction flow through the capillary, caused by the nebulizer, and maintaining the high separation resolution from CE across the interface for ICP-MS detection. Additionally, detailed information is presented to determine and quantify the siphoning suction through the CE capillary by the nebulizer. Finally, two applications, namely, the manganese and selenium speciation in cerebrospinal fluid are shown as examples, providing the relevant operational parameter. PMID:27645737

  12. Periocular capillary hemangioma: management practices in recent years

    Directory of Open Access Journals (Sweden)

    Hernandez JA


    Full Text Available Jo Anne Hernandez,1,3,4 Audrey Chia,2 Boon Long Quah,1,2 Lay Leng Seah1,2 1Department of Ophthalmology, Kandang Kerbau Women's and Children's Hospital, Singapore; 2Singapore National Eye Centre, Singapore; 3National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore; 4Department of Ophthalmology, Cardinal Santos Medical Center, San Juan, Manila, Philippines Purpose: To present a case series on the management options for capillary hemangiomas involving the eyelid and orbit. Methods: This is a retrospective chart review of clinically diagnosed capillary hemangioma cases involving the periocular region treated at two local eye institutions. The patients' demographics and clinical presentation – including visual acuity, refractive error, periorbital and orbital examinations, and ultrasound and magnetic resonance imaging findings – were reviewed. The clinical progression, modalities of treatment, and treatment outcomes were studied. Results: Sixteen cases of capillary hemangiomas involving the eyelid and orbit were studied. The mean age at consultation was 9.6 months (range: 1 month–72 months. The majority were females (75%, with 50% presenting as upper-eyelid hemangiomas and the remaining as lower-eyelid (38% and glabellar (12% lesions. Combined superficial and deep involvement was common (64%. Cases whose lesions were located at the upper eyelid or superior orbit led to amblyopia (25%. Fifty-six percent of cases (9/16 were managed conservatively, and 44% (7/16 underwent treatment with either single-agent (n = 4 or combined treatments (n = 3. Conclusion: Close monitoring of visual development and prompt institution of amblyopia therapy for children with periocular capillary hemangiomas generally preserve vision. Extensive lesions that affect the visual axis require local and systemic treatments, alone or in combination, in order to reduce the size and impact of lesions on the eyeball, to reduce induced refractive error and


    Institute of Scientific and Technical Information of China (English)

    HuangMengcai; GuZhong; HangWenjing; ZhongQuan; TangFuyong


    Describe some new fully automatic instruments for the measurements of the blood capillary pressure (Pcap) and arterial elastic properties in human fingers using a photoelectric plethysmographic technique, With these instruments, the value of Pcap was in good agreement with those reported by other investigators, the arterial elastic properties in human fingers have been successfully measured. The measurements of Pcap and arterial elasticity are now required in clinics because they provide useful and important information for evaluating vascular haemodynamics.

  14. The number of capillary bridges in a wet granular medium


    Geromichalos, Dimitrios; Kohonen, Mika M.; Scheel, Mario; Herminghaus, Stephan


    We observed the appearance of capillary bridges in a granular medium consisting of glass beads after adding small amounts of liquid. We found the initial bridge formation depending on the bead roughness. Furthermore we obtained a statistics for the average number of bridges for randomly packed beads in dependence of the liquid content and were able to find an explanation therefore based on recent models and former experimental data.

  15. Capillary regeneration in scleroderma: stem cell therapy reverses phenotype?

    Directory of Open Access Journals (Sweden)

    Jo N Fleming

    Full Text Available BACKGROUND: Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS: We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue, antiangiogenic interferon alpha (overexpressed in the scleroderma dermis and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE: These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease

  16. A Device for Measurement of Capillary Refilling Time


    Shamsudin, Nebil


    The main objective of this project is to design, construct and validate a portable prototype of a device that is capable of performing a test to accurately measure Capillary Refilling Time (CRT), and to analyze the results with defined parameters; force, area, pressure (compression) and time. This prototype is dedicated to study and evaluate CRT readouts for different pressure values, collected from healthy subjects.The presented prototype of this study is capable of producing skin compressin...

  17. Pneumatic capillary gun for ballistic delivery of microparticles

    CERN Document Server

    Rinberg, D; Groisman, A; Rinberg, Dmitry; Simonnet, Claire; Groisman, Alex


    A pneumatic gun for ballistic delivery of microparticles to soft targets is proposed and demonstrated. The particles are accelerated by a high speed flow of Helium in a capillary tube. Vacuum suction applied to a concentric, larger diameter tube is used to completely divert the flow of Helium from the gun nozzle and prevent it from hitting the target. Depths of penetration of micron-sized gold particles into agarose gels and their speeds of ejection from the gun nozzle are measured.

  18. Micro droplet driven by thermocapillary and capillary valve

    International Nuclear Information System (INIS)

    This paper presents the design, fabrication, and testing of the capillary-induced pressure drop valve, thermocapillary pumping of liquid droplet in hydrophilic channels and the splitting of droplet. The capillary-induced pressure drop is derived with thermodynamic approach considering three-dimensional meniscus shape which is essential for calculating pressure drop in the diverging shape channel when the aspect ratio is close to one. The micro channel is fabricated via MEMS processes, which consists of the liquid stop valve to retard the liquid droplet, thermocapillary pumping region and the bifurcation region. Also the micro heaters are fabricated to drive the droplet by thermocapillary. The theoretical approaches agree well with the experimental data. The functionality of capillary valve is confirmed to be valid when the aspect ratio is smaller than one. To overcome the difficulty in splitting of the droplet due to the pressure drop in the general Y-shape channel, the protrusion shape is employed for easy splitting in the bifurcation channel

  19. Surface-directed capillary system; theory, experiments and applications. (United States)

    Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques


    We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.

  20. Capillary Zone Electrophoresis-Mass Spectrometry of Intact Proteins. (United States)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W


    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS detection. This chapter focuses on important practical considerations when applying CE-MS for the analysis of intact proteins. Technological aspects with respect to the use of CE-MS interfaces and application of noncovalent capillary coatings preventing protein adsorption are treated. Critical factors for successful protein analysis are discussed and four typical CE-MS systems are described demonstrating the characterization of different types of intact proteins by CE-MS. These methodologies comprise the use of sheath-liquid and sheathless CE-MS interfaces, and various types of noncovalent capillary coatings allowing efficient and reproducible protein separations. The discussion includes the analysis of lysozyme-drug conjugates and the therapeutic proteins human growth hormone, human interferon-β-1a, and human erythropoietin. PMID:27473479

  1. Direct numerical simulations of gravity-capillary wave turbulence (United States)

    Deike, Luc; Fuster, Daniel; Berhanu, Michael; Falcon, Eric


    Direct numerical simulation of the full two phase Navier-Stokes equations, including surface tension are performed, using the code Gerris (Popinet, 2009), in order to investigate gravity-capillary wave turbulence. Wave turbulence concerns the study of the statistical and dynamical properties of a set of nonlinear interacting waves (Zakharov, 1992). Waves at the air-water interface, initially at rest, are excited at low wave-numbers and a stationary wave turbulence state is obtained after a time long enough (typically 30 periods of the wave forcing period). The space-time wave height power spectrum is calculated for both capillary and gravity waves regimes. The observed dispersion relation is in agreement with the theoretical one for linear gravity-capillary wave. The wave height power spectrum in the wave-number-space or in the frequency-space exhibit a power law and will be discussed with respects of weak turbulence theory (Zakharov, 2012). Finally the scaling of the spectrum with the injected power will be compared with theoretical and experimental works.

  2. Xe capillary target for laser-plasma extreme ultraviolet source. (United States)

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu


    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was +/-0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (10070 microm phi) was formed with a velocity of < or =0.01 ms. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect. PMID:17979456

  3. Analysis of roller pen inks by capillary zone electrophoresis

    Institute of Scientific and Technical Information of China (English)

    ZHAO Pengcheng; WANG Yanji; XU Yuanyuan; YAO Lijuan


    The analysis of roller pen inks has become more and more important in fraudulent document examination because of the extensive use of roller pens in financial documents.Capillary electrophoresis with powerful resolution was applied for the analysis of roller pen inks.The experiment focused on the optimization of the separation of the extract from commercially available roller pen entries.A better separation electropherogram was obtained when a 20 mM borate buffer at pH 8.5 and a fused silica capillary with an inner diameter of 100 μm with a total length of 47 (40 cm to the detector window)were used.Five inks from roller pens of different manufacturers and countries were analyzed,and their electropherograms showed that most patterns are distinctly different from each other.Capillary with inner diameter of 100 μm increased the intensity of determination;therefore,color dyes were identified in the visible range and were able to provide more information for comparing types of roller pen inks.

  4. An enhanced capillary electrophoresis method for characterizing natural organic matter. (United States)

    Cottrell, Barbara A; Cheng, Wei Ran; Lam, Buuan; Cooper, William J; Simpson, Andre J


    Natural organic matter (NOM) is ubiquitous and is one of the most complex naturally occurring mixtures. NOM plays an essential role in the global carbon cycle; atmospheric and natural water photochemistry; and the long-range transport of trace compounds and contaminants. There is a dearth of separation techniques capable of resolving this highly complex mixture. To our knowledge, this is the first reported use of ultrahigh resolution counterbalance capillary electrophoresis to resolve natural organic matter. The new separation strategy uses a low pH, high concentration phosphate buffer to reduce the capillary electroosmotic flow (EOF). Changing the polarity of the electrodes reverses the EOF to counterbalance the electrophoretic mobility. Sample stacking further improves the counterbalance separation. The combination of these conditions results in an electropherogram comprised up to three hundred peaks superimposed on the characteristic "humic hump" of NOM. Fraction collection, followed by three-dimensional emission excitation spectroscopy (EEMs) and UV spectroscopy generated a distinct profile of fluorescent and UV absorbing components. This enhanced counterbalance capillary electrophoresis method is a potentially powerful technique for the characterization and separation of NOM and complex environmental mixtures in general. PMID:23289095

  5. Intense laser pulse propagation in capillary discharge plasma channels

    International Nuclear Information System (INIS)

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in ∼300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model produce the expected optical guiding, with the laser pulse radius rL exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T3 laser, and preliminary results are reported. copyright 1999 American Institute of Physics

  6. Evaporation Limited Radial Capillary Penetration in Porous Media. (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Hanaor, Dorian A H; Chen, C Q


    The capillary penetration of fluids in thin porous layers is of fundamental interest in nature and various industrial applications. When capillary flows occur in porous media, the extent of penetration is known to increase with the square root of time following the Lucas-Washburn law. In practice, volatile liquid evaporates at the surface of porous media, which restricts penetration to a limited region. In this work, on the basis of Darcy's law and mass conservation, a general theoretical model is developed for the evaporation-limited radial capillary penetration in porous media. The presented model predicts that evaporation decreases the rate of fluid penetration and limits it to a critical radius. Furthermore, we construct a unified phase diagram that describes the limited penetration in an annular porous medium, in which the boundaries of outward and inward liquid are predicted quantitatively. It is expected that the proposed theoretical model will advance the understanding of penetration dynamics in porous media and facilitate the design of engineered porous architectures. PMID:27583455

  7. Solvent jet desorption capillary photoionization-mass spectrometry. (United States)

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto


    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper. PMID:25715054

  8. Analytical characterization of wine and its precursors by capillary electrophoresis. (United States)

    Gomez, Federico J V; Monasterio, Romina P; Vargas, Verónica Carolina Soto; Silva, María F


    The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.

  9. Breakup length of harmonically stimulated capillary jets - theory and experiments (United States)

    Garcia Garcia, Francisco Javier; Gonzalez Garcia, Heliodoro; Castrejon-Pita, Jose Rafael; Castrejon-Pita, Alfonso Arturo


    A stream of liquid breaks up into several drops by the action of surface tension. Capillary breakup forms the basis of some modern digital technologies, especially inkjet printing (including 3D manufacturing). Therefore, the control and prediction of the breakup length of harmonically modulated capillary jets is of great importance, in particular in Continuous InkJet systems (CIJ). However, a theoretical model that rigorously takes into account the physical characteristics of the system, and that properly describes this phenomenon did not exist until now. In this work we present a simple transfer function, derived from first principles, that accurately predicts the experimentally obtained breakup lengths of pressure-modulated capillary jets. No fitting parameters are necessary. A detailed description of the theoretical model and experimental setup will be presented. Spanish government (FIS2011-25161), Junta de Andalucia (P09-FQM-4584 and P11-FQM-7919), EPSRC-UK (EP/H018913/1), Royal Society and John Fell Fund (OUP).

  10. A Unified Elastoplastic Model of Unsaturated Soils Considering Capillary Hysteresis

    Directory of Open Access Journals (Sweden)

    Tiantian Ma


    Full Text Available Unlike its saturated counterparts, the mechanical behavior of an unsaturated soil depends not only upon its stress history but also upon its hydraulic history. In this paper, a soil-water characteristic relationship which is capable of describing the effect of capillary hysteresis is introduced to characterize the influence of hydraulic history on the skeletal deformation. The capillary hysteresis is viewed as a phenomenon associated with the internal structural rearrangements in unsaturated soils, which can be characterized by using a set of internal state variables. It is shown that both capillary hysteresis and plastic deformation can be consistently addressed in a unified theoretical framework. Within this context, a constitutive model of unsaturated soils is developed by generalizing the modified Cam-Clay model. A hardening function is introduced, in which both the matric suction and the degree of saturation are explicitly included as hardening variables, so that the effect of hydraulic history on the mechanical response can be properly addressed. The proposed model is capable of capturing the main features of the unsaturated soil behavior. The new model has a hierarchical structure, and, depending upon application, it can describe the stress-strain relation and the soil-water characteristics in a coupled or uncoupled manner.

  11. Pharmacologic Atrial Natriuretic Peptide Reduces Human Leg Capillary Filtration (United States)

    Watenpaugh, Donald E.; Vissing, Susanne F.; Lane, Lynda D.; Buckey, Jay C.; Firth, Brian G.; Erdman, William; Hargens, Alan R.; Blomqvist, C. Gunnar


    Atrial natriuretic peptide (ANP) is produced and secreted by atrial cells. We measured calf capillary filtration rate with prolonged venous-occlusion plethys-mography of supine health male subjects during pharmacologic infusion of ANP (48 pmol/kg/min for 15 min; n equals 6) and during placebo infusion (n equals 7). Results during infusions were compared to prior control measurements. ANP infusion increased plasma (ANP) from 30 plus or minus 4 to 2,568 plus or minus 595 pmol/L. Systemic hemoconcentration occurred during ANP infusion; mean hematocrit and plasma colloid osmotic pressure increased 4.6 and 11.3 percent respectively, relative to pre-infusion baseline values (p is less than 0.05). Mean calf filtration, however was significantly reduced from 0.15 to 0.08 ml/100 ml/min with ANP. Heart rate increased 20 percent with ANP infusion, wheras blood pressure was unchanged. Calf conductance (blood flow/arterial pressure) and venous compliance were unaffected by ANP infusion. Placebo infusion had no effect relative to prior baseline control measurements. Although ANP induced systemic capillary filtration, in the calf, filtration was reduced with ANP. Therefore, phamacologic ANP infusion enhances capillary filtration from the systemic circulation, perhaps at upper body or splanchic sites or both, while having the opposite effect in the leg.

  12. Flow distributions and spatial correlations in human brain capillary networks (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy


    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  13. Decreased capillary permeability and capillary density in patients with systemic sclerosis using large-window sodium fluorescein videodensitometry of the ankle

    NARCIS (Netherlands)

    Hettema, M E; Zhang, D; Stienstra, Y; Oomen, P N H; Smit, Andries; Kallenberg, C G M; Bootsma, H


    OBJECTIVE: Local capillary permeability in patients with SSc has been reported increased when assessed by nail-fold capillaroscopy. We measured capillary permeability at a clinically less affected site by using large-window fluorescein videodensitometry of the ankle. We hypothesized that increased c

  14. Effects of ischemia on capillary density and flow velocity in nailfolds of human toes. (United States)

    Richardson, D; Schwartz, R; Hyde, G


    The purpose of this study was to investigate reactive hyperemia in the capillary network of human skin in terms of the flow per capillary and the density of flow-active capillaries. Seventeen male subjects 20 to 40 years of age were seated with their right foot placed on the stage of a Leitz epi-ilumination microscope such that the nailfold capillary field in their large toes could be viewed. These vessels were video taped while flow velocity in the right posterior tibial artery was recorded via Doppler ultrasound at rest, then following a 45-sec period of arterial occlusion to the foot. Subsequent to experimentation flow velocity in single nailfold capillaries was measured via video densitometry and the number of flow-active capillaries in the field of view were counted. Following the release of arterial occlusion arterial flow velocity increased 142% above rest, the velocity in single capillaries increased by 54%, and the density of flow-active capillaries, as identified by the presence of red cells, decreased by 37%. The fact that capillary flow velocity increased to a lesser degree than arterial velocity during reactive hyperemia vis-a-vis a decrease in the number of flow-active capillaries indicates that ischemia to the foot elicits a smaller dilatory effect in vascular elements controlling blood flow to the superficial cutaneous region of the toe as compared to other regional vascular networks. PMID:4021840

  15. Numerical time-step restrictions as a result of capillary waves (United States)

    Denner, Fabian; van Wachem, Berend G. M.


    The propagation of capillary waves on material interfaces between two fluids imposes a strict constraint on the numerical time-step applied to solve the equations governing this problem and is directly associated with the stability of interfacial flow simulations. The explicit implementation of surface tension is the generally accepted reason for the restrictions on the temporal resolution caused by capillary waves. In this article, a fully-coupled numerical framework with an implicit treatment of surface tension is proposed and applied, demonstrating that the capillary time-step constraint is in fact a constraint imposed by the temporal sampling of capillary waves, irrespective of the type of implementation. The presented results show that the capillary time-step constraint can be exceeded by several orders of magnitude, with the explicit as well as the implicit treatment of surface tension, if capillary waves are absent. Furthermore, a revised capillary time-step constraint is derived by studying the temporal resolution of capillary waves based on numerical stability and signal processing theory, including the Doppler shift caused by an underlying fluid motion. The revised capillary time-step constraint assures a robust, aliasing-free result, as demonstrated by representative numerical experiments, and is in the static case less restrictive than previously proposed time-step limits associated with capillary waves.

  16. Use of capillary strings in the dewatering of gas sensors at RAG; Einsatz von Capillary Strings zur Entwaesserung von Gassonden in der RAG

    Energy Technology Data Exchange (ETDEWEB)

    Seywald, M. [Rohoel-Aufsuchungs AG, Gampern (Austria)


    Due to successful applications of Artificial Lift measures and different applications of foamers, 'Rohoel Aufsuchungs AG' (RAG, Gampern, Austria) possesses an outstanding know-how within all ranges to gas well deliquification. In the contribution under consideration the authors report on the employment of capillary strings to the drainage of gas probes. In July, 2007, a capillary string was built in a gas sensor for the first time in the history of RAG. By means of the capillary string technology a foaming agent is pumped directly in front of the open perforation by means of an additional capillary string. The efficiency of the used foaming means clearly is improved by the employment of capillary strings and production is increased by 50 to 100 per cent. Due to continuous production of water, beside production acceleration also a production incremental can be obtained.

  17. High lung volume increases stress failure in pulmonary capillaries (United States)

    Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.


    We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological

  18. Analysis of Alkaloids from Physalis peruviana by Capillary GC, Capillary GC-MS, and GC-FTIR. (United States)

    Kubwabo, C; Rollmann, B; Tilquin, B


    The alkaloid composition of the aerial parts and roots of PHYSALIS PERUVIANA was analysed by capillary GC (GC (2)), GC (2)-MS and GC (2)-FTIR. Eight alkaloids were identified, three of those alkaloids are 3beta-acetoxytropane and two N-methylpyrrolidinylhygrine isomers, which were not previously found in the genus PHYSALIS. A reproduction of the identification of alkaloids detected in the plant by the use of retention indices has been proposed. PMID:17230349

  19. Impact of capillary conditioning and background electrolyte composition on capillary electrophoresis analysis of prostate specific antigen isoforms. (United States)

    Farina-Gomez, Noemi; Puerta, Angel; Gonzalez, Monica; Diez-Masa, Jose Carlos; de Frutos, Mercedes


    Glycoproteins expressed in the human body can experience modifications as result of pathological situations. Detection of those changes can be useful as disease biomarkers. As a result of these modifications, size and/or electrical charge of the glycoprotein can be altered. Migration in capillary zone electrophoresis (CZE) is governed by the size to charge ratio of the analyte and therefore this separation technique can be used to monitor those modifications. At its turn, the alteration of the electrophoretical pattern of a given glycoprotein could be used as disease biomarker. To this aim, high repeatability for separation of a large number of peaks for a given glycoprotein is desirable. For prostate cancer, new markers are needed to decrease the high number of false positive results provided by the biomarkers currently used in clinics. In this sense, CZE methods for analysis of the several prostate specific antigen (PSA) peaks which this glycoprotein exhibit, called isoforms and containing one or more glycoforms, could be useful to study the PSA pattern as prostate cancer marker. In this study two complementary strategies to achieve both lot-to-lot capillary repeatability and high resolution of a large number of PSA isoforms are developed. Better performance and precision have been obtained for capillaries conditioned with HCl than for those conditioned with NaOH. Optimization of the background electrolyte (BGE) pH value to 8.0 and inclusion of 3M urea on its composition were the two factors of highest impact for enhancing resolution of the highest number of PSA peaks. Under the optimized conditions for capillary conditioning and BGE pH and composition, long-term resolution of 10 isoforms of PSA was achieved. Inter-day (n=3) %RSD was 0.55 for the ratio tm/tEOF, 1.15 for μeff, and 5.02 for % Acorr of the PSA peaks. PMID:27018191

  20. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men. (United States)

    Zoladz, J A; Semik, D; Zawadowska, B; Majerczak, J; Karasinski, J; Kolodziejski, L; Duda, K; Kilarski, W M


    Muscle fibre profile area (Af), volume density (Vv), capillary-to-fibre ratio (CF) and number of capillaries per fibre square millimetre (CD) were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background. Seven subjects were untrained students (group A), nine were national and sub-national level endurance athletes (group B) with the background of 7.8+/-2.9 years of specialised training, and eight subjects were sprint-power athletes (group C) with 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6%) and C (50.5%; 26.4%). However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%). There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD) was 245 (group A), 308 (group B) and 325 (group C). Significant differences (Pmodern dance. PMID:15871557

  1. Linearity evaluation in absorbance detection: the use of light-emitting diodes for on-capillary detection in capillary electrophoresis. (United States)

    Macka, M; Andersson, P; Haddad, P R


    A model which takes into account both stray light and polychromatic light was used to predict and evaluate linearity in on-capillary detection in capillary electrophoresis (CE). According to the model the stray light is the major factor which determines linearity under typical CE operating conditions. By calculating theoretical absorbance versus concentration plots, the influence of different levels of stray light and polychromatic light on linearity is demonstrated. Experimentally, six light-emitting diodes (LEDs) in the range from 563 to 654 nm were examined as light sources for on-capillary detection in CE. Fitting theoretical curves to measured linearity plots enabled determination of the values of both effective path length and stray light for a particular detection system. The detector linearity for the four LEDs was compared to mercury and tungsten lamps used with interference filters. For potassium permanganate as the test compound, the linear range for a 563 nm LED was two times greater than that for a mercury lamp operated at 546 nm. The relatively poor linearity of the mercury lamp detector is explained by its high level of stray light. The noise of the LED563-based detector was the same as for the mercury lamp, whereas the other LEDs of higher light intensity gave approximately half the noise of the mercury lamp. The lowest noise level of 3 x 10(-5) AU was obtained for the LED at 554 nm (determined at a detector time constant of 0.1 s). PMID:9034772

  2. Influence of local capillary trapping on containment system effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven [University Of Texas At Austin, Austin, TX (United States). Center for Petroleum and Geosystems Engineering


    Immobilization of CO2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence of injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO2 migration can be represented as a single value of “critical capillary entry pressure” Pc,entrycrit, such that cells with capillary entry pressure greater/less than Pc,entrycrit act as barriers/potential traps during CO2 migration. At intermediate values of Pc,entrycrit, the barrier regions become more laterally extensive in the reservoir

  3. Determining CO2-brine relative permeability and capillary pressure simultaneously: an insight to capillary entrance and end effects (United States)

    Chen, X.; Kianinejad, A.; DiCarlo, D. A.


    CO2-brine relative permeability relations are important parameters in modeling scenarios such as CO2 sequestration in saline aquifers and CO2 enhanced recovery in oil reservoir. Many steady-state experimental studies on CO2-brine relative permeability showed that the CO2-brine relative permeability differs greatly from typical oil-brine relative permeability. Particularly, they reported a very small endpoint CO2 relative permeability of 0.1~0.2 at a relative high residual water saturation of 0.4~0.6. In this study, we hypothesize the measured low endpoint CO2 relative permeability in previous studies was an experimental artifact that is primary due to low CO2 viscosity. We conducted steady-state CO2 drainage experiments by co-injecting equlibrated CO2 and brine into a long (60.8 cm) and low permeability (116-mD) Berea sandstone core at 20 °C and 1500 psi. During every experiment, both the overall pressure drop across the core and the pressure drops of the five independent and continuous sections of the core were monitored. The in-situ saturation was measured with a medical X-ray Computed Tomography (CT) scanner. In the center three sections where saturation was uniform, we determined the relative permeability to both brine and CO2 phases. In the entrance and exit sections, both measured pressure gradients and saturation were non-uniform. To cope with this, we make several self-consistent assumptions that reveal the nature of capillary entrance and effect in steady-state two-phase core flooding experiments. Based on these assumptions we determined the relative permeability to CO2 and CO2-brine capillary pressure simultaneously using measured pressure drops. We found: (1) a much higher endpoint CO2 relative permeability of 0.58 at a water saturation of 48%, (2) the entrance region with non-uniform saturation expanded CO2 relative permeability data to much lower water saturation, (3) the determined CO2-brine capillary pressure curve is self-consistent and matches

  4. An absorption detection approach for multiplexed capillary electrophoresis using a linear photodiode array. (United States)

    Gong, X; Yeung, E S


    A novel absorption detection method for highly multiplexed capillary electrophoresis is presented for zone electrophoresis and for micellar electrokinetic chromatography. The approach involves the use of a linear photodiode array on which a capillary array is imaged by a camera lens. Either a tungsten lamp or a mercury lamp can be used as the light source such that all common wavelengths for absorption detection are accessible by simply interchanging narrow-band filters. Each capillary spans several diodes in the photodiode array for absorption measurements. Over 100 densely packed capillaries can be monitored by a single photodiode array element with 1024 diodes. The detection limit for rhodamine 6G for each capillary in the multiplexed array is ∼1.8 × 10(-)(8) M injected (S/N = 2). The cross-talk between adjacent capillaries is less than 0.2%. Simultaneous analysis of 96 samples is demonstrated. PMID:21662842

  5. Capillary growth, ultrastructure remodeling and exercise training in skeletal muscle of essential hypertensive patients

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Buess, Rahel; Nyberg, Michael Permin;


    obtained from m. vastus lateralis in essential hypertensive patients (n=10) and normotensive controls (n=11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy and protein levels of several angioregulatory factors were determined. RESULTS......AIM: The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extend exercise training can normalize these parameters. METHODS: To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were......: At baseline, capillary density and capillary-fiber-ratio were not different between the two groups. However, hypertensive patients had 9% lower capillary area (12.7±0.4 vs. 13.9±0.2μm(2) ) and tended to have thicker capillary basement membranes (399±16 vs. 358±13nm; P=0.094) than controls. Protein...

  6. Capillary Flows along Open Channel Conduits: the Open-Star Section (United States)

    Weislogel, Mark; Chen, Yongkang; Nguyen, Thanh; Geile, John; Callahan, Michael


    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of related work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an ``open-star'' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport rates. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings. NASA NNX09AP66A, Glenn Research Center.

  7. A Study of Coherent Radiation Generated in an Ablative Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Jakub Hübner


    Full Text Available Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.

  8. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten


    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  9. Measurements of an ion beam diameter extracted into air through a glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Natsuko, E-mail: [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Yamaki, Atsuko [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Ishii, Kunikazu; Ogawa, Hidemi [Department of Physics, Nara Women’s University, Nara, 630 8506 (Japan)


    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect.

  10. Loss of alveolar membrane diffusing capacity and pulmonary capillary blood volume in pulmonary arterial hypertension


    Farha Samar; Laskowski Daniel; George Deepa; Park Margaret M; Tang WH Wilson; Dweik Raed A; Erzurum Serpil C


    Abstract Background Reduced gas transfer in patients with pulmonary arterial hypertension (PAH) is traditionally attributed to remodeling and progressive loss of pulmonary arterial vasculature that results in decreased capillary blood volume available for gas exchange. Methods We tested this hypothesis by determination of lung diffusing capacity (DL) and its components, the alveolar capillary membrane diffusing capacity (Dm) and lung capillary blood volume (Vc) in 28 individuals with PAH in c...

  11. Evaluation of The Interaction between Netropsin and Double Stranded DNA by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    Capillary zone electrophoresis (CZE) was applied to study the interaction between netropsin and a 14mer double stranded DNA (dsDNA). The binding constant of this interaction calculated from Scatchard plot was (1.07±0.10)×105 (mol/L)-1. The binding stoichiometry was 1:1. The use of polyacrylamide coated capillary showed better effect in the analysis of DNA than noncoated capillary.

  12. Applications of capillary electrophoresis in DNA mutation analysis of genetic disorders.


    Le, H; Fung, D.; Trent, R.J.


    AIM: To facilitate DNA mutation analysis by use of capillary electrophoresis. METHODS: The usefulness and applications of capillary electrophoresis in DNA fragment sizing and sequencing were evaluated. RESULTS: DNA mutation testing in disorders such as cystic fibrosis, Huntington disease, alpha thalassaemia, and hereditary fructose intolerance were undertaken effectively. However, sizing the (CAG)n repeat in the case of Huntington disease was a potential problem when using capillary electroph...

  13. Mecanismos de Separação em Eletroforese Capilar Separation Mechanisms in Capillary Electrophoresis


    Tavares, Marina F. M.


    Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (fr...

  14. Modification of resolution in capillary electrophoresis for protein profiling in identification of genetic modification in foods


    Latoszek, A.; Cifuentes, Alejandro


    The capillary electrophoresis with UV detection was employed for protein profiling in extracts from maize and soybeans. Modifications of back-ground electrolyte and coating the capillary wall with polybrene was employed in order to decrease the protein adsorption on the capillary walls. The obtained protein profiles were compared for transgenic and non-transgenic variants, showing in some cases significant changes that might be employed for identification of genetic modifications ...

  15. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries


    Luiten, PGM; DEJONG, GI; VANDERZEE, EA; vanDijken, H; van Dijken, H.


    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a general consensus as to the presence of nicotinic and muscarinic receptors in the domain of the capillary wall, their precise anatomical position is unknown. The subcellular localization of muscarinic re...

  16. Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates


    Chadderdon, Scott M.; Belcik, J. Todd; Smith, Elise; Pranger, Lindsay; Kievit, Paul; Grove, Kevin L.; Lindner, Jonathan R


    Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This study's objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) ...

  17. Thermal-solutal capillary-buoyancy flow of a low Prandtl number binary mixture with a -1 capillary ratio in an annular pool (United States)

    Yu, Jia-Jia; Wu, Chun-Mei; Li, You-Rong; Chen, Jie-Chao


    A series of three-dimensional numerical simulations on thermal-solutal capillary-buoyancy flow in an annular pool were carried out. The pool was filled with silicon-germanium melt with an initial silicon mass fraction of 1.99%. The Prandtl number and the Lewis number of the working fluid are 6.37 × 10-3 and 2197.8, respectively. Both the radial temperature gradient and the solute concentration gradient were applied to the annular pool. The capillary ratio was assumed to be -1, which means that the solutal and thermal capillary effects were equal and opposite. Results show that the thermal-solutal capillary-buoyancy flow always occurs at this special case with the capillary ratio of -1, and even in a shallow annular pool with an aspect ratio of 0.05. With the increase of the thermal Marangoni number, four kinds of flow patterns appear orderly, including concentric rolls, petal-like, spoke, and rosebud-like patterns. These flow patterns are strongly influenced by the local interaction between the solutal and thermal capillary effects and the vertical solute concentration gradient near the outer cylinder. A small vortex driven by the dominant solutal capillary effect emerges near the inner cylinder, which is different from the flow pattern in a pure fluid. In addition, the critical thermal Marangoni number of the initial three-dimensional flow decreases with the increase of the aspect ratio of the annular pool.

  18. Current role of capillary electrophoretic/electrokinetic techniques in forensic toxicology. (United States)

    Tagliaro, Franco; Bortolotti, Federica; Pascali, Jennifer P


    The current application of capillary electrophoresis in forensic toxicology has been critically reviewed with special focus on the areas where this technique has shown real advantages over chromatographic methods. For example, capillary electrophoresis has been most successfully applied to the chiral analysis of some drugs of forensic interest, including amphetamines and their congeners. Another typical application field of capillary electrophoresis is represented by protein analysis. Recently, special interest has been paid to carbohydrate deficient transferrin (CDT), the most important biological marker of chronic alcohol abuse. Other specific applications of capillary electrophoresis of potential forensic toxicological concern are also discussed. The review includes 62 references. PMID:17572886

  19. Measurements of an ion beam diameter extracted into air through a large-bore metal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y.; Umigishi, M. [Graduate School of Humanities and Sciences, Nara Women’s University, Nara 630-8506 (Japan); Ishii, K.; Ogawa, H. [Department of Physics, Nara Women’s University, Nara 630-8506 (Japan)


    To extract an ion beam into air, the technique using a single macro-capillary has been paid attention. We have expanded the bore of the metal capillary up to 500 μm∅ inlet diameter to increase the beam intensity and have measured the intensity distributions of the extracted 3 MeV proton beam. Furthermore, we have tilted the capillary angle and measured the intensity distributions of the ion beam. In this article, we will present the experimental results together with the simulation which takes the tilt angles of the capillary into account.

  20. LASER PLASMA AND LASER APPLICATIONS: Plasma transparency in laser absorption waves in metal capillaries (United States)

    Anisimov, V. N.; Kozolupenko, A. P.; Sebrant, A. Yu


    An experimental investigation was made of the plasma transparency to heating radiation in capillaries when absorption waves propagated in these capillaries as a result of interaction with a CO2 laser pulse of 5-μs duration. When the length of the capillary was in excess of 20 mm, total absorption of the radiation by the plasma was observed at air pressures of 1-100 kPa. When the capillary length was 12 mm, a partial recovery of the transparency took place. A comparison was made with the dynamics and recovery of the plasma transparency when breakdown of air took place near the free surface.

  1. New type of capillary for use as ion beam collimator and air-vacuum interface (United States)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.


    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  2. Direct coupling of supported liquid membranes to capillary electrophoresis for analysis of complex samples: A tutorial


    Kubáň, P. (Pavel); Boček, P. (Petr)


    This tutorial provides an overview of direct coupling of extraction techniques based on supported liquid membranes to capillary electrophoresis for treatment and subsequent analysis of complex samples.

  3. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y


    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary electropho......The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...

  4. A capillary viscometer designed for the characterization of biocompatible ferrofluids (United States)

    Nowak, J.; Odenbach, S.


    Suspensions of magnetic nanoparticles are receiving a growing interest in biomedical research. These ferrofluids can, e.g., be used for the treatment of cancer, making use of the drug targeting principle or using an artificially induced heating. To enable a safe application the basic properties of the ferrofluids have to be well understood, including the viscosity of the fluids if an external magnetic field is applied. It is well known that the viscosity of ferrofluids rises if a magnetic field is applied, where the rise depends on shear rate and magnetic field strength. In case of biocompatible ferrofluids such investigations proved to be rather complicated as the experimental setup should be close to the actual application to allow justified predictions of the effects which have to be expected. Thus a capillary viscometer, providing a flow situation comparable to the flow in a blood vessel, has been designed. The glass capillary is exchangeable and different inner diameters can be used. The range of the shear rates has been adapted to the range found in the human organism. The application of an external magnetic field is enabled with two different coil setups covering the ranges of magnetic field strengths required on the one hand for a theoretical understanding of particle interaction and resulting changes in viscosity and on the other hand for values necessary for a potential biomedical application. The results show that the newly designed capillary viscometer is suitable to measure the magnetoviscous effect in biocompatible ferrofluids and that the results appear to be consistent with data measured with rotational rheometry. In addition, a strong change of the flow behaviour of a biocompatible ferrofluid was proven for ranges of the shear rate and the magnetic field strength expected for a potential biomedical application.

  5. Atmospheric quality in Argentina employing Tillandsia capillaris as biomonitor

    International Nuclear Information System (INIS)

    The objective of this research was to evaluate the biondicator capacity of Tillandsia capillaris f. incana (Mez.), widely distributed in Argentina, in relation to the accumulation of heavy metals and to its physiologic response to air pollutants. A sampling area with a surface of 50,000 km2 was selected in the central region of the Republic Argentina. The area was subdivided in grids of 25 x 25 km being collected pools at T. capillaris in each one of the intersection points when this was present. Of each pool three subsamples were analyzed independently. Besides, for 20% of the points, quintupled samples were collected in order to analyze the variability inside the site. The content of Co, Cu, Fe, Ni, Mn, Pb, and Zn was determined by Atomic Absorption Spectrometry. The concentration of chemical-physiological parameters was also determined with the objective of detecting symptoms of foliar damage. Chlorophylls, phaeophytins, hydroperoxy conjugated dienes, malondialdehyde, and sulfur were quantified in T. capillaris. Some of these parameters were used for calculating a pollution index. Data sets were evaluated by one-way ANOVA, correlation analysis, principal component analysis, and mapping. Different patterns of geographical distribution were obtained for the different metals that allow to reflect the so much contribution of natural and anthropogenic emission sources. According to our results it can be inferred that Fe, Mn, and Co probably originated from the soil. For Pb, the highest values were in the mountainous area, which can be attributed to the presence of minerals that close contains Pb in granitic rocks. Ni showed origin mainly anthropogenic, with values a risen in places close to industrial centers. For Zn the highest values were in areas of agricultural development, as well for Cu, whose presence could be related to the pesticides employment. (author)

  6. [Recent advances in capillary scale ion chromatography technology]. (United States)

    Yang, Bingcheng; Diao, Xuefang


    Ion chromatography (IC) has been a well-established technique for the analysis of ionic samples. The aqueous solution used for IC eluent is well suited for bioanalysis in relative to common liquid chromatography. This is especially true for capillary ion chromatography (CIC) due to its advantage of small sample needed. CIC is generally divided into three categories including open tubular, packed and monolithic. In this review, the recent progress of CIC is summarized based on the development of several key components associated with packed column-based system. The development of open tubular ion chromatography is also reviewed.

  7. Fast & Scalded: Capillary Leidenfrost Droplets in micro-Ratches

    CERN Document Server

    Marin, Alvaro G; Römer, Gert-Willem; Lohse, Detlef


    In this Fluid Dynamics Videos submitted to the 31st Gallery of Fluid Motion, we illustrate the special dynamics of capillary self-propelled Leidenfrost droplets in micrometric Ratchets. In order to be able to propel water droplets of sizes of the order of 1 mm, micro-ratchets were produced by direct material removal using a picosecond pulsed laser source. Surface micro-patterning with picosecond laser pulses allows creating a well controlled topography on a variety of substrates, with a resolution typically in the micron range. More information can be found in references.

  8. Kinetic Derivation of the Hydrodynamic Equations for Capillary Fluids

    CERN Document Server

    De Martino, S; Tzenov, Stephan I


    Based on the generalized kinetic equation for the one-particle distribution function with a small source, the transition from the kinetic to the hydrodynamic description of many-particle systems is performed. The basic feature of this new technique to obtain the hydrodynamic limit is that the latter has been partially incorporated into the kinetic equation itself. The hydrodynamic equations for capillary fluids are derived from the characteristic function for the local moments of the distribution function. The Fick's law appears as a consequence of the transformation law for the hydrodynamic quantities under time inversion.

  9. Automated polymerase chain reaction in capillary tubes with hot air. (United States)

    Wittwer, C T; Fillmore, G C; Hillyard, D R


    We describe a simple, compact, inexpensive thermal cycler that can be used for the polymerase chain reaction. Based on heat transfer with air to samples in sealed capillary tubes, the apparatus resembles a recirculating hair dryer. The temperature is regulated via thermocouple input to a programmable set-point process controller that provides proportional output to a solid state relay controlling a heating coil. For efficient cooling after the denaturation step, the controller activates a solenoid that opens a door to vent hot air and allows cool air to enter. Temperature-time profiles and amplification results approximate those obtained using water baths and microfuge tubes.

  10. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B


    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  11. Simulation on refrigerant flow in adiabatic capillary tube

    Institute of Scientific and Technical Information of China (English)

    Meixia WANG; Cunfang LIU; Qiangtai ZHOU


    This paper proposes a new mathematical model to calculate flow characteristics of the adiabatic capillary tube, which is aimed at solving problems existing in some earlier models. The Stocker's model was modified with consideration of various effects due to sub-cooling, area concentration, and rolling diameter. The new model can be used not only for R22, but also for its substitutes such as R410A and R407C. A comparison of simulation results of the modified model with those in literature showed that the errors are within 10%. The flow charac-teristics are finally analyzed.

  12. Capillary-wave description of rapid directional solidification. (United States)

    Korzhenevskii, Alexander L; Bausch, Richard; Schmitz, Rudi


    A recently introduced capillary-wave description of binary-alloy solidification is generalized to include the procedure of directional solidification. For a class of model systems a universal dispersion relation of the unstable eigenmodes of a planar steady-state solidification front is derived, which readjusts previously known stability considerations. We moreover establish a differential equation for oscillatory motions of a planar interface that offers a limit-cycle scenario for the formation of solute bands and, taking into account the Mullins-Sekerka instability, of banded structures.

  13. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective (United States)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)


    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  14. Liquid metal folding patterns induced by electric capillary force (United States)

    Wang, Lei; Liu, Jing


    A fundamental phenomenon regarding spontaneous formation of symmetrical folding patterns induced on liquid metal free surface with circular shape features was disclosed. The occurrence and evolution processes of the patterns were demonstrated and interpreted. The electric capillary force imposed on liquid metal due to surface tension gradient was found responsible for producing a variety of surface folding patterns like wheel-shape, dual concentric ring-shape, and so on. All the patterns display a property of axial symmetry and could be analogue to the Rayleigh-Benard convection which produces hexagonal patterns. This finding on liquid metal flow folding refreshes knowledge of classical fluid kinematics.

  15. A New Denoising Technique for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    王瑛; 莫金垣


    Capillary electrophoresis(CE) is a powerful analytical tool in chemistry,Thus,it is valuable to solve the denoising of CE signals.A new denoising method called MWDA which emplosy Mexican Hat wavelet is presented ,It is an efficient chemometrics technique and has been applied successfully in processing CE signals ,Useful information can be extractred even from signals of S/N=1 .After denoising,the peak positions are unchanged and the relative errors of peak height are less than 3%.


    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Rausch, Sarah J.; Geng, Tao; Jambovane, Sachin R.; Kelly, Ryan T.


    Here we show that a closed pneumatic microvalve on a PDMS chip can serve as a semipermeable membrane under an applied potential, enabling current to pass through while blocking the passage of charged analytes. Enrichment of both anionic and cationic species has been demonstrated, and concentration factors of ~70 have been achieved in just 8 s. Once analytes are concentrated, the valve is briefly opened and the sample is hydrodynamically injected onto an integrated microchip or capillary electrophoresis (CE) column. In contrast to existing preconcentration approaches, the membrane-based method described here enables both rapid analyte concentration as well as high resolution separations.

  17. Subtracting Technique of Baselines for Capillary Electrophoresis Signals

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; MO Jin-yuan; CHEN Zuan-guang; GAO Yan


    The drifting baselines of capillary electrophoresis affect the veracity of analysis greatly. This paper presents Threshold Fitting Technique(TFT) so as to subtract the baselines from the original signals and emendate the signals. In TFT, wav elet and curve fitting technique are applied synthetically, thresholds are decided by the computer automatically. Many experiments of signal processing indicate that TFT is simple for being used, there are few man-induced factors, and the results are satisfactory. TFT can be applied for noisy signals without any pre-processing.

  18. Capillary electrophoresis coupled with electrochemiluminescence for determination of cloperastine hydrochloride

    Institute of Scientific and Technical Information of China (English)


    Objective To investigate the electrochemiluminescence (ECL) behavior of cloperastine hydrochloride. Methods ECL intensity of tris (2,2′-bipyridyl) rutheniumo(Ⅱ) was enhanced, the method for the determination of cloperastine hydrochloride was established using capillary electrophoresis (CE) coupled with electrochemilumolinescence (ECL) detection. Results Under the optimum conditions, ECL intensity varied linearly with cloperastine hydrochloride concentration from 7.0×10-6g/mL to 1.0×10-4g/mL. The detection l...

  19. Theory of fluid slip in charged capillary nanopores

    CERN Document Server

    Catalano, J; Biesheuvel, P M


    Based on the capillary pore model (space-charge theory) for combined fluid and ion flow through cylindrical nanopores or nanotubes, we derive the continuum equations modified to include wall slip. We focus on the ionic conductance and streaming conductance, cross-coefficients of relevance for electrokinetic energy conversion and electro-osmotic pumping. We combine the theory with a Langmuir-Stern 1-pK charge regulation boundary condition resulting in a non-monotonic dependence of the cross-coefficients on salt concentration.


    Institute of Scientific and Technical Information of China (English)

    WangMing; LiWei; 等


    Using a standard photolithographical procedure,chenmical wet etching and thermal diffusion bonding technology,a chemical analysis device for Capillary Electrophoresis(CE) has been microfabricated on a planar glass substrate with a cross-column geometry.The channels on the microchip substrate are about 50um deep and 150um wide.By employing amino acids derived from 2,4-DiNitroFluoroBenzen(DNFB) on CE chip channels,the sample manipulating system is studied based on the principle of electrodynamics.

  1. Rapid Preparation of Monolithic Columns for Capillary Electrochromatography Separation

    Institute of Scientific and Technical Information of China (English)

    Wen Jun GONG; Yi Jun ZHANG; Yu Ping ZHANG; Seong Ho CHOI


    Fritless packed silica gel columns were prepared using sol-gel technology. The part of a75 μm i.d. capillary was filled with a mixture of methacryloxypropyltrimethoxysilane, toluene and hydrochloric acid. Four different photoinitiators such as benzoin methyl ether, Irgacure 819,Irgacure 1700 and irgacure 1800 were added in the presence or absence of sodium dodecyl sulfate during the polymerization process. The above eight solutions were irradiated at 365 nm about5-10 min to prepare the porous monolithic sol-gel columns by a one-step process.

  2. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  3. [Annual review of capillary electrophoresis technology in 2015]. (United States)

    Wang, Xiaoqian; Zhao, Xinying; Liu, Pinduo; Wei, Qiang; Qu, Feng


    This paper reviews the capillary electrophoresis (CE) in 2015. The literatures searched from ISI Web of Science ranged in 2015. 1. 1-2015. 12. 31 are classified and introduced based on CE-MS method, methodology research, detection and enrichment, chiral separation and basic applications of CE. Six international and two national conferences are included and the important reports are introduced briefly. In the end, the standards of CE method for the analyses of monoclonal antibodies, water, wines and food approved in China and some other countries are listed. PMID:27382715

  4. Separation of Aniline Derivatives by Micellar Electrokinetic Capillary Chromatography

    Institute of Scientific and Technical Information of China (English)

    Jun LI; Zhuo Bin YUAN


    A micellar electrokinetic capillary chromatography (MECC) was developed for the determination of aniline and 6 substituted anilines.The seven components were separated within 25 min in the buffer solution of 40 mmol/L sodium borate and 100 mmol/L SDS.It was found that the separation was dependent on operating voltage, pH value, borate and SDS concentrations.The analytical performance was examined in terms of linear response and reproducibility.Wastewater was determined by the established method.

  5. Effects of Capillary Forces and Adsorption on Reserves Distribution

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan


    The purpose of this study is to evaluate the effects of capillary forces and adsorption on the distribution of a hydrocarbon mixture in an oil-gas-condensate reservoir. These effects consist in the precipitation of the liquid phase in thin pores and on the internal surface of the reservoir rock....... To estimate the amount of the dispersed liquid condensate, analytical methods based on the generalization of the Kelvin equation and on the potential theory of adsorption have been developed. Sample calculations show significant role of adsorption, especially, in the neighborhood of the critical point...

  6. 3D printed metal columns for capillary liquid chromatography. (United States)

    Sandron, S; Heery, B; Gupta, V; Collins, D A; Nesterenko, E P; Nesterenko, P N; Talebi, M; Beirne, S; Thompson, F; Wallace, G G; Brabazon, D; Regan, F; Paull, B


    Coiled planar capillary chromatography columns (0.9 mm I.D. × 60 cm L) were 3D printed in stainless steel (316L), and titanium (Ti-6Al-4V) alloys (external dimensions of ~5 × 30 × 58 mm), and either slurry packed with various sized reversed-phase octadecylsilica particles, or filled with an in situ prepared methacrylate based monolith. Coiled printed columns were coupled directly with 30 × 30 mm Peltier thermoelectric direct contact heater/cooler modules. Preliminary results show the potential of using such 3D printed columns in future portable chromatographic devices. PMID:25285334

  7. Enantiomeric Separation of Meptazinol Hydrochloride by Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    YUYun-qiu; CHENYan; LINi; QIUZhui-bai


    Aim To establish a capillary electrophoresis method for enantiomerie separation of meptazinol hydrochloride. Methods The separation conditions such as cyclodextrin(CD)type, buffer pH, concentration of 2,3,6-O-triInethyl-β-cyclodextrin and organic additives were optimized. An optimum concentration was 30 mmol·L-1 phosphate (pH 7.02)with 10% (W/V) TM-β-CD and 2% acetonitrile. Results Basehne resolution of the enantiomer was readily achieved using 2,3,6-O-trimethyl-β-cyclodextrin. Conclusion This is a convenient method for fast enantiomeric resolution of meptazinol hydrochloride.

  8. Probing Antigen-Antibody Interaction Using Fluorescence Coupled Capillary Electrophoresis


    Pengju Jiang; Jiang Xia; Jingyan Li; Cheli Wang; Yue Zhang; Lin Qiu; Jianhao Wang


    In this report, the use of fluorescence detection coupled capillary electrophoresis (CE-FL) allowed us to fully characterize the antigen-antibody interaction. CE-FL allowed separation of unbound quantum dots (QDs) and ligand bound QDs and also revealed an ordered assembly of biomolecules on QDs. Further, we observed FRET from QDs donor to DyLight acceptor, which were covalently conjugated with human IgG and goat anti-human IgG, respectively. The immunocomplex was formed and the mutual affinit...

  9. Capillary density and capillary-to-fibre ratio in vastus lateralis muscle of untrained and trained men

    Directory of Open Access Journals (Sweden)

    W. M. Kilarski


    Full Text Available Muscle fibre profile area (Af, volume density (Vv, capillary-to-fibre ratio (CF and number of capillaries per fibre square millimetre (CD were determined from needle biopsies of vastus lateralis of twenty-four male volunteers (mean ± SD: age 25.4±5.8 years, height 178.6±5.5 cm, body mass 72.1±7.7 kg of different training background. Seven subjects were untrained students (group A, nine were national and sub-national level endurance athletes (group B with the background of 7.8±2.9 years of specialised training, and eight subjects were sprint-power athletes (group C with 12.8±8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase. Capillaries were visualized and counted using CD31 antibodies against endothelial cells. There were significant differences in the Vv of type I and type II muscle fibres in both trained groups, B (51.8%; 25.6% and C (50.5%; 26.4%. However, in untrained group A that was treated as a reference group, the difference between Vv of type I and type II fibres was less prominent, nevertheless statistically significant (42.1%; 35.1%. There was also a significant difference in CF: 1.9 in group A and 2.1 in groups B and C. The number of capillaries per mm2 (CD was 245 (group A, 308 (group B and 325 (group C. Significant differences (P<0.05 in CF and CD, were found only between group A (1.9; 245 and both groups of trained men, B and C (2.1; 308 and 325. However, endurance athletes (group B, such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance.

  10. Preliminary capillary hysteresis simulations in fractured rocks, Yucca Mountain, Nevada (United States)

    Niemi, A.; Bodvarsson, G. S.


    Preliminary simulations have been carried out to address the question of how hysteretic (history-dependent) capillary pressure-liquid saturation relation may affect the flow and liquid saturation distribution in a fractured rock system. Using a hysteresis model modified from the theoretically based dependent domain model of Mualem (1984), a system consisting of discrete fractures and rock matrix parts was simulated under periodically occurring infiltration pulses. Comparisons were made between the hysteretic case and the non-hysteretic case using the main drying curve alone. Material properties used represent values reported for the densely welded tuffs at Yucca Mountain, Nevada. Since no actual hysteresis measurements were available for the welded tuffs, the necessary data was derived based on information available in the soils literature The strongly hysteretic behavior in the uppermost layer of the matrix along with the overall lower matrix capillary suctions, generated higher fracture flows and a more "smeared" matrix liquid saturation vs. depth distribution for the hysteretic case. While the actual amounts of water being absorbed into the matrix were very similar, the distributions of this absorbed water were different and the matrix was affected up to greater depths in the hysteretic case in comparison to the non-hysteretic case.

  11. A comparative study of Raman enhancement in capillaries (United States)

    Eftekhari, Fatemeh; Irizar, Juan; Hulbert, Laila; Helmy, Amr S.


    This work reports on the comparative studies of Raman enhancement in liquid core waveguides (LCWs). The theoretical considerations that describe Raman enhancement in LCWs is adapted to analyze and compare the performance of hollow core photonic crystal fibers (HCPCFs) to conventional Teflon capillary tubes. The optical losses in both platforms are measured and used to predict their performance for different lengths. The results show that for an optimal waveguide length, two orders of magnitude enhancement in the Raman signal can be achieved for aqueous solutions using HCPCFs. This length, however, cannot be achieved using normal capillary effects. By integrating the interface of the fluidic pump and the HCPCF into a microfluidic chip, we are able to control fluid transport and fill longer lengths of HCPCFs regardless of the viscosity of the sample. The long-term stability and reproducibility of Raman spectra attained through this platform are demonstrated for naphthalenethiol, which is a well-studied organic compound. Using the HCPCF platform, the detection limit of normal Raman scattering in the range of micro-molars has been achieved. In addition to the higher signal-to-noise ratio of the Raman signal from the HCPCF-platform, more Raman modes of naphthalenethiol are revealed using this platform.

  12. Capillary Self-Alignment of Microchips on Soft Substrates

    Directory of Open Access Journals (Sweden)

    Bo Chang


    Full Text Available Soft micro devices and stretchable electronics have attracted great interest for their potential applications in sensory skins and wearable bio-integrated devices. One of the most important steps in building printed circuits is the alignment of assembled micro objects. Previously, the capillary self-alignment of microchips driven by surface tension effects has been shown to be able to achieve high-throughput and high-precision in the integration of micro parts on rigid hydrophilic/superhydrophobic patterned surfaces. In this paper, the self-alignment of microchips on a patterned soft and stretchable substrate, which consists of hydrophilic pads surrounded by a superhydrophobic polydimethylsiloxane (PDMS background, is demonstrated for the first time. A simple process has been developed for making superhydrophobic soft surface by replicating nanostructures of black silicon onto a PDMS surface. Different kinds of PDMS have been investigated, and the parameters for fabricating superhydrophobic PDMS have been optimized. A self-alignment strategy has been proposed that can result in reliable self-alignment on a soft PDMS substrate. Our results show that capillary self-alignment has great potential for building soft printed circuits.

  13. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis. (United States)

    Ranjbar, Leila; Gaudry, Adam J; Breadmore, Michael C; Shellie, Robert A


    A comprehensively coupled online two-dimensional ion chromatography-capillary electrophoresis (IC × CE) system for quantitative analysis of inorganic anions and organic acids in water is introduced. The system employs an in-house built sequential injection-capillary electrophoresis instrument and a nonfocusing modulation interface comprising a tee-piece and a six-port two-position injection valve that allows comprehensive sampling of the IC effluent. High field strength (+2 kV/cm) enables rapid second-dimension separations in which each peak eluted from the first-dimension separation column is analyzed at least three times in the second dimension. The IC × CE approach has been successfully used to resolve a suite of haloacetic acids, dalapon, and common inorganic anions. Two-dimensional peak capacity for IC × CE was 498 with a peak production rate of 9 peaks/min. Linear calibration curves were obtained for all analytes from 5 to 225 ng/mL (except dibromoacetic acid (10-225 ng/mL) and tribromoacetic acid (25-225 ng/mL)). The developed approach was used to analyze a spiked tap water sample, with good measured recoveries (69-119%).

  14. High-current carbon-epoxy capillary cathode (United States)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.


    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  15. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. (United States)

    Wang, Sen; Javadpour, Farzam; Feng, Qihong


    We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%--samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445

  16. Microjet formation in a capillary by laser-induced cavitation (United States)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef


    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  17. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. (United States)

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław


    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation.

  18. Directional transport of impinging capillary jet on wettability engineered surfaces (United States)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine


    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  19. Capillary-force measurement on SiC surfaces (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.


    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ˜4-14 nm mainly due to sphere morphology, the relative humidity (RH) ˜0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH˜40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads.

  20. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. (United States)

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław


    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation. PMID:25218633

  1. Viscosity measurement of alkali chlorides with capillary viscometer

    International Nuclear Information System (INIS)

    Viscosities of molten alkali chlorides have been measured by means of newly designed capillary viscometer made of fused quartz as shown in Fig. 1 and combined with a special transparent electric furnace which can be inverted. The viscometer was of a suspended level type and designed so as to minimize the error associated with the measurement, e.g., the effect of surface tension. Reynolds number of the capillary was less than 100. The sample was introduced into the viscometer through the quartz filter and then sealed under vacuum. Cell constants of the viscometer were determined by using distilled water as a calibration liquid. Efflux times were measured by direct visual observation using a digital stopwatch, and showed excellent reproducibility. The viscometer in the present investigation proved to be very precise and the errors accompanied were considered to be less than 0.7%. Viscosities obtained are collected in Table 1 and Figs. 3-1 -- 3-5 together with the previous data. Whereas the viscosity did not necessarily show any regularity, the activation energy for viscous flow increased with increasing cation size in the series of molten alkali chlorides. On the basis of a hard sphere model, the sizes of the flow units were considered to be nearly equal to those of cation-anion pairs. The viscosity of each molten alkali chloride at melting temperature increased with an increasing ratio of the flow unit volume to the hole volume. (author)

  2. [Does bilirubin interfere with capillary electrophoresis of serum proteins?]. (United States)

    Hellara, Ilhem; Fekih, Ons; Triki, Sonia; Elmay, Ahlem; Neffati, Fadoua; Najjar, Mohamed Fadhel


    Capillary electrophoresis of serum proteins is a fast, reliable and simple technique, but many interference exist. The objective of our work is to study the interference of bilirubin on this technique; 70 icteric sera were analysed on Capillarys ™ (Sebia). A second electrophoresis was performed on 40 samples after bilirubin photodegradation. The bilirubin and serum proteins were determinated respectively by Jendrassik and Grof and biuret methods on Konélab 20i ™ (Thermo Electron Corporation). We found abnormal spreading of the albumin fraction of the anode side wich constitute sometimes an isolated fraction in the traditional area of pre-albumin migration. This fraction varies from 2.0 ± 2.0% (0.0 to 7.3%) or 0.98 ± 1.53 g/L (0 to 5.3 g/L) and it seems to be related to the direct bilirubin since, following overloading sera with a solution of bilirubin, no further fraction was recovered. An average decrease of bilirubin after photodegradation of 58 ± 17% (26-89%) is followed by a decrease in the same order 64 ± 38% (10-100%) of the additional fraction. Acetate cellulose electrophoresis of the same samples showed no variation. The high bilirubin levels seem modify slightly the electrophoretic profile. However the impact of the interference on the interpretation of electrophoretic trace is negligible. PMID:24492101

  3. Effects of oleic acid on pulmonary capillary leak and thromboxanes

    International Nuclear Information System (INIS)

    The role of arachidonic acid metabolites in oleic acid-induced lung injury in anesthetized dogs was investigated. Oleic acid was administered as a bolus injection into the pulmonary artery after either indomethacin (10 mg/kg iv) or vehicle. Measurements of hemodynamic parameters, mean systemic (MAP), pulmonary capillary wedge, and pulmonary artery pressures (PAP), cardiac output, arterial blood gases, extravascular lung waters (EVLW) by thermaldye double indicator dilution techniques and plasma immunoreactive thromboxane B2 (iTxB2), by radioimmunoassay were obtained at zero time (baseline) and 20 min following each oleic acid injection. A new noninvasive technique was employed to measure pulmonary capillary protein leak by the scintigraphic analysis of intravenously administered technetium-99m radiolabeled human serum albumin (99mTc -HSA) in the cardiac and lung regions. Oleic acid injection caused a significant dose related fall in MAP, arterial pO2, and cardiac output, and increases in EVLW and plasma iTxB2 in the vehicle pretreated animals, while mean PAP remained unchanged. In contrast, in the indomethacin pretreated dogs, MAP, EVLW, cardiac output, and plasma iTxB2 levels did not change from baseline values and there was an increase in mean PAP. Pulmonary vascular resistance was significantly elevated in both groups

  4. Snap-off in constricted capillary with elastic interface (United States)

    Hoyer, P.; Alvarado, V.; Carvalho, M. S.


    Snap-off of bubbles and drops in constricted capillaries occurs in many different situations, from bio-fluid to multiphase flow in porous media. The breakup process has been extensively analyzed both by theory and experiments, but most work has been limited to pure interfaces, at which the surface stress is isotropic and fully defined by the interfacial tension and interface curvature. Complex interfaces may present viscous and elastic behavior leading to a complex stress state that may change the dynamics of the interface deformation and breakup. We extend the available asymptotic model based on lubrication approximation to include elastic interfacial stress. Drop breakup time is determined as a function of the capillary geometry and liquid properties, including the interfacial elastic modulus. Results show that the interfacial elasticity has a stabilizing effect by slowing down the growth of the liquid collar, leading to a larger break-up time. This stabilizing effect has been observed experimentally in different, but related flows [Alvarado et al., "Interfacial visco-elasticity of crude oil-brine: An alternative EOR mechanism in smart waterflooding," in SPE-169127 Improved Oil Recovery Symposium (Society of Petroleum Engineers, 2014)].

  5. Interfacial shear-stress effects on transient capillary wedge flow (United States)

    Su, Song-Kai; Lai, Chun-Liang


    The effects on the transient capillary flow in a wedge due to the interfacial shear-stress distribution S along the flow direction z is studied theoretically. With the assumptions of a slender liquid column and negligible gravitational and inertia effects, the problem is reduced to finding the axial velocity distribution at any cross section. The propagation of the liquid column h(z,t) and the tip location l(t) are then solved with the aid of the continuity equation. When the half-wedge angle α, the contact angle θ, and the shear-stress distribution on the free surface S are constant, analytic solutions exist. Otherwise, numerical simulation has to be applied. The results indicate that when S(z) is acting in the flow direction, the flow is strengthened and the liquid column propagates faster. When S(z) is opposing the flow direction, reverse flow may exist near the free surface and the propagation speed of the liquid column is reduced. Moreover, for a capillary flow in a wedge with constant α, θ, and S, both the analytic solutions and the numerical simulation predict that l(t)∝t3/5 for the constant-flow-rate stage and l(t)∝t1/2 for the constant-height flow stage. When S is a function of the flow direction z, the above functional relationship between l and t becomes no longer valid; it varies as the liquid column propagates along the wedge.

  6. More investigations in capillary fluidics using a drop tower (United States)

    Wollman, Andrew; Weislogel, Mark; Wiles, Brently; Pettit, Donald; Snyder, Trevor


    A variety of contemplative demonstrations concerning intermediate-to-large length scale capillary fluidic phenomena were made possible by the brief weightless environment of a drop tower (Wollman and Weislogel in Exp Fluids 54(4):1, 2013). In that work, capillarity-driven flows leading to unique spontaneous droplet ejections, bubble ingestions, and multiphase flows were introduced and discussed. Such efforts are continued herein. The spontaneous droplet ejection phenomena (auto-ejection) is reviewed and demonstrated on earth as well as aboard the International Space Station. This technique is then applied to novel low-g droplet combustion where soot tube structures are created in the wakes of burning drops. A variety of new tests are presented that routinely demonstrate `puddle jumping,' a process defined as the spontaneous recoil and ejection of large liquid drops from hydrophobic surfaces following the step reduction in `gravity' characteristic of most drop towers. The inverse problem of `bubble jumping' is also demonstrated for the case of hydrophilic surfaces. A variety of puddle jump demonstrations are presented in summary as a means of suggesting the further exploitation of drop towers to study such large length scale capillary phenomena.

  7. Optimization geological sequestration of CO2 by capillary trapping mechanisms (United States)

    Wildenschild, D.; Harper, E.; Herring, A. L.; Armstrong, R. T.


    Geological carbon sequestration, as a method of atmospheric greenhouse gas reduction, is at the technological forefront of the climate change movement. Sequestration is achieved by capturing carbon dioxide (CO2) gas effluent from coal fired power plants and injecting it into saline aquifers. In an effort to fully understand and optimize CO2 trapping efficiency, the capillary trapping mechanisms that immobilize subsurface CO2 were analyzed at the pore scale. Pairs of analogous fluids representing the range of in situ supercritical CO2 and brine conditions were used during experimentation. The two fluids (identified as wetting and non wetting) were imbibed and drained from a flow cell apparatus containing a sintered glass bead column. Experimental and fluid parameters, such as interfacial tension, non-wetting fluid viscosity, and flow rate, were altered to characterize their impact on capillary trapping. Through the use of computed x-ray microtomography (CMT), we were able to quantify distinct differences between initial (post NW phase imbibition) and residual (post wetting fluid flood) non-wetting phase saturations. Alterations to the viscosity of the non-wetting and wetting fluid phases were made during experimentation; results indicate that the viscosity of the non-wetting fluid is the parameter of interest as residual saturations increased with increasing viscosity. These observed trends will be used to identify optimal conditions for trapping CO2 during subsurface sequestration.

  8. Capillary-force measurement on SiC surfaces. (United States)

    Sedighi, M; Svetovoy, V B; Palasantzas, G


    Capillary forces have been measured by atomic force microscopy in the sphere-plate geometry, in a controlled humidity environment, between smooth silicon carbide and borosilicate glass spheres. The force measurements were performed as a function of the rms surface roughness ∼4-14 nm mainly due to sphere morphology, the relative humidity (RH) ∼0%-40%, the applied load on the cantilever, and the contact time. The pull-off force was found to decrease by nearly two orders of magnitude with increasing rms roughness from 8 to 14 nm due to formation of a few capillary menisci for the roughest surfaces, while it remained unchanged for rms roughness <8 nm implying fully wetted surface features leading to a single meniscus. The latter reached a steady state in less than 5 s for the smoothest surfaces, as force measurements versus contact time indicated for increased RH∼40%. Finally, the pull-off force increases and reaches a maximum with applied load, which is associated with plastic deformation of surface asperities, and decreases at higher loads. PMID:27415337

  9. Early Regimes of Water Capillary Flow in Slit Silica Nanochannels

    DEFF Research Database (Denmark)

    Oyarzua, Elton; Walther, Jens Honore; Mejia, Andres;


    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibitionof water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopicconfinement, initial conditions of liquid uptake and air pressurization on the dyna......Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibitionof water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopicconfinement, initial conditions of liquid uptake and air pressurization...... on the dynamics of capillaryfilling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes:an initial regime where the capillary force is balanced only by the inertial drag and characterized by aconstant velocity and a plug flow profile. In this regime, the meniscus...... formation process plays a centralrole in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance hassignificant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscousforces dominate the capillary force balance is attained. Flow...

  10. Determination of acidity constants of enolisable compounds by capillary electrophoresis. (United States)

    Mofaddel, N; Bar, N; Villemin, D; Desbène, P L


    Research on the structure-activity relationships of molecules with acidic carbon atoms led us to undertake a feasibility study on the determination of their acidity constants by capillary electrophoresis (CE). The studied molecules had diverse structures and were tetronic acid, acetylacetone, diethylmalonate, Meldrum's acid, 3-methylrhodanine, nitroacetic acid ethyl ester, pyrimidine-2,4,6-trione, 3-oxo-3-phenylpropionic acid ethyl ester, 1-phenylbutan-1,3-dione, 5,5-dimethylcyclohexan-1,3-dione and homophthalic anhydride. The p Ka range explored by CE was therefore very large (from 3 to 12) and p Ka values near 12 were evaluated by mathematical extrapolations. The analyses were carried out in CZE mode using a fused silica capillary grafted (or not) with hexadimethrine. Owing to the electrophoretic behaviour of these compounds according to the pH, their acidity constants could be evaluated and appeared in perfect agreement with the literature data obtained, a few decades ago, by means of potentiometry, spectrometry or conductimetry. The p Ka of homophthalic anhydride and 3-methylrhodanine were evaluated for the first time.

  11. Side-by-side comparison of disposable microchips with commercial capillary cartridges for application in capillary isoelectric focusing with whole column imaging detection. (United States)

    Liu, Zhen; Ou, Junjie; Samy, Razim; Glawdel, Tomasz; Huang, Tiemin; Ren, Carolyn L; Pawliszyn, Janusz


    Simple-structured, well-functioned disposable poly(dimethylsiloxane) (PDMS) microchips were developed for capillary isoelectric focusing with whole column imaging detection (CIEF-WCID). Side-by-side comparison of the developed microchips with well-established commercial capillary cartridges demonstrated that the disposable microchips have comparable performance as well as advantages such as absence of lens effect and possibility of high-aspect-ratio accompanied with a dramatic reduction in cost.

  12. Capillary Action in a Crack on the Surface of Asteroids with an Application to 433 Eros

    CERN Document Server

    Jiang, Yu


    Some asteroids contain water ice, and a space mission landing on an asteroid may take liquid to the surface of the asteroid. Gas pressure is very weak on the surface of asteroids. Here we consider the capillary action in a crack on the surface of irregular asteroids. The crack is modelled as a capillary which has a fixed radius. An asteroid s irregular gravitational potential influences the height of the liquid in the capillary. The height of the liquid in the capillary on the surface of such asteroids is derived from the asteroid s irregular gravitational potential. Capillary mechanisms are expected to produce an inhomogeneaous distribution of emergent liquid on the surface. This result is applied to asteroid 433 Eros, which has an irregular, elongated, and concave shape. Two cases are considered 1) we calculate the height of the liquid in the capillary when the direction of the capillary is perpendicular to the local surface of the asteroid; 2) we calculate the height of the liquid in the capillary when the...

  13. Capillary Electrochromatography of Molecularly Imprinted Monolithic Column Using p-Hydroxybenzoic Acid as Templates

    Institute of Scientific and Technical Information of China (English)

    Zhao Sheng LIU; Yan Li XU; Chao YAN; Ru Yu GAO


    Molecularly imprinted polymers using p-hydroxybenzoic acid as templates was synthesized by an in situ polymerization reaction and rendered capillary monolithic column was used in capillary electrochromatographic mode. Good molecular recognition was achieved forphydroxybenzoic acid and good resolution of isomers can be realized.

  14. Spinal capillary hemangioma involving the lumbar epidural and paraspinal spaces: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Bong Guk; Lee, Young Jun; Lee, Ji Young; Park, Chan Kum; Paik, Seung Sam [Hanyang University Medical Center, Hanyang University College of Medicine, Seoul (Korea, Republic of); Park, Dong Woo [Dept. of Radiology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul (Korea, Republic of)


    Spinal capillary hemangiomas in the epidural space are extremely rare; however, a preoperative radiological diagnosis is very important because of the risk of massive intraoperative hemorrhage. We report a case of a spinal capillary hemangioma involving the lumbar epidural and paraspinal spaces.

  15. Instrumental development of novel detection and separation methods for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Garner, T.


    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  16. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    Energy Technology Data Exchange (ETDEWEB)

    Ardhapurkar, P. M. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 India and S. S. G. M. College of Engineering Shegaon, MS 444 203 (India); Sridharan, Arunkumar; Atrey, M. D. [Mechanical Engineering Department, Indian Institute of Technology Bombay, Mumbai, MS 400 076 (India)


    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  17. Capillary Micro-flow Through a Fiber Bundle(Part 2)

    Institute of Scientific and Technical Information of China (English)

    ZHU Yingdan; WANG Jihui; TAN Hua; GAO Guoqiang


    A numerical model was proposed to simulate the capillary micro-flow through a fiber bundle.The capillary pressure was predicted by the Young-Laplace equation and the corresponding optimal values of permeability were found by a trial-and-error method. The empirical Kozeny constants which are dependent on fiber volume fraction were recommended for the prediction of permeability.


    NARCIS (Netherlands)



    Blood ammonia determination is a laboratory test to diagnose hepatic encephalopathy. Arterial blood is superior to peripheral venous blood ammonia because of ammonia metabolism in muscle. We have compared capillary with arterial whole blood ammonia as capillary sampling is an attractive alternative.

  19. Carbon Fiber-gold/mercury Dual-electrode Detection for Capillary Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    A carbon fiber-gold/mercury dual-electrode for capillary electrophoresis is constructed. Cysteine, glutathione, ascorbic acid and uric acid can be detected simultaneously and selectively at the dual-electrode, respectively. The capillary electrophoresis / dual-electrode detection system has been used to determine these compounds in human blood samples.

  20. Determination of Enantiomeric Excess of Glutamic Acids by Lab-made Capillary Array Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Jun WANG; Kai Ying LIU; Li WANG; Ji Ling BAI


    Simulated enantiomeric excess of glutamic acid was determined by a lab-made sixteen-channel capillary array electrophoresis with confocal fluorescent rotary scanner. The experimental results indicated that the capillary array electrophoresis method can accurately determine the enantiomeric excess of glutamic acid and can be used for high-throughput screening system for combinatorial asymmetric catalysis.

  1. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory (United States)

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.


    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  2. Wetting and Capillary Condensation as Means of Protein Organization in Membranes

    DEFF Research Database (Denmark)

    Gil, Tamir; Sabra, Mads Christian; Ipsen, John Hjorth;


    Wetting and capillary condensation are thermodynamic phenomena in which the special affinity of interfaces to a thermodynamic phase, relative to the stable bulk phase, leads to the stabilization of a wetting phase at the interfaces. Wetting and capillary condensation are here proposed as mechanisms...

  3. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van


    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  4. On the hydrodynamics of liquid–liquid slug flow capillary microreactors

    NARCIS (Netherlands)

    Kashid, M.N.; Fernandez Rivas, D.; Agar, D.W.; Turek, S.


    Microreactor technology is an important method of process intensification. Liquid–liquid slug flow capillary microreactors have been used to intensify the reactions with heat and mass transfer limitations. In this type of reactor, either two liquids flow alternate to each other in a capillary or one

  5. Performance Evaluation of Automated Passive Capillary Sampler for Estimating Water Drainage in the Vadose Zone (United States)

    Passive capillary samplers (PCAPs) are widely used to monitor, measure and sample drainage water under saturated and unsaturated soil conditions in the vadose zone. The objective of this study was to evaluate the performance and accuracy of automated passive capillary sampler for estimating drainage...

  6. Sympathetic mediated vasomotion and skin capillary permeability in diabetic patients with peripheral neuropathy

    NARCIS (Netherlands)

    Lefrandt, JD; Hoeven, JH; Roon, AM; Smit, AJ; Hoogenberg, K


    Aims/hypothesis. A loss of sympathetic function could lead to changes in capillary fluid filtration in diabetic patients. We investigated whether a decreased sympathetically mediated vasomotion in the skin in diabetic patients with peripheral neuropathy is associated with an abnormal capillary leaka

  7. Capillary electrophoresis as a versatile tool for the bioanalysis of drugs - a review

    NARCIS (Netherlands)

    Boone, CM; Waterval, JCM; Lingeman, H; Ensing, K; Underberg, WJM


    This review article presents an overview of current research on the use of capillary electrophoretic techniques for the analysis of drugs in biological matrices. The principles of capillary electrophoresis and its various separation and detection modes are briefly discussed. Sample pretreatment meth

  8. Stress failure of pulmonary capillaries: role in lung and heart disease (United States)

    West, J. B.; Mathieu-Costello, O.


    Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.

  9. Study on the interrelated effects of capillary diameter, background electrolyte concentration, and flow rate in pressure assisted capillary electrophoresis with contactless conductivity detection. (United States)

    Mai, Thanh Duc; Hauser, Peter C


    A detailed study on the effect of the buffer concentration and the magnitude of the superimposed hydrodynamic flow on separation performance in CZE with contactless conductivity detection was carried out with capillaries of 10, 25, and 50 μm internal diameter. It was confirmed that capillaries of narrow internal diameters require higher buffer concentrations for best sensitivities. For all diameters it was found that electrodispersion was the most pronounced band-broadening factor for relatively long residence times. For shorter times, Joule heating related band broadening appears to be the most significant factor, which means that best separation efficiencies are obtained with the narrowest capillaries. As detection limits are as good for capillaries of 10 μm internal diameters as for the other diameters when using contactless conductivity detection, these narrow capillaries are, therefore, generally of benefit when employing this detection technique. Hydrodyamic flow was found to have only a very limited effect on band broadening; an effect was only noticeable for the 50 μm capillary and relatively high flow rates. PMID:23417350

  10. Determination of N-Methylcarbamate Pesticides in Vegetables by Solid-phase Extraction and Pressurized Capillary Electrochromatography

    Institute of Scientific and Technical Information of China (English)


    @@ Introduction Capillary electrochromatography(CEC) is a hybrid technique that couples the good selectivity of high-performance liquid chromatography ( HPLC ) and the high separation efficiency of capillary electrophoresis (CE).

  11. Determination of methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria in blood by capillary zone electrophoresis


    Horká, M. (Marie); Tesařová, M. (Marie); Karásek, P. (Pavel); Růžička, F.; Holá, V.; Sittová, M.; Roth, M


    We used capillary zone electrophoresis in supercritical water-etched and modified fused silica capillaries to separate methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria from clinical samples of whole blood.

  12. Adsorption of Human Serum Albumin onto PVA-coated Affinity Microporous PTFE Capillary

    Institute of Scientific and Technical Information of China (English)

    JIN Gu; YAO Oi-zhi; ZHANG Lei


    Affinity dye-ligand Cibacron Blue F3GA(CB F3GA)was covalently coupled with poly(vinyl alcohol)(PVA) coated on the inner surface of microporous poly(tetra-fluoroethylene)(MPTFE)membranous capillary.The PVA-coated PTFE capillary surface WaS characterized by XPS and FESEM.The grafting degree of PVA and the amount of CB F3GA immobilized onto the membranous capillary were 23.5 mg/g and 89.6 μmol/g,respectively.These dyed membranous capillaries were chemically and mechanically stable,and could be reproducibly prepared.Human serum albumin(HSA)was selected as model protein.The saturation adsorbance of the dye attached membranous capillary was 85.3 mg HSA/g,while the capacity of non-specific adsorption for HSA was less than 0.3 mg/g.

  13. Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis. (United States)

    Wang, Fangjun; Dong, Jing; Ye, Mingliang; Wu, Ren'an; Zou, Hanfa


    Capillary column plays an important role in nano-flow liquid chromatography coupled with tandem mass spectrometry for dealing with the high dynamic range and complexity of protein samples in shotgun proteome analysis. In this study, the integrated monolithic frit into the particulate capillary (IMFPC) column was prepared. By comparing the prepared IMFPC column with conventionally fritless capillary column, smaller size of packing materials could be easily packed into the capillary to achieve higher average peak capacity and proteome coverage. As the monolithic emitter was integrated onto this type of column, the void volume between packing particles and electrospray emitter was eliminated and the electrospray quality was improved. The prepared IMFPC column was applied to proteome analysis of mouse liver extracts, and it was observed that the number of identified proteins and peptides increased 14.9 and 12.9% as well as the peak capacity increased 11.6% by using IMFPC column over conventionally fritless capillary column. PMID:19786199

  14. DNA sequencing with capillary electrophoresis and single cell analysis with mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fung, N.


    Since the first demonstration of the laser in the 1960`s, lasers have found numerous applications in analytical chemistry. In this work, two different applications are described, namely, DNA sequencing with capillary gel electrophoresis and single cell analysis with mass spectrometry. Two projects are described in which high-speed DNA separations with capillary gel electrophoresis were demonstrated. In the third project, flow cytometry and mass spectrometry were coupled via a laser vaporization/ionization interface and individual mammalian cells were analyzed. First, DNA Sanger fragments were separated by capillary gel electrophoresis. A separation speed of 20 basepairs per minute was demonstrated with a mixed poly(ethylene oxide) (PEO) sieving solution. In addition, a new capillary wall treatment protocol was developed in which bare (or uncoated) capillaries can be used in DNA sequencing. Second, a temperature programming scheme was used to separate DNA Sanger fragments. Third, flow cytometry and mass spectrometry were coupled with a laser vaporization/ionization interface.

  15. Reducing the Edge Chipping for Capillary End Face Grinding and Polishing

    Directory of Open Access Journals (Sweden)

    Hošek J.


    Full Text Available This paper presents results of glass capillary end face grinding and polishing by approach that reduces the edge chipping. Brittle materials have natural tendency for edge chipping what leads to beveling the sharp edges. Not beveled sharp edges on glass capillary are important for special applications like surface tension measurement of small liquid samples. We use common grinding and polishing process for capillary end face machining modified with gradual decreasing of grinding load based on the relation of the critical chipping load. Achieved surface roughness is measured using atomic force microscopy (AFM. Capillary inner edge quality is checked both with optical microscopes and electron microscope too. We achieved a non-chipped capillary inner edge with radius down to 100 nm.

  16. Frequency dispersion of small-amplitude capillary waves in viscous fluids

    CERN Document Server

    Denner, Fabian


    This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wavenumber of critical damping based on a harmonic oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wavenumber, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic timescales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodyn...

  17. Experimental and simulation investigation of ion transfer in different sampling capillaries. (United States)

    Yu, Quan; Jiang, Tao; Ni, Kai; Qian, Xiang; Tang, Fei; Wang, Xiaohao


    Atmospheric pressure interfaces were a fundamental structure for transferring air generated ions into the vacuum manifold of a mass spectrometer. This work is devoted to the characterization of ion transfer in metal capillaries through both experimental and simulated investigations. The impact of capillary configurations on ion transmission efficiency was evaluated using an electrospray mass spectrometer with various bent capillaries as the transfer devices. In addition, a numerical model has been set up by coupling the SIMION 8.0 and the computational flow dynamics for simulation study of ion migration in the complex atmospheric system. The transfer efficiency was found to be highly affected by the variation in electric field and the capillary geometry, revealing that the hydrodynamic and electric force were both dominant and interactional during the transmission process. The consistency of the results from the experimental analysis and simulation modeling proved the validity of the model, which was helpful for understanding ion activity in transfer capillaries. PMID:26634970

  18. Influence of Chemical Kinetics on Postcolumn Reaction in a Capillary Taylor Reactor with Catechol Analytes and Photoluminescence Following Electron Transfer


    Jung, Moon Chul; Weber, Stephen G.


    Postcolumn derivatization reactions can enhance detector sensitivity and selectivity, but their successful combination with capillary liquid chromatography has been limited because of the small peak volumes in capillary chromatography. A capillary Taylor reactor (CTR), developed in our laboratory, provides simple and effective mixing and reaction in a 25-μm-radius postcolumn capillary. Homogenization of reactant streams occurs by radial diffusion, and a chemical reaction follows. Three charac...

  19. A new beamstop for microfocus X-ray capillary beams

    Energy Technology Data Exchange (ETDEWEB)

    Englich, Ulrich, E-mail: [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States); Revesz, Peter [Cornell University, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Miller, William [Cornell University, Macromolecular Diffraction at CHESS (MacCHESS), Cornell High Energy Synchrotron Source, 200L Wilson Laboratory, Ithaca, NY 14853 (United States)


    In order to accurately measure the photon flux and to assist in aligning the beam, we have designed a modified beamstop device based on a photo diode integrated with the beamstop. The beamstop contains a small CdWO{sub 4} crystal that completely stops the X-rays and at the same time produces photoluminescence proportional to the X-ray flux. The light is then guided to a photosensitive diode using a flexible light pipe to monitor the flux. With this device we achieve the goal of stopping the primary X-ray beam and simultaneously monitoring the X-ray intensity, thus eliminating the need for integrating ion-chambers into the capillary or collimator mount.

  20. Direct withdrawal of zones during preparative capillary type isotachophoresis.

    Directory of Open Access Journals (Sweden)



    Full Text Available This study used a Shimadzu IP-1B capillary type isotachophoretic apparatus with a potential gradient detector. An ipp-1 withdrawal cell was fitted to this and a technique for withdrawing individual components directly through this port was developed using a microsyringe. The recovery rate was up to 45% for individual target components. When 100% withdrawal of the target component was attempted by withdrawing a volume four times the calculated volume (so that the zones both before and after the target component were also included, the best recovery rate was only 78%. In all cases, the results varied less than 3%. The limit for analysis of individual components of a 0.01 M solution was around 3 microliters. If this volume was exceeded, the ion quantity was too large for the volume of the microcapillary tube and mixed zones formed such that complete separation and analysis of individual components became impossible.

  1. A capillary optical fiber modulator derivates from magnetic fluid (United States)

    Yang, Xinghua; Liu, Yanxin; Zheng, Yao; Li, Shouzhu; Yuan, Libo; Yuan, Tingting; Tong, Chengguo


    A novel in-fiber integrated modulator based on magnetic fluid is proposed. The Fe3O4 magnetic fluid is encapsulated into a specially designed capillary optical fiber with a circular waveguide. Experimental results show that the light at 632.8 nm in the circular waveguide can be modulated by only 2.17×10-2 μL of the magnetic fluid under magnetic field. A wide range of modulation-depth from 44% to 75% can be obtained by adjusting the external magnetic field strength, temperature and the concentration of the magnetic fluid. In addition, the modulator shows good stability and repeatability. This work has great potentials in the integrated optical devices such as tunable in-fiber modulators, optical switches and magnetic sensors.

  2. Fast preparation of photopolymerized monolithic columns for capillary electrochromatography

    Institute of Scientific and Technical Information of China (English)

    GONG Wen-jun; XU Guang-ri; ZHANG Yi-jun; ZHANG Yu-ping; CHOI Seong-ho; LEE Kwang-pill


    Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst. Four different photoinitiators such as benzoin methyl ether, Irgacure 819,lrgacure 1700 and Irgacure 1800 were comparatively used in the reaction solution in the presence and absence of sodium dodecylsulfate. The above eight solutions were respectively irradiated at 365 um for 5-10 min in each capillary (75 μm inside diameter) toprepare the porous monolithic sol-gel column by a one-step, in situ, process. The chromatographic behavior of the eight PSGcolumns were comparatively studied, all of which exhibit reversed-phase character. Using these columns, several neutral compounds,namely thiourea, benzene, toluene, ethyl benzene, biphenyl and naphthalene can be separated from mixtures with a largest columnefficiency of 74 470 plate/column for thiourea. Addition of sodium dodecyl sulfate in the polymerization process has a significantinfluence on the morphology and migration time.

  3. Cyclodextrins in capillary electrophoresis: recent developments and new trends. (United States)

    Escuder-Gilabert, L; Martín-Biosca, Y; Medina-Hernández, M J; Sagrado, S


    Despite the fact that extensive research in the field of separations by capillary electrophoresis (CE) has been carried out and many reviews have been published in the last years, a specific review on the use and future potential of cyclodextrins (CDs) in CE is not available. This review focuses the attention in the CD-CE topic over the January 2013-February 2014 period (not covered by previous more general CE-reviews). Recent contributions (reviews and research articles) including practical uses (e.g. solute-CD binding constant estimation and further potentials; 19% of publications), developments and applications (mainly chiral and achiral analysis; 38 and 24% of publications, respectively) are summarized in nine comprehensive tables and are commented. Statistics and predictions related to the CD-CE publications are highlighted in order to infer the current and expected research interests. Finally, trends and initiatives on CD-CE attending to real needs or practical criteria are outlined.

  4. Regularity for steady periodic capillary water waves with vorticity. (United States)

    Henry, David


    In the following, we prove new regularity results for two-dimensional steady periodic capillary water waves with vorticity, in the absence of stagnation points. Firstly, we prove that if the vorticity function has a Hölder-continuous first derivative, then the free surface is a smooth curve and the streamlines beneath the surface will be real analytic. Furthermore, once we assume that the vorticity function is real analytic, it will follow that the wave surface profile is itself also analytic. A particular case of this result includes irrotational fluid flow where the vorticity is zero. The property of the streamlines being analytic allows us to gain physical insight into small-amplitude waves by justifying a power-series approach. PMID:22393112

  5. [Blood loss in dialysis in repeatedly used capillary dialysators]. (United States)

    Schmidt, U; Senf, L; Kleinert, P; Thieler, H; Marx, M


    The blood losses increase to the twofold to threefold by capillary dialysators C-DAK 4 and C-DAK 5 are about 6.8 ml and 26 ml, respectively, in the first use. In repeated use of the C-DAK 4 the blood losses by the C-DAK 5, however, are so high that it is not to be advised to use them manifold under our conditions of dialysis. By an increase of the reperfusion quantity from 150 to 250 ml of electrolyte solution for one C-DAK 4 blood losses may considerably be reduced. In a parallel switching of two C-DAK 4 each exemplar should be perfused individually.

  6. Separation of enantiomers by capillary electrophoresis using pentosan polysulfate. (United States)

    Wang, X; Lee, J T; Armstrong, D W


    Pentosan polysulfate, a semisynthetic polysaccharide, was employed as a chiral run buffer additive in capillary electrophoresis. Twenty-eight racemic analytes were resolved. The separations were successful only at low pH when the analytes were significantly protonated. This suggests that ionic interactions were the dominant associative interactions between the anionic pentosan polysulfate and the positively charged analytes. Compared to other linear, carbohydrate-based chiral selectors (i.e., chondroitin sulfates, heparin and dextran sulfate) pentosan polysulfate has some characteristics common of anionic polysaccharides; yet it has several differences in its structure and properties which account for its unusual enantioselectivity. The effects of pH, concentration of phosphate buffer, concentration of pentosan polysulfate and the type and concentration of organic modifier on the enantiomeric separations were investigated. The optimization of these separations were dependent on the nature of the analytes and could be achieved by the proper choice of experimental conditions.

  7. Transient analysis of a capillary pumped loop heat pipe (United States)

    Kiper, A. M.; Feric, G.; Anjum, M. I.; Swanson, T. D.


    A bench-top Capillary Pumped Loop (CPL) test system has been developed and tested to investigate the transient mode operation of this system by applying a step power input to the evaporators. Tests were conducted at several power input and evaporator inlet subcooling combinations. In addition, a lumped-heat-capacity model of the CPL test system has been presented which is used for predicting qualitatively the transient operation characteristics. Good agreement has been obtained between the predicted and the measured temperature variations. A simple evaporator inlet subcooler model has also been developed to study effects of inlet subcooling on the steady-state evaporator wall temperature. Results were compared with the test data collected.

  8. Diagnostics of atmospheric pressure capillary DBD oxygen plasma jet

    CERN Document Server

    Roy, N C; Pramanik, B K


    Atmospheric pressure capillary dielectric barrier oxygen discharge plasma jet is developed to generate non-thermal plasma using unipolar positive pulse power supply. Both optical and electrical techniques are used to investigate the characteristics of the produced plasma as function of applied voltage and gas flow rate. Analytical results obtained from the optical emission spectroscopic data reveal the gas temperature, rotational temperature, excitation temperature and electron density. Gas temperature and rotational temperature are found to decrease with increasing oxygen flow rate but increase linearly with applied voltage. It is exposed that the electron density is boosting up with enhanced applied voltage and oxygen flow rate, while the electron excitation temperature is reducing with rising oxygen flow rate. Electrical characterization demonstrates that the discharge frequency is falling with flow rate but increasing with voltage. The produced plasma is applied preliminarily to study the inactivation yie...

  9. Ablation of CsI by XUV Capillary Discharge Laser (United States)

    Pira, Peter; Zelinger, Zdenek; Burian, Tomas; Vysin, Ludek; Wild, Jan; Juha, Libor; Lancok, Jan; Nevrly, Vaclav


    XUV capillary discharge laser (CDL) is suitable source for ablation of ionic crystals as material which is difficult to ablate by conventional laser. Single crystal of CsI was irradiated by 2.5 ns pulses of a 46.9 nm radiation at 2 Hz. The CDL beam was focused by Sc/Si multilayer spherical mirror. Attenuation length of CsI for this wavelength is 38 nm. Ablation rate was calculated after irradiation of 10, 20, 30, 50 and 100 pulses. Depth of the craters was measured by optical profiler (white light interferometry). Ablation threshold was determined from craters after irradiation with the changing fluence and compared with modeling by XUV-ABLATOR.

  10. Stability Investigation on the Thin Films in Capillary

    Institute of Scientific and Technical Information of China (English)

    Zhang Lichun; Ma Tongze; Ge Xinshi


    The stability of the thin liquid film in a capillary is important to the phase-change heat transfer process in miniature or micro structures. From the basic equations for motion and heat transfer at the interface of the film,its stability is theoretically studied. With evaluation of the effects and relative magnitudes of various driving forces and with the use of long-wave theory in addition to linear stability analysis, the controlling equations are simplified and an evolution equation for the film's thickness is obtained. Detailed analysis on the evolution equation shows that instability occurs first in the meniscus region and the instability condition varies with boundary conditions, geometrical scales and thermal properties. The numerical results agree well with earlier ones with some favorable extensions and improvements.

  11. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 解文军; 魏炳波


    The rapid solidification of acoustically levitated drops of Pb-61.9 wt. %Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves.Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  12. The new approach of standardization of capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    LI; Hua; WANG; Kang; JOSEF; Havel


    In this paper, we develope the new standardization methods to eliminate the influence in capillary electrophoresis (CE). The markers were used to determine the basis position and then correct the data of sample by the migration time of standard sample, and make the migration time of samples consistent with the standard sample by the criterion of the marker. The problem of time transition was corrected in this way. Then according to the peak height or peak area of the marker in the sample (peak height was used here) compared with the standard sample, the sample data was zoomed appropriately. The absorbance error was made to be correct.The wavelet de-noise method was also used to make the data smooth and get a good baseline.

  13. Nonlinear analysis of capillary instability with heat and mass transfer (United States)

    Awasthi, Mukesh Kumar; Agrawal, G. S.


    The nonlinear capillary instability of the cylindrical interface between the vapor and liquid phases of a fluid is studied when there is heat and mass transfer across the interface, using viscous potential flow theory. The fluids are considered to be viscous and incompressible with different kinematic viscosities. Both asymmetric and axisymmetric disturbances are considered. The analysis is based on the method of multiple scale perturbation and the nonlinear stability is governed by first-order nonlinear partial differential equation. The stability conditions are obtained and discussed theoretically as well as numerically. Regions of stability and instability have been shown graphically indicating the effect of various parameters. It has been observed that the heat and mass transfer has stabilizing effect on the stability of the system in the nonlinear analysis for both axisymmetric as well as asymmetric disturbances.

  14. Absorbance and fluorometric sensing with capillary wells microplates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Han Yen; Cheong, Brandon Huey-Ping; Neild, Adrian; Wah Ng, Tuck [Laboratory for Optics, Acoustics, and Mechanics, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800 (Australia); Liew, Oi Wah [Cardiovascular Biomarkers Laboratory, Cardiovascular Research Institute, 30 Medical Drive, Singapore 117609 (Singapore)


    Detection and readout from small volume assays in microplates are a challenge. The capillary wells microplate approach [Ng et al., Appl. Phys. Lett. 93, 174105 (2008)] offers strong advantages in small liquid volume management. An adapted design is described and shown here to be able to detect, in a nonimaging manner, fluorescence and absorbance assays minus the error often associated with meniscus forming at the air-liquid interface. The presence of bubbles in liquid samples residing in microplate wells can cause inaccuracies. Pipetting errors, if not adequately managed, can result in misleading data and wrong interpretations of assay results; particularly in the context of high throughput screening. We show that the adapted design is also able to detect for bubbles and pipetting errors during actual assay runs to ensure accuracy in screening.

  15. Separation of ions in acidic solution by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.


    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  16. Quantitation of Leishmania lipophosphoglycan repeat units by capillary electrophoresis. (United States)

    Barron, Tamara L; Turco, Salvatore J


    The glycosylphosphatidylinositol (GPI)-anchored lipophosphoglycan (LPG) of Leishmania is the dominant cell surface glycoconjugate of these pathogenic parasites. LPG is structurally characterized by a series of phosphoglycan repeat units. Determining the number of repeat units per LPG molecule has proven difficult using current technologies, such as mass spectrometry. As an alternative method to quantitate the number of repeat units in LPG, a procedure based on capillary electrophoretic analysis of the proportion of mannose to 2,5-anhydromannose (derived from the nonacetylated glucosamine of the GPI anchor of LPG) was developed. The CE-based technique is sensitive and relatively rapid compared to GC-MS-based protocols. Its application was demonstrated in quantitating the number of LPG repeat units from several species of Leishmania as well as from two life-cycle stages of these organisms. PMID:16310310

  17. Microchip capillary electrophoresis based electroanalysis of triazine herbicides. (United States)

    Islam, Kamrul; Chand, Rohit; Han, Dawoon; Kim, Yong-Sang


    The number of pesticides used in agriculture is increasing steadily, leading to contamination of soil and drinking water. Herein, we present a microfluidic platform to detect the extent of contamination in soil samples. A microchip capillary electrophoresis system with in-channel electrodes was fabricated for label-free electroanalytical detection of triazine herbicides. The sample mixture contained three representative triazines: simazine, atrazine and ametryn. The electropherogram for each individual injection of simazine, atrazine and ametryn showed peaks at 58, 66 and 72 s whereas a mixture of them showed distinct peaks at 59, 67 and 71 s respectively. The technique as such may prove to be a useful qualitative and quantitative tool for the similar environmental pollutants.

  18. Nonlinear waves in electromigration dispersion in a capillary

    CERN Document Server

    Christov, Ivan C


    We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...

  19. Anomalous dynamics of capillary rise in porous media

    KAUST Repository

    Shikhmurzaev, Yulii D.


    The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade ago is described. The developed theory is based on considering the principal modes of motion of the menisci that collectively form the wetting front on the Darcy scale. These modes, which include (i) dynamic wetting mode, (ii) threshold mode, and (iii) interface depinning process, are incorporated into the boundary conditions for the bulk equations formulated in the regular framework of continuum mechanics of porous media, thus allowing one to consider a general case of three-dimensional flows. The developed theory makes it possible to describe all regimes observed in the experiment, with the time spanning more than four orders of magnitude, and highlights the dominant physical mechanisms at different stages of the process. © 2012 American Physical Society.

  20. Dynamics of Gravity-Capillary Solitary Waves in Deep Water

    CERN Document Server

    Wang, Zhan


    The dynamics of solitary gravity-capillary water waves propagating on the surface of a three-dimensional fluid domain is studied numerically. In order to accurately compute complex time dependent solutions, we simplify the full potential flow problem by taking a cubic truncation of the scaled Dirichlet-to-Neumann operator for the normal velocity on the free surface. This approximation agrees remarkably well with the full equations for the bifurcation curves, wave profiles and the dynamics of solitary waves for a two-dimensional fluid domain. Fully localised solitary waves are then computed in the three-dimensional problem and the stability and interaction of both line and localized solitary waves are investigated via numerical time integration of the equations. The solitary wave branches are indexed by their finite energy at small amplitude, and the dynamics of the solitary waves is complex involving nonlinear focussing of wave packets, quasi-elastic collisions, and the generation of propagating, spatially lo...

  1. Recent developments in electrochemical detection for microchip capillary electrophoresis. (United States)

    Vandaveer, Walter R; Pasas-Farmer, Stephanie A; Fischer, David J; Frankenfeld, Celeste N; Lunte, Susan M


    Significant progress in the development of miniaturized microfluidic systems has occurred since their inception over a decade ago. This is primarily due to the numerous advantages of microchip analysis, including the ability to analyze minute samples, speed of analysis, reduced cost and waste, and portability. This review focuses on recent developments in integrating electrochemical (EC) detection with microchip capillary electrophoresis (CE). These detection modes include amperometry, conductimetry, and potentiometry. EC detection is ideal for use with microchip CE systems because it can be easily miniaturized with no diminution in analytical performance. Advances in microchip format, electrode material and design, decoupling of the detector from the separation field, and integration of sample preparation, separation, and detection on-chip are discussed. Microchip CEEC applications for enzyme/immunoassays, clinical and environmental assays, as well as the detection of neurotransmitters are also described.

  2. Probing Antigen-Antibody Interaction Using Fluorescence Coupled Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Pengju Jiang


    Full Text Available In this report, the use of fluorescence detection coupled capillary electrophoresis (CE-FL allowed us to fully characterize the antigen-antibody interaction. CE-FL allowed separation of unbound quantum dots (QDs and ligand bound QDs and also revealed an ordered assembly of biomolecules on QDs. Further, we observed FRET from QDs donor to DyLight acceptor, which were covalently conjugated with human IgG and goat anti-human IgG, respectively. The immunocomplex was formed and the mutual affinity of the antigen and antibody brought QDs and DyLight close enough to allow FRET to occur. This novel CE-based technique can be easily extended to other FRET systems based on QDs and may have potential application in the detection of antibodies.

  3. Junctional communication is induced in migrating capillary endothelial cells. (United States)

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P


    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  4. Varying nanoparticle pseudostationary phase plug length during capillary electrophoresis† (United States)

    Subramaniam, Varuni; Griffith, Lindsay; Haes, Amanda J.


    Capillary electrophoresis based separations of the hypothesized Parkinson’s disease biomarkers dopamine, epinephrine, pyrocatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), glutathione, and uric acid are performed in the presence of a 1 nM 11-mercaptoundecanoic acid functionalized gold (Au@MUA) nanoparticle pseudostationary phase plug. Au@MUA nanoparticles are monitored in the capillary and remain stable in the presence of electrically-driven flow. Migration times, peak areas, and relative velocity changes (vs. no pseudostationary) are monitored upon varying (1) the Au@MUA nanoparticle pseudostationary phase plug length at a fixed separation voltage and (2) the separation voltage for a fixed Au@MUA nanoparticle pseudostationary phase plug length. For instance, the migration times of positively charged dopamine and epinephrine increase slightly as the nanoparticle pseudostationary phase plug length increases with concomitant decreases in peak areas and relative velocities as a result of attractive forces between the positively charged analytes and the negatively charged nanoparticles. Migration times for neutral pyrocatechol and slightly negative L-DOPA did not exhibit significant changes with increasing nanoparticle pseudostationary plug length; however, reduction in peak areas for these two molecules were evident and attributed to non-specific interactions (i.e. hydrogen bonding and van der Waals interactions) between the biomarkers and nanoparticles. Moreover, negatively charged uric acid and glutathione displayed progressively decreasing migration times and peak areas and as a result, increased relative velocities with increasing nanoparticle pseudostationary phase plug length. These trends are attributed to partitioning and exchanging with 11-mercaptoundecanoic acid on nanoparticle surfaces for uric acid and glutathione, respectively. Similar trends are observed when the separation voltage decreased thereby suggesting that nanoparticle-biomarker interaction

  5. Determination of dioxopromethazine hydrochloride by capillary electrophoresis with electrochemiluminescence detection

    International Nuclear Information System (INIS)

    The paper presents a rapid method for the determination of dioxopromethazine hydrochloride (DPZ), an antihistamine drug, by the capillary electrophoresis with electrochemiluminescene detection (CE-ECL) using tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+) reagent. This CE-ECL detection method has high sensitivity, good selectivity and reproducibility for DPZ analysis. Under the optimized conditions: separation capillary, 38 cm length (25 μm i.d.); sample injection, 10 s at 8 kV; separation voltage, 12.5 kV; running buffer, 20 mmol L-1 sodium phosphate of pH 6.0; detection potential, 1.15 V; 50 mmol L-1 of phosphate buffer (pH 7.14) containing 5 mmol L-1 of Ru(bpy)32+ in ECL detection cell, the detection limit of DPZ was 0.05 μmol L-1 (S/N = 3). The linear range extended from 5 to 100 μmol L-1. The linear curve obtained was Y = 181.62 + 9.28X with a correlation coefficient of 0.9970. The relative standard deviations of the ECL intensity and the migration time for six continuous injections of 5 μmol L-1 DPZ were 3.7% and 0.92%, respectively. The CE-ECL method was applied to analyze DPZ in real samples including tablets, rat serum and human urine, and satisfactory results were obtained without interference from samples matrix. The CE-ECL technique was proved to be a potential method for the detection of DPZ in clinic analysis

  6. Albuterol Improves Alveolar-Capillary Membrane Conductance in Healthy Humans (United States)

    Taylor, Natalie E.; Baker, Sarah E.; Olson, Thomas P.; Lalande, Sophie; Johnson, Bruce D.; Snyder, Eric M.


    BACKGROUND Beta-2 adrenergic receptors (β2ARs) are located throughout the body including airway and alveolar cells. The β2ARs regulate lung fluid clearance through a variety of mechanisms including ion transport on alveolar cells and relaxation of the pulmonary lymphatics. We examined the effect of an inhaled β2-agonist (albuterol) on alveolar-capillary membrane conductance (DM) and pulmonary capillary blood volume (VC) in healthy humans. METHODS We assessed the diffusing capacity of the lungs for carbon monoxide (DLCO) and nitric oxide (DLNO) at baseline, 30 minutes, and 60 minutes following nebulized albuterol (2.5 mg, diluted in 3 mL normal saline) in 45 healthy subjects. Seventeen subjects repeated these measures following nebulized normal saline (age = 27 ± 9 years, height = 165 ± 21 cm, weight = 68 ± 12 kg, BMI = 26 ± 9 kg/m2). Cardiac output (Q), heart rate, systemic vascular resistance (SVR), blood pressure, oxygen saturation, forced expiratory volume at one-second (FEV1), and forced expiratory flow at 50% of forced vital capacity (FEF50) were assessed at baseline, 30 minutes, and 60 minutes following the administration of albuterol or saline. RESULTS Albuterol resulted in a decrease in SVR, and an increase in Q, FEV1, and FEF50 compared to saline controls. Albuterol also resulted in a decrease in VC at 60 minutes post albuterol. Both albuterol and normal saline resulted in no change in DLCO or DM when assessed alone, but a significant increase was observed in DM when accounting for changes in VC. CONCLUSION These data suggest that nebulized albuterol improves pulmonary function in healthy humans, while nebulization of both albuterol and saline results in an increase in DM/VC.

  7. One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis. (United States)

    Guo, Xiao-Feng; Guo, Xiao-Mei; Wang, Hong; Zhang, Hua-Shan


    The coating of capillary inner surface is considered to be an effective approach to suppress the adsorption of proteins on capillary inner surface in CE. However, most of coating materials reported are water-soluble, which may dissolve in BGE during the procedure of electrophoresis. In this study, a novel strategy for selection of physically coating materials has been illustrated to get coating layer with excellent stability using materials having poor solubility in commonly used solvents. Taking natural chitin as example (not hydrolyzed water soluble chitosan), a simple one step coating method using chitin solution in hexafluoroisopropanol was adopted within only 21 min with good coating reproducibility (RSDs of EOF for within-batch coated capillaries of 1.55% and between-batch coated capillaries of 2.31%), and a separation of four basic proteins on a chitin coated capillary was performed to evaluate the coating efficacy. Using chitin coating, the adsorption of proteins on capillary inner surface was successfully suppressed with reversed and stable EOF, and four basic proteins including lysozyme, cytochrome c, ribonuclease A and α-chymotrypsinogen A were baseline separated within 16 min with satisfied separation efficiency using 20 mM pH 2.0 H3PO4-Na2HPO4 as back ground electrolyte and 20 kV as separation voltage. What is more important, the chitin coating layer could be stable for more than two months during this study, which demonstrates that chitin is an ideal material for preparing semi-permanent coating on bare fused silica capillary inner wall and has hopeful potential in routine separation of proteins with CE.

  8. Sub-wavelength fluorescent polymer coatings to convert standard glass capillaries into robust microfluidic refractometric sensors (United States)

    Rowland, Kristopher J.; François, Alexandre; Hoffmann, Peter; Monro, Tanya M.


    A capillary microresonator platform for label-free refractometric sensing is demonstrated by coating the interior of thick-walled silica capillaries with a sub-wavelength layer of high refractive index, dye-doped polymer. No intermediate processing, such as etching or tapering, of the capillary is required. Side illumination and detection of the polymer layer reveals a fluorescence spectrum that is periodically modulated by the presence of whispering gallery modes within the layer. The fabricated capillary resonators exhibited sensitivities to changes in internal refractive index of up to 29.44 nm/RIU, demonstrated by flowing through aqueous dilutions of glucose. Thick walled capillaries are used in order to readily allow interfacing with existing biological and chemical sensing and separation platforms such as capillary electrophoresis or gas chromatography where such capillaries are routinely used. The interior polymer coating method described here could enable the use of a wide range of materials for the design of optofluidic label-free sensors integrated with industry standard (bio)chemical analytical separation platforms.

  9. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices. (United States)

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C


    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  10. Optimized transcritical CO{sub 2} heat pumps: Performance comparison of capillary tubes against expansion valves

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neeraj; Bhattacharyya, Souvik [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)


    A capillary tube based CO{sub 2} heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. In the present study, a steady state simulation model has been developed to evaluate the performance of a capillary tube based transcritical CO{sub 2} heat pump system for simultaneous heating and cooling at 73 C and 4 C, respectively against optimized expansion valve systems. Capillary tubes of various configurations having diameters of 1.4, 1.5 and 1.6 mm along with internal surface roughness of 0.001-0.003 mm have been tested to obtain the optimum design and operating conditions. Subcritical and supercritical thermodynamic and transport properties of CO{sub 2} are calculated employing a precision in-house property code. It is observed that the capillary tube system is quite flexible in response to changes in ambient temperature, almost behaving to offer an optimal pressure control. System performance is marginally better with a capillary tube at higher gas cooler exit temperature. Capillary tube length turns out to be the critical parameter that influences system optimum conditions. A novel nomogram has been developed that can be employed as a guideline to select the optimum capillary tube. (author)

  11. Potentiometric Determination of Chloride and Cyanide Ions in Nanoliter Samples with Capillary Indicating Electrodes

    Institute of Scientific and Technical Information of China (English)


    The samples of 25 nL of chloride and cyanide were determined with a kind of glass capillary indicating electrodes by potentiometry. Silver was deposited by the silver-mirror reaction on the inner surface of the glass capillary with a volume of 25 nL. The AgCl film and the AgI film were formed by the treatment of the capillary with a FeCl3 solution and further with a KI solution. The samples were collected automatically into the capillary by the capillary ascension. The procedure in the measurement was merely to place a reference electrode and a capillary indicating electrode vertically on a strip filter paper containing a 0.1 mol/L NaNO3 solution. The various i.d. of the capillary electrodes were used to determine samples ranging from 25 nL to dozens of microliters. The ranges of the linear response to chloride and cyanide were 3.2×10-4-2.2×10-1 mol/L and 1.0×10-5-1.0×10-1 mol/L with an average slope of 55.2 and 52-62 mV/decade, respectively. The samples with various concentrations of chloride and cyanide were determined, and the relative standard deviations were less than 7%.

  12. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. (United States)

    Østergaard, Leif; Finnerup, Nanna B; Terkelsen, Astrid J; Olesen, Rasmus A; Drasbek, Kim R; Knudsen, Lone; Jespersen, Sune N; Frystyk, Jan; Charles, Morten; Thomsen, Reimar W; Christiansen, Jens S; Beck-Nielsen, Henning; Jensen, Troels S; Andersen, Henning


    Diabetic neuropathy is associated with disturbances in endoneurial metabolism and microvascular morphology, but the roles of these factors in the aetiopathogenesis of diabetic neuropathy remain unclear. Changes in endoneurial capillary morphology and vascular reactivity apparently predate the development of diabetic neuropathy in humans, and in manifest neuropathy, reductions in nerve conduction velocity correlate with the level of endoneurial hypoxia. The idea that microvascular changes cause diabetic neuropathy is contradicted, however, by reports of elevated endoneurial blood flow in early experimental diabetes, and of unaffected blood flow when early histological signs of neuropathy first develop in humans. We recently showed that disturbances in capillary flow patterns, so-called capillary dysfunction, can reduce the amount of oxygen and glucose that can be extracted by the tissue for a given blood flow. In fact, tissue blood flow must be adjusted to ensure sufficient oxygen extraction as capillary dysfunction becomes more severe, thereby changing the normal relationship between tissue oxygenation and blood flow. This review examines the evidence of capillary dysfunction in diabetic neuropathy, and whether the observed relation between endoneurial blood flow and nerve function is consistent with increasingly disturbed capillary flow patterns. The analysis suggests testable relations between capillary dysfunction, tissue hypoxia, aldose reductase activity, oxidative stress, tissue inflammation and glucose clearance from blood. We discuss the implications of these predictions in relation to the prevention and management of diabetic complications in type 1 and type 2 diabetes, and suggest ways of testing these hypotheses in experimental and clinical settings.

  13. Properties of the microcirculation in capillary bundles of rat spinotrapezius muscle fascia (United States)

    Jacobitz, Frank; Engebrecht, Cheryn; Metzger, Ian; Porterfield, Colin


    Properties of the microcirculation in capillary bundles of rat spinotrapezius muscle fascia are investigated using microscope observations, empirical modeling, and numerical simulations. Capillary bundles consist of a network of feeding arterioles, draining venules, and capillary vessels. A dozen samples of muscle fascia tissue were prepared for microscope observation. The chosen method of preparation allows for the long-term preservation of the tissue samples for future studies. Capillary bundles are photographed under a microscope with 40x magnification. From the images, the microvasculature of the tissue samples is reconstructed. It was found, for example, that the distribution of vessel length in a capillary bundle follows a log-normal law. In addition to a statistical analysis of the vessel data, the network topology is used for numerical simulations of the flow in the capillary bundles. The numerical approach uses a sparse-matrix solver and it considers vessel elasticity and blood rheology. The numerical simulations show, for example, a strong pressure drop across the capillary vessels of the bundle.

  14. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis-mass spectrometry. (United States)

    Beutner, Andrea; Kochmann, Sven; Mark, Jonas Josef Peter; Matysik, Frank-Michael


    The separation of complex mixtures such as biological or environmental samples requires high peak capacities, which cannot be established with a single separation technique. Therefore, multidimensional systems are in demand. In this work, we present the hyphenation of the two most important (orthogonal) techniques in ion analysis, namely, ion chromatography (IC) and capillary electrophoresis (CE), in combination with mass spectrometry. A modulator was developed ensuring a well-controlled coupling of IC and CE separations. Proof-of-concept measurements were performed using a model system consisting of nucleotides and cyclic nucleotides. The data are presented in a multidimensional contour plot. Analyte stacking in the CE separation could be exploited on the basis of the fact that the suppressed IC effluent is pure water.

  15. Elasto-capillary collapse of floating structures - Non-linear response of elastic structures under capillary forces

    CERN Document Server

    Adami, N; Roman, B; Bico, J; Caps, H


    Flexible rings and rectangle structures floating at the surface of water are prone to deflect under the action of surface pressure induced by the addition of surfactant molecules on the bath. While the frames of rectangles bend inward or outward for any surface pressure difference, circles are only deformed by compression beyond a critical buckling load. However, compressed frames also undergo a secondary buckling instability leading to a rhoboidal shape. Following the pioneering works of \\cite{Hu} and \\cite{Zell}, we describe both experimentally and theoretically the different elasto-capillary deflection and buckling modes as a function of the material parameters. In particular we show how this original fluid structure interaction may be used to probe the adsorption of surfactant molecules at liquid interfaces.

  16. The dynamics of the annular liquid layer inside a cylindrical capillary (United States)

    Zhang, Hua; Nikolov, Alex; Feng, Jianyuan; Wasan, Darsh


    When one fluid displaces another in a cylindrical capillary, a layer of the original fluid is often left behind on the capillary wall. We studied the dynamics of a cylindrical hexadecane layer deposited inside glass capillaries after the oil/air displacement experimentally and by a theoretical model prediction. Our experiments have shown that an annular oil layer is formed on the capillary wall after hexadecane is displaced by air. The oil layer subject to surface perturbation becomes unstable over time (Rayleigh instability), forming uniform, regularly spaced double concave meniscuses across the capillary that are bridged with dimples (collars). With time, the film between the meniscus and the dimple thins, but does not break, during the thinning process. The dynamics of the oil layer and the formation of the double concave meniscus with the dimple are more pronounced in a large capillary compared to those phenomena found in a small capillary. In order to reveal the phenomena of the film thinning and stability between the double concave meniscus and the dimple, we monitored an air bubble approaching a flat glass surface in hexadecane. We found that the oil film thinning in a cylindrical glass capillary and on a flat glass substrate was similar; the film did not break during the thinning process. The analysis also showed that the macroscopic contact angle (based on the Laplace solution-extrapolation to a solid substrate) was different from the microscopic contact angle (between the film and meniscus). We adapted the model proposed by Gauglitz and Radke ["An extended evolution equation for liquid film breakup in cylindrical capillaries," Chem. Eng. Sci. 43, 1457 (1988)] for our system (oil-air displacement) and solved it numerically. The numerical result shows a stable film between the liquid bridge and the dimple, which is consistent with our experimental observations. We also estimated the meniscus-film-dimple thickness profile and found it was in fair agreement

  17. The impact of capillary dilation on the distribution of red blood cells in artificial networks. (United States)

    Schmid, Franca; Reichold, Johannes; Weber, Bruno; Jenny, Patrick


    Recent studies suggest that pericytes around capillaries are contractile and able to alter the diameter of capillaries. To investigate the effects of capillary dilation on network dynamics, we performed simulations in artificial capillary networks of different sizes and complexities. The unequal partition of hematocrit at diverging bifurcations was modeled by assuming that each red blood cell (RBC) enters the branch with the faster instantaneous flow. Network simulations with and without RBCs were performed to investigate the effect of local dilations. The results showed that the increase in flow rate due to capillary dilation was less when the effects of RBCs are included. For bifurcations with sufficient RBCs in the parent vessel and nearly equal flows in the branches, the flow rate in the dilated branch did not increase. Instead, a self-regulation of flow was observed due to accumulation of RBCs in the dilated capillary. A parametric study was performed to examine the dependence on initial capillary diameter, dilation factor, and tube hematocrit. Furthermore, the conditions needed for an efficient self-regulation mechanism are discussed. The results support the hypothesis that RBCs play a significant role for the fluid dynamics in capillary networks and that it is crucial to consider the blood flow rate and the distribution of RBCs to understand the supply of oxygen in the vasculature. Furthermore, our results suggest that capillary dilation/constriction offers the potential of being an efficient mechanism to alter the distribution of RBCs locally and hence could be important for the local regulation of oxygen delivery. PMID:25617356

  18. The effect of capillary pressure for concave liquid-vapor interface on interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰


    The analysis in this paper demonstrates that the capillary pressure on the concave liquid-vapor interface will promote the interfacial evaporation, therefore clarifying the confusion over the great difference between the estimated and real rate of interfacial evaporation. This difference increases with decreasing capillary radius, and becomes more apparent for liquid with high latent heat. The present analysis also shows that the capillary pressure on the concave interface will result in a decrease in liquid phase equilibrium temperature, which can explain the possibility of vapor bubble formation on micro liquid layer interfacial evaporation under low superheat, or even below the nominal saturated temperature.

  19. Stereological study of the capillaries in the thyroid gland after IR laser radiation (United States)

    Perez de Vargas, I.; Vidal, Lourdes; Parrado, C.; Carrillo, F.; Pelaez, A.; Rius, F.


    We have planned a stereological ultrastructural study of capillaries in the thyroid gland treated with IR laser radiation and quantified 1 day after the last treatment. Wistar rats, 50 days old, were irradiated with IR laser radiation. The rats were perfused with 2.5 percent glutaraldehyde in 0.1 M phosphate buffer (ph equals 7.4). The pieces obtained after sectioning the thyroid gland were placed immediately into the same fixative. A stereological study of the thyroid capillaries was carried out. This analysis revealed an increase of luminal area in irradiated capillaries.

  20. Capillary bedside blood glucose measurement in neonates: missing a diagnosis of galactosemia. (United States)

    Özbek, Mehmet Nuri; Öcal, Murat; Tanrıverdi, Sibel; Baysal, Birsen; Deniz, Ahmet; Öncel, Kahraman; Demirbilek, Hüseyin


    A number of factors may lead to inaccuracy in measurement of capillary blood glucose with a glucometer. Measurement of other carbohydrate molecules such as galactose and fructose along with glucose can potentially be a cause of error. We report a newborn patient who was referred to our hospital with conjugated bilirubinemia, hepatomegaly and high capillary blood glucose levels measured with a glucometer. Simultaneous biochemical measurements revealed normal blood glucose levels. Further investigation led to a diagnosis of classical galactosemia. Capillary blood glucose level measured with glucometer also dropped to normal values following cessation of breastfeeding and initiation of feeding with a lactose-free formula. PMID:25800483

  1. Density of capillaries and the oxygen diffusion model in the porous silk fibroin film

    Institute of Scientific and Technical Information of China (English)

    BAI Lun; XU Jianmei; SUN Qilong; DI Chuanxia; ZUO Baoqi; GUAN Guoping; WU Zhenyu


    In order to obtain porous silk fibroin films(PSFFs)fit for the repair of different tissues and organs and design the configuration of the PSFFs more rationally,a model of the oxygen diffusing system of the capillary was built,and also the equations of the model were solved.Moreover,the relationships between the distribution of the oxygen concentration and each affecting factors were discussed,a method was developed to estimate the density of the capillaries in the tissue,and hereby discussed the characteristics of the oxygen diffusion in the tissues around the open capillaries.

  2. Enhanced solar evaporation of water from porous media, through capillary mediated forces and surface treatment (United States)

    Canbazoglu, F. M.; Fan, B.; Kargar, A.; Vemuri, K.; Bandaru, P. R.


    The relative influence of the capillary, Marangoni, and hydrophobic forces in mediating the evaporation of water from carbon foam based porous media, in response to incident solar radiation, are investigated. It is indicated that inducing hydrophilic interactions on the surface, through nitric acid treatment of the foams, has a similar effect to reduced pore diameter and the ensuing capillary forces. The efficiency of water evaporation may be parameterized through the Capillary number (Ca), with a lower Ca being preferred. The proposed study is of much relevance to efficient solar energy utilization.

  3. Capillary blood flow imaging within human finger cuticle using optical microangiography


    Baran, Utku; Shi, Lei; Ruikang K. Wang


    We report non-invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra-high sensitive optical microangiography (UHS-OMAG) techniques. Wide velocity range DOMAG method is applied to provide RBC axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS-OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising t...

  4. The Effect of the Capillary Tube Coil Number on the Refrigeration System Performance


    Thamir K. Salim


    The capillary tube performance for (R134a) is experimentally investigated. The experimental setup is a real vapor compression refrigeration system. All properties of the refrigeration system are measured for various mass flow rate from (13 – 23 kg/hr) and capillary tube coil number (0-4) with fixed length (150 cm) and capillary diameter(2.5mm).The results showed that the theoretical compression power increases by (65.8 %) as the condenser temperature increases by (2.71%), also the theoretical...

  5. Analysis of neuropeptides using capillary zone electrophoresis with multichannel fluorescence detection (United States)

    Sweedler, Jonathan V.; Shear, Jason B.; Fishman, Harvey A.; Zare, Richard N.; Scheller, Richard H.


    Capillary zone electrophoresis is fast becoming one of the most sensitive separation schemes for sampling complex microenvironments. A unique detection scheme is developed in which a charge-coupled device (CCD) detects laser induced fluorescence from an axially illuminated electrophoresis capillary. The fluorescence from an analyte band is measured over a several centimeter section of the capillary, greatly increasing the observation time of the fluorescently tagged band. The sensitivity of the system is in the 1-8 X 10-20 mol range for derivatized amino acids and peptides. Subattomole quantities of bag cell neuropeptides collected from the giant marine mollusk Aplysia californica can be measured.

  6. A low-makeup beveled tip capillary electrophoresis /electrospray ionization mass spectrometry interface for micellar electrokinetic chromatography and nonvolatile buffer capillary electrophoresis. (United States)

    Tseng, Mei-Chun; Chen, Yet-Ran; Her, Guor-Rong


    A robust interface has been developed for interfacing micellar electrokinetic chromatography (MEKC) and nonvolatile buffer capillary electrophoresis (CE) to electrospray ionization mass spectrometry (ESI-MS). The interface consists of two parallel capillaries for separation (50 microm i.d. x 155 microm o.d.) and makeup (50 microm i.d. x 155 microm o.d.) housed within a larger capillary (530 microm i.d. x 690 microm o.d.). The capillaries terminate in a single tapered tip having a beveled edge. The use of a tapered beveled edge results in a greater tip orifice diameter (75 microm) than in a previous design from our laboratory (25 microm) that used a flat tip. While maintaining a similar optimum flow rate and consequently similar sample dilution, a 75-microm beveled emitter is more rugged than a 25-microm flat tip. Furthermore, the incorporation of a sheath liquid capillary allows the compositions of the final spray solution to be controlled. The application of this novel CE/ESI-MS interface was demonstrated for MEKC using mixtures of triazines (positive ion mode) and phenols (negative ion mode). The ability to perform CE/ESI-MS using a nonvolatile buffer was demonstrated by the analysis of gangliosides with a buffer consisting of 40 mM borate and 20 mM alpha-cyclodextrin.

  7. Influence of the inner diameters of capillary on the Z-Pinch plasma of the capillary discharge soft X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan; Zhao, Yong-peng; Cui, Huai-yu; Li, Lian-bo; Ding, Yu-jie; Zhang, Wen-hong; Li, Wei [National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, Heilongjiang (China)


    In this paper, the effects of inner diameters on the Z-pinch plasma of capillary discharge soft X-ray laser were investigated with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The intensities of the laser emitted from the 3.2 mm and 4.0 mm inner diameter alumina capillaries were measured under different initial pressures. To understand the underlying physics of the experimental measurements, the Z-pinch plasma simulations had been conducted with a one-dimensional cylindrical symmetry Lagrangian magneto-hydrodynamics (MHD) code. The parametric studies of Z-pinch plasma, such as the electron temperature, the electron density and the Ne-like Ar ion density, were performed with the MHD code. With the experimental and the simulated results, the discussions had been conducted on the Z-pinch plasma of Ne-like Ar 46.9 nm laser with the 3.2 mm and 4.0 mm inner diameter alumina capillaries. The analysis had been made on the difference of the gain coefficients under the optimum pressures with both capillaries. Then, the effects of inner diameters on the optimum pressure and the pressure domain were analyzed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode: usefulness in nano-liquid chromatography and capillary electrochromatography. (United States)

    D'Orazio, Giovanni; Fanali, Salvatore


    In this paper the potential of fused silica capillaries packed with RP18 silica particles entrapped with monolithic frits using both nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) was investigated. Frits were prepared after removing a short part of the polyimide layer on the capillary wall and irradiating the polymerization mixture with an UV-light emitter diode (LED) at 370 nm. The capillary, was rotated during the polymerization procedure in order to obtain a homogeneous monolith. The distance of the LED from the capillary and the exposure time to UV light were studied in order to obtain frits with good porosity and high robustness. A mixture containing five alkylbenzenes was selected as sample and analyzed by both nano-LC and CEC. The standard mixture was baseline separated with good efficiency in the range 78,000-93,000 and 99,000-113,000 plates/m in nano-LC and CEC, respectively. The columns resulted to be very robust and the prepared monolithic frits allowed working with backpressure as high as 400 bar (nano-LC). In addition high voltages were applied in CEC (25-30 kV) without bubbles formation in absence of pressure assistance during runs. PMID:22189300

  9. Determination of parabens in sweeteners by capillary electrochromatography

    Directory of Open Access Journals (Sweden)

    Carla Beatriz Grespan Bottoli


    Full Text Available Parabens, common food preservatives, were analysed by capillary electrochromatography, using a commercial C18 silica (3 µm, 40 cm × 100 µm i. d. capillary column as separation phase. In order to optimise the separation of these preservatives, the effects of mobile phase composition on the separation were evaluated, as well as the applied voltage and injection conditions. The retention behavior of these analytes was strongly influenced by the level of acetonitrile in the mobile phase. An optimal separation of the parabens was obtained within 18.5 minutes with a pH 8.0 mobile phase composed of 50:50 v/v tris(hydroxymethylaminomethane buffer and acetonitrile. The method was successfully applied to the quantitative analysis of paraben preservatives in sweetener samples with direct injection.Os parabenos, empregados como conservantes em alimentos, foram analisados por eletrocromatografia capilar, empregando uma coluna comercial recheada com partículas de sílica-C18 (3 µm, 40 cm × 100 µm d. i. como fase estacionária de separação. Para otimizar a separação destes conservantes foram avaliados os efeitos da composição da fase móvel na separação, bem como a voltagem e as condições de injeção. O comportamento de retenção dos analitos foi fortemente influenciado pela proporção de acetonitrila na fase móvel. A separação dos parabenos foi alcançada em 18,5 min com uma fase móvel contendo tampão tris(hidroximetilaminometano e acetonitrila na proporção 50:50 v/v. O método foi aplicado na análise quantitativa de parabenos em adoçantes empregando a injeção direta das amostras.

  10. Modifying action of gibberellin on the cytogenetic effect of radiation in Crepis capillaris L

    International Nuclear Information System (INIS)

    Radioprotactive properties of gibberellin were studied during treating the Crepic capillaris seeds before irradiation. The radioprotective effect observed did not depend on the interphase stage. Gibberellin was shown to unduce no chromosome mutations

  11. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates. (United States)

    Cho, Kun; Hwang, In Gyu; Kim, Yeseul; Lim, Su Jin; Lim, Jun; Kim, Joon Heon; Gim, Bopil; Weon, Byung Mook


    Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.

  12. Theoretical Study on the Capillary Force between an Atomic Force Microscope Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-Xia; ZHANG Li-Juan; YI Hou-Hui; FANG Hai-Ping


    @@ Considering that capillary force is one of the most important forces between nanoparticles and atomic force microscope (AFM) tips in ambient atmosphere, we develop an analytic approach on the capillary force between an AFM tip and a nanoparticle. The results show that the capillary forces are considerably affected by the geometry of the AFM tip, the humidity of the environment, the vertical distance between the AFM tip and the nanoparticle, as well as the contact angles of the meniscus with an AFM tip and a nanoparticle. It is found that the sharper the AFM tip, the smaller the capillary force. The analyses and results are expected to be helpful for the quantitative imaging and manipulating of nanoparticles by AFMs.

  13. Fractal Analysis of Power-Law Fluid in a Single Capillary

    Institute of Scientific and Technical Information of China (English)

    YUN Mei-Juan; YU Bo-Ming; Xu Peng; CAI Jian-Chao


    The fractal expressions for flow rate and hydraulic conductivity for power-law fluids in a single capillary are derived based on the fxactal nature of tortuous capillaries.Every parameter in the proposed expressions has clear physical meaning.The flow rate and hydraulic conductivity for power-law fluids are found to be related to the tortuosity fractal dimension and the power-law index.Tjle flow rate for power-law fluids increases with the increasing power-law index but decreases with the increasing tortuosity fractal dimension.Good agreement between the model predictions for flow in a fractal capillary and in a converging-diverging duct is obtained.The results suggest that the fractal capillary model can be used to model the power-law fluids with different rheological properties.

  14. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling. (United States)

    Chen, Yi-Fan; Tate, Mark W; Gruner, Sol M


    Many steps in the X-ray crystallographic solution of protein structures have been automated. However, the harvesting and cryocooling of crystals still rely primarily on manual handling, frequently with consequent mechanical damage. An attractive alternative is to grow crystals directly inside robust plastic capillaries that may be cryocooled and mounted on the beamline goniometer. In this case, it is still desirable to devise a way to cryoprotect the crystals, which is difficult owing to the poor thermal conductivity of thick plastic capillary walls and the large thermal mass of the capillary and internal mother liquor. A method is described to circumvent these difficulties. It is shown that high-pressure cryocooling substantially reduced the minimal concentrations of cryoprotectants required to cryocool water inside capillaries without formation of ice crystals. The minimal concentrations of PEG 200, PEG 400 and glycerol necessary for complete vitrification under pressure cryocooling were determined.

  15. Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces. (United States)

    Xie, Qingguang; Davies, Gary B; Harting, Jens


    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this paper, we investigate capillary interactions between magnetic Janus particles adsorbed at fluid-fluid interfaces. We develop a pair-interaction model that predicts that these particles should arrange into a side-side configuration, and carry out simulations that confirm the predictions of our model. Finally, we investigate the monolayer structures that form when many magnetic Janus particles adsorb at the interface. We find that the particles arrange into long, straight chains exhibiting little curvature, in contrast with capillary interactions between ellipsoidal particles. We further find a regime in which highly ordered, lattice-like monolayer structures form, which can be tuned dynamically using an external magnetic field.

  16. Study of capillary experiments and hydrologic factors under subsurface drip irrigation with fractal theory

    International Nuclear Information System (INIS)

    Soil spatial variability is one of the primary environmental factors that influences the hydraulic factors and technical indicators of subsurface drip irrigation (SDI), whose emitters are buried in the soil. This paper aimed at evaluating these effects of soil spatial variability on hydrologic factors under SDI. And some SDI emitter and capillary experiments were designed to obtain test data and distribution of pressure and emitter discharge. First, The results of labyrinth non-turbulent mosaic drip emitter test and fractal theory were used to research the fractal and quantitative relationship between single emitter hydrologic factors and soil physical parameters; and then, the capillary experiments and the relationship among hydrologic factors of capillary were used to analyze the fractal and quantitative relationship between hydrologic factors of capillary and soil physical parameters, which explained the inner relationship between spatial variability of soil and hydrologic factors of filed pipeline network under SDI, and provide theory support for the plan, design, management and production of SDI.

  17. Determination of Size Distribution of Nano-particles by Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Yan XUE; Hai Ying YANG; Yong Tan YANG


    A new method was developed for the determination of the size distribution of nano-particles by capillary zone electrophoresis (CZE). Scattering effect of nanoparticles was studied. This method for the determination of size distribution was statistical.

  18. Monitoring Homovanillic Acid and Vanillylmandelic Acid in Human Urine by Capillary Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)


    A simple, rapid and low-cost method of separation and determination of homovanillic acid and vanillylmandelic acid in human urine was developed based on capillary zone electrophoresis / amperometric detection with high sensitivity and good resolution.

  19. Trace analysis of organic ions in ice samples by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Schwikowski, M.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Capillary electrophoresis was tested as a new analytical method for ice samples. Comparisons to ion chromatography were made concerning accuracy, detection limits, reproducibility, necessary sample volume and time consumption. (author) 1 fig., 3 refs.

  20. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.;


    Newton method is employed to solve the governing equations of the vapor-liquid equilibria coupled with the capillary pressure equation. For a stable and automatic construction of the phase envelope sensitivity analysis is used in each step. The developed algorithm can reliably generate not just...... the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...... mixtures in the presence of capillary pressure. The algorithm uses a rigorous equation of state (EoS) model, such as the Soave-Redlich-Kwong EoS, for phase equilibrium, and the Young-Lapace equation for the capillary pressure. The interfacial tension is calculated using a parachor based model. A full...

  1. Fiber pigtailed thin wall capillary coupler for excitation of microsphere WGM resonator. (United States)

    Wang, Hanzheng; Lan, Xinwei; Huang, Jie; Yuan, Lei; Kim, Cheol-Woon; Xiao, Hai


    In this paper, we demonstrate a fiber pigtailed thin wall capillary coupler for excitation of Whispering Gallery Modes (WGMs) of microsphere resonators. The coupler is made by fusion-splicing an optical fiber with a capillary tube and consequently etching the capillary wall to a thickness of a few microns. Light is coupled through the peripheral contact between inserted microsphere and the etched capillary wall. The coupling efficiency as a function of the wall thickness was studied experimentally. WGM resonance with a Q-factor of 1.14 × 10(4) was observed using a borosilicate glass microsphere with a diameter of 71 μm. The coupler operates in the reflection mode and provides a robust mechanical support to the microsphere resonator. It is expected that the new coupler may find broad applications in sensors, optical filters and lasers. PMID:23842369

  2. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva


    In skeletal muscle, growth of capillaries is an important adaptation to exercise training that secures adequate diffusion capacity for oxygen and nutrients even at high intensity exercise when increases in muscle blood flow are profound. Mechanical forces present during muscle activity......, such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...


    AbstractHigh speed capillary liquid chromatographic separations using a simple home made system constructed from readily available inexpensive components have been studied. Using thermally stable zirconia and titania based packing, the separation of eight alkylbenzene...

  4. Capillary Electrophoresis Profiles and Fluorophore Components of Humic Acids in Nebraska Corn and Philippine Rice Soils (United States)

    As humic substances represent relatively high molecular mass polyelectrolytes containing aromatic, aliphatic and heterocyclic subunits, capillary electrophoresis (CE) has become an attractive method for “finger-print” characterization of humic acids. In addition, fluorescence excitation-emission ma...

  5. Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector

    Institute of Scientific and Technical Information of China (English)


    The water-soluble carboxymethyl-cyclodextrin polymer (CM-CD polymer) was synthesized and used as capillary electrophoresis chiral selector.Verrapamil and thiopentorusodium were well separated using CM-CD polymer as chiral selector.

  6. p-Hydrazinobenzenesulfonic Acid Derivatives of Carbohydrates and Their Capillary Zone Electrophoresis

    Institute of Scientific and Technical Information of China (English)


    p-Hydrazinobenzenesulfonic acid is explored as a novel ultraviolet labeling reagent for capillary electrophoresis (CE) of mono- and disaccharides. The labeling reaction takes less than 10 minutes and introduces both of absorption and charge groups into the sugars.

  7. Recent advances in the analysis of biological particles by capillary electrophoresis


    Kostal, Vratislav; Arriaga, Edgar A.


    This review covers research papers published in the years 2005–2007 that describe the application of capillary electrophoresis to the analysis of biological particles such as whole cells, subcellular organelles, viruses and microorganisms.


    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  9. Generation of intense soft X-rays from capillary discharge plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; S Nigam; K Aneesh; S Barnwal; P K Tripathi; P A Naik; C P Navathe; P D Gupta


    X-ray lasing through high voltage, high current discharges in gas filled capillaries has been demonstrated in several laboratories. This method gives highest number of X-ray photons per pulse. The fast varying current and the j x B magnetic force compress the plasma towards the axis forming a hot, dense, line plasma, wherein under appropriate discharge conditions lasing occurs. At Laser Plasma Division, RRCAT, a program on high voltage capillary discharge had been started. The system consists of a 400 kV Marx bank, water line capacitor, spark gap and capillary chamber. The initial results of the emission of intense short soft X-ray pulses (5–10 ns) from the capillary discharge are reported.

  10. Relative Permeabilities: a pore-level model study of the capillary number dependence (United States)

    Ferer, Martin; Mason, Gary; Bromhal, Grant; Smith, Duane


    Relative permeabilities are widely used by the petroleum industry in reservoir simulations of recovery strategies. In recent years, pore level modeling has been used to determine relative permeabilities at zero capillary number for a variety of more and more realistic model porous media. Unfortunately, these studies cannot address the issue of the observed capillary number dependence of the relative permeabilities. Several years ago, we presented a method for determining the relative permeabilities from pore-level modeling at general capillary number. We have used this method to determine the relative permeabilities at several capillary numbers and stable viscosity ratios. In addition, we have determined these relative permeabilities using one of the standard dynamic methods for determining relative permeabilities from core flood experiments. Our results from the two methods are compared with each other and with experimental results.

  11. Self-Assembly of Microscale Parts through Magnetic and Capillary Interactions

    Directory of Open Access Journals (Sweden)

    Madan Dubey


    Full Text Available Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and general handling of individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we describe the use of magnetic and capillary forces to self-assemble 280 µm sized silicon building blocks into interconnected structures which approach a three-dimensional crystalline configuration. Integrated permanent magnet microstructures provided magnetic forces, while a low-melting-point solder alloy provided capillary forces. A finite element model of forces between the magnetic features demonstrated the utility of magnetic forces at this size scale. Despite a slight departure from designed dimensions in the actual fabricated parts, the combination of magnetic and capillary forces improved the assembly yield to 8%, over approximately 0.1% achieved previously with capillary forces alone.

  12. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. (United States)

    Karbowski, Jan


    Brain is one of the most energy demanding organs in mammals, and its total metabolic rate scales with brain volume raised to a power of around 5/6. This value is significantly higher than the more common exponent 3/4 relating whole body resting metabolism with body mass and several other physiological variables in animals and plants. This article investigates the reasons for brain allometric distinction on a level of its microvessels. Based on collected empirical data it is found that regional cerebral blood flow CBF across gray matter scales with cortical volume V as CBF ~ V(-1/6), brain capillary diameter increases as V(1/12), and density of capillary length decreases as V(-1/6). It is predicted that velocity of capillary blood is almost invariant (~V(ε)), capillary transit time scales as V(1/6), capillary length increases as V(1/6+ε), and capillary number as V(2/3-ε), where ε is typically a small correction for medium and large brains, due to blood viscosity dependence on capillary radius. It is shown that the amount of capillary length and blood flow per cortical neuron are essentially conserved across mammals. These results indicate that geometry and dynamics of global neuro-vascular coupling have a proportionate character. Moreover, cerebral metabolic, hemodynamic, and microvascular variables scale with allometric exponents that are simple multiples of 1/6, rather than 1/4, which suggests that brain metabolism is more similar to the metabolism of aerobic than resting body. Relation of these findings to brain functional imaging studies involving the link between cerebral metabolism and blood flow is also discussed.

  13. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling.

    Directory of Open Access Journals (Sweden)

    Jan Karbowski

    Full Text Available Brain is one of the most energy demanding organs in mammals, and its total metabolic rate scales with brain volume raised to a power of around 5/6. This value is significantly higher than the more common exponent 3/4 relating whole body resting metabolism with body mass and several other physiological variables in animals and plants. This article investigates the reasons for brain allometric distinction on a level of its microvessels. Based on collected empirical data it is found that regional cerebral blood flow CBF across gray matter scales with cortical volume V as CBF ~ V(-1/6, brain capillary diameter increases as V(1/12, and density of capillary length decreases as V(-1/6. It is predicted that velocity of capillary blood is almost invariant (~V(ε, capillary transit time scales as V(1/6, capillary length increases as V(1/6+ε, and capillary number as V(2/3-ε, where ε is typically a small correction for medium and large brains, due to blood viscosity dependence on capillary radius. It is shown that the amount of capillary length and blood flow per cortical neuron are essentially conserved across mammals. These results indicate that geometry and dynamics of global neuro-vascular coupling have a proportionate character. Moreover, cerebral metabolic, hemodynamic, and microvascular variables scale with allometric exponents that are simple multiples of 1/6, rather than 1/4, which suggests that brain metabolism is more similar to the metabolism of aerobic than resting body. Relation of these findings to brain functional imaging studies involving the link between cerebral metabolism and blood flow is also discussed.

  14. Scanning electron microscopic study of capillary change in bleomycin-induced pulmonary fibrosis.


    Kwon, K. Y.; Park, K K; Chang, E. S.


    The architectural changes which occur in the capillaries are difficult to illustrate without a three-dimensional tool, such as scanning electron microscopy. Therefore, a scanning electron microscopic study was occasionally undertaken to show the capillary changes of lung fibrosis. Fibrosis was induced in twenty rats by an intratracheal injection of bleomycin. After 30 days the rats were sacrificed, and light microscopy and scanning electron microscopy were performed. The vascular trees of bot...

  15. Evaporation-induced evolution of the capillary force between two grains


    Mielniczuk, Boleslaw; Hueckel, Tomasz; El Youssoufi, Moulay Saïd


    International audience The evolution of capillary forces during evap-oration and the corresponding changes in the geometrical characteristics of liquid (water) bridges between two glass spheres with constant separation are examined experimen-tally. For comparison, the liquid bridges were also tested for mechanical extension (at constant volume). The obtained results reveal substantial differences between the evolution of capillary force due to evaporation and the evolution due to extension...

  16. An Experimental Comparison of the Refrigerant Flow through Adiabatic and Non-Adiabatic Helical Capillary Tubes


    Javidmand, Puya; Zareh, Masoud


    Capillary tubes are used as refrigerant controlling devices, expansion devices and also as heart of a small vapor compression refrigeration cycle. It connects outlet condenser to the inlet evaporator and balances the refrigeration cycle pressure and controls the refrigerant mass flux. Capillary tubes are relatively cheap, resulting in extensive implementations in small household refrigerators and freezers with nearly constant refrigeration load. In general, the inner diameter and length of a ...

  17. A case of rapidly fatal systemic capillary leak syndrome in a kidney transplant recipient. (United States)

    Crenier, L; Piagnerelli, M; Doutrelepont, J M; De Pauw, L; Kinnaert, P; Vereerstraeten, P; Abramowicz, D


    Idiopathic Systemic Capillary Leak Syndrome (SCLS) is a rare entity characterised by idiopathic increasing of capillary permeability associated with recurrent attacks of hypovolaemic shock. We report the case of a 39-year-old man with a SCLS fourteen years after a cadaveric renal transplantation. The clinical evolution was rapidly fatal despite treatment with corticoids, aminophylline and terbutaline which are the most efficient drugs known to prevent attacks. PMID:9489137

  18. Reference values for venous and capillary S100B in children

    DEFF Research Database (Denmark)

    Astrand, Ramona; Romner, Bertil; Lanke, Jan;


    The current management guidelines for pediatric mild head injury (MHI) liberally recommend computed tomography (CT) and frequent admission. Serum protein S100B, currently used in management of adult head injury, has recently shown potential for reducing unnecessary CT scans after pediatric mild...... head injury. Capillary sampling in children is commonly used when venous sampling fails or is inappropriate. We present reference values for both venous and capillary samples of protein S100B in children....

  19. Capillary Bedside Blood Glucose Measurement in Neonates: Missing a Diagnosis of Galactosemia


    Özbek, Mehmet Nuri; Öcal, Murat; Tanrıverdi, Sibel; Baysal, Birsen; Deniz, Ahmet; Öncel, Kahraman; Demirbilek, Hüseyin


    A number of factors may lead to inaccuracy in measurement of capillary blood glucose with a glucometer. Measurement of other carbohydrate molecules such as galactose and fructose along with glucose can potentially be a cause of error. We report a newborn patient who was referred to our hospital with conjugated bilirubinemia, hepatomegaly and high capillary blood glucose levels measured with a glucometer. Simultaneous biochemical measurements revealed normal blood glucose levels. Further inves...

  20. Assay of Histamine in Single Mast Cells by Capillary Zone Electrophoresis with Electrochemical Detection

    Institute of Scientific and Technical Information of China (English)


    Capillary zone electrophoresis was employed for the analysis of histamine in single rat peritoneal mast cells using an amperometric detector. In this method, individual mast cells and then 0.02 mol/L NaOH as a lysing solution are injected into the front end of the separation capillary. A cell injector was constructed for easy injection of single cells. Histamine in single mast cells has been identified and quantified.

  1. Pulmonary capillary blood volume in patients with probable pulmonary Kaposi's sarcoma.


    Camus, F.; de Picciotto, C.; Gerbe, J; S Roy; Bouchaud, O.; E. Casalino; Perronne, C


    BACKGROUND: An increase in pulmonary capillary blood volume secondary to angiogenesis has been described in Kaposi's sarcoma. The value of the pulmonary capillary blood volume as an early marker of pulmonary Kaposi's sarcoma was evaluated. METHODS: In a prospective study 45 HIV positive patients (nine asymptomatic for Kaposi's sarcoma, 29 with cutaneous or mucocutaneous Kaposi's sarcoma, and seven with pulmonary Kaposi's sarcoma), underwent pulmonary function tests and determination of transf...

  2. Increased alveolar/capillary membrane resistance to gas transfer in patients with chronic heart failure.


    Puri, S.; Baker, B. L.; Oakley, C M; Hughes, J. M.; Cleland, J. G.


    OBJECTIVE--To investigate pulmonary diffusive resistance to gas exchange in patients with heart failure and healthy volunteers, assessing the relative contributions of the alveolar/capillary membrane and pulmonary capillary blood. SETTING--Hospital outpatient department and pulmonary function laboratory. PATIENTS--38 patients (mean age 60) receiving treatment with loop diuretics and angiotensin converting enzyme inhibitors for stable symptomatic heart failure of > 6 months duration (New York ...

  3. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM


    Hoang, D.A.; Van Steijn V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C. R.


    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure the reliability of OpenFOAM in modeling complex physical phenomena in microfluidics, viz. 1) the steady motion of bubbles in capillaries, and 2) the formation of bubbles in T-junctions. We found th...

  4. Electropolishing the bore of metal capillary tubes: A technique for adjusting the critical flow. (United States)

    Stoffels, J J; Ells, D R


    A technique has been developed for electropolishing the bore of metal capillary tubes. Although developed specifically for stainless-steel tubes, the technique should be directly applicable to other metals. Tubes with inside diameter as small as 0.20 mm and 110 mm long have been successfully electropolished. The electropolishing technique can be used to increase the critical flow of a capillary tube in a controllable way. PMID:18699437

  5. A capillary network model for coupled gas and water flow in engineered barriers

    International Nuclear Information System (INIS)

    A two-dimensional capillary network model for gas migration through a water-saturated medium is presented. The model is an extension of previously developed capillary bundle models, and provides a discrete alternative to classical continuum Darcy models. The need for such an alternative has become apparent from recent experimental results that suggest gas migrates through low permeability water-saturated media via a small number of preferential pathways

  6. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force


    HAN, Anpan; Mondin, Giampietro; Hegelbach, Nicole G.; De Rooij, Nicolaas F; Staufer, Urs


    We report the filling kinetics of different liquids in nanofabricated capillaries with rectangular cross-section by capillary force. Three sets of channels with different geometry were employed for the experiments. The smallest dimension of the channel cross-section was respectively 27, 50, and 73 nm. Ethanol, isopropanol, water and binary mixtures of ethanol and water spontaneously filled nanochannels with inner walls exposing silanol groups. For all the liquids the position of the moving li...

  7. Experimental Studies on Heat Transfer Characteristics In Inverted Evaporator of Micaro/Miniature Capillary Pumped Loop

    Institute of Scientific and Technical Information of China (English)

    ZhuNing; HouZengqi; 等


    This paperpresents the experimental inverstigation on the heat transfer characteristics in inverted evaporator of Micro/Miniature Capillary Pumped Loop(MCPL).THe evaporation heat transfer coefficients as a function of the heat flux density,the geometrical sizes of capillary wick structure and the vapor grooves are shown.Qualitative analysis of the heat transfer characteristics of the inverted evaporator of MCPL is also made.

  8. An Optical Fiber Viscometer Based on Long-Period Fiber Grating Technology and Capillary Tube Mechanism


    Jian-Neng Wang; Jaw-Luen Tang


    This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We ...

  9. The Effects of Alcohol Abuse on Pulmonary Alveolar-Capillary Barrier Function in Humans


    Burnham, Ellen L.; Halkar, Raghuveer; Burks, Marsha; Moss, Marc


    Aims: Alcohol abuse is associated with the development of the acute respiratory distress syndrome, a disorder characterized by abnormal alveolar-capillary permeability. We hypothesized that individuals with a history of alcohol abuse would have clinical evidence of abnormal alveolar-capillary permeability even in the absence of symptoms. This could contribute to their propensity for the development of this disorder. Methods: Thirty-three subjects with a history of alcohol abuse, but no other ...

  10. Chiral Separation by Capillary Zone Electrophoresis Used Cyclodextrins and Their Derivatives as Chiral Selector

    Institute of Scientific and Technical Information of China (English)


    @@ Capillary zone electrophoresis (CZE) is a very pronising analytical technique for the optical isomer resolution of the compounds studied. The drawbacks of the techniques such as HPLC [1] were sophisticated stationary phases and/or the relatively high quantity of the chiral agent in the mobile phase, which do not exist in CZE. The capillary electrophoresis (CE) method can offer advantages on lower consumption of analyte and background electrolyte (BGE), shorter analysis time, and higher efficiencies [2-3

  11. Groundwater recharge and capillary rise in a clayey catchment: modulation by topography and the Arctic Oscillation


    T. M. Schrøder; D. Rosbjerg


    The signature left by capillary rise in the water balance is investigated for a 16 km2 clayey till catchment in Denmark. Integrated modelling for 1981–99 substantiates a 30% uphill increase in average net recharge, caused by the reduction in capillary rise when the water table declines. Calibration of the groundwater module is constrained by stream flow separation and water table wells. Net recharge and a priori parameterisation has been estimated from those same data, an automatic rain ga...

  12. Groundwater recharge and capillary rise in a clayey catchment: modulation by topography and the Arctic Oscillation


    T. M. Schrøder; D. Rosbjerg


    International audience The signature left by capillary rise in the water balance is investigated for a 16 km2 clayey till catchment in Denmark. Integrated modelling for 1981?99 substantiates a 30% uphill increase in average net recharge, caused by the reduction in capillary rise when the water table declines. Calibration of the groundwater module is constrained by stream flow separation and water table wells. Net recharge and a priori parameterisation has been estimated from those same dat...

  13. Visualization experiment to investigate capillary barrier performance in the context of a Yucca Mountain emplacement drift. (United States)

    Tidwell, Vincent C; Glass, Robert J; Chocas, Connie; Barker, Glenn; Orear, Lee


    The use of capillary barriers as engineered backfill systems to divert water away from radioactive waste potentially stored in a Yucca Mountain emplacement drift is investigated. We designed and conducted a flow visualization experiment to investigate capillary barrier performance in this context. A two-dimensional, thin slab, test system replicated the physical emplacement drift to one-quarter scale (1.4-m diameter) and included the simulated drift wall, waste canister, pedestal, capillary barrier backfill, and host-rock fracture system. Water was supplied at the top of the simulated drift and allowed to discharge by way of wicks located along the left wall of the cell (simulated fractures) or by a gravity drain at the bottom of the right side (simulated impermeable rock with floor drain). Photographs captured the migration of water and a blue dye tracer within the system, analytical balances measured the mass balance of water, while tensiometers measured the capillary pressure at numerous locations. Of particular concern to this test was the drainage of the capillary barrier, which terminates against the drift wall. We found that while the simulated fractures (left side) and drain (right side) each influenced the performance of the capillary barrier at early time, they had little differential affect at later times. Also of concern was the small disparity in capillary properties between the fine and coarse layer (limited by the need of a fine-grained material that would not filter into the coarse layer under dry conditions). While the capillary barrier was able to divert the majority of flow toward the edges of the system and away from the simulated waste canister, the barrier did not preclude flow in the coarse layer, which was noted to be visually wet next to the waste canister on day 92 and was continuing to take on water at termination on day 112.

  14. On-line wall-free cell for laser-induced fluorescence detection in capillary electrophoresis. (United States)

    Yu, Chang-Zhu; He, You-Zhao; Xie, Hai-Yang; Gao, Yong; Gan, Wu-Er; Li, Jun


    A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm x 50-microm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6mm at one end of both 50 microm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 microm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 micromol/L. The column efficiency was in the range from 1.0 x 10(5) to 2.5 x 10(5) plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves. PMID:19329123

  15. Capillary zone electrophoresis for separation and quantitative determination of mexiletine and its main phase I metabolites. (United States)

    Bruno, Claudio; Cavalluzzi, Maria Maddalena; Carocci, Alessia; Catalano, Alessia; Franchini, Carlo; Lentini, Giovanni


    The simultaneous separation and quantification of the analytes within the minimum analysis time and the maximum resolution and efficiency are the main objectives in the development of a capillary electrophoretic method for the determination of solutes. In this paper we describe a specific, sensitive and robust method, using capillary zone electrophoresis with internal standard and UV detection, for the separation and quantification of the anti-arrhythmic drug mexiletine, its main phase I metabolites, and its main nitrogenous degradation product. PMID:23826880

  16. Investigation of the influence of capillary effect on operation of the loop heat pipe

    Directory of Open Access Journals (Sweden)

    Mikielewicz Dariusz


    Full Text Available In the paper presented are studies on the investigation of the capillary forces effect induced in the porous structure of a loop heat pipe using water and ethanol ad test fluids. The potential application of such effect is for example in the evaporator of the domestic micro-CHP unit, where the reduction of pumping power could be obtained. Preliminary analysis of the results indicates water as having the best potential for developing the capillary effect.

  17. Gas Dynamical Capillary Flowmeters of Small and Micro Flowrates of Gases


    Stasiuk, Ivan


    The possibility of application of glass capillary tubes (CTs) as sensors of small and micro flowrates of gases was justified. The accuracy of a number of CTs flowrate equations was analyzed on the basis of experimental studies of CTs flowrate characteristics. It was shown that CTs can be applied as primary devices of small and micro flowrates of gases without individual calibration. The results of studies on the dynamic properties of gas dynamical capillary flowmeters of small and micro flowr...

  18. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Heidi Adler


    Full Text Available The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10, oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3.

  19. A capillary pumping device utilizing super-hydrophobic silicon grass

    International Nuclear Information System (INIS)

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  20. Focusing cold neutrons using capillary optics for analytical nuclear methods

    International Nuclear Information System (INIS)

    The authors demonstrate improved detection limits and lateral resolution for prompt gamma activation analysis (PGAA) by using a neutron focusing device to increase the neutron intensity. The neutron lens, made of glass fibers with hollow polycapillaries, was designed and constructed by X-Ray Optical Systems, Inc. It has been characterized and used for preliminary experiments at the PGAA station of the Cold Neutron Research Facility (CNRF) at NIST. The lens accepts a polychromatic cold neutron beam (wavelengths longer than 0.4 run) from a neutron guide 50 mm x 45 mm in cross section, and delivers a focused beam of 0.5 mm in diameter (full width at half maximum) at 52 mm from the exit of the capillaries. The average neutron current density at the focus within the FWHM is 80 times higher than that of the direct incident beam. Test samples of 2% gadolinium glass particles of size about 0.1 to 0.2 mm, and cylindrical glass samples of 0.5 mm and 1 mm in diameter containing 15 % boron have been scanned across the focal plane to determine the spatial response as well as the peak count rate. Results from both sets of measurements show promise for higher detection sensitivity on small samples, and for two-dimensional mapping of samples with lateral compositional variation. Problems associated with neutron background will be addressed